Science.gov

Sample records for autophagic machinery activated

  1. Autophagic machinery activated by dengue virus enhances virus replication

    SciTech Connect

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication.

  2. The Autophagic Machinery in Enterovirus Infection

    PubMed Central

    Lai, Jeffrey K. F.; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field. PMID:26828514

  3. The autophagic machinery ensures nonlytic transmission of mycobacteria

    PubMed Central

    Gerstenmaier, Lilli; Pilla, Rachel; Herrmann, Lydia; Herrmann, Hendrik; Prado, Monica; Villafano, Geno J.; Kolonko, Margot; Reimer, Rudolph; Soldati, Thierry; King, Jason S.; Hagedorn, Monica

    2015-01-01

    In contrast to mechanisms mediating uptake of intracellular bacterial pathogens, bacterial egress and cell-to-cell transmission are poorly understood. Previously, we showed that the transmission of pathogenic mycobacteria between phagocytic cells also depends on nonlytic ejection through an F-actin based structure, called the ejectosome. How the host cell maintains integrity of its plasma membrane during the ejection process was unknown. Here, we reveal an unexpected function for the autophagic machinery in nonlytic spreading of bacteria. We show that ejecting mycobacteria are escorted by a distinct polar autophagocytic vacuole. If autophagy is impaired, cell-to-cell transmission is inhibited, the host plasma membrane becomes compromised and the host cells die. These findings highlight a previously unidentified, highly ordered interaction between bacteria and the autophagic pathway and might represent the ancient way to ensure nonlytic egress of bacteria. PMID:25646440

  4. Autophagic Processes in Yeast: Mechanism, Machinery and Regulation

    PubMed Central

    Reggiori, Fulvio; Klionsky, Daniel J.

    2013-01-01

    Autophagy refers to a group of processes that involve degradation of cytoplasmic components including cytosol, macromolecular complexes, and organelles, within the vacuole or the lysosome of higher eukaryotes. The various types of autophagy have attracted increasing attention for at least two reasons. First, autophagy provides a compelling example of dynamic rearrangements of subcellular membranes involving issues of protein trafficking and organelle identity, and thus it is fascinating for researchers interested in questions pertinent to basic cell biology. Second, autophagy plays a central role in normal development and cell homeostasis, and, as a result, autophagic dysfunctions are associated with a range of illnesses including cancer, diabetes, myopathies, some types of neurodegeneration, and liver and heart diseases. That said, this review focuses on autophagy in yeast. Many aspects of autophagy are conserved from yeast to human; in particular, this applies to the gene products mediating these pathways as well as some of the signaling cascades regulating it, so that the information we relate is relevant to higher eukaryotes. Indeed, as with many cellular pathways, the initial molecular insights were made possible due to genetic studies in Saccharomyces cerevisiae and other fungi. PMID:23733851

  5. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries.

    PubMed

    Abdel-Aziz, Amal Kamal; Mantawy, Eman M; Said, Riham Soliman; Helwa, Reham

    2016-09-01

    Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain. PMID:27288242

  6. Autophagic activity dictates the cellular response to oncogenic RAS

    PubMed Central

    Wang, Yihua; Wang, Xiao Dan; Lapi, Eleonora; Sullivan, Alexandra; Jia, Wei; He, You-Wen; Ratnayaka, Indrika; Zhong, Shan; Goldin, Robert D.; Goemans, Christoph G.; Tolkovsky, Aviva M.; Lu, Xin

    2012-01-01

    RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2(Δ3/Δ3) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce. PMID:22847423

  7. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  8. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki

    2014-03-01

    Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.

  9. Autophagic activity in BC3H1 cells exposed to yessotoxin.

    PubMed

    Korsnes, Mónica Suárez; Kolstad, Hilde; Kleiveland, Charlotte Ramstad; Korsnes, Reinert; Ørmen, Elin

    2016-04-01

    The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress. PMID:26743762

  10. HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells.

    PubMed

    Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I; Ho, Emily

    2016-06-01

    Histone deacetylase 6 is a multifunctional lysine deacetylase that is recently emerging as a central facilitator of response to stress and may play an important role in cancer cell proliferation. The histone deacetylase 6-inhibitor tubacin has been shown to slow the growth of metastatic prostate cancer cells and sensitize cancer cells to chemotherapeutic agents. However, the proteins histone deacetylase 6 interacts with, and thus its role in cancer cells, remains poorly characterized. Histone deacetylase 6 deacetylase activity has recently been shown to be required for efficient basal autophagic flux. Autophagy is often dysregulated in cancer cells and may confer stress resistance and allow for cell maintenance and a high proliferation rate. Tubacin may therefore slow cancer cell proliferation by decreasing autophagic flux. We characterized the histone deacetylase 6-interacting proteins in LNCaP metastatic prostate cancer cells and found that histone deacetylase 6 interacts with proteins involved in several cellular processes, including autophagy. Based on our interaction screen, we assessed the impact of the histone deacetylase 6-inhibitor tubacin on autophagic flux in two metastatic prostate cancer cell lines and found that tubacin does not influence autophagic flux. Histone deacetylase 6 therefore influences cell proliferation through an autophagy-independent mechanism. PMID:26643866

  11. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  12. Anti-osteoclastogenic activity of isoliquiritigenin via inhibition of NF-κB-dependent autophagic pathway.

    PubMed

    Liu, Shan; Zhu, Lingxin; Zhang, Jie; Yu, Jingjing; Cheng, Xue; Peng, Bin

    2016-04-15

    Previous studies, including those from our laboratory, have demonstrated that the natural flavonoid isoliquiritigenin (ISL) is a promising agent for bone destructive diseases. However, the mechanisms underlying its anti-osteoclastogenic effects are still far from clear. Here, we evaluated the potential alterations of autophagy and nuclear factor-κB (NF-κB) during anti-osteoclastogenic effects by ISL in vitro and in vivo. We observed that ISL inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and suppressed autophagic microtubule-associated protein light chain 3 (LC3)-II and Beclin 1 accumulation. ISL treatment resulted in the interruption of several specific features for autophagy in osteoclast precursors, including acidic vesicular organelle formation, LC3-II accumulation, and appearance of autophagic vacuoles. The RANKL-stimulated expression levels of autophagy-related genes and proteins also diminished in ISL-treated osteoclast precursors. The reactivation of autophagy by rapamycin almost reversed the ISL-elicited anti-osteoclastogenic effects. Interestingly, ISL inhibited the RANKL-stimulated NF-κB expression and nuclear translocation, whereas the NF-κB inhibitor Bay 11-7082 markedly suppressed the RANKL-induced autophagic activation. Consistent with the in vitro results, the administration of ISL could attenuate osteoclastogenic cathepsin K, autophagic LC3, and NF-κB expression to protect against inflammatory calvarial bone erosion in vivo. Our findings highlight the inhibition of NF-κB-dependent autophagy as an important mechanism of ISL-mediated anti-osteoclastogenic activity. PMID:26947453

  13. Induction of Autophagic Death in Cancer Cells by Agonizing TR3 and Attenuating Akt2 Activity.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Hou, Pei-pei; Li, Feng-wei; Zhou, Bo; Chen, Hang-zi; Bian, Xue-li; Cai, Qi-xu; Xing, Yong-zhen; He, Jian-ping; Zhang, Hongkui; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2015-08-20

    Apoptotic resistance is becoming a significant obstacle for cancer therapy as the majority of treatment takes the route of apoptotic induction. It is of great importance to develop an alternative strategy to induce cancer cell death. We previously reported that autophagic cell death mediated by nuclear receptor TR3 and driven by a chemical agonist, 1-(3,4,5-trihydroxyphenyl)nonan-1-one (THPN), is highly effective in the therapy of melanoma but not any other cancer types. Here, we discovered that the insensitivity of cancer cells to THPN originated from a high cellular Akt2 activity. Akt2 phosphorylation interferes with TR3 export to cytoplasm and targeting to mitochondria, which lead to the autophagic induction. Therefore, the TR3-mediated autophagy could be effectively induced in the otherwise insensitive cells by downregulating Akt2 activity. Highly effective antineoplastic compounds are developed through optimizing the structure of THPN. This study implicates a general strategy for cancer therapy by the induction of autophagic cell death. PMID:26235054

  14. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression.

    PubMed

    Hjelmeland, Anita; Zhang, Jianhua

    2016-04-01

    Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics. PMID:27372165

  15. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  16. Activation of autophagic pathways is related to growth inhibition and senescence in cutaneous squamous cell carcinoma.

    PubMed

    Choi, So Ra; Chung, Bo Young; Kim, Seong Who; Kim, Chang Deok; Yun, Woo Jin; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2014-10-01

    Cutaneous squamous cell carcinoma (SCC) is a very common resectable cancer; however, cutaneous SCC is highly resistant to chemotherapy if metastasis develops. Activating transcription factor 3 (ATF3) has been suggested as a marker of advanced or metastatic cutaneous SCC. Autophagy is one of the most important mechanisms in cancer biology and commonly induced by in vitro serum starvation. To investigate the role of autophagy activation in cutaneous SCC, we activated autophagic pathways by serum starvation in SCC13 and ATF3-overexpressing SCC13 (ATF3-SCC13) cell lines. ATF3-SCC13 cells demonstrated high proliferative capacity and low p53 and autophagy levels in comparison with control SCC13 cells under basal conditions. Intriguingly, autophagic stimulation via serum starvation resulted in growth inhibition and senescence in both cells, while ATF3-SCC13 cells further demonstrated growth inhibition and senescence. Apoptosis was not significantly induced by autophagy activation. Taken together, autophagy activation may be a promising antitumor approach for advanced cutaneous SCC. PMID:25046976

  17. Hernandezine, a novel AMPK activator induces autophagic cell death in drug-resistant cancers

    PubMed Central

    Law, Betty Yuen Kwan; Mok, Simon Wing Fai; Chan, Wai Kit; Xu, Su Wei; Wu, An Guo; Yao, Xiao Jun; Wang, Jing Rong; Liu, Liang; Wong, Vincent Kam Wai

    2016-01-01

    Drug resistance hinder most cancer chemotherapies and leads to disease recurrence and poor survival of patients. Resistance of cancer cells towards apoptosis is the major cause of these symptomatic behaviours. Here, we showed that isoquinoline alkaloids, including liensinine, isoliensinine, dauricine, cepharanthine and hernandezine, putatively induce cytotoxicity against a repertoire of cancer cell lines (HeLa, A549, MCF-7, PC3, HepG2, Hep3B and H1299). Proven by the use of apoptosis-resistant cellular models and autophagic assays, such isoquinoline alkaloid-induced cytotoxic effect involves energy- and autophagy-related gene 7 (Atg7)-dependent autophagy that resulted from direct activation of AMP activated protein kinase (AMPK). Hernandezine possess the highest efficacy in provoking such cell death when compared with other examined compounds. We confirmed that isoquinoline alkaloid is structurally varied from the existing direct AMPK activators. In conclusion, isoquinoline alkaloid is a new class of compound that induce autophagic cell death in drug-resistant fibroblasts or cancers by exhibiting its direct activation on AMPK. PMID:26811496

  18. Cigarette smoke exposure triggers the autophagic cascade via activation of the AMPK pathway in mice.

    PubMed

    Furlong, Hayley C; Stämpfli, Martin R; Gannon, Anne M; Foster, Warren G

    2015-10-01

    We previously demonstrated that cigarette smoke (CS) exposure decreases primordial follicle counts and induces autophagy in ovarian granulosa cells in preference to apoptosis. Therefore, the objective of this study was to investigate molecular targets underlying smoke-induced activation of the reparative autophagy pathway in the ovary. Briefly, ovarian homogenates were prepared from adult female mice exposed to mainstream CS twice daily for 8 wk, using a whole-body exposure system. A gene array revealed that CS exposure induced a greater than 2-fold significant increase in the expression of proautophagic genes Cdkn1b, Map1lc3a, Bad, and Sqstm1/p62. A significant increase in Prkaa2, Pik3c3, and Maplc31b expression, as well as a significant decrease in Akt1 and Mtor expression, was detected by quantitative PCR. The 5'-AMP-activated protein kinase catalytic subunit (AMPK) alpha1 + alpha2 and ATG7 protein expression was significantly increased, whereas AKT1, mTOR, CDKN1B/p27, and CXCR4 proteins were significantly decreased in CS exposed versus control ovaries. Up-regulation of AMPK alpha1 + alpha2, a known initiator of autophagic signaling, and ATG7 further suggests activation of the autophagy cascade. Two prosurvival factors, AKT and mTOR, were decreased in expression, an outcome that favors induction of the autophagy pathway, whereas decreased levels of CDKN1B is suggestive of cell cycle dysregulation. In summary, our data suggest that CS exposure induces ovarian follicle loss through induction of the autophagic cascade via the AMPK pathway together with inhibition of antiautophagic markers AKT and mTOR. We further postulate that toxicant-induced dysregulation of reparative autophagy is a novel pathway central to impaired follicle development and subfertility. PMID:26377221

  19. Activation of Lymphocyte Cytolytic Machinery: Where are We?

    PubMed Central

    Galandrini, Ricciarda; Capuano, Cristina; Santoni, Angela

    2013-01-01

    Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells. PMID:24312097

  20. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    PubMed Central

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I.

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance. PMID:24137567

  1. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  2. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  3. Autophagic Signaling and Proteolytic Enzyme Activity in Cardiac and Skeletal Muscle of Spontaneously Hypertensive Rats following Chronic Aerobic Exercise

    PubMed Central

    McMillan, Elliott M.; Paré, Marie-France; Baechler, Brittany L.; Graham, Drew A.; Rush, James W. E.; Quadrilatero, Joe

    2015-01-01

    Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats. PMID:25799101

  4. Regulation of Autophagic Activation by Rta of Epstein-Barr Virus via the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chen, Lee-Wen; Wang, Wen-Hung; Chang, Pey-Jium; Chiu, Ya-Fang; Hung, Chen-Chia; Lin, Ying-Ju; Liou, Jieh-Yuan; Tsai, Wan-Ju; Hung, Chia-Ling

    2014-01-01

    ABSTRACT Autophagy is an intracellular degradation pathway that provides a host defense mechanism against intracellular pathogens. However, many viruses exploit this mechanism to promote their replication. This study shows that lytic induction of Epstein-Barr virus (EBV) increases the membrane-bound form of LC3 (LC3-II) and LC3-containing punctate structures in EBV-positive cells. Transfecting 293T cells with a plasmid that expresses Rta also induces autophagy, revealing that Rta is responsible for autophagic activation. The activation involves Atg5, a key component of autophagy, but not the mTOR pathway. The expression of Rta also activates the transcription of the genes that participate in the formation of autophagosomes, including LC3A, LC3B, and ATG9B genes, as well as those that are involved in the regulation of autophagy, including the genes TNF, IRGM, and TRAIL. Additionally, treatment with U0126 inhibits the Rta-induced autophagy and the expression of autophagy genes, indicating that the autophagic activation is caused by the activation of extracellular signal-regulated kinase (ERK) signaling by Rta. Finally, the inhibition of autophagic activity by an autophagy inhibitor, 3-methyladenine, or Atg5 small interfering RNA, reduces the expression of EBV lytic proteins and the production of viral particles, revealing that autophagy is critical to EBV lytic progression. This investigation reveals how an EBV-encoded transcription factor promotes autophagy to affect viral lytic development. PMID:25122800

  5. Has-miR-30a regulates autophagic activity in cervical cancer upon hydroxycamptothecin exposure.

    PubMed

    Cheng, Yanxiang; Chen, Gantao; Hu, Min; Huang, Jinling; Li, Binshu; Zhou, Limei; Hong, Li

    2015-10-01

    Cervical cancer is a leading cause of morbidity and mortality in women worldwide. Hydroxycamptothecin (HCPT) represents a new generation of antitumor agents targeting DNA topoisomerase I, which has been applied to treat various cancers with fewer side effects. Autophagy is emerging as an important biological mechanism in targeting human cancers, including cervical cancer. In this study, We have reported that HCPT could induce autophagy in Hela cells. Our investigation of the underlying mechanisms revealed that the decreased expression of miR-30a is involved in HCPT-induced autophagy. Futhermore, we showed that miR-30a could directly target a specific fragment in the 3' untranslated region of Beclin-1 as demonstrated by luciferase assay and overexpression of hsa-miR-30a by transfecting with miR-30a mimic could block HCPT-induced autophagic activity. It is the first time provide a deeper understanding of the mechanisms underlying cellular and molecular mechanisms by which HCPT affect cervical cancer. PMID:26463633

  6. 30 CFR 57.3430 - Activity between machinery or equipment and the highwall or bank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Activity between machinery or equipment and the... AND NONMETAL MINES Ground Control Precautions-Surface Only § 57.3430 Activity between machinery or equipment and the highwall or bank. Persons shall not work or travel between machinery or equipment and...

  7. 30 CFR 56.3430 - Activity between machinery or equipment and the highwall or bank.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Activity between machinery or equipment and the... NONMETAL MINES Ground Control Precautions § 56.3430 Activity between machinery or equipment and the highwall or bank. Persons shall not work or travel between machinery or equipment and the highwall or...

  8. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia

    PubMed Central

    Liu, Hui; Li, Lu; Meng, Haitao; Qian, Qijun

    2013-01-01

    An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis. PMID:23765161

  9. Effect of the pituitary adenylate cyclase-activating polypeptide on the autophagic activation observed in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Lamine-Ajili, Asma; Fahmy, Ahmed M; Létourneau, Myriam; Chatenet, David; Labonté, Patrick; Vaudry, David; Fournier, Alain

    2016-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder that leads to destruction of the midbrain dopaminergic (DA) neurons. This phenomenon is related to apoptosis and its activation can be blocked by the pituitary adenylate cyclase-activating polypeptide (PACAP). Growing evidence indicates that autophagy, a self-degradation activity that cleans up the cell, is induced during the course of neurodegenerative diseases. However, the role of autophagy in the pathogenesis of neuronal disorders is yet poorly understood and the potential ability of PACAP to modulate the related autophagic activation has never been significantly investigated. Hence, we explored the putative autophagy-modulating properties of PACAP in in vitro and in vivo models of PD, using the neurotoxic agents 1-methyl-4-phenylpyridinium (MPP(+)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), respectively, to trigger alterations of DA neurons. In both models, following the toxin exposure, PACAP reduced the autophagic activity as evaluated by the production of LC3 II, the modulation of the p62 protein levels, and the formation of autophagic vacuoles. The ability of PACAP to inhibit autophagy was also observed in an in vitro cell assay by the blocking of the p62-sequestration activity produced with the autophagy inducer rapamycin. Thus, the results demonstrated that autophagy is induced in PD experimental models and that PACAP exhibits not only anti-apoptotic but also anti-autophagic properties. PMID:26769362

  10. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5. PMID:27108427

  11. Endurance exercise training induces fat depot-specific differences in basal autophagic activity.

    PubMed

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya

    2015-10-23

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4-5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly higher in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = -0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. PMID:26381175

  12. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway.

    PubMed

    Selvaraj, Senthil; Sun, Yuyang; Sukumaran, Pramod; Singh, Brij B

    2016-05-01

    Resveratrol (RSV), a natural polyphenol, has been suggested to induce cell cycle arrest and activate apoptosis-mediated cell death in several cancer cells, including prostate cancer. However, several molecular mechanisms have been proposed on its chemopreventive action, the precise mechanisms by which RSV exerts its anti-proliferative effect in androgen-independent prostate cancer cells remain questionable. In the present study, we show that RSV activates autophagic cell death in PC3 and DU145 cells, which was dependent on stromal interaction molecule 1 (STIM1) expression. RSV treatment decreases STIM1 expression in a time-dependent manner and attenuates STIM1 association with TRPC1 and Orai1. Furthermore, RSV treatment also decreases ER calcium storage and store operated calcium entry (SOCE), which induces endoplasmic reticulum (ER) stress, thereby, activating AMPK and inhibiting the AKT/mTOR pathway. Similarly, inhibition of SOCE by SKF-96365 decreases the survival and proliferation of PC3 and DU145 cells and inhibits AKT/mTOR pathway and induces autophagic cell death. Importantly, SOCE inhibition and subsequent autophagic cell death caused by RSV was reversed by STIM1 overexpression. STIM1 overexpression restored SOCE, prevents the loss of mTOR phosphorylation and decreased the expression of CHOP and LC3A in PC3 cells. Taken together, for the first time, our results revealed that RSV induces autophagy-mediated cell death in PC3 and DU145 cells through regulation of SOCE mechanisms, including downregulating STIM1 expression and trigger ER stress by depleting ER calcium pool. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc. PMID:25917875

  13. Regulation of autophagic flux by CHIP.

    PubMed

    Guo, Dongkai; Ying, Zheng; Wang, Hongfeng; Chen, Dong; Gao, Feng; Ren, Haigang; Wang, Guanghui

    2015-08-01

    Autophagy is a major degradation system which processes substrates through the steps of autophagosome formation, autophagosome-lysosome fusion, and substrate degradation. Aberrant autophagic flux is present in many pathological conditions including neurodegeneration and tumors. CHIP/STUB1, an E3 ligase, plays an important role in neurodegeneration. In this study, we identified the regulation of autophagic flux by CHIP (carboxy-terminus of Hsc70-interacting protein). Knockdown of CHIP induced autophagosome formation through increasing the PTEN protein level and decreasing the AKT/mTOR activity as well as decreasing phosphorylation of ULK1 on Ser757. However, degradation of the autophagic substrate p62 was disturbed by knockdown of CHIP, suggesting an abnormality of autophagic flux. Furthermore, knockdown of CHIP increased the susceptibility of cells to autophagic cell death induced by bafilomycin A1. Thus, our data suggest that CHIP plays roles in the regulation of autophagic flux. PMID:26219223

  14. Antiproliferative, Apoptotic, and Autophagic Activity of Ranibizumab, Bevacizumab, Pegaptanib, and Aflibercept on Fibroblasts: Implication for Choroidal Neovascularization

    PubMed Central

    Lytvynchuk, Lyubomyr; Sergienko, Andrii; Lavrenchuk, Galina; Petrovski, Goran

    2015-01-01

    Purpose. Choroidal neovascularization (CNV) is one of the most common complications of retinal diseases accompanied by elevated secretion of vascular endothelial growth factor (VEGF). Intravitreal anti-VEGFs (ranibizumab, bevacizumab, pegaptanib, and aflibercept) can suppress neovascularization, decrease vascular permeability and CNV size, and, thereby, improve visual function. The antiproliferative, apoptotic, and autophagic effect of anti-VEGF drugs on fibroblasts found in CNVs has not been yet explored. Methods. Concentration-dependent cellular effects of the four anti-VEGFs were examined in L929 fibroblasts over a 5-day period. The cell survival, mitotic and polykaryocytic indices, the level of apoptosis and autophagy, and the cellular growth kinetics were all assessed. Results. The anti-VEGFs could inhibit the survival, mitotic activity, and proliferation as well as increase the cellular heterogeneity, apoptosis, and autophagy of the fibroblasts in a dose-dependent manner. Cellular growth kinetics showed ranibizumab to be less aggressive, but three other anti-VEGFs showed higher antiproliferative and apoptotic activity and expressed negative cellular growth kinetics. Conclusions. The antiproliferative, apoptotic, and autophagic activity of anti-VEGFs upon fibroblasts may explain the cellular response and the etiology of CNV involution in vivo and serve as a good study model for CNV in vitro. PMID:26491557

  15. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity.

    PubMed

    Huang, Jionghua; Sun, Wen; Huang, He; Ye, Jing; Pan, Wei; Zhong, Yun; Cheng, Chuanfang; You, Xiangyu; Liu, Benrong; Xiong, Longgen; Liu, Shiming

    2014-01-01

    Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3'-UTR, but not to the mutated 3'-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity. PMID:24728149

  16. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications.

    PubMed

    Yao, Fan; Zhang, Ming; Chen, Li

    2016-01-01

    Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment. PMID:26904395

  17. Cucurbitacin E Has Neuroprotective Properties and Autophagic Modulating Activities on Dopaminergic Neurons

    PubMed Central

    Longpré, Fanny; Bournival, Julie; Tremblay, Cindy; Haskova, Pavlina; Attard, Everaldo; Martinoli, Maria-Grazia

    2014-01-01

    Natural molecules are under intensive study for their potential as preventive and/or adjuvant therapies for neurodegenerative disorders such as Parkinson's disease (PD). We evaluated the neuroprotective potential of cucurbitacin E (CuE), a tetracyclic triterpenoid phytosterol extracted from the Ecballium elaterium (Cucurbitaceae), using a known cellular model of PD, NGF-differentiated PC12. In our postmitotic experimental paradigm, neuronal cells were treated with the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) to provoke significant cellular damage and apoptosis or with the potent N,N-diethyldithiocarbamate (DDC) to induce superoxide (O2•−) production, and CuE was administered prior to and during the neurotoxic treatment. We measured cellular death and reactive oxygen species to evaluate the antioxidant and antiapoptotic properties of CuE. In addition, we analyzed cellular macroautophagy, a bulk degradation process involving the lysosomal pathway. CuE showed neuroprotective effects on MPP+-induced cell death. However, CuE failed to rescue neuronal cells from oxidative stress induced by MPP+ or DDC. Microscopy and western blot data show an intriguing involvement of CuE in maintaining lysosomal distribution and decreasing autophagy flux. Altogether, these data indicate that CuE decreases neuronal death and autophagic flux in a postmitotic cellular model of PD. PMID:25574337

  18. Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways

    PubMed Central

    Xiong, Xin-xin; Liu, Ju-mei; Qiu, Xin-yao; Pan, Feng; Yu, Shang-bin; Chen, Xiao-qian

    2015-01-01

    Aim: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. Methods: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. Results: PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 μmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 μmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. Conclusion: Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways. PMID:25619389

  19. Rational Incorporation of Selenium into Temozolomide Elicits Superior Antitumor Activity Associated with Both Apoptotic and Autophagic Cell Death

    PubMed Central

    Cheng, Yan; Sk, Ugir Hossain; Zhang, Yi; Ren, Xingcong; Zhang, Li; Huber-Keener, Kathryn J.; Sun, Yuan-Wan; Liao, Jason; Amin, Shantu; Sharma, Arun K.; Yang, Jin-Ming

    2012-01-01

    Background The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure. Principal Findings This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se. Conclusions Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug. PMID:22496897

  20. Autophagic Stress in Neuronal Injury and Disease

    PubMed Central

    Chu, Charleen T.

    2007-01-01

    Autophagy is the regulated process by which cytoplasmic organelles and long-lived proteins are delivered for lysosomal degradation. Increased numbers of autophagosomes and autolysosomes often represent prominent ultrastructural features of degenerating or dying neurons. This morphology is characteristic not only of neurons undergoing pathologic degeneration, but also during developmental programmed cell death of some neuronal populations. In recent years, a growing number of reports highlight potentially important roles for autophagy-related processes in relation to protein aggregation, regulated cell death pathways, and neurodegeneration. While starvation-induced autophagy involves nonselective bulk degradation of cytoplasm, mechanisms that regulate selective targeting of damaged organelles form an emerging area. As the study of autophagy evolves from physiologic homeostasis to pathologic situations, consideration of terminology and definitions becomes important. Increased autophagic vacuoles do not necessarily correlate with increased autophagic activity or flux. Instead, the striking accumulation of autophagic vacuoles in dying or degenerating neurons likely reflects an imbalance between the rates of autophagic sequestration and completion of the degradative process. In other words, these cells can be thought of as undergoing “autophagic stress.” The concept of autophagic stress may reconcile apparently conflicting roles of autophagy-related processes in adaptive, homeostatic responses and in pathways of neurodegeneration and cell death. PMID:16772866

  1. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Kascak, Albert F.

    1988-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  2. Interactions between Shigella flexneri and the Autophagy Machinery

    PubMed Central

    Krokowski, Sina; Mostowy, Serge

    2016-01-01

    Autophagy, an intracellular degradation process, is increasingly recognized as having important roles in host defense. Interactions between Shigella flexneri and the autophagy machinery were first discovered in 2005. Since then, work has shown that multiple autophagy pathways are triggered by S. flexneri, and autophagic responses can have different roles during Shigella infection. Here, we review the interactions between S. flexneri and the autophagy machinery, highlighting that studies using Shigella can reveal the breadth of autophagic responses available to the host. PMID:26904515

  3. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Kascak, A. F.; Lin, R. R.; Montague, J.; Alexander, R. M.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers was discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Analyses are contained which extend quadratic regulator, pole placement and derivative feedback control methods to the prescribed displacement character of piezoelectric pushers. The structural stiffness of the pusher is also included in the theory. Tests are currently being conducted at NASA Lewis Research Center with piezoelectric pusher-based active vibration control. Results performed on the NASA test rig as preliminary verification of the related theory are presented.

  4. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  5. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  6. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation

    PubMed Central

    El Hasasna, Hussain; Athamneh, Khawlah; Al Samri, Halima; Karuvantevida, Noushad; Al Dhaheri, Yusra; Hisaindee, Soleiman; Ramadan, Gaber; Al Tamimi, Nedaa; AbuQamar, Synan; Eid, Ali; Iratni, Rabah

    2015-01-01

    Here, we investigated the anticancer effect of Rhus coriaria on three breast cancer cell lines. We demonstrated that Rhus coriaria ethanolic extract (RCE) inhibits the proliferation of these cell lines in a time- and concentration-dependent manner. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, downregulation of cyclin D1, p27, PCNA, c-myc, phospho-RB and expression of senescence-associated β-galactosidase activity. No proliferative recovery was detected after RCE removal. Annexin V staining and PARP cleavage analysis revealed a minimal induction of apoptosis in MDA-MB-231 cells. Electron microscopy revealed the presence of autophagic vacuoles in RCE-treated cells. Interestingly, blocking autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death and senescence. RCE was also found to activate p38 and ERK1/2 signaling pathways which coincided with induction of autophagy. Furthermore, we found that while both autophagy inhibitors abolished p38 phosphorylation, only CQ led to significant decrease in pERK1/2. Finally, RCE induced DNA damage and reduced mutant p53, two events that preceded autophagy. Our findings provide strong evidence that R. coriaria possesses strong anti-breast cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against breast cancer. PMID:26263881

  7. Alpha-latrotoxin modulates the secretory machinery via receptor-mediated activation of protein kinase C.

    PubMed

    Liu, Jie; Wan, Qunfang; Lin, Xianguang; Zhu, Hongliang; Volynski, Kirill; Ushkaryov, Yuri; Xu, Tao

    2005-09-01

    The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C. PMID:16101679

  8. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells.

    PubMed

    Li, Min; Pi, Huifeng; Yang, Zhiqi; Reiter, Russel J; Xu, Shangcheng; Chen, Xiaowei; Chen, Chunhai; Zhang, Lei; Yang, Min; Li, Yuming; Guo, Pan; Li, Gaoming; Tu, Manyu; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Yu, Zhengping; Zhou, Zhou

    2016-10-01

    Cadmium (Cd), a highly ubiquitous heavy metal, induces neurotoxicity. Melatonin, a major secretory product of the pineal gland, protects against Cd-induced neurotoxicity. However, the mechanism that accounts for this protection remains to be elucidated. Herein, we exposed mouse neuroblastoma cells (Neuro-2a cells) to different concentrations of cadmium chloride (CdCl2 ) (12.5, 25, and 50 μ mol L(-1) ) for 24 hours. We showed that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function, subsequently leading to nerve cell death. In addition, Cd decreases the level of transcription factor EB (TFEB) but induces the nuclear translocation of TFEB, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Moreover, compared to the 50-μ mol L(-1) Cd group, administration of 1 μ mol L(-1) melatonin increased "TFEB-responsive genes" (P<.05) and the levels of lysosomal-associated membrane protein (0.57±0.06 vs 1.00±0.11, P<.05), preserved lysosomal protease activity (0.52±0.01 vs 0.90±0.02, P<.05), maintained the lysosomal pH level (0.50±0.01 vs 0.87±0.05, P<.01), and enhanced autophagosome-lysosome fusion (0.05±0.00 vs 0.21±0.01, P<.01). Notably, melatonin enhanced TFEB expression (0.37±0.04 vs 0.72±0.07, P<.05) and nuclear translocation (2.81±0.08 vs 3.82±0.05, P<.05). Tfeb siRNA blocked the melatonin-mediated elevation in autophagy-lysosome machinery in Cd-induced neurotoxicity (P<.01). Taken together, these results uncover a potent role for TFEB-mediated autophagy in the pathogenesis of Cd-induced neurotoxicity, suggesting that control of the autophagic pathway by melatonin might provide an important clue for exploring potential targets for novel therapeutics of Cd-induced neurotoxicity. PMID:27396692

  9. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  10. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  11. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  12. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  13. Facile synthesis of autophagonizer and evaluation of its activity to induce autophagic cell death in apoptosis-defective cell line.

    PubMed

    Nguyen, Jennifer; Chen, Luxi; Kumar, Dhiraj; Lee, Jiyong

    2016-10-01

    Some cancer cells are resistant to apoptosis, rendering them irresponsive towards apoptosis-inducing chemotherapy drugs. Another mode of action to kill these apoptosis-defective cells is essential and autophagy, a dynamic process that degrades cytoplasmic contents for cellular maintenance, has been considered as one of the alternate routes. A small molecule inducer of autophagy, autophagonizer was reported to induce cell death through a novel process that is independent of extrinsic apoptosis and the normal signaling pathways of autophagy. Here, we describe an efficient synthetic procedure for the autophagonizer. The newly synthesized autophagonizer (DK-1-49) resulted in an accumulation of autophagy-associated LC3-II and enhanced levels of autophagosomes and acidic vacuoles. Furthermore, cell viability was inhibited by autophagic cell death in not only human cancer cells but also Bax/Bak double-knockout cells. These findings highlight that intrinsic apoptosis is not also involved in the induction of cellular death by the autophagonizer suggesting the autophagonizer is a promising candidate for anticancer therapeutics for cancer cells that are resistant to apoptosis-inducing chemotherapy. PMID:27597252

  14. STAT3 activation by KSHV correlates with IL-10, IL-6 and IL-23 release and an autophagic block in dendritic cells

    PubMed Central

    Santarelli, Roberta; Gonnella, Roberta; Di Giovenale, Giulia; Cuomo, Laura; Capobianchi, Angela; Granato, Marisa; Gentile, Giuseppe; Faggioni, Alberto; Cirone, Mara

    2014-01-01

    Kaposis's sarcoma associated herpesvirus (KSHV) has been reported to infect, among others, monocytes and dendritic cells DCs impairing their function. However, the underlying mechanisms remain not completely elucidated yet. Here we show that DC exposure to active or UV-inactivated KSHV resulted in STAT3 phosphorylation. This effect, partially dependent on KSHV-engagement of DC-SIGN, induced a high release of IL-10, IL-6 and IL-23, cytokines that in turn might maintain STAT3 in a phosphorylated state. STAT3 activation also correlated with a block of autophagy in DCs, as indicated by LC3II reduction and p62 accumulation. The IL-10, IL-6 and IL-23 release and the autophagic block could be overcome by inhibiting STAT3 activation, highlighting the role of STAT3 in mediating such effects. In conclusion, here we show that STAT3 activation can be one of the molecular mechanisms leading to KSHV-mediated DC dysfunction, that might allow viral persistence and the onset of KSHV-associated malignancies. PMID:24577500

  15. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells.

    PubMed

    Yin, Shutao; Guo, Xiao; Li, Jinghua; Fan, Linghong; Hu, Hongbo

    2016-04-01

    Mycotoxins are secondary fungal metabolites that are capable of inducing a variety of toxic effects in animals and humans resulting from the consumption of the contaminated food. Understanding the mechanisms of the toxicities behind these mycotoxins is required to develop mechanism-based approach to counteract their toxic potential. Fumonisin B1 (FB1) is the most prevalent member of fumonisins that are a group of mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum. Kidney is one of the primary target organs for FB1 action. Using monkey kidney MARC-145 cells as an intro model, we found that FB1 induced caspase-independent programmed cell death accompanied with autophagy induction. Inhibition of autophagy by either chemical inhibitors or RNAi approach led to a significant reduction in cell death by FB1 exposure, indicating possible involvement of autophagy-mediated cell death in nephrotoxicity of FB1. Further mechanistic investigation revealed that activation of ERN1-MAPK8/9/10 axis played a critical role in autophagy induction and autophagy-mediated cell death by FB1 exposure. In addition, we demonstrated that disruption of sphingolipid metabolism was an apical event in FB1-induced ERN1-MAPK8/9/10-mediated autophagic cell death in MARC-145 cells. Lastly, we identified curcumin, a naturally occurring plant phenolic compound, as a possible anti-FB1 agent that can be used to protect kidney cells from FB1-induced cell death through inhibition of MAPK8/9/10 activation. PMID:25925693

  16. Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent.

    PubMed

    Mishra, Anurag R; Zheng, Jiwen; Tang, Xing; Goering, Peter L

    2016-04-01

    Silver nanoparticles (AgNPs) are incorporated into medical and consumer products to exploit their excellent antimicrobial properties; however, potential mechanisms of toxicity of AgNPs in mammalian cells are not fully understood. The objective of this study was to determine the mechanism of size- and concentration-dependent cytotoxicity of AgNPs in human liver-derived hepatoma (HepG2) cells. Mechanisms of toxicity were explored at subcytotoxic concentrations (≤10 µg/ml AgNPs) and autophagy induction, lysosomal activity, inflammasome-dependent caspase-1 activation, and apoptosis were examined. Using enhanced dark-field light microscopy, hyperspectral imaging, electron microscopy, and energy dispersive X-ray spectroscopy, AgNPs were shown to rapidly accumulate in cytoplasmic vesicles for up to 24 h and 10-nm AgNPs exhibited the highest uptake and accumulation. Autophagy and enhanced lysosomal activity were induced at noncytotoxic concentrations (1 µg/ml; primary particle size:10 > 50 >100 nm), whereas increased caspase-3 activity (associated with apoptosis) was observed at cytotoxic concentrations (10, 25, and 50 µg/ml). Subcytotoxic concentrations of AgNPs enhanced expression of LC3B, a pro-autophagic protein, and CHOP, an apoptosis inducing ER-stress protein, and activation of NLRP3-inflammasome (caspase-1, IL-1β). Disrupting the autophagy-lysosomal pathway through chloroquine or ATG5-siRNA exacerbated AgNPs-induced caspase-1 activation and lactate dehydrogenase release, suggesting that NLRP3-inflammasome plays an important role in AgNPs-induced cytotoxicity. Overall, 10-nm AgNPs showed the highest cellular responses compared with 50- and 100-nm AgNPs based on equal mass dosimetry. The results indicate the potential of vesicle-engulfed 10-nm AgNPs to induce cytotoxicity by a mechanism involving perturbations in the autophagy-lysosomal system and inflammasome activation. PMID:26801583

  17. BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux.

    PubMed

    Reljic, Boris; Conos, Stephanie; Lee, Erinna F; Garnier, Jean-Marc; Dong, Li; Lessene, Guillaume; Fairlie, W Douglas; Vaux, David L; Lindqvist, Lisa M

    2016-07-01

    Inhibition of prosurvival BCL2 family members can induce autophagy, but the mechanism is controversial. We have provided genetic evidence that BCL2 family members block autophagy by inhibiting BAX and BAK1, but others have proposed they instead inhibit BECN1. Here we confirm that small molecule BH3 mimetics can induce BAX- and BAK1-independent MAP1LC3B/LC3B lipidation, but this only occurred at concentrations far greater than required to induce apoptosis and dissociate canonical BH3 domain-containing proteins that bind more tightly than BECN1. Because high concentrations of a less-active enantiomer of ABT-263 also induced BAX- and BAK1-independent LC3B lipidation, induction of this marker of autophagy appears to be an off-target effect. Indeed, robust autophagic flux was not induced by BH3 mimetic compounds in the absence of BAX and BAK1. Therefore at concentrations that are on target and achievable in vivo, BH3 mimetics only induce autophagy in a BAX- and BAK1-dependent manner. PMID:27172402

  18. Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy

    PubMed Central

    Jang, Y H; Choi, K Y; Min, D S

    2014-01-01

    Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy. PMID:24317201

  19. Autophagic Dysregulation in Glaucomatous Trabecular Meshwork Cells

    PubMed Central

    Porter, Kristine; Hirt, Joshua; Stamer, W. Daniel; Liton, Paloma B.

    2014-01-01

    Primary open angle glaucoma (POAG) is a degenerative disease commonly associated with aging and elevated intraocular pressure (IOP). Higher resistance to aqueous humor (AH) outflow through the trabecular meshwork (TM) generates the elevated IOP in POAG; unfortunately the underlying molecular mechanisms responsible for elevated resistance are unknown. It is widely accepted, however, that differences between normal and POAG TM tissues are presumably a consequence of cellular dysfunction. Here, we investigated the autophagic function and response to chronic oxidative stress in TM cells isolated from glaucomatous and age-matched donor eyes. Glaucomatous TM cells showed elevated senescence-associated-beta-galactosidase (SA-β-Gal) and cellular lipofuscin, together with decreased steady-state levels of LC3B-II, decreased levels of pRPS6K-T389 and reduced proteolysis of long-live proteins. Moreover, the glaucomatous cultures failed to activate autophagy when exposed to hyperoxic conditions. These results strongly suggest mTORdependent dysregulation of the autophagic pathway in cells isolated from the glaucomatous TM. Such dysregulated autophagic capacity can have a detrimental impact in outflow pathway tissue, i.e mechanotransduction, and thus represent an important factor contributing to the progression of the disease. PMID:25483712

  20. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease

    PubMed Central

    Pal, Rituraj; Bajaj, Lakshya; Sharma, Jaiprakash; Palmieri, Michela; Di Ronza, Alberto; Lotfi, Parisa; Chaudhury, Arindam; Neilson, Joel; Sardiello, Marco; Rodney, George G.

    2016-01-01

    Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson’s disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD. PMID:26960433

  1. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors

    PubMed Central

    Kim, Sunhyo; Choi, Ki Ju; Cho, Sun-Jung; Yun, Sang-Moon; Jeon, Jae-Pil; Koh, Young Ho; Song, Jihyun; Johnson, Gail V. W.; Jo, Chulman

    2016-01-01

    The neuronal accumulation of phosphorylated tau plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Here, we examined the effect of fisetin, a flavonol, on tau levels. Treatment of cortical cells or primary neurons with fisetin resulted in significant decreases in the levels of phosphorylated tau. In addition, fisetin decreased the levels of sarkosyl-insoluble tau in an active GSK-3β-induced tau aggregation model. However, there was no difference in activities of tau kinases and phosphatases such as protein phosphatase 2A, irrespective of fisetin treatment. Fisetin activated autophagy together with the activation of transcription factor EB (TFEB) and Nrf2 transcriptional factors. The activation of autophagy including TFEB is likely due to fisetin-mediated mammalian target of rapamycin complex 1 (mTORC1) inhibition, since the phosphorylation levels of p70S6 kinase and 4E-BP1 were decreased in the presence of fisetin. Indeed, fisetin-induced phosphorylated tau degradation was attenuated by chemical inhibitors of the autophagy-lysosome pathway. Together the results indicate that fisetin reduces levels of phosphorylated tau through the autophagy pathway activated by TFEB and Nrf2. Our result suggests fisetin should be evaluated further as a potential preventive and therapeutic drug candidate for AD. PMID:27112200

  2. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    SciTech Connect

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function

  3. Gypenoside XVII Enhances Lysosome Biogenesis and Autophagy Flux and Accelerates Autophagic Clearance of Amyloid-β through TFEB Activation.

    PubMed

    Meng, Xiangbao; Luo, Yun; Liang, Tian; Wang, Mengxia; Zhao, Jingyu; Sun, Guibo; Sun, Xiaobo

    2016-04-01

    A strategy for activating transcription factor EB (TFEB) to restore autophagy flux may provide neuroprotection against Alzheimer's disease. Our previous study reported that gypenoside XVII (GP-17), which is a major saponin abundant in ginseng and Panax notoginseng, ameliorated amyloid-β (Aβ)25-35-induced apoptosis in PC12 cells by regulating autophagy. In the present study, we aimed to determine whether GP-17 has neuroprotective effects on PC12 cells expressing the Swedish mutant of APP695 (APP695swe) and APP/PS1 mice. We also investigated the underlying mechanism. We found that GP-17 could significantly increase Atg5 expression and the conversion of LC3-I to LC3-II in APP695 cells, which was associated with a reduction in p62 expression. GP-17 also elevated the number of LC3 puncta in APP695 cells transduced with pCMV-GFP-LC3. GP-17 promoted the autophagy-based elimination of AβPP, Aβ40, and Aβ42 in APP695swe cells and prevented the formation of Aβ plaques in the hippocampus and cortex of APP/PS1 mice. Furthermore, spatial learning and memory deficits were cured. Atg5 knockdown could abrogate the GP-17-mediated removal of AβPP, Aβ40, and Aβ42 in APP695swe cells. GP-17 upregulated LAMP-1, increased LysoTracker staining, and augmented LAMP-1/LC3-II co-localization. GP-17 could release TFEB from TFEB/14-3-3 complexes, which led to TFEB nuclear translocation and the induction of autophagy and lysosome biogenesis and resulted in the amelioration of autophagy flux. The knockdown of TFEB could abolish these effects of GP-17. In summary, these results demonstrated that GP-17 conferred protective effects to the cellular and rodent models of Alzheimer's disease by activating TFEB. PMID:27060963

  4. Polyphyllin VII Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/AKT/mTOR Pathway in HepG2 Cells

    PubMed Central

    Zhang, Chao; Jia, Xuejing; Wang, Kai; Bao, Jiaolin; Li, Peng; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Mei, Zhinan; He, Chengwei

    2016-01-01

    Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy. PMID:26808193

  5. Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase.

    PubMed

    Yang, Yongfei; He, Shanshan; Wang, Qiaoxiu; Li, Fan; Kwak, Mi-Jeong; Chen, Sally; O'Connell, Douglas; Zhang, Tian; Pirooz, Sara Dolatshahi; Jeon, YongHeui; Chimge, Nyam-Osor; Frenkel, Baruch; Choi, Younho; Aldrovandi, Grace M; Oh, Byung-Ha; Yuan, Zengqiang; Liang, Chengyu

    2016-05-19

    UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition. PMID:27203177

  6. Effects of bone marrow-derived mesenchymal stem cells on the autophagic activity of alveolar macrophages in a rat model of silicosis

    PubMed Central

    ZHU, HUI-XING; GAO, JUN-LING; ZHAO, MAN-MAN; LI, RAN; TIAN, YAN-XIA; WANG, XIN; ZHANG, JUAN; YUAN, JU-XIANG; CUI, JIAN-ZHONG

    2016-01-01

    . Furthermore, treatment with BMSCs was demonstrated to reduce the expression levels of LC-3 and Beclin-1, subsequently inhibiting autophagic activity and mitigating the damage associated with silicosis. PMID:27284351

  7. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation

    PubMed Central

    Gao, Caiji; Zhuang, Xiaohong; Cui, Yong; Fu, Xi; He, Yilin; Zhao, Qiong; Zeng, Yonglun; Shen, Jinbo; Luo, Ming; Jiang, Liwen

    2015-01-01

    Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process. PMID:25624505

  8. The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis

    PubMed Central

    Spitzer, Christoph; Li, Faqiang; Buono, Rafael; Roschzttardtz, Hannetz; Chung, Taijoon; Zhang, Min

    2015-01-01

    Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents. PMID:25649438

  9. The rolB gene activates the expression of genes encoding microRNA processing machinery.

    PubMed

    Bulgakov, Victor P; Veremeichik, Galina N; Shkryl, Yuri N

    2015-04-01

    The rolB gene of Agrobacterium rhizogenes renders cells more tolerant of environmental stresses and increases their defense potential. However, these effects, coupled with the developmental abnormalities caused by rolB, have not yet been explained. In rolB-transformed Arabidopsis thaliana cells, we detected a 2.2 to 7-fold increase in the expression of genes encoding core and accessory proteins (DCL1, SE, HYL1, AGO1, TGH, DDL, HEN1, AGO4 and RDR2) of the microRNA processing machinery. However, the rolB gene did not affect the expression of DCL2, DCL3 and HST. The diverse and complex effects of rolB on transformed plant cells may be attributable to changes caused by this gene in particular RNA silencing pathways. PMID:25491479

  10. Analysis of Relevant Parameters for Autophagic Flux Using HeLa Cells Expressing EGFP-LC3.

    PubMed

    Muñoz-Braceras, Sandra; Escalante, Ricardo

    2016-01-01

    Macroautophagy (called just autophagy hereafter) is an intracellular degradation machinery essential for cell survival under stress conditions and for the maintenance of cellular homeostasis. The hallmark of autophagy is the formation of double membrane vesicles that engulf cytoplasmic material. These vesicles, called autophagosomes, mature by fusion with endosomes and lysosomes that allows the degradation of the cargo. Autophagy is a dynamic process regulated at multiple steps. Assessment of autophagy is not trivial because the number autophagosomes might not necessarily reflect the real level of autophagic degradation, the so-called autophagic flux. Here, we describe an optimized protocol for the analysis of relevant parameters of autophagic flux using HeLa cells stably expressing EGFP-LC3. These cells are a convenient tool to determine the influence of the downregulation or overexpression of specific proteins in the autophagic flux as well as the analysis of autophagy-modulating compounds. Western blot analysis of relevant parameters, such as the levels of EGFP-LC3, free EGFP generated by autophagic degradation and endogenous LC3·I-II are analyzed in the presence and absence of the autophagic inhibitor chloroquine. PMID:27613046

  11. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    PubMed

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. PMID:26896795

  12. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  13. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    SciTech Connect

    Meng, Xiangbao; Wang, Min; Sun, Guibo; Ye, Jingxue; Zhou, Yanhui; Dong, Xi; Wang, Tingting; Lu, Shan; Sun, Xiaobo

    2014-08-15

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or

  14. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    PubMed Central

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  15. Involvement of Antibiotic Efflux Machinery in Glutathione-Mediated Decreased Ciprofloxacin Activity in Escherichia coli.

    PubMed

    Goswami, Manish; Subramanian, Mahesh; Kumar, Ranjeet; Jass, Jana; Jawali, Narendra

    2016-07-01

    We have analyzed the contribution of different efflux components to glutathione-mediated abrogation of ciprofloxacin's activity in Escherichia coli and the underlying potential mechanism(s) behind this phenomenon. The results indicated that glutathione increased the total active efflux, thereby partially contributing to glutathione-mediated neutralization of ciprofloxacin's antibacterial action in E. coli However, the role of glutathione-mediated increased efflux becomes evident in the absence of a functional TolC-AcrAB efflux pump. PMID:27139480

  16. Suppression of Autophagic Flux by Bile Acids in Hepatocytes

    PubMed Central

    Kong, Bo; Guo, Grace; Ding, Wen-Xing

    2014-01-01

    Retention of bile acids (BAs) in the liver during cholestasis plays an important role in the development of cholestatic liver injury. Several studies have reported that high concentrations of certain BAs induce cell death and inflammatory response in the liver, and BAs may promote liver tumorigenesis. Macroautophagy (hereafter referred to as autophagy) is a lysosomal degradation process that regulates organelle and protein homeostasis and serves as a cell survival mechanism under a variety of stress conditions. However, it is not known if BAs modulate autophagy in hepatocytes. In the present study, we determined autophagic flux in livers of farnesoid X receptor (FXR) knockout (KO) mice that have increased concentrations of hepatic BAs and in primary cultured mouse hepatocytes treated with BAs. The results showed that autophagic flux was impaired in livers of FXR KO mice and in BA-treated primary mouse hepatocytes. Mechanistically, BAs did not affect the activities of cathepsin or the proteasome, but impaired autophagosomal-lysosomal fusion likely due to reduction of Rab7 protein expression and targeting to autophagosomes. In conclusion, BAs suppress autophagic flux in hepatocytes by impairing autophagosomal-lysosomal fusion, which may be implicated in bile acid-induced liver tumor promotion observed in FXR KO mice. PMID:24189133

  17. Crowding Modulates the Conformation, Affinity, and Activity of the Components of the Bacterial Disaggregase Machinery.

    PubMed

    Celaya, Garbiñe; Fernández-Higuero, José Angel; Martin, Ianire; Rivas, Germán; Moro, Fernando; Muga, Arturo

    2016-06-01

    Chaperone-mediated protein aggregate reactivation is a complex reaction that depends on the sequential association of molecular chaperones on their interaction with protein aggregates and on substrate refolding. This process could be modulated by the highly crowded intracellular environment, which is known to affect protein conformational change, enzymatic activity, and protein-protein interactions. Here, we report that molecular crowding shapes the chaperone activity of bacterial disaggregase composed of the DnaK system (DnaK, DnaJ, and GrpE) and the molecular motor ClpB. A combination of biophysical and biochemical methods shows that the excluded volume conditions modify the conformation of DnaK and DnaJ without affecting that of GrpE. These crowding-induced conformational rearrangements activate DnaK, enhance the affinity of DnaK for DnaJ, but not for GrpE, and increase the sensitivity of the chaperone activity to cochaperone concentration, explaining the tight control of their relative intracellular amounts. Furthermore, crowding-mediated disordering of the G/F domain of DnaJ facilitates the reversible formation of intermolecular DnaJ conglomerates. These assemblies could drive the formation of Hsp70 clusters at the aggregate surface with the consequent enhancement of the disaggregation efficiency through their coordinated action via entropic pulling. Finally, crowding helps ClpB to outcompete GrpE for DnaK binding, a key aspect of DnaK/ClpB cooperation given the low affinity of the disaggregase for DnaK. Excluded volume conditions promote the formation of the bichaperone complex that disentangles aggregates, enhancing the efficiency of the disaggregation reaction. PMID:27133933

  18. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Alujević, N.; Depraetere, B.; Pinte, G.; Swevers, J.; Sas, P.

    2015-07-01

    In this paper, two Piezo-Based Rotating Inertial Actuators (PBRIAs) are considered for the suppression of the structure-borne noise radiated from rotating machinery. As add-on devices, they can be directly mounted on a rotational shaft, in order to intervene as early as possible in the transfer path between disturbance and the noise radiating surfaces. A MIMO (Multi-Input-Multi-Output) form of the FxLMS control algorithm is employed to generate the appropriate actuation signals, relying on a linear interpolation scheme to approximate time varying secondary plants. The proposed active vibration control approach is tested on an experimental test bed comprising a rotating shaft mounted in a frame to which a noise-radiating plate is attached. The disturbance force is introduced by an electro-dynamic shaker. The experimental results show that when the shaft spins below 180 rpm, more than a 7 dB reduction can be achieved in terms of plate vibrations, along with a reduction in the same order of magnitude in terms of noise radiation.

  19. Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress

    PubMed Central

    ZHANG, Si-Wei; FENG, Jiang-Nan; CAO, Yi; MENG, Li-Ping; WANG, Shu-Lin

    2015-01-01

    Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species (ROS) generated by cellular stress. Autophagy typically enhances cell survival, but it may also act to promote cell death under certain conditions. The mechanism underlying this paradox, however, remains unclear. We showed that Tetrahymena cells exerted increased membrane-bound vacuoles characteristic of autophagy followed by autophagic cell death (referred to as cell death with autophagy) after exposure to hydrogen peroxide. Inhibition of autophagy by chloroquine or 3-methyladenine significantly augmented autophagic cell death induced by hydrogen peroxide. Blockage of the mitochondrial electron transport chain or starvation triggered activation of autophagy followed by cell death by inducing the production of ROS due to the loss of mitochondrial membrane potential. This indicated a regulatory role of mitochondrial ROS in programming autophagy and autophagic cell death in Tetrahymena. Importantly, suppression of autophagy enhanced autophagic cell death in Tetrahymena in response to elevated ROS production from starvation, and this was reversed by antioxidants. Therefore, our results suggest that autophagy was activated upon oxidative stress to prevent the initiation of autophagic cell death in Tetrahymena until the accumulation of ROS passed the point of no return, leading to delayed cell death in Tetrahymena. PMID:26018860

  20. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Rusmini, Paola; Polanco, Maria Josefa; Cristofani, Riccardo; Cicardi, Maria Elena; Meroni, Marco; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Giorgetti, Elisa; Lieberman, Andrew P.; Milioto, Carmelo; Rocchi, Anna; Aggarwal, Tanya; Pennuto, Maria; Crippa, Valeria; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments. PMID:26490709

  1. Activation of Autophagic Flux against Xenoestrogen Bisphenol-A-induced Hippocampal Neurodegeneration via AMP kinase (AMPK)/Mammalian Target of Rapamycin (mTOR) Pathways*

    PubMed Central

    Agarwal, Swati; Tiwari, Shashi Kant; Seth, Brashket; Yadav, Anuradha; Singh, Anshuman; Mudawal, Anubha; Chauhan, Lalit Kumar Singh; Gupta, Shailendra Kumar; Choubey, Vinay; Tripathi, Anurag; Kumar, Amit; Ray, Ratan Singh; Shukla, Shubha; Parmar, Devendra; Chaturvedi, Rajnish Kumar

    2015-01-01

    The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell's compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be

  2. Samsoeum, a traditional herbal medicine, elicits apoptotic and autophagic cell death by inhibiting Akt/mTOR and activating the JNK pathway in cancer cells

    PubMed Central

    2013-01-01

    Background Samsoeum (SSE), a traditional herbal formula, has been widely used to treat cough, fever, congestion, and emesis for centuries. Recent studies have demonstrated that SSE retains potent pharmacological efficiency in anti-allergic and anti-inflammatory reactions. However, the anti-cancer activity of SSE and its underlying mechanisms have not been studied. Thus, the present study was designed to determine the effect of SSE on cell death and elucidate its detailed mechanism. Methods Following SSE treatment, cell growth and cell death were measured using an MTT assay and trypan blue exclusion assay, respectively. Cell cycle arrest and YO-PRO-1 uptake were assayed using flow cytometry, and LC3 redistribution was observed using confocal microscope. The mechanisms of anti-cancer effect of SSE were investigated through western blot analysis. Results We initially found that SSE caused dose- and time-dependent cell death in cancer cells but not in normal primary hepatocytes. In addition, during early SSE treatment (6–12 h), cells were arrested in G2/M phase concomitant with up-regulation of p21 and p27 and down-regulation of cyclin D1 and cyclin B1, followed by an increase in apoptotic YO-PRO-1 (+) cells. SSE also induced autophagy via up-regulation of Beclin-1 expression, conversion of microtubule-associated protein light chain 3 (LC3) I to LC3-II, and re-distribution of LC3, indicating autophagosome formation. Moreover, the level of B-cell lymphoma 2 (Bcl-2), which is critical for cross-talk between apoptosis and autophagy, was significantly reduced in SSE-treated cells. Phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was increased, followed by suppression of the protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathway, and phosphorylation of mitogen-activated protein kinases (MAPKs) in response to SSE treatment. In particular, among MAPKs inhibitors, only the c-Jun N-terminal kinase (JNK)-specific inhibitor SP600125 nearly

  3. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis.

    PubMed

    Marshall, Richard S; Li, Faqiang; Gemperline, David C; Book, Adam J; Vierstra, Richard D

    2015-06-18

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes. PMID:26004230

  4. Necrosome core machinery: MLKL.

    PubMed

    Zhang, Jing; Yang, Yu; He, Wenyan; Sun, Liming

    2016-06-01

    In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis. PMID:27048809

  5. Autophagic cell death: Loch Ness monster or endangered species?

    PubMed

    Shen, Han-Ming; Codogno, Patrice

    2011-05-01

    The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals. PMID:21150268

  6. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates

    PubMed Central

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-01-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  7. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates.

    PubMed

    Maulucci, Giuseppe; Chiarpotto, Michela; Papi, Massimiliano; Samengo, Daniela; Pani, Giovambattista; De Spirito, Marco

    2015-10-01

    Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5-6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. PMID:26506895

  8. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    PubMed

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  9. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    PubMed Central

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro–Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  10. DAPK2 Downregulation Associates With Attenuated Adipocyte Autophagic Clearance in Human Obesity.

    PubMed

    Soussi, Hedi; Reggio, Sophie; Alili, Rohia; Prado, Cecilia; Mutel, Sonia; Pini, Maria; Rouault, Christine; Clément, Karine; Dugail, Isabelle

    2015-10-01

    Adipose tissue dysfunction in obesity has been linked to low-grade inflammation causing insulin resistance. Transcriptomic studies have identified death-associated protein kinase 2 (DAPK2) among the most strongly downregulated adipose tissue genes in human obesity, but the role of this kinase is unknown. We show that mature adipocytes rather than the stromal vascular cells in adipose tissue mainly expressed DAPK2 and that DAPK2 mRNA in obese patients gradually recovered after bariatric surgery-induced weight loss. DAPK2 mRNA is also downregulated in high-fat diet-induced obese mice. Adenoviral-mediated DAPK2 overexpression in 3T3-L1 adipocytes did not affect lipid droplet size or cell viability but did increase autophagic clearance in nutrient-rich conditions, dependent on protein kinase activity. Conversely, DAPK2 inhibition in human preadipocytes by small interfering RNA decreased LC3-II accumulation rates with lysosome inhibitors. This led us to assess autophagic clearance in adipocytes freshly isolated from subcutaneous adipose tissue of obese patients. Severe reduction in autophagic flux was observed in obese adipocytes compared with control adipocytes, inversely correlated to fat cell lipids. After bariatric surgery, adipocyte autophagic clearance partially recovered proportional to the extent of fat cell size reduction. This study links adipocyte expression of an autophagy-regulating kinase, lysosome-mediated clearance and fat cell lipid accumulation; it demonstrates obesity-related attenuated autophagy in adipocytes, and identifies DAPK2 dependence in this regulation. PMID:26038578

  11. Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress.

    PubMed

    Ranjan, Kishu; Pathak, Chandramani

    2016-08-01

    Autophagy and apoptosis are two different physiological processes, which is required for the maintenance of cellular homeostasis. The apoptosis associated proteins such as Bcl-2 and p53 have a close association with autophagic proteins HMGB1 and Beclin-1 to modulate autophagic signaling. We demonstrate here the involvement of anti-apoptotic protein cFLIPL in the regulation of autophagy during cellular stress. We found that ectopic expression of cFLIPL decreases the sensitivity of HEK 293T cells against rapamycin and H2 O2 induced autophagic stress. Notably, the selective knockdown of cFLIPL augments autophagic stress in the cells accompanied with JNK1 activation and p53 dependent ubiquitination of Beclin-1. However, re-expression of cFLIPL in cFLIP knockdown cells restores autophagic equilibrium collectively with reversible effects on JNK1 and Beclin-1 integrity. The co-immunoprecipitation analysis suggests that cFLIPL is essential to maintain the canonical interaction of Bcl-2 with Beclin-1 to regulate autophagic stress and cell death. Altogether, our findings suggest that expression of cFLIPL regulates the basal interaction of Bcl-2 with Beclin-1 and substantiates p53 dependent ubiquitination of Beclin-1 during autophagic stress to determine the fate of cell death or survival. J. Cell. Biochem. 117: 1757-1768, 2016. © 2015 Wiley Periodicals, Inc. PMID:26682748

  12. The autophagic tumor stroma model of cancer

    PubMed Central

    Pavlides, Stephanos; Tsirigos, Aristotelis; Migneco, Gemma; Whitaker-Menezes, Diana; Chiavarina, Barbara; Flomenberg, Neal; Frank, Philippe G; Casimiro, Mathew C; Wang, Chenguang; Pestell, Richard G; Martinez-Outschoorn, Ubaldo E; Howell, Anthony

    2010-01-01

    A loss of stromal caveolin-1 (Cav-1) in the tumor fibroblast compartment is associated with early tumor recurrence, lymphnode metastasis and tamoxifen-resistance, resulting in poor clinical outcome in breast cancer patients. Here, we have used Cav-1 (−/−) null mice as a pre-clinical model for this “lethal tumor micro-environment”. Metabolic profiling of Cav-1 (−/−) mammary fat pads revealed the upregulation of numerous metabolites (nearly 100), indicative of a major catabolic phenotype. Our results are consistent with the induction of oxidative stress, mitochondrial dysfunction and autophagy/mitophagy. The two most prominent metabolites that emerged from this analysis were ADMA (asymmetric dimethyl arginine) and BHB (beta-hydroxybutyrate; a ketone body), which are markers of oxidative stress and mitochondrial dysfunction, respectively. Transcriptional profiling of Cav-1 (−/−) stromal cells and human tumor stroma from breast cancer patients directly supported an association with oxidative stress, mitochondrial dysfunction and autophagy/mitophagy, as well as ADMA and ketone production. MicroRNA profiling of Cav-1 (−/−) stromal cells revealed the upregulation of two key cancer-related miR's, namely miR-31 and miR-34c. Consistent with our metabolic findings, these miR's are associated with oxidative stress (miR-34c) or activation of the hypoxic response/HIF1α (miR-31), which is sufficient to drive authophagy/mitophagy. Thus, via an unbiased comprehensive analysis of a lethal tumor micro-environment, we have identified a number of candidate biomarkers (ADMA, ketones and miR-31/34c) that could be used to identify high-risk cancer patients at diagnosis, for treatment stratification and/or for evaluating therapeutic efficacy during anti-cancer therapy. We propose that the levels of these key biomarkers (ADMA, ketones/BHB, miR-31 and miR-34c) could be (1) assayed using serum or plasma from cancer patients or (2) performed directly on excised tumor

  13. Structure of yeast Ape1 and its role in autophagic vesicle formation.

    PubMed

    Su, Ming-Yuan; Peng, Wen-Hsin; Ho, Meng-Ru; Su, Shih-Chieh; Chang, Yuan-Chih; Chen, Guang-Chao; Chang, Chung-I

    2015-01-01

    In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy. PMID:26208681

  14. Structure of yeast Ape1 and its role in autophagic vesicle formation

    PubMed Central

    Su, Ming-Yuan; Peng, Wen-Hsin; Ho, Meng-Ru; Su, Shih-Chieh; Chang, Yuan-Chih; Chen, Guang-Chao; Chang, Chung-I

    2015-01-01

    In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy. PMID:26208681

  15. Agriculture Education. Farm Machinery.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in farm machinery. The guide presents units of study in the following areas: (1) small gas engines, (2) job opportunities, (3) tractors, (4) engines, (5) hydraulics, (6) electrical system, (7) combine…

  16. Agriculture Power and Machinery.

    ERIC Educational Resources Information Center

    Rogers, Tom

    This guide is intended to assist vocational agriculture teachers who are teaching secondary- or postsecondary-level courses in agricultural power and machinery. The materials presented are based on the Arizona validated occupational competencies and tasks for the following occupations: service manager, shop foreman, service technician, and tractor…

  17. Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro.

    PubMed

    Maes, Hannelore; Martin, Shaun; Verfaillie, Tom; Agostinis, Patrizia

    2014-02-01

    Despite advances in cancer diagnosis and therapy, metastatic melanoma remains untreatable, due to its notorious resistance to apoptosis, deeming traditional therapies obsolete. Deregulated PI3K/Akt signalling is a common oncogenic event enabling melanocyte transformation and represents a significant and 'druggable' pathway in melanoma. Emerging data show that the ability of cancer cells to survive is also facilitated by alteration of vital homoeostatic mechanisms, such as autophagy. Although the role of autophagy in melanoma is still controversial, recent studies suggest that basal autophagy is down-modulated in primary melanomas. However, the dynamic connection between pro-tumorigenic PI3K/Akt and autophagy during melanoma progression has not been systematically studied. By using human primary melanocytes, incipient melanoma and metastatic melanoma cell lines, we show that early in melanomagenesis, increased Akt activity is associated with a low baseline autophagic flux. However, during melanoma progression, metastatic melanoma cells regain the ability to stimulate autophagic flux, supporting survival. Heightened autophagy is associated with an attenuated Akt activation status and can be suppressed by overexpressing a constitutive active mutant of Akt. On the other hand, blocking the higher Akt activity of primary melanoma is sufficient to incite autophagy. Interestingly, we found that although Akt supports survival of melanocytes and all melanoma cell lines, autophagy inhibition specifically targeted the metastatic melanoma cells, thus indicating a stage-specific requirement for Akt and autophagic flux, throughout melanoma progression. Therefore, this study highlights a dynamic interplay between Akt signalling and autophagic rescue in melanoma, which should be considered in the design of therapeutic strategies targeting these pathways. PMID:24313465

  18. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery

    PubMed Central

    Love, Kerry Routenberg; Pandya, Renuka K.; Spooner, Eric; Ploegh, Hidde L.

    2009-01-01

    Protein modification by ubiquitin (Ub) and ubiquitin-like modifiers (Ubl) requires the action of activating (E1), conjugating (E2), and ligating (E3) enzymes and is a key step in the specific destruction of proteins. Deubiquitinating enzymes (DUBs) deconjugate substrates modified with Ub/Ubls and recycle Ub inside the cell. Genome mining based on sequence homology to proteins with known function has assigned many enzymes to this pathway without confirmation of either conjugating or DUB activity. Function-dependent methodologies are still the most useful for rapid identification or assessment of biological activity of expressed proteins from cells. Activity-based protein profiling (ABPP) uses chemical probes that are active-site directed for the classification of protein activities in complex mixtures. Here we show that the design and use of an expanded set of Ub-based electrophilic probes allowed us to recover and identify members of each enzyme class in the ubiquitin-proteasome system, including E3 ligases and DUBs with previously unverified activity. We show that epitope-tagged Ub-electrophilic probes can be used as activity-based probes for E3 ligase identification by in vitro labeling and activity studies of purified enzymes identified from complex mixtures in cell lysate. Furthermore, the reactivity of our probe with the HECT domain of the E3 Ub ligase ARF-BP1 suggests that multiple cysteines may be in the vicinity of the E2-binding site and are capable of the transfer of Ub to self or to a substrate protein. PMID:19256548

  19. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  20. Monosodium Urate Crystal-Induced Chondrocyte Death via Autophagic Process

    PubMed Central

    Hwang, Hyun Sook; Yang, Chung Mi; Park, Su Jin; Kim, Hyun Ah

    2015-01-01

    Monosodium urate (MSU) crystals, which are highly precipitated in the joint cartilage, increase the production of cartilage-degrading enzymes and pro-inflammatory mediators in cartilage, thereby leading to gouty inflammation and joint damage. In this study, we investigated the effect of MSU crystals on the viability of human articular chondrocytes and the mechanism of MSU crystal-induced chondrocyte death. MSU crystals significantly decreased the viability of primary chondrocytes in a time- and dose-dependent manner. DNA fragmentation was observed in a culture medium of MSU crystal-treated chondrocytes, but not in cell lysates. MSU crystals did not activate caspase-3, a marker of apoptosis, compared with actinomycin D and TNF-α-treated cells. MSU crystals did not directly affect the expression of endoplasmic reticulum (ER) stress markers at the mRNA and protein levels. However, MSU crystals significantly increased the LC3-II level in a time-dependent manner, indicating autophagy activation. Moreover, MSU crystal-induced autophagy and subsequent chondrocyte death were significantly inhibited by 3-methyladenine, a blocker of autophagosomes formation. MSU crystals activated autophagy via inhibition of phosporylation of the Akt/mTOR signaling pathway. These results demonstrate that MSU crystals may cause the death of chondrocytes through the activation of the autophagic process rather than apoptosis or ER stress. PMID:26670233

  1. Premature Activation of the Paramyxovirus Fusion Protein before Target Cell Attachment with Corruption of the Viral Fusion Machinery*

    PubMed Central

    Farzan, Shohreh F.; Palermo, Laura M.; Yokoyama, Christine C.; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E.; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-01-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents. PMID:21799008

  2. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains

    PubMed Central

    Ren, Tong; Takahashi, Yoshinori; Liu, Xin; Loughran, Thomas P.; Sun, Shao-Cong; Wang, Hong-Gang; Cheng, Hua

    2014-01-01

    The retroviral oncoprotein Tax from Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma, plays a crucial role in initiating T lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating IκB kinase complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IκB kinase complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells. PMID:24362528

  3. Epigallocatechin-3-Gallate Attenuates Impairment of Learning and Memory in Chronic Unpredictable Mild Stress-Treated Rats by Restoring Hippocampal Autophagic Flux

    PubMed Central

    Tang, Ya-Ling; Zeng, Yang; Jing, Kai-Quan; Zheng, Xi-Long; Liao, Duan-Fang

    2014-01-01

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea with beneficial effects on the impairment in learning and memory. Autophagy is a cellular process that protects neurons from stressful conditions. The present study was designed to investigate whether EGCG can rescue chronic unpredictable mild stress (CUMS)-induced cognitive impairment in rats and whether its protective effect involves improvement of autophagic flux. As expected, our results showed that CUMS significantly impaired memory performance and inhibited autophagic flux as indicated by elevated LC3-II and p62 protein levels. At the same time, we observed an increased neuronal loss and activated mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6k) signaling in the CA1 regions. Interestingly, chronic treatment with EGCG (25 mg/kg, i.p.) significantly improved those behavioral alterations, attenuated histopathological abnormalities in hippocampal CA1 regions, reduced amyloid beta1–42 (Aβ1−42) levels, and restored autophagic flux. However, blocking autophagic flux with chloroquine, an inhibitor of autophagic flux, reversed these effects of EGCG. Taken together, these findings suggest that the impaired autophagy in CA1 regions of CUMS rats may contribute to learning and memory impairment. Therefore, we conclude that EGCG attenuation of CUMS-induced learning and memory impairment may be through rescuing autophagic flux. PMID:25393306

  4. Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD(+) biosynthetic machinery in mammalian cells.

    PubMed

    Zamporlini, Federica; Ruggieri, Silverio; Mazzola, Francesca; Amici, Adolfo; Orsomando, Giuseppe; Raffaelli, Nadia

    2014-11-01

    The redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.e. nicotinamide phosphoribosyltransferase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase and nicotinamide riboside kinase. Understanding the contribution of these enzymes to NAD(+) levels depending on the tissue/cell type and metabolic status is necessary for the rational design of therapeutic strategies aimed at modulating NAD(+) availability. Here we report a simple, fast and sensitive coupled fluorometric assay that enables simultaneous determination of the four activities in whole-cell extracts and biological fluids. Its application to extracts from various mouse tissues, human cell lines and plasma yielded for the first time an overall picture of the tissue/cell-specific distribution of the activities of the various enzymes. The screening enabled us to gather novel findings, including (a) the presence of quinolinate phosphoribosyltransferase and nicotinamide riboside kinase in all examined tissues/cell lines, indicating that quinolinate and nicotinamide riboside are relevant NAD(+) precursors, and (b) the unexpected occurrence of nicotinate phosphoribosyltransferase in human plasma. PMID:25223558

  5. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor

    PubMed Central

    Agrawal, Varkha; Jaiswal, Mukesh K.; Mallers, Timothy; Katara, Gajendra K.; Gilman-Sachs, Alice; Beaman, Kenneth D.; Hirsch, Emmet

    2015-01-01

    Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL. PMID:25797357

  6. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells.

    PubMed

    Qiu, W; Su, M; Xie, F; Ai, J; Ren, Y; Zhang, J; Guan, R; He, W; Gong, Y; Guo, Y

    2014-01-01

    Lysosomes are acidic organelles that have a crucial role in degrading intracellular macromolecules and organelles during the final stage of autophagy. Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, was reported as an autophagy activator. Here, in contrast with previous studies, we show that Tet is a potent lysosomal deacidification agent and is able to block autophagic flux in the degradation stage. Single-agent Tet induces significant apoptosis both in vitro and in xenograft models. In the presence of Tet, apoptosis was preceded by a robust accumulation of autophagosomes and an increased level of microtubule-associated protein 1 light chain 3, type II (LC3-II). However, Tet increased the level of sequestosome 1 and decreased the turnover of LC3, indicating the blockade of autophagic flux in the degradation stage. As blockade of autophagic flux decreases the recycling of cellular fuels, Tet reduces the uptake of glucose in cancer cells. These effects lead to insufficient substrates for tricarboxylic acid (TCA) cycle and impaired oxidative phosphorylation. Blunting autophagosome formation using 3-methyladenine or genetic knockdown of Beclin-1 failed to rescue cells upon Tet treatment. By contrast, addition of methyl pyruvate to supplement TCA substrates protected Tet-treated tumor cells. These results demonstrate that energetic impairment is required in Tet-induced apoptosis. Tet, as a potent lysosomal inhibitor, is translatable to the treatment of malignant tumor patients. PMID:24625982

  7. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells

    PubMed Central

    Qiu, W; Su, M; Xie, F; Ai, J; Ren, Y; Zhang, J; Guan, R; He, W; Gong, Y; Guo, Y

    2014-01-01

    Lysosomes are acidic organelles that have a crucial role in degrading intracellular macromolecules and organelles during the final stage of autophagy. Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, was reported as an autophagy activator. Here, in contrast with previous studies, we show that Tet is a potent lysosomal deacidification agent and is able to block autophagic flux in the degradation stage. Single-agent Tet induces significant apoptosis both in vitro and in xenograft models. In the presence of Tet, apoptosis was preceded by a robust accumulation of autophagosomes and an increased level of microtubule-associated protein 1 light chain 3, type II (LC3-II). However, Tet increased the level of sequestosome 1 and decreased the turnover of LC3, indicating the blockade of autophagic flux in the degradation stage. As blockade of autophagic flux decreases the recycling of cellular fuels, Tet reduces the uptake of glucose in cancer cells. These effects lead to insufficient substrates for tricarboxylic acid (TCA) cycle and impaired oxidative phosphorylation. Blunting autophagosome formation using 3-methyladenine or genetic knockdown of Beclin-1 failed to rescue cells upon Tet treatment. By contrast, addition of methyl pyruvate to supplement TCA substrates protected Tet-treated tumor cells. These results demonstrate that energetic impairment is required in Tet-induced apoptosis. Tet, as a potent lysosomal inhibitor, is translatable to the treatment of malignant tumor patients. PMID:24625982

  8. Bortezomib induces autophagic death in proliferating human endothelial cells

    SciTech Connect

    Belloni, Daniela; Veschini, Lorenzo; Foglieni, Chiara; Dell'Antonio, Giacomo; Caligaris-Cappio, Federico; Ferrarini, Marina; Ferrero, Elisabetta

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  9. Overexpression of smooth muscle myosin heavy chain leads to activation of the unfolded protein response and autophagic turnover of thick filament-associated proteins in vascular smooth muscle cells.

    PubMed

    Kwartler, Callie S; Chen, Jiyuan; Thakur, Dhananjay; Li, Shumin; Baskin, Kedryn; Wang, Shanzhi; Wang, Zhao V; Walker, Lori; Hill, Joseph A; Epstein, Henry F; Taegtmeyer, Heinrich; Milewicz, Dianna M

    2014-05-16

    Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications. PMID:24711452

  10. Autophagic pathways in Parkinson disease and related disorders.

    PubMed

    Xilouri, Maria; Stefanis, Leonidas

    2011-01-01

    Macroautophagy and chaperone-mediated autophagy (CMA) are the two main mammalian lysosomal proteolytic systems. In macroautophagy, double-membrane structures engulf organelles and other intracellular constituents through a highly regulated process that involves the formation of autophagic vacuoles and their fusion with lysosomes. In CMA, selected proteins are targeted through a nonvesicular pathway to a transport complex at the lysosomal membrane, through which they are threaded into the lysosomes and degraded. Autophagy is important in development, differentiation, cellular remodelling and survival during nutrient starvation. Increasing evidence suggests that autophagic dysregulation causes accumulation of abnormal proteins or damaged organelles, which is a characteristic of chronic neurodegenerative conditions, such as Parkinson disease (PD). Evidence from post-mortem material, transgenic mice, and animal and cellular models of PD suggests that both major autophagic pathways are malfunctioning. Numerous connections exist between proteins genetically linked to autosomal dominant PD, in particular α-synuclein and LRRK2, and autophagic pathways. However, proteins involved in recessive PD, such as PINK1 and Parkin (PINK2), function in the process of mitophagy, whereby damaged mitochondria are selectively engulfed by macroautophagy. This wealth of new data suggests that both autophagic pathways are potential targets for therapeutic intervention in PD and other related neurodegenerative conditions. PMID:21418705

  11. RAB24 facilitates clearance of autophagic compartments during basal conditions

    PubMed Central

    Ylä-Anttila, Päivi; Mikkonen, Elisa; Happonen, Kaisa E; Holland, Petter; Ueno, Takashi; Simonsen, Anne; Eskelinen, Eeva-Liisa

    2015-01-01

    RAB24 belongs to a family of small GTPases and has been implicated to function in autophagy. Here we confirm the intracellular localization of RAB24 to autophagic vacuoles with immuno electron microscopy and cell fractionation, and show that prenylation and guanine nucleotide binding are necessary for the targeting of RAB24 to autophagic compartments. Further, we show that RAB24 plays a role in the maturation and/or clearance of autophagic compartments under nutrient-rich conditions, but not during short amino acid starvation. Quantitative electron microscopy shows an increase in the numbers of late autophagic compartments in cells silenced for RAB24, and mRFP-GFP-LC3 probe and autophagy flux experiments indicate that this is due to a hindrance in their clearance. Formation of autophagosomes is shown to be unaffected by RAB24-silencing with siRNA. A defect in aggregate clearance in the absence of RAB24 is also shown in cells forming polyglutamine aggregates. This study places RAB24 function in the termination of the autophagic process under nutrient-rich conditions. PMID:26325487

  12. 49. Machinery rooms on north tower. Facing north. Machinery rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Machinery rooms on north tower. Facing north. Machinery rooms contain all motors, motor controllers, and gears for operating one span, in this case, the north span. Note bell with continuous operating clapper for use as fog signals. - Henry Ford Bridge, Spanning Cerritos Channel, Los Angeles-Long Beach Harbor, Los Angeles, Los Angeles County, CA

  13. Nanoparticles modulate autophagic effect in a dispersity-dependent manner

    NASA Astrophysics Data System (ADS)

    Huang, Dengtong; Zhou, Hualu; Gao, Jinhao

    2015-09-01

    Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.

  14. Nanoparticles modulate autophagic effect in a dispersity-dependent manner

    PubMed Central

    Huang, Dengtong; Zhou, Hualu; Gao, Jinhao

    2015-01-01

    Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy. PMID:26394839

  15. Reconciling West Nile virus with the autophagic pathway

    PubMed Central

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Saiz, Juan-Carlos

    2015-01-01

    West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for recurrent outbreaks of meningitis and encephalitis. Several studies analyzing the interactions of this pathogen with the autophagic pathway have reported opposite results with evidence for and against the upregulation of autophagy in infected cells. In this regard, we have recently reported that minimal genetic changes (single amino acid substitutions) in nonstructural proteins of WNV can modify the ability of the virus to induce autophagic features such as LC3 modification and aggregation in infected cells. We think that these results could help explain some of the previously reported discrepancies. These findings could also aid in deciphering the interactions of this pathogen with the autophagic pathway at the molecular level aimed to develop feasible antiviral strategies to combat this pathogen, and other related flaviviruses. PMID:25946067

  16. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle.

    PubMed

    Campbell, Troy L; Mitchell, Andrew S; McMillan, Elliott M; Bloemberg, Darin; Pavlov, Dmytro; Messa, Isabelle; Mielke, John G; Quadrilatero, Joe

    2015-05-01

    Apoptosis and autophagy are critical in normal skeletal muscle homeostasis; however, dysregulation can lead to muscle atrophy and dysfunction. Lipotoxicity and/or lipid accumulation may promote apoptosis, as well as directly or indirectly influence autophagic signaling. Therefore, the purpose of this study was to examine the effect of a 16-week high-fat diet on morphological, apoptotic, and autophagic indices in oxidative and glycolytic skeletal muscle of female rats. High-fat feeding resulted in increased fat pad mass, altered glucose tolerance, and lower muscle pAKT levels, as well as lipid accumulation and reactive oxygen species generation in soleus muscle; however, muscle weights, fiber type-specific cross-sectional area, and fiber type distribution were not affected. Moreover, DNA fragmentation and LC3 lipidation as well as several apoptotic (ARC, Bax, Bid, tBid, Hsp70, pBcl-2) and autophagic (ATG7, ATG4B, Beclin 1, BNIP3, p70 s6k, cathepsin activity) indices were not altered in soleus or plantaris following high-fat diet. Interestingly, soleus muscle displayed small increases in caspase-3, caspase-8, and caspase-9 activity, as well as higher ATG12-5 and p62 protein, while both soleus and plantaris muscle showed dramatically reduced Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP) levels. In conclusion, this work demonstrates that 16 weeks of high-fat feeding does not affect tissue morphology or induce a global autophagic or apoptotic phenotype in skeletal muscle of female rats. However, high-fat feeding selectively influenced a number of apoptotic and autophagic indices which could have implications during periods of enhanced muscle stress. PMID:25361772

  17. Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure

    PubMed Central

    2014-01-01

    The Rabbit Hemorrhagic Disease Virus (RHDV) induces a severe disease that fulfils many requirements of an animal model of fulminant hepatic failure. However, a better knowledge of molecular mechanisms contributing to liver damage is required, and it is unknown whether the RHDV induces liver autophagy and how it relates to apoptosis. In this study, we attempted to explore which signalling pathways were involved in the autophagic response induced by the RHDV and to characterize their role in the context of RHDV pathogenesis. Rabbits were infected with 2 × 104 hemmaglutination units of a RHDV isolate. The autophagic response was measured as presence of autophagic vesicles, LC3 staining, conversion of LC3-I to autophagosome-associated LC3-II and changes in expression of beclin-1, UVRAG, Atg5, Atg12, Atg16L1 and p62/SQSTM1. RHDV-triggered autophagy reached a maximum at 24 hours post-infection (hpi) and declined at 30 and 36 hpi. Phosphorylation of mTOR also augmented in early periods of infection and there was an increase in the expression of the endoplasmic reticulum chaperones BiP/GRP78, CHOP and GRP94. Apoptosis, measured as caspase-3 activity and expression of PARP-1, increased significantly at 30 and 36 hpi in parallel to the maximal expression of the RHDV capsid protein VP60. These data indicate that RHDV infection initiates a rapid autophagic response, perhaps in an attempt to protect liver, which associates to ER stress development and is independent from downregulation of the major autophagy suppressor mTOR. As the infection continues and the autophagic response declines, cells begin to exhibit apoptosis. PMID:24490870

  18. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response

    PubMed Central

    Samokhvalov, V; Alsaleh, N; El-Sikhry, H E; Jamieson, K L; Chen, C B; Lopaschuk, D G; Carter, C; Light, P E; Manne, R; Falck, J R; Seubert, J M

    2013-01-01

    Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid involved in regulating pathways promoting cellular protection. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. Considering it is unknown how EETs regulate cell death processes, the major focus of the current study was to investigate their role in the autophagic response of HL-1 cells and neonatal cardiomyocytes (NCMs) during starvation. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EETs significantly improved viability and recovery of starved cardiac cells, whereas they lowered cellular stress responses such as caspase-3 and proteasome activities. Furthermore, treatment with EETs resulted in preservation of mitochondrial functional activity in starved cells. The protective effects of EETs were abolished by autophagy-related gene 7 (Atg7) short hairpin RNA (shRNA) or pharmacological inhibition of autophagy. Mechanistic evidence demonstrated that sarcolemmal ATP-sensitive potassium channels (pmKATP) and enhanced activation of AMP-activated protein kinase (AMPK) played a crucial role in the EET-mediated effect. Our data suggest that the protective effects of EETs involve regulating the autophagic response, which results in a healthier pool of mitochondria in the starved cardiac cells, thereby representing a novel mechanism of promoting survival of cardiac cells. Thus, we provide new evidence highlighting a central role of the autophagic response in linking EETs with promoting cell survival during deep metabolic stress such as starvation. PMID:24157879

  19. Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation

    PubMed Central

    Kao, C; Chao, A; Tsai, C-L; Chuang, W-C; Huang, W-P; Chen, G-C; Lin, C-Y; Wang, T-H; Wang, H-S; Lai, C-H

    2014-01-01

    The antitumor activity of an inhibitor of 26S proteasome bortezomib (Velcade) has been observed in various malignancies, including colon cancer, prostate cancer, breast cancer, and ovarian cancer. Bortezomib has been proposed to stimulate autophagy, but scientific observations did not always support this. Interactions between ERK activity and autophagy are complex and not completely clear. Autophagy proteins have recently been shown to regulate the functions of ERK, and ERK activation has been found to induce autophagy. On the other hand, sustained activation of ERK has also been shown to inhibit the maturation step of the autophagy process. In this study, we sought to identify the mechanism of autophagy regulation in cancer cells treated with bortezomib. Our results indicate that bortezomib blocked the autophagic flux without inhibiting the fusion of the autophagosome and lysosome. In ovarian cancer, as well as endometrial cancer and hepatocellular carcinoma cells, bortezomib inhibited protein degradation in lysosomes by suppressing cathepsins, which requires the participation of ERK phosphorylation, but not JNK or p38. Our findings that ERK phosphorylation reduced cathepsins further explain how ERK phosphorylation inhibits the autophagic flux. In conclusion, bortezomib may induce ERK phosphorylation to suppress cathepsin B and inhibit the catalytic process of autophagy in ovarian cancer and other solid tumors. The inhibition of cisplatin-induced autophagy by bortezomib can enhance chemotherapy efficacy in ovarian cancer. As we also found that bortezomib blocks the autophagic flux in other cancers, the synergistic cytotoxic effect of bortezomib by abolishing chemotherapy-related autophagy may help us develop strategies of combination therapies for multiple cancers. PMID:25375375

  20. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  1. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    PubMed

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to

  2. 46 CFR 62.50-20 - Additional requirements for minimally attended machinery plants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... machinery plants and spaces that are automated, but not to a degree where the plant could be left unattended. Emphasis is placed on the centralized remote control and monitoring of the machinery plant and machinery... operator's activity to monitoring the plant, initiating programed control system sequences, and...

  3. Autophagic degradation of peroxisomes in mammals

    PubMed Central

    Katarzyna, Zientara-Rytter; Suresh, Subramani

    2016-01-01

    Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide. Therefore, peroxisome homeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy - the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signaling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions. PMID:27068951

  4. The autophagic paradox in cancer therapy.

    PubMed

    Wu, W K K; Coffelt, S B; Cho, C H; Wang, X J; Lee, C W; Chan, F K L; Yu, J; Sung, J J Y

    2012-02-23

    Autophagy, hallmarked by the formation of double-membrane bound organelles known as autophagosomes, is a lysosome-dependent pathway for protein degradation. The role of autophagy in carcinogenesis is context dependent. As a tumor-suppressing mechanism in early-stage carcinogenesis, autophagy inhibits inflammation and promotes genomic stability. Moreover, disruption of autophagy-related genes accelerates tumorigenesis in animals. However, autophagy may also act as a pro-survival mechanism to protect cancer cells from various forms of cellular stress. In cancer therapy, adaptive autophagy in cancer cells sustains tumor growth and survival in face of the toxicity of cancer therapy. To this end, inhibition of autophagy may sensitize cancer cells to chemotherapeutic agents and ionizing radiation. Nevertheless, in certain circumstances, autophagy mediates the therapeutic effects of some anticancer agents. Data from recent studies are beginning to unveil the apparently paradoxical nature of autophagy as a cell-fate decision machinery. Taken together, modulation of autophagy is a novel approach for enhancing the efficacy of existing cancer therapy, but its Janus-faced nature may complicate the clinical development of autophagy modulators as anticancer therapeutics. PMID:21765470

  5. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone.

    PubMed

    Marshall, Richard S; McLoughlin, Fionn; Vierstra, Richard D

    2016-08-01

    The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 kinase participates only in starvation-induced proteaphagy. Following inactivation, 26S proteasomes become extensively modified with ubiquitin. Although prior studies with Arabidopsis implicated RPN10 in tethering ubiquitylated proteasomes to ATG8 lining the autophagic membranes, yeast proteaphagy employs the evolutionarily distinct receptor Cue5, which simultaneously binds ubiquitin and Atg8. Proteaphagy of inactivated proteasomes also requires the oligomeric Hsp42 chaperone, suggesting that ubiquitylated proteasomes are directed by Hsp42 to insoluble protein deposit (IPOD)-type structures before encapsulation. Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes. PMID:27477278

  6. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    PubMed

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. PMID:23850994

  7. The machinery of macroautophagy

    PubMed Central

    Feng, Yuchen; He, Ding; Yao, Zhiyuan; Klionsky, Daniel J

    2014-01-01

    Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information. PMID:24366339

  8. Dasatinib Induces Autophagic Cell Death in Human Ovarian Cancer*

    PubMed Central

    Le, Xiao-Feng; Mao, Weiqun; Lu, Zhen; Carter, Bing Z.; Bast, Robert C.

    2010-01-01

    BACKGROUND Dasatinib, an inhibitor of Src/Abl family kinases, can inhibit tumor growth of a number of solid tumors. However, the effect and mechanism of action of dasatinib in human ovarian cancer cells remains unknown. METHODS Dasatinib-induced autophagy was determined by acridine orange staining, punctate localization of GFP-LC3, LC3 protein blotting and electron microscopy. Significance of Beclin-1, AKT and Bcl-2 in dasatinib-induced autophagy and growth inhibition was assayed by small interfering RNA silencing and/or overexpression of gene of interest. RESULTS Dasatinib inhibited cell growth by inducing little apoptosis, but substantial autophagy in SKOv3 and HEY ovarian cancer cells. In vivo studies showed dasatinib inhibited tumor growth and induced both autophagy and apoptosis in a HEY xenograft model. Knockdown of Beclin 1 and Atg12 expression with their respective siRNAs diminished dasatinib-induced autophagy, whereas knockdown of p27Kip1 with specific siRNAs did not. shRNA knockdown of Beclin-1 expression reduced dasatinib-induced autophagy and growth inhibition. Dasatinib reduced the phosphorylation of AKT, mTOR, p70S6K and S6 kinase expression. Constitutive expression of AKT1 and AKT2 inhibited dasatinib-induced autophagy in both HEY and SKOv3 cells. Dasatinib also reduced Bcl-2 expression and activity. Overexpression of Bcl-2 partially prevented dasatinib-induced autophagy. CONCLUSIONS We conclude that dasatinib induces autophagic cell death in ovarian cancer that partially depends on Beclin-1, AKT and Bcl-2. These results may have implications for clinical use of dasatinib. PMID:20629079

  9. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis

    PubMed Central

    Li, Rongsong; Jen, Nelson; Wu, Lan; Lee, Juhyun; Fang, Karen; Quigley, Katherine; Lee, Katherine; Wang, Sky; Zhou, Bill; Vergnes, Laurent; Chen, Yun-Ru; Li, Zhaoping; Reue, Karen; Ann, David K.

    2015-01-01

    Abstract Aim: Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2•−) production. Results: In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2′-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2•−, whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2•−, mitochondrial respiration, and complex II activity. Innovation: Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. Conclusion: OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207–1219. PMID:26120766

  10. The Research of Computer Aided Farm Machinery Designing Method Based on Ergonomics

    NASA Astrophysics Data System (ADS)

    Gao, Xiyin; Li, Xinling; Song, Qiang; Zheng, Ying

    Along with agricultural economy development, the farm machinery product type Increases gradually, the ergonomics question is also getting more and more prominent. The widespread application of computer aided machinery design makes it possible that farm machinery design is intuitive, flexible and convenient. At present, because the developed computer aided ergonomics software has not suitable human body database, which is needed in view of farm machinery design in China, the farm machinery design have deviation in ergonomics analysis. This article puts forward that using the open database interface procedure in CATIA to establish human body database which aims at the farm machinery design, and reading the human body data to ergonomics module of CATIA can product practical application virtual body, using human posture analysis and human activity analysis module to analysis the ergonomics in farm machinery, thus computer aided farm machinery designing method based on engineering can be realized.

  11. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.

    PubMed

    Kim, Min-Ji; Bae, Soo Han; Ryu, Jae-Chan; Kwon, Younghee; Oh, Ji-Hwan; Kwon, Jeongho; Moon, Jong-Seok; Kim, Kyubo; Miyawaki, Atsushi; Lee, Min Goo; Shin, Jaekyoon; Kim, Young Sam; Kim, Chang-Hoon; Ryter, Stefan W; Choi, Augustine M K; Rhee, Sue Goo; Ryu, Ji-Hwan; Yoon, Joo-Heon

    2016-08-01

    Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces "mitochondrial priming" by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis. PMID:27337507

  12. ATG12-ATG3 Interacts with Alix to Promote Basal Autophagic Flux and Late Endosome Function

    PubMed Central

    Murrow, Lyndsay; Malhotra, Ritu; Debnath, Jayanta

    2015-01-01

    The ubiquitin-like molecule ATG12 is required for the early steps of autophagy. Recently, we identified ATG3, the E2-like enzyme required for LC3 lipidation during autophagy, as an ATG12 conjugation target. Here, we demonstrate that cells lacking ATG12-ATG3 have impaired basal autophagic flux, accumulation of perinuclear late endosomes, and impaired endolysosomal trafficking. Furthermore, we identify an interaction between ATG12-ATG3 and the ESCRT-associated protein Alix (also known as PDCD6IP) and demonstrate that ATG12-ATG3 controls multiple Alix-dependent processes including late endosome distribution, exosome biogenesis, and viral budding. Lastly, similar to ATG12-ATG3, Alix is functionally required for efficient basal, but not starvation-induced, autophagy. Overall, these results identify a link between the core autophagy and ESCRT machineries and uncover a role for ATG12-ATG3 in late endosome function that is distinct from the canonical role of either ATG in autophagosome formation. PMID:25686249

  13. 30 CFR 56.14204 - Machinery lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 56.14204 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 56.14204 Machinery lubrication. Machinery...

  14. 30 CFR 57.14204 - Machinery lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery lubrication. 57.14204 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 57.14204 Machinery lubrication. Machinery...

  15. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD... Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic inspection.... Mechanisms are operationally tested and visually examined. (3) Auxiliary machinery. All machinery...

  16. Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice.

    PubMed

    Hsueh, Kuo-Wei; Chiou, Tzyy-Wen; Chiang, Shu-Fen; Yamashita, Toru; Abe, Koji; Borlongan, Cesar V; Sanberg, Paul R; Huang, Angela Yu Hsuan; Lin, Shinn-Zong; Harn, Horng-Jyh

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) is a lethal degenerating disease, characterized by progressive muscular atrophy without any effective treatment. Here, we demonstrated the efficacy of abrograting autophagy in motor neurons (MN) by treatment with n-butylidenephthalide (n-BP) in ALS transgenic mice (SOD1(G93A)). Pre-symptomatic oral administration of 250 mg/kg/bid n-BP significantly prolonged the survival period (203.9 ± 18.3 days), improved motor function, and attenuated MN loss compared to vehicle control (126.4 ± 7.2 days). This prolonged survival of ALS mice is much more robust than that reported with riluzole (140 days), which is an approved clinical therapy for ALS. The therapeutic mechanism targeted by n-BP involved the autophagic pathway as evidenced by decreased LC3-II expression (a biomarker of autophagy), enhanced mTOR levels, and attenuated autophagic activity, altogether increasing MN survival in a dose-dependent manner. This result was also confirmed by double transgenic mice (SOD1(G93A):LC3-GFP) which showed that oral administration of n-BP reduced GFP density and decreased caspase-3 expression. In addition, electron microscopy revealed that n-BP administration not only decreased autophagosome number but also reduced morphological dysfunction of mitochondria. In summary, these results indicate that down-regulation of autophagy activation via n-BP may pose as a therapeutic regimen for ALS and relevant neurodegenerative diseases. PMID:27059126

  17. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    SciTech Connect

    Inami, Yoshihiro; Yamashina, Shunhei; Izumi, Kousuke; Ueno, Takashi; Tanida, Isei; Ikejima, Kenichi; Watanabe, Sumio

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  18. Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo.

    PubMed

    Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2015-01-01

    Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α (TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampus in vivo. PMID:26124853

  19. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity

    PubMed Central

    Vanrell, María C.; Cueto, Juan A.; Barclay, Jeremías J.; Carrillo, Carolina; Colombo, María I.; Gottlieb, Roberta A.; Romano, Patricia S.

    2013-01-01

    Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings. PMID:23697944

  20. Superoxide dismutase of Streptococcus suis serotype 2 plays a role in anti-autophagic response by scavenging reactive oxygen species in infected macrophages.

    PubMed

    Fang, Lihua; Shen, Hongxia; Tang, Yulong; Fang, Weihuan

    2015-04-17

    Streptococcus suis serotype 2 (SS2) causes septic shock and meningitis. However, its pathogenesis is still not well-understood. We have recently shown that superoxide dismutase sodA of SS2 is a virulence factor probably by increasing resistance to oxidative stresses. Reactive oxygen species (ROS) are products of the respiratory burst of phagocytic cells and have been shown to activate autophagy. We wanted to know if and how SS2 explores its sodA to interfere with cell autophagic responses. A sodA deletion mutant (Δsod) was compared with its parent and complemented strain in autophagic response in the murine macrophage cell line RAW264.7. We found that the Δsod mutant induced significant autophagic responses in infected cells, shown as increased LC3 lipidation (LC3-II) and EGFP-LC3 punctae, than those infected by its parent or complemented strain at 1 or 2h post-infection. Co-localization of the autophagosomal EGFP-LC3 vesicles with lysosomes was seen in cells infected with Δsod mutant and its parent strain, indicating that SS2 infection induced complete autophagic responses. Reduced autophagic responses of cells infected with the wild-type strain might be related to decreased ROS by the scavenging effect of its sodA, as shown by increased superoxide anion or ROS level in cells infected with the Δsod mutant and in the cell free xanthine oxidase-hypoxanthine ROS-generating system, as compared with its parent or complemented strain. Taken together, SS2 makes use of its sodA for survival not only by scavenging ROS but also by alleviating the host autophagic responses due to ROS stimulation. PMID:25726301

  1. Primary cilia and autophagic dysfunction in Huntington's disease.

    PubMed

    Kaliszewski, M; Knott, A B; Bossy-Wetzel, E

    2015-09-01

    Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field. PMID:26160070

  2. Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo.

    PubMed

    Zhang, Ying-Yu; Meng, Chen; Zhang, Xin-Mu; Yuan, Cai-Hua; Wen, Ming-Da; Chen, Zhong; Dong, Da-Chuan; Gao, Yan-Hong; Liu, Chang; Zhang, Zhao

    2015-01-01

    It has been reported that ophiopogonin D (OP-D), a steroidal glycoside and an active component extracted from Ophiopogon japonicas, promotes antioxidative protection of the cardiovascular system. However, it is unknown whether OP-D exerts protective effects against doxorubicin (DOX)-induced autophagic cardiomyocyte injury. Here, we demonstrate that DOX induced excessive autophagy through the generation of reactive oxygen species (ROS) in H9c2 cells and in mouse hearts, which was indicated by a significant increase in the number of autophagic vacuoles, LC3-II/LC3-I ratio, and upregulation of the expression of GFP-LC3. Pretreatment with OP-D partially attenuated the above phenomena, similar to the effects of treatment with 3-methyladenine. In addition, OP-D treatment significantly relieved the disruption of the mitochondrial membrane potential by antioxidative effects through downregulating the expression of both phosphorylated c-Jun N-terminal kinase and extracellular signal-regulated kinase. The ability of OP-D to reduce the generation of ROS due to mitochondrial damage and, consequently, to inhibit autophagic activity partially accounts for its protective effects in the hearts against DOX-induced toxicity. PMID:25378375

  3. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death.

    PubMed

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  4. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    PubMed Central

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M.; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  5. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways.

    PubMed

    Hao, Huiyao; Zhang, Di; Shi, Junli; Wang, Yan; Chen, Lei; Guo, Yongze; Ma, Junji; Jiang, Xiaoyu; Jiang, Huiqing

    2016-03-01

    Increasing hepatic stellate cell (HSC) death is an attractive approach for limiting liver fibrosis. We investigated the molecular mechanisms underlying the effects of sorafenib on HSCs. LX2 cells were incubated with sorafenib and a variety of inhibitors of apoptosis, autophagy, and necrosis. Electron microscopy was used to observe autophagosomes. Inhibitors and siRNA were used to examine the role of the Akt/mTOR/p70S6K and JNK pathways. Ultrastructural analysis revealed that rat HSCs treated with 5 μmol/l sorafenib accumulated residual digested material and empty or autophagic vacuoles. Incubating LX2 cells with lysosomal protease inhibitors increased the accumulation of LC3-II, indicating that sorafenib enhances autophagic flux in HSCs. Autophagy may precede apoptosis. Lower concentrations of sorafenib and a shorter treatment time resulted in the dominance of autophagic cell death over apoptosis. Further analysis showed that Beclin 1 is inactivated by the caspases induced by sorafenib during apoptosis. Inhibition of autophagy in LX2 cells using 3-methyladenine treatment or siRNA-mediated knockdown of Atg5 resulted in a marked increase in apoptosis. Finally, sorafenib induced programmed cell death by attenuation and activation of Akt/mTOR/p70S6K and JNK signaling. Sorafenib-induced cell death is mediated by both autophagy and apoptosis. Elucidation of the signaling pathways activated by sorafenib could potentially lead to novel antifibrosis therapies for chronic liver diseases. PMID:26629768

  6. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions.

    PubMed Central

    Savouré, A; Magyar, Z; Pierre, M; Brown, S; Schultze, M; Dudits, D; Kondorosi, A; Kondorosi, E

    1994-01-01

    We have shown that treatment of Medicago microcallus suspensions with the cognate Rhizobium meliloti Nod signal molecule NodRm-IV(C16:2,S) can modify gene expression both qualitatively and quantitatively. At concentrations of 10(-6) - 10(-9) M, this host specific plant morphogen but not the inactive non-sulfated molecule stimulated cell cycle progression as indicated by the significantly enhanced thymidine incorporation, elevated number of S phase cells, increase in kinase activity of the p34cdc2-related complexes and enhancement of the level of expression of several cell cycle marker genes, the histone H3-1, the cdc2Ms and the cyclin cycMs2. The presented data suggest that at least part of the physiological role of the Nod factor may be linked to molecular events involved in the control of the plant cell division cycle. In situ hybridization experiments with antisense H3-1 RNA probe indicated that only certain cells of the calli were able to respond to the Nod factor. High (10(-6) M) but not low (10(-9) M) concentrations of the active Nod factors induced the expression of the isoflavone reductase gene (IFR), a marker gene of the isoflavonoid biosynthesis pathway in most callus cells. Our results indicate that Medicago cell responses to the Nod signal molecules can be investigated in suspension cultures. Images PMID:8131743

  7. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice.

    PubMed

    Tam, Bjorn T; Pei, Xiao M; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Siu, Parco M

    2015-12-01

    Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level. PMID:26228926

  8. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death. PMID:24316735

  9. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans.

    PubMed

    Li, Sihui; Yang, Peiguo; Tian, E; Zhang, Hong

    2013-11-01

    The selective degradation of intracellular components by autophagy involves sequential interactions of the cargo with a receptor, which also binds the autophagosomal protein Atg8 and a scaffold protein. Here, we demonstrated that mutations in C. elegans epg-11, which encodes an arginine methyltransferase homologous to PRMT1, cause the defective removal of PGL-1 and PGL-3 (cargo)-SEPA-1 (receptor) complexes, known as PGL granules, from somatic cells during embryogenesis. Autophagic degradation of the PGL granule scaffold protein EPG-2 and other protein aggregates was unaffected in epg-11/prmt-1 mutants. Loss of epg-11/prmt-1 activity impairs the association of PGL granules with EPG-2 and LGG-1 puncta. EPG-11/PRMT-1 directly methylates arginines in the RGG domains of PGL-1 and PGL-3. Autophagic removal of PGL proteins is impaired when the methylated arginines are mutated. Our study reveals that posttranslational arginine methylation regulates the association of the cargo-receptor complex with the scaffold protein, providing a mechanism for modulating degradation efficiency in selective autophagy. PMID:24140420

  10. The role of autophagic and lysosomal pathways in ischemic brain injury

    PubMed Central

    Gu, Zhaohua; Sun, Yinyi; Liu, Kangyong; Wang, Fen; Zhang, Ting; Li, Qiang; Shen, Liwei; Zhou, Ling; Dong, Liang; Shi, Nan; Zhang, Qian; Zhang, Wei; Zhao, Meizhen; Sun, Xiaojiang

    2013-01-01

    Autophagy is involved in neural cell death after cerebral ischemia. Our previous studies showed that rapamycin-induced autophagy decreased the rate of apoptosis, but the rate of apoptosis was creased after the autophagy inhibitor, 3-methyladenine, was used. In this study, a suture-occluded method was performed to generate a rat model of brain ischemia. Under a transmission electron microscope, autophagic bodies and autophagy lysosomes were markedly accumulated in neurons at 4 hours post brain ischemic injury, with their numbers gradually reducing over time. Western blotting demonstrated that protein levels of light chain 3-II and cathepsin B were significantly increased within 4 hours of ischemic injury, but these levels were not persistently upregulated over time. Confocal microscopy showed that autophagy was mainly found in neurons with positive light chain 3 signal. Injection of rapamycin via tail vein promoted the occurrence of autophagy in rat brain tissue after cerebral ischemia and elevated light chain 3 and cathepsin B expression. However, injection of 3-methyladenine significantly diminished light chain 3-II and cathepsin B expression. Results verified that autophagic and lysosomal activity is increased in ischemic neurons. Abnormal components in cells can be eliminated through upregulating cell autophagy or inhibiting autophagy after ischemic brain injury, resulting in a dynamic balance of substances in cells. Moreover, drugs that interfere with autophagy may be potential therapies for the treatment of brain injury. PMID:25206520

  11. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    SciTech Connect

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori; Masuko, Kazue; Hashimoto, Yoshiyuki; Masuko, Takashi

    2008-03-21

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.

  12. Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux

    PubMed Central

    Sreelatha, Anju; Bennett, Terry L.; Zheng, Hui; Jiang, Qiu-Xing; Orth, Kim; Starai, Vincent J.

    2013-01-01

    Defects in normal autophagic pathways are implicated in numerous human diseases—such as neurodegenerative diseases, cancer, and cardiomyopathy—highlighting the importance of autophagy and its proper regulation. Herein we show that Vibrio parahaemolyticus uses the type III effector VopQ (Vibrio outer protein Q) to alter autophagic flux by manipulating the partitioning of small molecules and ions in the lysosome. This effector binds to the conserved Vo domain of the vacuolar-type H+-ATPase and causes deacidification of the lysosomes within minutes of entering the host cell. VopQ forms a gated channel ∼18 Å in diameter that facilitates outward flux of ions across lipid bilayers. The electrostatic interactions of this type 3 secretion system effector with target membranes dictate its preference for host vacuolar-type H+-ATPase–containing membranes, indicating that its pore-forming activity is specific and not promiscuous. As seen with other effectors, VopQ is exploiting a eukaryotic mechanism, in this case manipulating lysosomal homeostasis and autophagic flux through transmembrane permeation. PMID:23798441

  13. The Endocrine Machinery.

    ERIC Educational Resources Information Center

    Fillman, David

    1987-01-01

    Promotes a reductionist approach to teaching about the endocrine system in high school biology and anatomy courses. Encourages the study of how hormones travel to the cells and affect them. Provides suggestions for activities and discussion questions, along with sample diagrams and flow charts. (TW)

  14. Apoptotic and autophagic cell death induced by glucolaxogenin in cervical cancer cells.

    PubMed

    Sánchez-Sánchez, L; Escobar, M L; Sandoval-Ramírez, J; López-Muñoz, H; Fernández-Herrera, M A; Hernández-Vázquez, J M V; Hilario-Martínez, C; Zenteno, E

    2015-12-01

    The antiproliferative and cytotoxic activity of glucolaxogenin and its ability to induce apoptosis and autophagy in cervical cancer cells are reported. We ascertained that glucolaxogenin exerts an inhibitory effect on the proliferation of HeLa, CaSki and ViBo cells in a dose-dependent manner. Analysis of DNA distribution in the cell-cycle phase of tumor cells treated with glucolaxogenin suggests that the anti-proliferative activity of this steroid is not always dependent on the cell cycle. Cytotoxic activity was evaluated by detection of the lactate dehydrogenase enzyme in supernatants from tumor cell cultures treated with the steroid. Glucolaxogenin exhibited null cytotoxic activity. With respect to the apoptotic activity, the generation of apoptotic bodies, the presence of active caspase-3 and annexin-V, as well as the DNA fragmentation observed in all tumor lines after treatment with glucolaxogenin suggests that this compound does indeed induce cell death by apoptosis. Also, a significantly increased presence of the LC3-II, LC3 and Lamp-1 proteins was evidenced with the ultrastructural existence of autophagic vacuoles in cells treated with this steroidal glycoside, indicating that glucolaxogenin also induces autophagic cell death. It is important to note that this compound showed no cytotoxic effect and did not affect the proliferative capacity of mononuclear cells obtained from normal human peripheral blood activated by phytohaemagglutinin. Thus, glucolaxogenin is a compound with anti-proliferative properties that induces programmed cell death in cancer cell lines, though it is selective with respect to normal lymphocytic cells. These findings indicate that this glycoside could have a selective action on tumor cells and, therefore, be worthy of consideration as a therapeutic candidate with anti-tumor potential. PMID:26437916

  15. Tractor & Machinery Safety. 1984 Revision.

    ERIC Educational Resources Information Center

    Montana State Office of Public Instruction, Helena. Dept. of Vocational Education Services.

    This curriculum guide is intended for use in teaching an instructional unit in tractor and machinery safety that is geared toward college freshmen. Addressed in the individual lessons of the unit are the following topics: understanding the importance of safe and efficient tractor operation, understanding the characteristics of tractors, preparing…

  16. Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1β Producing Inflammasome

    PubMed Central

    2015-01-01

    Engineered nanomaterials (ENMs) including multiwall carbon nanotubes (MWCNTs) and rare earth oxide (REO) nanoparticles, which are capable of activating the NLRP3 inflammasome and inducing IL-1β production, have the potential to cause chronic lung toxicity. Although it is known that lysosome damage is an upstream trigger in initiating this pro-inflammatory response, the same organelle is also an important homeostatic regulator of activated NLRP3 inflammasome complexes, which are engulfed by autophagosomes and then destroyed in lysosomes after fusion. Although a number of ENMs have been shown to induce autophagy, no definitive research has been done on the homeostatic regulation of the NLRP3 inflammasome during autophagic flux. We used a myeloid cell line (THP-1) and bone marrow derived macrophages (BMDM) to compare the role of autophagy in regulating inflammasome activation and IL-1β production by MWCNTs and REO nanoparticles. THP-1 cells express a constitutively active autophagy pathway and are also known to mimic NLRP3 activation in pulmonary macrophages. We demonstrate that, while activated NLRP3 complexes could be effectively removed by autophagosome fusion in cells exposed to MWCNTs, REO nanoparticles interfered in autophagosome fusion with lysosomes. This leads to the accumulation of the REO-activated inflammasomes, resulting in robust and sustained IL-1β production. The mechanism of REO nanoparticle interference in autophagic flux was clarified by showing that they disrupt lysosomal phosphoprotein function and interfere in the acidification that is necessary for lysosome fusion with autophagosomes. Binding of LaPO4 to the REO nanoparticle surfaces leads to urchin-shaped nanoparticles collecting in the lysosomes. All considered, these data demonstrate that in contradistinction to autophagy induction by some ENMs, specific materials such as REOs interfere in autophagic flux, thereby disrupting homeostatic regulation of activated NLRP3 complexes. PMID

  17. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways

    PubMed Central

    Oshima, Ryuji; Hasegawa, Takafumi; Tamai, Keiichi; Sugeno, Naoto; Yoshida, Shun; Kobayashi, Junpei; Kikuchi, Akio; Baba, Toru; Futatsugi, Akira; Sato, Ikuro; Satoh, Kennichi; Takeda, Atsushi; Aoki, Masashi; Tanaka, Nobuyuki

    2016-01-01

    Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death. PMID:27112194

  18. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  19. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  20. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  1. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  2. 46 CFR 176.804 - Machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Machinery. 176.804 Section 176.804 Shipping COAST GUARD... CERTIFICATION Material Inspections § 176.804 Machinery. At each initial and subsequent inspection for... ready for inspections of machinery, fuel, and piping systems, including the following: (a) Operation...

  3. 46 CFR 130.450 - Machinery alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery alarms. 130.450 Section 130.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.450 Machinery alarms....

  4. The Ubiquitination Machinery of the Ubiquitin System

    PubMed Central

    Callis, Judy

    2014-01-01

    The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery “half” of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s. PMID:25320573

  5. Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery

    PubMed Central

    Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine

    2014-01-01

    Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612

  6. Autophagic Recycling Plays a Central Role in Maize Nitrogen Remobilization

    PubMed Central

    Chung, Taijoon; Pennington, Janice G.; Federico, Maria L.; Kaeppler, Heidi F.; Kaeppler, Shawn M.

    2015-01-01

    Autophagy is a primary route for nutrient recycling in plants by which superfluous or damaged cytoplasmic material and organelles are encapsulated and delivered to the vacuole for breakdown. Central to autophagy is a conjugation pathway that attaches AUTOPHAGY-RELATED8 (ATG8) to phosphatidylethanolamine, which then coats emerging autophagic membranes and helps with cargo recruitment, vesicle enclosure, and subsequent vesicle docking with the tonoplast. A key component in ATG8 function is ATG12, which promotes lipidation upon its attachment to ATG5. Here, we fully defined the maize (Zea mays) ATG system transcriptionally and characterized it genetically through atg12 mutants that block ATG8 modification. atg12 plants have compromised autophagic transport as determined by localization of a YFP-ATG8 reporter and its vacuolar cleavage during nitrogen or fixed-carbon starvation. Phenotypic analyses showed that atg12 plants are phenotypically normal and fertile when grown under nutrient-rich conditions. However, when nitrogen-starved, seedling growth is severely arrested, and as the plants mature, they show enhanced leaf senescence and stunted ear development. Nitrogen partitioning studies revealed that remobilization is impaired in atg12 plants, which significantly decreases seed yield and nitrogen-harvest index. Together, our studies demonstrate that autophagy, while nonessential, becomes critical during nitrogen stress and severely impacts maize productivity under suboptimal field conditions. PMID:25944100

  7. Autophagic degradation contributes to muscle wasting in cancer cachexia.

    PubMed

    Penna, Fabio; Costamagna, Domiziana; Pin, Fabrizio; Camperi, Andrea; Fanzani, Alessandro; Chiarpotto, Elena M; Cavallini, Gabriella; Bonelli, Gabriella; Baccino, Francesco M; Costelli, Paola

    2013-04-01

    Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system. PMID:23395093

  8. Ciliary Entry of the Hedgehog Transcriptional Activator Gli2 Is Mediated by the Nuclear Import Machinery but Differs from Nuclear Transport in Being Imp-α/β1-Independent.

    PubMed

    Torrado, Belén; Graña, Martín; Badano, José L; Irigoín, Florencia

    2016-01-01

    Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/β1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-β2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-β2 might also collaborate in Gli2 nuclear entry. How does Imp-β2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation. PMID:27579771

  9. Acadesine Kills Chronic Myelogenous Leukemia (CML) Cells through PKC-Dependent Induction of Autophagic Cell Death

    PubMed Central

    Robert, Guillaume; Ben Sahra, Issam; Puissant, Alexandre; Colosetti, Pascal; Belhacene, Nathalie; Gounon, Pierre; Hofman, Paul; Bost, Fréderic; Cassuto, Jill-Patrice; Auberger, Patrick

    2009-01-01

    CML is an hematopoietic stem cell disease characterized by the t(9;22) (q34;q11) translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL) was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients. PMID:19924252

  10. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death

    PubMed Central

    Qiao, Shuxi; Tao, Shasha; Rojo de la Vega, Montserrat; Park, Sophia L; Vonderfecht, Amanda A; Jacobs, Suesan L; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells. PMID:24113242

  11. Pressure measurement on rotating machinery

    NASA Astrophysics Data System (ADS)

    Pemberton, Addison; Harris, Louis R.

    The objective of this paper is to describe the use of pressure scanners for measuring multiple unknown pressures in rotating machinery. Pressure scanners consist of stepper driven selector valves, which sequentially connect unknown pressures and apply these pressures to a single pressure transducer. This generates analog voltage signals which can be computerized and plotted while a pressure test is in progress. When an electrical selector switch on the same stepper driven shaft is added, thermocouple signals can be brought out of a rotating machine synchronously with pressure data.

  12. Changes in Respiratory Mitochondrial Machinery and Cytochrome and Alternative Pathway Activities in Response to Energy Demand Underlie the Acclimation of Respiration to Elevated CO2 in the Invasive Opuntia ficus-indica1[OA

    PubMed Central

    Gomez-Casanovas, Nuria; Blanc-Betes, Elena; Gonzalez-Meler, Miquel A.; Azcon-Bieto, Joaquim

    2007-01-01

    Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested. PMID:17660349

  13. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization

    PubMed Central

    2014-01-01

    Background Tumor-associated macrophages (TAMs) are the major component of tumor-infiltrating leukocytes. TAMs are heterogeneous, with distinct phenotypes influenced by the microenvironment surrounding tumor tissues, but relatively little is known about the key molecular in these cells that contribute to malignant phenotypes. Autophagic activity is a critical factor in tumor development that contributes to enhancing cellular fitness and survival in the hostile tumor microenvironment. However, the molecular basis and relations between autophagy and TAMs polarization remain unclear. Methods Cathepsin S (Cat S) expression was analyzed in human colon carcinoma and normal colon tissues. In vivo effects were evaluated using PancO2 subcutaneous tumor model and SL4 hepatic metastasis model. Immunofluorescence staining, flow cytometry and real-time PCR were done to examine TAMs polarization. Western blotting assay, transmission electron microscopy, mCherry-GFP-LC3 transfection and DQ-BSA degradation assays were carried out to determine its role in regulating autophagy. Results In the present study, we showed that the enhanced expression of Cat S correlated with the severity of histologic grade as well as clinical stage, metastasis, and recurrence, which are known indicators of a relatively poor prognosis of human colon carcinoma. Cat S knockout led to decreased tumor growth and metastasis. Moreover, Cat S knockout inhibited M2 macrophage polarization during tumor development. We further demonstrated that Cat S was required for not only autophagic flux but also the fusion processes of autophagosomes and lysosomes in TAMs. Importantly, we found that Cat S contributed to tumor development by regulating the M2 phenotype of TAMs through the activation of autophagy. Conclusions These results indicated that Cat S-mediated autophagic flux is an important mechanism for inducing M2-type polarization of TAMs, which leads to tumor development. These data provide strong evidence for a

  14. Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells

    PubMed Central

    Wang, Ning; Pan, Weidong; Zhu, Meifen; Zhang, Maosheng; Hao, Xiaojian; Liang, Guangyi; Feng, Yibin

    2011-01-01

    BACKGROUND AND PURPOSE Fangchinoline is a novel anti-tumour agent with little known of its cellular and molecular mechanisms of action. Here we have investigated the mode of cell death induced by fangchinoline and its underlying mechanism in two human hepatocellular carcinoma cell lines, HepG2 and PLC/PRF/5. EXPERIMENTAL APPROACH Apoptosis and autophagy were monitored in fangchinoline-treated HepG2 and PLC/PRF/5 cells by histological methods. The signal transduction pathways involved in activation of autophagy were examined, using immunoblotting, real-time PCR and siRNA techniques. KEY RESULTS Fangchinoline did not induce apoptosis in HepG2 and PLC/PRF/5 cells but triggered, dose-dependently, autophagy, an alternative mode of cell death which may contribute to fangchinoline's anti-tumour action. Nuclear translocation of p53 was involved in induction of autophagy by fangchinoline, followed by selective transactivation of the autophagy-related gene sestrin2 and initiation of the autophagic process. Signalling by the AMP-activated protein kinase was also involved as a downstream target of sestrin2 and induced mTOR-independent autophagic cell death in both cell lines. siRNA for Atg 5 or pharmacological block of p53 abolished fangchinoline-induced autophagy and inhibition of autophagy switched cell death to apoptosis in these cells, suggesting that cell death is irreversible once autophagy is induced by fangchinoline. CONCLUSIONS AND IMPLICATIONS Fangchinoline is a highly specific agent inducing autophagic cell death in hepatocellular carcinoma cells with a novel mechanism, which elucidates the potential of fangchinoline to potentiate programmed cell death in cancer cells. PMID:21418191

  15. Autophagic response to cell culture stress in pluripotent stem cells.

    PubMed

    Gregory, Siân; Swamy, Sushma; Hewitt, Zoe; Wood, Andrew; Weightman, Richard; Moore, Harry

    2016-05-01

    Autophagy is an important conserved cellular process, both constitutively as a recycling pathway for long lived proteins and as an upregulated stress response. Recent findings suggest a fundamental role for autophagic processes in the maintenance of pluripotent stem cell function. In human embryonic stem cells (hESCS), autophagy was investigated by transfection of LC3-GFP to visualize autophagosomes and with an antibody to LC3B protein. The presence of the primary cilium (PC) in hESCs as the site of recruitment of autophagy-related proteins was also assessed. HESCs (mShef11) in vitro displayed basal autophagy which was upregulated in response to deprivation of culture medium replacement. Significantly higher levels of autophagy were exhibited on spontaneous differentiation of hESCs in vitro. The PC was confirmed to be present in hESCs and therefore may serve to coordinate autophagy function. PMID:26385182

  16. Detachment-Based Equilibrium of Anoikic Cell Death and Autophagic Cell Survival Through Adaptor Protein p66(Shc).

    PubMed

    Cai, Zeyuan; Zhao, Dan; Sun, Yanan; Gao, Dan; Li, Xia; Yang, Jie; Ma, Zhenyi

    2016-03-01

    Anoikis (detachment-induced cell death) confers a tumor-suppressive function in metastatic cancer cells. Autophagy, a conserved self-degradative process, enhances the anoikis resistance of detached cancer cells by maintaining cellular homeostasis. However, the mechanism of regulating cell fate-decision by balancing anoikis and autophagy has been poorly understood. Our previous studies have shown that the adaptor protein p66(Shc) mediates anoikis through RhoA activation and inhibits tumor metastasis in vivo. We also found that p66(Shc) depletion mitigates nutrient-deprivation-induced autophagy. These findings suggest p66(Shc) may coordinately regulate these two processes. To verify this hypothesis, we investigated the effect of p66(Shc) on the cell death of detached lung cancer cells, and measured autophagy markers and autophagic flux. Results showed that p66(Shc) depletion significantly inhibited anoikis, and reduced the formation of LC3B-II and the degradation of Sequestosome 1 (SQSTM1, p62) in detachment-induced cells. Using monodansylcadaverine (MDC)-LysoTracker double staining and monomeric Cherry (mCherry)-GFP-LC3 assay, we found that the autophagic flux was also mitigated by p66(Shc) depletion. In addition, p66(Shc) knockdown increased the formation of full-length X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), which enhances anoikis sensitivity. In conclusion, p66(Shc) plays an essential role in detachment-based equilibrium of anoikic cell death and autophagic cell survival. Anat Rec, 299:325-333, 2016. © 2015 Wiley Periodicals, Inc. PMID:26643258

  17. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models

    PubMed Central

    Hebron, Michaeline L.; Lonskaya, Irina; Moussa, Charbel E.-H.

    2013-01-01

    Parkinson's disease is a movement disorder characterized by death of dopaminergic substantia nigra (SN) neurons and brain accumulation of α-synuclein. The tyrosine kinase Abl is activated in neurodegeneration. Here, we show that lentiviral expression of α-synuclein in the mouse SN leads to Abl activation (phosphorylation) and lentiviral Abl expression increases α-synuclein levels, in agreement with Abl activation in PD brains. Administration of the tyrosine kinase inhibitor nilotinib decreases Abl activity and ameliorates autophagic clearance of α-synuclein in transgenic and lentiviral gene transfer models. Subcellular fractionation shows accumulation of α-synuclein and hyper-phosphorylated Tau (p-Tau) in autophagic vacuoles in α-synuclein expressing brains, but nilotinib enhances protein deposition into the lysosomes. Nilotinib is used for adult leukemia treatment and it enters the brain within US Food and Drug Administration approved doses, leading to autophagic degradation of α-synuclein, protection of SN neurons and amelioration of motor performance. These data suggest that nilotinib may be a therapeutic strategy to degrade α-synuclein in PD and other α-synucleinopathies. PMID:23666528

  18. 5. FIRST FLOOR INTERIOR, NITROGEN MACHINERY, MACHINERY ROOM (SEE N4) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FIRST FLOOR INTERIOR, NITROGEN MACHINERY, MACHINERY ROOM (SEE N-4) FROM EASTERN ENTRANCE, LOOKING EAST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA

  19. On the mechanochemical machinery underlying chromatin remodeling

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  20. Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma

    PubMed Central

    Zhang, L; Zhang, W; Wang, Y-F; Liu, B; Zhang, W-F; Zhao, Y-F; Kulkarni, A B; Sun, Z-J

    2015-01-01

    Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways. PMID:26018732

  1. Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma.

    PubMed

    Zhang, L; Zhang, W; Wang, Y-F; Liu, B; Zhang, W-F; Zhao, Y-F; Kulkarni, A B; Sun, Z-J

    2015-01-01

    Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways. PMID:26018732

  2. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    PubMed Central

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  3. iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis.

    PubMed

    Schöndorf, David C; Aureli, Massimo; McAllister, Fiona E; Hindley, Christopher J; Mayer, Florian; Schmid, Benjamin; Sardi, S Pablo; Valsecchi, Manuela; Hoffmann, Susanna; Schwarz, Lukas Kristoffer; Hedrich, Ulrike; Berg, Daniela; Shihabuddin, Lamya S; Hu, Jing; Pruszak, Jan; Gygi, Steven P; Sonnino, Sandro; Gasser, Thomas; Deleidi, Michela

    2014-01-01

    Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration. PMID:24905578

  4. Managing Machinery in the Biological Farm System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From the time agricultural machinery came into common use on farms in the middle of the past century, Agricultural Engineers have been developing more efficient practices for using that equipment. In our profession, this has become known as agricultural machinery management. The key issue in machine...

  5. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic...

  6. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic...

  7. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic...

  8. 46 CFR 169.241 - Machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Machinery. 169.241 Section 169.241 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Inspections § 169.241 Machinery. (a) At each inspection for certification and periodic...

  9. 46 CFR 115.804 - Machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery. 115.804 Section 115.804 Shipping COAST GUARD....804 Machinery. At each initial and subsequent inspection for certification of a vessel, the owner or managing operator shall be prepared to conduct tests and have the vessel ready for inspections of...

  10. The Herpes Simplex Virus Type 1 vhs-UL41 Gene Secures Viral Replication by Temporarily Evading Apoptotic Cellular Response to Infection: Vhs-UL41 Activity Might Require Interactions with Elements of Cellular mRNA Degradation Machinery

    PubMed Central

    Barzilai, Ari; Zivony-Elbom, Ifaat; Sarid, Ronit; Noah, Eran; Frenkel, Niza

    2006-01-01

    We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping β-actin and α-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy. PMID:16352574

  11. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons.

    PubMed

    Fernandes, Hugo J R; Hartfield, Elizabeth M; Christian, Helen C; Emmanoulidou, Evangelia; Zheng, Ying; Booth, Heather; Bogetofte, Helle; Lang, Charmaine; Ryan, Brent J; Sardi, S Pablo; Badger, Jennifer; Vowles, Jane; Evetts, Samuel; Tofaris, George K; Vekrellis, Kostas; Talbot, Kevin; Hu, Michele T; James, William; Cowley, Sally A; Wade-Martins, Richard

    2016-03-01

    Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. PMID:26905200

  12. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-01

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases. PMID:25668154

  13. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in...

  14. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in...

  15. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in...

  16. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in...

  17. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary machinery essential to the propulsion and safety of the vessel must...

  18. 46 CFR 58.01-45 - Machinery space, ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in...

  19. Artocarpus communis Induces Autophagic Instead of Apoptotic Cell Death in Human Hepatocellular Carcinoma Cells.

    PubMed

    Tzeng, Cheng-Wei; Tzeng, Wen-Sheng; Lin, Liang-Tzung; Lee, Chiang-Wen; Yen, Ming-Hong; Yen, Feng-Lin; Lin, Chun-Ching

    2015-01-01

    For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death. PMID:25967668

  20. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  1. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  2. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells

    PubMed Central

    Chung, Kyung Min; Jeong, Eun-Ji; Park, Hyunhee; An, Hyun-Kyu; Yu, Seong-Woon

    2016-01-01

    Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology. PMID:27199668

  3. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila

    PubMed Central

    Érdi, Balázs; Nagy, Péter; Zvara, Ágnes; Varga, Ágnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G.; Juhász, Gábor

    2012-01-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis. PMID:22562043

  4. Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia.

    PubMed

    Shinohara, Haruka; Taniguchi, Kohei; Kumazaki, Minami; Yamada, Nami; Ito, Yuko; Otsuki, Yoshinori; Uno, Bunji; Hayakawa, Fumihiko; Minami, Yosuke; Naoe, Tomoki; Akao, Yukihiro

    2015-04-28

    The fusion gene bcr-abl develops chronic myeloid leukemia (CML), and stimulates PI3K/Akt/mTOR signaling, leading to impaired autophagy. PI3K/Akt/mTOR signaling also plays an important role in cell metabolism. The Warburg effect is a well-recognized hallmark of cancer energy metabolism, and is regulated by the mTOR/c-Myc/hnRNP/PKM signaling cascade. To develop a new strategy for the treatment of CML, we investigated the associations among bcr-abl, the cascade related to cancer energy metabolism, and autophagy induced by a fatty-acid derivative that we had previously reported as being an autophagy inducer. Here we report that a fatty-acid derivative, AIC-47, induced transcriptional repression of the bcr-abl gene and modulated the expression profile of PKM isoforms, resulting in autophagic cell death. We show that c-Myc functioned as a transcriptional activator of bcr-abl, and regulated the hnRNP/PKM cascade. AIC-47, acting through the PPARγ/β-catenin pathway, induced down-regulation of c-Myc, leading to the disruption of the bcr-abl/mTOR/hnRNP signaling pathway, and switching of the expression of PKM2 to PKM1. This switching caused autophagic cell death through an increase in the ROS level. Our findings suggest that AIC-47 induced autophagic cell death through the PPARγ/β-catenin/bcr-abl/mTOR/hnRNP/PKM cascade. PMID:25644089

  5. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina

    PubMed Central

    Huang, Shun-Ping; Chien, Jia-Ying; Tsai, Rong-Kung

    2015-01-01

    ABSTRACT Ethambutol (EMB), an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells). The protein kinase C (PKC)δ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP)-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy. PMID:26092127

  6. Resveratrol attenuated hydrogen peroxide-induced myocardial apoptosis by autophagic flux

    PubMed Central

    Huang, Chih-Yang; Ting, Wei-Jen; Huang, Chih-Yang; Yang, Jing-Yi; Lin, Wan-Teng

    2016-01-01

    Background Resveratrol is a Sirt-1-specific activator, which also exerts cardioprotective effects that regulate redox signalling during oxidative stress and autophagy during cardiovascular disease (CVD). Objective This study investigated the protective effects of resveratrol against hydrogen peroxide-induced damage in cardiomyocytes. Design In this article, hydrogen peroxide-induced autophagy and apoptosis in H9c2 cardiomyoblasts were studied at an increasing concentration from 0 to 100 µM. Results Resveratrol pretreatment with concentrations of 10, 20, and 50 µM inhibits autophagic apoptosis by increasing p-Akt and Bcl-2 protein levels in H9c2 cells. Interestingly, resveratrol treatment activates the Beclin-1, LC3, p62, and the lysosome-associated protein LAMP2a within 24 h of administration. Conclusions These results suggest that resveratrol-regulated autophagy may play a role in degrading damaged organelles in H9c2 cells rather than causing apoptosis, and this may be a possible mechanism by which resveratrol protects the heart during CVD. PMID:27211317

  7. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain

    PubMed Central

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson’s disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  8. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina.

    PubMed

    Huang, Shun-Ping; Chien, Jia-Ying; Tsai, Rong-Kung

    2015-08-01

    Ethambutol (EMB), an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells). The protein kinase C (PKC)δ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP)-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy. PMID:26092127

  9. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  10. Productivity Growth Average in Farm Machinery Manufacturing.

    ERIC Educational Resources Information Center

    Herman, Arthur S.; Ferris, John W.

    1982-01-01

    Productivity in farm machinery manufacturing is examined. The authors discuss how the national economy affects productivity, how the growth of agriculture and technology has changed the industry, and how future trends may cause change in the industry. (CT)

  11. Increased autophagic response in a population of metastatic breast cancer cells

    PubMed Central

    LI, YI; LIBBY, EMILY FALK; LEWIS, MONICA J.; LIU, JIANZHONG; SHACKA, JOHN J.; HURST, DOUGLAS R.

    2016-01-01

    Breast cancer cells are heterogeneous in their ability to invade and fully metastasize, and thus also in their capacity to survive the numerous stresses encountered throughout the multiple steps of the metastatic cascade. Considering the role of autophagy as a survival response to stress, the present study hypothesized that distinct populations of breast cancer cells may possess an altered autophagic capacity that influences their metastatic potential. It was observed that a metastatic breast cancer cell line, MDA-MB-231, that was sensitive to autophagic induction additionally possessed the ability to proliferate following nutrient deprivation. Furthermore, a selected subpopulation of these cells that survived multiple exposures to starvation conditions demonstrated a heightened response to autophagic induction compared to their parent cells. Although this subpopulation maintained a more grape-like pattern in three-dimensional culture compared to the extended spikes of the parent population, autophagic induction in this subpopulation elicited an invasive phenotype with extended spikes. Taken together, these results suggest that autophagic induction may contribute to the ability of distinct breast cancer cell populations to survive and invade. PMID:27347175

  12. Changes in autophagic response in patients with chronic hepatitis C virus infection.

    PubMed

    Rautou, Pierre-Emmanuel; Cazals-Hatem, Dominique; Feldmann, Gérard; Mansouri, Abdellah; Grodet, Alain; Barge, Sandrine; Martinot-Peignoux, Michèle; Duces, Aurélie; Bièche, Ivan; Lebrec, Didier; Bedossa, Pierre; Paradis, Valérie; Marcellin, Patrick; Valla, Dominique; Asselah, Tarik; Moreau, Richard

    2011-06-01

    Autophagy is a regulated process that can be involved in the elimination of intracellular microorganisms and in antigen presentation. Some in vitro studies have shown an altered autophagic response in hepatitis C virus infected hepatocytes. The present study aimed at evaluating the autophagic process in the liver of chronic hepatitis C (CHC) patients. Fifty-six CHC patients and 47 control patients (8 with nonalcoholic steatohepatitis or alcoholic liver disease, 18 with chronic heptatitis B virus infection, and 21 with no or mild liver abnormalities at histological examination) were included. Autophagy was assessed by means of electron microscopy and microtubule-associated protein light chain 3 immunoblotting. Using light chain 3 immunoblotting, the form present on autophagic vesicle (light chain 3-II) was significantly higher in CHC patients than in controls (P < 0.05). Using quantitative electron microscopy analysis, the median number of autophagic vesicles observed in hepatocytes from CHC patients was sixfold higher than in overall controls (P < 0.001). In contrast, there was no difference between CHC patients and controls in the number of mature lysosomes with electron-dense contents arguing in favor of a lack of fusion between autophagosome and lysosome. Neither genotype nor viral load influenced the autophagy level. In conclusion, autophagy is altered in hepatocytes from CHC patients, likely due to a blockade of the last step of the autophagic process. PMID:21641393

  13. Changes in Autophagic Response in Patients with Chronic Hepatitis C Virus Infection

    PubMed Central

    Rautou, Pierre-Emmanuel; Cazals-Hatem, Dominique; Feldmann, Gérard; Mansouri, Abdellah; Grodet, Alain; Barge, Sandrine; Martinot-Peignoux, Michèle; Duces, Aurélie; Bièche, Ivan; Lebrec, Didier; Bedossa, Pierre; Paradis, Valérie; Marcellin, Patrick; Valla, Dominique; Asselah, Tarik; Moreau, Richard

    2011-01-01

    Autophagy is a regulated process that can be involved in the elimination of intracellular microorganisms and in antigen presentation. Some in vitro studies have shown an altered autophagic response in hepatitis C virus infected hepatocytes. The present study aimed at evaluating the autophagic process in the liver of chronic hepatitis C (CHC) patients. Fifty-six CHC patients and 47 control patients (8 with nonalcoholic steatohepatitis or alcoholic liver disease, 18 with chronic heptatitis B virus infection, and 21 with no or mild liver abnormalities at histological examination) were included. Autophagy was assessed by means of electron microscopy and microtubule-associated protein light chain 3 immunoblotting. Using light chain 3 immunoblotting, the form present on autophagic vesicle (light chain 3-II) was significantly higher in CHC patients than in controls (P < 0.05). Using quantitative electron microscopy analysis, the median number of autophagic vesicles observed in hepatocytes from CHC patients was sixfold higher than in overall controls (P < 0.001). In contrast, there was no difference between CHC patients and controls in the number of mature lysosomes with electron-dense contents arguing in favor of a lack of fusion between autophagosome and lysosome. Neither genotype nor viral load influenced the autophagy level. In conclusion, autophagy is altered in hepatocytes from CHC patients, likely due to a blockade of the last step of the autophagic process. PMID:21641393

  14. Lysosomal and autophagic reactions as predictive indicators of environmental impact in aquatic animals.

    PubMed

    Moore, Michael N; Allen, J Icarus; McVeigh, Allan; Shaw, Jenny

    2006-01-01

    The lysosomal-autophagic system appears to be a common target for many environmental pollutants as lysosomes accumulate many toxic metals and organic xenobiotics, which perturb normal function and damage the lysosomal membrane. In fact, lysosomal membrane integrity or stability appears to be an effective generic indicator of cellular well-being in eukaryotes: in bivalve molluscs and fish, stability is correlated with many toxicological responses and pathological reactions. Prognostic use of adverse lysosomal and autophagic reactions to environmental pollutants has been explored in relation to predicting cellular dysfunction and health in marine mussels, which are extensively used as sensitive bioindicators in monitoring ecosystem health. Derivation of explanatory frameworks for prediction of pollutant impact on health is a major goal; and we have developed a conceptual mechanistic model linking lysosomal damage and autophagic dysfunction with injury to cells and tissues. This model has also complemented the creation of a cell-based computational model for molluscan hepatopancreatic cells that simulates lysosomal, autophagic and other cellular reactions to pollutants. Experimental and simulated results have also indicated that nutritional deprivation-induced autophagy has a protective function against toxic effects mediated by reactive oxygen species (ROS). Finally, coupled measurement of lysosomal-autophagic reactions and modelling is proposed as a practical toolbox for predicting toxic environmental risk. PMID:16874099

  15. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    SciTech Connect

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  16. Autophagic myelin destruction by schwann cells during wallerian degeneration and segmental demyelination.

    PubMed

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Lee, Hye Jeong; Yoo, Young Hyun; Kim, Jong Kuk; Park, Hwan Tae

    2016-05-01

    As lysosomal hydrolysis has long been suggested to be responsible for myelin clearance after peripheral nerve injury, in this study, we investigated the possible role of autophagolysosome formation in myelin phagocytosis by Schwann cells and its final contribution to nerve regeneration. We found that the canonical formation of autophagolysosomes was induced in demyelinating Schwann cells after injury, and the inhibition of autophagy via Schwann cell-specific knockout of the atg7 gene or pharmacological intervention of lysosomal function caused a significant delay in myelin clearance. However, Schwann cell dedifferentiation, as demonstrated by extracellular signal-regulated kinase activation and c-Jun induction, and redifferentiation were not significantly affected, and thus the entire repair program progressed normally in atg7 knockout mice. Finally, autophagic Schwann cells were also found during segmental demyelination in a mouse model of inflammatory peripheral neuropathy. Together, our findings suggest that autophagy is the self-myelin destruction mechanism of Schwann cells, but mechanistically, it is a process distinct from Schwann cell plasticity for nerve repair. GLIA 2016;64:730-742. PMID:26712109

  17. Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes

    PubMed Central

    Piano, Ilaria; Novelli, Elena; Della Santina, Luca; Strettoi, Enrica; Cervetto, Luigi; Gargini, Claudia

    2016-01-01

    The notion that diabetic retinopathy (DR) is essentially a micro-vascular disease has been recently challenged by studies reporting that vascular changes are preceded by signs of damage and loss of retinal neurons. As to the mode by which neuronal death occurs, the evidence that apoptosis is the main cause of neuronal loss is far from compelling. The objective of this study was to investigate these controversies in a mouse model of streptozotocin (STZ) induced diabetes. Starting from 8 weeks after diabetes induction there was loss of rod but not of cone photoreceptors, together with reduced thickness of the outer and inner synaptic layers. Correspondingly, rhodopsin expression was downregulated and the scotopic electroretinogram (ERG) is suppressed. In contrast, cone opsin expression and photopic ERG response were not affected. Suppression of the scotopic ERG preceded morphological changes as well as any detectable sign of vascular alteration. Only sparse apoptotic figures were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and glia was not activated. The physiological autophagy flow was altered instead, as seen by increased LC3 immunostaining at the level of outer plexiform layer (OPL) and upregulation of the autophagic proteins Beclin-1 and Atg5. Collectively, our results show that the streptozotocin induced DR in mouse initiates with a functional loss of the rod visual pathway. The pathogenic pathways leading to cell death develop with the initial dysregulation of autophagy well before the appearance of signs of vascular damage and without strong involvement of apoptosis. PMID:26924963

  18. TNFα Impairs Rhabdoviral Clearance by Inhibiting the Host Autophagic Antiviral Response.

    PubMed

    Espín-Palazón, Raquel; Martínez-López, Alicia; Roca, Francisco J; López-Muñoz, Azucena; Tyrkalska, Sylwia D; Candel, Sergio; García-Moreno, Diana; Falco, Alberto; Meseguer, José; Estepa, Amparo; Mulero, Victoriano

    2016-06-01

    TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections. PMID:27351838

  19. TNFα Impairs Rhabdoviral Clearance by Inhibiting the Host Autophagic Antiviral Response

    PubMed Central

    Roca, Francisco J.; López-Muñoz, Azucena; Tyrkalska, Sylwia D.; Candel, Sergio; García-Moreno, Diana; Falco, Alberto; Meseguer, José

    2016-01-01

    TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections. PMID:27351838

  20. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure...

  1. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship...

  2. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1)...

  3. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Means of stopping machinery. 58.01-25 Section 58.01-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-25 Means of stopping machinery. Machinery...

  4. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Means of stopping machinery. 58.01-25 Section 58.01-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-25 Means of stopping machinery. Machinery...

  5. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the...

  6. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1)...

  7. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure...

  8. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure...

  9. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship...

  10. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1)...

  11. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1)...

  12. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship...

  13. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship...

  14. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure...

  15. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Installation of refrigerating machinery. 58.20-15... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of refrigerating machinery. (a) Where refrigerating machines are installed in which anhydrous ammonia is used as...

  16. 46 CFR 58.01-25 - Means of stopping machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Means of stopping machinery. 58.01-25 Section 58.01-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-25 Means of stopping machinery. Machinery...

  17. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a... wheel in motion. (5) Excluded machinery. Natural sandstone wheels and metal, wooden, cloth, or...

  18. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the...

  19. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery. (a) Spaces containing machinery must be fitted with adequate dripproof ventilators, trunks,...

  20. 46 CFR 45.149 - Machinery space openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space openings. 45.149 Section 45.149 Shipping... Assignment § 45.149 Machinery space openings. (a) Machinery space openings in position 1 or 2 must be framed... funnel or machinery space ventilator that must be kept open for the essential operations of the ship...

  1. 46 CFR 42.15-35 - Machinery space openings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space openings. 42.15-35 Section 42.15-35... BY SEA Conditions of Assignment of Freeboard § 42.15-35 Machinery space openings. (a) Machinery space..., funnel, or machinery space ventilators in an exposed position on the freeboard or superstructure...

  2. 46 CFR 174.195 - Bulkheads in machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Bulkheads in machinery spaces. 174.195 Section 174.195... in machinery spaces. (a) The bulkhead in each machinery space of each OSV must be watertight to the bulkhead deck. (b) Each penetration of, and each opening in, a bulkhead in a machinery space must— (1)...

  3. Autosis and autophagic cell death: the dark side of autophagy

    PubMed Central

    Liu, Y; Levine, B

    2015-01-01

    It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions. PMID:25257169

  4. Autosis and autophagic cell death: the dark side of autophagy.

    PubMed

    Liu, Y; Levine, B

    2015-03-01

    It is controversial whether cells truly die via autophagy or whether - in dying cells - autophagy is merely an innocent bystander or a well-intentioned 'Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na(+),K(+)-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions. PMID:25257169

  5. The nascent polypeptide-associated complex is essential for autophagic flux

    PubMed Central

    Guo, Bin; Huang, Jie; Wu, Wenxian; Feng, Du; Wang, Xiaochen; Chen, Yingyu; Zhang, Hong

    2014-01-01

    The ribosome-associated nascent polypeptide-associated complex (NAC) is involved in multiple cotranslational processes, including protein transport into the ER and mitochondria, and also acts as a chaperone to assist protein folding. Here we demonstrated that NAC is also essential for autophagic degradation of a variety of protein aggregates in C. elegans. Loss of function of NAC impairs lysosome function, resulting in accumulation of autophagic substrates in enlarged autolysosomes. Knockdown of mammalian NAC also causes accumulation of nondegradative autolysosomes. Our study revealed that NAC plays an evolutionarily conserved role in the autophagy pathway and thus in maintaining protein homeostasis under physiological conditions. PMID:25126725

  6. Endogenous Antigen Presentation of MHC Class II Epitopes through Non-Autophagic Pathways

    PubMed Central

    Leung, Carol S. K.

    2015-01-01

    Antigenic peptides presented by major histocompatibility complex (MHC) class II molecules are generally derived from exogenous proteins acquired by antigen presenting cells. However, in some circumstances, MHC class II molecules can present intracellular proteins expressed within the antigen-presenting cells. There are several described pathways by which endogenous antigens are degraded and gain access to MHC class II molecules. These include autophagy and other non-autophagic pathways; the latter category includes the MHC class I-like pathways, heat shock protein 90-mediated pathways, and internalization from the plasma membrane. This review will summarize and discuss the non-autophagic pathways. PMID:26441969

  7. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  8. AGRICULTURAL MACHINERY ASSEMBLY AND LUBRICATION. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF THE FUNCTIONS OF LUBRICANTS FOR AGRICULTURAL MACHINERY, SKILL IN THEIR SELECTION, AND UNDERSTANDING OF…

  9. ADJUSTMENT, MAINTENANCE, AND REPAIR OF CROP HARVESTING MACHINERY. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED FOR HELPING TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN ADJUSTING, REPAIRING, AND MAINTAINING CROP HARVESTING MACHINERY. SUGGESTIONS FOR INTRODUCTION OF THE…

  10. Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells.

    PubMed

    Xiang, Xi-Yan; Yang, Xiao-Chun; Su, Jin; Kang, Jing-Song; Wu, Yao; Xue, Ya-Nan; Dong, Yu-Tong; Sun, Lian-Kun

    2016-06-01

    As targets for cancer therapy, endoplasmic reticulum (ER) stress and autophagy are closely linked. However, the signaling pathways responsible for induction of autophagy in response to ER stress and its cellular consequences appear to vary with cell type and stimulus. In the present study, we showed that dithiothreitol (DTT) induced ER stress in HeLa cells in a time- and dose-dependent fashion. With increased ER stress, reactive oxygen species (ROS) production increased and autophagy flux, assessed by intracellular accumulation of LC3B-II and p62, was inhibited. N-acetyl-L-cysteine (NAC), a classic antioxidant, exacerbated cell death induced by 3.2 mM of DTT, but attenuated that induced by 6.4 mM DTT. Low cytotoxic doses of DTT transiently activated c-JNU N-terminal kinase (JNK) and p38, whereas high dose of DTT persistently activated JNK and p38 and simultaneously reduced extracellular signal-regulated kinase (ERK) activity. Combined treatment with DTT and U0126, an inhibitor of ERK upstream activators mitogen-activated protein kinase (MAPK) kinase 1 and 2 (MEK1/2), blocked autophagy flux in HeLa cells. This effect was similar to that caused by a combination of DTT and chloroquine (CQ). These data suggested that insufficient autophagy was accompanied by increased ROS production during DTT-induced ER stress. ROS appeared to regulate MAPK signaling, switching from a pro-survival to a pro-apoptotic signal as ER stress increased. ERK inhibition by ROS during severe ER stress blocked autophagic flux. Impaired autophagic flux, in turn, aggravated ER stress, ultimately leading to cell death. Taken together, our data provide the first reported evidence that ROS may control cell fate through regulating the MAPK pathways and autophagic flux during DTT-induced ER/oxidative stress. PMID:27035858

  11. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors.

    PubMed

    Ratliff, Eric P; Mauntz, Ruth E; Kotzebue, Roxanne W; Gonzalez, Arysa; Achal, Madhulika; Barekat, Ayeh; Finley, Kaelyn A; Sparhawk, Jonathan M; Robinson, James E; Herr, Deron R; Harris, Greg L; Joiner, William J; Finley, Kim D

    2015-01-01

    Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors. PMID:26182057

  12. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors

    PubMed Central

    Kotzebue, Roxanne W.; Gonzalez, Arysa; Achal, Madhulika; Barekat, Ayeh; Finley, Kaelyn A.; Sparhawk, Jonathan M.; Robinson, James E.; Herr, Deron R.; Harris, Greg L.; Joiner, William J.; Finley, Kim D.

    2015-01-01

    Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors. PMID:26182057

  13. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    PubMed

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. PMID:27265145

  14. MiR-129 triggers autophagic flux by regulating a novel Notch-1/ E2F7/Beclin-1 axis to impair the viability of human malignant glioma cells

    PubMed Central

    Shi, Yingying; Lian, Haiwei; Tu, Huilin; Han, Song; Yin, Jun; Peng, Biwen; Zhou, Beiyan; He, Xiaohua; Liu, Wanhong

    2016-01-01

    Abnormalities of autophagy have been implicated in an increasing number of human cancers, including glioma. To date, there is a wealth of evidence indicating that microRNAs (miRNAs) contribute significantly to autophagy in a variety of cancers. Previous studies have suggested that miR-129 functioned as an important inhibitor of the cell cycle and could promote the apoptosis of many cancer cell lines in vitro. Here, we reported that miR-129 acted as a potent inducer of autophagy. Forced expression of miR-129 could induce autophagic flux by targetedly suppressing Notch-1 in glioma cells. The autophagy induced by miR-129 could restrain the activity of mammalian target of rapamycin (mTOR) and upregulate Beclin-1. Moreover, we demonstrated that E2F transcription factor 7 (E2F7) could also trigger autophagic flux by upregulating Beclin-1 and mediating miR-129-induced autophagy. Additionally, knockdown of Notch-1 could upregulate the expression of E2F7, whereas downregulation of E2F7 alleviated shNotch-1-induced autophagic flux. In particular, knockdown of endogenous Beclin-1 could effectively reduce autophagic flux stimulated by miR-129 and E2F7. Interestingly, upon attenuation of miR-129- or E2F7-triggered autophagic flux rescued cell viability suppressed by them. More importantly, intratumoral injection of pHAGE-miR-129 lentivirus in a nude mouse xenograft model significantly restrained tumor growth and triggered autophagy. In conclusion, these findings identify a new function for miR-129 as a potent inducer of autophagy through a novel Notch-1/E2F7/Beclin-1 axis in glioma. PMID:26824182

  15. Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores

    PubMed Central

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.

    2015-01-01

    The change in developmental fate of microspores reprogrammed toward embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during, and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos (MDEs) showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes), engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos. PMID:25745429

  16. Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores.

    PubMed

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M

    2015-01-01

    The change in developmental fate of microspores reprogrammed toward embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during, and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos (MDEs) showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes), engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos. PMID:25745429

  17. pH-Sensitive Polymeric Nanoparticles Modulate Autophagic Effect via Lysosome Impairment.

    PubMed

    Lin, Yao-Xin; Wang, Yi; Qiao, Sheng-Lin; An, Hong-Wei; Zhang, Ruo-Xin; Qiao, Zeng-Ying; Rajapaksha, R P Y J; Wang, Lei; Wang, Hao

    2016-06-01

    In drug delivery systems, pH-sensitive polymers are commonly used as drug carriers, and significant efforts have been devoted to the aspects of controlled delivery and release of drugs. However, few studies address the possible autophagic effects on cells. Here, for the first time, using a fluorescent autophagy-reporting cell line, this study evaluates the autophagy-induced capabilities of four types of pH-sensitive polymeric nanoparticles (NPs) with different physical properties, including size, surface modification, and pH-sensitivity. Based on experimental results, this study concludes that pH-sensitivity is one of the most important factors in autophagy induction. In addition, this study finds that variation of concentration of NPs could cause different autophagic effect, i.e., low concentration of NPs induces autophagy in an mTOR-dependent manner, but high dose of NPs leads to autophagic cell death. Identification of this tunable autophagic effect offers a novel strategy for enhancing therapeutic effect in cancer therapy through modulation of autophagy. PMID:27120078

  18. The Centromere: Chromatin Foundation for the Kinetochore Machinery

    PubMed Central

    Fukagawa, Tatsuo; Earnshaw, William C.

    2014-01-01

    Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function. PMID:25203206

  19. The centromere: chromatin foundation for the kinetochore machinery.

    PubMed

    Fukagawa, Tatsuo; Earnshaw, William C

    2014-09-01

    Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function. PMID:25203206

  20. AGRICULTURAL MACHINERY--POWER. TEACHERS COPY.

    ERIC Educational Resources Information Center

    HILL, DURWIN; VENABLE, BENNY MAC

    THE PURPOSE OF THIS DOCUMENT IS TO PROVIDE A STUDY GUIDE FOR STUDENTS PREPARING FOR AGRICULTURAL MACHINERY OCCUPATIONS IN A VOCATIONAL AGRICULTURE COOPERATIVE EDUCATION PROGRAM. THE MATERIAL WAS DESIGNED BY SUBJECT MATTER SPECIALISTS ON THE BASIS OF STATE ADVISORY COMMITTEE RECOMMENDATIONS, TRIED IN OPERATIONAL PROGRAMS, AND REFINED BY A TEACHER.…

  1. EARNINGS IN THE MACHINERY INDUSTRIES, MID-1966.

    ERIC Educational Resources Information Center

    BAUER, FREDERICK L.

    RESULTS OF A MID-1966 NATIONWIDE SURVEY BY THE BUREAU OF LABOR STATISTICS SHOWED THAT THE EARNINGS OF PRODUCTION AND RELATED NONELECTRICAL MACHINERY WORKERS IN 21 LARGE OCCUPATIONAL AREAS VARIED BY OCCUPATION, SIZE OF ESTABLISHMENT, AND COMMUNITY, INDUSTRY, LABOR-MANAGEMENT CONTRACT STATUS, AND LOCATION. THE AVERAGE HOURLY WAGE WAS $2.84. HIGHER…

  2. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia.

    PubMed

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  3. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    PubMed Central

    Zhuang, Haixia; Tian, Weili; Li, Wen; Zhang, Xingli; Wang, Jingjing; Yang, Yue; Liu, Xin; Xia, Zhengyuan; Feng, Du; Zhang, Liangqing

    2016-01-01

    Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3) positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs). Cisatracurium lowered HUVEC viability to 0.16 (OD490) at 100 µM and to 0.05 (OD490) after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01). Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype) MEF (mouse embryonic fibroblast) (p < 0.01) but was unaffected in Atg5 KO (Knockout) MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury. PMID:27058536

  4. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects

    PubMed Central

    Schaffner, Adam; Fedick, Anastasia; Kaye, Lauren E.; Liao, Jun; Yachelevich, Naomi; Chu, Mary-Lynn; Boles, Richard G.; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A.; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-01-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  5. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    PubMed

    Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam; Li, Xianting; Fedick, Anastasia; Kaye, Lauren E; Liao, Jun; Rosenfeld, Jill; Yachelevich, Naomi; Chu, Mary-Lynn; Mitchell, Wendy G; Boles, Richard G; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Bagley, Kaytee; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-04-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  6. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    PubMed Central

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  7. Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling.

    PubMed

    Akl, Mohamed R; Ayoub, Nehad M; Ebrahim, Hassan Y; Mohyeldin, Mohamed M; Orabi, Khaled Y; Foudah, Ahmed I; El Sayed, Khalid A

    2015-01-01

    Receptor tyrosine kinases are key regulators of cellular growth and proliferation. Dysregulations of receptor tyrosine kinases in cancer cells may promote tumorigenesis by multiple mechanisms including enhanced cell survival and inhibition of cell death. Araguspongines represent a group of macrocyclic oxaquinolizidine alkaloids isolated from the marine sponge Xestospongia species. This study evaluated the anticancer activity of the known oxaquinolizidine alkaloids araguspongines A, C, K and L, and xestospongin B against breast cancer cells. Araguspongine C inhibited the proliferation of multiple breast cancer cell lines in vitro in a dose-dependent manner. Interestingly, araguspongine C-induced autophagic cell death in HER2-overexpressing BT-474 breast cancer cells was characterized by vacuole formation and upregulation of autophagy markers including LC3A/B, Atg3, Atg7, and Atg16L. Araguspongine C-induced autophagy was associated with suppression of c-Met and HER2 receptor tyrosine kinase activation. Further in-silico docking studies and cell-free Z-LYTE assays indicated the potential of direct interaction between araguspongine C and the receptor tyrosine kinases c-Met and HER2 at their kinase domains. Remarkably, araguspongine C treatment resulted in the suppression of PI3K/Akt/mTOR signaling cascade in breast cancer cells undergoing autophagy. Induction of autophagic death in BT-474 cells was also associated with decreased levels of inositol 1,4,5-trisphosphate receptor upon treatment with effective concentration of araguspongine C. In conclusion, results of this study are the first to reveal the potential of araguspongine C as an inhibitor to receptor tyrosine kinases resulting in the induction of autophagic cell death in breast cancer cells. PMID:25580621

  8. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells

    PubMed Central

    Jiang, H; Sun, J; Xu, Q; Liu, Y; Wei, J; Young, C Y F; Yuan, H; Lou, H

    2013-01-01

    We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as

  9. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins

    PubMed Central

    Wu, An-Guo; Kam-Wai Wong, Vincent; Zeng, Wu; Liu, Liang; Yuen-Kwan Law, Betty

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  10. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins.

    PubMed

    Wu, An-Guo; Wong, Vincent Kam-Wai; Zeng, Wu; Liu, Liang; Law, Betty Yuen-Kwan

    2015-01-01

    With its traditional use in relieving insomnia and anxiety, our previous study has identified onjisaponin B from Radix Polygalae (RP), as a novel autophagic enhancer with potential neuroprotective effects. In current study, we have further identified a novel active fraction from RP, contains 17 major triterpenoid saponins including the onjisaponin B, by the combinational use of cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry {UHPLC-(Q)TOF-MS}. By exhibiting more potent autophagic effect in cells, the active fraction enhances the clearance of mutant huntingtin, and reduces protein level and aggregation of α-synuclein in a higher extent when compared with onjisaponin B. Here, we have reported for the first time the new application of cell-based CMC and UHPLC-(Q)TOF-MS analysis in identifying new autophagy inducers with neuroprotective effects from Chinese medicinal herb. This result has provided novel insights into the possible pharmacological actions of the active components present in the newly identified active fraction of RP, which may help to improve the efficacy of the traditional way of prescribing RP, and also provide new standard for the quality control of decoction of RP or its medicinal products in the future. PMID:26598009

  11. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Refrigeration Machinery § 58.20-15 Installation of... refrigeration compressor spaces shall be effectively ventilated and drained and shall be separated from...

  12. 13. DETAILED INTERIOR VIEW OF ROLLER GATE OPERATING MACHINERY HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAILED INTERIOR VIEW OF ROLLER GATE OPERATING MACHINERY HOUSE, SHOWING ROLLER GATE OPERATING MACHINERY, LOOKING NORTH - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  13. 12. DETAILED INTERIOR VIEW OF ROLLER GATE OPERATING MACHINERY HOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAILED INTERIOR VIEW OF ROLLER GATE OPERATING MACHINERY HOUSE, SHOWING ROLLER GATE OPERATING MACHINERY, LOOKING SOUTH - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  14. 4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MACHINERY SHED AND STORAGE ROOM ADDITION, SOUTH AND WEST WALL LOOKING NORTHEAST SEED STORAGE BUILDING (1963) BEHIND - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  15. Grifolin induces autophagic cell death by inhibiting the Akt/mTOR/S6K pathway in human ovarian cancer cells.

    PubMed

    Che, Xiaoxia; Yan, Hong; Sun, Hengzi; Dongol, Samina; Wang, Yilin; Lv, Qingtao; Jiang, Jie

    2016-08-01

    Grifolin, a secondary metabolic product isolated from the mushroom Albatrellus confluence, has been reported to possess antitumor activities in various tumors. To date, no report exists on the role of autophagy in grifolin-treated human ovarian cancer cells. In the present study, we investigated the effect and the mechanism of autophagy in ovarian cancer. Ovarian cancer cell lines A2780 and SKOV3 were treated with grifolin. Cell proliferation was assessed by MTT assay and the autophagic effect was determined using flow cytometry, electron microscopy, immunofluorescence staining and GFP-LC3 puncta formation assay. The expression of autophagy markers and the main autophagy-associated Akt/mTOR/S6K pathway proteins were measured by western blot analysis. MTT assay indicated that grifolin inhibits the proliferation of human ovarian cancer cell lines A2780 and SKOV3. Flow cytometry, electron microscopy, immunofluorescence and GFP-LC3 puncta formation assay proved that grifolin induces autophagic cell death in human ovarian cancer. The results of the western blot analysis suggested that grifolin treatment leads to upregulation of autophagy markers LC3B, Atg7, Beclin-1 along with downregulation of P62. In addition, the proteins of the pathways p-Akt, p-mTOR, p-p70S6K and p-4E-BP1 were downregulated while the total of these proteins remained unaffected. The present study indicated that grifolin could induce autophagic cell death in human ovarian cancer by inhibiting the Akt/mTOR/S6K pathway. PMID:27277722

  16. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  17. Virus-Mediated Compartmentalization of the Host Translational Machinery

    PubMed Central

    Desmet, Emily A.; Anguish, Lynne J.

    2014-01-01

    ABSTRACT Viruses require the host translational apparatus to synthesize viral proteins. Host stress response mechanisms that suppress translation, therefore, represent a significant obstacle that viruses must overcome. Here, we report a strategy whereby the mammalian orthoreoviruses compartmentalize the translational machinery within virus-induced inclusions known as viral factories (VF). VF are the sites of reovirus replication and assembly but were thought not to contain ribosomes. It was assumed viral mRNAs exited the VF to undergo translation by the cellular machinery, and proteins reentered the factory to participate in assembly. Here, we used ribopuromycylation to visualize active translation in infected cells. These studies revealed that active translation occurs within VF and that ribosomal subunits and proteins required for translation initiation, elongation, termination, and recycling localize to the factory. Interestingly, we observed components of the 43S preinitiation complex (PIC) concentrating primarily at factory margins, suggesting a spatial and/or dynamic organization of translation within the VF. Similarly, the viral single-stranded RNA binding protein σNS localized to the factory margins and had a tubulovesicular staining pattern that extended a short distance from the margins of the factories and colocalized with endoplasmic reticulum (ER) markers. Consistent with these colocalization studies, σNS was found to associate with both eukaryotic translation initiation factor 3 subunit A (eIF3A) and the ribosomal subunit pS6R. Together, these findings indicate that σNS functions to recruit 43S PIC machinery to the primary site of viral translation within the viral factory. Pathogen-mediated compartmentalization of the translational apparatus provides a novel mechanism by which viruses might avoid host translational suppression. PMID:25227463

  18. 29 CFR 1910.214 - Cooperage machinery. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Cooperage machinery. 1910.214 Section 1910.214 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.214 Cooperage machinery....

  19. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any...

  20. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any...

  1. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any...

  2. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any...

  3. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery... stresses induced by weight and engine vibration and to minimize transfer of vibration to the...

  4. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required...

  5. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of gasoline machinery spaces. 185.352... (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.352 Ventilation of gasoline machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required...

  6. 29 CFR 1910.214 - Cooperage machinery. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Cooperage machinery. 1910.214 Section 1910.214 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.214 Cooperage machinery....

  7. 46 CFR 97.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accidents to machinery. 97.30-5 Section 97.30-5 Shipping... Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  8. 46 CFR 196.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accidents to machinery. 196.30-5 Section 196.30-5... Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  9. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel....

  10. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  11. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1). No person may encounter a 24-hour effective noise level greater... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each...

  12. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served....

  13. 29 CFR 1910.214 - Cooperage machinery. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Cooperage machinery. 1910.214 Section 1910.214 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.214 Cooperage machinery....

  14. 30 CFR 57.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Machinery, equipment, and tools. 57.14205... and Equipment Safety Practices and Operational Procedures § 57.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the...

  15. 30 CFR 57.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Machinery, equipment, and tools. 57.14205... and Equipment Safety Practices and Operational Procedures § 57.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the...

  16. 30 CFR 56.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Machinery, equipment, and tools. 56.14205... Equipment Safety Practices and Operational Procedures § 56.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the manufacturer where...

  17. 30 CFR 56.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Machinery, equipment, and tools. 56.14205... Equipment Safety Practices and Operational Procedures § 56.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the manufacturer where...

  18. 30 CFR 57.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machinery, equipment, and tools. 57.14205... and Equipment Safety Practices and Operational Procedures § 57.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the...

  19. 30 CFR 57.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Machinery, equipment, and tools. 57.14205... and Equipment Safety Practices and Operational Procedures § 57.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the...

  20. 30 CFR 56.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Machinery, equipment, and tools. 56.14205... Equipment Safety Practices and Operational Procedures § 56.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the manufacturer where...

  1. 30 CFR 56.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machinery, equipment, and tools. 56.14205... Equipment Safety Practices and Operational Procedures § 56.14205 Machinery, equipment, and tools. Machinery, equipment, and tools shall not be used beyond the design capacity intended by the manufacturer where...

  2. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery... stresses induced by weight and engine vibration and to minimize transfer of vibration to the...

  3. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery... stresses induced by weight and engine vibration and to minimize transfer of vibration to the...

  4. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery... stresses induced by weight and engine vibration and to minimize transfer of vibration to the...

  5. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1). No person may encounter a 24-hour effective noise level greater...) Machinery control room—75 dB(A) (2) Manned machinery space—90 dB(A) (3) Unmanned machinery space—110...

  6. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  7. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  8. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  9. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  10. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel....

  11. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel....

  12. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of gasoline machinery spaces. 185.352... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by... sufficient to insure at least one complete change of air in the space served....

  13. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1). No person may encounter a 24-hour effective noise level greater... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each...

  14. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  15. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1). No person may encounter a 24-hour effective noise level greater... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each...

  16. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  17. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  18. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel....

  19. 46 CFR 252.33 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 252.33 Section 252.33... Subsidy Rates § 252.33 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery, increased value, excess general...

  20. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Laundry machinery and operations. 1910.264 Section 1910.264..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.264 Laundry machinery... attached to, or forming an integral part of any machinery shall be removed or made ineffective except...

  1. 29 CFR 1915.165 - Ship's deck machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's deck machinery. 1915.165 Section 1915.165 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.165 Ship's deck machinery. (a) Before work is performed on the anchor windlass or any...

  2. 29 CFR 1910.214 - Cooperage machinery. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Cooperage machinery. 1910.214 Section 1910.214 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.214 Cooperage machinery....

  3. 46 CFR 122.208 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accidents to machinery. 122.208 Section 122.208 Shipping... Voyage Records § 122.208 Accidents to machinery. The owner, managing operator, or master shall report damage to a boiler, unfired pressure vessel, or machinery that renders further use of the item...

  4. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  5. 46 CFR 185.208 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accidents to machinery. 185.208 Section 185.208 Shipping...) OPERATIONS Marine Casualties and Voyage Records § 185.208 Accidents to machinery. The owner, managing operator, or master shall report damage to a boiler, unfired pressure vessel, or machinery that...

  6. 30 CFR 57.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery, equipment, and tools. 57.14205... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 57.14205 Machinery, equipment, and...

  7. 46 CFR 97.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accidents to machinery. 97.30-5 Section 97.30-5 Shipping... Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  8. 46 CFR 196.30-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Accidents to machinery. 196.30-5 Section 196.30-5... Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use...

  9. 46 CFR 58.01-20 - Machinery guards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery guards. 58.01-20 Section 58.01-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-20 Machinery guards. Gears, couplings, flywheels...

  10. 30 CFR 56.14205 - Machinery, equipment, and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery, equipment, and tools. 56.14205... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Practices and Operational Procedures § 56.14205 Machinery, equipment, and tools....

  11. 46 CFR 78.33-5 - Accidents to machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Accidents to machinery. 78.33-5 Section 78.33-5 Shipping... Accidents, Repairs, and Unsafe Equipment § 78.33-5 Accidents to machinery. (a) In the event of an accident to a boiler, unfired pressure vessel, or machinery tending to render the further use of the...

  12. 46 CFR 109.419 - Report of unsafe machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of unsafe machinery. 109.419 Section 109.419... OPERATIONS Reports, Notifications, and Records Reports and Notifications § 109.419 Report of unsafe machinery. If a boiler, unfired pressure vessel, or other machinery on a unit is unsafe to operate, the...

  13. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Placement of machinery alarms. 130.460 Section 130.460..., AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460 Placement of machinery alarms. (a) Visible and audible alarms must be installed at the pilothouse to...

  14. 46 CFR 171.095 - Machinery space bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Machinery space bulkhead. 171.095 Section 171.095... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.095 Machinery space... transverse watertight bulkheads to separate the machinery space from the remainder of the vessel....

  15. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  16. 46 CFR 58.01-50 - Machinery space, noise.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) (incorporated by reference, see 46 CFR 58.03-1). No person may encounter a 24-hour effective noise level greater... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, noise. 58.01-50 Section 58.01-50... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-50 Machinery space, noise. (a) Each...

  17. Thermal spray manual for machinery components

    SciTech Connect

    Travis, R.; Ginther, C.; Herbstritt, M.; Herbstritt, J.

    1995-12-31

    The Thermal Spray Manual For Machinery Components is a National Shipbuilding Research (SP-7) Project. This Manual is being developed by Puget Sound Naval Shipyard with the help of other government thermal spray facilities and SP-7 panel members. The purpose of the manual is to provide marine repair facilities with a ``how to do`` document that will be ``user friendly`` and known to be technically sound through production experience. The manual`s intent is to give marine repair facilities the ability to maximize the thermal spray process as a repair method for machinery components and to give these facilities guidelines on how to become qualified to receive certification that they meet the requirements of Military Standard 1687A.

  18. Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors.

    PubMed

    Zhang, Lei; Hapon, Maria B; Goyeneche, Alicia A; Srinivasan, Rekha; Gamarra-Luques, Carlos D; Callegari, Eduardo A; Drappeau, Donis D; Terpstra, Erin J; Pan, Bo; Knapp, Jennifer R; Chien, Jeremy; Wang, Xuejun; Eyster, Kathleen M; Telleria, Carlos M

    2016-08-01

    The synthetic steroid mifepristone blocks the growth of ovarian cancer cells, yet the mechanism driving such effect is not entirely understood. Unbiased genomic and proteomic screenings using ovarian cancer cell lines of different genetic backgrounds and sensitivities to platinum led to the identification of two key genes upregulated by mifepristone and involved in the unfolded protein response (UPR): the master chaperone of the endoplasmic reticulum (ER), glucose regulated protein (GRP) of 78 kDa, and the CCAAT/enhancer binding protein homologous transcription factor (CHOP). GRP78 and CHOP were upregulated by mifepristone in ovarian cancer cells regardless of p53 status and platinum sensitivity. Further studies revealed that the three UPR-associated pathways, PERK, IRE1α, and ATF6, were activated by mifepristone. Also, the synthetic steroid acutely increased mRNA translation rate, which, if prevented, abrogated the splicing of XBP1 mRNA, a non-translatable readout of IRE1α activation. Moreover, mifepristone increased LC3-II levels due to increased autophagic flux. When the autophagic-lysosomal pathway was inhibited with chloroquine, mifepristone was lethal to the cells. Lastly, doses of proteasome inhibitors that are inadequate to block the activity of the proteasomes, caused cell death when combined with mifepristone; this phenotype was accompanied by accumulation of poly-ubiquitinated proteins denoting proteasome inhibition. The stimulation by mifepristone of ER stress and autophagic flux offers a therapeutic opportunity for utilizing this compound to sensitize ovarian cancer cells to proteasome or lysosome inhibitors. PMID:27233943

  19. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    PubMed

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival. PMID:26303508

  20. Copper oxide nanoparticles induce autophagic cell death in A549 cells.

    PubMed

    Sun, Tingting; Yan, Yiwu; Zhao, Yan; Guo, Feng; Jiang, Chengyu

    2012-01-01

    Metal oxide nanoparticles (NPs) are among the most highly produced nanomaterials, and have many diverse functions in catalysis, environmental remediation, as sensors, and in the production of personal care products. In this study, the toxicity of several widely used metal oxide NPs such as copper oxide, silica, titanium oxide and ferric oxide NPs, were evaluated In vitro. We exposed A549, H1650 and CNE-2Z cell lines to metal oxide NPs, and found CuO NPs to be the most toxic, SiO2 mild toxic, while the other metal oxide NPs had little effect on cell viability. Furthermore, the autophagic biomarker LC3-II significantly increased in A549 cells treated with CuO NPs, and the use of the autophagy inhibitors wortmannin and 3-methyladenin significantly improved cell survival. These results indicate that the cytoxicity of CuO NPs may involve the autophagic pathway in A549 cells. PMID:22916263

  1. Evidence for the recruitment of autophagic vesicles in human brain after stroke.

    PubMed

    Frugier, Tony; Taylor, Juliet M; McLean, Catriona; Bye, Nicole; Beart, Philip M; Devenish, Rodney J; Crack, Peter J

    2016-06-01

    Autophagy is a homeostatic process for recycling proteins and organelles that is increasingly being proposed as a therapeutic target for acute and chronic neurodegenerative diseases, including stroke. Confirmation that autophagy is present in the human brain after stroke is imperative before prospective therapies can begin the translational process into clinical trials. Our current study using human post-mortem tissue observed an increase in staining in microtubule-associated protein 1 light chain 3 (LC3), sequestosome 1 (SQSTM1; also known as p62) and the increased appearance of autophagic vesicles after stroke. These data confirm that alterations in autophagy take place in the human brain after stroke and suggest that targeting autophagic processes after stroke may have clinical significance. PMID:26930584

  2. Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells.

    PubMed

    Gao, Qilong; Liu, Huaimin; Yao, Yamin; Geng, Liang; Zhang, Xinfeng; Jiang, Lifeng; Shi, Bian; Yang, Feng

    2015-05-01

    The therapeutic goal of cancer treatment is now geared towards triggering tumour-selective cell death with autophagic cell death being required for the chemotherapy of apoptosis-resistant cancer. In this study, Carnosic acid (CA), a polyphenolic diterpene isolated from Rosemary (Rosemarinus officinalis), significantly induced autophagic cell death in HepG2 cells. Ca treatment caused the formation of autophagic vacuoles produced an increasing ratio of LC3-II to LC3-I in a time- and dose-dependent manner but had no effect on the levels of autophagy-related protein ATG6 and ATG13 expression. Autophagy inhibitors, 3-methyladenine (3-MA), chloroquine and bafilomycin A1, or ATG genes silencing in HepG2 cells significantly inhibited CA-induced autophagic cell death. The CA treatment decreased the levels of phosphorylated Akt and mTOR without any effects on PI3K or PTEN. Most importantly, overexpression of Akt and knockdown of PTEN attenuated autophagy induction in CA-treated cells. Taken together, our results indicated that CA induced autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. These findings suggest that CA has a great potential for the treatment of hepatoma via autophagic induction. PMID:25178877

  3. Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux.

    PubMed

    Ling, Yuanna; Chen, Guiming; Deng, Yi; Tang, Huixiong; Ling, Long; Zhou, Xiaoming; Song, Xudong; Yang, Pingzhen; Liu, Yingfeng; Li, Zhiliang; Zhao, Cong; Yang, Yufei; Wang, Xianbao; Kitakaze, Masafumi; Liao, Yulin; Chen, Aihua

    2016-09-01

    Polydatin (PD), a resveratrol (RES) glycoside, has a stronger antioxidative effect than RES. It is known that RES is an autophagic enhancer and exerts a cardioprotective effect against ischaemia/reperfusion (I/R) injury. However, the effect of PD post-treatment on myocardial I/R injury remains unclear. In the present study, we investigated the influences of PD post-treatment on myocardial I/R injury and autophagy. C57BL/6 mice underwent left coronary artery (LCA) occlusion and cultured neonatal rat cardiomyocytes (NRCs) subjected to hypoxia were treated with vehicle or PD during reperfusion or re-oxygenation. We noted that PD enhanced autophagy and decreased apoptosis during I/R or hypoxia/reoxygenation (H/R), and this effect was antagonized by co-treatment with adenovirus carrying short hairpin RNA for Beclin 1 and 3-methyladenine (3-MA), an autophagic inhibitor. Compared with vehicle-treated mice, PD-treated mice had a significantly smaller myocardial infarct size (IS) and a higher left ventricular fractional shortening (LVFS) and ejection fraction (EF), whereas these effects were partly reversed by 3-MA. Furthermore, in the PD-treated NRCs, tandem fluorescent mRFP-GFP-LC3 assay showed abundant clearance of autophagosomes with an enhanced autophagic flux, and co-treatment with Bafilomycin A1 (Baf), a lysosomal inhibitor, indicated that PD promoted the degradation of autolysosome. In addition, PD post-treatment reduced mitochondrial membrane potential and cellular reactive oxygen species (ROS) production in NRCs, and these effects were partially blocked by Baf. These findings indicate that PD post-treatment limits myocardial I/R injury by promoting autophagic flux to clear damaged mitochondria to reduce ROS and cell death. PMID:27340138

  4. Machinery Vibration Monitoring Program at the Savannah River Site

    SciTech Connect

    Potvin, M.M.

    1990-01-01

    The Reactor Maintenance's Machinery Vibration Monitoring Program (MVMP) plays an essential role in ensuring the safe operation of the three Production Reactors at the Westinghouse Savannah River Company (WRSC) Savannah River Site (SRS). This program has increased machinery availability and reduced maintenance cost by the early detection and determination of machinery problems. This paper presents the Reactor Maintenance's Machinery Vibration Monitoring Program, which has been documented based on Electric Power Research Institute's (EPRI) NP-5311, Utility Machinery Monitoring Guide, and some examples of the successes that it has enjoyed.

  5. Low Back Pain in Port Machinery Operators

    NASA Astrophysics Data System (ADS)

    BOVENZI, M.; PINTO, I.; STACCHINI, N.

    2002-05-01

    The occurrence of several types of low back pain (LBP) was investigated by a standardized questionnaire in a group of 219 port machinery operators exposed to whole-body vibration (WBV) and postural load and in a control group of 85 maintenance workers employed at the same transport company. The group of port machinery operators included 85 straddle carrier drivers, 88 fork-lift truck drivers, and 46 crane operators. The vector sum of the frequency-weighted r.m.s. acceleration of vibration measured on the seatpan of port vehicles and machines averaged 0·90 m/s2 for fork-lift trucks, 0·48 m/s2 for straddle carriers, 0·53 m/s2 for mobile cranes, and 0·22 m/s2 for overhead cranes. The 12-month prevalence of low back symptoms (LBP, sciatic pain, treated LBP, sick leave due to LBP) was significantly greater in the fork-lift truck drivers than in the controls and the other two groups of port machinery operators. After adjusting for potential confounders, the prevalence of low back symptoms was found to increase with the increase of WBV exposure expressed as duration of exposure (driving years), equivalent vibration magnitude (m/s2), or cumulative vibration exposure (yr m2/s4). An excess risk for lumbar disc herniation was observed in the port machinery operators with prolonged driving experience. In both the controls and the port machinery operators, low back complaints were strongly associated with perceived postural load assessed in terms of frequency and/or duration of awkward postures at work. Multivariate analysis showed that vibration exposure and postural load were independent predictors of LBP. Even though the cross-sectional design of the present study does not permit firm conclusions on the relationship between WBV exposure and low back disorders, the findings of this investigation provide additional epidemiological evidence that seated WBV exposure combined with non-neutral trunk postures, as while driving, is associated with an increased risk of long

  6. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery

    PubMed Central

    Hampsey, Michael

    1998-01-01

    Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions. PMID:9618449

  7. Looking at the metabolic consequences of the colchicine-based in vivo autophagic flux assay.

    PubMed

    Seiliez, Iban; Belghit, Ikram; Gao, Yujie; Skiba-Cassy, Sandrine; Dias, Karine; Cluzeaud, Marianne; Rémond, Didier; Hafnaoui, Nordine; Salin, Bénédicte; Camougrand, Nadine; Panserat, Stéphane

    2016-01-01

    Monitoring autophagic flux in vivo or in organs remains limited and the ideal methods relative to the techniques possible with cell culture may not exist. Recently, a few papers have demonstrated the feasibility of measuring autophagic flux in vivo by intraperitoneal (IP) injection of pharmacological agents (chloroquine, leupeptin, vinblastine, and colchicine). However, the metabolic consequences of the administration of these drugs remain largely unknown. Here, we report that 0.8 mg/kg/day IP colchicine increased LC3-II protein levels in the liver of fasted trout, supporting the usefulness of this drug for studying autophagic flux in vivo in our model organism. This effect was accompanied by a decrease of plasma glucose concentration associated with a fall in the mRNA levels of gluconeogenesis-related genes. Concurrently, triglycerides and lipid droplets content in the liver increased. In contrast, transcript levels of β-oxidation-related gene Cpt1a dropped significantly. Together, these results match with the reported role of autophagy in the regulation of glucose homeostasis and intracellular lipid stores, and highlight the importance of considering these effects when using colchicine as an in vivo "autophagometer." PMID:26902586

  8. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth

    PubMed Central

    Mondal, Susmita; Wen, Xuyang; He, Xiaoping; Dowdy, Sean; Shridhar, Viji

    2015-01-01

    A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa. PMID:26497553

  9. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress.

    PubMed

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2015-01-14

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design. PMID:25429417

  10. Pictet–Spengler reaction-based biosynthetic machinery in fungi

    PubMed Central

    Yan, Wei; Ge, Hui Ming; Wang, Gang; Jiang, Nan; Mei, Ya Ning; Jiang, Rong; Li, Sui Jun; Chen, Chao Jun; Jiao, Rui Hua; Xu, Qiang; Ng, Seik Weng; Tan, Ren Xiang

    2014-01-01

    The Pictet–Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet–Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-l-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form “unnatural” natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine. PMID:25425666

  11. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death

    PubMed Central

    Wang, Kai; Zhang, Chao; Bao, Jiaolin; Jia, Xuejing; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Su, Huanxing; Li, Peng; Wan, Jian-Bo; He, Chengwei

    2016-01-01

    Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers. PMID:27263652

  12. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death.

    PubMed

    Wang, Kai; Zhang, Chao; Bao, Jiaolin; Jia, Xuejing; Liang, Yeer; Wang, Xiaotong; Chen, Meiwan; Su, Huanxing; Li, Peng; Wan, Jian-Bo; He, Chengwei

    2016-01-01

    Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers. PMID:27263652

  13. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    PubMed Central

    Fernandes, Hugo J.R.; Hartfield, Elizabeth M.; Christian, Helen C.; Emmanoulidou, Evangelia; Zheng, Ying; Booth, Heather; Bogetofte, Helle; Lang, Charmaine; Ryan, Brent J.; Sardi, S. Pablo; Badger, Jennifer; Vowles, Jane; Evetts, Samuel; Tofaris, George K.; Vekrellis, Kostas; Talbot, Kevin; Hu, Michele T.; James, William; Cowley, Sally A.; Wade-Martins, Richard

    2016-01-01

    Summary Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. PMID:26905200

  14. Oleanolic acid induced autophagic cell death in hepatocellular carcinoma cells via PI3K/Akt/mTOR and ROS-dependent pathway

    PubMed Central

    Shi, Yang; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2016-01-01

    Oleanolic acid (OA) has a wide variety of bioactivities such as hepatoprotective, anti-inflammatory and anti-cancer activity and is used for medicinal purposes in many Asian countries. In the present study, the effect of OA on induction of autophagy in human hepatocellular carcinoma HepG2 and SMC7721 cells and the related mechanisms were investigated. MTT assay showed that OA significantly inhibited HepG2 and SMC7721 cells growth. OA treatment enhanced formation of autophagic vacuoles as revealed by monodansylcadaverine (MDC) staining. At the same time, increasing punctuate distribution of microtubule-associated protein 1 light chain 3 (LC3) and an increasing ratio of LC3-II to LC3-I were also triggered by OA incubation. In addition, OA-induced cell death was signifi cantly inhibited by autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) pretreatment. And we found out that OA can suppress the PI3K/Akt1/mTOR signaling pathway. Furthermore, our data suggested that OA-triggered autophagy was ROS-dependent as demonstrated by elevated cellular ROS levels by OA treatment. When ROS was cleared by N-acetylcysteine (NAC), OA-induced LC3-II convertsion and cell death were all reversed. Taken together, our results suggest that OA exerts anticancer eff ect via autophagic cell death in hepatocellular carcinoma. PMID:27162477

  15. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  16. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel...

  17. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel...

  18. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel...

  19. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel...

  20. 46 CFR 30.10-42 - Machinery space-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Machinery space-TB/ALL. 30.10-42 Section 30.10-42...-42 Machinery space—TB/ALL. The term machinery space means any space that contains machinery and related equipment including Category A machinery spaces, propelling machinery, boilers, oil fuel...

  1. Towards a comprehensive understanding of brain machinery by correlative microscopy

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco S.

    2015-06-01

    Unraveling the complexity of brain structure and function is the biggest challenge of contemporary science. Due to their flexibility, optical techniques are the key to exploring this intricate network. However, a single imaging technique can reveal only a small part of this machinery due to its inherent multilevel organization. To obtain a more comprehensive view of brain functionality, complementary approaches have been combined. For instance, brain activity was monitored simultaneously on different spatiotemporal scales with functional magnetic resonance imaging and calcium imaging. On the other hand, dynamic information on the structural plasticity of neuronal networks has been contextualized in a wider framework combining two-photon and light-sheet microscopy. Finally, synaptic features have been revealed on previously in vivo imaged samples by correlative light-electron microscopy. Although these approaches have revealed important features of brain machinery, they provided small bridges between specific spatiotemporal scales, lacking an omni-comprehensive view. In this perspective, we briefly review the state of the art of correlative techniques and propose a wider methodological framework fusing multiple levels of brain investigation.

  2. Structural insights into the bacterial carbon-phosphorus lyase machinery

    PubMed Central

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten; Russo, Christopher J.; Passmore, Lori A.; Hove-Jensen, Bjarne; Jochimsen, Bjarne; Brodersen, Ditlev E.

    2015-01-01

    Summary Phosphorous is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use organic phosphonate compounds, which require specialised enzymatic machinery for breaking the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolises phosphonate remain unknown. Here we determine the crystal structure of the 240 kDa Escherichia coli C-P lyase core complex (PhnGHIJ) and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that likely couple organic phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy and show that it binds to PhnJ via a conserved insertion domain. Our results provide a structural basis for understanding microbial phosphonate breakdown. PMID:26280334

  3. Viral interactions with components of the splicing machinery.

    PubMed

    Meyer, F

    2016-01-01

    Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses. PMID:27571697

  4. End users "Feedback" to improve ergonomic design of machinery.

    PubMed

    Strambi, F; Bartalini, M; Boy, S; Gauthy, R; Landozzi, R; Novelli, D; Stanzani, C

    2012-01-01

    This paper describes the Feedback method designed to collect the contribution of users for the reconstruction and comprehension of the actual work and real activity for the improvement of the technical standards, design, manufacturing and use of machinery. The Feedback method has since now been applied successfully - in collaboration with public authorities, market surveillance bodies, social partners organization and technical institutes - to five different types of machines: woodworking machinery, forklift trucks, angle grinder and combine harvester. After ten years of experimentation in seven European countries Feedback has proved to be trans-nationally comparable and has attracted the interest of as much as 250 expert users - mostly workers, but also employers and technicians - who have shared their knowledge and experience by taking part in almost 30 working groups. The information collected with the Feedback method can be used by: -CEN and ISO standardization committees and working groups to become aware of the problems relating to the real use of specific machines in different work contexts, and thus to be able to draw up new or to revise existing standards accordingly; - Designers and manufacturers to produce better, more comfortable and safer machines and to provide precise instructions for use; - Employers, users and workers for training purposes and for defining appropriate work procedures; - Inspection bodies to enhance their knowledge and improve the efficiency of their interventions and advice. PMID:22316885

  5. Industrial machinery noise impact modeling, volume 1

    NASA Astrophysics Data System (ADS)

    Hansen, C. H.; Kugler, B. A.

    1981-07-01

    The development of a machinery noise computer model which may be used to assess the effect of occupational noise on the health and welfare of industrial workers is discussed. The purpose of the model is to provide EPA with the methodology to evaluate the personnel noise problem, to identify the equipment types responsible for the exposure and to assess the potential benefits of a given noise control action. Due to its flexibility in design and application, the model and supportive computer program can be used by other federal agencies, state governments, labor and industry as an aid in the development of noise abatement programs.

  6. Importing Mitochondrial Proteins: Machineries and Mechanisms

    PubMed Central

    Chacinska, Agnieszka; Koehler, Carla M.; Milenkovic, Dusanka; Lithgow, Trevor; Pfanner, Nikolaus

    2014-01-01

    Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis. PMID:19703392

  7. Local Geometrical Machinery for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.

  8. Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zheng, Binbin; Ye, Libing; Zhang, Hongyu; Zhu, Sipin; Zheng, Xiaomeng; Xia, Qinghai; He, Zili; Wang, Qingqing; Xiao, Jian; Xu, Huazi

    2016-04-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood-brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI. PMID:26582233

  9. Betanin-Enriched Red Beetroot (Beta vulgaris L.) Extract Induces Apoptosis and Autophagic Cell Death in MCF-7 Cells.

    PubMed

    Nowacki, Laëtitia; Vigneron, Pascale; Rotellini, Laura; Cazzola, Hélène; Merlier, Franck; Prost, Elise; Ralanairina, Robert; Gadonna, Jean-Pierre; Rossi, Claire; Vayssade, Muriel

    2015-12-01

    Recent studies have pointed out the preventive role of beetroot extracts against cancers and their cytotoxic activity on cancer cells. Among many different natural compounds, these extracts contained betanin and its stereoisomer isobetanin, which belongs to the betalain group of highly bioavailable antioxidants. However, a precise identification of the molecules responsible for this tumor-inhibitory effect was still required. We isolated a betanin/isobetanin concentrate from fresh beetroots, corresponding to the highest purified betanin extract used for studying anticancer activities of these molecules. The cytotoxicity of this betanin-enriched extract was then characterized on cancer and normal cells and we highlighted the death signalling pathways involved. Betanin/isobetanin concentrate significantly decreased cancer cell proliferation and viability. Particularly in MCF-7-treated cells, the expressions of apoptosis-related proteins (Bad, TRAILR4, FAS, p53) were strongly increased and the mitochondrial membrane potential was altered, demonstrating the involvement of both intrinsic and extrinsic apoptotic pathways. Autophagosome vesicles in MCF-7-treated cells were observed, also suggesting autophagic cell death upon betanin/isobetanin treatment. Importantly, the betanin-enriched extract had no obvious effect towards normal cell lines. Our data bring new insight to consider the betanin/isobetanin mix as therapeutic anticancer compound, alone or in combination with classical chemotherapeutic drugs, especially in functional p53 tumors. PMID:26463240

  10. Dual attenuation of proteasomal and autophagic BMAL1 degradation in ClockΔ19/+ mice contributes to improved glucose homeostasis

    PubMed Central

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-01-01

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated ClockΔ19/+ heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks. PMID:26228022

  11. The Mendelian disorders of the epigenetic machinery

    PubMed Central

    Bjornsson, Hans Tomas

    2015-01-01

    The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability. PMID:26430157

  12. The Mendelian disorders of the epigenetic machinery.

    PubMed

    Bjornsson, Hans Tomas

    2015-10-01

    The Mendelian disorders of the epigenetic machinery are genetic disorders that involve disruption of the various components of the epigenetic machinery (writers, erasers, readers, and remodelers) and are thus expected to have widespread downstream epigenetic consequences. Studying this group may offer a unique opportunity to learn about the role of epigenetics in health and disease. Among these patients, neurological dysfunction and, in particular, intellectual disability appears to be a common phenotype; however, this is often seen in association with other more specific features in respective disorders. The specificity of some of the clinical features raises the question whether specific cell types are particularly sensitive to the loss of these factors. Most of these disorders demonstrate dosage sensitivity as loss of a single allele appears to be sufficient to cause the observed phenotypes. Although the pathogenic sequence is unknown for most of these disorders, there are several examples where disrupted expression of downstream target genes accounts for a substantial portion of the phenotype; hence, it may be useful to systematically map such disease-relevant target genes. Finally, two of these disorders (Rubinstein-Taybi and Kabuki syndromes) have shown post-natal rescue of markers of the neurological dysfunction with drugs that lead to histone deacetylase inhibition, indicating that some of these disorders may be treatable causes of intellectual disability. PMID:26430157

  13. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells.

    PubMed

    Wang, Xiaolong; Qi, Wenwen; Li, Yaming; Zhang, Ning; Dong, Lun; Sun, Mingjuan; Cun, Jinjing; Zhang, Yan; Lv, Shangge; Yang, Qifeng

    2015-01-01

    Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR)/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway. PMID:26134510

  14. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells

    PubMed Central

    Li, Yaming; Zhang, Ning; Dong, Lun; Sun, Mingjuan; Cun, Jinjing; Zhang, Yan; Lv, Shangge; Yang, Qifeng

    2015-01-01

    Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR)/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway. PMID:26134510

  15. Cell surface recycling in yeast: mechanisms and machineries.

    PubMed

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway. PMID:27068957

  16. Numerical noise prediction in fluid machinery

    NASA Astrophysics Data System (ADS)

    Pantle, Iris; Magagnato, Franco; Gabi, Martin

    2005-09-01

    Numerical methods successively became important in the design and optimization of fluid machinery. However, as noise emission is considered, one can hardly find standardized prediction methods combining flow and acoustical optimization. Several numerical field methods for sound calculations have been developed. Due to the complexity of the considered flow, approaches must be chosen to avoid exhaustive computing. In this contribution the noise of a simple propeller is investigated. The configurations of the calculations comply with an existing experimental setup chosen for evaluation. The used in-house CFD solver SPARC contains an acoustic module based on Ffowcs Williams-Hawkings Acoustic Analogy. From the flow results of the time dependent Large Eddy Simulation the time dependent acoustic sources are extracted and given to the acoustic module where relevant sound pressure levels are calculated. The difficulties, which arise while proceeding from open to closed rotors and from gas to liquid are discussed.

  17. The SNARE Machinery in Mast Cell Secretion

    PubMed Central

    Lorentz, Axel; Baumann, Anja; Vitte, Joana; Blank, Ulrich

    2012-01-01

    Mast cells are known as inflammatory cells which exert their functions in allergic and anaphylactic reactions by secretion of numerous inflammatory mediators. During an allergic response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE and antigen resulting in immediate release of pre-synthesized mediators – stored in granules – as well as in de novo synthesis of various mediators like cytokines and chemokines. Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNARE) proteins were found to play a central role in regulating membrane fusion events during exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases, secretory carrier membrane proteins, complexins, or synaptotagmins were found to be involved in membrane fusion. In this review we summarize our current knowledge about the SNARE machinery and its mechanism of action in mast cell secretion. PMID:22679448

  18. Curved Casimir Operators and the BGG Machinery

    NASA Astrophysics Data System (ADS)

    Cap, Andreas; Soucek, Vladimír

    2007-11-01

    We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.

  19. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  20. Multiple Cylinder Free-Piston Stirling Machinery

    NASA Astrophysics Data System (ADS)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  1. Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins

    PubMed Central

    Pietrocola, Federico; Mariño, Guillermo; Lissa, Delphine; Vacchelli, Erika; Malik, Shoaib Ahmad; Niso-Santano, Mireia; Zamzami, Naoufal; Galluzzi, Lorenzo; Maiuri, Maria Chiara; Kroemer, Guido

    2012-01-01

    Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components. PMID:23070521

  2. Docosahexanoic acid antagonizes TNF-α-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features

    PubMed Central

    Pacheco, Fabio J.; Almaguel, Frankis G.; Evans, Whitney; Rios-Colon, Leslimar; Filippov, Valery; Leoh, Lai S.; Rook-Arena, Elizabeth; Mediavilla-Varela, Melanie; De Leon, Marino

    2014-01-01

    Objective It was previously reported that docosahexanoic acid (DHA) reduces TNF-α-induced necrosis in L929 cells. However, the mechanisms underlying this reduction have not been investigated. The present study was designed to investigate cellular and biochemical mechanisms underlying the attenuation of TNF-α-induced necroptosis by DHA in L929 cells. Methods L929 cells were pre-treated with DHA prior to exposure to TNF-α, zVAD, or Necrostatin-1 (Nec-1). Cell death and survival were assessed by MTT and caspase activity assays, and microscopic visualization. Reactive oxygen species (ROS) were measured by flow cytometry. C16- and C18-ceramide were measured by mass spectrometry. Lysosomal membrane permeabilization (LMP) was evaluated by fluorescence microscopy and flow cytometry using Acridine Orange. Cathepsin L activation was evaluated by immunoblotting and fluorescence microscopy. Autophagy was assessed by immunoblotting of LC3-II and Beclin. Results Exposure of L929 cells to TNF-α alone for 24 h induced necroptosis, as evidenced by inhibition of cell death by Nec-1, absence of caspase-3 activity and lamin B cleavage, and morphological analysis. DHA attenuated multiple biochemical events associated with TNF-α-induced necroptosis, including ROS generation, ceramide production, lysosomal dysfunction, cathepsin L activation, and autophagic features. DHA also attenuated zVAD-induced necroptosis but did not attenuate the enhanced apoptosis and necrosis induced by combination of TNF-α with Actinomycin D or zVAD, respectively, suggesting that its protective effects might be limited by the strength of the cell death insult induced by TNF-α. Conclusions DHA effectively attenuates TNF-α-induced necroptosis and autophagy, most likely via its ability to inhibit TNF-α-induced sphingolipid metabolism and oxidative stress. These results highlight the role of this Omega-3 fatty acid in antagonizing inflammatory cell death. PMID:25095742

  3. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Laundry machinery and operations. 1910.264 Section 1910.264 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.264 Laundry machinery and operations. (a) (b) General...

  4. 29 CFR 1910.264 - Laundry machinery and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Laundry machinery and operations. 1910.264 Section 1910.264 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.264 Laundry machinery and operations. (a) (b) General...

  5. Post-stressed concrete foundation may reduce machinery vibration

    NASA Technical Reports Server (NTRS)

    Fistedis, S. H.

    1967-01-01

    Post-stressing concrete mat foundation reduces excessive vibrations in machinery. The mat is stressed in compression after the machinery is mounted, thus closing any cracks in it, altering the distribution of the soil subgrade reaction on the mat, and changing the mat-subgrade natural frequency.

  6. Machinery Management. FMO: Fundamentals of Machine Operation. Third Edition.

    ERIC Educational Resources Information Center

    Bowers, Wendell

    This text is intended to provide a basic understanding of selecting, maintaining, and managing farm machinery. The following topics are covered in the individual chapters: dealing with typical problems in farm machinery management; measuring machine capacity; improving field efficiency; matching machine size and capacity; estimating power…

  7. Safety Guards for Machinery. Module SH-34. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety guards for machinery is one of 50 modules concerned with job safety and health. This module discusses how machinery can be made safer to use by the installation of safety guards. Following the introduction, seven objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g.,…

  8. 46 CFR 122.208 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Accidents to machinery. 122.208 Section 122.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Voyage Records § 122.208 Accidents to machinery. The owner, managing operator, or master shall...

  9. 46 CFR 78.33-5 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Accidents to machinery. 78.33-5 Section 78.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-5 Accidents to machinery. (a) In the event of an...

  10. 46 CFR 185.208 - Accidents to machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Accidents to machinery. 185.208 Section 185.208 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Marine Casualties and Voyage Records § 185.208 Accidents to machinery. The owner,...

  11. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR 155.380. ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from...

  12. 18. SOUTHWEST TO CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SOUTHWEST TO CIRCA 1900 MICHIGAN MACHINERY MFG. CO. PUNCH PRESS, CIRCA 1910 'THE RACINE' RECIPROCATING HACK SAW, AND CIRCA 1900 SNAG GRINDER NEAR CENTER OF FACTORY BUILDING. AT THE RIGHT ARE THREE WHEELED WORK STATIONS. THE LINE SHAFT WITH BELTS AND PULLEYS FOR OPERATING MACHINERY IS VISIBLE IN THE RIGHT BACKGROUND. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  13. Occupational incidents with self-propelled machinery in Austrian agriculture.

    PubMed

    Mayrhofer, Hannes; Quendler, Elisabeth; Boxberger, Josef

    2013-01-01

    Tractors, self-propelled harvesting machinery, and material handling machinery are the most commonly used self-propelled machineries in Austrian agriculture, and they have similarities in main accident scenarios. Statistical data of all occupational incidents with these machines reported between 2008 and 2010 were analyzed to obtain information about the circumstances of the incidents, and about the victims and their work environments. Criteria of recognized occupational incidents provided by the Austrian Social Insurance Institution for Farmers were analyzed according to machinery category by means of cross-tabulation and chi-square tests. The results were discussed and evaluated in the context of the literature. The results of the analysis of the databases show that 786 occupational incidents with tractors, self-propelled harvesting machinery, and material handling machinery occurred in Austrian agriculture between 2008 and 2010. There were 231 occupational incidents in 2008; the number rose to 268 in 2009 and to 286 in 2010. A total of 41 incidents were fatal. For the machinery categories analyzed, the majority of injured victims were male, older than 40 years, Austrian citizens, and managers of a mixed-agricultural farm. A large number of the incidents occurred in all machinery categories by loss of control during operating a vehicle. PMID:24125051

  14. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery stop stations. 111.103-9 Section 111.103-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-9 Machinery stop stations. (a) Each forced...

  15. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery stop stations. 111.103-9 Section 111.103-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-9 Machinery stop stations. (a) Each forced...

  16. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery stop stations. 111.103-9 Section 111.103-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-9 Machinery stop stations. (a) Each forced...

  17. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery stop stations. 111.103-9 Section 111.103-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-9 Machinery stop stations. (a) Each forced...

  18. 52. VIEW NORTHEAST ACROSS WINDING MACHINERY: Overall view towards northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW NORTHEAST ACROSS WINDING MACHINERY: Overall view towards northwest of the winding machinery on the first floor of the Washington and Mason Streets powerhouse and car barn. Photograph taken from museum mezzanine looking along the tension runs. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  19. 54. VIEW TO SOUTH OF WINDING MACHINERY: General view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VIEW TO SOUTH OF WINDING MACHINERY: General view towards the south showing the winding machinery on the first floor of the Washington and Mason Streets powerhouse and car barn. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  20. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation (other than machinery spaces). 169.315 Section 169.315 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Hull Structure § 169.315 Ventilation (other than machinery spaces). (a) All enclosed spaces within...

  1. 46 CFR 109.419 - Report of unsafe machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Report of unsafe machinery. 109.419 Section 109.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Reports, Notifications, and Records Reports and Notifications § 109.419 Report of unsafe machinery. If a boiler, unfired pressure vessel,...

  2. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerating machinery. (a) Where refrigerating machines are installed in which anhydrous ammonia is used as a... a solution of aqua ammonia and machines using carbon dioxide are exempt from this requirement...) Machinery compartments containing equipment for ammonia shall be fitted with a sprinkler system providing...

  3. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerating machinery. (a) Where refrigerating machines are installed in which anhydrous ammonia is used as a... a solution of aqua ammonia and machines using carbon dioxide are exempt from this requirement...) Machinery compartments containing equipment for ammonia shall be fitted with a sprinkler system providing...

  4. 4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FIRST FLOOR INTERIOR, AMMONIA COMPRESSION DYNAMOS IN MACHINERY ROOM ALONG SOUTH SIDE OF WESTERN PORTION OF BUILDING, FROM EASTERN ENTRANCE TO MACHINERY ROOM, LOOKING WEST. - Oakland Naval Supply Center, Cold Storage Warehouse, South of C Street between First & Second Street, Oakland, Alameda County, CA

  5. 46 CFR 58.20-15 - Installation of refrigerating machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerating machinery. (a) Where refrigerating machines are installed in which anhydrous ammonia is used as a... a solution of aqua ammonia and machines using carbon dioxide are exempt from this requirement...) Machinery compartments containing equipment for ammonia shall be fitted with a sprinkler system providing...

  6. 46 CFR 185.352 - Ventilation of gasoline machinery spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... machinery spaces. The mechanical exhaust for the ventilation of a gasoline machinery space, required by § 182.460(a)(1)(ii) of this chapter, must be operated prior to starting gasoline engines for the time sufficient to insure at least one complete change of air in the space served....

  7. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the American National Standard Safety Code for the Use, Care, and Protection of Abrasive Wheels... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery....

  8. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the American National Standard Safety Code for the Use, Care, and Protection of Abrasive Wheels... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery....

  9. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR 155.380. ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from...

  10. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR 155.380. ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from...

  11. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR 155.380. ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from...

  12. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Placement of machinery alarms. 130.460 Section 130.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460...

  13. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Placement of machinery alarms. 130.460 Section 130.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460...

  14. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Placement of machinery alarms. 130.460 Section 130.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460...

  15. 46 CFR 130.460 - Placement of machinery alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Placement of machinery alarms. 130.460 Section 130.460 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Automation of Unattended Machinery Spaces § 130.460...

  16. 46 CFR 282.23 - Hull and machinery insurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 282.23 Section 282.23... COMMERCE OF THE UNITED STATES Calculation of Subsidy Rates § 282.23 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and...

  17. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery stop stations. 111.103-9 Section 111.103-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-9 Machinery stop stations. (a) Each forced...

  18. 33 CFR 157.39 - Machinery space bilges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR 155.380. ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Machinery space bilges. 157.39... Vessel Operation § 157.39 Machinery space bilges. (a) A tank vessel may discharge an oily mixture from...

  19. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    SciTech Connect

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-11-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C{sub 60}OH{sub x}), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  20. Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease

    SciTech Connect

    Jiang, Pengtao; Huang, Zhen; Zhao, Hong; Wei, Taotao

    2013-04-19

    Highlights: •Free fatty acids exposure induces elevated autophagy. •H{sub 2}O{sub 2} inhibits autophagic flux through impairing the fusion between autophagosomes and lysosomes. •Inhibition of autophagy potentiates H{sub 2}O{sub 2}-induced cell death. -- Abstract: Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, but the pathogenesis of NAFLD is not fully clear. The aim of this study was to determine whether autophagy plays a role in the pathogenesis of NAFLD. We found that the levels of autophagy were elevated in hepatoma cells upon exposure to free fatty acids, as confirmed by the increase in the number of autophagosomes. However, exposure of hepatoma cells to H{sub 2}O{sub 2} and TNF-α, two typical “second hit” factors, increased the initiation of autophagy but inhibited the autophagic flux. The inhibition of autophagy sensitized cells to pro-apoptotic stimuli. Taken together, our results suggest that autophagy acts as a protective mechanism in the pathogenesis of NAFLD and that impairment of autophagy might induce more severe lesions of the liver. These findings will be a benefit to the understanding of the pathogenesis of NAFLD and might suggest a strategy for the prevention and cure of NAFLD.

  1. The different roles of selective autophagic protein degradation in mammalian cells

    PubMed Central

    Wang, Da-wei; Peng, Zhen-ju; Ren, Guang-fang; Wang, Guang-xin

    2015-01-01

    Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases. PMID:26415220

  2. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux.

    PubMed

    Lee, Kang Il; Kim, Min Ju; Koh, Hyongjong; Lee, Jin I; Namkoong, Sim; Oh, Won Keun; Park, Junsoo

    2015-07-10

    Reserpine is a well-known medicine for the treatment of hypertension and schizophrenia, but its administration can induce Parkinson's disease (PD)-like symptoms in humans and animals. Reserpine inhibits the vesicular transporter of monoamines and depletes the brain of monoamines such as dopamine. However, the cellular function of reserpine is not fully understood. In this report, we present one possible mechanism by which reserpine may contribute to PD-like symptoms. Reserpine treatment induced the formation of enlarged autophagosomes by inhibiting the autophagic flux and led to accumulation of p62, an autophagy adapter molecule. In particular, reserpine treatment increased the level of α-synuclein protein and led to accumulation of α-synuclein in autophagosomes. Treatment with rapamycin enhanced the effect of reserpine by further increasing the level of α-synuclein and neuronal cell death. Drosophila raised on media containing reserpine showed loss of dopaminergic neurons. Furthermore, cotreatment with reserpine and rapamycin aggravated the loss of dopaminergic neurons. Our results suggest that reserpine contributes to the loss of dopaminergic neurons by interfering with autophagic flux. PMID:25976674

  3. Ceramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila blue cheese (bchs) Mutants

    PubMed Central

    Hebbar, Sarita; Sahoo, Ishtapran; Matysik, Artur; Argudo Garcia, Irene; Osborne, Kathleen Amy; Papan, Cyrus; Torta, Federico; Narayanaswamy, Pradeep; Fun, Xiu Hui; Wenk, Markus R; Shevchenko, Andrej; Schwudke, Dominik; Kraut, Rachel

    2015-01-01

    Sphingolipid metabolites are involved in the regulation of autophagy, a degradative recycling process that is required to prevent neuronal degeneration. Drosophila blue cheese mutants neurodegenerate due to perturbations in autophagic flux, and consequent accumulation of ubiquitinated aggregates. Here, we demonstrate that blue cheese mutant brains exhibit an elevation in total ceramide levels; surprisingly, however, degeneration is ameliorated when the pool of available ceramides is further increased, and exacerbated when ceramide levels are decreased by altering sphingolipid catabolism or blocking de novo synthesis. Exogenous ceramide is seen to accumulate in autophagosomes, which are fewer in number and show less efficient clearance in blue cheese mutant neurons. Sphingolipid metabolism is also shifted away from salvage toward de novo pathways, while pro-growth Akt and MAP pathways are down-regulated, and ER stress is increased. All these defects are reversed under genetic rescue conditions that increase ceramide generation from salvage pathways. This constellation of effects suggests a possible mechanism whereby the observed deficit in a potentially ceramide-releasing autophagic pathway impedes survival signaling and exacerbates neuronal death. PMID:26639035

  4. Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease

    PubMed Central

    Lee, Jong Kil; Jin, Hee Kyung; Park, Min Hee; Kim, Bo-ra; Lee, Phil Hyu; Nakauchi, Hiromitsu; Carter, Janet E.; He, Xingxuan; Schuchman, Edward H.

    2014-01-01

    In Alzheimer’s disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM+/−) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-β (Aβ) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease. PMID:25049335

  5. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells.

    PubMed

    Li, Yan-Cong; He, Shu-Ming; He, Zhi-Xu; Li, Minghua; Yang, Yinxue; Pang, Jian-Xin; Zhang, Xueji; Chow, Kevin; Zhou, Qingyu; Duan, Wei; Zhou, Zhi-Wei; Yang, Tianxin; Huang, Gui-Hua; Liu, Aibing; Qiu, Jia-Xuan; Liu, Jun-Ping; Zhou, Shu-Feng

    2014-03-28

    Plumbagin (PLB) has shown anti-cancer activity but the mechanism is unclear. This study has found that PLB has a potent pro-apoptotic and pro-autophagic effect on A549 and H23 cells. PLB arrests cells in G2/M phase, and increases the intracellular level of reactive oxygen species in both cell lines. PLB dose-dependently induces autophagy through inhibition of PI3K/Akt/mTOR pathway as indicated by reduced phosphorylation of Akt and mTOR. Inhibition or induction of autophagy enhances PLB-induced apoptosis. There is crosstalk between PLB-induced apoptosis and autophagy. These findings indicate that PLB initiates both apoptosis and autophagy in NSCLC cells through coordinated pathways. PMID:24280585

  6. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as...

  7. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as...

  8. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles.

    PubMed

    Machado, Juliano; Manfredi, Leandro H; Silveira, Wilian A; Gonçalves, Dawit A P; Lustrino, Danilo; Zanon, Neusa M; Kettelhut, Isis C; Navegantes, Luiz C

    2016-03-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide released by motor neuron in skeletal muscle and modulates the neuromuscular transmission by induction of synthesis and insertion of acetylcholine receptor on postsynaptic muscle membrane; however, its role in skeletal muscle protein metabolism remains unclear. We examined the in vitro and in vivo effects of CGRP on protein breakdown and signaling pathways in control skeletal muscles and muscles following denervation (DEN) in rats. In isolated muscles, CGRP (10(-10) to 10(-6)M) reduced basal and DEN-induced activation of overall proteolysis in a concentration-dependent manner. The in vitro anti-proteolytic effect of CGRP was completely abolished by CGRP8-37, a CGRP receptor antagonist. CGRP down-regulated the lysosomal proteolysis, the mRNA levels of LC3b, Gabarapl1 and cathepsin L and the protein content of LC3-II in control and denervated muscles. In parallel, CGRP elevated cAMP levels, stimulated PKA/CREB signaling and increased Foxo1 phosphorylation in both conditions. In denervated muscles and starved C2C12 cells, Rp-8-Br-cAMPs or PKI, two PKA inhibitors, completely abolished the inhibitory effect of CGRP on Foxo1, 3 and 4 and LC3 lipidation. A single injection of CGRP (100 μg kg(-1)) in denervated rats increased the phosphorylation levels of CREB and Akt, inhibited Foxo transcriptional activity, the LC3 lipidation as well as the mRNA levels of LC3b and cathepsin L, two bona fide targets of Foxo. This study shows for the first time that CGRP exerts a direct inhibitory action on autophagic-lysosomal proteolysis in control and denervated skeletal muscle by recruiting cAMP/PKA signaling, effects that are related to inhibition of Foxo activity and LC3 lipidation. PMID:26718975

  9. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma.

    PubMed

    Li, Feng; Zeng, Jin; Gao, Yang; Guan, Zhenfeng; Ma, Zhenkun; Shi, Qi; Du, Chong; Jia, Jing; Xu, Shan; Wang, Xinyang; Chang, Luke; He, Dalin; Guo, Peng

    2015-01-01

    G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future. PMID:26397365

  10. Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery

    PubMed Central

    Sèle, Céleste; Gabel, Frank; Gutsche, Irina; Ivanov, Ivan; Burmeister, Wim P.

    2013-01-01

    Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages. PMID:23175373

  11. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies

    PubMed Central

    Furnham, Nicholas; Dawson, Natalie L.; Rahman, Syed A.; Thornton, Janet M.; Orengo, Christine A.

    2016-01-01

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. PMID:26585402

  12. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. PMID:26585402

  13. Global Design Optimization for Fluid Machinery Applications

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Tucker, Kevin; Vaidyanathan, Raj; Griffin, Lisa

    2000-01-01

    Recent experiences in utilizing the global optimization methodology, based on polynomial and neural network techniques for fluid machinery design are summarized. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do not need to calculate the sensitivity of each design variable locally. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables and methods for predicting the model performance. Examples of applications selected from rocket propulsion components including a supersonic turbine and an injector element and a turbulent flow diffuser are used to illustrate the usefulness of the global optimization method.

  14. Occupational Accidents with Agricultural Machinery in Austria.

    PubMed

    Kogler, Robert; Quendler, Elisabeth; Boxberger, Josef

    2016-01-01

    The number of recognized accidents with fatalities during agricultural and forestry work, despite better technology and coordinated prevention and trainings, is still very high in Austria. The accident scenarios in which people are injured are very different on farms. The common causes of accidents in agriculture and forestry are the loss of control of machine, means of transport or handling equipment, hand-held tool, and object or animal, followed by slipping, stumbling and falling, breakage, bursting, splitting, slipping, fall, and collapse of material agent. In the literature, a number of studies of general (machine- and animal-related accidents) and specific (machine-related accidents) agricultural and forestry accident situations can be found that refer to different databases. From the database Data of the Austrian Workers Compensation Board (AUVA) about occupational accidents with different agricultural machinery over the period 2008-2010 in Austria, main characteristics of the accident, the victim, and the employer as well as variables on causes and circumstances by frequency and contexts of parameters were statistically analyzed by employing the chi-square test and odds ratio. The aim of the study was to determine the information content and quality of the European Statistics on Accidents at Work (ESAW) variables to evaluate safety gaps and risks as well as the accidental man-machine interaction. PMID:26479843

  15. Synergism between upregulation of Rab7 and inhibition of autophagic degradation caused by mycoplasma facilitates intracellular mycoplasma infection

    PubMed Central

    HU, XIAOPENG; YU, JIE; ZHOU, XIANG; LI, ZHAOMING; XIA, YUN; LUO, ZHIYONG; WU, YAQUN

    2014-01-01

    Following fusion of a mycoplasma with a host cell membrane, the inserted components of mycoplasma may then be transported through the endocytic pathway. However, the effects of mycoplasmas on the host cell endomembrane system are largely unknown. In this study, mycoplasma-induced changes in the dynamics of endocytic and autophagic systems were investigated. Endocytosis and autophagy are two major processes involved in the survival of intracellular prokaryotic pathogens. It was found that, immediately following infection, mycoplasmas induce endocytosis in the host cell; however, in the long term the mycoplasmas suppress turnover of the components of the endocytic pathway. Immunofluorescence microscopy revealed that Rab7 and LC3-II are recruited to the intracellular mycoplasma-containing compartments. Western blot analysis and quantitative reverse transcription-polymerase chain reaction (qPCR) showed that mycoplasmas increase expression of Rab7 by upregulating transcription, but increase levels of LC3-II and p62 by post-translational regulation. Furthermore, it was demonstrated that mycoplasma infection causes inhibition of autophagic degradation of LC3-II and p62. In addition, it was found that upregulation of Rab7 and inhibition of autophagic degradation synergistically contributes to intracellular mycoplasma accumulation. In conclusion, these findings suggest that mycoplasmas may manipulate host cell endosomal and autophagic systems in order to facilitate intracellular infection. PMID:24452847

  16. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90.

    PubMed

    Young, Christopher N J; Sinadinos, Anthony; Lefebvre, Alexis; Chan, Philippe; Arkle, Stephen; Vaudry, David; Gorecki, Dariusz C

    2015-01-01

    P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmd(mdx) mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca(2+) influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome--autophagy--and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy. PMID:25700737

  17. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90

    PubMed Central

    Young, Christopher NJ; Sinadinos, Anthony; Lefebvre, Alexis; Chan, Philippe; Arkle, Stephen; Vaudry, David; Gorecki, Dariusz C

    2015-01-01

    P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmdmdx mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca2+ influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome—autophagy—and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy. PMID:25700737

  18. Impairment of Atg5-Dependent Autophagic Flux Promotes Paraquat- and MPP+-Induced Apoptosis But Not Rotenone or 6-Hydroxydopamine Toxicity

    PubMed Central

    Franco, Rodrigo

    2013-01-01

    Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP+) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP+-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP+-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP+-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP+, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP+ but not during rotenone or 6-OHDA toxicity. PMID:23997112

  19. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway.

    PubMed

    Lin, Chien-Ju; Chen, Ta-Liang; Tseng, Yuan-Yun; Wu, Gong-Jhe; Hsieh, Ming-Hui; Lin, Yung-Wei; Chen, Ruei-Ming

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. PMID:27236003

  20. Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells.

    PubMed

    Kim, Han Sung; Choi, Seung-Il; Jeung, Eui-Bae; Yoo, Yeong-Min

    2014-01-01

    Cyclosporine A (CsA) is a powerful immunosuppressive drug with side effects including the development of chronic nephrotoxicity. In this study, we investigated CsA treatment induced apoptotic and autophagic cell death in pituitary GH3 cells. CsA treatment (0.1 to 10 µM) decreased survival of GH3 cells in a dose-dependent manner. Cell viability decreased significantly with increasing CsA concentrations largely due to an increase in apoptosis, while cell death rates due to autophagy altered only slightly. Several molecular and morphological features correlated with cell death through these distinct pathways. At concentrations ranging from 1.0 to 10 µM, CsA induced a dose-dependent increase in expression of the autophagy markers LC3-I and LC3-II. Immunofluorescence staining revealed markedly increased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating increases in autophagosomes. At the same CsA doses, apoptotic cell death was apparent as indicated by nuclear and DNA fragmentation and increased p53 expression. In apoptotic or autophagic cells, p-ERK levels were highest at 1.0 µM CsA compared to control or other doses. In contrast, Bax levels in both types of cell death were increased in a dose-dependent manner, while Bcl-2 levels showed dose-dependent augmentation in autophagy and were decreased in apoptosis. Manganese superoxide dismutase (Mn-SOD) showed a similar dose-dependent reduction in cells undergoing apoptosis, while levels of the intracellular calcium ion exchange maker calbindin-D9k were decreased in apoptosis (1.0 to 5 µM CsA), but unchanged in autophagy. In conclusion, these results suggest that CsA induction of apoptotic or autophagic cell death in rat pituitary GH3 cells depends on the relative expression of factors and correlates with Bcl-2 and Mn-SOD levels. PMID:25299210

  1. Resveratrol Enhances Autophagic Flux and Promotes Ox-LDL Degradation in HUVECs via Upregulation of SIRT1

    PubMed Central

    Zhang, Yanlin; Cao, Xueqin; Zhu, Wawa; Liu, Zhihua; Liu, Huihui; Zhou, Yande; Cao, Yongjun; Liu, Chunfeng; Xie, Ying

    2016-01-01

    Oxidized low-density lipoprotein- (Ox-LDL-) induced autophagy dysfunction in human vascular endothelial cells contributes to the development of atherosclerosis (AS). Resveratrol (RSV) protects against Ox-LDL-induced endothelium injury. The objective of this study was to determine the mechanisms underlying Ox-LDL-induced autophagy dysfunction and RSV-mediated protection in human umbilical vein endothelial cells (HUVECs). The results showed that Ox-LDL suppressed the expression of sirtuin 1 (SIRT1) and increased LC3-II and sequestosome 1 (p62) protein levels without altering p62 mRNA levels in HUVECs. Pretreatment with bafilomycin A1 (BafA1) to inhibit lysosomal degradation abrogated the Ox-LDL-induced increase in LC3-II protein level. Ox-LDL increased colocalization of GFP and RFP puncta in mRFP-GFP-tandem fluorescent LC3- (tf-LC3-) transfected cells. Moreover, Ox-LDL decreased the expression of mature cathepsin D and attenuated cathepsin D activity. Pretreatment with RSV increased the expression of SIRT1 and LC3-II and increased p62 protein degradation. RSV induced RFP-LC3 aggregation more than GFP-LC3 aggregation. RSV restored lysosomal function and promoted Ox-LDL degradation in HUVECs. All the protective effects of RSV were blocked after SIRT1 was knocked down. These findings demonstrated that RSV upregulated the expression of SIRT1, restored lysosomal function, enhanced Ox-LDL-induced impaired autophagic flux, and promoted Ox-LDL degradation through the autophagy-lysosome degradation pathway in HUVECs. PMID:27069532

  2. Navigation of Construction and Agriculture Machinery

    NASA Astrophysics Data System (ADS)

    Stempfhuber, Werner

    2008-09-01

    Over the last two decades terrestrial and global 3D measurement sensors in the field of engineering geodesy have seen a significant upturn. With modern measurement techniques, a 3D trajectory of a moving object can be determined within a few centimetres (mostly with Global Navigation Satellite Systems, GNSS), under certain circumstances and with an overall understanding of the applied method accuracies of within 5 to 10 millimetres can be achieved (tracking total station). New application areas have been now created in the fields of construction, mining and agriculture. The guidance or control of heavy machinery demands a navigation sensor with an appropriate measurement rate and accuracy, as well as stable and reliable performance. The 3D position, together with the orientation as well as the long and cross inclination information is hereby just one part of the absolute machine guidance or control unit. Data collection, verification, management and interaction of the position information with the 6 degrees of freedom, together and the machine controller, are needed for the overall system. Rotation ring sensors for height control or height guidance are well-known amongst construction jobs and have been in use for more than 20 years. The first GPS-based guidance system for yield mapping was used 15 years ago (Auernhammer 1995). Optimization and improvements in efficiency are the principal reasons for the current developments in the area of 3D-based machine control and guidance. This paper will describe the state-of-the-art and general approaches as well as the real-time 3D measurement techniques in construction and agriculture environment.

  3. Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells.

    PubMed

    Dolma, Sonam; Selvadurai, Hayden J; Lan, Xiaoyang; Lee, Lilian; Kushida, Michelle; Voisin, Veronique; Whetstone, Heather; So, Milly; Aviv, Tzvi; Park, Nicole; Zhu, Xueming; Xu, ChangJiang; Head, Renee; Rowland, Katherine J; Bernstein, Mark; Clarke, Ian D; Bader, Gary; Harrington, Lea; Brumell, John H; Tyers, Mike; Dirks, Peter B

    2016-06-13

    Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRβ, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM. PMID:27300435

  4. Airborne nanoparticles (PM0.1 ) induce autophagic cell death of human neuronal cells.

    PubMed

    Jeon, Yu-Mi; Lee, Mi-Young

    2016-10-01

    Airborne nanoparticles PM0.1 (<100 nm in diameter) were collected and their chemical composition was determined. Al was by far the most abundant metal in the PM0.1 followed by Zn, Cr, Mn, Cu, Pb and Ni. Exposure to PM0.1 resulted in a cell viability decrease in human neuronal cells SH-SY5Y in a concentration-dependent manner. Upon treatment with N-acetylcysteine, however, cell viability was significantly recovered, suggesting the involvement of reactive oxygen species (ROS). Cellular DNA damage by PM0.1 was also detected by the Comet assay. PM0.1 -induced autophagic cell death was explained by an increase in the expression of microtubule-associated protein light chain 3A-ІІ (LC3A-ІІ) and autophagy-related protein Atg 3 and Atg 7. Analysis of 2-DE gels revealed that six proteins were upregulated, whereas eight proteins were downregulated by PM0.1 exposure. Neuroinflammation-related lithostathine and cyclophilin A complexed with dipeptide Gly-Pro, autophagy-related heat shock protein gp96 and neurodegeneration-related triosephosphate isomerase were significantly changed upon exposure to PM0.1 . These results, taken together, suggest that PM0.1 -induced oxidative stress via ROS generation plays a key role in autophagic cell death and differential protein expressions in SH-SY5Y cells. This might provide a plausible explanation for the underlying mechanisms of PM0.1 toxicity in neuronal cells and even the pathogenesis of diseases associated with its exposure. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27080386

  5. Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.

    PubMed

    Gruia, Alexandra T; Suciu, Maria; Barbu-Tudoran, Lucian; Azghadi, Seyed Mohammad Reza; Cristea, Mirabela I; Nica, Dragos V; Vaduva, Adrian; Muntean, Danina; Mic, Ani Aurora; Mic, Felix A

    2016-04-01

    Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332160

  6. 23. VIEW OF LE CLAIRE LOCK (19211925), SHOWING OPERATING MACHINERY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW OF LE CLAIRE LOCK (1921-1925), SHOWING OPERATING MACHINERY, DOWSTREAM GATES, UPSTREAM SIDE - Mississippi River 9-Foot Channel, Lock & Dam No. 14, Upper Mississippi River, Le Claire, Scott County, IA

  7. 7. Interior view of machinery looking at window of east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Interior view of machinery looking at window of east wall of 1953 addition, view to northeast. - Ellsworth Air Force Base, Waste Water Treatment Plant, Ellsworth Street, Blackhawk, Meade County, SD

  8. Therapeutic Interventions to Disrupt the Protein Synthetic Machinery in Melanoma

    PubMed Central

    Kardos, Gregory R.; Robertson, Gavin P.

    2015-01-01

    Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, in order to increase protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA Polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma. PMID:26139519

  9. 7. Detail, machinery shed atop east portal of Tunnel 28, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail, machinery shed atop east portal of Tunnel 28, showing shaft and pulley system, 210mm lens with electronic flash fill. - Central Pacific Transcontinental Railroad, Tunnel No. 28, Milepost 134.75, Applegate, Placer County, CA

  10. 29. VIEW OF TAINTER GATE VALVE OPERATING MACHINERY HOUSING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF TAINTER GATE VALVE OPERATING MACHINERY HOUSING AND LOCKMAN'S SHELTER, LOOKING NORTHEAST (UPSTREAM) - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  11. 28. VIEW OF MITER GATE OPERATING MACHINERY, SHOWING MITER GATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW OF MITER GATE OPERATING MACHINERY, SHOWING MITER GATE, GATE STRUT, AND SECTOR ARM, LOOKING EAST - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  12. 49. VIEW OF OPERATING MACHINERY AND TAINTER VALVES IN COFFERDAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW OF OPERATING MACHINERY AND TAINTER VALVES IN COFFERDAM Photograph No. 1459. August 31, 1936 - Upper Mississippi River Nine-Foot Channel Project, Lock & Dam No. 25, Cap au Gris, Lincoln County, MO

  13. 101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM AFT LOOKING FORWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ELEVATOR ENGINE, LIFTING WIRES, HYDRAULIC PIPING WITH REMOTE OPERATOR. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  14. 46. Interior detail of barge crane engine house with machinery. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Interior detail of barge crane engine house with machinery. Lambert Hoisting Engine Company Winder Powered by A Gray Marine Diesel. - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  15. 14. Overview of bay without sluice gate machinery to northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Overview of bay without sluice gate machinery to northeast - Mississippi River 9-Foot Channel, Lock & Dam No. 1, In Mississippi River at Mississippi Boulevard, below Ford Parkway Bridge, Saint Paul, Ramsey County, MN

  16. 39. TAINTER GATE VALVES, OPERATING MACHINERY, AND VALVE ASSEMBLED AUXILIARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. TAINTER GATE VALVES, OPERATING MACHINERY, AND VALVE ASSEMBLED AUXILIARY LOCK. January 1932 - Mississippi River 9-Foot Channel Project, Lock & Dam No. 15, Upper Mississipi River (Arsenal Island), Rock Island, Rock Island County, IL

  17. 16. DETAIL VIEW OF AUXILIARY LOCK MITER GATE OPERATING MACHINERY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL VIEW OF AUXILIARY LOCK MITER GATE OPERATING MACHINERY LOCATED IN INTERMEDIATE WALL, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  18. 17. VIEW, LOOKING WEST, SHOWING BRIDGE MACHINERY HOUSE ON FIXED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW, LOOKING WEST, SHOWING BRIDGE MACHINERY HOUSE ON FIXED SPAN - New York, New Haven & Hartford Railroad, Groton Bridge, Spanning Thames River between New London & Groton, New London, New London County, CT

  19. 62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 321, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW SHOWING INSTALLATION TAINTER VALVE MACHINERY MONOLITH NO. 32-1, LOOKING WEST Photograph No. 8571. October 24, 1949 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  20. 95. PHOTOCOPY OF DRAWING, SPAN 1, DETAILS OF TURNTABLE MACHINERY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. PHOTOCOPY OF DRAWING, SPAN 1, DETAILS OF TURNTABLE MACHINERY, 3/4' and 1 1/2' = 1' (CENTER CONE, RADIAL STRUT RING, TRACK, ROLLERS, PINION GEARS) - Keokuk & Hamilton Bridge, Spanning Mississippi River, Keokuk, Lee County, IA

  1. 94. DAM TAINTER GATE OPERATING MACHINERY METHOD OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DAM - TAINTER GATE OPERATING MACHINERY - METHOD OF ATTACHING LIFTING CHAINS TO DRUMS OF HOIST - LAKESIDE TYPE (ML-4&5-55/34-FS), February 1938 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 4, Alma, Buffalo County, WI

  2. 36. DETAILS FOR SCREENING MACHINERY, DEER ISLAND PUMPING STATION, METROPOLITAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS FOR SCREENING MACHINERY, DEER ISLAND PUMPING STATION, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, DECEMBER 1909. Aperture card 6611-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  3. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    PubMed Central

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  4. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells.

    PubMed

    Park, So Youn; Lee, Hye Rin; Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer's disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10-30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1-42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  5. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.

    PubMed

    Vaaje-Kolstad, Gustav; Horn, Svein J; Sørlie, Morten; Eijsink, Vincent G H

    2013-07-01

    The chitinolytic machinery of Serratia marcescens is one of the best known enzyme systems for the conversion of insoluble polysaccharides. This machinery includes four chitin-active enzymes: ChiC, an endo-acting non-processive chitinase; ChiA and ChiB, two processive chitinases moving along chitin chains in opposite directions; and CBP21, a surface-active CBM33-type lytic polysaccharide monooxygenase that introduces chain breaks by oxidative cleavage. Furthermore, an N-acetylhexosaminidase or chitobiase converts the oligomeric products from the other enzymes to monomeric N-acetylglucosamine. Here we discuss the catalytic mechanisms of these enzymes as well as the structural basis of each enzyme's specific role in the chitin degradation process. We also discuss how knowledge of this enzyme system may be extrapolated to other enzyme systems for conversion of insoluble polysaccharides, in particular conversion of cellulose by cellulases and GH61-type lytic polysaccharide monooxygenases. PMID:23398882

  6. 65. CALIFORNIA STREET CABLE RAILWAY WINDING MACHINERY: Photocopy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. CALIFORNIA STREET CABLE RAILWAY - WINDING MACHINERY: Photocopy of February 1955 photograph showing the winding machinery of the California Street Cable Railroad. The two suspended sheaves on the right of the photograph bore down on the cable as it left the winders, supplying tension to the cable and eliminating the need for a long tension run. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  7. 8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. MACHINERY SHED STORAGE ROOM ADDITION DETAIL SHOWING MATRIX OF NAILS USED TO ADHERE PORTLAND CEMENT PLASTER, SOUTH ADOBE WALL ADJACENT TO WINDOW Note: Photographs Nos. AZ-159-A-9 through AZ-159-A-10 are photocopies of photographs. The original prints and negatives are located in the SCS Tucson Plant Materials Center, Tucson, Arizona. Photographer Ted F. Spaller. - Tucson Plant Material Center, Machinery Shed, 3241 North Romero Road, Tucson, Pima County, AZ

  8. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    SciTech Connect

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  9. Interactions of release factor RF3 with the translation machinery.

    PubMed

    O'Connor, Michael

    2015-08-01

    The bacterial release factor RF3 is a GTPase that has been implicated in multiple, incompletely understood steps of protein synthesis. This study explores the genetic interaction of RF3 with other components of the translation machinery. RF3 contributes to translation termination by recycling the class I release factors RF1 and RF2 off post-termination ribosomes. RF3 has also been implicated in dissociation of peptidyl-tRNAs from elongating ribosomes and in a post-peptidyltransferase quality control (post-PT QC) mechanism that selectively terminates ribosomes carrying erroneous peptides. A majority of the in vivo studies on RF3 have been carried out in K-12 strains of Escherichia coli which carry a partially defective RF2 protein with an Ala to Thr substitution at position 246. Here, the contribution of the K-12 specific RF2 variant to RF3 activities has been investigated. Strain reconstruction experiments in both E. coli and Salmonella enterica demonstrate that defects in termination and post-PT QC that are associated with RF3 loss, as well as phenotypes uncovered by phenotypic profiling, are all substantially ameliorated when the incompletely active K-12-specific RF2 protein is replaced by a fully active Ala246 RF2. These results indicate that RF3 loss is well tolerated in bacteria with fully active class I release factors, but that many of the previously reported phenotypes for RF3 deletion strains have been compromised by the presence of a partially defective RF2. PMID:25636454

  10. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  11. Hormonal control of the metabolic machinery of hepatocellular carcinoma.

    PubMed

    Wong, Carmen Chak-Lui; Wong, Chun-Ming; Ng, Irene Oi-Lin

    2016-06-01

    Hepatocellular carcinoma (HCC) is one of the most fatal malignancies worldwide. It is an aggressive cancer with low cure rate, frequent metastasis, and highly resistant to conventional chemotherapies. Better knowledge regarding the molecular and metabolic alterations in HCC will be instrumental to the development of novel therapeutic interventions against HCC. In the August 2015 issue of Hepatology, Nie et al. reports an important molecular pathway that contributes to the Warburg Effect in HCC. They have beautifully demonstrated that the loss of a component of a hormonal system, the mineralocorticoid receptor (MR), reprogrammed the metabolic machinery of HCC cells to aerobic glycolysis through the miR-338-3p-PKL/R axis. The implication could be that in addition to drugs that directly target the metabolic enzymes in cancer cells, more translational efforts could be focused on the development of drugs that involve the activation of the MR-aldosterone system or other hormonal systems to target the Warburg effect. PMID:27275458

  12. Low Power Magnetic Bearing Design for High Speed Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Maslen, E. H.; Humphris, R. R.; Sortore, C. K.; Studer, P. A.

    1992-01-01

    Magnetic suspension technology has advanced to the point of being able to offer a number of advantages to a variety of applications in the rotating machinery and aerospace fields. One strong advantage is the decrease in power consumption. The design and construction of a set of permanent magnet biased, actively controlled magnetic bearing for a flexible rotor are presented. Both permanent magnets and electromagnets are used in a configuration which effectively provides the necessary fluxes in the appropriate air gaps, while simultaneously keeping the undesirable destabilizing forces to a minimum. The design includes two radial bearings and a thrust bearing. The theoretical development behind the design is briefly discussed. Experimental performance results for a set of operating prototype bearings is presented. The results include measurements of load capacity, bearing stiffness and damping, and the dynamic response of the rotor. With few exceptions, the experimental results matched very well with the predicted performance. The power consumption of these bearings was found to be significantly reduced from that for a comparable set of all electromagnetic bearings.

  13. An allosteric photoredox catalyst inspired by photosynthetic machinery

    PubMed Central

    Lifschitz, Alejo M.; Young, Ryan M.; Mendez-Arroyo, Jose; Stern, Charlotte L.; McGuirk, C. Michael; Wasielewski, Michael R.; Mirkin, Chad A.

    2015-01-01

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices. PMID:25817586

  14. Hormonal control of the metabolic machinery of hepatocellular carcinoma

    PubMed Central

    Wong, Carmen Chak-Lui; Wong, Chun-Ming

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most fatal malignancies worldwide. It is an aggressive cancer with low cure rate, frequent metastasis, and highly resistant to conventional chemotherapies. Better knowledge regarding the molecular and metabolic alterations in HCC will be instrumental to the development of novel therapeutic interventions against HCC. In the August 2015 issue of Hepatology, Nie et al. reports an important molecular pathway that contributes to the Warburg Effect in HCC. They have beautifully demonstrated that the loss of a component of a hormonal system, the mineralocorticoid receptor (MR), reprogrammed the metabolic machinery of HCC cells to aerobic glycolysis through the miR-338-3p-PKL/R axis. The implication could be that in addition to drugs that directly target the metabolic enzymes in cancer cells, more translational efforts could be focused on the development of drugs that involve the activation of the MR-aldosterone system or other hormonal systems to target the Warburg effect. PMID:27275458

  15. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    PubMed

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. PMID:26226217

  16. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  17. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  18. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  19. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  20. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  1. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  2. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  3. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  4. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  5. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  6. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  7. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  8. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  9. 30 CFR 75.1725 - Machinery and equipment; operation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machinery and equipment; operation and....1725 Machinery and equipment; operation and maintenance. (a) Mobile and stationary machinery and equipment shall be maintained in safe operating condition and machinery or equipment in unsafe...

  10. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  11. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks... SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.629 Compartments containing gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have...

  12. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  13. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo

    2010-05-01

    'Politehnica' of Timisoara in 1923 'It is not the walls that make a school, but the spirit living inside'. A particular trademark of the 'Politehnica' of Timisoara was the continuous effort to answer industrial problems by training the students not only on theoretical aspects but also in design and manufacturing, as well as in laboratory works. Developing modern laboratories, where students can observe and understand first hand the engineering applications along the years a priority for Timisoara 'Politehnica' University. The School of Hydraulic Machinery within the 'Politehnica' University of Timisoara was established in early 1930 by Professor Aurel Barglazan (1905-1960), and further developed by Professor Ioan Anton (born 1924), both members of the Romanian Academy. The Laboratory of Hydraulic Machines from Timisoara (LMHT) started back in 1928 in a small hut, with a test rig for Francis and Kaplan turbines manufactured by J M Voith. LMHT was continuously developed and was officially recognized in 1959 as being one of the leading research and developing laboratories in Romania. It was the foundation of the Romanian efforts of designing and manufacturing hydraulic turbines starting in 1960 at the Resita Machine Building Factory. Under the leadership of Professor Ioan Anton, the Timisoara School in Hydraulic Machinery has focused the basic and development research activities on the following main topics: (i) Turbine Hydrodynamics, (ii) Hydrofoil Cascade Hydrodynamics, (iii) Cavitation in Hydraulic Machines and Equipments, (iv) Scale-up Effects in Hydraulic Machines. With the establishment in the year 2000 of the National Center for Engineering of Systems with Complex Fluids, within the 'Politehnica' University of Timisoara, the research in turbomachinery hydrodynamics and cavitation included high performance computing for flows in hydraulic machines, as well as the development of novel technologies to mitigate the self-induced flow instabilities in hydraulic turbines operated

  14. The ESCRT machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Bakkeren, Erik; Do, Eunsoo; Jung, Won Hee; Kronstad, James W.

    2015-01-01

    Summary Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT-II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non-iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH-response regulator Rim101 and, in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101-independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101-dependent and independent mechanisms. PMID:25732100

  15. Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance

    PubMed Central

    Yu, Shuchun; Luo, Zhenzhong; Hua, Fuzhou; Yuan, Linhui; Zhou, Zhidong; Liu, Qin; Du, Xiaohong; Chen, Sisi; Zhang, Lieliang; Xu, Guohai

    2015-01-01

    Background and Purpose Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R) in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC) in myocardial I/R is through restored impaired autophagic flux. Methods Except for the sham control (SHAM) group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining. Results SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group). Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group). SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group). SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group). Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria. Conclusion SPC protects rat hearts against I/R injury via

  16. Rotating machinery - Dynamics; Proceedings of the 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3), Honolulu, HI, Apr. 1-4, 1990

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yang, W.-J.

    Topics addressed include rotordynamic software, blade loss dynamics of a magnetically supported rotor, flow visualization in a single simulated brush seal, an analytical investigation of a cryogenic journal bearing, vibration protection of aeration turbine gear motor, a simple procedure for assessing rotor stability, and stability of rotating cylindrical shells including nonlinear stiffening. Attention is also given to aeroelastic analysis of vertical axis wind turbines, an active chamber system for vibration control of rotating machinery, a computer system for multibearing rotor design, equations of motion of a flexible rotor with axially loose disc, and simulation research on the dynamic characteristics of a steam-injected gas turbine.

  17. Yeast as a Model for Studies on Aβ Aggregation Toxicity in Alzheimer's Disease, Autophagic Responses, and Drug Screening.

    PubMed

    Porzoor, Afsaneh; Macreadie, Ian

    2016-01-01

    The Aβ peptide is widely considered a major cause of Alzheimer's disease since it causes neuronal death in an oligomerisation-dependent manner. In order to identify new inhibitors of Aβ that may be chemo preventative for Alzheimer's disease, a yeast assay that qualitatively determines the amounts and state of the human Aβ42 peptide has been developed. Yeast assays such as this can be applied to studies on aggregation toxicity, autophagic responses and drug screening in Alzheimer's disease. PMID:26235069

  18. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome

    PubMed Central

    Follo, Carlo; Barbone, Dario; Richards, William G.; Bueno, Raphael; Broaddus, V. Courtney

    2016-01-01

    ABSTRACT Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer. PMID:27097020

  19. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome.

    PubMed

    Follo, Carlo; Barbone, Dario; Richards, William G; Bueno, Raphael; Broaddus, V Courtney

    2016-07-01

    Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer. PMID:27097020

  20. Identification of modulators of autophagic flux in an image-based high content siRNA screen.

    PubMed

    Hale, Christopher M; Cheng, Qingwen; Ortuno, Danny; Huang, Ming; Nojima, Dana; Kassner, Paul D; Wang, Songli; Ollmann, Michael M; Carlisle, Holly J

    2016-04-01

    Autophagy is the primary process for recycling cellular constituents through lysosomal degradation. In addition to nonselective autophagic engulfment of cytoplasm, autophagosomes can recognize specific cargo by interacting with ubiquitin-binding autophagy receptors such as SQSTM1/p62 (sequestosome 1). This selective form of autophagy is important for degrading aggregation-prone proteins prominent in many neurodegenerative diseases. We carried out a high content image-based siRNA screen (4 to 8 siRNA per gene) for modulators of autophagic flux by monitoring fluorescence of GFP-SQSTM1 as well as colocalization of GFP-SQSTM1 with LAMP2 (lysosomal-associated membrane protein 2)-positive lysosomal vesicles. GFP-SQSTM1 and LAMP2 phenotypes of primary screen hits were confirmed in 2 cell types and profiled with image-based viability and MTOR signaling assays. Common seed analysis guided siRNA selection for these assays to reduce bias toward off-target effects. Confirmed hits were further validated in a live-cell assay to monitor fusion of autophagosomes with lysosomes. Knockdown of 10 targets resulted in phenotypic profiles across multiple assays that were consistent with upregulation of autophagic flux. These hits include modulators of transcription, lysine acetylation, and ubiquitination. Two targets, KAT8 (K[lysine] acetyltransferase 8) and CSNK1A1 (casein kinase 1, α 1), have been implicated in autophagic regulatory feedback loops. We confirmed that CSNK1A1 knockout (KO) cell lines have accelerated turnover of long-lived proteins labeled with (14)C-leucine in a pulse-chase assay as additional validation of our screening assays. Data from this comprehensive autophagy screen point toward novel regulatory pathways that might yield new therapeutic targets for neurodegeneration. PMID:27050463