Science.gov

Sample records for autoresonance maser carm

  1. Self-consistent simulation of cyclotron autoresonance maser amplifiers

    SciTech Connect

    Pendergast, K.D.; Danly, B.G.; Temkin, R.J.; Wurtele, J.S.

    1988-04-01

    A self-consistent, one-dimensional model of the cyclotron autoresonance maser (CARM) amplifier is developed, and numerical simulations based on this model are described. Detailed studies of the CARM gain and efficiency for a wide range of initial energy and velocity spreads are presented. The interaction efficiency is found to be substantially increased when the axial magnetic field is tapered. For example, efficiencies of greater than 41 percent are obtained for a 140-GHz CARM amplifier with a tapered axial magnetic field and a 700-kV 4.5-A electron beam with parallel velocity spreads of less than 1 percent. A discussion of the nonlinear bandwidth and interaction sensitivity to axial field inhomogeneities is presented.

  2. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  3. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  4. Simulation of high power broadband cyclotron autoresonance maser amplifier and electron beam experiments

    NASA Astrophysics Data System (ADS)

    Speirs, D. C.; Phelps, A. D. R.; Konoplev, I. V.; Cross, A. W.; He, W.

    2004-04-01

    The design, simulation, and preliminary experimental implementation of an efficient, broadband cyclotron autoresonance maser (CARM) amplifier operating over the 9-13 GHz frequency band is presented. The amplifier is based on a high current accelerator capable of generating a ˜35 A pencil electron beam at an accelerating voltage of ˜450 kV. A full three-dimensional numerical model of the CARM amplifier has been constructed within the particle-in-cell code KARAT taking into account electron beam parameters derived from simulation and experiment. An electron beam current of 32A at an accelerating voltage of 400 kV was measured. Numerical simulations demonstrate the possibility of obtaining 37 dB gain and an interaction efficiency of 17%. In addition a viable amplification bandwidth of 9-13 GHz is apparent, with a minimum gain and efficiency of 25 dB and 10%, respectively, at the boundaries of the amplification band. The peak modeled efficiency and gain (17%, 37 dB) were obtained at a frequency of 12 GHz. Computational simulations have also revealed correlation between the instantaneous amplification bandwidth and the spectral width of cyclotron superradiant emission within the system.

  5. Nonlinear analysis of a large-orbit coaxial-waveguide cyclotron autoresonance maser amplifier

    SciTech Connect

    Ouyang Zhengbiao; Zhang Shichang

    2007-10-01

    Nonlinear simulations are presented to analyze the influences of the electron beam and the magnetic field parameters on the output power of a large-orbit coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier. It is found that the guiding-center spread of the relativistic electrons has negligible impact on the output power due to the small field change felt by the large-orbit electrons. The electron-beam velocity spread and energy spread substantially decrease the output power, because these spreads directly affect the beam-wave interaction through the Doppler term and the relativistic cyclotron frequency term in the cyclotron resonance condition. However, this adverse effect may be offset by properly tapering the operating magnetic field. The output power is sensitive to both the slope and the amplitude of the tapered magnetic field. Nonlinear simulation demonstrates the feasibility that a large-orbit coaxial-waveguide CARM amplifier can be expected to provide output power with several megawatts, ultrahigh gain, and good bandwidth in the millimeter and submillimeter wavelength ranges.

  6. Experimental and theoretical studies of a 35 GHz cyclotron autoresonance maser amplifier

    SciTech Connect

    DiRienzo, A.C.; Bekefi, G.; Chen, C.; Wurtele, J.S. )

    1991-07-01

    Experimental and theoretical studies of a cyclotron autoresonance maser (CARM) amplifier are reported. The measurements are carried out at a frequency of 35 GHz using a mildly relativistic electron beam (1.5 MeV, 130 A, 30 nsec) generated by a field emission electron gun followed by an emittance selector that removes the outer, hot electrons. Perpendicular energy is imparted to the electrons by means of a short bifilar helical wiggler. The entire system is immersed in a uniform axial magnetic field of 6--8 kG. With an input power of 17 kW at 35 GHz from a magnetron driver, the saturated power output is 12 MW in the lowest TE{sub 11} mode of a circular waveguide, corresponding to an electronic efficiency of 6.3%. The accompanying linear growth rate is 50 dB/m. When the system operates in the superradiant mode (in the absence of the magnetron driver) excitation of multiple waveguide modes is observed. A three-dimensional simulation code that has been developed to investigate the self-consistent interaction of the copropagating electromagnetic waveguide mode and the relativistic electron beam is in good agreement with the experimental observations.

  7. Design of an induction linac driven CARM (Cyclotron Auto Resonance Maser) oscillator at 250 GHz

    SciTech Connect

    Caplan, M.; Kulke, B.

    1990-01-24

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE{sub 11} mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 {mu}m corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs.

  8. CARM-klystron amplifier for accelerator applications

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Fliflet, Arne W.

    2001-05-01

    We consider the possibility of a cyclotron-autoresonance-maser (CARM) klystron configuration for accelerator applications as an alternative to the gyroklystron amplifier. The potential advantages, compared to gyroklystrons, include: 1) comparable efficiencies at lower values of the electron beam pitch ratio α, which should improve the beam quality and make the device substantially more stable against the excitation of parasitic mode, 2) operation far from cutoff, which should reduce the fields at cavity walls, allowing higher power operation, and 3) operation at lower magnetic fields for the same cyclotron harmonic number. However, there are two significant issues associated with the design of efficient, high-power CARMs. First, because of the higher value of kZ, compared to gyroklystrons, CARMs are substantially more sensitive to parallel velocity spread (pitch-angle spread). Second, conventional cavities support a variety of near-cutoff modes, which can compete with the CARM interaction. Therefore, one must consider either Bragg resonators or quasioptical cavity configurations.

  9. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  10. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  11. Gain and bandwidth of the gyro-TWT and CARM amplifiers

    SciTech Connect

    Chu, K.R.; Lin, A.T.

    1988-04-01

    Issues concerning the interpretation of gain and bandwidth from the dispersion relation are examined for the gyrotron traveling wave tube (gyro-TWT) and cyclotron autoresonance maser (CARM) amplifiers. A general method for the determination of critical current for oscillation is illustrated. Despite the broad bandwidth predicted for the CARM amplifier by the commonly employed dispersion relation, it is seen in particle simulation that single-particle interaction, rather than collective amplification, prevails over much of the band. Reasons for the discrepancy are analyzed.

  12. CARM and harmonic gyro-amplifier experiments at 17 GHz

    SciTech Connect

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.; Giguet, E. |

    1993-11-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE{sub 31} mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE{sub 11} mode is also discussed.

  13. Multimegawatt cyclotron autoresonance accelerator

    SciTech Connect

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.; Yoder, R.B.; Wang, C.

    1996-05-01

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}

  14. The 10-100 kW submillimeter gyrotron

    NASA Technical Reports Server (NTRS)

    Spira, S.; Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    High frequency high harmonic gyrotrons; cyclotron autoresonance maser (CARM); CARM amplifier schematics; MIT electron gun; and baseline design for the 140 GHz CARM amplifier are briefly reviewed. This presentation is represented by viewgraphs only.

  15. Autoresonant Excitation of Antiproton Plasmas

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Madsen, N.; Werf, D. P. van der; Carpenter, P. T.; Hurt, J. L.; Robicheaux, F.; Cesar, C. L.

    2011-01-14

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  16. Autoresonant excitation of antiproton plasmas.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Carpenter, P T; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hurt, J L; Hydomako, R; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2011-01-14

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. PMID:21405235

  17. Autoresonant beat-wave generation

    SciTech Connect

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.; Friedland, L.; Shadwick, B. A.

    2006-12-15

    Autoresonance offers an efficient and robust means for the ponderomotive excitation of nonlinear Langmuir waves by phase-locking of the plasma wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This mechanism is analyzed for the case of a cold, relativistic, underdense electron plasma, and its suitability for particle acceleration is discussed. Compared to traditional approaches, this new autoresonant scheme achieves larger accelerating electric fields for given laser intensity; the plasma wave excitation is much more robust to variations in plasma density; it is largely insensitive to the precise choice of chirp rate, provided only that it is sufficiently slow; and the suitability of the resulting plasma wave for accelerator applications is, in some respects, superior. As in previous schemes, modulational instabilities of the ionic background ultimately limit the useful interaction time, but nevertheless peak electric fields approaching the wave-breaking limit seem readily attainable. The total frequency shift required is only of the order of a few percent of the laser carrier frequency, and might be implemented with relatively little additional modification to existing systems based on chirped pulse amplification techniques, or, with somewhat greater technological effort, using a CO{sub 2} or other gas laser system.

  18. Autoresonance

    NASA Astrophysics Data System (ADS)

    Fajans, J.; Friedland, L.

    A weakly-driven pendulum cannot be strongly excited by a fixed frequency drive. The only way to strongly excite the pendulum is to use a drive whose frequency decreases with time. Feedback is often used to control the rate at which the frequency decreases. Feedback need not be employed, however, the drive frequency can simply be swept downwards. With this method, the drive strength must exceed a threshold proportional to the sweep rate raised to the 3/4 power. This threshold has been discovered only recently, and holds for a very broad class of driven nonlinear oscillators. The threshold may explain the abundance of 3:2 resonances and sparsity of 2:1 resonances observed between the orbital periods of Neptune and the Plutinos (Pluto and many of the Kuiper Belt objects), and has been extensively investigated in the Diocotron and other systems in single-species plasmas.

  19. An electrostatic autoresonant ion trap mass spectrometer

    SciTech Connect

    Ermakov, A. V.; Hinch, B. J.

    2010-01-15

    A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution {approx}60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.

  20. TG wave autoresonant control of plasma temperature

    SciTech Connect

    Kabantsev, A. A. Driscoll, C. F.

    2015-06-29

    The thermal correction term in the Trivelpiece-Gould (TG) wave’s frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either “pegged” at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up)

  1. Cosmic Masers

    ERIC Educational Resources Information Center

    Dickinson, Dale F.

    1978-01-01

    Intense radiation at microwave frequencies is emitted by certain nebular regions and stellar atmospheres. It is generated by maser action, which does for microwaves what laser action does for light. Describes in detail the types of masers and their action. (Author/MA)

  2. Theory of relativistic cyclotron masers

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Latham, P. E.; Dumbrajs, O.

    1995-07-01

    In this paper we have made an attempt to review the present status of the theory of cyclotron masers with relativistic electron beams. After discussing the basic features of electron-cyclotron radiation under conditions of normal and anomalous Doppler frequency shifts, we consider particle deceleration by a constant amplitude electromagnetic wave in a constant magnetic field using the formalism developed earlier for cyclotron autoresonance acceleration of electrons. An optimal cyclotron resonance mismatch was found that corresponds to the possibility of complete deceleration of relativistic electrons. Then, interaction of relativistic electrons with resonator fields is considered and the efficiency increase due to electron prebunching is demonstrated in a simple model. Since an efficient interaction of relativistic electrons with the large amplitude electromagnetic field of a resonator occurs at a short distance, where electrons make a small number of electron orbits, the issue of the simultaneous interaction of electrons with the field at several cyclotron harmonics is discussed. Finally, we consider deceleration of a prebunched electron beam by a traveling electromagnetic wave in a tapered magnetic field. This simple modeling is illustrated with a number of simulations of relativistic gyroklystrons and gyrotwistrons (gyrodevices in which the bunching cavity of the gyroklystron is combined with the output waveguide of the gyro-traveling-wave-tube).

  3. Kinetic Simulations of Ladder Climbing and Autoresonance of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kaminski, Erez; Barth, Ido; Fisch, Nat; Dodin, Ilya

    2015-11-01

    Quantum like Ladder Climbing and Autoresonance of classical Langmuir waves in bounded plasmas are numerically studied within a kinetic model and compared with earlier fluid model simulations. Both dynamical solutions are excited and controlled via chirped modulations of the background density that preserve the plasma wave quanta. Landau damping determines the system's maximal stable level, imposing a kinetic limit on the maximal level of the Ladder Climbing or Autoresonance dynamics. Vlasov simulations are employed to test the kinetic stability of both dynamics and to find the kinetic limit for different system's parameters. This work was Supported by NNSA grant DE274-FG52-08NA28553, DOE contract DE-AC02-09CH11466, and DTRA grant HDTRA1-11-1-0037.

  4. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration

    SciTech Connect

    LaPointe, M.A.; Yoder, R.B.; Wang, C.; Ganguly, A.K.; Hirshfield, J.L.

    1996-04-01

    First experimental results are reported on the operation of a multimegawatt 2.856 GHz cyclotron autoresonance accelerator (CARA). A 90{endash}100 kV, 2{endash}3 MW linear electron beam has had up to6.6 MW added to it in CARA, with an rf-to-beam power efficiency of up to 96{percent}. This efficiency level is larger than that reported for any fast-wave interaction between radiation and electrons, and also larger than that in normal conducting rf linear accelerators. The results obtained are in good agreement with theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  5. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    SciTech Connect

    Baker, C. J. Danielson, J. R. Hurst, N. C. Surko, C. M.

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  6. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    SciTech Connect

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  7. Anomalous autoresonance threshold for chirped-driven Korteweg-de-Vries waves.

    PubMed

    Friedland, L; Shagalov, A G; Batalov, S V

    2015-10-01

    Large amplitude traveling waves of the Korteweg-de-Vries (KdV) equation can be excited and controlled by a chirped frequency driving perturbation. The process involves capturing the wave into autoresonance (a continuous nonlinear synchronization) with the drive by passage through the linear resonance in the problem. The transition to autoresonance has a sharp threshold on the driving amplitude. In all previously studied autoresonant problems the threshold was found via a weakly nonlinear theory and scaled as α(3/4),α being the driving frequency chirp rate. It is shown that this scaling is violated in a long wavelength KdV limit because of the increased role of the nonlinearity in the problem. A fully nonlinear theory describing the phenomenon and applicable to all wavelengths is developed. PMID:26565321

  8. Hydrogen-Maser/Ruby-Maser/Quartz-Crystal Oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John

    1994-01-01

    Highly stable oscillator suitable for use as 100-MHz frequency standard consists of 100-MHz hydrogen maser combined with double-phase-locked-loop receiver. Generates 100-MHz signal with reduced noise. Contains 100-MHz voltage-controlled quartz-crystal oscillator (VCO) locked in phase to superconducting-cavity maser oscillator (SCMO). SCMO, locks in phase to hydrogen maser, phase-locking receiver and its SCMO/ VCO combination to hydrogen maser. Aspects of SCMO described in previous reports, including "Performance of Superconducting-Cavity Maser" (NPO-18175), NASA Tech Briefs, Vol. 15, No. 6. Performances of component oscillators complement each other.

  9. Maser pulse emission mechanisms

    NASA Astrophysics Data System (ADS)

    Melrose, D. B.

    Polar cap models of coherent radio emission mechanisms in pulsars are reviewed, noting deficiencies present in models with curvature emission due to bunches and the possibilities of descriptions based on maser processes. The lack of a no-velocity dispersion theory of bunching radiation is noted to make assumptions based on uniform particle velocities questionable. Streaming instability-produced bunching is also subject to inaccuracy when the bunching occurs at distances of over one stellar radius, or when the growth velocity is insufficient. Conditions are defined for successful bunching through particle trapping by waves, and it is mentioned that models with this mechanism offer predictions which do not match data from observations. Similar objections are found with self-bunching, plasma emission, and klystron mechanisms. Maser-emission models are concluded to avoid the problems associated with differences between observed and predicted dispersion delays found in other types of models.

  10. Maser science at Tidbinbilla

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Lovell, Jim

    2007-03-01

    The 70 m antenna at Canberra Deep Space Communication Complex (Tidbinbilla) is the largest and most sensitive dish in the southern hemisphere, working at 1, 3, 13 and 18 cm, and as such is in high demand from astronomers both in Australia and overseas. In this paper we present the current status of the single dish spectroscopy system and highlight some recent results in maser science.

  11. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.

    PubMed

    Babitsky, V I; Astashev, V K; Kalashnikov, A N

    2004-04-01

    Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The

  12. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    SciTech Connect

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  13. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  14. Passive maser development at NRL

    NASA Technical Reports Server (NTRS)

    White, J. D.; Frank, A.; Folen, V.

    1981-01-01

    The application of passive hydrogen masers to satellites was investigated. The NRL maser is of compact design suitable for the space environment. It is based on a dielectrically loaded sapphire cavity and uses a computer optimized set of four shields. The servo design is a phase sensitive method which directly measures the phase dispersion of the interrogating signal as it passes through the cavity.

  15. Accurate maser positions for MALT-45

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher; Bains, Indra; Voronkov, Maxim; Lo, Nadia; Jones, Paul; Muller, Erik; Cunningham, Maria; Burton, Michael; Brooks, Kate; Green, James; Fuller, Gary; Barnes, Peter; Ellingsen, Simon; Urquhart, James; Morgan, Larry; Rowell, Gavin; Walsh, Andrew; Loenen, Edo; Baan, Willem; Hill, Tracey; Purcell, Cormac; Breen, Shari; Peretto, Nicolas; Jackson, James; Lowe, Vicki; Longmore, Steven

    2013-10-01

    MALT-45 is an untargeted survey, mapping the Galactic plane in CS (1-0), Class I methanol masers, SiO masers and thermal emission, and high frequency continuum emission. After obtaining images from the survey, a number of masers were detected, but without accurate positions. This project seeks to resolve each maser and its environment, with the ultimate goal of placing the Class I methanol maser into a timeline of high mass star formation.

  16. CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features.

    PubMed

    Elakoum, Rania; Gauchotte, Guillaume; Oussalah, Abderrahim; Wissler, Marie-Pierre; Clément-Duchêne, Christelle; Vignaud, Jean-Michel; Guéant, Jean-Louis; Namour, Farès

    2014-02-01

    CARM1 and PRMT1 are 2 Protein Arginine Methyl Transferases (PRMT) dysregulated in cancer. CARM1 function is contradictory and depicted as facilitating proliferation or differentiation. PRMT1 is required for cell proliferation. CARM1 and PRMT1 cooperate for gene regulation. We report that CARM1 and PRMT1 are significantly overexpressed in 60 patients with Non-Small Cell Lung Carcinomas (NSCLC). CARM1 and PRMT1 correlated in healthy but not tumor tissue. Their levels of expression in tumor tissue were proportional to their levels of expression in the counterpart healthy tissue. Only CARM1 expression was found to be correlated with tumor differentiation and neither CARM1 nor PRMT1 expression was correlated with survival. Accordingly, CARM1 and PRMT1 are overexpressed in 2 NSCLC cell lines, A549 and H1299. Targeting PRMT1 with siRNA reduced proliferation, by decreasing cell growth and inhibiting soft agar colony formation, and promoted differentiation, by increasing the epithelial markers cytokeratin 7 and 8 and decreasing Neuromedin B receptor, which binds a mitogenic factor. siCARM1 yielded similar consequences but the conditions with siCARM1 reflected inhibition of both CARM1 and PRMT1. Together these results suggest that CARM1 and PRMT1 are involved in proliferation in lung cancer with no hierarchy of one protein over the other. The fact that CARM1 targeting suppresses PRMT1 in addition to CARM1 reinforces the functional importance of CARM1/PRMT1 interaction. PMID:24211191

  17. Evaluation of modern hydrogen masers

    NASA Technical Reports Server (NTRS)

    Kirk, A.; Kuhnle, P.; Sydnor, R. L.

    1983-01-01

    The masers were tested for environmental sensitivities (magnetic field, temperature, barometric pressure) and long-term aging. Allan variance runs of 72 days were made in order to attain averaging times from several seconds to 1 million seconds. Auto- and cross-correlation techniques were used to determine the effects of uncontrolled parameters such as humidity. Three-cornered-hat and other data reduction techniques were used to determine the characteristics of the individual masers.

  18. Autoresonant Transition in the Presence of Noise and Self-Fields

    SciTech Connect

    Barth, I.; Friedland, L.; Sarid, E.; Shagalov, A. G.

    2009-10-09

    A sharp threshold for resonant capture of an ensemble of trapped particles driven by chirped frequency oscillations is analyzed. It is shown that at small temperatures T, the capture probability versus driving amplitude is a smoothed step function with the step location and width scaling as alpha{sup 3/4} (alpha being the chirp rate) and (alphaT){sup 1/2}, respectively. Strong repulsive self-fields reduce the width of the threshold considerably, as the ensemble forms a localized autoresonant macroparticle.

  19. Limited angle C-arm tomosynthesis reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying

    2015-03-01

    In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.

  20. Ray tracing reconstruction investigation for C-arm tomosynthesis

    NASA Astrophysics Data System (ADS)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  1. A commercial hydrogen maser: Progress report

    NASA Technical Reports Server (NTRS)

    Dials, M. A.; Wert, L.

    1983-01-01

    The design of the new small passive hydrogen maser prototype and some anticipated design changes between the version reported and the commercial versions are discussed. Specifications of the commercial hydrogen maser and performance data of the prototype are given.

  2. Astrophysical masers; Proceedings of the Conference, Arlington, VA, Mar. 9-11, 1992

    NASA Technical Reports Server (NTRS)

    Clegg, Andrew W. (Editor); Nedoluha, Gerald E. (Editor)

    1993-01-01

    Various papers on astrophysical masers are presented. The general topics addressed include: theory, maser surveys, extragalactic masers, masers in star-forming regions (general), OH masers in star-forming regions, water masers in star-forming regions, methanol masers in star-forming regions, proper motions, scattering, variability, circumstellar masers (general), circumstellar OH masers, circumstellar water masers, circumstellar SiO masers, and solar system masers.

  3. Analysis of NTSC's Timekeeping Hydrogen Masers

    NASA Astrophysics Data System (ADS)

    Song, H. J.; Dong, S. W.; Wang, Z. M.; Qu, L. L.; Jing, Y. J.; Li, W.

    2015-11-01

    In this article, the hydrogen masers were tested in NTSC (National Time Service Center) keeping time laboratory. In order to avoid the impact of larger noise of caesium atomic clocks, TA(k) or UTC(k) was not used as reference, and four hydrogen masers were mutually referred and tested. The frequency stabilities of hydrogen masers were analyzed by using four-cornered hat method, and the Allan standard deviation of single hydrogen maser was estimated in different sampling time. Then according to the characteristics of hydrogen masers, by removing the trend term, excluding outliers, and smoothing data with mathematical methods to separate the Gaussian noise of hydrogen masers, and finally through the normal Kolmogorov-Smirnov test, a single hydrogen maser's Gaussian noise has been estimated.

  4. Characteristics of advanced hydrogen maser frequency standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1973-01-01

    In house research and development at Goddard Space Flight Center to provide advanced frequency and time standards for the most demanding applications is concentrated primarily in field operable atomic hydrogen masers. Some of the most important goals for the new maser designs have been improved long and short term stability, elimination of the need for auto tuning, increased maser oscillation level, improved hydrogen economy, increased operational life, minimization of operator control or monitoring, improvement in magnetic isolation or sensitivity, and reduction in size and weight. New design concepts which have been incorporated in these masers to achieve these goals are described. The basic maser assemblies and control systems have recently been completed; the masers are oscillating; and operational testing has begun. Data illustrating the improvements in maser performance was available and presented.

  5. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.; Wang, Changbiao

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDS and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}

  6. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    LaPointe, M. A.; Hirshfield, J. L.; Wang Changbiao

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDS and other possible environmental applications.

  7. Robust autoresonant excitation in the plasma beat-waveaccelerator: A theoretical study

    SciTech Connect

    Lindberg, R.R.; Charman, A.E.; Wurtele, J.S.

    2004-11-03

    A modified version of the Plasma Beat-Wave Accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the well-known limitations of previous approaches, namely relativistic detuning and nonlinear modulation or other non-uniformity or non-stationarity in the driven Langmuir wave amplitude, and sensitivity to frequency mismatch due to measurement uncertainties and density fluctuations and inhomogeneities. As in previous schemes, modulational instabilities of the ionic background ultimately limit the useful interaction time, but nevertheless peak electric fields at or approaching the wave-breaking limit seem readily attainable. Compared to traditional approaches, the autoresonant scheme achieves larger accelerating electric fields for given laser intensity, or comparable fields for less laser power; the plasma wave excitation is much more robust to variations or uncertainties in plasma density; it is largely insensitive to the precise choice of chirp rate, provided only that chirping is sufficiently slow; and the quality and uniformity of the resulting plasma wave and its suitability for accelerator applications may be superior. In underdense plasmas, the total frequency shift required is only of the order of a few percent of the laser carrier frequency, and for possible experimental proofs-of-principle, the scheme might be implemented with relatively little additional modification to existing systems based on either solid-state amplifiers and Chirped Pulse Amplification techniques, or, with somewhat greater technological effort, using a CO{sub 2} or other gas laser system.

  8. Intraoperative positioning of mobile C-arms using artificial fluoroscopy

    NASA Astrophysics Data System (ADS)

    Dressel, Philipp; Wang, Lejing; Kutter, Oliver; Traub, Joerg; Heining, Sandro-Michael; Navab, Nassir

    2010-02-01

    In trauma and orthopedic surgery, imaging through X-ray fluoroscopy with C-arms is ubiquitous. This leads to an increase in ionizing radiation applied to patient and clinical staff. Placing these devices in the desired position to visualize a region of interest is a challenging task, requiring both skill of the operator and numerous X-rays for guidance. We propose an extension to C-arms for which position data is available that provides the surgeon with so called artificial fluoroscopy. This is achieved by computing digitally reconstructed radiographs (DRRs) from pre- or intraoperative CT data. The approach is based on C-arm motion estimation, for which we employ a Camera Augmented Mobile C-arm (CAMC) system, and a rigid registration of the patient to the CT data. Using this information we are able to generate DRRs and simulate fluoroscopic images. For positioning tasks, this system appears almost exactly like conventional fluoroscopy, however simulating the images from the CT data in realtime as the C-arm is moved without the application of ionizing radiation. Furthermore, preoperative planning can be done on the CT data and then visualized during positioning, e.g. defining drilling axes for pedicle approach techniques. Since our method does not require external tracking it is suitable for deployment in clinical environments and day-to-day routine. An experiment with six drillings into a lumbar spine phantom showed reproducible accuracy in positioning the C-arm, ranging from 1.1 mm to 4.1 mm deviation of marker points on the phantom compared in real and virtual images.

  9. Accurate water maser positions from HOPS

    NASA Astrophysics Data System (ADS)

    Walsh, Andrew J.; Purcell, Cormac R.; Longmore, Steven N.; Breen, Shari L.; Green, James A.; Harvey-Smith, Lisa; Jordan, Christopher H.; Macpherson, Christopher

    2014-08-01

    We report on high spatial resolution water maser observations, using the Australia Telescope Compact Array, towards water maser sites previously identified in the H2O southern Galactic Plane Survey (HOPS). Of the 540 masers identified in the single-dish observations of Walsh et al., we detect emission in all but 31 fields. We report on 2790 spectral features (maser spots), with brightnesses ranging from 0.06 to 576 Jy and with velocities ranging from -238.5 to +300.5 km s-1. These spectral features are grouped into 631 maser sites. We have compared the positions of these sites to the literature to associate the sites with astrophysical objects. We identify 433 (69 per cent) with star formation, 121 (19 per cent) with evolved stars and 77 (12 per cent) as unknown. We find that maser sites associated with evolved stars tend to have more maser spots and have smaller angular sizes than those associated with star formation. We present evidence that maser sites associated with evolved stars show an increased likelihood of having a velocity range between 15 and 35 km s-1 compared to other maser sites. Of the 31 non-detections, we conclude they were not detected due to intrinsic variability and confirm previous results showing that such variable masers tend to be weaker and have simpler spectra with fewer peaks.

  10. Pumping the stellar hydroxyl maser

    NASA Technical Reports Server (NTRS)

    Dickinson, Dale F.

    1987-01-01

    IRAS far-IR flux data for 163 OH maser stars were analyzed to quantify the contributions 35 and 53 microns inversions make to pumping of the hydroxyl maser. The 35 microns transition is from the 3,3 ground state to the 1,5 rotationally excited level and subsequent decay; the 53 microns transition is a change from the ground state to the 1,3 excited level and relaxation. The stars examined included Mira, short period semi-regular and long-period semi-regular variables. Both transition lines had rough parity in contributing to the approximately 8 percent pumping efficiency at 1612 MHz. However, the individual contributions of the lines could not be determined for the stellar population studied.

  11. Interstellar A-type methanol masers

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Lou, G. F.

    1990-02-01

    The formation conditions for A-type methanol masers are discussed. The correlation between A-type masers and external radiation fields is determined, with emphasis on the energy levels of A-type methanol and brightness temperature. Radiative transfer equations and statistical equilibrium are solved using a large velocity gradient model and the escape probability model. It is demonstrated that the 9(2)-10(1)A+ emission in W3(OH) and 7(0)-6(1)A in SgrB2 are masers, as discovered previously. The formation of the first type of masers requires pumping from an external radiation field, while the second type might be excited in the absence of an external radiation field. It is also pointed out that according to calculations there are A-type maser series similar to E-type methanol maser series of J2-J1E.

  12. On the classification and list of transitions of methanol masers

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.

    A classification of methanol masers according to the type of maser sources is suggested. The list of candidates to be methanol masering transitions is compiled on the basis of general regularities analysis combined with results of statistical equilibrium calculations.

  13. Angular wander measurements of maser clusters

    NASA Astrophysics Data System (ADS)

    Mutel, Robert L.

    Angular wander measurements of the relative positions of closely spaced maser features provides a powerful probe of interstellar turbulence associated with regions of star formation. Differential angular wander is easily measured in a maser complex and can strongly distinguish between shallow and steep power-law turbulence. The best candidates for such measurements appear to be the 6 and 12 GHz type II methanol masers.

  14. CT imaging with a mobile C-arm prototype

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Tubbs, David; Langille, Vinton; Kalya, Prabhanjana; Smith, Brady; Cherone, Rocco

    2008-03-01

    Mobile X-ray imagery is an omnipresent tool in conventional musculoskeletal and soft tissue applications. The next generation of mobile C-arm systems can provide clinicians of minimally-invasive surgery and pain management procedures with both real-time high-resolution fluoroscopy and intra-operative CT imaging modalities. In this study, we research two C-arm CT experimental system configurations and evaluate their imaging capabilities. In a non-destructive evaluation configuration, the X-ray Tube - Detector assembly is stationary while an imaging object is placed on a rotating table. In a medical imaging configuration, the C-arm gantry moves around the patient and the table. In our research setting, we connect the participating devices through a Mobile X-Ray Imaging Environment known as MOXIE. MOXIE is a set of software applications for internal research at GE Healthcare - Surgery and used to examine imaging performance of experimental systems. Anthropomorphic phantom volume renderings and orthogonal slices of reconstructed images are obtained and displayed. The experimental C-arm CT results show CT-like image quality that may be suitable for interventional procedures, real-time data management, and, therefore, have great potential for effective use on the clinical floor.

  15. Water Masers in the Andromeda Galaxy. II. Where Do Masers Arise?

    NASA Astrophysics Data System (ADS)

    Amiri, Nikta; Darling, Jeremy

    2016-08-01

    We present a comparative multiwavelength analysis of water-maser-emitting regions and non-maser-emitting luminous 24 μm star-forming regions in the Andromeda Galaxy (M31) to identify the sites most likely to produce luminous water masers useful for astrometry and proper motion studies. Included in the analysis are Spitzer 24 μm photometry, Herschel 70 and 160 μm photometry, Hα emission, dust temperature, and star-formation rate. We find significant differences between the maser-emitting and non-maser-emitting regions: water-maser-emitting regions tend to be more infrared-luminous and show higher star-formation rates. The five water masers in M31 are consistent with being analogs of water masers in Galactic star-forming regions and represent the high-luminosity tail of a larger (and as yet undetected) population. Most regions likely to produce water masers bright enough for proper motion measurements using current facilities have already been surveyed, but we suggest three ways to detect additional water masers in M31: (1) reobserve the most luminous mid- or far-infrared sources with higher sensitivity than was used in the Green Bank Telescope survey; (2) observe early-stage star-forming regions selected by millimeter continuum that have not already been selected by their 24 μm emission, and (3) reobserve the most luminous mid- or far-infrared sources and rely on maser variability for new detections.

  16. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  17. Cyclotron Autoresonance Accelerator for Electron Beam Dry Scrubbing of Flue Gases

    NASA Astrophysics Data System (ADS)

    Hirshfield, J. L.; Wang, Changbiao

    1997-05-01

    A novel, self-scanning, highly-efficient electron beam source is proposed for electron beam dry scrubbing (EBDS) of flue gases. The beam is prepared using cyclotron autoresonance acceleration (CARA),(C. Wang and J. L. Hirshfield, Phys. Rev. E 51), 2456 (1995); B. Hafizi, P. Sprangle , and J. L. Hirshfield, Phys. Rev. E 50, 3077 (1994). which has already demonstrated an rf efficiency of above 90% experimentally.(M. A. LaPointe, R. B. Yoder, C. Wang, A. K. Ganguly, and J. L. Hirshfield, Phys. Rev. Lett. 76), 2718 (1996). Simulations were done for a 250 kV, 25 A warm beam which is accelerated in a 130 cm CARA using an rf power of 21 MW at 2.856 GHz. The accelerated beam has an energy of up to 1.0 MV, corresponding to 98% acceleration efficiency. The beam can scan across the escaping flue gas with a conical angle of about 11 degrees after a 60-cm down-tapered-to-zero magnetic field. The conical scan angle is adjustable by changing the slope of the tapered magnetic field.

  18. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  19. Excitation of millimeter and submillimeter water masers

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Melnick, Gary J.

    1991-01-01

    The excitation of maser emission in millimeter and submillimeter transitions of interstellar and circumstellar water is considered. An escape probability method is used to determine the equilibrium populations in 349 rotational states of both ortho- and para-water under varying conditions of gas temperature, density, water abundance, and radiation field. It is shown that, under those conditions believed to prevail around late-type stars and within star-forming regions, strong millimeter and submillimeter water maser emission can be generated by collisional excitations by H2. Several maser transitions can have strengths close to that of the 22 GHz line. The water maser line which can be observed from mountaintop facilities and those which will require air- or space-borne platforms are indicated. The exact portion of parameter space in which each maser transition exhibits peak emission is shown.

  20. New OH masers at 13 441 MHz

    NASA Astrophysics Data System (ADS)

    Caswell, J. L.

    2004-07-01

    The Parkes radio telescope has been used to study maser emission from the 13441-MHz transition of highly excited OH. The targets were 56 catalogued sites of 6035-MHz maser emission. Eight 13441-MHz maser sites were detected, six of them new and two that had previously been reported. This more than doubles the number now known to 11. At every 13441-MHz maser site, spectral features occur as right- and left-hand circularly polarized matched pairs, with small, but mostly significant, frequency separation. This is attributed to the Zeeman effect in magnetic fields of a few mG. Some of the 13441-MHz maser sites show features at several different velocities. All of the 13441-MHz maser features have 6035-MHz counterparts that closely correspond in velocity. At three sites, features of 13441-MHz emission rival the intensities of their 6035-MHz counterparts; at the other sites, features are weaker than at 6035 MHz by factors of between 3 and 50. Upper limits at some sites searched can be set more than 2 orders of magnitude weaker than 6035-MHz emission. The detection statistics provide unique opportunities to test recent advances in maser modelling. A search for the 13434-MHz transition towards the same 56 targets yielded no detections.

  1. FIRST INTERSTELLAR HCO{sup +} MASER

    SciTech Connect

    Hakobian, Nicholas S.; Crutcher, Richard M. E-mail: crutcher@illinois.edu

    2012-10-10

    A previously unseen maser in the J = 1-0 transition of HCO{sup +} has been detected by the Combined Array for Millimeter-wave Astronomy (CARMA). A subarcsecond map was produced of the 2 arcmin{sup 2} region around DR21(OH), which has had previous detections of OH and methanol masers. This new object has remained undetected until now due to its extremely compact size. The object has a brightness temperature of >2500 K and an FWHM linewidth of 0.497 km s{sup -1}, both of which suggest non-thermal line emission consistent with an unsaturated maser. This object coincides in position and velocity with the methanol maser named DR21(OH)-1 by Plambeck and Menten. No compact HCO{sup +} emission was present in the CARMA data toward the other methanol masers described in that Letter. These new results support the theory introduced in Plambeck and Menten that these masers likely arise from strong outflows interacting with low mass, high density pockets of molecular gas. This is further supported by recent observations of a CO outflow by Zapata et al. that traces the outflow edges and confirms that the maser position lies along the edge of the outflow where interaction with molecular tracers can occur.

  2. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  3. Hydrogen maser development at Laval University

    NASA Technical Reports Server (NTRS)

    Vanier, J.; Racine, G.; Kunski, R.; Picard, M.

    1981-01-01

    The physical construction of two hydrogen masers is described and results of measurements made on one of the masers are given. These include: cavity Q, thermal time constant, line Q, signal power output, magnetic shielding factor. Preliminary results indicate that the frequency stability will be mainly affected by the thermal of the cavity. The magnetic field and the barometric fluctuations should not affect the maser at the stability level above a few parts in 10 to the 15th power, which is the goal for averaging times of several hours.

  4. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  5. Modeling and spatial structure of interstellar masers

    NASA Astrophysics Data System (ADS)

    Voronkov, Maxim A.

    2002-09-01

    This thesis presents a study of masers on the methanol, hydroxyl, and water vapor molecules seen in star-forming regions. A modeling of such masers is a complex numerical task where the radiation transfer equation is coupled with the system describing the balance of the level populations. The general method to solve such non-LTE multiline problem is a Monte Carlo method, the algorithm of which was described by Bernes (1979). The latter algorithm appears to account for the radiation field incorrectly. A modification of the Monte-Carlo method which is based on the averaging of formal solutions of the radiation transfer equation is proposed. This method was tested on two models of E-methanol masers in the limiting cases of the hot gas and the hot external radiation, which are probably corresponded to Class I and Class II methanol masers. Another model of the Class II methanol masers developed by Sobolev and Deguchi (1994) involve the pumping through two first torsionally excited states of the methanol molecule. Among other transitions the model predicts a weak maser at 44.9 GHz. The search for this transition towards brightest Class II methanol maser sources was undertaken to confirm the model. The line was detected in W3(OH) and probably NGC 6334F. The arguments in favor of weak masing in W3(OH) is given. The observational studies of interstellar masers are mainly devoted to the interferometric (VLBI) experiments. In this thesis the first space-VLBI observations of OH maser (1665/1667 MHz) were reported. The study with high angular resolution allows us to put a constraint on the interstellar scattering in the direction of the maser OH34.26+0.15. It appears to be about one order of magnitude lower than that obtained using the pulsar data. This fact gives rise to an idea that there is large scale variations in the spatial distribution of the scattering material. In this thesis the detailed study of the star-forming region GL2789 was performed. Using the Medicina 32-m

  6. C-arm rotation as a method for reducing peak skin dose in interventional cardiology

    PubMed Central

    Pasciak, Alexander S; Bourgeois, Austin C; Jones, A Kyle

    2014-01-01

    Purpose Prolonged interventional cardiology (IC) procedures may result in radiation-induced skin injury, a potentially preventable cause of patient morbidity. Rotating the C-arm during an IC procedure may reduce this risk, although the methods by which the technique can be practically applied remains unexplored. A previous study demonstrated that C-arm rotation often increases peak skin dose (PSD) in interventional radiology procedures. The purpose of this study was to determine whether C-arm rotation reduces the PSD in IC procedures and, if so, under what circumstances. Materials and methods Simulations were performed using a numerical ray-tracing algorithm to analyse the effect of C-arm rotation on PSD across a range of patient sizes, C-arm configurations and procedure types. Specific data from modern fluoroscopes and patient dimensions were used as inputs to the simulations. Results In many cases, modest C-arm rotation angles completely eliminated overlap between X-ray field sites on the skin. When overlap remained, PSD increases were generally small. One exception was craniocaudal rotation, which tended to increase PSD. C-arm rotation was most effective for large patients and small X-ray field sizes. Small patients may not benefit from C-arm rotation as a procedural modification. The use of a prophylactic method where the C-arm was rotated between small opposing oblique angles was effective in reducing PSD. Conclusions With the exception of rotation to steep craniocaudal angles, rotating the C-arm reduces PSD in IC procedures when used as either a procedural modification or a prophylactic strategy. Tight collimation increases the benefit of C-arm rotation. PMID:25568803

  7. I-VLBI of molecular masers

    NASA Astrophysics Data System (ADS)

    Moscadelli, L.; Porceddu, I.

    Intense maser emissions of several molecular species (OH, CH3OH, H2O, SiO) are widely observed toward both star-formation regions and late-type stars. VLBI observations of molecular masers offer an unique opportunity to study the kinematics of the circumstellar gas in both the earliest and latest evolution phases of a star. The forthcoming Sardinia Radio Telescope (SRT) together with the other two Italian antennae of Medicina and Noto, will in the near future constitute a three-element VLBI array of sufficiently high sensitivity and angular resolution to allow one to map the strongest maser lines of CH3OH (at 6.7 GHz), H2O (at 22.2 GHz) and SiO (at 43 GHz). The Italian VLBI network (I-VLBI) can be competitive in the observation of molecular masers provided that time flexibility and frequency agility will be granted.

  8. Water masers in the Saturnian system

    NASA Astrophysics Data System (ADS)

    Pogrebenko, S. V.; Gurvits, L. I.; Elitzur, M.; Cosmovici, C. B.; Avruch, I. M.; Montebugnoli, S.; Salerno, E.; Pluchino, S.; Maccaferri, G.; Mujunen, A.; Ritakari, J.; Wagner, J.; Molera, G.; Uunila, M.

    2009-02-01

    Context: The presence of water has long been seen as a key condition for life in planetary environments. The Cassini spacecraft discovered water vapour in the Saturnian system by detecting absorption of UV emission from a background star. Investigating other possible manifestations of water is essential, one of which, provided physical conditions are suitable, is maser emission. Aims: We report detection of water maser emission at 22 GHz associated with several Kronian satellites using Earth-based radio telescopes. Methods: We searched for water maser emission in the Saturnian system in an observing campaign using the Metsähovi and Medicina radio telescopes. Spectral data were Doppler-corrected over orbital phase for the Saturnian satellites, yielding detections of water maser emission associated with the moons Hyperion, Titan, Enceladus, and Atlas. Results: The detection of Saturnian water molecules by remote astronomical observation can be combined with in situ spacecraft measurements to harmonise the physical model of the Saturnian system.

  9. Cosmic masers: yesterday, today, and tomorrow.

    NASA Astrophysics Data System (ADS)

    Strel'Nitskij, V. S.

    This article is not a systematic review of the problem of cosmic masers. Its first section (Yesterday) is a memory about Pikel'ner and Shklovsky on the background of the problem which occurred to the author with these two contributing people. In the section Today a series of current problems is briefly considered connected with cosmic masers. In the section Tomorrow some directions of future research are noted.

  10. Operational parameters for the superconducting cavity maser

    NASA Technical Reports Server (NTRS)

    Wang, R. T.; Dick, G. J.; Strayer, D. M.

    1989-01-01

    Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times.

  11. Hydrogen masers and cesium fountains at NRC

    NASA Technical Reports Server (NTRS)

    Boulanger, J.-S.; Morris, D.; Douglas, R. J.; Gagne, M.-C.

    1994-01-01

    The NRC masers H-3 and H-4 have been operating since June 1993 with cavity servo control. These low-flux active H masers are showing stabilities of about 10(exp -15) from 1 hour to several days. Stability results are presented, and the current and planned uses of the masers are discussed. A cesium fountain primary frequency standard project has been started at NRC. Trapping and launching experiments with the goal of 7 m/s launches are beginning. We discuss our plans for a local oscillator and servo that exploit the pulsed aspect of cesium fountain standards, and meet the challenge of 10(exp -14) tau(exp -1/2) stability without requiring masers. At best, we expect to run this frequency standard initially for periods of hours each working day rather than continuously for years, and so frequency transfer to outside laboratories has been carefully considered. We conclude that masers (or other even better secondary clocks) are required to exploit this potential accuracy of the cesium fountain. We present and discuss our conclusion that it is feasible to transfer frequency in this way with a transfer-induced uncertainty of less than 10(exp -15), even in the presence of maser frequency drift and random walk noise.

  12. Masers in GLIMPSE Extended Green Objects (EGOs)

    NASA Astrophysics Data System (ADS)

    Cyganowski, Claudia J.; Brogan, Crystal L.; Hunter, Todd R.; Churchwell, Ed; Koda, Jin; Rosolowsky, Erik; Towers, Sarah; Whitney, Barb; Zhang, Qizhou

    2012-07-01

    Large-scale Spitzer surveys of the Galactic plane have yielded a new diagnostic for massive young stellar objects (MYSOs) that are actively accreting and driving outflows: extended emission in the IRAC 4.5 μm band, believed to trace shocked molecular gas. Maser studies of these extended 4.5 μm sources (called EGOs, Extended Green Objects, for the common coding of 3-color IRAC images) have been and remain crucial for understanding the nature of EGOs. High detection rates in VLA CH3OH maser surveys provided the first proof that EGOs were indeed MYSOs driving outflows; our recent Nobeyama 45-m survey of northern EGOs shows that the majority are associated with H2O masers. Maser studies of EGOs also provide important constraints for the longstanding goal of a maser evolutionary sequence for MYSOs, particularly in combination with high resolution (sub)mm data. New SMA results show that Class I methanol masers can be excited by both young (hot core) and evolved (ultracompact HII region) sources within the same massive star-forming region.

  13. Performance of Soviet and US hydrogen masers

    NASA Technical Reports Server (NTRS)

    Uljanov, Adolph A.; Demidov, Nikolai A.; Mattison, Edward M.; Vessot, Robert F. C.; Allan, David W.; Winkler, Gernot M. R.

    1990-01-01

    The frequencies of Soviet- and U.S.-built hydrogen masers located at the Smithsonian Astrophysical Observatory and at the United States Naval Observatory (USNO) were compared with each other and, via Global Positioning System (GPS) common-view measurements, with three primary frequency-reference scales. The best masers were found to have fractional frequency stabilities as low as 6 times 10(exp -16) for averaging times of approximately 10(exp 4) s. Members of the USNO maser ensemble provided frequency prediction better than 1 times 10(exp 14) for periods up to a few weeks. The frequency residuals of these masers, after removal of frequency drift and rate of change of drift, had stabilities of a few parts in 10(exp -15), with serveral masers achieving residual stabilities well below 1 times 10(exp -15) for intervals from 10(exp 5)s to 2 times 10(exp 6)s. The fractional frequency drifts of the 13 masers studied, relative to the primary reference standards, ranged from -0.2 times 10(exp -15)/day to +9.6 times 10(exp -15)/day.

  14. A TR-FRET-based functional assay for screening activators of CARM1.

    PubMed

    Zeng, Hao; Wu, Jiacai; Bedford, Mark T; Sbardella, Gianluca; Hoffmann, F Michael; Bi, Kun; Xu, Wei

    2013-05-10

    Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions. PMID:23585185

  15. 37 GHz Methanol Masers : Horsemen of the Apocalypse for the Class II Methanol Maser Phase?

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  16. Widespread strong methanol masers near H II regions

    NASA Astrophysics Data System (ADS)

    Norris, R. P.; Caswell, J. L.; Gardner, F. F.; Wellington, K. J.

    1987-10-01

    A strong (up to 1000 Jy) methanol maser transition has recently been discovered by Batrla et al. (1987). Here a search of southern sources for masers in this transition is reported, with the aim of establishing how common the masers are, where they might be found, and the extent to which their observation might be hindered by interference. Methanol masers were found in 25 of the 106 star-formation regions searched, predominantly those with associated OH masers. A number of other types of object were searched, including OH/IR stars and OH/H2O megamaser galaxies, but no methanol masers were detected in any of these.

  17. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    SciTech Connect

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor

    2011-10-15

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 {+-} 0.44 mm (Mean {+-} STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 {+-} 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  18. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  19. Hydrogen Maser Clock (HMC) Experiment

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.

    1997-01-01

    The Hydrogen Maser Clock (HMC) project was originally conceived to fly on a reflight of the European Space Agency (ESA) free flying platform, the European Recoverable Carrier (EURECA) that had been launched into space and recovered by NASA's Space Transportation System (STS). A Phase B study for operation of HMC as one of the twelve EURECA payload components was begun in July 1991, and completed a year later. Phase C/D of HMC began in August 1992 and continued into early 1995. At that time ESA decided not to refly EURECA, leaving HMC without access to space. Approximately 80% of the flight support electronics are presently operating the HMC's physics package in a vacuum tank at the Smithsonian Astrophysical Observatory, and are now considered to be well-tested flight electronics. The package will continue to be operated until the end of 1997 or until a flight opportunity becomes avaiable. Appendices: letters and trip report; proceedings of the symposium on frequency standards and metrology; milli-celsius-stability thermal control for an orbiting frequency standard.

  20. Class i Methanol Maser Conditions Near SNRS

    NASA Astrophysics Data System (ADS)

    McEwen, Bridget C.; Pihlström, Ylva M.; Sjouwerman, Loránt O.

    2015-06-01

    We present results from calculations of the physical conditions necessary for the occurrence of 36.169 (4-1-30 E), 44.070 (70-61 A^+), 84.521 (5-1-40 E), and 95.169 (80-71 A^+) GHz methanol (CH_3OH) maser emission lines near supernova remnants (SNRs), using the MOLPOP-CEP program. The calculations show that given a sufficient methanol abundance, methanol maser emission arises over a wide range of densities and temperatures, with optimal conditions at n˜ 10^4-10^6 cm-3 and T>60 K. The 36~GHz and 44~GHz transitions display more significant maser optical depths compared to the 84~GHz and 95~GHz transitions over the majority of physical conditions. It is also shown that line ratios are an important and applicable probe of the gas conditions. The line ratio changes are largely a result of the E-type transitions becoming quenched faster at increasing densities. The modeling results will be discussed using recent observations of CH_3OH masers near the SNRs G1.4-0.1, W28, and Sgr A East and used as a diagnostic tool to estimate densities and temperatures of the regions in which the CH_3OH masers are observed.

  1. Ammonia Masers in W51: Interferometric Studies

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Clarke, T. E.; Boboltz, D. A.; Henkel, C.; Mauersberger, R.; Wootten, H. A.; Broullet, N.; Baudry, A.; Despois, D.

    2014-01-01

    The galactic continuum sources W51D and W51e1e2 have been long recognized as remarkable centers of ammonia maser phenomena in the centimeter wavelength range. Henkel et al. (2013 A&A 549, A90) have measured 19 masers, of which 13 are newly found for W51-IRS2, otherwise known as W51D. These arise from inversion-rotation transitions. The single dish data were taken with the Effelsberg 100-m radio telescope of the MPIfR with an angular resolution of 43 arc seconds. The conclusion that these lines were caused by maser action is based on: (1) time variability, and (2) narrow linewidths. In addition, some lines showed systematic velocity variations. High brightness temperatures and compact sizes are needed to conclusively prove maser action. We have measured a sub-set of these ammonia lines with the C array of the Jansky-Very Large Array of the National Radio Astronomy Observatory in June 2013 with an angular resolution of better than 1 arc second. Source sizes, positions, excitation models and reasons why W51 shows such a plethora of masers will be presented.

  2. Closed-form inverse kinematics for intra-operative mobile C-arm positioning with six degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lejing; Zou, Rui; Weidert, Simon; Landes, Juergen; Euler, Ekkehard; Burschka, Darius; Navab, Nassir

    2011-03-01

    For trauma and orthopedic surgery, maneuvering a mobile C-arm X-ray device into a desired position in order to acquire the right picture is a routine task. The precision and ease of use of the C-arm positioning becomes even more important for more advanced imaging techniques as parallax-free X-ray image stitching, for example. Standard mobile C-arms have only five degrees of freedom (DOF), which definitely restricts their motions that have six DOF in 3D Cartesian space. We have proposed a method to model the kinematics of the mobile Carm and operating table as an integrated 6DOF C-arm X-ray imaging system.1 This enables mobile C-arms to be positioned relative to the patient's table with six DOF in 3D Cartesian space. Moving mobile C-arms to a desired position and orientation requires finding the necessary joint values, which is an inverse kinematics problem. In this paper, we present closed-form solutions, i.e. analytic expressions, obtained in an algebraic way for the inverse kinematics problem of the 6DOF C-arm model. In addition, we implement a 6DOF C-arm system for interactively radiation-free C-arm positioning based on a continuous guidance from C-arm pose estimation. For this we employ a visual marker pattern attached under the operating table and a mobile C-arm system augmented by a video camera and mirror construction. In our experiment, repositioning C-arm to a pre-defined pose in a phantom study demonstrates the practicality and accuracy of our developed 6DOF C-arm system.

  3. Interventional C-arm tomosynthesis for vascular imaging: initial results

    NASA Astrophysics Data System (ADS)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  4. A hydrogen maser with cavity auto-tuner for timekeeping

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; He, J. W.; Zhai, Z. C.

    1992-01-01

    A hydrogen maser frequency standard for timekeeping was worked on at the Shanghai Observatory. The maser employs a fast cavity auto-tuner, which can detect and compensate the frequency drift of the high-Q resonant cavity with a short time constant by means of a signal injection method, so that the long term frequency stability of the maser standard is greatly improved. The cavity auto-tuning system and some maser data obtained from the atomic time comparison are described.

  5. The MEPUC concept adapts the C-arm fluoroscope to image-guided surgery.

    PubMed

    Suhm, Norbert; Müller, Paul; Bopp, Urs; Messmer, Peter; Regazzoni, Pietro

    2004-06-01

    Image-guided surgery requires surgeons to be able to manipulate the imaging modality themselves and without delay. Intraoperative fluoroscopic imaging does not meet this requirement as the C-arm fluoroscope cannot be operated or positioned by the surgeons themselves. The Motorized Exact Positioning Unit for C-arm (MEPUC) concept aims to optimize the workflow of positioning the C-arm fluoroscope. The hardware component of the MEPUC equips the fluoroscope with electric stepping motors. The software component allows the surgeon to control the fluoroscope's movements. The study presented here showed that translational movements within the x-y plane are most frequently performed when positioning the C-arm fluoroscope. Furthermore, reproducing a former projection was found to be a frequent task during image-guided procedures. In our opinion, the MEPUC concept adapts the fluoroscope to image-guided surgery. The most important improvement being definition of a bidirectional data exchange between the surgeon and the C-arm fluoroscope: positioning data from the surgeon to the C-arm fluoroscope and-subsequently-image information from C-arm fluoroscope to the surgeon. PMID:15183713

  6. High frequency CARM driver for rf linacs. Final report, September 15, 1989--March 15, 1993

    SciTech Connect

    Danly, B.G.

    1993-09-23

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 {mu}s pulse width in the TE{sub 11} mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued.

  7. 25 GHz methanol masers in regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Voronkov, Maxim A.

    2012-07-01

    The bright 25 GHz series of methanol masers is formed in highly energetic regions of massive star formation and provides a natural signpost of shocked gas surrounding newly forming stars. A systematic survey for the 25 GHz masers has only recently been carried out. We present the preliminary results from the interferometric follow up of 51 masers at 25 GHz in the southern sky.

  8. A small, passively operated hydrogen maser

    NASA Technical Reports Server (NTRS)

    Howe, D. A.; Walls, F. L.; Bell, H. E.; Hellwig, H.

    1979-01-01

    The paper describes a compact passive hydrogen maser with unique features including a reduction in size. It uses a passive operation mode, permitting the use of a small microwave TE(011) cavity dielectrically loaded by a low loss alumina. The Teflon coated quartz bulb common in other masers has been replaced by a Teflon coating on the inside wall of the cavity producing a simpler designed and a more rugged H-maser package. The cavity and the attached endcaps comprise the vacuum envelope, allowing the use of a single vacuum system. The dimensional stability of the ceramic cavity under barometric changes is sufficiently within the range of the electronic cavity servo so that a second vacuum system is not required. For temperature control, a single oven is located in the magnetic shield nest.

  9. Physical characteristics of bright Class I methanol masers

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Menten, K. M.; Walmsley, C. M.

    2016-07-01

    Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims: We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods: We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results: We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly high-temperature (>100 K) high-density (n(H2) ~ 107-108 cm-3) structures with methanol maser emission measures, ξ, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the

  10. A search for water masers associated with class II methanol masers - II. Longitude range 341° to 6°

    NASA Astrophysics Data System (ADS)

    Titmarsh, A. M.; Ellingsen, S. P.; Breen, S. L.; Caswell, J. L.; Voronkov, M. A.

    2016-06-01

    This is the second paper in a series of catalogues of 22-GHz water maser observations towards the 6.7-GHz methanol masers from the Methanol Multibeam (MMB) survey. In this paper, we present our water maser observations made with the Australia Telescope Compact Array towards the masers from the MMB survey between l = 341° through the Galactic Centre to l = 6°. Of the 204 6.7-GHz methanol masers in this longitude range, we found 101 to have associated water maser emission (˜50 per cent). We found no difference in the 6.7-GHz methanol maser luminosities of those with and without water masers. In sources where both maser species are observed, the luminosities of the methanol and water masers are weakly correlated. Studying the mid-infrared colours from GLIMPSE (Galactic Legacy Infrared Midplane Survey Extraordinaire), we found no differences between the colours of those sources associated with both methanol and water masers and those associated with just methanol. Comparing the column density and dust mass calculated from the 870-μm thermal dust emission observed by ATLASGAL (APEX Telescope Large Area Survey of the GALaxy), we found no differences between those sources associated with both water and methanol masers and those with methanol only. Since water masers are collisionally pumped and often show emission further away from their accompanying young stellar object (YSO) than the radiatively pumped 6.7-GHz methanol masers, it is likely that water masers are not as tightly correlated to the evolution of the parent YSO and so do not trace such a well-defined evolutionary state as 6.7-GHz methanol masers.

  11. CARM1 Preferentially Methylates H3R17 over H3R26 through a Random Kinetic Mechanism.

    PubMed

    Jacques, Suzanne L; Aquino, Katrina P; Gureasko, Jodi; Boriack-Sjodin, P Ann; Porter Scott, Margaret; Copeland, Robert A; Riera, Thomas V

    2016-03-22

    CARM1 is a type I arginine methyltransferase involved in the regulation of transcription, pre-mRNA splicing, cell cycle progression, and the DNA damage response. CARM1 overexpression has been implicated in breast, prostate, and liver cancers and therefore is an attractive target for cancer therapy. To date, little about the kinetic properties of CARM1 is known. In this study, substrate specificity and the kinetic mechanism of the human enzyme were determined. Substrate specificity was examined by testing CARM1 activity with several histone H3-based peptides in a radiometric assay. Comparison of kcat/KM values reveals that methylation of H3R17 is preferred over that of H3R26. These effects are KM-driven as kcat values remain relatively constant for the peptides tested. Shortening the peptide at the C-terminus by five amino acid residues greatly reduced binding affinity, indicating distal residues may contribute to substrate binding. CARM1 appears to bind monomethylated peptides with an affinity similar to that of unmethylated peptides. Monitoring of the CARM1-dependent production of monomethylated and dimethylated peptides over time by self-assembled monolayer and matrix-assisted laser desorption ionization mass spectrometry revealed that methylation by CARM1 is distributive. Additionally, dead-end and product inhibition studies suggest CARM1 conforms to a random sequential kinetic mechanism. By defining the kinetic properties and mechanism of CARM1, these studies may aid in the development of small molecule CARM1 inhibitors. PMID:26848779

  12. Theoretical comparison of maser materials for a 32-GHz maser amplifier

    NASA Technical Reports Server (NTRS)

    Lyons, James R.

    1988-01-01

    The computational results of a comparison of maser materials for a 32 GHz maser amplifier are presented. The search for a better maser material is prompted by the relatively large amount of pump power required to sustain a population inversion in ruby at frequencies on the order of 30 GHz and above. The general requirements of a maser material and the specific problems with ruby are outlined. The spin Hamiltonian is used to calculate energy levels and transition probabilities for ruby and twelve other materials. A table is compiled of several attractive operating points for each of the materials analyzed. All the materials analyzed possess operating points that could be superior to ruby. To complete the evaluation of the materials, measurements of inversion ratio and pump power requirements must be made in the future.

  13. Characteristics of advanced hydrogen maser frequency standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1973-01-01

    Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard.

  14. A database of circumstellar OH masers

    NASA Astrophysics Data System (ADS)

    Engels, D.; Bunzel, F.

    2015-10-01

    We present a new database of circumstellar OH masers at 1612, 1665, and 1667 MHz in the Milky Way galaxy. The database (version 2.4) contains 13 655 observations and 2341 different stars detected in at least one transition. Detections at 1612 MHz are considered to be complete until the end of 2014 as long as they were published in refereed papers. Detections of the main lines (1665 and 1667 MHz) and non-detections in all transitions are included only if published after 1983. The database contains flux densities and velocities of the two strongest maser peaks, the expansion velocity of the shell, and the radial velocity of the star. Links are provided for about 100 stars (<5% of all stars with OH masers) to interferometric observations and monitoring programs of the maser emission published since their beginnings in the 1970s. Access to the database is possible over the Web (http://www.hs.uni-hamburg.de/maserdb), allowing cone searches for individual sources and lists of sources. A general search is possible in selected regions of the sky and by defining ranges of flux densities and/or velocities. Alternative ways to access the data are via the German Virtual Observatory and the CDS. The data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A68

  15. A catalog of nonstellar water maser sources

    NASA Technical Reports Server (NTRS)

    Dinger, A. S. C.; Dickinson, D. F.

    1980-01-01

    A list of 195 nonstellar galactic sources of water maser emission has been compiled. This list is not a comprehensive catalog of all the available information; it is intended to be used as an index. As such, it contains only coordinates, velocities, and selected references. The extragalatic sources are listed in a separate table.

  16. Water Masers in W49N

    NASA Astrophysics Data System (ADS)

    Kramer, Busaba; Menten, Karl M.; Kaminski, Tomasz; Zhang, Bo; Patel, Nimesh; Kraus, Alex

    2015-08-01

    Water masers have long been known to be one of the best signposts of active star formation and regions of extremely dense gas (>108 cm-3) and therefore tracing high-velocity outflows and shock fronts. W49N is one of the richest and most luminous water maser in our Galaxy. The variability of water masers in W49N has been studied since its discovery, showing short and long time scale variations. Short-time scale monitoring often shows dramatic variations in flux density, line width and line center velocity. However, the models accounted for such variations are still under debate. We report the study of the recent major outburst of the 22-GHz water maser in W49N in 2014. We carried out the simultaneous observations of several water transitions both at millimeter and submillimeter wavelengths with the Effelsberg 100-m radio telescope, the IRAM 30-m telescope, and the APEX 12-m submillimeter telescope. We have also performed interferometric observations of the 22-GHz transition using the NRAO Very Long Baseline Array (VLBA) and of the 321- and 325-GHz transitions using the Submillimeter Array (SMA). Studying these multiple masing transitions in conjunction with theoretical modeling of their excitation places strong constraints on the physical conditions of the masing gas and also allows us to probe the embedded environment.

  17. Reflected-wave maser. [low noise amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C. (Inventor)

    1976-01-01

    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  18. Assessment of Lumbar Spine Instability Using C-Arm Fluoroscopy.

    PubMed

    Temes, Bill; Karas, Steve; Manwill, James

    2016-09-01

    A 47-year-old woman was referred to physical therapy with a diagnosis of lumbar radiculopathy. Weight-bearing flexion/extension radiographs showed no change in a 13-mm (at L5-S1) spondylolisthesis measured with a neutral posture. Physical therapy with a focus on flexion-biased stabilization exercises was initiated. After failing to improve after 6 weeks, her referring physician ordered magnetic resonance imaging, which revealed a 6-mm spondylolisthesis in a supine position. Additionally, the physical therapist performed an anterior stability test of L5 on S1 under C-arm fluoroscopy, which demonstrated a palpable shift of S1 posteriorly that was measured on imaging as a change from a 13-mm to a 17-mm spondylolisthesis. J Orthop Sports Phys Ther 2016;46(9):810. doi:10.2519/jospt.2016.0415. PMID:27581181

  19. High frequency CARM driver for RF LINACS. Progess report, year 2

    SciTech Connect

    Not Available

    1991-05-30

    Progress during the second year of this program has been noteworthy in both theoretical and experimental areas. Two experiments on a CARM oscillator were performed and analysed. The first long-pulse operation of a CARM oscillator was carried out, with output powers of approximately 100 kW and operating efficiencies of approximately 2%. Much has been learned from the analysis of the first two experiments, and both the amplifier and oscillator experiments planned for the next year will benefit substantially from the knowledge gained during these oscillator experiments. We have installed and tested an new electron gun made by Thompson Tubes Electroniques of France. This gun has now operated at up to 580 kV on our modulator; use of this gun for the upcoming CARM experiments should result in a significant increase in performance due to a much better beam quality and the capability of operation at a much higher voltage. In the theoretical area, Year II has seen substantial improvements to the MIT CARM codes. The amplifier and oscillator codes have been successfully benchmarked against other codes, linear theory, aid experimental work. This includes the development of multimode CARM amplifier linear and nonlinear theory, the theory of harmonic CARMs, and the inclusion of TM modes in the nonlinear simulations. In addition, work this spring has centered on the effects of AC longitudinal space charge on CARM linear gain. CARM amplifier phase stability has been studied theoretically and found to be significantly better than that of free-electron lasers, relativistic klystrons, or gyroklystrons, provided the device is properly designed. Both multimode simulations and particle-in-cell simulations have been carried out to study mode competition effects between convectively unstable and absolutely unstable modes. Improvement of the Pierce-Wiggler code, named TRAJIK for modeling the beam formation prior to tie interaction region has been carried out.

  20. Technical Note: Unsupervised C-arm pose tracking with radiographic fiducial

    SciTech Connect

    Fallavollita, P.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.

    2011-04-15

    Purpose: C-arm fluoroscopy reconstruction, such as that used in prostate brachytherapy, requires that the relative poses of the individual C-arm fluoroscopy images must be known prior to reconstruction. Radiographic fiducials can provide excellent C-arm pose tracking, but they need to be segmented in the image. The authors report an automated and unsupervised method that does not require prior segmentation of the fiducial. Methods: The authors compute the individual C-arm poses relative to a stationary radiographic fiducial of known geometry. The authors register a filtered 2D fluoroscopy image of the fiducial to its 3D model by using image intensity alone without prior segmentation. To enhance the C-arm images, the authors investigated a three-step cascade filter and a line enhancement filter. The authors tested the method on a composite fiducial containing beads, straight lines, and ellipses. Ground-truth C-arm pose was provided by a clinically proven method. Results: Using 111 clinical C-arm images and {+-}10 deg. and {+-}10 mm random perturbation around the ground-truth pose, a total of 2775 cases were evaluated. The average rotation and translation errors were 0.62 deg. (STD=0.31 deg.) and 0.72 mm (STD=0.55 mm) for the three-step filter and 0.67 deg. (STD=0.40 deg.) and 0.87 mm (STD=0.27 mm) using the line enhancement filter. Conclusions: The C-arm pose tracking method was sufficiently accurate and robust on human patient data for subsequent 3D implant reconstruction.

  1. An Alfven wave maser in the laboratory

    SciTech Connect

    Maggs, J.E.; Morales, G.J.; Carter, T.A.

    2005-01-01

    A frequency selective Alfven wave resonator results from the application of a locally nonuniform magnetic field to a plasma source region between the cathode and anode in a large laboratory device. When a threshold in the plasma discharge current is exceeded, selective amplification produces a highly coherent ({delta}{omega}/{omega}<5x10{sup -3}), large amplitude shear Alfven wave that propagates out of the resonator, through a semitransparent mesh anode, into the adjacent plasma column where the magnetic field is uniform. This phenomenon is similar to that encountered in the operation of masers/lasers at microwave and optical frequencies. The current threshold for maser action is found to depend upon the confinement magnetic field strength B{sub 0}. Its scaling is consistent with the condition for matching the drift speed of the bulk plasma electrons with the phase velocity of the mode in the resonator. The largest spontaneously amplified signals are obtained at low B{sub 0} and large plasma currents. The magnetic fluctuations {delta}B associated with the Alfven maser can be as large as {delta}B/B{sub 0}{approx_equal}1.5% and are observed to affect the plasma current. Steady-state behavior leading to coherent signals lasting until the discharge is terminated can be achieved when the growth conditions are well-above threshold. The maser is observed to evolve in time from an initial m=0 mode to an m=1 mode structure in the transition to the late steady state. The laboratory phenomenon reported is analogous to the Alfven wave maser proposed to exist in naturally occurring, near-earth plasmas.

  2. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    NASA Astrophysics Data System (ADS)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  3. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy.

    PubMed

    Shin, Hi-Jai R; Kim, Hyunkyung; Oh, Sungryong; Lee, Jun-Gi; Kee, Minjung; Ko, Hyun-Jeong; Kweon, Mi-Na; Won, Kyoung-Jae; Baek, Sung Hee

    2016-06-23

    Autophagy is a highly conserved self-digestion process, which is essential for maintaining homeostasis and viability in response to nutrient starvation. Although the components of autophagy in the cytoplasm have been well studied, the molecular basis for the transcriptional and epigenetic regulation of autophagy is poorly understood. Here we identify co-activator-associated arginine methyltransferase 1 (CARM1) as a crucial component of autophagy in mammals. Notably, CARM1 stability is regulated by the SKP2-containing SCF (SKP1-cullin1-F-box protein) E3 ubiquitin ligase in the nucleus, but not in the cytoplasm, under nutrient-rich conditions. Furthermore, we show that nutrient starvation results in AMP-activated protein kinase (AMPK)-dependent phosphorylation of FOXO3a in the nucleus, which in turn transcriptionally represses SKP2. This repression leads to increased levels of CARM1 protein and subsequent increases in histone H3 Arg17 dimethylation. Genome-wide analyses reveal that CARM1 exerts transcriptional co-activator function on autophagy-related and lysosomal genes through transcription factor EB (TFEB). Our findings demonstrate that CARM1-dependent histone arginine methylation is a crucial nuclear event in autophagy, and identify a new signalling axis of AMPK-SKP2-CARM1 in the regulation of autophagy induction after nutrient starvation. PMID:27309807

  4. Rubidium 87 gas cell studies, phase 2. [design and characteristics of rubidium maser

    NASA Technical Reports Server (NTRS)

    Vanier, J.

    1974-01-01

    The design, development, and characteristics of a rubidium 87 maser are discussed. The design of a receiver capable of locking a crystal oscillator to the maser signal is reported. The subjects considered are: (1) maser construction, (2) maser control electronics, (3) the characteristics of the receiver, and (4) results of experimental maser tests.

  5. A gravitationally lensed water maser in the early Universe.

    PubMed

    Impellizzeri, C M Violette; McKean, John P; Castangia, Paola; Roy, Alan L; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf

    2008-12-18

    Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare. However, galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Here we use gravitational lensing to search for masers at higher redshifts than would otherwise be possible, and find a water maser at redshift 2.64 in the dust- and gas-rich, gravitationally lensed type-1 quasar MG J0414+0534 (refs 6-13). The isotropic luminosity is 10,000 (, solar luminosity), which is twice that of the most powerful local water maser and half that of the most distant maser previously known. Using the locally determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10(-6). The fact that we see such a maser in the first galaxy we observe must mean that the volume densities and luminosities of masers are higher at redshift 2.64. PMID:19092930

  6. Water Masers Associated with IRAS 4A

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.; Claussen, M.; Wootten, A.; Wilking, B.

    2000-05-01

    Observations of water masers near Young Stellar Objects (YSOs) are capable of revealing gas kinematics within a few AU of stars undergoing formation. Low mass YSOs are especially interesting as they are analogues of our own Sun. Several sources have been mapped in recent years and have shown proper motions indicative of bipolar outflowing material. Velocities are typically about 75 km/s and are clearly bipolar. Occasionally, bowshock structures have been observed (Imai et al. 1999, Claussen et al. 1999), showing the interaction between the jet and the ambient medium and perhaps indicating that the bipolar outflow occurs episodically. I present images and proper motions for the water masers associated with IRAS 4A. They are consistent with other sources of this class.

  7. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  8. Astrophysical Masers and their Environments (IAU S242)

    NASA Astrophysics Data System (ADS)

    Chapman, Jessica M.; Baan, Willem A.

    2008-02-01

    Preface; Conference prelims; Tribute to Raymond James Cohen J. M. Chapman and W. A. Baan; History P. Edwards; Session 1. Maser theory Anne Green; Session 2. Polarization and magnetic fields Athol Kemball; Session 3. Masers and star formation Mark Wardle; Session 4. Galactic maser surveys Philip Diamond and Hiroshi Imai; Session 5. Stellar masers, circumstellar winds and supernova remnants Hiroshi Imai, Crystal Brogan and Miller Goss; Session 6. Galactic structure and the Galactic Centre Luis Rodriguez; Session 7. Masers in AGN environments Moshe Elitzur; Session 8. Megamaser and starburst activity Lincoln Greenhill; Session 9. Diagnostics and interpretation in extragalactic environments Colin Lonsdale; Session 10. New millimeter and sub-millimeter masers Indra Bains; Session 11. Future facilities and conference summary Elizabeth Humphreys and Karl Menten; Author index.

  9. Astrophysical Masers and their Environments (IAU S242)

    NASA Astrophysics Data System (ADS)

    Chapman, Jessica M.; Baan, Willem A.

    2007-03-01

    Preface; Conference prelims; Tribute to Raymond James Cohen J. M. Chapman and W. A. Baan; History P. Edwards; Session 1. Maser theory Anne Green; Session 2. Polarization and magnetic fields Athol Kemball; Session 3. Masers and star formation Mark Wardle; Session 4. Galactic maser surveys Philip Diamond and Hiroshi Imai; Session 5. Stellar masers, circumstellar winds and supernova remnants Hiroshi Imai, Crystal Brogan and Miller Goss; Session 6. Galactic structure and the Galactic Centre Luis Rodriguez; Session 7. Masers in AGN environments Moshe Elitzur; Session 8. Megamaser and starburst activity Lincoln Greenhill; Session 9. Diagnostics and interpretation in extragalactic environments Colin Lonsdale; Session 10. New millimeter and sub-millimeter masers Indra Bains; Session 11. Future facilities and conference summary Elizabeth Humphreys and Karl Menten; Author index.

  10. Enhanced magnetic Purcell effect in room-temperature masers

    PubMed Central

    Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN

    2015-01-01

    Recently, the world’s first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634

  11. Enhanced magnetic Purcell effect in room-temperature masers.

    PubMed

    Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN

    2015-01-01

    Recently, the world's first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634

  12. The superconducting cavity stability ruby maser oscillator

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Strayer, D. M.

    1985-01-01

    Analysis of an application of the rudy maser to a superconducting Cavity Stabilized oscillator shows many attractive features. These derive from the mechancial stability inherent in an all-cryogenic design and from the properties of the ruby maser itself. A multiple-cavity design has been developed to allow physical separation of the high-Q superconducting cavity and the ruby element with its requried applied magnetic field. Mode selection is accomplished in this design by tuning the ruby by means of the applied field. We conclude that such an oscillator would perform well, even with cavity Q's as low as 10 to the 8th power allowing the use of a superconductor-on-sapphire resonator with its greater rigidity and lower thermal expansion. A first test of the Superconducting Cavity Stabilized Maser Oscillator (SCSMO) confirms the efficacy of the multiple-cavity design and the applicability of the ruby maser. Frequency variation less than 4x10 to the minus 11th power was measured in the stabilized mode and is attributed to the reference oscillator and to instabilities in the pump source. Variation of 10 to the minus 10th power was observed in the low-Q unstabilized mode, again attributable to pump fluctuations. Even so, direct scaling to a Q of 10 the 9th power predicts a stability better than 10 to the minus 15th power. Together with results showing the lowest losses to date in sapphire at microwave frequencies, and preliminary experiments on superconductor-on-sapphire resonators, frequency stability, levels as low as 10 to the minus 17th power are indicated.

  13. New interstellar masers in nonmetastable ammonia

    NASA Technical Reports Server (NTRS)

    Madden, S. C.; Irvine, W. M.; Matthews, H. E.; Brown, R. D.; Godfrey, P. D.

    1986-01-01

    The first astronomical detections of several ammonia inversion transitions involving nonmetastable levels with energies as high as 1090 K above the ground state are reported. The (J, K) = (9, 6) inversion transition shows maser-like emission in the directions of W51, NGC 7538, W49, and DR 21(OH). The NH3 (6, 3) line exhibits similar characteristics in W51 but is seen in absorption in NGC 7538. These are the first definite detections of ammonia masers in space. The intensities and narrow line widths (0.5-1.5 km/s) for the emission features are in contrast to the previously detected broad, weak, nonmetastable lines attributed to thermal emission in these sources. Temporal variability appears to be evident in the (9, 6) emission in W49 over a 4 month period. The highly excited (J, K) = (9, 6) and (6, 3) ammonia lines are found in regions containig compact H II regions and strongly infrared sources with associated H2O and OH masers; i.e., in regions of active star formation.

  14. Measurements of surgeons' exposure to ionizing radiation dose: comparison of conventional and mini C-arm fluoroscopy.

    PubMed

    Sung, K H; Min, E; Chung, C Y; Jo, B C; Park, M S; Lee, K

    2016-03-01

    This study was performed to measure the equivalent scattered radiation dose delivered to susceptible organs while simulating orthopaedic surgery using conventional and mini C-arm fluoroscopy. In addition, shielding effects on the thyroid, thymus, and gonad, and the direct exposure delivered to the patient's hands were also compared. A conventional and mini C-arms were installed in an operating room, and a hand and an operator phantom were used to simulate a patient's hand and a surgeon. Photoluminescence dosimeters were used to measure the equivalent dose by scattered radiation arriving at the thyroid, thymus, and gonad on a whole-body phantom in the position of the surgeon. Equivalent scattered radiation doses were measured in four groups: (1) unshielded conventional C-arm group; (2) unshielded mini C-arm group; (3) lead-shielded conventional C-arm group; and (4) lead-shielded mini C-arm group. Equivalent scattered radiation doses to the unshielded group were significantly lower in the mini C-arm group than those in the conventional C-arm group for all organs. The gonad in the lead-shielded conventional C-arm group showed the highest equivalent dose among operator-susceptible organs, and radiation dose was reduced by approximately 96% compared with that in the unshielded group. Scattered radiation was not detected in any susceptible organ in the lead-shielded mini C-arm group. The direct radiation dose to the hand phantom measured from the mini C-arm was significantly lower than that measured from the conventional C-arm. The results show that the equivalent scattered radiation dose to the surgeon's susceptible organs and the direct radiation dose to a patient's hand can be decreased significantly by using a mini C-arm rather than a conventional C-arm. However, protective lead garments, such as a thyroid shield and apron, should be applied to minimize radiation exposure to susceptible organs, even during use of mini C-arm fluoroscopy. PMID:26115681

  15. Evidence for cyclotron maser emission from the sun and stars

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Winglee, R. M.

    1987-01-01

    Recent observational and theoretical work on cyclotron maser instability is reviewed, with emphasis on the similarities between microwave spike bursts from the sun and bursts from stars and planets. Results on particle-in-cell simulations are discussed, and it is suggested that such studies may provide further information on the amount and efficiency of energy transfer by the maser radiation. Observational tests of the cyclotron maser theory are considered, in addition to the role of the cyclotron maser as an energy transport mechanism in solar flares.

  16. New auto-tuning technique for the hydrogen maser

    NASA Technical Reports Server (NTRS)

    Sydnor, R. L.; Maleki, L.

    1983-01-01

    Auto-tuning of the maser cavity compensates for cavity pulling effect, and other sources of contribution to the long term frequency drift. Schemes previously proposed for the maser cavity auto-tuning can have adverse effects on the performance of the maser. A new scheme is proposed based on the phase relationship between the electric and the magnetic fields inside the cavity. This technique has the desired feature of auto-tuning the cavity with a very high sensitivity and without disturbing the maser performance. Some approaches for the implementation of this scheme and possible areas of difficulty are examined.

  17. Short-term frequency stability of the Rb-87 maser.

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Busca, G.; Vanier, J.

    1973-01-01

    Measurements of the short-term stability of the Rb-87 maser as a function of the maser power output and the receiver cutoff frequency are reported. The experimental data are compared to theoretical results obtained from an approximate theory. In this theory the transfer function of the maser for thermal noise is derived, and the spectral density of the phase fluctuations is calculated. An analytical expression for the 'Allan variance' is also given. A comparison of the stability of the Rb-87 maser with existing frequency standards shows its superiority for averaging times less than 1 sec.

  18. Surgical screw segmentation for mobile C-arm CT devices

    NASA Astrophysics Data System (ADS)

    Görres, Joseph; Brehler, Michael; Franke, Jochen; Wolf, Ivo; Vetter, Sven Y.; Grützner, Paul A.; Meinzer, Hans-Peter; Nabers, Diana

    2014-03-01

    Calcaneal fractures are commonly treated by open reduction and internal fixation. An anatomical reconstruction of involved joints is mandatory to prevent cartilage damage and premature arthritis. In order to avoid intraarticular screw placements, the use of mobile C-arm CT devices is required. However, for analyzing the screw placement in detail, a time-consuming human-computer interaction is necessary to navigate through 3D images and therefore to view a single screw in detail. Established interaction procedures of repeatedly positioning and rotating sectional planes are inconvenient and impede the intraoperative assessment of the screw positioning. To simplify the interaction with 3D images, we propose an automatic screw segmentation that allows for an immediate selection of relevant sectional planes. Our algorithm consists of three major steps. At first, cylindrical characteristics are determined from local gradient structures with the help of RANSAC. In a second step, a DBScan clustering algorithm is applied to group similar cylinder characteristics. Each detected cluster represents a screw, whose determined location is then refined by a cylinder-to-image registration in a third step. Our evaluation with 309 screws in 50 images shows robust and precise results. The algorithm detected 98% (303) of the screws correctly. Thirteen clusters led to falsely identified screws. The mean distance error for the screw tip was 0.8 +/- 0.8 mm and for the screw head 1.2 +/- 1 mm. The mean orientation error was 1.4 +/- 1.2 degrees.

  19. Water Masers in the Andromeda Galaxy. I. A Survey for Water Masers, Ammonia, and Hydrogen Recombination Lines

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta; Lawrence, Kelsey

    2016-07-01

    We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66α recombination line toward 506 luminous compact 24 μm emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ˜10 μas yr‑1 astrometry. No new water masers, ammonia lines, or H66α recombination lines were detected individually or in spectral stacks reaching rms noise levels of ˜3 mJy and ˜0.2 mJy, respectively, in 3.1–3.3 km s‑1 channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.

  20. Water Masers in the Andromeda Galaxy. I. A Survey for Water Masers, Ammonia, and Hydrogen Recombination Lines

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta; Lawrence, Kelsey

    2016-07-01

    We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66α recombination line toward 506 luminous compact 24 μm emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ∼10 μas yr‑1 astrometry. No new water masers, ammonia lines, or H66α recombination lines were detected individually or in spectral stacks reaching rms noise levels of ∼3 mJy and ∼0.2 mJy, respectively, in 3.1–3.3 km s‑1 channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.

  1. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    NASA Astrophysics Data System (ADS)

    Christianto, Vic; Smarandache, Florentin

    2009-05-01

    It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric, and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy's spiraling motion and redshift data as these have been done by Carmeli and Hartnett. In subsequent section we explain Podkletnov's rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  2. Role of C-Arm Cone-Beam CT in Chemoembolization for Hepatocellular Carcinoma

    PubMed Central

    2015-01-01

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future. PMID:25598679

  3. Thermal short improves sensitivity of cryogenically cooled maser

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.

    1968-01-01

    In-line, quarter-wave thermal short cools the center conductor of the signal-input coaxial transmission line to a cryogenically cooled traveling wave maser. It reduces both the thermal noise contribution of the coaxial line and the heat leak through the center conductor to the maser at 4.4 degrees K.

  4. A receiver design for the superconducting cavity-maser oscillator

    NASA Technical Reports Server (NTRS)

    Wang, R. T.; Dick, G. J.

    1991-01-01

    A new frequency standard was demonstrated with the aid of a double phase locked loop (PLL) receiver. A superconducting cavity maser oscillator (SCMO) and a hydrogen maser are combined to show the medium term performance of the hydrogen maser together with improved short term performance made possible by the SCMO. The receiver, which generates a 100 MHz signal with reduced noise, is phase locked to (and may be used in place of) the 100 MHz hydrogen maser output. The maser signal, 2.69xxx-GHz SCMO output, and a 100 MHz quartz crystal oscillator are optimally combined by the receiver. A measured two source fractional frequency stability of 2 x 10(exp -14) was obtained for a measuring time of r = 1 sec, and 1 x 10(exp -15) at r = 1,000 sec. The 1 sec value is approx. 10 times lower than that for hydrogen masers, while the 1,000 sec value is identical to hydrogen maser performance. The design is based on phase noise models for the hydrogen maser, the SCMO, and quartz crystal oscillators for offset frequencies down to 1 x 10(exp -6) Hz.

  5. Optical Properties of Host Galaxies of Extragalactic Nuclear Water Masers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Zaw, Ingyin; Blanton, Michael R.; Greenhill, Lincoln J.

    2011-12-01

    We study the optical properties of the host galaxies of nuclear 22 GHz (λ = 1.35 cm) water masers. To do so, we cross-match the galaxy sample surveyed for water maser emission (123 detections and 3806 non-detections) with the Sloan Digital Sky Survey (SDSS) low-redshift galaxy sample (z < 0.05). Out of 1636 galaxies with SDSS photometry, we identify 48 detections; out of the 1063 galaxies that also have SDSS spectroscopy, we identify 33 detections. We find that maser detection rate is higher at higher optical luminosity (MB ), larger velocity dispersion (σ), and higher [O III] λ5007 luminosity, with [O III] λ5007 being the dominant factor. These detection rates are essentially the result of the correlations of isotropic maser luminosity with all three of these variables. These correlations are natural if maser strength increases with central black hole mass and the level of active galactic nucleus (AGN) activity. We also find that the detection rate is higher in galaxies with higher extinction. Based on these results, we propose that maser surveys seeking to efficiently find masers should rank AGN targets by extinction-corrected [O III] λ5007 flux when available. This prioritization would improve maser detection efficiency, from an overall ~3% without pre-selection to ~16% for the strongest intrinsic [O III] λ5007 emitters, by a factor of ~5.

  6. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  7. The polarized water maser source in orion

    NASA Astrophysics Data System (ADS)

    Abraham, Zulema; Vilas Boas, J. W. S.

    We report the time behaviour of the highly polarized 8 km s-1 water maser source in the Orion nebula. During the last few years the flux density was low and it presented three small outbursts. In each case, although the total intensity was of the same order of magnitude, the degree of polarization and polarization angle were different, as well as their variation across the line profile. In November of 1991, twelve years after its first detection, the source disappeared or became too weak to be detected.

  8. Block 2A traveling-wave maser

    NASA Technical Reports Server (NTRS)

    Trowbridge, D. L.

    1986-01-01

    Two 8.4GHz low-noise traveling-wave masers (TWMS) with effective input noise temperatures of 3.6 to 3.9 K and bandwidth in excess of 100 MHz have been supplied to the Deep Space Network. These TWMs are used on the 64-meter antennas at Deep Space Stations 14 and 43 to meet the requirements of the Voyager Uranus encounter. The TWMs have improved isolator assemblies and new interstage matching configurations to reduce gain/bandwidth ripple. They are equipped with followup Field Effect Transistor Amplifiers as part of the design to meet the 100-MHz bandwidth requirements of very long baseline interferometry.

  9. Water maser emission in the Saturnian system

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Cimo, Giuseppe; Gurvits, Leonid; Pogrebenko, Sergei; Molera Calves, Guifré

    2010-10-01

    Prompted by the recent discovery of a water vapour plume of Enceladus by the Cassini spacecraft, our team started an observational programme to search for possible 22 GHz water vapour maser emission associated with different objects in the Kronian system. The observations have been conducted so far with the 32 m Medicina radio telescope (INAF-IRA, Italy) and the 14 m Metsahovi radio telescope (Aalto University, MRO, Finland). During the 2006-2008 campaigns, more than 300 hours of data have been analysed, and initial results including maser detections up to 7.0 sigma level have been presented. The detections attracted considerable interest and attempts to confirm them and investigate the phenomenon in depth. No confirmations have been published so far. In order to provide critical verification of these detections and study the details of masing conditions efficiently, we request a total of 20 hours on the Tidbinbilla 70 m telescope (DSS43) to observe Saturn and its moons during several, non-consecutive days. Due to natural changes of the planetary target positions, targets' coordinates will be provided after the antenna time is allocated.

  10. Loss cone-driven cyclotron maser instability

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Yi, Sibaek; Lim, Dayeh; Kim, Hee-Eun; Seough, Jungjoon; Yoon, Peter H.

    2013-11-01

    The weakly (or mildly) relativistic cyclotron maser instability has been successfully applied to explain the Earth's auroral kilometric radiation and other radio sources in nature and laboratory. Among the most important physical parameters that determine the instability criteria is the ratio of plasma-to-electron cyclotron frequencies, ωp/Ω. It is therefore instructive to consider how the normalized maximum growth rate, γmax/Ω, varies as a function of ωp/Ω. Although many authors have already discussed this problem, in order to complete the analysis, one must also understand how the radiation emission angle corresponding to the maximum growth, θmax, scales with ωp/Ω, since the propagation angle determines the radiation beaming pattern. Also, the behavior of the frequency corresponding to the maximum growth rate at each harmonic, (ωmax-sΩ)/Ω, where s=1,2,3,ċ , as a function of ωp/Ωis of importance for a complete understanding of the maser excitation. The present paper computes these additional quantities for the first time, making use of a model loss cone electron distribution function.

  11. New maser emission from nonmetastable ammonia in NGC 7538. IV. Coincident masers in adjacent states of para-ammonia

    SciTech Connect

    Hoffman, Ian M.; Joyce, Spenser A.

    2014-02-20

    We present the first detection of para-ammonia masers in NGC 7538: multiple epochs of observation of the {sup 14}NH{sub 3} (J, K) = (10, 8) and (9,8) lines. We detect both thermal absorption and nonthermal emission in the (10,8) and (9,8) transitions and the absence of a maser in the (11,8) transition. The (9,8) maser is observed to increase in intensity by 40% over six months. Using interferometric observations with a synthesized beam of 0.''25, we find that the (10,8) and (9,8) masers originate at the same sky position near IRS 1. With strong evidence that the (10,8) and (9,8) masers arise in the same volume, we discuss the application of pumping models for the simultaneous excitation of nonmetastable (J > K) para-ammonia states having the same value of K and consecutive values of J. We also present detections of thermal absorption in rotational states ranging in energy from E/k{sub B} ∼ 200 K to 2000 K, and several non-detections in higher-energy states. In particular, we describe the populations in eight adjacent rotational states with K = 6, including two maser transitions, along with the implications for ortho-ammonia pumping models. An existing torus model for molecular gas in the environment of IRS 1 has been applied to the masers; a variety of maser species are shown to agree with the model. Historical and new interferometric observations of {sup 15}NH{sub 3} (3,3) masers in the region indicate a precession of the rotating torus at a rate comparable to continuum-emission-based models of the region. We discuss the general necessity of interferometric observations for diagnosing the excitation state of the masers and for determining the geometry of the molecular environment.

  12. Self-consistent simulation of an electron beam for a new autoresonant x-ray generator based on TE 102 rectangular mode

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.

    2016-02-01

    The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.

  13. Typhlitis and abdominal cystic lymphangiomatosis in a Mt. Carmel blind mole rat (Nannospalax (ehrenbergi) carmeli).

    PubMed

    Sós, Endre; Molnár, Viktor; Gál, János; Németh, Attila; Perge, Edina; Lajos, Zoltán; Csorba, Gábor

    2012-06-01

    An abdominal cystic lymphangiomatosis in a Mt. Carmel blind mole rat (Nannospalax (ehrenbergi) carmeli) is described. This case was most likely due to a congenital abnormality with long-term compensation by the animal. The case describes the clinical course and subsequent postmortem examination. The death in the animal was caused by an abscess in the peritoneal wall and subsequent peritonitis. PMID:22779253

  14. C-arm technique using distance driven method for nephrolithiasis and kidney stones detection

    NASA Astrophysics Data System (ADS)

    Malalla, Nuhad; Sun, Pengfei; Chen, Ying; Lipkin, Michael E.; Preminger, Glenn M.; Qin, Jun

    2016-04-01

    Distance driven represents a state of art method that used for reconstruction for x-ray techniques. C-arm tomography is an x-ray imaging technique that provides three dimensional information of the object by moving the C-shaped gantry around the patient. With limited view angle, C-arm system was investigated to generate volumetric data of the object with low radiation dosage and examination time. This paper is a new simulation study with two reconstruction methods based on distance driven including: simultaneous algebraic reconstruction technique (SART) and Maximum Likelihood expectation maximization (MLEM). Distance driven is an efficient method that has low computation cost and free artifacts compared with other methods such as ray driven and pixel driven methods. Projection images of spherical objects were simulated with a virtual C-arm system with a total view angle of 40 degrees. Results show the ability of limited angle C-arm technique to generate three dimensional images with distance driven reconstruction.

  15. Automatic cable artifact removal for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-03-01

    Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.

  16. Radiative instabilities and 1000 second fluctuations in astrophysical masers

    NASA Astrophysics Data System (ADS)

    Scappaticci, Gerardo A.; Watson, William D.

    1992-03-01

    A stability analysis for small (linear) perturbations is presented for the radiation in astrophysical masers treated in the usual, linear maser approximation. Instabilities that oscillate with a period of about L/c, where L is the length of the maser are found. They occur (1) when the maser is partly but not heavily saturated, (2) when the decay rate Gamma for the molecular states is near c/L, and (3) when the product of the brightness temperature T0 of the incident radiation and the angle for the beaming is less than a critical value that depends upon the particular masing transition. A fourth parameter, the fractional inversion in the pumping multiplied by (T0/frequency), determines the importance of spontaneous emission which can eliminate the instabilities. These instabilities are a likely cause for the fluctuations in the radiation from the 18 cm OH masers that have been reported to occur on time scales as short as 1000 s. The calculations are applicable to other types of astrophysical masers as well, and suggest that spontaneous emission will prevent similar instabilities in the H2O and SiO masers.

  17. Instabilities and the transport of polarized astrophysical maser radiation

    NASA Technical Reports Server (NTRS)

    Wallin, Bradley K.; Watson, William D.

    1995-01-01

    Time-dependent, radiative instabilities in the creation and transport of polarized astrophysical maser radiation in the presence of a magnetic field are calculated. The instabilities are similar to and occur under the same conditions as those found previously by Scappaticci & Watson for unpolarized maser radiation. The common limits in which the Zeeman splitting is much greater than, and much less than, the spectral line breadths are both considered in the current investigation. The resulting fluctuations in the emergent radiation are potentially relevant for the OH 1665 MHz masers which have been reported to fluctuate on timescales of 1000 s and which tend to be polarized. Instabilities occur and alter the transport of maser radiation only under a quite limited range of conditions. In particular, we find here that the instabilities do not occur for conditions that are appropriate for astrophysical masers with small Zeeman splittings such as the SiO and H2O masers. The time-independent, numerical solutions to the GKK equations of radiative transfer that have been obtained in previous investigations are thus essentially always valid except within a narrow range of conditions relevant for the OH masers.

  18. New Observations Deepen Mystery Surrounding Water Masers in Elliptical Galaxy

    NASA Astrophysics Data System (ADS)

    New observations with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have deepened the mystery surrounding water molecules in a galaxy 65 million light- years away. The water molecules are acting as natural masers -- amplifiers of microwave radio emissions -- and these cosmic masers within the galaxy NGC 1052 are raising difficult questions for astronomers trying to explain them. Results of the new observations, which pinpoint the location of water masers in NGC 1052, were announced today at the American Astronomical Society meeting in Toronto, Ontario. The researchers are: Jim Braatz of Harvard University in Cambridge, Massachusetts, Mark Claussen and Phil Diamond of the National Radio Astronomy Observatory in Socorro, New Mexico, Andrew Wilson of the University of Maryland in College Park, Maryland, and Christian Henkel of the Max Planck Institute fur Radioastronomie in Bonn, Germany. Water masers have been detected in several other galaxies. However, most galaxies containing water "megamasers" such as those in NGC 1052 are spiral galaxies. NGC 1052 is one of only two elliptical galaxies in which water megamasers have been detected. Because ellipticals tend to have much less gas and dust than spirals, the existence of the water masers in NGC 1052 is surprising by itself, though that galaxy does have more gas and dust than the typical elliptical. Located in the constellation Cetus, NGC 1052 also has an active nucleus, believed to be powered by the gravitational energy of a supermassive black hole at its core. The new VLBA observations produced an additional mystery. In other galaxies with water megamasers, the masers are believed to lie within a disk of molecules orbiting the galaxy's central black hole. This is the case, for example, in the now-famous galaxy NGC 4258, where the movement of the orbiting disk can be traced by measuring both the Doppler shift of radio emission from the masers and by tracking the motion of

  19. Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrej M.; Gray, Malcolm D.

    2012-07-01

    Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.

  20. Unbiased water and methanol maser surveys of NGC 1333

    SciTech Connect

    Lyo, A-Ran; Kim, Jongsoo; Byun, Do-Young; Lee, Ho-Gyu

    2014-11-01

    We present the results of unbiased 22 GHz H{sub 2}O water and 44 GHz class I CH{sub 3}OH methanol maser surveys in the central 7' × 10' area of NGC 1333 and two additional mapping observations of a 22 GHz water maser in a ∼3' × 3' area of the IRAS4A region. In the 22 GHz water maser survey of NGC 1333 with a sensitivity of σ ∼ 0.3 Jy, we confirmed the detection of masers toward H{sub 2}O(B) in the region of HH 7-11 and IRAS4B. We also detected new water masers located ∼20'' away in the western direction of IRAS4B or ∼25'' away in the southern direction of IRAS4A. We could not, however, find young stellar objects or molecular outflows associated with them. They showed two different velocity components of ∼0 and ∼16 km s{sup –1}, which are blue- and redshifted relative to the adopted systemic velocity of ∼7 km s{sup –1} for NGC 1333. They also showed time variabilities in both intensity and velocity from multi-epoch observations and an anti-correlation between the intensities of the blue- and redshifted velocity components. We suggest that the unidentified power source of these masers might be found in the earliest evolutionary stage of star formation, before the onset of molecular outflows. Finding this kind of water maser is only possible through an unbiased blind survey. In the 44 GHz methanol maser survey with a sensitivity of σ ∼ 0.5 Jy, we confirmed masers toward IRAS4A2 and the eastern shock region of IRAS2A. Both sources are also detected in 95 and 132 GHz methanol maser lines. In addition, we had new detections of methanol masers at 95 and 132 GHz toward IRAS4B. In terms of the isotropic luminosity, we detected methanol maser sources brighter than ∼5 × 10{sup 25} erg s{sup –1} from our unbiased survey.

  1. 22 GHz Water Maser Survey of the Xinjiang Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-jun; Esimbek, Jarken; Wu, Gang

    2012-07-01

    Water masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe for studying high-mass star formation and galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using the 25 m radio telescope of the Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and perform high resolution observations to study the gas kinematics close to high-mass protostars.

  2. The rotate-plus-shift C-arm trajectory: complete CT data with limited angular rotation

    NASA Astrophysics Data System (ADS)

    Ritschl, Ludwig; Kuntz, Jan; Kachelrieß, Marc

    2015-03-01

    In the last decade C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm scan is performed using a circle-like trajectory around a region of interest. Therefor an angular range of at least 180° plus fan-angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C-arm system, for example a larger C radius or a smaller C opening respectively. These technical modifications are usually not beneficial in terms of handling and usability of the C-arm during classical 2D applications like fluoroscopy. The method proposed in this paper relaxes the constraint of 180° plus fan-angle rotation to acquire a complete data set. The proposed C-arm trajectory requires a motorization of the orbital axis of the C and of ideally two orthogonal axis in the C plane. The trajectory consists of three parts: A rotation of the C around a defined iso-center and two translational movements parallel to the detector plane at the begin and at the end of the rotation. Combining these three parts to one trajectory enables for the acquisition of a completely sampled dataset using only 180° minus fan-angle of rotation. To evaluate the method we show animal and cadaver scans acquired with a mobile C-arm prototype. We expect that the transition of this method into clinical routine will lead to a much broader use of intraoperative 3D imaging in a wide field of clinical applications.

  3. Simultaneous Observatinos of H2O and SiO Masers Toward Known Extragalactic Water Maser Sources

    NASA Astrophysics Data System (ADS)

    Cho, Se-Hyung; Yoon, Dong-Hwan; Kim, Jaeheon; Byun, Do-Young; Wagner, Jan

    2015-12-01

    We observe ten known 22 GHz H_{2}O maser galaxies during February 19-22, 2011 using the 21 m Tamna telescope of the Korean VLBI Network and a new wide-band digital spectrometer. Simultaneously we searched for 43 GHz SiO v = 1, 2, J = 1-0 maser emission. We detect H_{2}O maser emission towards five sources (M 33, NGC 1052, NGC 1068, NGC 4258, M 82), with non-detections towards the remaining sources (UGC 3193, UGC 3789, Antennae H_{2}O-West, M 51, NGC 6323) likely due to sensitivity. Our 22 GHz spectra are consistent with earlier findings. Our simultaneous 43 GHz SiO maser search produced non-detections, yielding - for the first time - upper limits on the 43 GHz SiO maser emission in these sources at a 3 σ sensitivity level of 0.018 K-0.033 K (0.24 Jy-0.44 Jy) in a 1.75 km s^{-1} velocity resolution. Our findings suggest that any 43 GHz SiO masers in these sources (some having starburst-associated H_{2}O kilomasers) must be faint compared to the 22 GHz H_{2}O maser emission.

  4. Differential Stark shifts in the hydrogen maser

    SciTech Connect

    Stuart, J.G.; Larson, D.J.; Ramsey, N.F.

    1980-11-01

    The theory of the Stark shift of hydrogen ground-state hyperfine levels has been tested at the 2.4% level of accuracy in a hydrogen maser. The quadratic-Stark-shift coefficient for the hyperfine-transition frequency was experimentally found to be delta..nu.. x 10/sup -14/ Hz (V/m)/sup -2/, where the electric field was perpendicular to the axis of quantization. The quoted uncertainty corresponds to one standard deviation. The uncertainty has contributions from the statistics of the data and from systematic effects. A number of possible sources of systematic error or unwanted frequency shifts has been tested. The theoretically predicted coefficient delta..nu.. x 10/sup -14/ Hz (V/m)/sup -2/ is in reasonable agreement with the present experimental result.

  5. Nonlinear theory of a plasma Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.

  6. Ultra-Stable Superconducting-Maser Oscillator

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Dick, G. John

    1989-01-01

    Unprecedented stability of frequency in superconducting, triple-cavity ruby maser oscillator achieved by incorporation of amplitude-control subsystem. New design enhances ultra-stable measurements of time by reducing fluctuations to 2 X 10 to negative 19th power routinely, and to as little as 10 to negative 20th power in exceptional cases. Currents induced in superconducting pickup coil by changes in magnetic field in ruby. Currents from coil fed to superconducting quantum-interference device (SQUID) magnetometer, output used to generate control signal for electronically variable attenuator. Attenuator varies pump-signal amplitude in response to magnetic-field fluctuations in ruby. Very high feedback-loop gain used for sensitivity of control and adequate compensation of fluctuations.

  7. Maser cavity servo-tuning system

    NASA Technical Reports Server (NTRS)

    Sydnor, R. L. (Inventor)

    1985-01-01

    Two collocated, weakly coupled probes, one loop and one dipole, detect the magnetic and electric fields inside a maser cavity. Signals from the probes are compared in phase, and the signal output from the phase detector is applied to a varactor, the reactance of which is coupled into the cavity by a microwave coupler. Alternatively, the varactor may be placed inside the cavity. Any deviation of phase from 90 deg as detected by the phase detector will then produce an error signal that will change the reactance coupled into the resonant cavity to change its reactance, and thus correct its resonance frequency. An alternative to using two probes is to use a single disk probe oriented to detect both the magnetic and electric fields, and thus provide the error signal directly.

  8. Discovering metal-poor circumstellar OH masers

    NASA Astrophysics Data System (ADS)

    Goldman, Steve; Green, James; van Loon, Jacco; Wood, Peter; Imai, Hiroshi; Groenewegen, Martin; Nanni, Ambra

    2014-10-01

    OH masers are excellent signposts for a variety of phenomenon including winds of highly-evolved stars (1612 MHz). Using the superior angular resolution and sensitivity of the ATCA, high spectral resolution of the CABB backend, and close proximity to the LMC (with half solar metallicity), this observation will allow us to extend an important relation involving the evolution of red giants and supergiants in a lower metallicity (van Loon, 2012). With even fewer detections with clear double-peaked profiles, indicating an expansion velocity of the circumstellar envelope, successful observation is vital for the advancement of our stellar mass-loss models. By refining the metallicity dependence of the mass-loss of highly-evolved red giants and supergiants in their superwind phase, we can better understand the evolution of these stars and their feedback within galaxies.

  9. Detection of a new type of methanol maser

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Walmsley, C. M.; Jewell, P. R.; Snyder, L. E.

    1984-05-01

    The discovery of emission and absorption at 23121 MHz, attributed to the 92 - 101 A+ transition of methanol (CH3OH) is reported. The emission lines are from W3(OH), Orion-KL, and NGC 7538-IRS1; absorption was found toward the compact H II region in W31. Negative results for a number of other regions are given. The emission from W3(OH) is caused by maser amplification of the background continuum source. Maser amplification probably also explains the observed emission from NGC 7538-IRS1. The 92 - 101 A+ maser emission is the first detected from the A symmetry state of methanol and the first methanol maser found outside of Orion-KL.

  10. Spectra of circularly polarized radiation from astrophysical OH masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1990-01-01

    A striking feature of astrophysical masers is the tendency for either one or the other of the circular polarizations to dominate in the radiation from the strong, widely observed masing transitions of OH at 18 cm. Spectral line profiles are calculated for polarized maser radiation due to the combined effects of a velocity gradient and, as is indicated for these transitions, a Zeeman splitting that is at least comparable with the thermal contributions to the breadths of the spectral lines. The resulting spectral features are similar in appearance, including the presence of large net circular polarization and narrow line breadths, to the commonly observed spectra of OH masers in molecular clouds. The calculations presented here are performed as a function of frequency without making the approximations of a large velocity gradient. Rapid cross relaxation, which has been advocated by others for the OH masers, is assumed.

  11. Atomic hydrogen maser active oscillator cavity and bulb design optimization

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Washburn, P. J.

    1984-01-01

    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices.

  12. Mega-masers, Dark Energy and the Hubble Constant

    SciTech Connect

    Lo, Fred K.Y.

    2007-10-15

    Powerful water maser emission (water mega-masers) can be found in accretion disks in the nuclei of some galaxies. Besides providing a measure of the mass at the nucleus, such mega-masers can be used to determine the distance to the host galaxy, based on a kinematic model. We will explain the importance of determining the Hubble Constant to high accuracy for constraining the equation of state of Dark Energy and describe the Mega-maser Cosmology Project that has the goal of determining the Hubble Constant to better than 3%. Time permitting, we will also present the scientific capabilities of the current and future NRAO facilities: ALMA, EVLA, VLBA and GBT, for addressing key astrophysical problems

  13. Performance evaluation of the SAO VLG-11 atomic hydrogen masers

    NASA Technical Reports Server (NTRS)

    Levine, M. W.; Vessot, R. F.; Mattison, E. M.

    1978-01-01

    A new generation of frequency standards, the VLG-11 hydrogen maser, has been designed and built at the Smithsonian Astrophysical Observatory (SAO). A comprehensive series of environmental and short-term stability tests on three VLG-11 masers has been completed and evaluated. The test results reported here show substantial improvements over previous hydrogen masers in measured sensitivity to variations in ambient temperature, barometric pressure, and magnetic fields. The maser frequency stability, as represented by the two-sample (Allan) variance, has been measured for averaging times ranging from 1 to 100,00 seconds. The variance is lower than 1 x 10 to the -15th for averaging intervals between 1400 and 20,000 seconds. For times shorter than 4000 seconds, the measured stability data agree remarkably well with theoretical values calculated from thermal noise mechanisms and the 'noise within the linewidth' regime is clearly discernable in the data.

  14. Timescale algorithms combining cesium clocks and hydrogen masers

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1992-01-01

    The United States Naval Observatory (USNO) atomic timescale, formerly based on an ensemble of cesium clocks, is now produced by an ensemble of cesium clocks and hydrogen masers. In order to optimize stability and reliability, equal clock weighting has been replaced by a procedure reflecting the relative, time-varying noise characteristics of the two different types of clocks. Correlation of frequency drift is required, and residual drift is avoided by the eventual complete deweighting of the masers.

  15. In-Vacuum Dissociator for Atomic-Hydrogen Masers

    NASA Technical Reports Server (NTRS)

    Vessot, R. F.

    1987-01-01

    Thermal control and vacuum sealing achieved while contamination avoided. Simple, relatively inexpensive molecular-hydrogen dissociator for atomic-hydrogen masers used on Earth or in vacuum of space. No air cooling required, and absence of elastomeric O-ring seals prevents contamination. In-vacuum dissociator for atomic hydrogen masers, hydrogen gas in glass dissociator dissociated by radio-frequency signal transmitted from surrounding 3-turn coil. Heat in glass conducted away by contacting metal surfaces.

  16. Light shift effects in the Rb-87 maser

    NASA Technical Reports Server (NTRS)

    Busca, G.; Tetu, M.; Vanier, J.

    1973-01-01

    Previous work has shown the possibility to overcome the dependence of the Rb-87 maser frequency on light intensity by tuning the cavity at a proper setting. The conditions for this setting, called the light-independent frequency setting (LIFS), are carefully investigated. The results presented prove the existence of the LIFS and provide a new criterion for an automatic cavity tuning of the Rb maser.

  17. C-arm CT for histomorphometric evaluation of lumbar spine trabecular microarchitecture: a study on anorexia nervosa patients.

    PubMed

    Phan, C M; Khalilzadeh, O; Dinkel, J; Wang, I S; Bredella, M A; Misra, M; Miller, K K; Klibanski, A; Gupta, R

    2013-07-01

    Bone histomorphometry measurements require high spatial resolution that may not be feasible using multidetector CT (MDCT). This study evaluated the trabecular microarchitecture of lumbar spine using MDCT and C-arm CT in a series of young adult patients with anorexia nervosa (AN). 11 young females with AN underwent MDCT (anisotropic resolution with a slice thickness of ~626 μm) and C-arm CT (isotropic resolution of ~200 µm). Standard histomorphometric parameters the of L1 vertebral body, namely the apparent trabecular bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN) and trabecular separation (TbSp), were analysed using MicroView software (GE Healthcare, Piscataway, NJ). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Trabecular parameters derived from MDCT and C-arm CT were compared, and their association with BMD parameters was evaluated. Histomorphometric parameters derived from C-arm CT, namely TbTh, TbN and TbSp, were significantly different from the corresponding MDCT parameters. There were no significant correlations between C-arm CT-derived parameters and the corresponding MDCT-derived parameters. C-arm CT-derived parameters were significantly (p<0.001) correlated with anteroposterior L1 spine BMD and Z-scores: TbTh (r=0.723, r=0.744, respectively), TbN (r=-0.720, r=-0.712, respectively) and TbSp (r=0.656, r=0.648, respectively). BV/TV, derived from C-arm CT, was significantly associated with body mass index (r=0.636) and ideal body weight (r=0.730) (p<0.05). These associations were not present in MDCT-derived parameters. This study suggests that the spatial resolution offered by C-arm CT more accurately captures the histomorphometric parameters of trabecular morphology than MDCT in patients with AN. PMID:23640801

  18. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  19. Detection of water masers toward young stellar objects in the Large Magellanic Cloud

    SciTech Connect

    Johanson, A. K.; Migenes, V.; Breen, S. L.

    2014-02-01

    We present results from a search for water maser emission toward N4A, N190, and N206, three regions of massive star formation in the Large Magellanic Cloud (LMC). Four water masers were detected; two toward N4A, and two toward N190. In the latter region, no previously known maser emission has been reported. Future studies of maser proper motion to determine the galactic dynamics of the LMC will benefit from the independent data points the new masers in N190 provide. Two of these masers are associated with previously identified massive young stellar objects (YSOs), which strongly supports the authenticity of the classification. We argue that the other two masers identify previously unknown YSOs. No masers were detected toward N206, but it does host a newly discovered 22 GHz continuum source, also associated with a massive YSO. We suggest that future surveys for water maser emission in the LMC be targeted toward the more luminous, massive YSOs.

  20. Proposal for a room-temperature diamond maser.

    PubMed

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-01-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼10(6) s(-1)) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 10(4), diamond size ∼3 × 3 × 0.5 mm(3) and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758

  1. Proposal for a room-temperature diamond maser

    NASA Astrophysics Data System (ADS)

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-09-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (~ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (~0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (~5 ms) at room temperature, high optical pumping efficiency (~106 s-1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ~5 × 104, diamond size ~3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies.

  2. Proposal for a room-temperature diamond maser

    PubMed Central

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-01-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758

  3. A model for extremely powerful extragalactic water masers

    SciTech Connect

    Wu, Ying-Cheng; Alcock, C.

    1988-08-01

    The reasons for the differences between extremely powerful extragalatic water masers (EPEWMs) and strong Galactic H/sub 2/O masers are discussed. This model quite successfully explains many important characteristics of EPEWMs; the rapid time variations, the broad range and random velocity distribution, the extremely high luminosities, the various heights or widths of features in spectra, the strong infrared radiation from the galaxies, how an active nucleus contributes to an EPEWM, how some parts of EPEWMs producing strong features are pumped, why this pump mechanism can work, and why EPEWMs are different from strong Galactic H/sub 2/O masers. Recent observations of extragalactic water masers which have extremely high luminosities raise the possibility that the stimulated emission rate in the maser emission line in these regions is much higher than in Galactic masers. It is possible that the local stimulated emission rate exceeds the local bandwidth for the radiation. In this case the standard expression relating the photon emission rate to the profile averaged mean intensity does not apply. A new expression for the photon emission rate is derived.

  4. Molecular catastrophes and circumstellar SiO masers

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.

    1993-01-01

    Understanding the complex SiO maser regions of highly evolved stars can be improved through multiwavelength studies of 'premaser' stars, such as M0-M4 giants and semiregular variables, which can be placed on normal H-R diagrams unlike most of the OH-IR stars. I argue that SiO masers are a key part of the transformation of hot stellar plasma into cold circumstellar silicate dust, in the outflows from evolved, oxygen rich stars. Evidence for this statement rests on the following: (1) red giant mass loss originates in a stochastic, amsotropic manner; (2) SiO maser maps of Miras and red supergiants show numerous maser spots within a few stellar radii; (3) molecules and dust naturally form in a cooling outflow; (4) the IRAS Low Resolution Spectrometer provided evidence for diverse and variable 10 micron silicate features in Miras, and these shapes correlate well with the proposed maser chronology, suggesting a formation and annealing sequence. The theory for the occurrence of SiO masers involving thermal instability, related 'new' physics, recent calculations and a prediction are discussed.

  5. First pass cable artefact correction for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J. D.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-07-01

    Cardiac C-arm CT imaging delivers a tomographic region-of-interest reconstruction of the patient's heart during image guided catheter interventions. Due to the limited size of the flat detector a volume image is reconstructed, which is truncated in the cone-beam (along the patient axis) and the fan-beam (in the transaxial plane) direction. To practically address this local tomography problem correction methods, like projection extension, are available for first pass image reconstruction. For second pass correction methods, like metal artefact reduction, alternative correction schemes are required when the field of view is limited to a region-of-interest of the patient. In classical CT imaging metal artefacts are corrected by metal identification in a first volume reconstruction and generation of a corrected projection data set followed by a second reconstruction. This approach fails when the metal structures are located outside the reconstruction field of view. When a C-arm CT is performed during a cardiac intervention pacing leads and other cables are frequently positioned on the patients skin, which results in propagating streak artefacts in the reconstruction volume. A first pass approach to reduce this type of artefact is introduced and evaluated here. It makes use of the fact that the projected position of objects outside the reconstruction volume changes with the projection perspective. It is shown that projection based identification, tracking and removal of high contrast structures like cables, only detected in a subset of the projections, delivers a more consistent reconstruction volume with reduced artefact level. The method is quantitatively evaluated based on 50 simulations using cardiac CT data sets with variable cable positioning. These data sets are forward projected using a C-arm CT system geometry and generate artefacts comparable to those observed in clinical cardiac C-arm CT acquisitions. A C-arm CT simulation of every cardiac CT data set without

  6. Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.

    1978-01-01

    Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.

  7. Supernova remnant masers: Shock interactions with molecular clouds

    NASA Astrophysics Data System (ADS)

    Hewitt, John William

    Maser emission from the 1720-MHz transition of hydroxyl(OH) has identified shock interactions in 10% of all supernova remnants(SNRs). Such maser-emitting SNRs are also bright in molecular line emission. Though somewhat rare, SNRs interacting with dense molecular clouds are an important class in which to study cosmic ray acceleration, SNR evolution, and effects on the energetics and chemistry of the interstellar medium. To study molecular shocks via a multiwavelength approach, the VLA, GBT, Spitzer Space Telescope have been used in the following ways: (i) With the GBT widespread OH(1720 MHz) emission and absorption in other OH lines is observed across the interaction site. Observations of all four ground-state transitions at 1720, 1667/5 and 1612 MHz allows us to model OH excitation, yielding the temperature, density and OH abundance in the post-shock gas. Maser emission is found to have a higher flux density with the GBT than with high-resolution VLA observations for 10 of 15 observed remnants, suggesting maser emission is present on large spatial scales. (ii) Sensitive VLA observations of select SNRs (W44, IC 443, Kes 69, 3C 391, G357.7+0.3) reveal the nature of enhanced 1720 MHz emission. Numerous weak compact masers as well as diffuse extended emission are detected tracing the shock-front. Zeeman splitting of masers permits the post-shock magnetic field strength and the line of sight field direction to be directly measured. (iii) Rotational lines of molecular hydrogen are detected at the position of several masers with Spitzer IRS spectroscopy between 5 and 35 mm. Excitation of the hydrogen lines requires the passage of a C-type shock through dense molecular gas, in agreement with the conditions derived from OH excitation. The presence of bright ionic lines requires multiple shocks present at the interaction site. (iv) A new survey for SNR-masers has identified four new interacting SNRs within 10 degrees of the Galactic Center. Maser-emitting SNRs are found to

  8. A CO observation of the Galactic methanol masers

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyuan; Wu, Yuefang; Liu, Tie; Li, Lixin; Li, Di; Ju, Binggang

    2014-07-01

    Context. We investigated the molecular gas associated with 6.7 GHz methanol masers throughout the Galaxy using a J = 1-0 transition of the CO isotopologues. Aims: The methanol maser at 6.7 GHz is an ideal tracer for young high-mass star-forming cores. Based on molecular line emissions in the maser sources throughout the Galaxy, we can estimate their physical parameters and, thereby, investigate the forming conditions of the high-mass stars. Methods: Using the 13.7-m telescope at the Purple Mountain Observatory (PMO), we have obtained 12CO and 13CO (1-0) lines for 160 methanol masers sources from the first to the third Galactic quadrants. We made efforts to resolve the distance ambiguity by careful comparison with the radio continuum and HI 21 cm observations. We examined the statistical properties in three aspects: first, the variation throughout the Galaxy; second, the correlation between the different parameters; third, the difference between the maser sources and the infrared dark clouds. In addition, we have also carried out 13CO mapping for 33 sources in our sample. Results: First, the maser sources show increased 13CO line widths toward the Galactic center, suggesting that the molecular gas are more turbulent toward the Galactic center. This trend can be noticeably traced by the 13C line width. In comparison, the Galactic variation for the H2 column density and the 12CO excitation temperature are less significant. Second, the 12CO excitation temperature shows a noticeable correlation with the H2 column density. A possible explanation consistent with the collapse model is that the higher surface-density gas is more efficient to the stellar heating and/or has a higher formation rate of high-mass stars. Third, comparing the infrared dark clouds, the maser sources on average have significantly lower H2 column densities, moderately higher temperatures, and similar line widths. Fourth, In the mapped regions around 33 masers, 51 13CO cores have been revealed. Among

  9. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications

    PubMed Central

    Floridi, Chiara; Radaelli, Alessandro; Abi-Jaoudeh, Nadine; Grass, Micheal; Lin, Ming De; Chiaradia, Melanie; Geschwind, Jean-Francois; Kobeiter, Hishman; Squillaci, Ettore; Maleux, Geert; Giovagnoni, Andrea; Brunese, Luca; Wood, Bradford; Carrafiello, Gianpaolo; Rotondo, Antonio

    2014-01-01

    C-arm cone-beam computed tomography (CBCT) is a new imaging technology integrated in modern angiographic systems. Due to its ability to obtain cross-sectional imaging and the possibility to use dedicated planning and navigation software, it provides an informed platform for interventional oncology procedures. In this paper, we highlight the technical aspects and clinical applications of CBCT imaging and navigation in the most common loco-regional oncological treatments. PMID:25012472

  10. Ground-Based Investigations with the Cryogenic Hydrogen Maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

    2003-01-01

    The cryogenic hydrogen maser (CHM) developed at the Smithsonian Astrophysical Observatory (SAO) was designed to be functionally similar to SAO room temperature hydrogen masers with appropriate modifications made for operation at cryogenic temperatures. A schematic of the SAO CHM is shown in Figure 1, and a description of this device and its operation follows. A beam of molecular hydrogen is dissociated into atoms at room temperature. The resultant beam of atomic hydrogen is then cooled, magnetically state selected, and focused into a quartz storage bulb centered inside of a microwave cavity resonant with the hydrogen hyperfine transition at 1420 MHz. The quartz storage bulb is coated with a superfluid He-4 film, and both the bulb and cavity are maintained near 0.5 K. The maser signal is coupled out inductively and carried to room temperature via semi-rigid coaxial cable. After passing through a room temperature isolator and preamp, the maser signal is detected with a low-noise heterodyne receiver as used in the room temperature SAO hydrogen masers. The maser temperature is lowered to 0.5 K using a recirculating He-3 refrigerator. This refrigerator consists of several cooling stages: a liquid nitrogen stage at 77 K, a liquid 4He bath at 4.2 K, a pumped He-4 pot at approximately 1.7 K, and the pumped, recirculating He-3 stage at 0.5 K. The atomic hydrogen beam, state selector, storage bulb and cavity are all connected inside a single, maser vacuum chamber (MVC). This space is pumped out from below by a turbo pump. Above the MVC, an inlet to the space allows for the input of flowing superfluid 4He film. External to the MVC is a second, outer vacuum chamber (OVC), maintained for operation of the cryostat and also pumped by a turbo pump. Inside the OVC, there is radiation shielding at 77 K and 1.7 K.

  11. Prostate brachytherapy seed localization using a mobile C-arm without tracking

    NASA Astrophysics Data System (ADS)

    Ayad, Maria S.; Lee, Junghoon; Prince, Jerry L.; Fichtinger, Gabor

    2009-02-01

    The success of prostate brachytherapy depends on the faithful delivery of a dose plan. In turn, intraoperative localization and visualization of the implanted radioactive brachytherapy seeds enables more proficient and informed adjustments to the executed plan during therapy. Prior work has demonstrated adequate seed reconstructions from uncalibrated mobile c-arms using either external tracking devices or image-based fiducials for c-arm pose determination. These alternatives are either time-consuming or interfere with the clinical flow of the surgery, or both. This paper describes a seed reconstruction approach that avoids both tracking devices and fiducials. Instead, it uses the preoperative dose plan in conjunction with a set of captured images to get initial estimates of the c-arm poses followed by an auto-focus technique using the seeds themselves as fiducials to refine the pose estimates. Intraoperative seed localization is achieved through iteratively solving for poses and seed correspondences across images and reconstructing the 3D implanted seeds. The feasibility of this approach was demonstrated through a series of simulations involving variable noise levels, seed densities, image separability and number of images. Preliminary results indicate mean reconstruction errors within 1.2 mm for noisy plans of 84 seeds or fewer. These are attained for additive noise whose standard deviation of the 3D mean error introduced to the plan to simulate the implant is within 3.2 mm.

  12. MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs

    PubMed Central

    Wang, Lu; Zeng, Hao; Wang, Qiang; Zhao, Zibo; Boyer, Thomas G.; Bian, Xiuwu; Xu, Wei

    2015-01-01

    The RNA polymerase II mediator complex subunit 12 (MED12) is frequently mutated in human cancers, and loss of MED12 has been shown to induce drug resistance through activation of transforming growth factor–β receptor (TGF-βR) signaling. We identified MED12 as a substrate for coactivator-associated arginine methyltransferase 1 (CARM1). Not only are the expression levels of CARM1 and MED12 positively correlated, but their high expression also predicts better prognosis in human breast cancers after chemotherapy. MED12 was methylated at R1862 and R1912 by CARM1, and mutation of these sites in cell lines resulted in resistance to chemotherapy drugs. Furthermore, we showed that the methylation-dependent drug response mechanism is distinct from activation of TGF-βR signaling, because methylated MED12 potently suppresses p21/WAF1 transcription. Cells defective in MED12 methylation have up-regulated p21 protein, which correlates with poor prognosis in breast cancer patients treated with chemotherapy. Collectively, this study identifies MED12 methylation as a sensor for predicting response to commonly used chemotherapy drugs in human cancers. PMID:26601288

  13. Fundamental and harmonic electron cyclotron maser emission

    NASA Astrophysics Data System (ADS)

    Winglee, R. M.

    1985-10-01

    The plasma conditions and features of the energetic electron distribution in electron cyclotron maser emission for which growth in a particular mode is favored when the ratio of the plasma frequency omega(p) to the electron cyclotron frequency Omega(e) is greater than about 0.3 are determined. It is shown that growth at the fundamental is suppressed as omega(p)/Omega(e) increases and emission at harmonics of Omega(e) dominates. Growth at harmonics of Omega(e) is not restricted to the O and X modes, but can also occur for the Z mode. Whether or not growth in a particular mode dominates depends both on omega(p)/Omega(e) and on the form of the distribution. If the density of the energetic electrons is sufficiently large, the dispersion relations of the O and X modes are modified so that the group velocities of the growing O and X mode waves can be comparable to that of the growing Z mode waves.

  14. W-band free-electron masers

    SciTech Connect

    Freund, H. P.; Jackson, R. H.; Danly, B. G.; Levush, B.

    1999-05-07

    Theoretical analyses of high power W-band (i.e., {approx_equal}94 GHz) free-electron maser amplifiers are presented for a helical wiggler/cylindrical waveguide configuration using the three-dimensional slow-time-scale ARACHNE simulation code [9]. The geometry treated by ARACHNE is that of an electron beam propagating through the cylindrical waveguide subject to a helical wiggler and an axial guide magnetic field. Two configurations are discussed. The first is the case of a reversed-guide field geometry where the guide field is oriented antiparallel to the helicity of the wiggler field. Using a 330 kV/20 A electron beam, efficiencies of the order of 7% are calculated with a bandwidth (FWHM) of 5 GHz. The second example employs a strong guide field of 20 kG oriented parallel to the helicity of the wiggler. Here, efficiencies of greater than 8% are possible with a FWHM bandwidth of 4.5 GHz using a 300 kV/20 A electron beam. A normalized emittance of 95 mm-mrad is assumed in both cases, and no beam losses are observed for either case. Both cases assume interaction with the fundamental TE{sub 11} mode, which has acceptably low losses in the W-band.

  15. Amplification of OAM radiation by astrophysical masers

    NASA Astrophysics Data System (ADS)

    Gray, M. D.; Pisano, G.; Maccalli, S.; Schemmel, P.

    2014-12-01

    We extend the theory of astrophysical maser propagation through a medium with a Zeeman-split molecular response to the case of a non-uniform magnetic field, and allow a component of the electric field of the radiation in the direction of propagation: a characteristic of radiation with orbital angular momentum. A classical reduction of the governing equations leads to a set of nine differential equations for the evolution of intensity-like parameters for each Fourier component of the radiation. Four of these parameters correspond to the standard Stokes parameters, whilst the other five represent the z-component of the electric field, and its coupling to the conventional components in the x-y-plane. A restricted analytical solution of the governing equations demonstrates a non-trivial coupling of the Stokes parameters to those representing orbital angular momentum: the z-component of the electric field can grow from a background in which only Stokes-I is non-zero. A numerical solution of the governing equations reveals radiation patterns with a radial and angular structure for the case of an ideal quadrupole magnetic field perpendicular to the propagation direction. In this ideal case, generation of radiation orbital angular momentum, like polarization, can approach 100 per cent.

  16. Water masers in the Kronian system

    NASA Astrophysics Data System (ADS)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we started an observational campaign for search of another manifestation of the water vapour in the Kronian system, its maser emission at the frequency of 22 GHz (1.35 cm wavelength). Observations with the 32 m Medicina radio telescope (INAF-IRA, Italy) started in 2006 using Mk5A data recording and the JIVE-Huygens software correlator. Later on, an on-line spectrometer was used at Medicina. The 14 m Metsähovi radio telescope (TKK-MRO, Finland) joined the observational campaign in 2008 using a locally developed data capture unit and software spectrometer. More than 300 hours of observations were collected in 2006-2008 campaign with the two radio telescopes. The data were analysed at JIVE using the Doppler tracking technique to compensate the observed spectra for the radial Doppler shift for various bodies in the Kronian system (Pogrebenko et al. 2009). Here we report the observational results for Hyperion, Titan, Enceladus and Atlas, and their physical interpretation. Encouraged by these results we started a campaign of follow up observations including other radio telescopes.

  17. Superluminality and parelectricity: The ammonia maser revisited

    NASA Astrophysics Data System (ADS)

    Chiao, R. Y.; Boyce, J.; Mitchell, M. W.

    1995-02-01

    It is well known that the inversion of populations in the ammonia maser leads to stimulated emission, and hence amplification, of microwaves. However, it is not well known that an inverted medium also leads to the superluminal propagation of off-resonance, finite-band-width wave packets, whose phase, group, energy, and “signal” velocities, as defined by Sommerfeld and Brillouin, all exceed the vacuum speed of light c. Einstein causality is not violated, since the front velocity is c. The inversion of populations also implies a parelectric medium with negative electric susceptibility. ( Parelectric media should not be confused with paraelectric media, which are ferroelectrics just above their Curie points.) The existence of a parelectric medium implies the possibility of the levitation of an electrical charge in the vacuum above this medium, as well as stable electrostatic configurations of charges placed inside an evacuated cavity surrounded by this medium. The apparent violation of Earn-shaw's theorem will be discussed. Numerical estimates for a proposed experiment to observe parelectricity will be given.

  18. INTERSTELLAR H{sub 2}O MASERS FROM J SHOCKS

    SciTech Connect

    Hollenbach, David; Elitzur, Moshe; McKee, Christopher F.

    2013-08-10

    We present a model in which the 22 GHz H{sub 2}O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3}). We focus on high-velocity (v{sub s} {approx}> 30 km s{sup -1}) dissociative J shocks in which the heat of H{sub 2} re-formation maintains a large column of {approx}300-400 K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H{sub 2}O. The H{sub 2}O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally {approx} 10{sup 11}-10{sup 14} K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10-100 times the shock thickness of {approx}10{sup 13} cm. The masers are therefore beamed toward the observer, who typically views the shock ''edge-on'', or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line-of-sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H{sub 2}O 22 GHz masers, these observed parameters can be produced in J shocks with n{sub 0} {approx} 10{sup 6}-10{sup 8} cm{sup -3} and v{sub s} {approx} 30-200 km s{sup -1}. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, j = n{sub 0} v{sub s} , rather than on n{sub 0} and v{sub s} separately.

  19. C-Arm Computed Tomography Compared With Positron Emission Tomography/Computed Tomography for Treatment Planning Before Radioembolization

    SciTech Connect

    Becker, Christoph Waggershauser, Tobias; Tiling, Reinhold; Weckbach, Sabine; Johnson, Thorsten; Meissner, Oliver; Klingenbeck-Regn, Klaus; Reiser, Maximilian; Hoffmann, Ralf Thorsten

    2011-06-15

    The purpose of this study was to determine whether rotational C-arm computed tomography (CT) allows visualization of liver metastases and adds relevant information for radioembolization (RE) treatment planning. Technetium angiography, together with C-arm CT, was performed in 47 patients to determine the feasibility for RE. C-arm CT images were compared with positron emission tomography (PET)/CT images for the detection of liver tumors. The images were also rated according one of the following three categories: (1) images that provide no additional information compared with DSA alone; (2) images that do provide additional information compared with DSA; and (2) images that had an impact on eligibility determination for and planning of the RE procedure. In all patients, 283 FDG-positive liver lesions were detected by PET. In venous contrast-phase CT, 221 (78.1%) and 15 (5.3%) of these lesions were either hypodense or hyperdense, respectively. In C-arm CT, 103 (36.4%) liver lesions were not detectable because they were outside of either the field of view or the contrast-enhanced liver segment. Another 25 (8.8%) and 98 (34.6%) of the liver lesions were either hyperdense or presented primarily as hypodense lesions with a rim enhancement, respectively. With PET/CT as the standard of reference, venous CT and C-arm CT failed to detect 47 (16.6%) and 57 (20.1%) of all liver lesions, respectively. For RE planning, C-arm CT provided no further information, provide some additional information, or had an impact on the procedure in 20 (42.5%), 15 (31.9%) and 12 (25.6%) of patients, respectively. We conclude that C-arm CT may add decisive information in patients scheduled for RE.

  20. Detection of class I methanol (CH{sub 3}OH) maser candidates in supernova remnants

    SciTech Connect

    Pihlström, Y. M.; Mesler, R. A.; McEwen, B. C.; Sjouwerman, L. O.; Frail, D. A.; Claussen, M. J.

    2014-04-01

    We have used the Karl G. Jansky Very Large Array to search for 36 GHz and 44 GHz methanol (CH{sub 3}OH) lines in a sample of 21 Galactic supernova remnants (SNRs). Mainly the regions of the SNRs with 1720 MHz OH masers were observed. Despite the limited spatial extent covered in our search, methanol masers were detected in both G1.4–0.1 and W28. Additional masers were found in Sgr A East. More than 40 masers were found in G1.4–0.1, which we deduce are due to interactions between the SNR and at least two separate molecular clouds. The six masers in W28 are associated with the molecular cloud that is also associated with the OH maser excitation. We discuss the possibility that the methanol maser may be more numerous in SNRs than the OH maser, but harder to detect due to observational constraints.

  1. Novel Spin Maser in the Regime of Slow Diffusion

    NASA Astrophysics Data System (ADS)

    Romalis, M.; Kominis, I.; Happer, W.; Saam, B.

    1998-05-01

    We report the results of the first experimental and theoretical study of a noble gas spin maser in the regime of slow diffusion, appropriate for a high density gas or a liquid. The maser consists of a long cylindrical cell filled with 10 atm of polarized ^3He located inside a maser coil resonated with a capacitor. We study the dependence of the threshold for the onset of maser oscillations on the magnetic field gradient and the detuning of the ^3He Zeeman frequency from the resonance frequency of the maser coil. The observed dependence of the threshold on detuning is surprisingly complicated. There are edge enhancement effects as well as regions where the sign of the threshold condition is reversed. The theoretical treatment of the problem is closely related to the treatment of the magnetic resonance imaging in one dimension in the presence of slow diffusion. The masing threshold can be calculated analytically in terms of the Airy functions. Corrections have to be applied for the AC fields produced by the ^3He magnetization. Our model is in excellent semiquantitative agreement with experimental results.

  2. Development of the maser-caviton ball lightning theory

    NASA Astrophysics Data System (ADS)

    Handel, Peter H.; Leitner, Jean-Francois

    1994-05-01

    The maser-caviton ball lightning theory is briefly described, is compared with the available observations of ball lightning, and is further developed on the basis of the rate equations governing the evolution of the photon number in a single-mode maser. The focus of this paper is on the explosive growth of the photon number at the premature demise of a large atmospheric maser. Ball lightning is a localized high-field soliton forming a cavity surrounded by plasma in this theory. The source of VHF energy is a large atmospheric maser occupying a volume of serveral cubic miles for the case of open air ball lightning, and occupying the volume of the room in electrically shielded confined ball lightning cases. The main, well-known features of ball lightning, including its appearance right after a strong electric field pulse usually caused by lightning, its passage through closed windows and other dielectrics, its always harmless existence in electrically shielded (e.g., metallic) enclosures, without the possibility of electrostatic-explosive demise, its total absence in the vicinity of high peaks or lightning observation stations, as well as the character of its positioning and motion with respect to conducting bodies, and its apparent lack of buoyancy in the air can all be explained consistently only with the help of this theory as far as we can see. The explosive demise of open air ball lightning is described here in terms of maser spiking phonomena with the help of elementary equations.

  3. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  4. H2O masers from low and intermediate luminosity young stellar objects: H2O masers and YSOs

    NASA Astrophysics Data System (ADS)

    Persi, P.; Palagi, F.; Felli, M.

    1994-11-01

    We have used the Medicina 32-m radiotelescope to search for H2O 22.2 GHz maser emission from a sample of 68 red peculiar nebulosities associated with low luminosity (LIR less than 103 solar luminosity)) and intermediate luminosity (LIR approximately 104 solar luminosity) Young Stellar Objects (YSOs). H2O maser emission was detected in 9 sources, with a new detection in IRAS 18265+0028. Comparison with other samples indicates that YSOs have a higher probability of hosting an H2O maser, when they are associated with red peculiar nebulosities. Seven of the detected sources are associated with molecular outflows, which confirms that these two phenomena are strictly correlated. The maser sources associated with the Class I YSOs (IRAS 03225+3034, and IRAS 03245+3002, in the dark clouds L1448 and L1455 respectively) appear overluminous with respect to their IR luminosity. The maser emission shows a remarkable variability on time scales of months and years, which tends to be larger for lower luminosity sources. This is indicative of unsaturated emission in low luminosity sources.

  5. Water Maser Emission Around Low/Intermediate Mass Evolved Stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M. L.; Vlemmings, W. H. T.; Diamond, P. J.; Kemball, A.; Amiri, N.; Desmurs, J.-F.

    2012-07-01

    We present results of Very Long Baseline Array (VLBA) polarimetric 22 GHz H2O maser observations of a number of low/intermediate mass evolved stars. We observed 3 Miras (Ap Lyn, IK Tau and IRC+60370), 1 semi-regular variable (RT Vir) and 1 pPN (OH231.8+4.2). Circular polarization is detected in the H2O maser region of OH231.8+4.2 and we infer a magnetic field of |B||| = ~45 mG. This implies an extrapolated magnetic field of ~2.5 G on the surface of the central star. The preliminary results on RT Vir and IRC+60370 also indicate the first detection of weak H2O maser linear polarization.

  6. The MMB Survey: Variable sources and the weakest masers

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simon; Caswell, James; Voronkov, Maxim; Green, James; Fuller, Gary; Breen, Shari; Quinn, Lyshia

    2010-04-01

    The Methanol MultiBeam (MMB) survey has completed its survey of the southern Galactic plane for the 6,7 GHz class II methanol maser using the 7 beam receiver on Parkes. The first catalogue paper has been submitted. So far the MMB has detected over 800 massive star forming regions throughout our Galaxy. In this proposal we request time to obtain high quality spectra of a sample of highly variable weak masers which may represent a hither-to unknown population. In addition we will obtain final spectra of a sample of faint masers from deep piggyback pulsar observations and northernly sources whose positions have only recently been measured using the VLA and MERLIN.

  7. Water masers in W49N - The youngest stellar jet?

    NASA Technical Reports Server (NTRS)

    Mac Low, MORDECAI-M.; Elitzur, Moshe

    1992-01-01

    Observations by Gwinn et al. (1992) of the proper motions of water masers in W49N show that they have an elongated distribution expanding from a common center. Features with high space velocity only occur far from the center, while low-velocity features occur at all distances. It is proposed that water masers in star-forming regions occur in expanding shells swept up by high-velocity winds from young, massive stars during the early phases of the expansion. In W49N, confinement of the bubble by a density distribution with an axial cavity can explain both the velocity field and the shape of the maser distribution. A fully dynamical calculation of the expanding bubble is presented which provides a satisfactory fit for the observations and suggests that this system is only about 250 yr old. Thus these observations may show the very first stages of the formation of a jet from a young stellar object.

  8. Non-Zeeman circular polarization of molecular maser spectral lines

    SciTech Connect

    Houde, Martin

    2014-11-01

    We apply the anisotropic resonant scattering model developed to explain the presence of non-Zeeman circular polarization signals recently detected in the {sup 12}CO (J = 2 → 1) and (J = 1 → 0) transitions in molecular clouds to Stokes V spectra of SiO v = 1 and v = 2, (J = 1 → 0) masers commonly observed in evolved stars. It is found that the observed antisymmetric 'S'- and symmetric '∪'- or '∩'-shaped spectral profiles naturally arise when the maser radiation scatters off populations of foreground molecules located outside the velocity range covered by the background maser radiation. Using typical values for the relevant physical parameters, it is estimated that magnetic field strengths on the order of a few times 15 mG are sufficient to explain the observational results found in the literature.

  9. Experimental evaluation of a ruby maser at 43 GHz

    NASA Technical Reports Server (NTRS)

    Moore, C. R.; Neff, D.

    1982-01-01

    Inversion ratio measurements were conducted at several frequencies between 27 and 43 GHz for a pink ruby material (0.05% Cr/3+/ in Al2O3) at the push-pull pump angle of 54.7 degrees in order to determine the upper frequency limit where pink ruby could be expected to operate as a practical maser amplifier. Based on these measurements, a single-stage maser was developed which yielded 8 + or - 1 dB net gain and a 3 dB bandwidth of 180 MHz at a center frequency of 42.5 GHz. It is concluded that a multistage reflected wave maser could achieve bandwidths exceeding 1 GHz with 30 dB net gain at center frequencies near 40 GHz.

  10. Development of NMOR magnetometer for spin-maser EDM experiment

    NASA Astrophysics Data System (ADS)

    Yoshimi, A.; Nanao, T.; Inoue, T.; Furukawa, T.; Uchida, M.; Tsuchiya, M.; Hayashi, H.; Chikamori, M.; Asahi, K.

    We have been developing a high sensitivity atomic magnetometer for atomic EDM experiments using a lowfrequency nuclear spin maser. In the developed nuclear spin maser of 129Xe, suppression of drift and fluctuation in the magnetic field is one of the important issues. The magnetometer being developed for spin maser EDM experiments utilizes the nonlinear magneto optical rotation (NMOR) e_ect in Rb atomic vapor. The enhancement of the optical rotation in a small magnetic field relies on the long spin-coherence time of Rb atoms in a vapor cell. The NMOR spectrum was measured by using fabricated Rb cells coated with an anti-relaxation material. The NMOR spectrum dependence on laser frequency, cell coating, and laser beam diameter were investigated. The magnetic sensitivity at present is 0:2 μG/√Hz from observed NMOR and noise spectra.

  11. Error analysis of the x-ray projection geometry of camera-augmented mobile C-arm

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2012-02-01

    The Camera-Augmented Mobile C-arm (CamC) augments X-ray by optical camera images and is used as an advanced visualization and guidance tool in trauma and orthopedic surgery. However, in its current form the calibration is suboptimal. We investigated and compared calibration and distortion correction between: (i) the existing CamC calibration framework (ii) Zhang's calibration for video images, and (iii) the traditional C-arm fluoroscopy calibration technique. Accuracy of the distortion correction for each of the three methods is compared by analyzing the error based on a synthetic model and the linearity and cross-ratio properties. Also, the accuracy of calibrated X-ray projection geometry is evaluated by performing C-arm pose estimation using a planar pattern with known geometry. The RMS errors based on a synthetic model and pose estimation shows that the traditional C-arm method (μ=0.39 pixels) outperforms both Zhang (μ=0.68 pixels) and original CamC (μ=1.07 pixels) methods. The relative pose estimation comparison shows that the translation error of the traditional method (μ=0.25mm) outperforms Zhang (μ=0.41mm) and CamC (μ=1.13mm) method. In conclusion, we demonstrated that the traditional X-ray calibration procedure outperforms the existing CamC solution and Zhang's method for the calibration of C-arm X-ray projection geometry.

  12. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus.

    PubMed

    Hu, Shi-Bin; Xiang, Jian-Feng; Li, Xiang; Xu, Yefen; Xue, Wei; Huang, Min; Wong, Catharine C; Sagum, Cari A; Bedford, Mark T; Yang, Li; Cheng, Donghang; Chen, Ling-Ling

    2015-03-15

    In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1. PMID:25792598

  13. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus

    PubMed Central

    Hu, Shi-Bin; Xiang, Jian-Feng; Li, Xiang; Xu, Yefen; Xue, Wei; Huang, Min; Wong, Catharine C.; Sagum, Cari A.; Bedford, Mark T.; Yang, Li

    2015-01-01

    In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3′ untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54nrb. However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54nrb, resulting in reduced binding of p54nrb to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein–RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1. PMID:25792598

  14. Formaldehyde Masers: Exclusive Tracers of High-mass Star Formation

    NASA Astrophysics Data System (ADS)

    Araya, E. D.; Olmi, L.; Morales Ortiz, J.; Brown, J. E.; Hofner, P.; Kurtz, S.; Linz, H.; Creech-Eakman, M. J.

    2015-11-01

    The detection of four formaldehyde (H2CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H2CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H2CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H2CO emission in our sample of non HMSFRs. To check for the association between high-mass star formation and H2CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH3OH masers. We detected a new 6 cm H2CO emission line in G32.74-0.07. This work provides further evidence that supports an exclusive association between H2CO masers and young regions of high-mass star formation. Furthermore, we detected H2CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH3OH (5005 MHz), and CH2NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.

  15. N-bursty emission from Uranus: A cyclotron maser source?

    NASA Technical Reports Server (NTRS)

    Curran, D. B.; Menietti, J. D.

    1993-01-01

    Ray tracing studies of RX-mode emission from the north polar regions of Uranus indicate that the n-bursty radio emission may have a source along field lines with footprints near the northern magnetic pole (perhaps in the cusp), but not necessarily associated with regions of strong UV emission. This is in contrast with similar studies for the Uranus nightside smooth radio emission, which are believed to be due to the cyclotron maser instability. Source regions can be found for both hollow and filled emission cones and for frequencies well above the local gyrofreuquency implying that mechanisms other than the cyclotron maser mechanism may be operating.

  16. X-band ultralow-noise maser amplifier performance

    NASA Technical Reports Server (NTRS)

    Glass, G. W.; Ortiz, G. G.; Johnson, D. L.

    1994-01-01

    Noise temperature measurements of an 8440-MHz ultralow noise maser amplifier (ULNA) have been performed at subatmospheric, liquid-helium temperatures. The traveling-wave maser was operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.43 +/- 0.16 K at a physical temperature of 1.60 K. At this physical temperature, the observed gain per centimeter of ruby was 4.9 dB/cm. The amplifier had a 3-dB bandwidth of 76 MHz.

  17. X-Band Ultra-Low Noise Maser Amplifier Performance

    NASA Technical Reports Server (NTRS)

    Glass, G.; Johnson, D.; Ortiz, G.

    1993-01-01

    Noise temperature measurements of an 8440 MHz ultra-low noise maser amplifier (ULNA) have been performed at sub-atmospheric, liquid helium temperatures. The traveling wave maser operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.23 plus or minus 0.16 K at a physical temperature of 1.60 kelvin. At this physical temperature the observed gain per unit length of ruby was 4.6 dB/cm, and the amplifier had a 3 dB-bandwidth of 76 MHz.

  18. NEW MASER EMISSION FROM NONMETASTABLE AMMONIA IN NGC 7538. II. GREEN BANK TELESCOPE OBSERVATIONS INCLUDING WATER MASERS

    SciTech Connect

    Hoffman, Ian M.; Seojin Kim, Stella

    2011-12-15

    We present new maser emission from {sup 14}NH{sub 3} (9,6) in NGC 7538. Our observations include the known spectral features near v{sub LSR} = -60 km s{sup -1} and -57 km s{sup -1} and several more features extending to -46 km s{sup -1}. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other {sup 14}NH{sub 3} (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km s{sup -1} < v{sub LSR} < -4 km s{sup -1}, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H{sub 2}O and, now, {sup 14}NH{sub 3} are the only masers known to exhibit emission outside of the velocity range -62 km s{sup -1} < v{sub LSR} < -51 km s{sup -1}. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search to date toward any source for emission from the CC{sup 32}S and CC{sup 34}S molecules, indicating an age greater than Almost-Equal-To 10{sup 4} yr for IRS 1-3. We discuss these findings in the context of embedded stellar cores and recent models of the region.

  19. NASA hydrogen maser accuracy and stability in relation to world standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Percival, D. B.

    1973-01-01

    Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.

  20. A correlational analysis of the effects of changing environmental conditions on the NR atomic hydrogen maser

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard A.; Suter, Joseph J.

    1992-01-01

    An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.

  1. Extragalactic Sub-millimeter H2O Maser - Detection of a 321 GHz Water Maser in Circinus Galaxy

    NASA Astrophysics Data System (ADS)

    Hagiwara, Y.; Horiuchi, S.; Doi, A.; Miyoshi, M.

    2015-12-01

    We present the first detection of the extragalactic 321 GHz H2O emission towards the Circinus Galaxy, the nearby Type2 Seyfert galaxy. It is likely that the detected emission is a maser because of the narrow line shape, the compact emission (< 0.66″) and the high energy level of the transition. High velocity emission, red-shifted up to 635 km/s, was tentatively detected. The maser location of about 0.02 pc from the center of the galaxy is estimated by adopting the Kepler rotating disk model. This could be the molecular material observed closest to the central engine.

  2. Combination management by C-arm fluoroscopy and extraocular muscle severance for penetrating ocular trauma with a retrobulbar foreign body.

    PubMed

    Hatano, Makoto; Kimura, Kazuhiro; Nomi, Norimasa; Teranishi, Shinichiro; Orita, Tomoko; Fujitsu, Youichiro; Sonoda, Koh-Hei

    2016-06-01

    We report here the successful removal of a retrobulbar metallic foreign body in a patient with penetrating ocular trauma by a transconjunctival approach and combination management with C-arm fluoroscopy and extraocular muscle severance. A 37-year-old man sustained a penetrating injury to the right eye while using an iron hammer. Initial slitlamp examination revealed a corneoscleral laceration, iridocele, anterior chamber collapse, and a traumatic cataract. Visual acuity in the right eye was limited to the perception of hand motion. Computed tomography revealed an orbital foreign body in the retrobulbar area. The patient underwent corneoscleral suturing, severance of extraocular muscles, removal of the foreign body with guidance by C-arm fluoroscopy, pars plana lensectomy, and pars plana vitrectomy. Combination management with C-arm fluoroscopy and extraocular muscle severance may thus be a suitable approach to the removal of a retrobulbar metallic foreign body. PMID:27070785

  3. Correlations of Circumnuclear Water Maser Luminosity with AGN Activity and SMBH Mass

    NASA Astrophysics Data System (ADS)

    Mei, Ming-Yi Jeffrey; Zaw, I.; Greenhill, L. J.

    2014-01-01

    We examine 53 water masers, the only known resolvable tracers of gas in the sub-parsec disks of active galactic nuclei (AGN). We test if there is a relationship between the isotropic maser luminosity and black hole mass and AGN activity. Black hole mass is estimated from velocity dispersion, sigma, and AGN bolometric luminosity from [OIII]5007 luminosity, from SDSS spectra. The maser are sorted, based on their radio spectra, into disk-type masers, located in the accretion disk, jet-type masers, located in a jet/outflow, or other-type masers, where the location of the masers is unclear. The maser luminosity is fit against black hole mass and AGN luminosity and compared with the theoretical predictions from Neufeld and Maloney (1995). This builds on the result from Zhu et al. (2011) with a doubled sample size and fitting for both variables at the same time. The dependence of isotropic maser luminosity of the disk and jet masers on black hole mass and AGN luminosity agree within error to the model, while the "other" masers show no correlation.

  4. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  5. 3D ablation catheter localisation using individual C-arm x-ray projections

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Dössel, O.; Grass, M.

    2014-11-01

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  6. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction.

    PubMed

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay; Siewerdsen, Jeffrey H

    2014-02-21

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼ 40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2 × over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼ 1.7 mGy and benefits from 50% sparsity at dose below ∼ 1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. PMID:24504126

  7. Statistical characterization of C-arm distortion with application to intra-operative distortion correction

    NASA Astrophysics Data System (ADS)

    Chintalapani, Gouthami; Jain, Ameet K.; Taylor, Russell H.

    2007-03-01

    C-arm images suffer from pose dependant distortion, which needs to be corrected for intra-operative quantitative 3D surgical guidance. Several distortion correction techniques have been proposed in the literature, the current state of art using a dense grid pattern rigidly attached to the detector. These methods become cumbersome for intra-operative use, such as 3D reconstruction, since the grid pattern interferes with patient anatomy. The primary contribution of this paper is a framework to statistically analyze the distortion pattern which enables us to study alternate intra-operative distortion correction methods. In particular, we propose a new phantom that uses very few BBs, and yet accurately corrects for distortion. The high dimensional space of distortion pattern can be effectively characterized by principal component analysis (PCA). The analysis shows that only first three eigen modes are significant and capture about 99% of the variation. Phantom experiments indicate that distortion map can be recovered up to an average accuracy of less than 0.1 mm/pixel with these three modes. With this prior statistical knowledge, a subset of BBs can be sufficient to recover the distortion map accurately. Phantom experiments indicate that as few as 15 BBs can recover distortion with average error of 0.17 mm/pixel, accuracy sufficient for most clinical applications. These BBs can be arranged on the periphery of the C-arm detector, minimizing the interference with patient anatomy and hence allowing the grid to remain attached to the detector permanently. The proposed method is fast, economical, and C-arm independent, potentially boosting the clinical viability of applications such as quantitative 3D fluoroscopic reconstruction.

  8. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  9. Evaluating the feasibility of C-arm CT for brain perfusion imaging: an in vitro study

    NASA Astrophysics Data System (ADS)

    Ganguly, A.; Fieselmann, A.; Boese, J.; Rohkohl, C.; Hornegger, J.; Fahrig, R.

    2010-02-01

    C-arm cone-beam CT (CBCT) is increasingly being used to supplement 2D real-time data with 3D information. Temporal resolution is currently limited by the mechanical rotation speed of the C-arm which presents challenges for applications such as imaging of contrast flow in brain perfusion CT (PCT). We present a novel scheme where multiple scans are obtained at different start times with respect to the contrast injection. The data is interleaved temporally and interpolated during 3D reconstruction. For evaluation we developed a phantom to generate the range of temporal frequencies relevant for PCT. The highest requirements are for imaging the arterial input function (AIF) modeled as a gamma-variate function. Fourier transform analysis of the AIF showed that 90% of the spectral energy is contained at frequencies lower than 0.08Hz. We built an acrylic cylinder phantom of diameter 1.9 cm, with 25 sections of 1cm length each. Iodine concentration in each compartment was varied to produce a half-cycle sinusoid variation in HU in version 1, and 2.5 cycles in version 2 of the phantom. The phantom was moved linearly at speeds from 0.5cm/s to 4cm/s (temporal frequencies of 0.02Hz to 0.09Hz) and imaged using a C-arm system. Phantom CT numbers in a slice reconstructed at isocenter were measured and sinusoidal fits to the data were obtained. The fitted sinusoids had frequencies that were within 3+/-2% of the actual temporal frequencies of the sinusoid. This suggests that the imaging and reconstruction scheme is adequate for PCT imaging.

  10. 3D ablation catheter localisation using individual C-arm x-ray projections.

    PubMed

    Haase, C; Schäfer, D; Dössel, O; Grass, M

    2014-11-21

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm. PMID:25350552

  11. OH maser outburst in the W3 nebula

    NASA Astrophysics Data System (ADS)

    Gosachinskij, I. V.; Grenkov, S. A.; Ipatov, A. V.; Rakhimov, I. A.

    2016-07-01

    We report the results of three-year long observations of OH masers at 1665 MHz in the W3(OH) source carried out with the 32-m antenna of Svetloe Radio Astronomical Observatory.We found that the strongest activity during the period from December 2011 through March 2012 was exhibited by the region at radial velocity -46.2km s-1. The region showed no activity in the ensuing time. The most striking outburst was the event that occurred on January 23, 2013 at UT 03:27. At that time the flux of the region increased by a factor of seven in 90 s, and then decreased down to the initial level. Such a time scale yields the upper estimate of 0.18 AU (2.7 × 1012 cm) for the linear size of the maser dot. In 2013-2014 intensity variations were found the -47.6 and -45.1km s-1 components with time scales on the order of 10 hours and anticorrelated behavior of the left- and right-hand polarization fluxes. This is the first time that such phenomena have been found in the behavior of OH maser emission, and they cannot be explained by any existing models of maser variability.

  12. Study of Improvement of Hydrogen Maser Frequency Standard

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1977-01-01

    The research work dealt primarily with reducing the atom leakage rate using as storage surfaces the FEP Teflon surfaces conventionally used in contemporary hydrogen maser frequency standards. Some work was also done on a possible alternative to the conventional surfaces, but the results here and elsewhere suggest that the alternative surface is not promising enough to warrant much further work.

  13. CARMing down the SINEs of anarchy: two paths to freedom from paraspeckle detention

    PubMed Central

    Elbarbary, Reyad A.

    2015-01-01

    A subset of messenger RNAs (mRNAs) that contain inverted Alu elements in their 3′ untranslated region are inefficiently exported to the cytoplasm and retained in subnuclear bodies called paraspeckles. The arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1) promotes the nuclear export of these mRNAs by methylating the paraspeckle component p54nrb, which reduces the binding of p54nrb to the inverted Alu elements, and down-regulating synthesis of another paraspeckle component, the long noncoding RNA NEAT1, which inhibits paraspeckle formation. PMID:25838539

  14. CARMing down the SINEs of anarchy: two paths to freedom from paraspeckle detention.

    PubMed

    Elbarbary, Reyad A; Maquat, Lynne E

    2015-04-01

    A subset of messenger RNAs (mRNAs) that contain inverted Alu elements in their 3' untranslated region are inefficiently exported to the cytoplasm and retained in subnuclear bodies called paraspeckles. The arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1) promotes the nuclear export of these mRNAs by methylating the paraspeckle component p54(nrb), which reduces the binding of p54(nrb) to the inverted Alu elements, and down-regulating synthesis of another paraspeckle component, the long noncoding RNA NEAT1, which inhibits paraspeckle formation. PMID:25838539

  15. Computational and Observational Studies of Interstellar Thioformaldehyde Masers

    NASA Astrophysics Data System (ADS)

    Simpson, Lisa; Hoffman, I. M.

    2013-06-01

    Interstellar spectroscopy of thioformaldehyde (H2CS) holds considerable promise because of the close relationship between the H2CS molecule and the well-studied formaldehyde (H2CO) molecule. In particular, the well-known J(Ka,Kc) = 1(1,0) to 1(1,1) transition of H2CO at 6 cm (4.8 GHz) has an analogous H2CS transition at 1046 MHz. However, the 1046-MHz line of H2CS has never been detected astronomically. We present here a summary of: (1) a computational investigation of H2CS level populations related to known H2CO 6-cm masers, and (2) an observational campaign of four isotopologues of H2CS. Maser emission from H2CO has been observed at 6 cm for which Boland and de Jong (1981) have developed a pump model. We have extended this model to H2CS and we present preliminary calculations for a 1046-MHz maser. We intend to develop a quantitative tool for interpreting H2CS observations toward Galactic and extragalactic locations of H2CO maser emission by constructing a radiative-transfer maser model for H2CS. Thioformaldehyde has been detected in a few Galactic sources via J>1 transitions. However, interpretation of these results has two outstanding problems: the H2CS/H2CO abundances do not agree with known sulfur-to-oxygen ratios nor do the J>1 populations have the expected Boltzmann relationship to the J=1 states. A detection of the 1046-MHz transition of H2CS with J=1 would alleviate many of the ambiguities in the interpretation of existing observational results. We describe our forthcoming experiment to search in a Galactic star-forming region for thermal and nonthermal emission and absorption from four thioformaldehyde isotopologues: H2(12C)(32S), H2(13C)(32S), H2(12C)(34S), and D2(12C)(32S). Taken together, both parts of this research effort will provide valuable and novel constraints on H2CS and H2CO. New observations of H2CS isotopologues will yield new measurements of deuterium-to-hydrogen and sulfur-to-oxygen ratios in star-forming environments. Also, the application

  16. AMMONIA AND CO OBSERVATIONS TOWARD LOW-LUMINOSITY 6.7 GHz METHANOL MASERS

    SciTech Connect

    Wu, Y. W.; Xu, Y.; Yang, J.; Zhang, S. B.; Pandian, J. D.; Henkel, C.; Menten, K. M.

    2010-09-01

    To investigate whether distinctions exist between low- and high-luminosity Class II 6.7 GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH{sub 3} (1,1), (2,2), (3,3), (4,4), and {sup 12}CO (1-0) transitions, toward a sample of nine low-luminosity 6.7 GHz masers and {sup 12}CO (1-0) observations toward a sample of eight high-luminosity 6.7 GHz masers, for which we already had NH{sub 3} spectral line data. Emission in the NH{sub 3} (1,1), (2,2), and (3,3) transitions was detected in eight out of nine low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes, and masses of both low- and high-luminosity maser regions. A comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7 GHz masers are larger and more massive than those traced by low-luminosity 6.7 GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7 GHz maser luminosity and NH{sub 3} (1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A {sup 12}CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.

  17. Interventional heart wall motion analysis with cardiac C-arm CT systems

    NASA Astrophysics Data System (ADS)

    Müller, Kerstin; Maier, Andreas K.; Zheng, Yefeng; Wang, Yang; Lauritsch, Günter; Schwemmer, Chris; Rohkohl, Christopher; Hornegger, Joachim; Fahrig, Rebecca

    2014-05-01

    Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕi, max) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice.

  18. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2008-06-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in the safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:18503893

  19. Three-dimensional C-arm cone-beam CT: applications in the interventional suite.

    PubMed

    Wallace, Michael J; Kuo, Michael D; Glaiberman, Craig; Binkert, Christoph A; Orth, Robert C; Soulez, Gilles

    2009-07-01

    C-arm cone-beam computed tomography (CT) with a flat-panel detector represents the next generation of imaging technology available in the interventional radiology suite and is predicted to be the platform for many of the three-dimensional (3D) roadmapping and navigational tools that will emerge in parallel with its integration. The combination of current and unappreciated capabilities may be the foundation on which improvements in both safety and effectiveness of complex vascular and nonvascular interventional procedures become possible. These improvements include multiplanar soft tissue imaging, enhanced pretreatment target lesion roadmapping and guidance, and the ability for immediate multiplanar posttreatment assessment. These key features alone may translate to a reduction in the use of iodinated contrast media, a decrease in the radiation dose to the patient and operator, and an increase in the therapeutic index (increase in safety-vs-benefit ratio). In routine practice, imaging information obtained with C-arm cone-beam CT provides a subjective level of confidence factor to the operator that has not yet been thoroughly quantified. PMID:19560037

  20. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  1. Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures.

    PubMed

    Wiesent, K; Barth, K; Navab, N; Durlak, P; Brunner, T; Schuetz, O; Seissler, W

    2000-05-01

    Increasingly, three-dimensional (3-D) imaging technologies are used in medical diagnosis, for therapy planning, and during interventional procedures. We describe the possibilities of fast 3-D-reconstruction of high-contrast objects with high spatial resolution from only a small series of two-dimensional (2-D) planar radiographs. The special problems arising from the intended use of an open, mechanically unstable C-arm system are discussed. For the description of the irregular sampling geometry, homogeneous coordinates are used thoroughly. The well-known Feldkamp algorithm is modified to incorporate corresponding projection matrices without any decomposition into intrinsic and extrinsic parameters. Some approximations to speed up the whole reconstruction procedure and the tradeoff between image quality and computation time are also considered. Using standard hardware the reconstruction of a 256(3) cube is now possible within a few minutes, a time that is acceptable during interventions. Examples for cranial vessel imaging from some clinical test installations will be shown as well as promising results for bone imaging with a laboratory C-arm system. PMID:11021683

  2. SiO and CH3OH mega-masers in NGC 1068.

    PubMed

    Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong

    2014-01-01

    Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥ 10(6) times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies. PMID:25386834

  3. Unusual Shock-excited OH Maser Emission in a Young Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Qiao, Hai-Hua; Walsh, Andrew J.; Gómez, José F.; Imai, Hiroshi; Green, James A.; Dawson, Joanne R.; Shen, Zhi-Qiang; Ellingsen, Simon P.; Breen, Shari L.; Jones, Paul A.; Gibson, Steven J.; Cunningham, Maria R.

    2016-01-01

    We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667, and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array, hereby confirming it as the seventh known case of an OH-maser-emitting PN. This is only the second known PN showing 1720 MHz OH masers after K 3-35 and the only evolved stellar object with 1720 MHz OH masers as the strongest transition. This PN is one of a group of very young PNe. The 1612 MHz and 1667 MHz masers are at a similar velocity to the 22 GHz H2O masers, whereas the 1720 MHz masers show a variable spectrum, with several components spread over a higher velocity range (up to 36 km s-1). We also detect Zeeman splitting in the 1720 MHz transition at two epochs (with field strengths of ˜2 to ˜10 mG), which suggests the OH emission at 1720 MHz is formed in a magnetized environment. These 1720 MHz OH masers may trace short-lived equatorial ejections during the formation of the PN.

  4. Accurate positions of H2 O masers in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lazendic, J. S.; Whiteoak, J. B.; Klamer, I.; Harbison, P. D.; Kuiper, T. B. H.

    2002-04-01

    Positions with subarcsecond accuracy have been measured for seven 22-GHz H2 O masers associated with Hii regions in the Large Magellanic Cloud (LMC); two of the masers are new detections. Initial position measurements were obtained with the 70-m antenna of the Canberra NASA Deep Space Network during a period of more than two years in which the antenna was used to monitor the maser emission. The positions were further improved using 22-GHz observations involving three antennas of the Australia Telescope Compact Array. The positions have been compared with those of 1.6-GHz continuum emission and other LMC masers (of OH and CH3 OH). The H2 O maser positions range from within 1arcsec (270mpc) of the centre of a compact Hii component to beyond the boundary of significant continuum emission. Three of the four masers located near continuum peaks are close to OH masers. In two cases the positional agreement is better than 0.2arcsec (53mpc) in the third case the agreement is worse (0.9arcsec) but the positions of the individual H2 O features appear to be spread over more than 1arcsec. The velocities of the OH masers are within the spread of the H2 O velocities. The three H2 O masers offset from continuum centres are located 3-7arcsec from optical or infrared phenomena probably associated with very early stages of star formation; no other molecular masers are known in these directions.

  5. SiO and CH3OH mega-masers in NGC 1068

    PubMed Central

    Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong

    2014-01-01

    Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥106 times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies. PMID:25386834

  6. RadioAstron results on extremely small structures in cosmic masers

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrey

    Observations of the masers in the course of Early Science Program and Key Science Program AO-1 of RadioAstron mission yielded detections of fringes for a number of sources in both water and hydroxyl maser transitions. Some sources display numerous ultra-compact details. This proves that implementation of the space VLBI technique for maser studies is possible technically and is not always prevented by the interstellar scattering, maser beaming and other effects related to formation, transfer and detection of the cosmic maser emission. For the first time cosmic water maser emission was detected using space VLBI technique. Fringes from the water maser sources were detected on baselines exceeding 5 Earth Diameters (>65,000 km). This means that the angular resolution better than 40 microarcsec was directly achieved in the cosmic maser observations. The sharpest “direct” linear resolution better than 4 million kilometers was achieved in observations of the maser in Orion. Modelling of the data on Cep A water maser indicates that the source contains features with the sizes smaller than that of the Sun. Difference in velocities of these features corresponds to velocity gradient exceeding highest known values by 1-1.5 orders of magnitude. Detection of new hydroxyl maser sources indicates that the presence of compact details in these sources is rather a rule than exclusion. This means that our current understanding of scattering phenomena in the disk of our Galaxy has to be reconsidered. So, the major step from milli- to micro-arcsecond resolution in maser studies is done. Existence of the features with extremely small angular sizes is established. Further implementations of the space VLBI maser instrument for studies of the nature of cosmic objects, studies of interaction of extremely high radiation field with molecular material and studies of the matter on the line of sight are planned.

  7. An H2O Maser survey towards BGPS sources in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Xi, Hong-Wei; Zhou, Jian-Jun; Esimbek, Jarken; Wu, Gang; He, Yu-Xin; Ji, Wei-Guang; Tang, Xiao-Ke; Yuan, Ye

    2016-06-01

    We performed an H2O maser survey towards 274 Bolocam Galactic Plane Survey (BGPS) sources with 85° < l < 193° using the Nanshan 25 m radio telescope. We detected 25 H2O masers, and five of them are new detections. The detection rate of H2O masers in our sample is 9% which is very low. The detection rate of H2O masers increases as the 1.1 mm flux density of BGPS sources increases, and both the peak flux density and luminosity of H2O masers increase as the sources evolve. The detection rate of H2O masers toward BGPS sources without HCO+ emission is low. The BGPS sources associated with both H2O and CH3OH masers seem to be more compact than those only associated with H2O masers. This indicates that the sources with both masers may be in a relatively later evolutionary stage. The strongest H2O maser source G133.715+01.217, also well known as W3 IRS 5 which has a flux density of 2.9×103 Jy, was detected at eight different nearby positions. By measuring the correlation between the flux densities of these H2O masers and their angular distance from the true source location, we get the influence radius r = \\frac{1}{{0.8}}log ≤ft({\\frac{{F_0}}{{3\\text{rms}}}}\\right). For our observations, strong sources can be detected anywhere within this radius. It is helpful to determine whether or not a weak maser nearby the strong maser is a true detection.

  8. A Water Maser and NH3 Survey of GLIMPSE Extended Green Objects

    NASA Astrophysics Data System (ADS)

    Cyganowski, C. J.; Koda, J.; Rosolowsky, E.; Towers, S.; Donovan Meyer, J.; Egusa, F.; Momose, R.; Robitaille, T. P.

    2013-02-01

    We present the results of a Nobeyama 45 m H2O maser and NH3 survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 μm emission. We observed the NH3(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms ~ 50 mK). The H2O maser detection rate is 68% (median rms ~ 0.11 Jy). The derived H2O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H2O masers and warm dense gas, as indicated by emission in the higher-excitation NH3 transitions, are most frequently detected toward EGOs also associated with both Class I and II CH3OH masers. Ninety-five percent (81%) of such EGOs are detected in H2O (NH3(3,3)), compared to only 33% (7%) of EGOs without either CH3OH maser type. As populations, EGOs associated with Class I and/or II CH3OH masers have significantly higher NH3 line widths, column densities, and kinetic temperatures than EGOs undetected in CH3OH maser surveys. However, we find no evidence for statistically significant differences in H2O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H2O maser luminosity and clump number density. H2O maser luminosity is weakly correlated with clump (gas) temperature and clump mass.

  9. Linear polarization of submillimetre masers. Tracing magnetic fields with ALMA

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, A. F.; Vlemmings, W. H. T.

    2013-03-01

    Context. Once ALMA full polarization capabilities are offered, it will become possible to perform detailed studies of polarized maser emission towards star-forming regions and late-type stars, such as (post-) asymptotic giant branch stars and young planetary nebulae. To derive the magnetic field orientation from maser linear polarization, a number of conditions involving the rate of stimulated emission R, the decay rate of the molecular state Γ, and the Zeeman frequency gΩ need to be satisfied. Aims: The goal of this work is to investigate if SiO, H2O and HCN maser emission within the ALMA frequency range can be detected with observable levels of fractional linear polarization in the regime where the Zeeman frequency is greater than the stimulated emission rate. Methods: We used a radiative transfer code to calculate the fractional linear polarization as a function of the emerging brightness temperature for a number of rotational transition of SiO, H2O and HCN that have been observed to display maser emission at submillimetre wavelengths. We assumed typical magnetic field strengths measured towards galactic star-forming regions and circumstellar envelopes of late-type stars from previous VLBI observations. Since the Landé g-factors have not been reported for the different rotational transitions we modelled, we performed our calculations assuming conservative values of the Zeeman frequency for the different molecular species. Results: Setting a lower limit for the Zeeman frequency that still satisfies the criteria gΩ > R and gΩ > Γ, we find fractional polarization levels of up to 13%, 14% and 19% for the higher J transitions analysed for SiO, H2O and HCN, respectively, without considering anisotropic pumping or any other non-Zeeman effect. These upper limits were calculated assuming a magnetic field oriented perpendicular to the direction of propagation of the maser radiation. Conclusions: According to our results, SiO, H2O, and HCN maser emission within the

  10. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC 4945

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Horiuchi, Shinji; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G.

    2016-08-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. We have discovered H2O maser emission at 321 GHz toward the center of NGC 4945, a nearby type 2 Seyfert. The maser emission shows Doppler-shifted velocity features with velocity ranges similar to those of the previously reported 22 GHz H2O masers however, the non-contemporaneous observations also show differences in velocity offsets. The subparsec-scale distribution of the 22 GHz H2O masers revealed by earlier very long baseline interferometry observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved by the synthesized beam of ∼0.″54 (∼30 pc) and are located toward the 321 GHz continuum peak within errors. A marginally detected (3σ) high-velocity feature is redshifted by 579 km {{{s}}}-1 with respect to the systemic velocity of the galaxy. Assuming that this feature is real and arises from a Keplerian rotating disk in this galaxy, it is located at a radius of ∼0.020 pc (∼1.5 × 105 Schwarzschild radii), which would enable molecular material closer to the central engine to be probed than the 22 GHz H2O masers. This detection confirms that submillimeter H2O masers are a potential tracer of the circumnuclear regions of active galaxies, which will benefit from higher angular resolution studies with ALMA.

  11. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC 4945

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Horiuchi, Shinji; Doi, Akihiro; Miyoshi, Makoto; Edwards, Philip G.

    2016-08-01

    We present further results of a search for extragalactic submillimeter H2O masers using the Atacama Large Millimeter/submillimeter Array (ALMA). The detection of a 321 GHz H2O maser in the nearby type 2 Seyfert galaxy, the Circinus galaxy, has previously been reported, and here the spectral analysis of four other galaxies is described. We have discovered H2O maser emission at 321 GHz toward the center of NGC 4945, a nearby type 2 Seyfert. The maser emission shows Doppler-shifted velocity features with velocity ranges similar to those of the previously reported 22 GHz H2O masers however, the non-contemporaneous observations also show differences in velocity offsets. The subparsec-scale distribution of the 22 GHz H2O masers revealed by earlier very long baseline interferometry observations suggests that the submillimeter masers could arise in an edge-on rotating disk. The maser features remain unresolved by the synthesized beam of ˜0.″54 (˜30 pc) and are located toward the 321 GHz continuum peak within errors. A marginally detected (3σ) high-velocity feature is redshifted by 579 km {{{s}}}-1 with respect to the systemic velocity of the galaxy. Assuming that this feature is real and arises from a Keplerian rotating disk in this galaxy, it is located at a radius of ˜0.020 pc (˜1.5 × 105 Schwarzschild radii), which would enable molecular material closer to the central engine to be probed than the 22 GHz H2O masers. This detection confirms that submillimeter H2O masers are a potential tracer of the circumnuclear regions of active galaxies, which will benefit from higher angular resolution studies with ALMA.

  12. Frequency, phase, and amplitude changes of the hydrogen maser oscillation

    NASA Technical Reports Server (NTRS)

    Audoin, Claude; Diener, William A.

    1992-01-01

    The frequency, the phase, and the amplitude changes of the hydrogen maser oscillation, which are induced by the modulation of the cavity resonant frequency, are considered. The results obtained apply specifically to one of the H-maser cavity autotuning methods which is actually implemented, namely the cavity frequency-switching method. The frequency, the phase, and the amplitude changes are analyzed theoretically. The phase and the amplitude variations are measured experimentally. It is shown, in particular, that the phase of oscillation is subjected to abrupt jumps at the times of the cavity frequency switching, whose magnitude is specified. The results given can be used for the design of a phase-locked loop (PLL) aimed at minimizing the transfer of the phase modulation to the slaved VCXO.

  13. POLARIZED EMISSION FROM SiO MASERS IN IK Tauri

    SciTech Connect

    Cotton, W. D.; Ragland, S.; Danchi, W. C.

    2011-08-01

    We present high spatial and frequency resolution images of the SiO masers in Stokes I, Q, U, and V around the asymptotic giant branch star IK Tau and describe and exploit a new technique for making accurate calibration of Stokes V. This technique also resulted in improved images of Stokes I. An evaluation of the results suggests that the circular polarization is neither the result of Zeeman splitting nor an alternate propagation effect. The pattern of circular and linear polarization across the maser lines shows no tendency toward that expected for simple Zeeman splitting. The fractional circular polarization greatly exceeds that expected from the alternate mechanism. The overall shape of the masing ring has changed from the elliptical form repeatedly observed over the last decade and a half.

  14. Nonlinear saturation characteristics of a dielectric Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a dielectric Cherenkov maser (DCM) with the TM mode and the intense relativistic electron beam is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the dielectric materials and show that the characteristics of a DCM instablity has a strong resemblance to that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. Finally, the nonlinear analysis shows that the Cherenkov maser operation with a lower-energy beam can be more efficient in the higher frequency regime for the case of the high power DCM with a high current.

  15. Cepheid Variables in the Maser-host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  16. SiO MASERS IN ASYMMETRIC MIRAS. II. R CANCRI

    SciTech Connect

    Cotton, W. D.; Ragland, S.; Pluzhnik, E. A.; Danchi, W. C.; Traub, W. A.; Lacasse, M. G.

    2009-12-01

    This is the second paper in a series of multi-epoch observations of the SiO masers at 7 mm wavelength in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by the Infrared Optical Telescope Array and with Very Long Baseline Array measurements of the SiO masers. In this paper, we present the observations of R Cancri (R Cnc). The systemic velocity of R Cnc is estimated to be 15.8 {+-} 0.2 km s{sup -1}. A comparison is made with the model calculations of Gray et al. which predict some but not all observed features.

  17. A survey of 12.2 GHz methanol masers and their polarization properties

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Williams, David R. D.; Heiles, Carl; Backer, Donald C.

    1988-03-01

    Methanol emission at 12.1786 GHz, 2 - 3(-1)E, has been searched for toward 78 nonstellar H2O masers and 33 type I OH/IR stars. Eleven new methanol sources were found in nonstellar water masers, whereas no sources were found in stellar masers. Most of the new sources show narrow lines with velocity widths smaller than 1 km/s and are considered to be masers. Tentative evidence is presented that the methanol masers are not all associated with H2O and OH masers. Polarization properties have also been observed for five strong sources including Cepheus A and G188.94 + 0.89, which were detected in this survey. Three sources, G188.94 + 0.89, Cepheus A, and NGC 7538, are completely unpolarized, and the other two sources show a small amount of linear polarization: a few percent for W3(OH) and 10 + or - 3 percent for NGC 6334.

  18. IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL

    SciTech Connect

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Shibata, Katsunori M.; Tsuboi, Masato; Fujisawa, Kenta; Kawaguchi, Noriyuki; Imai, Hiroshi; Omodaka, Toshihiro; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-10-01

    In 2011 February, a burst event of the H{sub 2}O maser in Orion KL (Kleinmann-Low object) has started after a 13 year silence. This is the third time such phenomena has been detected in Orion KL, followed by the events in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H{sub 2}O maser features in Orion KL with the VLBI Exploration of Radio Astrometry (VERA), a Japanese very long baseline interferometry network dedicated for astrometry. The total flux of the bursting feature at the local standard of rest (LSR) velocity of 7.58 km s{sup -1} reaches 4.4 x 10{sup 4} Jy in 2011 March. The intensity of the bursting feature is three orders of magnitude larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s{sup -1} in 2011 May, separated by 12 mas north of the 7.58 km s{sup -1} feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilliarcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H{sub 2}O maser burst.

  19. Free electron maser experiments in the low-frequency limit

    SciTech Connect

    Drori, R.; Jerby, E.; Shahadi, A.

    1995-12-31

    Table-top free-electron maser (FEM) experiments operating in the low-frequency (< 1 GHz) low-energy ({approximately} 1 keV) limit are reported. These FEM devices employ parallel-stripline non-dispersive waveguides (which support TEM-modes), and planar folded-foil wigglers. Thermionic cathodes and carbon-fiber cold-cathodes are used in these experiments. Results of oscillator and amplifier experiments are presented and compared with theory.

  20. The Water Maser in II Zw 96: Scientific Justification

    SciTech Connect

    Wiggins, Brandon Kerry

    2015-08-06

    We propose a VLBI search to image and locate the water emission in II Zw 96. We propose 3 sites within II Zw 96 for VLBI followup (see the proposed target listing below). We request 2.5 hours of on-source integration time with the VLBA per source. The array will achieve ~ 65µJy sensitivity in K band in this time which will be sufficient to detect luminous water maser features.

  1. Light shift and light broadening in the Rb-87 maser.

    NASA Technical Reports Server (NTRS)

    Busca, G.; Tetu, M.; Vanier, J.

    1973-01-01

    A description of measurements of light-shift and light-broadening parameters for an Rb-87 maser operating between the field independent levels is reported. A parallel study of the spectral profile of the D1 pumping line is described. Comparison between the experimental results and theoretical calculations, taking into account the spatial inhomogeneity of the pumping light in the absorption cell, is presented.

  2. FEM (Free Electron Maser) for tokamak: Final report

    SciTech Connect

    Not Available

    1987-01-01

    This paper studies the feasibility of a microwave source for heating a tokamak reactor. The free electron maser (FEM) shows great promise for being this source. The topics covered in this paper are microwave generation with FEM, efficiency enhancement, parameter scaling, space charge scaling, beam energy spread and efficiency scaling, electron beam line with energy recovery, achromatic bend, multi-stage depressed voltage electron beam collector, and development plans. 12 refs., 10 figs., 5 tabs. (LSP)

  3. Correlation of circumstellar SiO maser spot distribution with the stellar light curve

    NASA Astrophysics Data System (ADS)

    Oyadomari, M.; Imai, H.; Nagayama, T.; Oyama, T.; Matsumoto, N.; Nakashima, J.; Cho, S.-H.

    2016-07-01

    We have investigated the distributions of silicon monoxide (SiO) v = 2 and v = 3 J = 1 → 0 masers around long-period variables (LPVs) in VLBI observations using the VLBI Exploration of Radio Astrometry (VERA) combined with the Nobeyama 45 m telescope. We find some examples of correlation of a maser spot distribution with the stellar light curve, which may provide a clue to elucidating the pumping mechanism of circumstellar SiO masers.

  4. A survey of 44-GHz Class I methanol masers toward High Mass Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Berenice Rodríguez Garza, Carolina; Kurtz, Stan

    2016-01-01

    We present preliminary results of 44-GHz Class I methanol maser observations made with the Very Large Array toward a sample of 55 High Mass Protostellar Objects. We found a 44% detection rate of methanol maser emission. We present a statistical description of our results, along with a comparison of the location of the 44-GHz masers with respect to shocked gas, traced by Extended Green Objects seen in the Spitzer/IRAC bands.

  5. WATER MASERS IN THE ANDROMEDA GALAXY: THE FIRST STEP TOWARD PROPER MOTION

    SciTech Connect

    Darling, Jeremy

    2011-05-01

    We have detected and confirmed five water maser complexes in the Andromeda Galaxy (M31) using the Green Bank Telescope. These masers will provide the high brightness temperature point sources needed for proper motion studies of M31, enabling measurement of its full three-dimensional velocity vector and its geometric distance via proper rotation. The motion of M31 is the keystone of Local Group dynamics and a gateway to the dark matter profiles of galaxies in general. Our survey for water masers selected 206 luminous compact 24 {mu}m emitting regions in M31 and was sensitive enough to detect any maser useful for {approx}10 {mu}as yr{sup -1} astrometry. The newly discovered masers span the isotropic luminosity range (0.3-1.9) x 10{sup -3} L{sub sun} in single spectral components and are analogous to luminous Galactic masers. The masers are distributed around the molecular ring, including locations close to the major and minor axes, which is nearly ideal for proper motion studies. We find no correlation between 24 {mu}m luminosity and water maser luminosity, suggesting that while water masers arise in star-forming regions, the nonlinear amplification pathways and beamed nature of the water masers means that they are not predictable based on IR luminosity alone. This suggests that there are additional bright masers to be found in M31. We predict that the geometric distance and systemic proper motion of M31 can be measured in 2-3 years with current facilities. A 'moving cluster' observation of diverging masers as M31 approaches the Galaxy may be possible in the long term.

  6. The system design of a rubidium maser frequency standard

    NASA Technical Reports Server (NTRS)

    Xiong, C. X.

    1984-01-01

    The Rubidium Maser Frequency Standard is a precision frequency source with excellent short-term stability. A type PBR-II Rb maser frequency standard was developed by the Beijing Institute of Radio Metrology and Measurement (BIRMM). The time-domain frequency stability (two-sample variance) of this frequency standard is less than 1/5 times 10 to the 13th power for t=10ms yields 1.0s, fh=1.0 KHz. Two PBR-II frequency standards were used as reference frequency sources in a frequency stability measurement system. Some important system characteristics for the PBR-II Rb maser frequency standard such as phase noise and frequency stability transfer characteristics are discussed. Furthermore, the design of the frequency standard for optimum frequency stability of the output signal; the choice of a voltage controlled crystal oscillator for the frequency standard; the design of the phase-locked loop; and the frequency stability test results on the PBR-II are discussed.

  7. Precision timekeeping using a small passive hydrogen maser

    NASA Technical Reports Server (NTRS)

    Walls, F. L.; Howe, D. A.

    1981-01-01

    The timekeeping ability of a prototype passive hydrogen maser which is a factor of 5 smaller in size, weight, and cost than any previously designed, was compared to UTC (NBS) based on 10 cesium frequency standards including a large primary standard, NBS-4. The frequency of the prototype was monitored as a function of source pressure, cavity temperature, microwave power, modulation width, and magnetic field. Based on these measurements, a frequency stability of better than 6 x 10 to the -15 power was expected, implying a timekeeping ability of order 0.5 ns/day. Measurements vs UTC(NBS) indicate a joint timekeeping a stability of order 1.2 ns/day. Simultaneous measurements made between NBS-4, UTC(6600), and the small passive me maser show peak to peak time variations of the small maser vs UTC(6600) was 10 ns for the full 32 days if the average rate and drift are considered. Frequency stability of the small prototype vs UTC (NBS) was to 1.1 x 10 to the -14th power for tau = 1 to 8 days.

  8. Ground-Based Investigations with the Cryogenic Hydrogen Maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

    2001-01-01

    The room temperature hydrogen maser is an active atomic oscillator used as a high-frequency-stability local oscillator for radio astronomy, metrology, and spacecraft navigation, and in tests of fundamental physics. The cryogenic hydrogen maser (CHM) operates at 0.5 K, employing superfluid helium-coated walls to store the masing hydrogen atoms. We are investigating whether the CHM may provide better frequency stability than the room temperature hydrogen maser: one to three orders of magnitude improvement may be possible because of greatly reduced thermal noise and larger signal power. Exceptional frequency stability will be required for spacecraft tracking in future deep-space missions, for space-based tests of relativity and gravitation, and for local (i.e., flywheel) oscillators used with absolute frequency standards such as laser-cooled atomic fountains and linear ion traps. These new devices are passive high-resolution frequency discriminators. Alone, they cannot function as superior atomic clocks; their effective operation depends on being integrated with an active local oscillator with excellent short term stability - such as that possible with the CHM.

  9. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    NASA Astrophysics Data System (ADS)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  10. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    PubMed

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical