Sample records for autosomal dominant brachydactyly

  1. Blepharophimosis, ptosis, polythelia and brachydactyly (BPPB): a new autosomal dominant syndrome?

    PubMed

    Wittebol-Post, D; Hennekam, R C

    1993-10-01

    A father and two sons with blepharophimosis, ptosis, polythelia and brachydactyly are presented, apparently without other abnormalities. The features do not fit into any previously described syndrome. This condition may represent a hitherto undescribed syndrome, although resemblance with the blepharophimosis-ptosis-epicanthus inversus syndrome exists. Inheritance is probably autosomal dominant.

  2. Short stature, brachydactyly, and Peters' anomaly (Peters'-plus syndrome): confirmation of autosomal recessive inheritance.

    PubMed Central

    de Almeida, J C; Reis, D F; Llerena Júnior, J; Barbosa Neto, J; Pontes, R L; Middleton, S; Telles, L F

    1991-01-01

    Two sibs with a phenotype characterised by short stature, brachydactyly, and ocular anomalies (Peters' anomaly) are reported (Peters'-plus syndrome). The consanguinity is in agreement with the proposed autosomal recessive inheritance. Images PMID:1856836

  3. PDE3A mutations cause autosomal dominant hypertension with brachydactyly.

    PubMed

    Maass, Philipp G; Aydin, Atakan; Luft, Friedrich C; Schächterle, Carolin; Weise, Anja; Stricker, Sigmar; Lindschau, Carsten; Vaegler, Martin; Qadri, Fatimunnisa; Toka, Hakan R; Schulz, Herbert; Krawitz, Peter M; Parkhomchuk, Dmitri; Hecht, Jochen; Hollfinger, Irene; Wefeld-Neuenfeld, Yvette; Bartels-Klein, Eireen; Mühl, Astrid; Kann, Martin; Schuster, Herbert; Chitayat, David; Bialer, Martin G; Wienker, Thomas F; Ott, Jürg; Rittscher, Katharina; Liehr, Thomas; Jordan, Jens; Plessis, Ghislaine; Tank, Jens; Mai, Knut; Naraghi, Ramin; Hodge, Russell; Hopp, Maxwell; Hattenbach, Lars O; Busjahn, Andreas; Rauch, Anita; Vandeput, Fabrice; Gong, Maolian; Rüschendorf, Franz; Hübner, Norbert; Haller, Hermann; Mundlos, Stefan; Bilginturan, Nihat; Movsesian, Matthew A; Klussmann, Enno; Toka, Okan; Bähring, Sylvia

    2015-06-01

    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.

  4. Autosomal-dominant familial angiolipomatosis.

    PubMed

    Garib, George; Siegal, Gene P; Andea, Aleodor A

    2015-01-01

    Angiolipomas are among the most common benign soft-tissue tumors and usually present as solitary nodules; however, angiolipomas also may present as multiple subcutaneous nodules, typically on the arms and trunk of young men. Although multiple angiolipomas most often occur sporadically, a family history can be identified in a minority of cases. Familial angiolipomatosis is a rare condition with an autosomal-recessive transmission pattern that is characterized by multiple subcutaneous tumors and a family history of similar lesions, which are not associated with malignant neoplasms. We report a case of familial angiolipomatosis with an unusual autosomal-dominant transmission pattern. Our patient presented with multiple angiolipomas that were highly suggestive of familial angiolipomatosis transmitted in an autosomal-dominant fashion, as he had several family members with a history of similar fatty tumors. Autosomal-dominant familial angiolipomatosis may be misdiagnosed as neurofibromatosis type I. Therefore, in cases of multiple subcutaneous tumors and a family history of similar lesions, histologic examination is important to establish the correct diagnosis.

  5. Clinical Characterization of Patients With Autosomal Dominant Short Stature due to Aggrecan Mutations

    PubMed Central

    Gkourogianni, Alexandra; Andrew, Melissa; Tyzinski, Leah; Crocker, Melissa; Douglas, Jessica; Dunbar, Nancy; Fairchild, Jan; Funari, Mariana F. A.; Heath, Karen E.; Jorge, Alexander A. L.; Kurtzman, Tracey; LaFranchi, Stephen; Lalani, Seema; Lebl, Jan; Lin, Yuezhen; Los, Evan; Newbern, Dorothee; Nowak, Catherine; Olson, Micah; Popovic, Jadranka; Průhová, Štěpánka; Elblova, Lenka; Quintos, Jose Bernardo; Segerlund, Emma; Sentchordi, Lucia; Shinawi, Marwan; Stattin, Eva-Lena; Swartz, Jonathan; del Angel, Ariadna González; Cuéllar, Sinhué Diaz; Hosono, Hidekazu; Sanchez-Lara, Pedro A.; Hwa, Vivian; Baron, Jeffrey; Dauber, Andrew

    2017-01-01

    Context: Heterozygous mutations in the aggrecan gene (ACAN) cause autosomal dominant short stature with accelerated skeletal maturation. Objective: We sought to characterize the phenotypic spectrum and response to growth-promoting therapies. Patients and Methods: One hundred three individuals (57 females, 46 males) from 20 families with autosomal dominant short stature and heterozygous ACAN mutations were identified and confirmed using whole-exome sequencing, targeted next-generation sequencing, and/or Sanger sequencing. Clinical information was collected from the medical records. Results: Identified ACAN variants showed perfect cosegregation with phenotype. Adult individuals had mildly disproportionate short stature [median height, −2.8 standard deviation score (SDS); range, −5.9 to −0.9] and a history of early growth cessation. The condition was frequently associated with early-onset osteoarthritis (12 families) and intervertebral disc disease (9 families). No apparent genotype–phenotype correlation was found between the type of ACAN mutation and the presence of joint complaints. Childhood height was less affected (median height, −2.0 SDS; range, −4.2 to −0.6). Most children with ACAN mutations had advanced bone age (bone age − chronologic age; median, +1.3 years; range, +0.0 to +3.7 years). Nineteen individuals had received growth hormone therapy with some evidence of increased growth velocity. Conclusions: Heterozygous ACAN mutations result in a phenotypic spectrum ranging from mild and proportionate short stature to a mild skeletal dysplasia with disproportionate short stature and brachydactyly. Many affected individuals developed early-onset osteoarthritis and degenerative disc disease, suggesting dysfunction of the articular cartilage and intervertebral disc cartilage. Additional studies are needed to determine the optimal treatment strategy for these patients. PMID:27870580

  6. Two novel disease-causing variants in BMPR1B are associated with brachydactyly type A1.

    PubMed

    Racacho, Lemuel; Byrnes, Ashley M; MacDonald, Heather; Dranse, Helen J; Nikkel, Sarah M; Allanson, Judith; Rosser, Elisabeth; Underhill, T Michael; Bulman, Dennis E

    2015-12-01

    Brachydactyly type A1 is an autosomal dominant disorder primarily characterized by hypoplasia/aplasia of the middle phalanges of digits 2-5. Human and mouse genetic perturbations in the BMP-SMAD signaling pathway have been associated with many brachymesophalangies, including BDA1, as causative mutations in IHH and GDF5 have been previously identified. GDF5 interacts directly as the preferred ligand for the BMP type-1 receptor BMPR1B and is important for both chondrogenesis and digit formation. We report pathogenic variants in BMPR1B that are associated with complex BDA1. A c.975A>C (p.(Lys325Asn)) was identified in the first patient displaying absent middle phalanges and shortened distal phalanges of the toes in addition to the significant shortening of middle phalanges in digits 2, 3 and 5 of the hands. The second patient displayed a combination of brachydactyly and arachnodactyly. The sequencing of BMPR1B in this individual revealed a novel c.447-1G>A at a canonical acceptor splice site of exon 8, which is predicted to create a novel acceptor site, thus leading to a translational reading frameshift. Both mutations are most likely to act in a dominant-negative manner, similar to the effects observed in BMPR1B mutations that cause BDA2. These findings demonstrate that BMPR1B is another gene involved with the pathogenesis of BDA1 and illustrates the continuum of phenotypes between BDA1 and BDA2.

  7. RBBP8 syndrome with microcephaly, intellectual disability, short stature and brachydactyly.

    PubMed

    Mumtaz, Sara; Yıldız, Esra; Jabeen, Saliha; Khan, Amjad; Tolun, Aslıhan; Malik, Sajid

    2015-12-01

    Primary microcephaly is clinically variable and genetically heterogeneous. Four phenotypically distinct types of autosomal recessive microcephaly syndromes are due to different RBBP8 mutations. We report on a consanguineous Pakistani family with homozygous RBBP8 mutation c.1808_1809delTA (p.Ile603Lysfs*7) manifesting microcephaly and a distinct combination of skeletal, limb and ectodermal defects, mild intellectual disability, minor facial anomalies, anonychia, disproportionate short stature and brachydactyly, and additionally talipes in one patient. © 2015 Wiley Periodicals, Inc.

  8. Genetics Home Reference: autosomal dominant hypocalcemia

    MedlinePlus

    ... imbalance of other molecules in the blood as well, including too much phosphate (hyperphosphatemia) or too little magnesium (hypomagnesemia). Some people with autosomal dominant hypocalcemia also ...

  9. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    MedlinePlus

    ... Twitter Home Health Conditions ADPEAF Autosomal dominant partial epilepsy with auditory features Printable PDF Open All Close ... the expand/collapse boxes. Description Autosomal dominant partial epilepsy with auditory features ( ADPEAF ) is an uncommon form ...

  10. Autosomal dominant inheritance of Brachmann-de Lange syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozma, C.

    A mother with mild phenotype and her severely affected son, both with classic manifestations of Brachmann-de Lange syndrome (BDLS), are described. This documented mother-to-child transmission supports the hypothesis of autosomal dominant transmission with intrafamilial variability. Known cases of BDLS with autosomal dominant inheritance are reviewed. Although most cases of BDLS are sporadic, a careful evaluation of parents of affected children is important for appropriate genetic counseling. 15 refs., 3 figs., 1 tab.

  11. Classification and identification of inherited brachydactylies

    PubMed Central

    Fitch, Naomi

    1979-01-01

    A search for patterns of malformation in the brachydactylies has resulted in new ways to identify the different types. Type A-1 can be characterised by a proportionate reduction of the middle phalanges. Type B is thought to be an amputation-like defect. In type C the fourth middle phalanx is usually the longest, and type E (Riccardi and Holmes, 1974) is characterised by short metacarpals and short distal phalanges. Short stature is usually present in type A-1 and type E brachydactyly (Riccardi and Holmes, 1974) and it may be present in some individuals with brachydactyly C. As short children have short hands, it is possible that in patients with very mild expressions of brachydactyly the cause of the short stature may be overlooked. It is suggested that in every child with proportionate short stature the hands should be carefully examined. If the hands are disproportionately short, if any distal creases are missing, if there is a shortening, however mild, of any finger, if any metacarpals are short, then it is important to have ϰ-rays to look for brachydactyly A-1, C, or E. Much information is still needed. It is important in future reports to have skeletal surveys, pattern profile analyses, and to note the height of children with brachydactyly C. Most interesting of all will be when fetal limbs of each type become available for study. Images PMID:469884

  12. Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly.

    PubMed

    Toka, Okan; Tank, Jens; Schächterle, Carolin; Aydin, Atakan; Maass, Philipp G; Elitok, Saban; Bartels-Klein, Eireen; Hollfinger, Irene; Lindschau, Carsten; Mai, Knut; Boschmann, Michael; Rahn, Gabriele; Movsesian, Matthew A; Müller, Thomas; Doescher, Andrea; Gnoth, Simone; Mühl, Astrid; Toka, Hakan R; Wefeld-Neuenfeld, Yvette; Utz, Wolfgang; Töpper, Agnieszka; Jordan, Jens; Schulz-Menger, Jeanette; Klussmann, Enno; Bähring, Sylvia; Luft, Friedrich C

    2015-10-01

    Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population. © 2015 American Heart Association, Inc.

  13. [Autosomal dominant polycystic kidney].

    PubMed

    Jorge Adad, S; Estevão Barbosa, M; Fácio Luíz, J M; Furlan Rodrigues, M C; Iwamoto, S

    1996-01-01

    A 48-year-old male had autosomic dominant polycystic kidneys with dimensions, to the best of our knowledge, never previously reported; the right kidney weighed 15,100 g and measured 53 x 33 x 9cm and the left one 10.200 g and 46 x 21 x 7cm, with cysts measuring up to 14cm in diameter. Nephrectomy was done to control persistent hematuria and to relief disconfort caused by the large kidneys. The renal function is stable four years after transplantation.

  14. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome

    PubMed Central

    Kamiyoshi, Naohiro; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-01-01

    Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport–related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte–related genes. Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive

  15. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome.

    PubMed

    Kamiyoshi, Naohiro; Nozu, Kandai; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-08-08

    Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes. The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an

  16. Autosomal dominant juvenile recurrent parotitis.

    PubMed Central

    Reid, E; Douglas, F; Crow, Y; Hollman, A; Gibson, J

    1998-01-01

    Juvenile recurrent parotitis is a common cause of inflammatory salivary gland swelling in children. A variety of aetiological factors has been proposed for the condition. Here we present a family where four members had juvenile recurrent parotitis and where two other family members may have had an atypical form of the condition. The segregation pattern in the family is consistent with autosomal dominant inheritance with incomplete penetrance and this suggests that, at least in some cases, genetic factors may be implicated in juvenile recurrent parotitis. PMID:9610807

  17. Thoracic aortic dissection in a patient with autosomal dominant polycystic kidney disease.

    PubMed

    Adeola, T; Adeleye, O; Potts, J L; Faulkner, M; Oso, A

    2001-01-01

    Autosomal dominant polycystic kidney disease is one of the most common hereditary diseases, and frequently has well defined extrarenal manifestations. Very few cases of aortic aneurysms associated with this disorder are described in literature. We report a 42-year-old male with autosomal dominant polycystic kidney disease presenting with dissecting aneurysm of the thoracic aorta.

  18. Evidence for further genetic heterogeneity in autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar-Singh, R.; Kenna, P.F.; Farrar, G.J.

    1993-01-01

    We have investigated the possible involvement of further genetic heterogeneity in autosomal dominant retinitis pigmentosa using a previously unreported large Irish family with the disease. We have utilized polymorphic microsatellite markers to exclude the disease gene segregating in this family from 3q, 6p, and the pericentric region of 8, that is, each of the three chromosomal regions to which adRP loci are known to map. Hence, we provide definitive evidence for the involvement of a fourth locus in autosomal dominant retinitis pigmentosa. 25 refs., 2 figs.

  19. A gene for autosomal dominant congenital nystagmus localizes to 6p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerrison, J.B.; Arnould, V.J.; Koenekoop, R.K.

    1996-05-01

    Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at {theta} = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257,more » D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor mystagmus to an 18-cM region between D6S271 and D6S455. 16 refs., 1 fig., 1 tab.« less

  20. WNT5A Mutations in Patients with Autosomal Dominant Robinow Syndrome

    PubMed Central

    Person, Anthony D.; Beiraghi, Soraya; Sieben, Christine M.; Hermanson, Spencer; Neumann, Ann N.; Robu, Mara E.; Schleiffarth, J. Robert; Billington, Charles J.; van Bokhoven, Hans; Hoogeboom, J.; Mazzeu, Juliana F.; Petryk, Anna; Schimmenti, Lisa A.; Brunner, Han G.; Ekker, Stephen C.; Lohr, Jamie L.

    2014-01-01

    Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown, however the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development, and that proper formation and growth of these structures is sensitive to variations in WNT5A function. PMID:19918918

  1. Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24.

    PubMed

    Schüle, R; Bonin, M; Dürr, A; Forlani, S; Sperfeld, A D; Klimpe, S; Mueller, J C; Seibel, A; van de Warrenburg, B P; Bauer, P; Schöls, L

    2009-06-02

    Hereditary spastic paraplegias (HSP) are genetically exceedingly heterogeneous. To date, 37 genetic loci for HSP have been described (SPG1-41), among them 16 loci for autosomal dominant disease. Notwithstanding, further genetic heterogeneity is to be expected in HSP, as various HSP families do not link to any of the known HSP loci. In this study, we aimed to map the disease locus in a German family segregating autosomal dominant complicated HSP. A genome-wide linkage analysis was performed using the GeneChip Mapping 10Kv2.0 Xba Array containing 10,204 SNP markers. Suggestive loci were further analyzed by mapping of microsatellite markers. One locus on chromosome 12q23-24, termed SPG36, was confirmed by high density microsatellite fine mapping with a significant LOD score of 3.2. SPG36 is flanked by markers D12S318 and D12S79. Linkage to SPG36 was excluded in >20 additional autosomal dominant HSP families. Candidate genes were selected and sequenced. No disease-causing mutations were identified in the coding regions of ATXN2, HSPB8, IFT81, Myo1H, UBE3B, and VPS29. SPG36 is complicated by a sensory and motor neuropathy; it is therefore the eighth autosomal dominant subtype of complicated HSP. We report mapping of a new locus for autosomal dominant hereditary spastic paraplegia (HSP) (SPG36) on chromosome 12q23-24 in a German family with autosomal dominant HSP complicated by peripheral neuropathy.

  2. Thoracic aortic dissection in a patient with autosomal dominant polycystic kidney disease.

    PubMed Central

    Adeola, T.; Adeleye, O.; Potts, J. L.; Faulkner, M.; Oso, A.

    2001-01-01

    Autosomal dominant polycystic kidney disease is one of the most common hereditary diseases, and frequently has well defined extrarenal manifestations. Very few cases of aortic aneurysms associated with this disorder are described in literature. We report a 42-year-old male with autosomal dominant polycystic kidney disease presenting with dissecting aneurysm of the thoracic aorta. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:11491280

  3. Management of pain in autosomal dominant polycystic kidney disease and anatomy of renal innervation.

    PubMed

    Tellman, Matthew W; Bahler, Clinton D; Shumate, Ashley M; Bacallao, Robert L; Sundaram, Chandru P

    2015-05-01

    Chronic pain is a prominent feature of autosomal dominant polycystic kidney disease that is difficult to treat and manage, often resulting in a decrease in quality of life. Understanding the underlying anatomy of renal innervation and the various etiologies of pain that occur in autosomal dominant polycystic kidney disease can help guide proper treatments to manage pain. Reviewing previously studied treatments for pain in autosomal dominant polycystic kidney disease can help characterize treatment in a stepwise fashion. We performed a literature search of the etiology and management of pain in autosomal dominant polycystic kidney disease and the anatomy of renal innervation using PubMed® and Embase® from January 1985 to April 2014 with limitations to human studies and English language. Pain occurs in the majority of patients with autosomal dominant polycystic kidney disease due to renal, hepatic and mechanical origins. Patients may experience different types of pain which can make it difficult to clinically confirm its etiology. An anatomical and histological evaluation of the complex renal innervation helps in understanding the mechanisms that can lead to renal pain. Understanding the complex nature of renal innervation is essential for surgeons to perform renal denervation. The management of pain in autosomal dominant polycystic kidney disease should be approached in a stepwise fashion. Acute causes of renal pain must first be ruled out due to the high incidence in autosomal dominant polycystic kidney disease. For chronic pain, nonopioid analgesics and conservative interventions can be used first, before opioid analgesics are considered. If pain continues there are surgical interventions such as renal cyst decortication, renal denervation and nephrectomy that can target pain produced by renal or hepatic cysts. Chronic pain in patients with autosomal dominant polycystic kidney disease is often refractory to conservative, medical and other noninvasive treatments

  4. Genetics Home Reference: autosomal dominant congenital stationary night blindness

    MedlinePlus

    ... collapse boxes. Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is the specialized tissue at the back of the eye that detects light and color. People with this condition typically have difficulty seeing ...

  5. Nonallelic heterogeneity in autosomal dominant retinitis pigmentosa with incomplete penetrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.K.; Berson, E.L.; Dryja, T.P.

    1994-08-01

    Retinitis pigmentosa is a group of retinal diseases in which photoreceptor cells throughout the retina degenerate. Although there is considerable genetic heterogeneity (autosomal dominant, autosomal recessive, and X-linked forms exist), there is a possibility that some clinically defined subtypes of the disease may be the result of mutations at the same locus. One possible clinically defined subtype is that of autosomal dominant retinitis pigmentosa (ADRP) with incomplete penetrance. Whereas in most families with ADRP, carriers can be clearly identified because of visual loss, ophthalmological findings, or abnormal electroretinograms (ERGs), in occasional families some obligate carriers are asymptomatic and have normalmore » or nearly normal ERGs even late in life. A recent paper reported the mapping of the diseases locus in one pedigree (designated adRP7) with ADRP with incomplete penetrance to chromosome 7p. To test the idea that ADRP with incomplete penetrance may be genetically homogeneous, we have evaluated whether a different family with incomplete penetrance also has a disease gene linked to the same region. 4 refs., 1 fig., 1 tab.« less

  6. Autosomal dominant spondylocarpotarsal synostosis syndrome: phenotypic homogeneity and genetic heterogeneity.

    PubMed

    Isidor, B; Cormier-Daire, V; Le Merrer, M; Lefrancois, T; Hamel, A; Le Caignec, C; David, A; Jacquemont, S

    2008-06-15

    Spondylocarpotarsal synostosis syndrome (SCT) (OMIM 272460), originally thought to be a failure of normal spine segmentation, is characterized by progressive fusion of vertebras and associates unsegmented bars, scoliosis, short stature, carpal and tarsal synostosis. Cleft palate, sensorineural or mixed hearing loss, joint limitation, clinodactyly, and dental enamel hypoplasia are variable manifestations. Twenty-five patients have been reported. Thirteen affected individuals were siblings from six families and four of these families were consanguineous. In four of those families, Krakow et al. [Krakow et al. (2004) Nat Genet 36:405-410] found homozygosity or compound heterozygosity for mutations in the gene encoding FLNB. This confirmed autosomal recessive inheritance of the disorder. We report on two new patients (a mother and her son) representing the first case of autosomal dominant inheritance. These patients met the clinical and radiological criteria for SCT and did not present any features which could exclude this diagnosis. Molecular analysis failed to identify mutations in NOG and FLNB. SCT is therefore, genetically heterogeneous. Both dominant and autosomal recessive forms of inheritance should be considered during genetic counseling. 2008 Wiley-Liss, Inc.

  7. Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations

    PubMed Central

    Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York

    2008-01-01

    Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784

  8. A Danish family with dominant deafness-onychodystrophy syndrome.

    PubMed

    Vind-Kezunovic, Dina; Torring, Pernille M

    2013-01-01

    The rare hereditary disorder "dominant deafness and onychodystrophy (DDOD) syndrome" (OMIM 124480) has been described in a few case reports. No putative DDOD gene or locus has been mapped and the cause of the disorder remains unknown. We present here three male family members in three generations with sensori-neural deafness, onychodystrophy and brachydactyly inherited via autosomal dominant transmission. The family members presented with absent fingernails on the first and fifth digits. As to the feet, there were absent nails on second to fifth toes in two family members, whereas the third family member only had absent nails on the fifth toe. The proband had late dentition and his father a history of late dentition, but otherwise the teeth appeared normal. Comparative genomic hybridization array analysis (Agilent 400k oligoarray) of the proband did not detect any copy number variation. This Danish family fits within the spectrum of dominant deafness and onychodystrophy syndrome and further characterises this rare disorder.

  9. Scalp defects, polythelia, microcephaly, and developmental delay: a new syndrome with apparent autosomal dominant inheritance.

    PubMed

    Marble, Michael; Pridjian, Gabriella

    2002-04-01

    We report a family with apparent autosomal dominant inheritance of scalp defects, polythelia, microcephaly, and developmental delay. A review of the literature revealed no previous report of this combination of anomalies. We conclude that these patients have a new autosomal dominant syndrome. Copyright 2002 Wiley-Liss, Inc.

  10. Primary hyperoxaluria type 1 and brachydactyly mental retardation syndrome caused by a novel mutation in AGXT and a terminal deletion of chromosome 2.

    PubMed

    Tammachote, Rachaneekorn; Kingsuwannapong, Nelawat; Tongkobpetch, Siraprapa; Srichomthong, Chalurmpon; Yeetong, Patra; Kingwatanakul, Pornchai; Monico, Carla G; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2012-09-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by mutations in the alanine:glyoxylate aminotransferase (AGXT) gene, located on chromosome 2q37. Mutant AGXT leads to excess production and excretion of oxalate, resulting in accumulation of calcium oxalate in the kidney, and progressive loss of renal function. Brachydactyly mental retardation syndrome (BDMR) is an autosomal dominant disorder, caused by haploinsufficiency of histone deacetylase 4 (HDAC4), also on chromosome 2q37. It is characterized by skeletal abnormalities and developmental delay. Here, we report on a girl who had phenotypes of both PH1 and BDMR. PCR-sequencing of the coding regions of AGXT showed a novel missense mutation, c.32C>G (p.Pro11Arg) inherited from her mother. Functional analyses demonstrated that it reduced the enzymatic activity to 31% of the wild-type and redirected some percentage of the enzyme away from the peroxisome. Microsatellite and array-CGH analyses indicated that the proband had a paternal de novo telomeric deletion of chromosome 2q, which included HDAC4. To our knowledge, this is the first report of PH1 and BDMR, with a novel AGXT mutation and a de novo telomeric deletion of chromosome 2q. Copyright © 2012 Wiley Periodicals, Inc.

  11. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos

    PubMed Central

    Khorram, David; Choi, Michael; Roos, Ben R.; Stone, Edwin M.; Kopel, Teresa; Allen, Richard; Alward, Wallace L.M.; Scheetz, Todd E.

    2015-01-01

    Purpose Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Methods Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Results Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these “linked regions” were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3′ end of exon 4 in all affected family members. Neither TMEM98

  12. Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos.

    PubMed

    Khorram, David; Choi, Michael; Roos, Ben R; Stone, Edwin M; Kopel, Teresa; Allen, Richard; Alward, Wallace L M; Scheetz, Todd E; Fingert, John H

    2015-01-01

    Autosomal dominant nanophthalmos is an inherited eye disorder characterized by a structurally normal but smaller eye. Patients with nanophthalmos have high hyperopia (far-sightedness), a greater incidence of angle-closure glaucoma, and increased risk of surgical complications. In this study, the clinical features and the genetic basis of nanophthalmos were investigated in two large autosomal dominant nanophthalmos pedigrees. Fourteen members of a Caucasian pedigree from the United States and 15 members of a pedigree from the Mariana Islands enrolled in a genetic study of nanophthalmos and contributed DNA samples. Twenty of 29 family members underwent eye examinations that included measurement of axial eye length and/or refractive error. The genetic basis of nanophthalmos in the pedigrees was studied with linkage analysis, whole exome sequencing, and candidate gene (i.e., TMEM98) sequencing to identify the nanophthalmos-causing gene. Nine members of the pedigree from the United States and 11 members of the pedigree from the Mariana Islands were diagnosed with nanophthalmos that is transmitted as an autosomal dominant trait. The patients with nanophthalmos had abnormally short axial eye lengths, which ranged from 15.9 to 18.4 mm. Linkage analysis of the nanophthalmos pedigree from the United States identified nine large regions of the genome (greater than 10 Mbp) that were coinherited with disease in this family. Genes within these "linked regions" were examined for disease-causing mutations using exome sequencing, and a His196Pro mutation was detected in the TMEM98 gene, which was recently reported to be a nanophthalmos gene. Sanger sequencing subsequently showed that all other members of this pedigree with nanophthalmos also carry the His196Pro TMEM98 mutation. Testing the Mariana Islands pedigree for TMEM98 mutations identified a 34 bp heterozygous deletion that spans the 3' end of exon 4 in all affected family members. Neither TMEM98 mutation was detected in

  13. Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort.

    PubMed

    Lido, Andria C V; França, Marcela M; Correa, Fernanda A; Otto, Aline P; Carvalho, Luciani R; Quedas, Elisangela P S; Nishi, Mirian Y; Mendonca, Berenice B; Arnhold, Ivo J P; Jorge, Alexander A L

    2014-10-01

    In most studies, the autosomal dominant (type II) form of isolated growth hormone deficiency (IGHD) has been more frequent than the autosomal recessive (type I) form. Our aim was to assess defects in the GH1 in short Brazilian children with different GH secretion status. We selected 135 children with postnatal short stature and classified according to the highest GH peak at stimulation tests in: severe IGHD (peak GH≤3.3 μg/L, n=38, all with normal pituitary magnetic resonance imaging); GH peak between 3.3 and 10 μg/L (n=76); and GH peak >10 μg/L (n=21). The entire coding region of GH1 was sequenced and complete GH1 deletions were assessed by Multiplex Ligation Dependent Probe Amplification and restriction enzyme digestion. Patients with severe IGHD had a higher frequency of consanguinity, were shorter, had lower levels of IGF-1 and IGFBP-3, and despite treatment with lower GH doses had a greater growth response than patients with GH peak ≥3.3 μg/L. Mutations were found only in patients with severe IGHD (GH peak<3.3 μg/L). Eight patients had autosomal recessive IGHD: Seven patients were homozygous for GH1 deletions and one patient was compound heterozygous for a GH1 deletion and the novel c.171+5G>C point mutation in intron 2, predicted to abolish the donor splice site. Only one patient, who was heterozygous for the c.291+1G>T mutation located at the universal donor splice site of intron 3 and predicts exon 3 skipping, had an autosomal dominant form. Analysis of GH1 in a cohort of Brazilian patients revealed that the autosomal recessive form of IGHD was more common than the dominant one, and both were found only in severe IGHD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cutaneous malignant melanoma and familial dysplastic nevi: evidence for autosomal dominance and pleiotropy.

    PubMed Central

    Bale, S J; Chakravarti, A; Greene, M H

    1986-01-01

    Segregation of familial cutaneous melanoma has been shown to be compatible with autosomal dominant transmission with incomplete penetrance. However, the combined phenotype of melanoma and a known melanoma-precursor lesion, the dysplastic nevus (DN), has not previously been found to fit a Mendelian model of inheritance using complex segregation analysis. Employing a life-table and disease-free survival analysis approach, we estimated the lifetime incidence of melanoma in the sibs and offspring of DN-affected individuals to be 46%, consistent with a highly penetrant, autosomal dominant mode of inheritance. To further elucidate the relationship between the two traits, we conducted a linkage analysis between the melanoma locus and a hypothetical DN locus, and obtained a maximum lod score of 3.857 at theta = .08. Furthermore, all families giving evidence for linkage were in the coupling phase and the maximum likelihood estimate of theta was not significantly different from 0 (P = .1). This provides evidence that the DN and melanoma traits may represent pleiotropic effects of a single, highly penetrant gene behaving in an autosomal dominant manner. PMID:3456198

  15. Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients.

    PubMed

    Zittema, Debbie; van den Berg, Else; Meijer, Esther; Boertien, Wendy E; Muller Kobold, Anneke C; Franssen, Casper F M; de Jong, Paul E; Bakker, Stephan J L; Navis, Gerjan; Gansevoort, Ron T

    2014-09-05

    Plasma copeptin, a marker of arginine vasopressin, is elevated in patients with autosomal dominant polycystic kidney disease and predicts disease progression. It is unknown whether elevated copeptin levels result from decreased kidney clearance or as compensation for impaired concentrating capacity. Data from patients with autosomal dominant polycystic kidney disease and healthy kidney donors before and after donation were used, because after donation, overall GFR decreases with a functionally normal kidney. Data were obtained between October of 2008 and January of 2012 from healthy kidney donors who visited the institution for routine measurements predonation and postdonation and patients with autosomal dominant polycystic kidney disease who visited the institution for kidney function measurement. Plasma copeptin levels were measured using a sandwich immunoassay, GFR was measured as (125)I-iothalamate clearance, and urine concentrating capacity was measured as urine-to-plasma ratio of urea. In patients with autosomal dominant polycystic kidney disease, total kidney volume was measured with magnetic resonance imaging. Patients with autosomal dominant polycystic kidney disease (n=122, age=40 years, men=56%) had significantly higher copeptin levels (median=6.8 pmol/L; interquartile range=3.4-15.7 pmol/L) compared with donors (n=134, age=52 years, men=49%) both predonation and postdonation (median=3.8 pmol/L; interquartile range=2.8-6.3 pmol/L; P<0.001; median=4.4 pmol/L; interquartile range=3.6-6.1 pmol/L; P<0.001). In donors, copeptin levels did not change after donation, despite a significant fall in GFR (from 105 ± 17 to 66 ± 10; P<0.001). Copeptin and GFR were significantly associated in patients with autosomal dominant polycystic kidney disease (β=-0.45, P<0.001) but not in donors. In patients with autosomal dominant polycystic kidney disease, GFR and total kidney volume were both associated significantly with urine-to-plasma ratio of urea (β=0.84, P<0

  16. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0420 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...Autosomal Dominant Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0420 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kenneth R. Hallows, MD...polycystic kidney disease (ADPKD) is a common inherited disorder where patients, over the course of decades, develop large fluid filled cysts that

  17. Role of LRRK2 and SNCA in autosomal dominant Parkinson's disease in Turkey.

    PubMed

    Kessler, Christoph; Atasu, Burcu; Hanagasi, Hasmet; Simón-Sánchez, Javier; Hauser, Ann-Kathrin; Pak, Meltem; Bilgic, Basar; Erginel-Unaltuna, Nihan; Gurvit, Hakan; Gasser, Thomas; Lohmann, Ebba

    2018-03-01

    Mutations in the LRRK2 and alpha-synuclein (SNCA) genes are well-established causes of autosomal dominant Parkinson's disease (PD). However, their frequency differs widely between ethnic groups. Only three studies have screened all coding regions of LRRK2 and SNCA in European samples so far. In Turkey, the role of LRRK2 in Parkinson's disease has been studied fragmentarily, and the incidence of SNCA copy number variations is unknown. The purpose of this study is to determine the frequency of LRRK2 and SNCA mutations in autosomal dominant PD in Turkey. We performed Sanger sequencing of all coding LRRK2 and SNCA exons in a sample of 91 patients with Parkinsonism. Copy number variations in SNCA, PRKN, PINK1, DJ1 and ATP13A2 were assessed using the MLPA method. All patients had a positive family history compatible with autosomal dominant inheritance. Known mutations in LRRK2 and SNCA were found in 3.3% of cases: one patient harbored the LRRK2 G2019S mutation, and two patients carried a SNCA gene duplication. Furthermore, we found a heterozygous deletion of PRKN exon 2 in one patient, and four rare coding variants of unknown significance (LRRK2: A211V, R1067Q, T2494I; SNCA: T72T). Genetic testing in one affected family identified the LRRK2 R1067Q variant as a possibly pathogenic substitution. Point mutations in LRRK2 and SNCA are a rare cause of autosomal dominant PD in Turkey. However, copy number variations should be considered. The unclassified variants, especially LRRK2 R1067Q, demand further investigation. Copyright © 2017. Published by Elsevier Ltd.

  18. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  19. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  20. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    PubMed

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear

  1. Vertebral Aspergillosis in a Patient with Autosomal-Dominant Hyper-IgE Syndrome

    PubMed Central

    Ma, Hong; Kuang, Lei; Wang, Bing; Lian, Zhesi

    2014-01-01

    We present a report of an autosomal-dominant hyper-IgE syndrome patient with vertebral aspergillosis. Early diagnosis and antifungal therapy with surgery are crucial for improving the outcome of this aggressive condition. PMID:24197892

  2. Mutations in AAGAB underlie autosomal dominant punctate palmoplantar keratoderma.

    PubMed

    Dinani, N; Ali, M; Liu, L; McGrath, J; Mellerio, J

    2017-04-01

    Punctate palmoplantar keratoderma type 1 (PPPK1) is a rare autosomal dominant inherited skin disease, characterized by multiple hyperkeratotic lesions on the palms and soles. The causative gene for PPPK1 has been identified as AAGAB, which encodes α- and γ-adaptin-binding protein p34. We describe the clinical features in three unrelated families with PPPK1, and report three recurrent causative mutations in AAGAB. © 2017 British Association of Dermatologists.

  3. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    PubMed

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  4. Evidence for autosomal dominant inheritance of ablepharon-macrostomia syndrome.

    PubMed

    Rohena, Luis; Kuehn, Devon; Marchegiani, Shannon; Higginson, Jason D

    2011-04-01

    Ablepharon-macrostomia syndrome (AMS) is characterized by absent or short eyelids, macrostomia, ear anomalies, absent lanugo and hair, redundant skin, abnormal genitalia, and developmental delay in two-thirds of the reported patients. Additional anomalies include dry skin, growth retardation, hearing loss, camptodactyly, hypertelorism, absent zygomatic arches, and umbilical abnormalities. We present the second familial case of ablepharon-macrostomia syndrome in a newborn female and her 22-year-old father making autosomal dominant inheritance more likely than the previously proposed autosomal recessive transmission for this disorder. These cases likely represent the 16th and 17th reported cases of AMS and the first case suspected on prenatal ultrasound. Additionally, the child shows more prominent features of the disorder when compared to her father documenting variable expression and possible anticipation. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2011 Wiley-Liss, Inc.

  5. Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems

    PubMed Central

    Williams, Stephen R.; Aldred, Micheala A.; Der Kaloustian, Vazken M.; Halal, Fahed; Gowans, Gordon; McLeod, D. Ross; Zondag, Sara; Toriello, Helga V.; Magenis, R. Ellen; Elsea, Sarah H.

    2010-01-01

    Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome. PMID:20691407

  6. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems.

    PubMed

    Williams, Stephen R; Aldred, Micheala A; Der Kaloustian, Vazken M; Halal, Fahed; Gowans, Gordon; McLeod, D Ross; Zondag, Sara; Toriello, Helga V; Magenis, R Ellen; Elsea, Sarah H

    2010-08-13

    Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4(-/-) mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome.

  7. A curious fact: Photic sneeze reflex. Autosomical dominant compelling helio-ophthalmic outburst syndrome.

    PubMed

    Sevillano, C; Parafita-Fernández, A; Rodriguez-Lopez, V; Sampil, M; Moraña, N; Viso, E; Cores, F J

    2016-07-01

    To assess ocular involvement in the pathophysiology of autosomal dominant compelling helio-ophthalmic outburst syndrome (ACHOOs). An interview was conducted with a Caucasian family that showed clinical features of ACHOOs. Twelve of them had photic reflex and were recruited. A complete eye evaluation was made. A dominant autosomal inheritance with mild penetrance was demonstrated, with 67% of the studied subjects showing some degree of prominent corneal nerves. No other eye changes were found. Prominent corneal nerves may be associated with ACHOOs. The other eye structures studied do not seem to play a role in ACHOOs. Further studies are needed to understand the physiology of the ACHOOs. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Localization of a gene for autosomal dominant amelogenesis imperfecta (ADAI) to chromosome 4q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsman, K.; Lind. L.; Westermark, E.

    1994-09-01

    Amelogenesis imperfecta (AI), a disorder affecting the formation of enamel, is significantly more common in Northern Sweden than in other parts of the world. The disease is genetically and clinically heterogenous, and autosomal dominant, autosomal recessive and X-linked inheritance patterns have been recognized. Linkage analysis has identified two different loci for X-linked AI, one of which is identical to the gene encoding the enamel protein amelogenin. However, in families with an autosomal inheritance pattern for AI, the genetic basis of the disease still remains unknown. We report a linkage analysis study performed on three Swedish families where the affected membersmore » had an autosomal dominant variant of AI (ADAI) clinically characterized as local hypoplastic. Significant linkage to microsatellite markers on chromosome 4q were obtained, with a maximum lod score of 5.55 for the marker D4S428. Recombinations in the family localized the ADAI locus to the interval between D4S392 and D4S395. This chromosome region contains both a locus for the dental disorder dentinogenesis imperfecta and the albumin gene. Serum albumin has been suggested to play a role in enamel formation, and the albumin gene is therefore a candidate gene for this genetic disease.« less

  9. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    PubMed

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  10. Brachydactyly E: isolated or as a feature of a syndrome.

    PubMed

    Pereda, Arrate; Garin, Intza; Garcia-Barcina, Maria; Gener, Blanca; Beristain, Elena; Ibañez, Ane Miren; Perez de Nanclares, Guiomar

    2013-09-12

    Brachydactyly (BD) refers to the shortening of the hands, feet or both. There are different types of BD; among them, type E (BDE) is a rare type that can present as an isolated feature or as part of more complex syndromes, such as: pseudohypopthyroidism (PHP), hypertension with BD or Bilginturan BD (HTNB), BD with mental retardation (BDMR) or BDE with short stature, PTHLH type. Each syndrome has characteristic patterns of skeletal involvement. However, brachydactyly is not a constant feature and shows a high degree of phenotypic variability. In addition, there are other syndromes that can be misdiagnosed as brachydactyly type E, some of which will also be discussed. The objective of this review is to describe some of the syndromes in which BDE is present, focusing on clinical, biochemical and genetic characteristics as features of differential diagnoses, with the aim of establishing an algorithm for their differential diagnosis. As in our experience many of these patients are recruited at Endocrinology and/or Pediatric Endocrinology Services due to their short stature, we have focused the algorithm in those steps that could mainly help these professionals.

  11. Brachydactyly E: isolated or as a feature of a syndrome

    PubMed Central

    2013-01-01

    Brachydactyly (BD) refers to the shortening of the hands, feet or both. There are different types of BD; among them, type E (BDE) is a rare type that can present as an isolated feature or as part of more complex syndromes, such as: pseudohypopthyroidism (PHP), hypertension with BD or Bilginturan BD (HTNB), BD with mental retardation (BDMR) or BDE with short stature, PTHLH type. Each syndrome has characteristic patterns of skeletal involvement. However, brachydactyly is not a constant feature and shows a high degree of phenotypic variability. In addition, there are other syndromes that can be misdiagnosed as brachydactyly type E, some of which will also be discussed. The objective of this review is to describe some of the syndromes in which BDE is present, focusing on clinical, biochemical and genetic characteristics as features of differential diagnoses, with the aim of establishing an algorithm for their differential diagnosis. As in our experience many of these patients are recruited at Endocrinology and/or Pediatric Endocrinology Services due to their short stature, we have focused the algorithm in those steps that could mainly help these professionals. PMID:24028571

  12. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0237 TITLE: Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney ... Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0237 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Cristina Cebrian-Ligero 5d. PROJECT NUMBER 5e. TASK...Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the world’s most common life-threatening genetic diseases. Over 95% of diagnosed cases of

  13. Familial urothelial cell carcinoma of the bladder with autosomal dominant inheritance and late onset phenotype.

    PubMed

    Brown, Robin; Donnelly, Deirdre E; Allen, Derek; Loughrey, Maurice B; Morrison, Patrick J

    2014-01-01

    Familial Urothelial cell bladder cancer is rare. We report two families with urothelial cell carcinoma (UCC) of bladder with family history in other relatives, displaying probable autosomal dominant inheritance and a late onset pure UCC phenotype, and document the phenotype in each family. Descriptive familial study on two pedigrees over three generations. Two families with UCC bladder were identified, and the phenotype documented, each family having three cases of late onset UCC. Some cases of UCC are hereditary and may display autosomal dominant inheritance with late onset of the cancer. Clinicians should be aware of the existence of a familial late onset UCC phenotype when managing cases of UCC.

  14. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer's disease.

    PubMed

    Lim, Yen Ying; Hassenstab, Jason; Cruchaga, Carlos; Goate, Alison; Fagan, Anne M; Benzinger, Tammie L S; Maruff, Paul; Snyder, Peter J; Masters, Colin L; Allegri, Ricardo; Chhatwal, Jasmeer; Farlow, Martin R; Graff-Radford, Neill R; Laske, Christoph; Levin, Johannes; McDade, Eric; Ringman, John M; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Holtzman, David M; Morris, John C; Bateman, Randall J

    2016-10-01

    SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val 66 homozygotes, 48 Met 66 carriers). Among preclinical mutation carriers, Met 66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val 66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β 42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val 66 homozygotes and Met 66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met 66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease. © The Author (2016

  15. Pontobulbar palsy and neurosensory deafness (Brown-Vialetto-Van Laere syndrome) with possible autosomal dominant inheritance.

    PubMed Central

    Hawkins, S A; Nevin, N C; Harding, A E

    1990-01-01

    A female with the Brown-Vialetto-Van Laere syndrome is described. The patient's father, a paternal uncle, and possibly a paternal first cousin had neurosensory deafness and a paternal aunt had clinical symptoms indicative of the syndrome. This family raises the possibility that the disorder is genetically heterogeneous with autosomal recessive and autosomal dominant forms. Alternatively, it could be caused by a mutant gene on the X chromosome. Images PMID:2325091

  16. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  17. Prevalence of cysts in seminal tract and abnormal semen parameters in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Torra, Roser; Sarquella, Joaquim; Calabia, Jordi; Martí, Jordi; Ars, Elisabet; Fernández-Llama, Patricia; Ballarin, Jose

    2008-05-01

    Autosomal dominant polycystic kidney disease is a systemic disorder with a wide range of extrarenal involvement. The scope of this study was to analyze the prevalence of seminal cysts and to correlate these findings with the sperm parameters in patients with autosomal dominant polycystic kidney disease. A prospective study enrolled 30 adult men with autosomal dominant polycystic kidney disease. Of these 30 patients, 22 agreed to provide a semen sample for analysis, and 28 of 30 agreed to undergo an ultrasound rectal examination. Data obtained from the semen tests and from the ultrasound study were compared. Cysts in the seminal tract were present in 10 (43.47%) of 28 individuals. Twenty of 22 patients showed abnormal semen parameters, with asthenozoospermia as the most common finding. No correlation between ultrasound findings and sperm abnormalities was observed. The presence of cysts in the seminal tract is remarkably high (43.47%); however, this finding does not correlate with sperm abnormalities, which are also a frequent finding, especially asthenozoospermia. This semen abnormality is probably related to the abnormal function of polycystins. More attention should be paid to reproductive aspects in the initial evaluation of patients with autosomal dominant polycystic kidney disease before their ability to conceive is further impaired by uremia.

  18. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation.

    PubMed

    Thomas, Shery; Thomas, Mervyn G; Andrews, Caroline; Chan, Wai-Man; Proudlock, Frank A; McLean, Rebecca J; Pradeep, Archana; Engle, Elizabeth C; Gottlob, Irene

    2014-03-01

    Autosomal-dominant idiopathic infantile nystagmus has been linked to 6p12 (OMIM 164100), 7p11.2 (OMIM 608345) and 13q31-q33 (OMIM 193003). PAX6 (11p13, OMIM 607108) mutations can also cause autosomal-dominant nystagmus, typically in association with aniridia or iris hypoplasia. We studied a large multigenerational white British family with autosomal-dominant nystagmus, normal irides and presenile cataracts. An SNP-based genome-wide analysis revealed a linkage to a 13.4-MB region on chromosome 11p13 with a maximum lod score of 2.93. A mutation analysis of the entire coding region and splice junctions of the PAX6 gene revealed a novel heterozygous missense mutation (c.227C>G) that segregated with the phenotype and is predicted to result in the amino-acid substitution of proline by arginine at codon 76 p.(P76R). The amino-acid variation p.(P76R) within the paired box domain is likely to destabilise the protein due to steric hindrance as a result of the introduction of a polar and larger amino acid. Eye movement recordings showed a significant intrafamilial variability of horizontal, vertical and torsional nystagmus. High-resolution in vivo imaging of the retina using optical coherence tomography (OCT) revealed features of foveal hypoplasia, including rudimentary foveal pit, incursion of inner retinal layers, short photoreceptor outer segments and optic nerve hypoplasia. Thus, this study presents a family that segregates a PAX6 mutation with nystagmus and foveal hypoplasia in the absence of iris abnormalities. Moreover, it is the first study showing detailed characteristics using eye movement recordings of autosomal-dominant nystagmus in a multigenerational family with a novel PAX6 mutation.

  19. [Clinical and molecular study in a family with autosomal dominant hypohidrotic ectodermal dysplasia].

    PubMed

    Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella

    2017-02-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.

  20. Toward the Mutational Landscape of Autosomal Dominant Retinitis Pigmentosa: A Comprehensive Analysis of 258 Spanish Families.

    PubMed

    Martin-Merida, Inmaculada; Aguilera-Garcia, Domingo; Jose, Patricia Fernandez-San; Blanco-Kelly, Fiona; Zurita, Olga; Almoguera, Berta; Garcia-Sandoval, Blanca; Avila-Fernandez, Almudena; Arteche, Ana; Minguez, Pablo; Carballo, Miguel; Corton, Marta; Ayuso, Carmen

    2018-05-01

    To provide a comprehensive overview of the molecular basis of autosomal dominant retinitis pigmentosa (adRP) in Spanish families. Thus, we established the molecular characterization rate, gene prevalence, and mutational spectrum in the largest European cohort reported to date. A total of 258 unrelated Spanish families with a clinical diagnosis of RP and suspected autosomal dominant inheritance were included. Clinical diagnosis was based on complete ophthalmologic examination and family history. Retrospective and prospective analysis of Spanish adRP families was carried out using a combined strategy consisting of classic genetic techniques and next-generation sequencing (NGS) for single-nucleotide variants and copy number variation (CNV) screening. Overall, 60% of our families were genetically solved. Interestingly, 3.1% of the cohort carried pathogenic CNVs. Disease-causing variants were found in an autosomal dominant gene in 55% of the families; however, X-linked and autosomal recessive forms were also identified in 3% and 2%, respectively. Four genes (RHO, PRPF31, RP1, and PRPH2) explained up to 62% of the solved families. Missense changes were most frequently found in adRP-associated genes; however, CNVs represented a relevant disease cause in PRPF31- and CRX-associated forms. Implementation of NGS technologies in the adRP study clearly increased the diagnostic yield compared with classic approaches. Our study outcome expands the spectrum of disease-causing variants, provides accurate data on mutation gene prevalence, and highlights the implication of CNVs as important contributors to adRP etiology.

  1. Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, L.A.; Pierpont, M.E.; Carpenter, B.L.M.

    1995-11-06

    We describe a father and 3 sons with optic nerve colobomas, vesicoureteral reflux, and renal anomalies. The youngest son had congenital renal failure and ultimately underwent renal transplantation. The father and one son had high frequency hearing loss. There were no other affected relatives. We conclude that the association of optic nerve colobomas, renal anomalies, and vesicoureteral reflux comprises a unique autosomal dominant syndrome. Molecular investigations have determined this disorder to be associated with a single nucleotide deletion in the PAX2 gene. 16 refs., 3 figs.

  2. Autosomal dominant hereditary spastic paraplegia with axonal sensory motor polyneuropathy maps to chromosome 21q 22.3.

    PubMed

    Peddareddygari, Leema Reddy; Hanna, Philip A; Igo, Robert P; Luo, Yuqun A; Won, Sungho; Hirano, Michio; Grewal, Raji P

    2016-01-01

    Hereditary spastic paraplegia (HSP) are a genetically and clinically heterogeneous group of disorders. At present, 19 autosomal dominant loci for HSP have been mapped. We ascertained an American family of European descent segregating an autosomal dominant HSP associated with peripheral neuropathy. A genome wide scan was performed with 410 microsatellite repeat marker (Weber lab screening set 16) and following linkage and haplotype analysis, fine mapping was performed. Established genes or loci for HSP were excluded by direct sequencing or haplotype analysis. All established loci for HSP were excluded. Fine mapping suggested a locus on chromosome 21q22.3 flanked by markers D21S1411 and D21S1446 with a maximum logarithm of odds score of 2.05 and was supported by haplotype analysis. A number of candidate genes in this region were analyzed and no disease-producing mutations were detected. We present the clinical and genetic analysis of an American family with autosomal dominant HSP with axonal sensory motor polyneuropathy mapping to a novel locus on chromosome 21q22.3 designated SPG56.

  3. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    PubMed

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  4. Genotype-phenotype correlation in FMF patients: A "non classic" recessive autosomal or "atypical" dominant autosomal inheritance?

    PubMed

    Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C

    2018-01-30

    Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease.

    PubMed

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-04-01

    Patients with Alzheimer's disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer's pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer's disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer's disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer's disease, 55 controls from the Dominantly Inherited Alzheimer's Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer's disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer's disease and cerebrospinal fluid tau levels in sporadic Alzheimer's disease cases. In both autosomal dominant and sporadic Alzheimer's disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer's disease, a significant left frontal cortex connectivity × estimated years of onset

  6. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B; Torres, Vicente E; Yu, Alan S L; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P; Bae, Kyongtae T

    2016-04-07

    Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2-weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. We have developed a fully automated method for segmentation of kidneys from abdominal

  7. Homozygotes for the autosomal dominant neoplasia syndrome (MEN1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandi, M.L.; Falchetti, A.; Tonelli, F.

    1993-12-01

    Families in which both parents are heterozygotes for the same autosomal dominant neoplasia syndrome are extremely unusual. Recently, the authors had the unique opportunity to evaluate three symptomatic siblings from the union between two unrelated individuals affected by multiple endocrine neoplasia type 1 (MEN1). When the three siblings and their parents and relatives were genotyped for 12 markers tightly linked to the MEN1 locus, at 11q13, two of the siblings were found to be homozygotes, and one a heterozygote, for MEN1. With regard to the MEN1 syndrome, no phenotypic differences were observed between the two homozygotes and the heterozygotes. However,more » the two homozygotes showed unexplained infertility, which was not the case for any of the heterozygotes. Thus, MEN1 appears to be a disease with complete dominance, and the presence of two MEN1 alleles with mutations of the type that occur constitutionally may be insufficient for tumor development. 28 refs., 2 figs.« less

  8. Further evidence for a locus for autosomal dominant juvenile glaucoma on chromosome 1q and evidence for genetic heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggs, J.; Paglinauan, C.; Stawski, S.

    1994-09-01

    Glaucoma is a term used to describe a group of disorders which have in common a characteristic degeneration of the optic nerve associated with typical visual field defects and usually associated with elevated intraocular pressure. Two percent of white Americans and 6-10% of black Americans are affected by the disease. Compelling data indicate that susceptibility to many types of glaucoma is inherited. Hereditary juvenile glaucoma is one form of glaucoma that develops in children and is inherited as an autosomal dominant trait with high penetrance. Using a single large Caucasian pedigree affected with autosomal dominant juvenile glaucoma, Sheffield discovered positivemore » linkage to a group of markers that map to a 30 cM region on the long arm of chromosome 1 (1q21-q31). We have subsequently identified three unrelated Caucasian pedigrees affected with autosomal dominant juvenile glaucoma that also demonstrate linkage to this region on chromosome 1, with the highest combined lod score of 5.12 at theta = .05 for marker D1S218. The identification of critical recombinant individuals in our three pedigrees has allowed us to further localize the disease gene to a 12 cM region between markers D1S242 and D1S431. In addition, we have identified several pedigrees which do not demonstrate linkage to chromosome 1q, including a black family affected with autosomal dominant juvenile glaucoma that is indistinguishable clinically from the disorder affecting the caucasian pedigrees and three pedigrees affected with pigmentary dispersion syndrome, a form of glaucoma that also affects the juvenile population and is also inherited as an autosomal dominant trait. These findings provide evidence for genetic heterogeneity in juvenile glaucoma.« less

  9. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  10. The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment.

    PubMed

    Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K

    2017-07-01

    Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.

  11. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    PubMed Central

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  12. Automated Segmentation of Kidneys from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B.; Torres, Vicente E.; Yu, Alan S.L.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.

    2016-01-01

    Background and objectives Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Design, setting, participants, & measurements Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2–weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Results Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable

  13. Familial Paroxysmal Exercise-Induced Dystonia: Atypical Presentation of Autosomal Dominant GTP-Cyclohydrolase 1 Deficiency

    ERIC Educational Resources Information Center

    Dale, Russell C.; Melchers, Anna; Fung, Victor S. C.; Grattan-Smith, Padraic; Houlden, Henry; Earl, John

    2010-01-01

    Paroxysmal exercise-induced dystonia (PED) is one of the rarer forms of paroxysmal dyskinesia, and can occur in sporadic or familial forms. We report a family (male index case, mother and maternal grandfather) with autosomal dominant inheritance of paroxysmal exercise-induced dystonia. The dystonia began in childhood and was only ever induced…

  14. Autosomal dominant polycystic kidney disease in children

    PubMed Central

    Cadnapaphornchai, Melissa A.

    2015-01-01

    Purpose of review Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting one in 500 individuals. The cardinal manifestation of ADPKD is progressive cystic dilatation of renal tubules with kidney enlargement and progression to end-stage renal disease in approximately half of cases by 60 years of age. Although previously considered a condition of adults, it is clear that children and young adults are subject to the complications of ADPKD. Recent findings It has been increasingly recognized that interventions early in life are necessary in order to confer the best long-term outcome in this common condition. Therefore, it is imperative for pediatricians to recognize the manifestations and complications of this disease. Until recently ADPKD management focused on general principles of chronic kidney disease. However, several recent clinical trials in children and adults with ADPKD have focused on disease-specific therapies. Summary This review will highlight the clinical manifestations, diagnosis, and appropriate management of ADPKD in childhood and will review recent relevant clinical trials in children and adults with this condition. PMID:25635587

  15. NIPA1 Gene Mutations Cause Autosomal Dominant Hereditary Spastic Paraplegia (SPG6)

    PubMed Central

    Rainier, Shirley; Chai, Jing-Hua; Tokarz, Debra; Nicholls, Robert D.; Fink, John K.

    2003-01-01

    The hereditary spastic paraplegias (HSPs) are genetically heterogeneous disorders characterized by progressive lower-extremity weakness and spasticity. The molecular pathogenesis is poorly understood. We report discovery of a dominant negative mutation in the NIPA1 gene in a kindred with autosomal dominant HSP (ADHSP), linked to chromosome 15q11-q13 (SPG6 locus); and precisely the same mutation in an unrelated kindred with ADHSP that was too small for meaningful linkage analysis. NIPA1 is highly expressed in neuronal tissues and encodes a putative membrane transporter or receptor. Identification of the NIPA1 function and ligand will aid an understanding of axonal neurodegeneration in HSP and may have important therapeutic implications. PMID:14508710

  16. Familial autosomal dominant severe ankyloglossia with tooth abnormalities.

    PubMed

    Lenormand, Anaëlle; Khonsari, Roman; Corre, Pierre; Perrin, Jean Philippe; Boscher, Cécile; Nizon, Mathilde; Pichon, Olivier; David, Albert; Le Caignec, Cedric; Bertin, Helios; Isidor, Bertrand

    2018-04-28

    Ankyloglossia is a congenital oral anomaly characterized by the presence of a hypertrophic and short lingual frenulum. Mutations in the gene encoding the transcription factor TBX22 have been involved in isolated ankyloglossia and X-linked cleft palate. The knockout of Lgr5 in mice results in ankyloglossia. Here, we report a five-generation family including patients with severe ankyloglossia and missing lower central incisors. Two members of this family also exhibited congenital anorectal malformations. In this report, male-to-male transmission was in favor of an autosomal dominant inheritance, which allowed us to exclude the X-linked TBX22 gene. Linkage analysis using short tandem repeat markers located in the vicinity of LGR5 excluded this gene as a potential candidate. These results indicate genetic heterogeneity for ankyloglossia. Further investigations with additional families are required in order to identify novel candidate genes. © 2018 Wiley Periodicals, Inc.

  17. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0419 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Michael J. Caplan, MD, PhD Kenneth...dominant polycystic kidney disease (ADPKD) is a common inherited disorder where patients, over the course of decades, develop large fluid filled

  18. A novel missense mutation in the CLCN7 gene linked to benign autosomal dominant osteopetrosis: a case series.

    PubMed

    Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek

    2013-01-09

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense

  19. Symptom onset in autosomal dominant Alzheimer disease

    PubMed Central

    Acosta-Baena, Natalia; Aisen, Paul S.; Bird, Thomas; Danek, Adrian; Fox, Nick C.; Goate, Alison; Frommelt, Peter; Ghetti, Bernardino; Langbaum, Jessica B.S.; Lopera, Francisco; Martins, Ralph; Masters, Colin L.; Mayeux, Richard P.; McDade, Eric; Moreno, Sonia; Reiman, Eric M.; Ringman, John M.; Salloway, Steve; Schofield, Peter R.; Sperling, Reisa; Tariot, Pierre N.; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.

    2014-01-01

    Objective: To identify factors influencing age at symptom onset and disease course in autosomal dominant Alzheimer disease (ADAD), and develop evidence-based criteria for predicting symptom onset in ADAD. Methods: We have collected individual-level data on ages at symptom onset and death from 387 ADAD pedigrees, compiled from 137 peer-reviewed publications, the Dominantly Inherited Alzheimer Network (DIAN) database, and 2 large kindreds of Colombian (PSEN1 E280A) and Volga German (PSEN2 N141I) ancestry. Our combined dataset includes 3,275 individuals, of whom 1,307 were affected by ADAD with known age at symptom onset. We assessed the relative contributions of several factors in influencing age at onset, including parental age at onset, age at onset by mutation type and family, and APOE genotype and sex. We additionally performed survival analysis using data on symptom onset collected from 183 ADAD mutation carriers followed longitudinally in the DIAN Study. Results: We report summary statistics on age at onset and disease course for 174 ADAD mutations, and discover strong and highly significant (p < 10−16, r2 > 0.38) correlations between individual age at symptom onset and predicted values based on parental age at onset and mean ages at onset by mutation type and family, which persist after controlling for APOE genotype and sex. Conclusions: Significant proportions of the observed variance in age at symptom onset in ADAD can be explained by family history and mutation type, providing empirical support for use of these data to estimate onset in clinical research. PMID:24928124

  20. Cost-Effectiveness of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Erickson, Kevin F.; Chertow, Glenn M.; Goldhaber-Fiebert, Jeremy D.

    2014-01-01

    Background: In the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes (TEMPO) trial, tolvaptan significantly reduced expansion of kidney volume and loss of kidney function. Objective: To determine how benefits observed in the TEMPO trial might relate to longer-term health outcomes such as progression to end-stage renal disease (ESRD) and mortality in addition to its cost-effectiveness. Design: A decision-analytic model. Data Sources: Published literature. Target Population: Persons with early Autosomal Dominant Polycystic Kidney Disease (ADPKD). Time Horizon: Lifetime. Perspective: Societal. Interventions: We compared a strategy where patients receive tolvaptan therapy until death, development of ESRD, or liver complications to one where they do not receive tolvaptan. Outcome Measures: Median age at ESRD onset, life expectancy, discounted quality-adjusted life years (QALYs) and lifetime costs (in 2010 USD), and incremental cost-effectiveness ratios. Results of Base Case Analysis: Tolvaptan prolonged the median age at ESRD onset by 6.5 years and increased life expectancy by 2.6 years. At a drug cost of $5,760 per month, tolvaptan cost $744,100 per QALY gained compared to standard care. Results of Sensitivity Analysis: For patients with ADPKD progressing more slowly, tolvaptan’s cost per QALY gained was even higher. Limitations: Although the TEMPO trial followed patients for 3 years, our main analysis assumed that the clinical benefits of tolvaptan persisted over patients’ lifetimes. Conclusions and Relevance: Assuming that tolvaptan’s benefits persist longer term, the drug may slow progression to ESRD and reduce mortality. However, barring an approximately 95% reduction in the price of tolvaptan, its cost-effectiveness does not compare favorably with many other commonly accepted medical interventions. PMID:24042366

  1. Mutation in CPT1C Associated With Pure Autosomal Dominant Spastic Paraplegia

    PubMed Central

    Rinaldi, Carlo; Schmidt, Thomas; Situ, Alan J.; Johnson, Janel O.; Lee, Philip R.; Chen, Ke-lian; Bott, Laura C.; Fadó, Rut; Harmison, George H.; Parodi, Sara; Grunseich, Christopher; Renvoisé, Benoît; Biesecker, Leslie G.; De Michele, Giuseppe; Santorelli, Filippo M.; Filla, Alessandro; Stevanin, Giovanni; Dürr, Alexandra; Brice, Alexis; Casals, Núria; Traynor, Bryan J.; Blackstone, Craig; Ulmer, Tobias S.; Fischbeck, Kenneth H.

    2017-01-01

    IMPORTANCE The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. OBJECTIVE To identify the genetic cause for a novel form of pure autosomal dominant HSP. DESIGN, SETTING, AND PARTICIPANTS We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. MAIN OUTCOME AND MEASURE Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. RESULTS We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P < .01) and size (0.29 [0.01] vs 0.26 [0

  2. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  3. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    PubMed

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  4. Autosomal-dominant non-autoimmune hyperthyroidism presenting with neuromuscular symptoms.

    PubMed

    Elgadi, Aziz; Arvidsson, C-G; Janson, Annika; Marcus, Claude; Costagliola, Sabine; Norgren, Svante

    2005-08-01

    Neuromuscular presentations are common in thyroid disease, although the mechanism is unclear. In the present study, we investigated the pathogenesis in a boy with autosomal-dominant hyperthyroidism presenting with neuromuscular symptoms. The TSHr gene was investigated by direct sequencing. Functional properties of the mutant TSHr were investigated during transient expression in COS-7 cells. Family members were investigated by clinical and biochemical examinations. Sequence analysis revealed a previously reported heterozygous missense mutation Glycine 431 for Serine in the first transmembrane segment, leading to an increased specific constitutive activity. Three additional affected family members carried the same mutation. There was no indication of autoimmune disorder. All symptoms disappeared upon treatment with thacapzol and L-thyroxine and subsequent subtotal thyroidectomy. The data imply that neuromuscular symptoms can be caused by excessive thyroid hormone levels rather than by autoimmunity.

  5. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).

    PubMed

    Nikonova, Anna S; Deneka, Alexander Y; Kiseleva, Anna A; Korobeynikov, Vladislav; Gaponova, Anna; Serebriiskii, Ilya G; Kopp, Meghan C; Hensley, Harvey H; Seeger-Nukpezah, Tamina N; Somlo, Stefan; Proia, David A; Golemis, Erica A

    2018-05-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).

  6. Autosomal Dominant Diabetes Arising From a Wolfram Syndrome 1 Mutation

    PubMed Central

    Bonnycastle, Lori L.; Chines, Peter S.; Hara, Takashi; Huyghe, Jeroen R.; Swift, Amy J.; Heikinheimo, Pirkko; Mahadevan, Jana; Peltonen, Sirkku; Huopio, Hanna; Nuutila, Pirjo; Narisu, Narisu; Goldfeder, Rachel L.; Stitzel, Michael L.; Lu, Simin; Boehnke, Michael; Urano, Fumihiko; Collins, Francis S.; Laakso, Markku

    2013-01-01

    We used an unbiased genome-wide approach to identify exonic variants segregating with diabetes in a multigenerational Finnish family. At least eight members of this family presented with diabetes with age of diagnosis ranging from 18 to 51 years and a pattern suggesting autosomal dominant inheritance. We sequenced the exomes of four affected members of this family and performed follow-up genotyping of additional affected and unaffected family members. We uncovered a novel nonsynonymous variant (p.Trp314Arg) in the Wolfram syndrome 1 (WFS1) gene that segregates completely with the diabetic phenotype. Multipoint parametric linkage analysis with 13 members of this family identified a single linkage signal with maximum logarithm of odds score 3.01 at 4p16.2-p16.1, corresponding to a region harboring the WFS1 locus. Functional studies demonstrate a role for this variant in endoplasmic reticulum stress, which is consistent with the β-cell failure phenotype seen in mutation carriers. This represents the first compelling report of a mutation in WFS1 associated with dominantly inherited nonsyndromic adult-onset diabetes. PMID:23903355

  7. The anterior segment disorder autosomal dominant keratitis is linked to the Aniridia/PAX-6 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzayans, F.; Pearce, W.G.; Mah, T.S.

    1994-09-01

    Autosomal dominant keratitis (ADK) is an eye disease characterized by anterior stromal corneal opacification and vascularization in the peripheral cornea. Progression into the central cornea may compromise visual acuity. Other anterior segment features include minimal radial defects of the iris stroma. Posterior segment involvement is characterized by foveal hypoplasia with minimal effect on visual acuity. Aniridia is a second autosomal dominantly inherited ocular disorder defined by structural defects of the iris, frequently severe enough to cause an almost complete absence of iris. This may be accompanied by other anterior segment manifestations, including cataract and keratitis. Posterior segment involvement in aniridiamore » is characterized by foveal hypoplasia resulting in a highly variable impairment of visual acuity, often with nystagmus. Aniridia is usually inherited as an autosomal dominant disease and occurs in 1 in 50,000 to 100,000 people. Aniridia has been shown to result from mutations in PAX-6, a gene thought to regulate fetal eye development. The similar clinical findings in ADK and aniridia, with the similar patterns of inheritance, compelled us to investigate if these two ocular disorders are variants of the same genetic disorder. We have tested for linkage between PAX-6 and ADK within an ADK family with 33 members over four generations, including 11 affected individuals. Linkage studies reveal that D11S914 (located within 3 cM of PAX-6) does not recombine with ADK (LOD score 3.61; {theta} = 0.00), consistent with PAX-6 mutations being responsible for ADK. Direct sequencing of PAX-6 RT-PCR products from ADK patients is underway to identify the mutation within the PAX-6 gene that results in ADK. The linkage of PAX-6 with ADK, along with a recent report that mutations in PAX-6 also underlie Peter`s anomaly, implicates PAX-6 widely in anterior segment malformations.« less

  8. Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunge, S.; Wedemann, H.; Samanns, C.

    1993-07-01

    Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, withmore » a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.« less

  9. A Locus for Autosomal Dominant Hereditary Spastic Ataxia, SAX1, Maps to Chromosome 12p13

    PubMed Central

    Meijer, I. A.; Hand, C. K.; Grewal, K. K.; Stefanelli, M. G.; Ives, E. J.; Rouleau, G. A.

    2002-01-01

    The hereditary spastic ataxias (HSA) are a group of clinically heterogeneous neurodegenerative disorders characterized by lower-limb spasticity and generalized ataxia. HSA was diagnosed in three unrelated autosomal dominant families from Newfoundland, who presented mainly with severe leg spasticity, dysarthria, dysphagia, and ocular-movement abnormalities. A genomewide scan was performed on one family, and linkage to a novel locus for HSA on chromosome 12p13, which contains the as-yet-unidentified gene locus SAX1, was identified. Fine mapping confirmed linkage in the two large families, and the third, smaller family showed LOD scores suggestive of linkage. Haplotype construction by use of 13 polymorphic markers revealed that all three families share a disease haplotype, which key recombinants and overlapping haplotypes refine to ∼5 cM, flanked by markers D12S93 and GATA151H05. SAX1 is the first locus mapped for autosomal dominant HSA. PMID:11774073

  10. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    PubMed

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  11. The Genetics of Hybrid Male Sterility Between the Allopatric Species Pair Drosophila persimilis and D. pseudoobscura bogotana: Dominant Sterility Alleles in Collinear Autosomal Regions

    PubMed Central

    Chang, Audrey S.; Noor, Mohamed A. F.

    2007-01-01

    F1 hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F1 hybrid sterility. PMID:17277364

  12. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions.

    PubMed

    Chang, Audrey S; Noor, Mohamed A F

    2007-05-01

    F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.

  13. Autosomal dominant familial spastic paraplegia: Tight linkage to chromosome 15q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, J.K.; Wu, C.T.B.; Jones, S.M.

    1994-09-01

    Familial spastic paraplegia (FSP) (MIM No.18260) constitutes a clinically and genetically diverse group of disorders that share the primary feature of progressive, severe, lower extremity spasticity. FSP is classified according to the mode of inheritance and whether progressive spasticity occurs in isolation ({open_quotes}uncomplicated FSP{close_quotes}) or with other neurologic abnormalities ({open_quotes}complicated FSP{close_quotes}), including optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, ataxia, ichthyosis, mental retardation, or deafness. Recently, autosomal dominant, uncomplicated FSP was shown to be genetically heterogeneous and tightly linked to a group of microsatellite markers on chromosome 14q in one large kindred. We examined 126 members of a non-consanguineous North Americanmore » kindred of Irish descent. FSP was diagnosed in 31 living subjects who developed insidiously progressive gait disturbance between ages 12 and 35 years. Using genetic linkage analysis to microsatellite DNA polymorphisms, we showed that the FSP locus on chromosome 14q was exluded from linkage with the disorder in our family. Subsequently, we searched for genetic linkage between the disorder and microsatellite DNA polymorphisms spanning approximately 50% of the genome. We observed significantly positive, two-point maximum lod scores (Z) for markers on chromosome 15q: D15S128 (Z=9.70, {theta}=0.05), D15S165 (Z=3.30, {theta}=0.10), and UT511 (Z=3.86, {theta}=0.10). Our data clearly establishes that one locus for autosomal dominant, uncomplicated FSP is mapped to the pericentric region of chromosome 15q. Identifying genes responsible for chromosome 15q-linked and chromosome 14q-linked FSP will greatly advance our understanding of this condition and hopefully other inherited and degenerative brain and spinal cord disorders that are also characterized by axonal degeneration.« less

  14. COL4A4 gene study of a European population: description of new mutations causing autosomal dominant Alport syndrome.

    PubMed

    Rosado, Consolación; Bueno, Elena; Felipe, Carmen; González-Sarmiento, Rogelio

    2014-01-01

    Autosomal forms of Alport syndrome represent 20% of all patients (15% recessive and 5% dominant). They are caused by mutations in the COL4A3 and COL4A4 genes, which encode a-3 and a-4 collagen IV chains of the glomerular basement membrane, cochlea and eye. Thin basement membrane nephropathy may affect up to 1% of the population. The pattern of inheritance in the 40% of cases is the same as autosomal dominant Alport syndrome: heterozygous mutations in these genes. The aim of this study is to detect new pathogenic mutations in the COL4A4 gene in the patients previously diagnosed with autosomal Alport syndrome and thin basement membrane nephropathy in our hospital. We conducted a clinical and genetic study in eleven patients belonging to six unrelated families with aforementioned clinical symptoms and a negative study of COL4A3 gene. The molecular study was made by conformation of sensitive gel electrophoresis (CSGE) and direct sequencing of the fragments that show an altered electrophoretic migration pattern. We found two pathogenic mutations, not yet described: IVS3 + 1G > C is a replacement of Guanine to Cytosine in position +1 of intron 3, in the splicing region, which leads to a pathogenic mutation. c.4267C > T; p.P1423S is a missense mutation, also considered pathogenic. We also found seven new polymorphisms. We describe two new pathogenic mutations, responsible for autosomal dominant Alport syndrome. The other families of the study were undiagnosed owing to problems in the method employed and the possibility of mutations in other genes, giving rise to other diseases with similar symptoms.

  15. Clinical and radiological assessment of a family with mild brachydactyly type A1: the usefulness of metacarpophalangeal profiles.

    PubMed

    Armour, C M; Bulman, D E; Hunter, A G

    2000-04-01

    The brachydactylies are a group of conditions in which various subtypes have been defined based upon the specific pattern of digital bones involved. Type A1 brachydactyly is principally characterised by maximal involvement of the middle phalanges. We report an extended family with a mild brachydactyly A1 which was, except for some short stature, not associated with any of the additional clinical findings reported in several published families. While all the hand bones tended to be small, the principal features of the affected members were shortened middle and distal phalanges, proximal 1st phalanges, and 5th metacarpals. The feet were similarly involved and tended to have a broad, slightly adducted forefoot. The two affected children showed multiple coned epiphyses. This paper provides a detailed description of the family including the radiographic signs and metacarpophalangeal profiles, which proved to be useful in distinguishing the mildly affected persons.

  16. Subjective memory complaints in preclinical autosomal dominant Alzheimer disease.

    PubMed

    Norton, Daniel J; Amariglio, Rebecca; Protas, Hillary; Chen, Kewei; Aguirre-Acevedo, Daniel C; Pulsifer, Brendan; Castrillon, Gabriel; Tirado, Victoria; Munoz, Claudia; Tariot, Pierre; Langbaum, Jessica B; Reiman, Eric M; Lopera, Francisco; Sperling, Reisa A; Quiroz, Yakeel T

    2017-10-03

    To cross-sectionally study subjective memory complaints (SMC) in autosomal dominant Alzheimer disease (ADAD). We examined self-reported and study partner-based SMC in 52 young, cognitively unimpaired individuals from a Colombian kindred with early-onset ADAD. Twenty-six carried the PSEN-1 E280A mutation, averaging 7 years of age younger than the kindred's expected clinical onset. Twenty-six were age-matched noncarriers. Participants also underwent structural MRI and cognitive testing. Self-reported SMC were greater in carriers than noncarriers ( p = 0.02). Study partner-based SMC did not differ between groups ( p = 0.21), but in carriers increased with age ( r = 0.66, p < 0.001) and decreased with hippocampal volume ( r = -0.35, p = 0.08). Cognitively unimpaired PSEN-1 carriers have elevated SMC. Self-reported SMC may be a relatively early indicator of preclinical AD, while partner- reported SMC increases later in preclinical AD, closer to clinical onset. © 2017 American Academy of Neurology.

  17. Inducing Somatic Pkd1 Mutations in Vivo in a Mouse Model of Autosomal-Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the worlds most common life threatening genetic diseases. Over 95 percent of diagnosed...several genetic models to induce mutations: two during embryogenesis (with Six2-cre and CVM-cre) and one in the adult (Villin-cre). One of the embryonic

  18. Autosomal dominant distal myopathy due to a novel ACTA1 mutation.

    PubMed

    Liewluck, Teerin; Sorenson, Eric J; Walkiewicz, Magdalena A; Rumilla, Kandelaria M; Milone, Margherita

    2017-08-01

    Mutations in skeletal muscle α-actin 1-encoding gene (ACTA1) cause autosomal dominant or recessive myopathies with marked clinical and pathological heterogeneity. Patients typically develop generalized or limb-girdle pattern of weakness, but recently a family with scapuloperoneal myopathy was reported. We describe a father and 2 children with childhood-to-juvenile onset distal myopathy, carrying a novel dominant ACTA1 variant, c.757G>C (p.Gly253Arg). Father had delayed motor development and developed significant proximal weakness later in life; he was initially misdiagnosed as having spinal muscular atrophy based on electromyographic findings. His children had predominant anterior distal leg and finger extensor involvement. Nemaline rods were abundant on the daughter's biopsy, absent on the father's initial biopsy, and extremely rare on the father's subsequent biopsy a decade later. The father's second biopsy also showed myofibrillar pathology and rare fibers with actin filament aggregates. The present family expands the spectrum of actinopathy to include a distal myopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Autism in siblings with autosomal dominant nocturnal frontal lobe epilepsy.

    PubMed

    Miyajima, Tomoko; Kumada, Tomohiro; Saito, Keiko; Fujii, Tatsuya

    2013-02-01

    In 1999, Hirose et al. reported a Japanese family with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) associated with a neuronal nicotinic acetylcholine receptor α4 subunit mutation (S252L). We followed the siblings of this family, and found that the elder brother had Asperger's disorder without mental retardation (MR) and the younger brother had autistic disorder with profound MR. The clinical epileptic features of the siblings were very similar, and both had deficits in socialization, but their cognitive development differed markedly. It thus seems that epilepsy is the direct phenotype of the S252L mutation, whereas other various factors modulate the cognitive and social development. No patients with ADNFLE have previously been reported to have autism spectrum disorder or profound MR. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group.

    PubMed

    Su, Yi; Blazey, Tyler M; Owen, Christopher J; Christensen, Jon J; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C; Ances, Beau M; Snyder, Abraham Z; Cash, Lisa A; Koeppe, Robert A; Klunk, William E; Galasko, Douglas; Brickman, Adam M; McDade, Eric; Ringman, John M; Thompson, Paul M; Saykin, Andrew J; Ghetti, Bernardino; Sperling, Reisa A; Johnson, Keith A; Salloway, Stephen P; Schofield, Peter R; Masters, Colin L; Villemagne, Victor L; Fox, Nick C; Förster, Stefan; Chen, Kewei; Reiman, Eric M; Xiong, Chengjie; Marcus, Daniel S; Weiner, Michael W; Morris, John C; Bateman, Randall J; Benzinger, Tammie L S

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.

  1. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss.

    PubMed

    DeMille, Desiree; Carlston, Colleen M; Tam, Oliver H; Palumbos, Janice C; Stalker, Heather J; Mao, Rong; Zori, Roberto T; Viskochil, David H; Park, Albert H; Carey, John C

    2018-04-01

    Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene. © 2018 Wiley Periodicals, Inc.

  2. A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract

    PubMed Central

    Yang, Juhua; Zhu, Yihua; Gu, Feng; He, Xiang; Cao, Zongfu; Li, Xuexi; Tong, Yi

    2008-01-01

    Purpose To identify the molecular defect underlying an autosomal dominant congenital nuclear cataract in a Chinese family. Methods Twenty-two members of a three-generation pedigree were recruited, clinical examinations were performed, and genomic DNA was extracted from peripheral blood leukocytes. All members were genotyped with polymorphic microsatellite markers adjacent to each of the known cataract-related genes. Linkage analysis was performed after genotyping. Candidate genes were screened for mutation using direct sequencing. Individuals were screened for presence of a mutation by restriction fragment length polymorphism (RFLP) analysis. Results Linkage analysis identified a maximum LOD score of 3.31 (recombination fraction [θ]=0.0) with marker D22S1167 on chromosome 22, which flanks the β-crystallin gene cluster (CRYBB3, CRYBB2, CRYBB1, and CRYBA4). Sequencing the coding regions and the flanking intronic sequences of these four candidate genes identified a novel, heterozygous C→T transition in exon 6 of CRYBB1 in the affected individuals of the family. This single nucleotide change introduced a novel BfaI site and was predicted to result in a nonsense mutation at codon 223 that changed a phylogenetically conserved amino acid to a stop codon (p.Q223X). RFLP analysis confirmed that this mutation co-segregated with the disease phenotype in all available family members and was not found in 100 normal unrelated individuals from the same ethnic background. Conclusions This study has identified a novel nonsense mutation in CRYBB1 (p.Q223X) associated with autosomal dominant congenital nuclear cataract. PMID:18432316

  3. Melorheostosis in a family with autosomal dominant osteopoikilosis: report of a third family.

    PubMed

    Debeer, Philippe; Pykels, E; Lammens, J; Devriendt, K; Fryns, J-P

    2003-06-01

    We describe a three-generation family with clinical and radiological findings of osteopoikilosis in five and melorheostosis in one individual. The co-occurrence of both rare bone disorders suggests that both conditions might be related as suggested previously by Butkus et al. [1997: Am J Med Genet 72:43-46] and Nevin et al. [1999: Am J Med Genet 82:409-414]. The findings in this family strengthen the hypothesis that osteopoikilosis is an autosomal dominant condition and that an early postzygotic second hit mutation in the second allele results in melorheostosis. Copyright 2003 Wiley-Liss, Inc.

  4. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Olson, Rory J; Besse, Whitney; Heyer, Christina M; Gainullin, Vladimir G; Smith, Jessica M; Audrézet, Marie-Pierre; Hopp, Katharina; Porath, Binu; Shi, Beili; Baheti, Saurabh; Senum, Sarah R; Arroyo, Jennifer; Madsen, Charles D; Férec, Claude; Joly, Dominique; Jouret, François; Fikri-Benbrahim, Oussamah; Charasse, Christophe; Coulibaly, Jean-Marie; Yu, Alan S; Khalili, Korosh; Pei, York; Somlo, Stefan; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2018-05-03

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Relative Contribution of Mutations in Genes for Autosomal Dominant Distal Hereditary Motor Neuropathies: A Genotype-Phenotype Correlation Study

    ERIC Educational Resources Information Center

    Dierick, Ines; Baets, Jonathan; Irobi, Joy; Jacobs, An; De Vriendt, Els; Deconinck, Tine; Merlini, Luciano; Van den Bergh, Peter; Rasic, Vedrana Milic; Robberecht, Wim; Fischer, Dirk; Morales, Raul Juntas; Mitrovic, Zoran; Seeman, Pavel; Mazanec, Radim; Kochanski, Andrzej; Jordanova, Albena; Auer-Grumbach, Michaela; Helderman-van den Enden, A. T. J. M.; Wokke, John H. J.; Nelis, Eva; De Jonghe, Peter; Timmerman, Vincent

    2008-01-01

    Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal alpha-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; "glycyl-tRNA synthetase (GARS)," "dynactin 1 (DCTN1)," "small heat shock 27 kDa…

  6. Familial central precocious puberty suggests autosomal dominant inheritance.

    PubMed

    de Vries, Liat; Kauschansky, Arieh; Shohat, Mordechai; Phillip, Moshe

    2004-04-01

    The prevalence of precocious puberty is higher in certain ethnic groups, and some cases may be familial. The aim of this study was to investigate the mode of inheritance of familial precocious puberty and to identify characteristics that distinguish familial from isolated precocious puberty. Of the 453 children referred to our center for suspected precocious puberty between January 1, 1997, and December 31, 2000, 156 (147 girls and 9 boys) were found to have idiopathic central precocious puberty, which was familial in 43 (42 girls and 1 boy) (27.5%). Data of the familial and sporadic cases were compared. The familial group was characterized by a significantly lower maternal age at menarche than the sporadic group (mean, 11.47 +/- 1.96 vs. 12.66 +/- 1.18 yr; P = 0.0001) and more advanced puberty at admission (Tanner stage 2, 56.5% vs. 78.1%; P = 0.006). Segregation analysis was used to study the mode of inheritance. The segregation ratio for precocious puberty was 0.38 (0.45 after exclusion of young siblings) assuming incomplete penetrance and 0.58 (0.65 after exclusion of young siblings) assuming complete ascertainment. These results suggest autosomal dominant transmission with incomplete, sex-dependent penetrance.

  7. Autosomal dominant congenital nuclear cataracts in strain 13/N guinea pigs.

    PubMed

    Amsbaugh, D F; Stone, S H

    1984-01-01

    Bilateral cataracts observed in the eyes of a 13/N guinea pig and one of her two offspring led to studies to determine the nature of this cataract and its possible heritability. The cataract was determined to be of the nuclear type, was congenital, and apparently transmitted by a single autosomal dominant gene. The cataractous condition of the mother had no effect on the percentage of litters containing stillborns. The cataractous condition of the offspring had no effect on their viability in utero, i.e., there was no greater incidence of stillborns among cataractous than among non-cataractous offspring. The birthweights of the cataractous animals were lower, but not significantly, than those of their non-cataractous littermates; however, the survivability to weaning of the cataractous offspring was reduced significantly when compared to their non-cataractous siblings.

  8. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients withmore » retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.« less

  9. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959

  10. Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease

    PubMed Central

    Zand, Ladan; Torres, Vicente E.; Larson, Timothy S.; King, Bernard F.; Sethi, Sanjeev; Bergstralh, Eric J.; Angioi, Andrea; Fervenza, Fernando C.

    2016-01-01

    Background To determine the effect of statins on renal hemodynamics in normal volunteers and those with autosomal dominant polycystic kidney disease either with mild or moderate renal dysfunction. Methods Thirty-two study subjects were enrolled in this study: 11 normal volunteers, 11 study subjects with autosomal dominant polycystic kidney disease (ADPKD) and mild kidney disease and 10 study subjects with ADPKD and moderate kidney disease. Subjects in each group received simvastatin 40 mg once daily for a period of 4 weeks. Renal blood flow was measured based on para-amino-hippurate (PAH) clearance and with the use of a magnetic resonance (MR) scanner at the beginning and following 4 weeks of therapy with statins. Results At the end of the study, except for the lipid profile, which was significantly lower in all groups, other laboratory results showed no change. Four weeks of therapy with simvastatin resulted in no change in serum creatinine, 24-h urinary protein, sodium, iothalamate clearance, PAH clearance or renal blood flow as measured by MRI or based on PAH clearance. Conclusions Four weeks of therapy with simvastatin did not change renal blood flow in the study subjects with ADPKD with mild-to-moderate renal dysfunction or in healthy volunteers. Clinical Trial Registration Number NCT02511418. PMID:26614268

  11. Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1

    PubMed Central

    Pennings, Ronald J.E.; Hol, Frans A.; Kunst, Henricus P.M.; Hoefsloot, Elisabeth H.; Cruysberg, Johannes R.M.; Cremers, Cor W.R.J.

    2010-01-01

    Purpose To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series. Methods Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution. Fasting serum glucose was assessed in the affected family members. Results All affected individuals showed loss of neuroretinal rim of the optic nerve at fundoscopy with enlarged blind spots at perimetry. They showed a red-green color vision defect at color vision tests and deviations at visually evoked response tests. The audiograms of the affected individuals showed hearing loss and were relatively flat. The unaffected individuals showed no visual deviations or hearing impairment. The affected family members had no glucose intolerance. Leber hereditary optic neuropathy (LHON) mitochondrial mutations and mutations in the Optic atrophy-1 gene (OPA1) were excluded. In the affected individuals, a novel missense mutation c.2508G>C (p.Lys836Asn) in exon 8 of WFS1 was identified. Conclusions This study describes the phenotype of a family with autosomal dominant optic neuropathy and hearing impairment associated with a novel missense mutation in WFS1. PMID:20069065

  12. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C.

    PubMed

    Choi, Keun Hee; Shin, Choong Ho; Yang, Sei Won; Cheong, Hae Il

    2015-04-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated.

  13. Autosomal dominant hypocalcemia with Bartter syndrome due to a novel activating mutation of calcium sensing receptor, Y829C

    PubMed Central

    Choi, Keun Hee; Yang, Sei Won; Cheong, Hae Il

    2015-01-01

    The calcium sensing receptor (CaSR) plays an important role in calcium homeostasis. Activating mutations of CaSR cause autosomal dominant hypocalcemia by affecting parathyroid hormone secretion in parathyroid gland and calcium resorption in kidney. They can also cause a type 5 Bartter syndrome by inhibiting the apical potassium channel in the thick ascending limb of the loop of Henle in the kidney. This study presents a patient who had autosomal dominant hypocalcemia with Bartter syndrome due to an activating mutation Y829C in the transmembrane domain of the CaSR. Symptoms of hypocalcemia occurred 12 days after birth and medication was started immediately. Medullary nephrocalcinosis and basal ganglia calcification were found at 7 years old and at 17 years old. Three hypercalcemic episodes occurred, one at 14 years old and two at 17 years old. The Bartter syndrome was not severe while the serum calcium concentration was controlled, but during hypercalcemic periods, the symptoms of Bartter syndrome were aggravated. PMID:25932037

  14. Autosomal dominant cerebellar ataxia with slow ocular saccades, neuropathy and orthostatism: a novel entity?

    PubMed

    Wictorin, Klas; Brådvik, Björn; Nilsson, Karin; Soller, Maria; van Westen, Danielle; Bynke, Gunnel; Bauer, Peter; Schöls, Ludger; Puschmann, Andreas

    2014-07-01

    We describe the clinical characteristics of a Swedish family with autosomal dominant cerebellar ataxia, sensory and autonomic neuropathy, additional neurological features and unknown genetic cause. Fourteen affected family members were identified. Their disorder was characterized by neurological examination, MRI, electroneurography, electromyography, MIBG-scintigraphy, and tilt-testing. The disorder presented as a balance and gait disturbance starting between 16 and 47 years of age. Cerebellar ataxia progressed slowly over the course of decades, and MRI showed mild to moderate cerebellar atrophy. Sensory axonal polyneuropathy was the most prominent additional feature and occurred in all patients examined. Autonomic neuropathy caused pronounced orthostatic dysregulation in at least four patients. Several affected members showed muscle wasting, and mild upper or lower motor neuron signs were documented. Patients had no nystagmus but slow or hypometric horizontal saccades and ocular motor apraxia. Cognition remained unimpaired, and there were no non-neurological disease manifestations. The disorder affected men and women in successive generations in a pattern compatible with autosomal dominant inheritance without evidence of anticipation. A second family where 7 members had very similar symptoms was identified and its origin traced back to the same village in southern Sweden as that of the first family's ancestors. All relevant known genetic causes of cerebellar ataxia were excluded by a novel next-generation sequencing approach. We present two probably related Swedish families with a characteristic and novel clinical syndrome of cerebellar ataxia and sensory polyneuropathy. The study serves as a basis for the mapping of the underlying genetic cause. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Floating-Harbor syndrome: description of a further patient, review of the literature, and suggestion of autosomal dominant inheritance.

    PubMed

    Lacombe, D; Patton, M A; Elleau, C; Battin, J

    1995-08-01

    The Floating-Harbor syndrome is a growth retardation syndrome with delayed bone age, speech development, and typical facial features. The face is triangular with deep-set eyes, long eyelashes, bulbous nose, wide columella, short philtrum, and thin lips. We present an additional patient and review 16 cases from the literature. The possible phenotype in the patient's mother suggests a dominant mode of inheritance for the syndrome. The Floating Harbor syndrome is a growth deficiency syndrome characterized by proportionate short stature, characteristic face and delayed speech development. Inheritance is possibly autosomal dominant.

  16. Fibroblast Growth Factor 23 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Chonchol, Michel; Gitomer, Berenice; Isakova, Tamara; Cai, Xuan; Salusky, Isidro; Pereira, Renata; Abebe, Kaleab; Torres, Vicente; Steinman, Theodor I; Grantham, Jared J; Chapman, Arlene B; Schrier, Robert W; Wolf, Myles

    2017-09-07

    Increases in fibroblast growth factor 23 precede kidney function decline in autosomal dominant polycystic kidney disease; however, the role of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease has not been well characterized. We measured intact fibroblast growth factor 23 levels in baseline serum samples from 1002 participants in the HALT-PKD Study A ( n =540; mean eGFR =91±17 ml/min per 1.73 m 2 ) and B ( n =462; mean eGFR =48±12 ml/min per 1.73 m 2 ). We used linear mixed and Cox proportional hazards models to test associations between fibroblast growth factor 23 and eGFR decline, percentage change in height-adjusted total kidney volume, and composite of time to 50% reduction in eGFR, onset of ESRD, or death. Median (interquartile range) intact fibroblast growth factor 23 was 44 (33-56) pg/ml in HALT-PKD Study A and 69 (50-93) pg/ml in Study B. In adjusted models, annualized eGFR decline was significantly faster in the upper fibroblast growth factor 23 quartile (Study A: quartile 4, -3.62; 95% confidence interval, -4.12 to -3.12 versus quartile 1, -2.51; 95% confidence interval, -2.71 to -2.30 ml/min per 1.73 m 2 ; P for trend <0.001; Study B: quartile 4, -3.74; 95% confidence interval, -4.14 to -3.34 versus quartile 1, -2.78; 95% confidence interval, -2.92 to -2.63 ml/min per 1.73 m 2 ; P for trend <0.001). In Study A, higher fibroblast growth factor 23 quartiles were associated with greater longitudinal percentage increase in height-adjusted total kidney volume in adjusted models (quartile 4, 6.76; 95% confidence interval, 5.57 to 7.96 versus quartile 1, 6.04; 95% confidence interval, 5.55 to 6.54; P for trend =0.03). In Study B, compared with the lowest quartile, the highest fibroblast growth factor 23 quartile was associated with elevated risk for the composite outcome (hazard ratio, 3.11; 95% confidence interval, 1.84 to 5.25). Addition of fibroblast growth factor 23 to a model of annualized decline in eGFR≥3.0 ml/min per 1.73 m

  17. The first familial case of inherited 2q37.3 interstitial deletion with isolated skeletal abnormalities including brachydactyly type E and short stature.

    PubMed

    Jean-Marçais, Nolwenn; Decamp, Matthieu; Gérard, Marion; Ribault, Virginie; Andrieux, Joris; Kottler, Marie-Laure; Plessis, Ghislaine

    2015-01-01

    Albright hereditary osteodystrophy (AHO)-like syndrome is also known as brachydactyly-mental retardation syndrome (BDMR; OMIM 60040). This disorder includes intellectual disability in all patients, skeletal abnormalities, including brachydactyly E (BDE) in approximately half, obesity, and facial dysmorphism. Patients with 2q37 microdeletion or HDAC4 mutation are defined as having an AHO-like phenotype with normal stimulatory G (Gs) function. HDAC4 is involved in neurological, cardiac, and skeletal function. This paper reports the first familial case of 2q37.3 interstitial deletion affecting two genes, HDAC4 and TWIST2. Patients presented with BDE and short stature without intellectual disability, showing that haploinsufficiency of the HDAC4 critical region may lead to a spectrum of phenotypes, ranging from isolated brachydactyly type E to BDMR. © 2014 Wiley Periodicals, Inc.

  18. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  19. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We havemore » recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.« less

  20. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer disease

    PubMed Central

    Fagan, Anne M.; Xiong, Chengjie; Jasielec, Mateusz S.; Bateman, Randall J.; Goate, Alison M.; Benzinger, Tammie L.S.; Ghetti, Bernardino; Martins, Ralph N.; Masters, Colin L.; Mayeux, Richard; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Sperling, Reisa A.; Marcus, Daniel; Cairns, Nigel J.; Buckles, Virginia D.; Ladenson, Jack H.; Morris, John C.; Holtzman, David M.

    2014-01-01

    Clinicopathologic evidence suggests the pathology of Alzheimer disease (AD) begins many years prior to cognitive symptoms. Biomarkers are required to identify affected individuals during this asymptomatic (“pre-clinical”) stage to permit intervention with potential disease-modifying therapies designed to preserve normal brain function. Studies of families with autosomal-dominant AD (ADAD) mutations provide a unique and powerful means to investigate AD biomarker changes during the asymptomatic period. In this biomarker study comparing cerebrospinal fluid (CSF), plasma and in vivo amyloid imaging, cross-sectional data obtained at baseline in individuals from ADAD families enrolled in the Dominantly Inherited Alzheimer Network (DIAN) demonstrate reduced concentrations of CSF amyloid-β1-42 (Aβ1–42) associated with the presence of β-amyloid plaques, and elevated concentrations of CSF tau, ptau181 and VILIP-1, markers of neurofibrillary tangles and/or neuronal injury/death, in asymptomatic mutation carriers 10-20 years prior to their estimated age at symptom onset (EAO), and prior to detection of cognitive deficits. When compared longitudinally, however, the concentrations of CSF biomarkers of neuronal injury/death within-individuals decrease after their EAO, suggesting a slowing of acute neurodegenerative processes with symptomatic disease progression. These results emphasize the importance of longitudinal, within-person assessment when modeling biomarker trajectories across the course of the disease. If corroborated, this pattern may influence the definition of a positive neurodegenerative biomarker outcome in clinical trials. PMID:24598588

  1. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus.

    PubMed

    Rao, Yan; Dong, Sufang; Li, Zuhua; Yang, Guohua; Peng, Chunyan; Yan, Ming; Zheng, Fang

    2017-01-01

    To identify the potential candidate genes for a large Chinese family with autosomal dominant congenital cataract (ADCC) and nystagmus, and investigate the possible molecular mechanism underlying the role of the candidate genes in cataractogenesis. We combined the linkage analysis and direct sequencing for the candidate genes in the linkage regions to identify the causative mutation. The molecular and bio-functional properties of the proteins encoded by the candidate genes was further explored with biophysical and biochemical studies of the recombinant wild-type and mutant proteins. We identified a c. C749T (p.Q227X) transversion in exon 6 of CRYBB1 , a cataract-causative gene. This nonsense mutation changes a phylogenetically conserved glutamine to a stop codon and is predicted to truncate the C-terminus of the wild-type protein by 26 amino acids. Comparison of the biophysical and biochemical properties of the recombinant full-length and truncated βB1-crystallins revealed that the mutation led to the insolubility and the phase separation phenomenon of the truncated protein with a changed conformation. Meanwhile, the thermal stability of the truncated βB1-crystallin was significantly decreased, and the mutation diminished the chaperoning ability of αA-crystallin with the mutant under heating stress. Our findings highlight the importance of the C-terminus in βB1-crystallin in maintaining the crystalline function and stability, and provide a novel insight into the molecular mechanism underlying the pathogenesis of human autosomal dominant congenital cataract.

  2. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological

  3. [A family with autosomal dominant temporal lobe epilepsy accompanied by motor and sensory neuropathy].

    PubMed

    Matsuoka, Takeshi; Furuya, Hirokazu; Ikezoe, Koji; Murai, Hiroyuki; Ohyagi, Yasumasa; Yoshiura, Takashi; Sasaki, Masayuki; Tobimatsu, Syozo; Kira, Jun-ichi

    2004-01-01

    We report a 20-year-old man with temporal lobe epilepsy (TLE) accompanied by hereditary motor and sensory neuropathy (HMSN). He had experienced complex partial seizures (CPS), which started with a nausea-like feeling, followed by loss of consciousness and automatism, since he was 6 years old. The frequency of attacks was at first decreased by phenytoin. However, attacks increased again when he was 18 years old. On admission, neurological examination showed mild weakness of the toes, pes cavus, hammer toe and mildly impaired vibratory sensation in his legs. Ten people in four generations of his family showed a history of epilepsy in the autosomal dominant inheritance form. His younger sister and mother had a history of epilepsy accompanied with pes cavus, hammer toe, weakness of toe and finger extension and mildly impaired vibratory sensation as well. Direct sequencing of the glioma-inactivated leucine-rich gene (LGI1), in which several mutations were reported in patients with familial lateral temporal lobe epilepsy, showed no specific mutation in this family. On consecutive video-EEG monitoring, paroxysmal rhythmic activity was confirmed in his left fronto-temporal region when he showed automatism, and then a generalized slow burst activity was detected when he lost consciousness. For his seizures, TLE with secondary generalization was diagnosed. In the nerve conduction study, delayed nerve conduction, distal motor latency and decreased amplitudes of the compound muscle action potentials (CMAP) of bilateral peroneal nerves were observed, indicating the existence of mild axonal degeneration. Based on these data, we consider that this family to be a new phenotype of autosomal dominant TLE accompanied by motor and sensory neuropathy.

  4. Novel Mutation in the CASR Gene (p.Leu123Ser) in a Case of Autosomal Dominant Hypocalcemia

    PubMed Central

    Regala, Joana; Cavaco, Branca; Domingues, Rita; Limbert, Catarina; Lopes, Lurdes

    2015-01-01

    Autosomal dominant hypocalcemia, caused by activating mutations of the calcium-sensing receptor (CASR) gene, is characterized by hypocalcemia with an inappropriately low concentration of parathyroid hormone (PTH). In this report, we describe the identification of a novel missense mutation in the CASR gene, in a boy with autosomal dominant hypocalcemia. Polymerase chain reaction (PCR)–single strand and DNA sequencing revealed a heterozygous mutation in CASR gene that causes a leucine substitution for serine at codon 123 (p.Leu123Ser). This mutation was absent in DNA from 50 control patients. In silico studies suggest that the identified variant was likely pathogenic. Sequencing analysis in the mother suggested mosaicism for the same variant, and she was clinically and biochemically unaffected. Clinical manifestations of the index case started with seizures at 14 months of age; cognitive impairment and several neuropsychological disabilities were noted during childhood. Extrapyramidal signs and basal ganglia calcification developed later, namely, hand tremor and rigidity at the age of 7 and 18 years, respectively. Laboratory analysis revealed hypocalcemia, hyperphosphatemia, and low-serum PTH with hypomagnesemia and mild hypercalciuria. After 2 years of treatment with calcium supplements and calcitriol, some brief periods of clinical improvement were reported; as well as an absence of nephrocalcinosis. PMID:27617113

  5. Accelerated long-term forgetting in presymptomatic autosomal dominant Alzheimer's disease: a cross-sectional study.

    PubMed

    Weston, Philip S J; Nicholas, Jennifer M; Henley, Susie M D; Liang, Yuying; Macpherson, Kirsty; Donnachie, Elizabeth; Schott, Jonathan M; Rossor, Martin N; Crutch, Sebastian J; Butler, Christopher R; Zeman, Adam Z; Fox, Nick C

    2018-02-01

    Tests sensitive to presymptomatic changes in Alzheimer's disease could be valuable for clinical trials. Accelerated long-term forgetting-during which memory impairment becomes apparent over longer periods than usually assessed, despite normal performance on standard cognitive testing-has been identified in other temporal lobe disorders. We assessed whether accelerated long-term forgetting is a feature of presymptomatic autosomal dominant (familial) Alzheimer's disease, and whether there is an association between accelerated long-term forgetting and early subjective memory changes. This was a cross-sectional study at the Dementia Research Centre, University College London (London, UK). Participants were recruited from a cohort of autosomal dominant Alzheimer's disease families already involved in research at University College London, and had to have a parent known to be affected by an autosomal dominant Alzheimer's disease mutation, and not report any current symptoms of cognitive decline. Accelerated long-term forgetting of three tasks (list, story, and figure recall) was assessed by comparing 7-day recall with initial learning and 30-min recall. 7-day recognition was also assessed. Subjective memory was assessed using the Everyday Memory Questionnaire. The primary outcome measure for each task was the proportion of material retained at 30 min that was recalled 7 days later (ie, 7-day recall divided by 30-min recall). We used linear regression to compare accelerated long-term forgetting scores between mutation carriers and non-carriers (adjusting for age, IQ, and test set) and, for mutation carriers, to assess whether there was an association between accelerated long-term forgetting and estimated years to symptom onset (EYO). Spearman's correlation was used to examine the association between accelerated long-term forgetting and subjective memory scores. Between Feb 17, 2015 and March 30, 2016, we recruited 35 people. 21 participants were mutation carriers (mean

  6. Impaired default network functional connectivity in autosomal dominant Alzheimer disease

    PubMed Central

    Chhatwal, Jasmeer P.; Schultz, Aaron P.; Johnson, Keith; Benzinger, Tammie L.S.; Jack, Clifford; Ances, Beau M.; Sullivan, Caroline A.; Salloway, Stephen P.; Ringman, John M.; Koeppe, Robert A.; Marcus, Daniel S.; Thompson, Paul; Saykin, Andrew J.; Correia, Stephen; Schofield, Peter R.; Rowe, Christopher C.; Fox, Nick C.; Brickman, Adam M.; Mayeux, Richard; McDade, Eric; Bateman, Randall; Fagan, Anne M.; Goate, Allison M.; Xiong, Chengjie; Buckles, Virginia D.; Morris, John C.

    2013-01-01

    Objective: To investigate default mode network (DMN) functional connectivity MRI (fcMRI) in a large cross-sectional cohort of subjects from families harboring pathogenic presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) mutations participating in the Dominantly Inherited Alzheimer Network. Methods: Eighty-three mutation carriers and 37 asymptomatic noncarriers from the same families underwent fMRI during resting state at 8 centers in the United States, United Kingdom, and Australia. Using group-independent component analysis, fcMRI was compared using mutation status and Clinical Dementia Rating to stratify groups, and related to each participant's estimated years from expected symptom onset (eYO). Results: We observed significantly decreased DMN fcMRI in mutation carriers with increasing Clinical Dementia Rating, most evident in the precuneus/posterior cingulate and parietal cortices (p < 0.001). Comparison of asymptomatic mutation carriers with noncarriers demonstrated decreased fcMRI in the precuneus/posterior cingulate (p = 0.014) and right parietal cortex (p = 0.0016). We observed a significant interaction between mutation carrier status and eYO, with decreases in DMN fcMRI observed as mutation carriers approached and surpassed their eYO. Conclusion: Functional disruption of the DMN occurs early in the course of autosomal dominant Alzheimer disease, beginning before clinically evident symptoms, and worsening with increased impairment. These findings suggest that DMN fcMRI may prove useful as a biomarker across a wide spectrum of disease, and support the feasibility of DMN fcMRI as a secondary endpoint in upcoming multicenter clinical trials in Alzheimer disease. PMID:23884042

  7. Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence.

    PubMed

    Valeri, A; Briollais, L; Azzouzi, R; Fournier, G; Mangin, P; Berthon, P; Cussenot, O; Demenais, F

    2003-03-01

    Four segregation analyses concerning prostate cancer (CaP), three conducted in the United States and one in Northern Europe, have shown evidence for a dominant major gene but with different parameter estimates. A recent segregation analysis of Australian pedigrees has found a better fit of a two-locus model than single-locus models. This model included a dominantly inherited increased risk that was greater at younger ages and a recessively inherited or X-linked increased risk that was greater at older ages. Recent linkage analyses have led to the detection of at least 8 CaP predisposing genes, suggesting a complex inheritance and genetic heterogeneity. To assess the nature of familial aggregation of prostate cancer in France, segregation analysis was conducted in 691 families ascertained through 691 CaP patients, recruited from three French hospitals and unselected with respect to age at diagnosis, clinical stage or family history. This mode of family inclusion, without any particular selection of the probands, is unique, as probands from all previous analyses were selected according to various criteria. Segregation analysis was carried out using the logistic hazard regressive model, as incorporated in the REGRESS program, which can accommodate a major gene effect, residual familial dependences of any origin (genetic and/or environmental), and covariates, while including survival analysis concepts. Segregation analysis showed evidence for the segregation of an autosomal dominant gene (allele frequency of 0.03%) with an additional brother-brother dependence. The estimated cumulative risks of prostate cancer by age 85 years, among subjects with the at-risk genotype, were 86% in the fathers' generation and 99% in the probands' generation. This study supports the model of Mendelian transmission of a rare autosomal dominant gene with high penetrance, and demonstrates that additional genetic and/or common sibling environmental factors are involved to account for the

  8. Fine localization of the locus for autosomal dominant retinitis pigmentosa on chromosome 17p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goliath, R.; Janssens, P.; Beighton, P.

    1995-10-01

    The term {open_quotes}retintis pigmentosa{close_quotes} (RP) refers to a group of inherited retinal degenerative disorders. Clinical manifestations include night-blindness, with variable age of onset, followed by constriction of the visual field that may progress to total loss of sight in later life. Previous studies have shown that RP is caused by mutations within different genes and may be inherited as an X-linked recessive (XLRRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) trait. The AD form of this group of conditions has been found to be caused by mutations within the rhodopsin gene in some families and the peripherin/RDS gene in others.more » In addition, some ADRP families have been found to be linked to anonymous markers on 8cen, 7p, 7q,19q, and, more recently, 17p. The ADRP gene locus on the short arm of chromosome 17 was identified in a large South African family (ADRP-SA) of British origin. The phenotypic expression of the disorder, which has been described elsewhere is consistent in the pedigree with an early onset of disease symptoms. In all affected subjects in the family, onset of symptoms commenced before the age of 10 years. 16 refs., 3 figs., 1 tab.« less

  9. Vestibular function in families with inherited autosomal dominant hearing loss

    PubMed Central

    Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F.; Phillips, James O.

    2008-01-01

    The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. PMID:18776598

  10. The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients.

    PubMed

    Ince Gunal, D; Agan, K; Afsar, N; Borucu, D; Us, O

    2008-04-01

    Autosomal dominant cerebellar ataxias are clinically and genetically heterogeneous neurodegenerative disorders. There is no known treatment to prevent neuronal cell death in these disorders. Current treatment is purely symptomatic; ataxia is one of the most disabling symptoms and represents the main therapeutic challenge. A previous case report suggesting benefit from administration of high dose piracetam inspired the present study of the efficacy of this agent in patients with cerebellar ataxia. Piracetam is a low molecular weight derivative of gamma-aminobutyric acid. Although little is known of its mode of action, its efficacy has been documented in a wide range of clinical indications, such as cognitive disorders, dementia, vertigo and dyslexia, as well as cortical myoclonus. The present report investigated the role of high dose piracetam in patients with cerebellar ataxia. Eight patients with autosomal dominant cerebellar ataxia were given intravenous piracetam 60 g/day by a structured protocol for 14 days. The baseline and end-of-the study evaluations were based on the International Cooperative Ataxia Rating Scale. Statistical analysis demonstrated a significant improvement in the patients' total score (P = 0.018) and a subscale analysis showed statistical significance for only the posture and gait disturbances item (P = 0.018). This study is providing good clinical observation in favour of high dose piracetam infusion to reduce the disability of the patients by improving their gait ataxia.

  11. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy

    PubMed Central

    Oda, Tetsuya; Xiong, Hui; Kobayashi, Kazuhiro; Wang, Shuo; Satake, Wataru; Jiao, Hui; Yang, Yanling; Cha, Pei-Chieng; Hayashi, Yukiko K; Nishino, Ichizo; Suzuki, Yutaka; Sugano, Sumio; Wu, Xiru; Toda, Tatsushi

    2015-01-01

    Laing distal myopathy (LDM) is an autosomal dominant myopathy that is caused by mutations in the slow/beta cardiac myosin heavy-chain (MYH7) gene. It has been recently reported that LDM presents with a wide range of clinical manifestations. We herein report a large Chinese family with autosomal dominant myopathy. The affected individuals in the family presented with foot drop in early childhood, along with progressive distal and proximal limb weakness. Their characteristic symptoms include scapular winging and scoliosis in the early disease phase and impairment of ambulation in the advanced phase. Although limb-girdle muscle dystrophy (LGMD) was suspected initially, a definite diagnosis could not be reached. As such, we performed linkage analysis and detected four linkage regions, namely 1q23.2-24.1, 14q11.2-12, 15q26.2-26.3 and 17q24.3. Through subsequent whole exome sequencing, we found a de novo p.K1617del causative mutation in the MYH7 gene and diagnosed the disease as LDM. This is the first LDM case in China. Our patients have severe clinical manifestations that mimic LGMD in comparison with the patients with the same mutation reported elsewhere. PMID:27081534

  12. Novel Presenting Phenotype in a Child With Autosomal Dominant Best's Vitelliform Macular Dystrophy.

    PubMed

    Abdalla, Yasmine F; De Salvo, Gabriella; Elsahn, Ahmad; Self, James E

    2017-07-01

    Best's macular dystrophy (BMD) usually manifests with visual failure in the first or second decade of life; however, there is a large variability in expressivity of the disease, and some patients have no manifestation other than a pathological electro-oculogram (EOG). Autosomal dominant Best's vitelliform macular dystrophy (AD-BVMD) has a very specific phenotype that varies with the stage of the disease. In recent years, the authors have seen description of another clinical entity known as autosomal recessive BMD. Herein, the authors describe a 5-year-old girl referred from a peripheral hospital for investigation with a positive family history of BMD. Clinical findings included best-corrected visual acuity of 0.325 and 0.300 in the right and left eyes, respectively, by Sonksen logMar test, full color vision, normal orthoptic examination, and a small degree of hyperopia consistent with age. Macular optical coherence tomography (OCT) showed intraretinal fluid cysts and EOG showed reduced Arden ratio. Genetic testing was done for the proband and her father, who were found to be heterozygous for c.37C>T p. (Arg13Cys). The proband's younger sister will be reviewed and followed up once of age. The authors identified a new phenotype of AD-BVMD; although this is a single patient, more young children with BMD can now be scanned with the availability of hand-held OCT with better knowledge of the phenotype. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:580-585.]. Copyright 2017, SLACK Incorporated.

  13. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, S.E.; Dale, D.C.

    Cyclic hematopoiesis (CH, or cyclic neutropenia) is a rare disease manifested by transient severe neutropenia that recurs approximately every 21 days. The hematologic profile of families with the autosomal dominant form (ADCH) has not been well characterized, and it is unknown if the phenotype is distinct from the more common sporadic congenital or acquired forms of CH. We studied nine ADCH families whose children displayed typical CH blood patterns. Pedigrees confirmed dominant inheritance without evidence of heterogeneity or decreased penetrance; three pedigrees suggested new mutations. Families were Caucasian with exception of one with a Cherokee Native American founder. A widemore » spectrum of symptom severity, ranging from asymptomatic to life-threatening illness, was observed within families. The phenotype changed with age. Children displayed typical neutrophil cycles with symptoms of mucosal ulceration, lymphadenopathy, and infections. Adults often had fewer and milder symptoms, sometimes accompanied by mild chronic neutropenia without distinct cycles. While CH is commonly described as {open_quotes}benign{close_quotes}, four children in three of the nine families died of Clostridium or E. coli colitis, documenting the need for urgent evaluation of abdominal pain. Misdiagnosis with other neutropenias was common but can be avoided by serial blood counts in index cases. Genetic counseling requires specific histories and complete blood counts in relatives at risk to assess status regardless of symptoms, especially to determine individuals with new mutations. We propose diagnostic criteria for ADCH in affected children and adults. Recombinant human granulocyte colony-stimulating factor treatment resulted in dramatic improvement of neutropenia and morbidity. The differential diagnosis from other forms of familial neutropenia is reviewed. 45 refs., 4 figs., 1 tab.« less

  14. Spanish guidelines for the management of autosomal dominant polycystic kidney disease.

    PubMed

    Ars, Elisabet; Bernis, Carmen; Fraga, Gloria; Martínez, Víctor; Martins, Judith; Ortiz, Alberto; Rodríguez-Pérez, José Carlos; Sans, Laia; Torra, Roser

    2014-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent cause of genetic renal disease and accounts for 6-10% of patients on renal replacement therapy (RRT). Very few prospective, randomized trials or clinical studies address the diagnosis and management of this relatively frequent disorder. No clinical guidelines are available to date. This is a consensus statement presenting the recommendations of the Spanish Working Group on Inherited Kidney Diseases, which were agreed to following a literature search and discussions. Levels of evidence found were C and D according to the Centre for Evidence-Based Medicine (University of Oxford). The recommendations relate to, among other topics, the use of imaging and genetic diagnosis, management of hypertension, pain, cyst infections and bleeding, extra-renal involvement including polycystic liver disease and cranial aneurysms, management of chronic kidney disease (CKD) and RRT and management of children with ADPKD. Recommendations on specific ADPKD therapies are not provided since no drug has regulatory approval for this indication. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  16. Relationship between renal function and renal volume in autosomal dominant polycystic kidney disease: cross-sectional study.

    PubMed

    Torres-Sánchez, M J; Ávila-Barranco, E; Esteban de la Rosa, R J; Fernández-Castillo, R; Esteban, M A; Carrero, J J; García-Valverde, M; Bravo-Soto, J A

    2016-03-01

    To determine in patients with autosomal dominant polycystic kidney disease the relationship between total renal volume (the sum of both kidneys, TRV) as measured by magnetic resonance and renal function; and its behaviour according to sex and the presence of arterial hypertension, hypercholesterolaemia and hyperglycemia. Cross-sectional study including patients with autosomal dominant polycystic kidney disease who underwent periodic reviews at Nephrology external consultations at Hospital de las Nieves de Granada, and who underwent an magnetic resonance to estimate renal volume between January 2008 and March 2011. We evaluated 67 patients (59.7% women, average age of 48±14.4 years) and found a significant positive association between TRV and serum creatinine or urea, which was reversed compared with estimated glomerular filtration by MDRD-4 and Cockcroft-Gault. Women showed an average serum creatinine level and a significantly lower TRV level compared with males. Subgroups affected by arterial hypertension and hyperuricemia presented average values for serum creatinine and urea, higher for TRV and lower for estimated glomerular filtration. The hypercholesterolaemia subgroup showed higher average values for urea and lower for estimated glomerular filtration, without detecting significant differences compared with TRV. The volume of polycystic kidneys measured by magnetic resonance is associated with renal function, and can be useful as a complementary study to monitor disease progression. The presence of arterial hypertension, hyperuricemia or hypercholesterolaemia is associated with a poorer renal function. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  17. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa: A Randomized Phase 2 Multicenter Placebo-Controlled Clinical Trial.

    PubMed

    Birch, David G; Bernstein, Paul S; Iannacone, Alessandro; Pennesi, Mark E; Lam, Byron L; Heckenlively, John; Csaky, Karl; Hartnett, Mary Elizabeth; Winthrop, Kevin L; Jayasundera, Thiran; Hughbanks-Wheaton, Dianna K; Warner, Judith; Yang, Paul; Fish, Gary Edd; Teske, Michael P; Sklaver, Neal L; Erker, Laura; Chegarnov, Elvira; Smith, Travis; Wahle, Aimee; VanVeldhuisen, Paul C; McCormack, Jennifer; Lindblad, Robert; Bramer, Steven; Rose, Stephen; Zilliox, Patricia; Francis, Peter J; Weleber, Richard G

    2018-06-07

    There are no approved drug treatments for autosomal dominant retinitis pigmentosa, a relentlessly progressive cause of adult and childhood blindness. To evaluate the potential efficacy and assess the safety of orally administered valproic acid (VPA) in the treatment of autosomal dominant retinitis pigmentosa. Multicenter, phase 2, prospective, interventional, placebo-controlled, double-masked randomized clinical trial. The study took place in 6 US academic retinal degeneration centers. Individuals with genetically characterized autosomal dominant retinitis pigmentosa were randomly assigned to receive treatment or placebo for 12 months. Analyses were intention-to-treat. Oral VPA 500 mg to 1000 mg daily for 12 months or placebo. The primary outcome measure was determined prior to study initiation as the change in visual field area (assessed by the III4e isopter, semiautomated kinetic perimetry) between baseline and month 12. The mean (SD) age of the 90 participants was 50.4 (11.6) years. Forty-four (48.9%) were women, 87 (96.7%) were white, and 79 (87.8%) were non-Hispanic. Seventy-nine participants (87.8%) completed the study (42 [95.5%] received placebo and 37 [80.4%] received VPA). Forty-two (46.7%) had a rhodopsin mutation. Most adverse events were mild, although 7 serious adverse events unrelated to VPA were reported. The difference between the VPA and placebo arms for mean change in the primary outcome was -150.43 degree2 (95% CI, -290.5 to -10.03; P = .035). This negative value indicates that the VPA arm had worse outcomes than the placebo group. This study brings to light the key methodological considerations that should be applied to the rigorous evaluation of treatments for these conditions. This study does not provide support for the use of VPA in the treatment of autosomal dominant retinitis pigmentosa. ClinicalTrials.gov Identifier: NCT01233609.

  18. Genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of the EVR1 locus on chromosome 11q in a large autosomal dominant pedigree.

    PubMed

    Bamashmus, M A; Downey, L M; Inglehearn, C F; Gupta, S R; Mansfield, D C

    2000-04-01

    Familial exudative vitreoretinopathy (FEVR) is associated with mutations in the Norrie disease gene in X linked pedigrees and with linkage to the EVR1 locus at 11q13 in autosomal dominant cases. A large autosomal dominant FEVR family was studied, both clinically and by linkage analysis, to determine whether it differed from the known forms of FEVR. Affected members and obligate gene carriers from this family were examined by slit lamp biomicroscopy, indirect ophthalmoscopy, and in some cases fluorescein angiography. Patient DNAs were genotyped for markers at the EVR1 locus on chromosome 11q13. The clinical evaluation in this family is consistent with previous descriptions of FEVR pedigrees, but linkage analysis proves that it has a form of FEVR genetically distinct from the EVR1 locus on 11q. This proves that there are at least three different loci associated with comparable FEVR phenotypes, a situation similar to that existing for many forms of retinal degeneration.

  19. Identification of IFRD1 variant in a Han Chinese family with autosomal dominant hereditary spastic paraplegia associated with peripheral neuropathy and ataxia.

    PubMed

    Lin, Pengfei; Zhang, Dong; Xu, Guangrun; Yan, Chuanzhu

    2018-04-01

    Spinocerebellar ataxias (SCAs) are a group of autosomal dominant, clinically heterogeneous neurodegenerative disorders. SCA18 is a rare autosomal dominant sensory/motor neuropathy with ataxia (OMIM#607458) associated with a single missense variant c.514 A>G in the interferon related developmental regulator 1 (IFRD1) gene previously reported in a five-generation American family of Irish origin. However, to date, there have been no other reports of the IFRD1 mutation to confirm its role in SCA. Here, we report a Han Chinese family with SCA18; the family members presented with a slowly progressing gait ataxia, pyramidal tract signs, and peripheral neuropathy. We identified a missense variant (c.514 A>G, p.I172V) in IFRD1 gene in the family using targeted next-generation sequencing and Sanger direct sequencing with specific primers. Our results suggest that the IFRD1 gene may be the causative allele for SCA18.

  20. Targeted Therapies for Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Stayner, Cherie; Brooke, Darby G; Bates, Michael; Eccles, Michael R

    2018-05-07

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening genetic disease in humans, affecting approximately 1 in 500 people. ADPKD is characterized by cyst growth in the kidney leading to progressive parenchymal damage and is the underlying pathology in approximately 10% of patients requiring hemodialysis or transplantation for end-stage kidney disease. The two proteins that are mutated in ADPKD, polycystin-1 and polycystin-2, form a complex located on the primary cilium and the plasma membrane to facilitate calcium ion release in the cell. There is currently no Food and Drug Administration (FDA)-approved therapy to cure or slow the progression of the disease. Rodent ADPKD models do not completely mimic the human disease, and therefore preclinical results have not always successfully translated to the clinic. Moreover, the toxicity of many of these potential therapies has led to patient withdrawals from clinical trials. Here, we review compounds in a clinical trial for treating ADPKD, and we examine the feasibility of using a kidney-targeted approach, with potential for broadening the therapeutic window, decreasing treatment-associated toxicity and increasing the efficacy of agents that have demonstrated activity in animal models. We make recommendations for integrating kidney-targeted therapies with current treatment regimes, to achieve a combined approach to treating ADPKD. Many compounds are currently in clinical trial for ADPKD, yet to date, none are FDA-approved for treating this disease. Patients could benefit from efficacious pharmacotherapy, especially if it can be kidney-targeted, and intensive efforts continue to be focused on this goal. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity

    PubMed Central

    Jalali, Ali; Aldinger, Kimberly A.; Chary, Ajit; Mclone, David G.; Bowman, Robin M.; Le, Luan Cong; Jardine, Phillip; Newbury-Ecob, Ruth; Mallick, Andrew; Jafari, Nadereh; Russell, Eric J.; Curran, John; Nguyen, Pam; Ouahchi, Karim; Lee, Charles; Dobyns, William B.; Millen, Kathleen J.; Pina-Neto, Joao M.; Kessler, John A.; Bassuk, Alexander G.

    2010-01-01

    We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC. PMID:18204864

  2. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease

    PubMed Central

    Wang, Fen; Gordon, Brian A.; Ryman, Davis C.; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M.; Cairns, Nigel J.; Marcus, Daniel S.; McDade, Eric; Ringman, John M.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Sperling, Reisa; Salloway, Steve; Schofield, Peter R.; Masters, Colin L.; Martins, Ralph N.; Rossor, Martin N.; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A.S.; Morris, John C.; Bateman, Randall J.

    2015-01-01

    Objective: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Methods: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89–4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. Results: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Conclusions: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. PMID:26245925

  3. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease.

    PubMed

    Wang, Fen; Gordon, Brian A; Ryman, Davis C; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; McDade, Eric; Ringman, John M; Graff-Radford, Neill R; Ghetti, Bernardino; Farlow, Martin R; Sperling, Reisa; Salloway, Steve; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Rossor, Martin N; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A S; Morris, John C; Benzinger, Tammie L S; Bateman, Randall J

    2015-09-01

    To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. © 2015 American Academy of Neurology.

  4. Pathogenesis of hypokalemia in autosomal dominant hypocalcemia type 1.

    PubMed

    Kamiyoshi, Naohiro; Nozu, Kandai; Urahama, Yoshimichi; Matsunoshita, Natsuki; Yamamura, Tomohiko; Minamikawa, Shogo; Ninchoji, Takeshi; Morisada, Naoya; Nakanishi, Koichi; Kaito, Hiroshi; Iijima, Kazumoto

    2016-04-01

    Autosomal dominant hypocalcemia type 1 (ADH1) is a relatively rare endocrine disorder characterized by hypocalcemia and inadequate parathyroid hormone secretion. ADH is caused by activating mutations in the calcium-sensing receptor (CaSR) gene, CASR. CaSR plays a crucial role in calcium and magnesium homeostasis in the kidney. ADH may be accompanied by hypokalemia and metabolic alkalosis when it is classified as type V Bartter syndrome. However, the mechanism underlying hypokalemia in this disease is unclear. We investigated a 33-year-old woman with hypocalcemia and hypoparathyroidism since childhood, whose mother also had hypocalcemia and hypoparathyroidism, but with no clinical symptoms. Blood examinations showed hypokalemia and metabolic alkalosis in the patient, but not her mother. We conducted mutation analysis and diuretic tests to clarify the patient's and her mother's diagnosis and to investigate the onset mechanism of hypokalemia in ADH1. We also determined the localization of CaSR in the kidney by immunohistochemistry. We detected a known gain-of-function mutation in CASR in both the patient and her mother. Diuretic tests revealed a response to furosemide and no reaction to thiazide in the patient, although the mother responded well to both diuretics. CaSR co-localized with the Na(+)-Cl(-) cotransporter (NCCT) on distal tubular epithelial cells. These results indicate that the NCCT in the distal convoluted tubule was secondarily affected in this patient. We conclude that the main pathogenesis of secondary hypokalemia in ADH1 in this patient was secondary NCCT dysfunction.

  5. Multiethnic involvement in autosomal-dominant optic atrophy in Singapore.

    PubMed

    Loo, J L; Singhal, S; Rukmini, A V; Tow, S; Amati-Bonneau, P; Procaccio, V; Bonneau, D; Gooley, J J; Reynier, P; Ferré, M; Milea, D

    2017-03-01

    PurposeAutosomal-dominant optic atrophy (ADOA), often associated with mutations in the OPA1 gene (chromosome 3q28-q29) is rarely reported in Asia. Our aim was to identify and describe this condition in an Asian population in Singapore.Patients and methodsPreliminary cross-sectional study at the Singapore National Eye Centre, including patients with clinical suspicion of ADOA, who subsequently underwent genetic testing by direct sequencing of the OPA1 gene.ResultsAmong 12 patients (10 families) with clinically suspected ADOA, 7 patients (5 families) from 3 different ethnic origins (Chinese, Indian, and Malay) carried a heterozygous pathogenic variant in the OPA1 gene. The OPA1 mutations were located on exons 8, 9, 11, and 17: c.869G>A (p.Arg290Glu), c.892A>G (p.Ser298Gly), c.1140G>A (splicing mutation), and c.1669C>T (p.Arg557*), respectively. One splicing mutation (c.871-1G>A) was identified in intron 8. We also identified a novel mutation causing optic atrophy and deafness (c.892A>G (p.Ser298Gly)). Among the phenotypic features, colour pupillometry disclosed a dissociation between low vision and preserved pupillary light reflex in ADOA.ConclusionWe report the first cases of genetically confirmed OPA1-related ADOA from Singapore, including a novel mutation causing 'ADOA plus' syndrome. Further epidemiological studies are needed in order to determine the prevalence of ADOA in South-East Asia.

  6. Multiethnic involvement in autosomal-dominant optic atrophy in Singapore

    PubMed Central

    Loo, J L; Singhal, S; Rukmini, A V; Tow, S; Amati-Bonneau, P; Procaccio, V; Bonneau, D; Gooley, J J; Reynier, P; Ferré, M; Milea, D

    2017-01-01

    Purpose Autosomal-dominant optic atrophy (ADOA), often associated with mutations in the OPA1 gene (chromosome 3q28-q29) is rarely reported in Asia. Our aim was to identify and describe this condition in an Asian population in Singapore. Patients and methods Preliminary cross-sectional study at the Singapore National Eye Centre, including patients with clinical suspicion of ADOA, who subsequently underwent genetic testing by direct sequencing of the OPA1 gene. Results Among 12 patients (10 families) with clinically suspected ADOA, 7 patients (5 families) from 3 different ethnic origins (Chinese, Indian, and Malay) carried a heterozygous pathogenic variant in the OPA1 gene. The OPA1 mutations were located on exons 8, 9, 11, and 17: c.869G>A (p.Arg290Glu), c.892A>G (p.Ser298Gly), c.1140G>A (splicing mutation), and c.1669C>T (p.Arg557*), respectively. One splicing mutation (c.871-1G>A) was identified in intron 8. We also identified a novel mutation causing optic atrophy and deafness (c.892A>G (p.Ser298Gly)). Among the phenotypic features, colour pupillometry disclosed a dissociation between low vision and preserved pupillary light reflex in ADOA. Conclusion We report the first cases of genetically confirmed OPA1-related ADOA from Singapore, including a novel mutation causing ‘ADOA plus' syndrome. Further epidemiological studies are needed in order to determine the prevalence of ADOA in South-East Asia. PMID:27858935

  7. Clinical results from low-level laser therapy in patients with autosomal dominant cone-rod dystrophy

    NASA Astrophysics Data System (ADS)

    Koev, K.; Avramov, L.; Borissova, E.

    2018-03-01

    The objective of this study is to examine long-term effects of low-level laser therapy (LLLT) in patients with autosomal dominant cone-rod dystrophy (CRDs). A He-Ne Laser with continuous emission at 633 nm (01 mW/cm2) was used on five patients with autosomal dominant pedigree of Romani origin with non-syndromic CRDs. The laser radiation was applied transpupillary to the macula six times for three minutes every other day. The experiment was conducted for a period of three years. The clinical evaluation included best corrected visual acuity determination, funduscopy, Humphrey perimetry, Farnsworth Hue-28 color testing, fluorescein angiography, and full-field electroretinogram (ERG). All affected individuals presented reduced visual acuity (0.01 – 0.4) and photophobia. The funduscopic examination and fluorescein angiography revealed advanced changes including bone spicule-like pigment deposits in the midperiphery and the macular area, along with retinal atrophy, narrowing of the vessels, and waxy optic discs. The visual fields demonstrated central scotoma. The electrophysiologic examination of the patients detected an abnormal cone-rod ERG (20 – 30 μV) with photopic amplitudes more markedly reduced than the scotopic. Flicker responses were missing and Farnsworth Hue-28 test found protanopia. There was a statistically significant increase in the visual acuity (p<0.001, end of study versus baseline) for CRDs patients for the period of three years after the treatment with LLLT. Following the LLLT, the central absolute scotoma in CRDs was reduced, as was the prevalence of metamorphopsia in CRDs. This study shows that LLLT may prove be a novel long-lasting therapeutic option for both forms of CRDs. It is a highly effective treatment resulting in a long-term improvement of the visual acuity.

  8. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report.

    PubMed

    Lee, Cha Gon; Jang, Jahyeon; Jin, Hyun-Seok

    2018-06-01

    The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non‑muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post‑lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ‑actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post‑lingual onset.

  9. Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer's disease.

    PubMed

    Müller, Stephan; Preische, Oliver; Sohrabi, Hamid R; Gräber, Susanne; Jucker, Mathias; Dietzsch, Janko; Ringman, John M; Martins, Ralph N; McDade, Eric; Schofield, Peter R; Ghetti, Bernardino; Rossor, Martin; Graff-Radford, Neill R; Levin, Johannes; Galasko, Douglas; Quaid, Kimberly A; Salloway, Stephen; Xiong, Chengjie; Benzinger, Tammie; Buckles, Virginia; Masters, Colin L; Sperling, Reisa; Bateman, Randall J; Morris, John C; Laske, Christoph

    2017-04-27

    The relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time.

  10. The population genetics of X-autosome synthetic lethals and steriles.

    PubMed

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  11. Rare co-occurrence of osteogenesis imperfecta type I and autosomal dominant polycystic kidney disease.

    PubMed

    Hoefele, Julia; Mayer, Karin; Marschall, Christoph; Alberer, Martin; Klein, Hanns-Georg; Kirschstein, Martin

    2016-11-01

    There are several clinical reports about the co-occurrence of autosomal dominant polycystic kidney disease (ADPKD) and connective tissue disorders. A simultaneous occurrence of osteogenesis imperfecta (OI) type I and ADPKD has not been observed so far. This report presents the first patient with OI type I and ADPKD. Mutational analysis of PKD1 and COL1A1 in the index patient revealed a heterozygous mutation in each of the two genes. Mutational analysis of the parents indicated the mother as a carrier of the PKD1 mutation and the father as a carrier of the COL1A1 mutation. The simultaneous occurrence of both disorders has an estimated frequency of 3.5:100 000 000. In singular cases, ADPKD can occur in combination with other rare disorders, e.g. connective tissue disorders.

  12. Generation of the first Autosomal Dominant Osteopetrosis Type II (ADO2) disease models

    PubMed Central

    Alam, Imranul; Gray, Amie K.; Chu, Kang; Ichikawa, Shoji; Mohammad, Khalid S.; Capannolo, Marta; Capulli, Mattia; Maurizi, Antonio; Muraca, Maurizio; Teti, Anna; Econs, Michael J.; Fattore, Andrea Del

    2013-01-01

    Autosomal Dominant Osteopetrosis Type II (ADO2) is a heritable osteosclerotic disorder dependent on osteoclast impairment. In most patients it results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene, encoding for a 2Cl−/1H+ antiporter. By a knock-in strategy inserting a missense mutation in the Clcn7 gene, our two research groups independently generated mouse models of ADO2 on different genetic backgrounds carrying the homolog of the most frequent heterozygous mutation (p.G213R) in the Clcn7 gene found in humans. Our results demonstrate that the heterozygous model holds true presenting with higher bone mass, increased numbers of poorly resorbing osteoclasts and a lethal phenotype in the homozygous state. Considerable variability is observed in the heterozygous mice according with the mouse background, suggesting that modifier genes could influence the penetrance of the disease gene. PMID:24185277

  13. Soluble Klotho and Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Pavik, Ivana; Jaeger, Philippe; Ebner, Lena; Poster, Diane; Krauer, Fabienne; Kistler, Andreas D.; Rentsch, Katharina; Andreisek, Gustav; Wagner, Carsten A.; Devuyst, Olivier; Wüthrich, Rudolf P.; Schmid, Christoph; Serra, Andreas L.

    2012-01-01

    Summary Background and objectives Fibroblast growth factor 23 (FGF23) levels are elevated in patients with autosomal dominant polycystic kidney disease (ADPKD) and X-linked hypophosphatemia (XLH), but only the latter is characterized by a renal phosphate wasting phenotype. This study explored potential mechanisms underlying resistance to FGF23 in ADPKD. Design, setting, participants, & measurements FGF23 and Klotho levels were measured, and renal phosphate transport was evaluated by calculating the ratio of the maximum rate of tubular phosphate reabsorption to GFR (TmP/GFR) in 99 ADPKD patients, 32 CKD patients, 12 XLH patients, and 20 healthy volunteers. ADPKD and CKD patients were classified by estimated GFR (CKD stage 1, ≥90 ml/min per 1.73 m2; CKD stage 2, 60–89 ml/min per 1.73 m2). Results ADPKD patients had 50% higher FGF23 levels than did XLH patients; TmP/GFR was near normal in most ADPKD patients and very low in XLH patients. Serum Klotho levels were lowest in the ADPKD group, whereas the CKD and XLH groups and volunteers had similar levels. ADPKD patients with an apparent renal phosphate leak had two-fold higher Klotho levels than those without. Serum Klotho values correlated inversely with cyst volume and kidney growth. Conclusions Loss of Klotho might be a consequence of cyst growth and constrain the phosphaturic effect of FGF23 in most patients with ADPKD. Normal serum Klotho levels were associated with normal FGF23 biologic activity in all XLH patients and a minority of ADPKD patients. Loss of Klotho and FGF23 increase appear to exceed and precede the changes that can be explained by loss of GFR in patients with ADPKD. PMID:22193235

  14. Current management of autosomal dominant polycystic kidney disease.

    PubMed

    Akoh, Jacob A

    2015-09-06

    Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines.

  15. Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy.

    PubMed

    Rowell, Hannah A; Bassuk, Alexander G; Mahajan, Vinit B

    2012-01-01

    The purpose of this study was to describe the clinical findings in a set of monozygotic twins with autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) over a 23-year period. A pair of female twins were examined between 26 and 49 years of age. The concordance and discordance of their clinical features were determined. The CAPN5 gene was sequenced using genomic DNA. Both twins of an affected father demonstrated Stage I ADNIV with mild vitreous cells and a negative b-wave on electroretinography. Genetic analysis confirmed a guanine to thymine nucleotide (c.728G>T, pArg243Leu) mutation in the CAPN5 gene. Over the course of 23 years, each twin progressed to stage III disease, showing posterior uveitis, cystoid macular edema, intraocular fibrosis, early retinal neovascularization, retinal degeneration, and cataract. Disease progression varied moderately between each twin and was asymmetrical between eyes. Twin A had 20/70 and 20/125 in the right and left eye, respectively, and underwent vitrectomy surgery and intravitreal injections with bevacizumab for recurrent cystoid macular edema. Twin B maintained 20/20 and 20/40 in the right and left eye, respectively without intervention. There was asymmetry between the eyes and some discordance in the rate of disease progression in these monozygotic twins with ADNIV. The overall high disease concordance suggests genetic factors play a major role in clinical manifestations in CAPN5 vitreoretinopathy.

  16. Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy.

    PubMed

    Rudnicki, Dobrila D; Margolis, Russell L

    2003-08-22

    Repeat-expansion mutations cause 13 autosomal dominant neurodegenerative disorders falling into three groups. Huntington's disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and spinocerebellar ataxias (SCAs) types 1, 2, 3, 7 and 17 are each caused by a CAG repeat expansion that encodes polyglutamine. Convergent lines of evidence demonstrate that neurodegeneration in these diseases is a consequence of the neurotoxic effects of abnormally long stretches of glutamines. How polyglutamine induces neurodegeneration, and why neurodegeneration occurs in only select neuronal populations, remains a matter of intense investigation. SCA6 is caused by a CAG repeat expansion in CACNA1A, a gene that encodes a subunit of the P/Q-type calcium channel. The threshold length at which the repeat causes disease is much shorter than in the other polyglutamine diseases, and neurodegeneration may arise from expansion-induced change of function in the calcium channel. Huntington's disease-like 2 (HDL2) and SCAs 8, 10 and 12 are rare disorders in which the repeats (CAG, CTG or ATTCT) are not in protein-coding regions. Investigation into these diseases is still at an early stage, but it is now reasonable to hypothesise that the net effect of each expansion is to alter gene expression. The different pathogenic mechanisms in these three groups of diseases have important implications for the development of rational therapeutics.

  17. Impairment of memory generalization in preclinical autosomal dominant Alzheimer's disease mutation carriers.

    PubMed

    Petok, Jessica R; Myers, Catherine E; Pa, Judy; Hobel, Zachary; Wharton, David M; Medina, Luis D; Casado, Maria; Coppola, Giovanni; Gluck, Mark A; Ringman, John M

    2018-05-01

    Fast, inexpensive, and noninvasive identification of Alzheimer's disease (AD) before clinical symptoms emerge would augment our ability to intervene early in the disease. Individuals with fully penetrant genetic mutations causing autosomal dominant Alzheimer's disease (ADAD) are essentially certain to develop the disease, providing a unique opportunity to examine biomarkers during the preclinical stage. Using a generalization task that has previously shown to be sensitive to medial temporal lobe pathology, we compared preclinical individuals carrying ADAD mutations to noncarrying kin to determine whether generalization (the ability to transfer previous learning to novel but familiar recombinations) is vulnerable early, before overt cognitive decline. As predicted, results revealed that preclinical ADAD mutation carriers made significantly more errors during generalization than noncarrying kin, despite no differences between groups during learning or retention. This impairment correlated with the left hippocampal volume, particularly in mutation carriers. Such identification of generalization deficits in early ADAD may provide an easily implementable and potentially linguistically and culturally neutral way to identify and track cognition in ADAD. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. LGI1 microdeletion in autosomal dominant lateral temporal epilepsy

    PubMed Central

    Fanciulli, M.; Santulli, L.; Errichiello, L.; Barozzi, C.; Tomasi, L.; Rigon, L.; Cubeddu, T.; de Falco, A.; Rampazzo, A.; Michelucci, R.; Uzzau, S.; Striano, S.; de Falco, F.A.; Striano, P.

    2012-01-01

    Objectives: To characterize clinically and genetically a family with autosomal dominant lateral temporal epilepsy (ADLTE) negative to LGI1 exon sequencing test. Methods: All participants were personally interviewed and underwent neurologic examination. Most affected subjects underwent EEG and neuroradiologic examinations (CT/MRI). Available family members were genotyped with the HumanOmni1-Quad v1.0 single nucleotide polymorphism (SNP) array beadchip and copy number variations (CNVs) were analyzed in each subject. LGI1 gene dosage was performed by real-time quantitative PCR (qPCR). Results: The family had 8 affected members (2 deceased) over 3 generations. All of them showed GTC seizures, with focal onset in 6 and unknown onset in 2. Four patients had focal seizures with auditory features. EEG showed only minor sharp abnormalities in 3 patients and MRI was unremarkable in all the patients examined. Three family members presented major depression and anxiety symptoms. Routine LGI1 exon sequencing revealed no point mutation. High-density SNP array CNV analysis identified a genomic microdeletion about 81 kb in size encompassing the first 4 exons of LGI1 in all available affected members and in 2 nonaffected carriers, which was confirmed by qPCR analysis. Conclusions: This is the first microdeletion affecting LGI1 identified in ADLTE. Families with ADLTE in which no point mutations are revealed by direct exon sequencing should be screened for possible genomic deletion mutations by CNV analysis or other appropriate methods. Overall, CNV analysis of multiplex families may be useful for identifying microdeletions in novel disease genes. PMID:22496201

  19. Clinical and genetic characterization of an autosomal dominant nephropathy.

    PubMed

    Parvari, R; Shnaider, A; Basok, A; Katchko, L; Borochovich, Z; Kanis, A; Landau, D

    2001-03-15

    Autosomal dominant familial nephropathies with adult onset, no macroscopic cysts, and progressive deterioration include medullary cystic disease (ADMCKD) as well as other less specific entities. We studied a kindred of Jewish ancestry in which 15 members (both male and female) have suffered from chronic renal failure. The first evidence of renal involvement was observed between 18 and 38 years. It included hypertension followed by progressive renal insufficiency. No polyuria, anemia, gout, hematuria, nor proteinuria were seen. An average of 4.5 years elapsed from diagnosis to end-stage renal disease. Renal pathology at early stages of the disease showed extensive tubulointerstitial fibrosis and global glomerulosclerosis. Linkage analysis was performed at the two known loci of ADMCKD, on Chromosomes 1 and 16. Linkage to the chromosome 16 locus was excluded. However, linkage to the chromosome 1q21 locus of ADMCKD was established with a maximum two-point LOD score of 3.82 to D1S394. The disease interval could be narrowed to about 9 cM/7.4 Mb between D1S1156 and D1S2635. Multiple-point linkage analysis revealed a maximum LOD of 4.21, with a broad peak from markers D1S2858 and D1S2624. This report establishes linkage between a familial nephropathy characterized by hypertension and progressive renal failure to the locus described for ADMCKD, a disease classically associated with macroscopic corticomedullary cysts, salt-losing tubulointerstitial nephropathy, and anemia. This finding broadens the clinical spectrum of ADMCKD positioned on chromosome 1q21 locus. Copyright 2001 Wiley-Liss. Inc.

  20. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, S.E.; Stephens, K.; Dale, D.C.

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, theremore » were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.« less

  1. Genomewide search and genetic localization of a second gene associated with autosomal dominant branchio-oto-renal syndrome: clinical and genetic implications.

    PubMed Central

    Kumar, S; Deffenbacher, K; Marres, H A; Cremers, C W; Kimberling, W J

    2000-01-01

    Branchio-oto-renal (BOR) syndrome is characterized by ear malformations, cervical fistulas, hearing loss, and renal anomalies. It is an autosomal dominant disorder with variable clinical manifestations. The most common features of BOR syndrome are branchial, hearing, and renal anomalies. However, many affected subjects have been observed with branchial-cleft anomalies and hearing loss but without renal anomalies, a condition called "branchio-otic" (BO) syndrome. It is logical to question whether the BOR and BO syndromes are allelic or whether they represent distinct genetic entities. We identified a very large extended family whose members had branchial and hearing anomalies associated with commissural lip pits that segregated in an autosomal dominant fashion. Using a genomewide search strategy, we identified genetic linkage, with a maximum LOD score of 4.81 at recombination fraction 0, between the BO phenotype and polymorphic marker D1S2757 in the genetic region of chromosome 1q31. This is the first report of linkage for a second gene associated with BOR syndrome. The findings have important clinical implications and will provide insight into the genetic basis of BOR syndrome. PMID:10762556

  2. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles

    PubMed Central

    Darbro, Benjamin W.; Mahajan, Vinit B.; Gakhar, Lokesh; Skeie, Jessica M.; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J.; Dobyns, William B.; Kessler, John A.; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J. Robert; Aldinger, Kimerbly A.; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M.; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J.; Bassuk, Alexander G.

    2013-01-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders. PMID:23674478

  3. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    PubMed

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  4. Comparison of MRI segmentation techniques for measuring liver cyst volumes in autosomal dominant polycystic kidney disease.

    PubMed

    Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R

    To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Novel targets for the treatment of autosomal dominant polycystic kidney disease

    PubMed Central

    Belibi, Franck A; Edelstein, Charles L

    2010-01-01

    Importance of the field Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. Areas covered in the review The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. What the reader will gain Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. Take home message The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin–angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans. PMID:20141351

  6. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles.

    PubMed

    Darbro, Benjamin W; Mahajan, Vinit B; Gakhar, Lokesh; Skeie, Jessica M; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J; Dobyns, William B; Kessler, John A; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J Robert; Aldinger, Kimerbly A; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J; Bassuk, Alexander G

    2013-08-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders. © 2013 WILEY PERIODICALS, INC.

  7. Malformations among 289,365 Births Attributed to Mutations with Autosomal Dominant and Recessive and X-Linked Inheritance.

    PubMed

    Toufaily, M Hassan; Westgate, Marie-Noel; Nasri, Hanah; Holmes, Lewis B

    2018-01-01

    The number of malformations attributed to mutations with autosomal or X-linked patterns of inheritance has increased steadily since the cataloging began in the 1960s. These diagnoses have been based primarily on the pattern of phenotypic features among close relatives. A malformations surveillance program conducted in consecutive pregnancies can identify both known and "new" hereditary disorders. The Active Malformations Surveillance Program was carried out among 289,365 births over 41 years (1972-2012) at Brigham and Women's Hospital in Boston. The findings recorded by examining pediatricians and all consultants were reviewed by study clinicians to establish the most likely diagnoses. The findings in laboratory testing in the newborn period were reviewed, as well. One hundred ninety-six (0.06%) infants among 289,365 births had a malformation or malformation syndrome that was attributed to Mendelian inheritance. A total of 133 (68%) of the hereditary malformations were attributed to autosomal dominant inheritance, with 94 (71%) attributed to apparent spontaneous mutations. Forty-six (23%) were attributed to mutations with autosomal recessive inheritance, 17 associated with consanguinity. Seventeen (9%) were attributed to X-linked inheritance. Fifteen novel familial phenotypes were identified. The family histories showed that most (53 to 71%) of the affected infants were born, as a surprise, to healthy, unaffected parents. It is important for clinicians to discuss with surprised healthy parents how they can have an infant with an hereditary condition. Future studies, using DNA samples from consecutive populations of infants with malformations and whole genome sequencing, will identify many more mutations in loci associated with mendelizing phenotypes. Birth Defects Research 110:92-97, 2018.© 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Linkage and clinical characterization of families with the RP10 (chromosome 7q) form of autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, S.A.; Humphries, P.; McGuire, R.E.

    1994-09-01

    Retinitis pigmentosa is a set of degenerative retinal diseases characterized by night blindness and loss of peripheral vision, often followed by loss of central vision. Genetically heterogeneous, retinitis pigmentosa has been found in autosomal dominant, autosomal recessive and X-linked forms. For autosomal dominant retinitis pigmentosa (adRP), 6 loci have been mapped: rhodopsin on chromosome 3q, peripherin/RDS on 6p, RP9 on 7p, RP10 on 7q, RP1 on 8q, and RP11 on 19q. Jordan et al. first reported linkage to 7q in a Spanish family with early onset disease. Recently, McGuire et al. reported the existence of a second, unrelated family ofmore » American descent with adRP that maps to the same region of 7q. The second family also has classical, diffuse retinitis pigmentosa though with later onset. The finding of two unrelated families that map to this region suggests that RP10 may account for a significant fraction of retinitis pigmentosa cases. Combining data from both families localizes the disease gene to 7q31.1-q35. In the Spanish family a Z{sub max} of 7.2 at 0% recombination was found with the marker D7S480 and affected individuals recombinant for D7S486 and D7S650 flank the disease. The American family showed a Z{sub max} of 5.3 at 0% recombination wtih the marker D7S514 and there are affected individuals recombinant for the markers D7S522, D7S677 and D7S486, and one affected individual recombinant for D7S530. Together, these data place the disease locus between D7S522 and D7S650. In addition, blue cone pigment, which maps to 7q31.3-q32, was excluded as a candidate gene in both families by linkage testing using intragenic polymorphisms and mutation screening.« less

  9. Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives.

    PubMed

    Sjouke, Barbara; Hovingh, G Kees; Kastelein, John J P; Stefanutti, Claudia

    2015-06-01

    Homozygous autosomal dominant hypercholesterolemia (hoADH) is a rare genetic disorder caused by mutations in LDL receptor, apolipoprotein B, and/or proprotein convertase subtilisin-kexin type 9. Both the genetic mutations and the clinical phenotype vary largely among individual patients, but patients with hoADH are typically characterized by extremely elevated LDL-cholesterol (LDL-C) levels, and a very high-risk for premature cardiovascular disease. Current lipid-lowering therapies include bile acid sequestrants, statins, and ezetimibe. To further decrease LDL-C levels in hoADH, lipoprotein apheresis is recommended, but this therapy is not available in all countries. Recently, the microsomal triglyceride transfer protein inhibitor lomitapide and the RNA antisense inhibitor of apolipoprotein B mipomersen were approved by the Food and Drug Administration/European Medicine Agency and the Food and Drug Administration, respectively. Several other LDL-C-lowering strategies and therapeutics targeting the HDL-C pathway are currently in the clinical stage of development. Novel therapies have been introduced for LDL-C-lowering and innovative drug candidates for HDL-C modulation for the treatment of hoADH. Here, we review the current available literature on the prevalence, diagnosis, and therapeutic strategies for hoADH.

  10. Autosomal dominant Carvajal plus syndrome due to the novel desmoplakin mutation c.1678A > T (p.Ile560Phe).

    PubMed

    Finsterer, Josef; Stöllberger, Claudia; Wollmann, Eva; Dertinger, Susanne; Laccone, Franco

    2016-09-01

    Carvajal syndrome is an autosomal dominant or autosomal recessive disorder, manifesting with dilated cardiomyopathy, woolly hair, and palmoplantar keratoma. Additional manifestations can be occasionally found. Carvajal syndrome may be due to mutations in the desmocollin-2, desmoplakin, or plakophilin-2 gene. We report a family with Carvajal syndrome which additionally presented with hypoacusis, noncompaction, recurrent pharyngeal infections, oligodontia, and recurrent diarrhoea. Father and brother were also affected and had died suddenly, the father despite implantation of a cardioverter defibrillator (ICD). Genetic studies revealed the novel pathogenic mutation c.1678A > T in the desmoplakin gene resulting in the amino acid change Ile to Phe at position 560 in the index case and her brother. The index case underwent ICD implantation recently. Phenotypic manifestations of Carvajal syndrome are even broader than so far anticipated, the number of mutations in the desmoplakin gene responsible for Carvajal syndrome is still increasing, and these patients require implantation of an ICD as soon as their diagnosis is established.

  11. Partial duplication of the CRYBB1-CRYBA4 locus is associated with autosomal dominant congenital cataract

    PubMed Central

    Siggs, Owen M; Javadiyan, Shari; Sharma, Shiwani; Souzeau, Emmanuelle; Lower, Karen M; Taranath, Deepa A; Black, Jo; Pater, John; Willoughby, John G; Burdon, Kathryn P; Craig, Jamie E

    2017-01-01

    Congenital cataract is a rare but severe paediatric visual impediment, often caused by variants in one of several crystallin genes that produce the bulk of structural proteins in the lens. Here we describe a pedigree with autosomal dominant isolated congenital cataract and linkage to the crystallin gene cluster on chromosome 22. No rare single nucleotide variants or short indels were identified by exome sequencing, yet copy number variant analysis revealed a duplication spanning both CRYBB1 and CRYBA4. While the CRYBA4 duplication was complete, the CRYBB1 duplication was not, with the duplicated CRYBB1 product predicted to create a gain of function allele. This association suggests a new genetic mechanism for the development of isolated congenital cataract. PMID:28272538

  12. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  13. Variable expressivity of the phenotype in two families with brachydactyly type E, craniofacial dysmorphism, short stature and delayed bone age caused by novel heterozygous mutations in the PTHLH gene.

    PubMed

    Jamsheer, Aleksander; Sowińska-Seidler, Anna; Olech, Ewelina M; Socha, Magdalena; Kozłowski, Kazimierz; Pyrkosz, Antoni; Trzeciak, Tomasz; Materna-Kiryluk, Anna; Latos-Bieleńska, Anna

    2016-05-01

    Brachydactyly refers to shortening of digits due to hypoplasia or aplasia of bones forming the hands and/or feet. Isolated brachydactyly type E (BDE), which is characterized by shortened metacarpals and/or metatarsals, results in a small proportion of patients from HOXD13 or PTHLH mutations, although in the majority of cases molecular lesion remains unknown. BDE, like other brachydactylies, shows clinical heterogeneity with highly variable intrafamilial and interindividual expressivity. In this study, we investigated two Polish cases (one familial and one sporadic) presenting with BDE and additional symptoms due to novel PTHLH mutations. Apart from BDE, the affected family showed short stature, mild craniofacial dysmorphism and delayed bone age. Sanger sequencing of PTHLH revealed a novel heterozygous frameshift mutation c.258delC(p.N87Tfs*18) in two affected individuals and one relative manifesting mild brachydactyly. The sporadic patient, in addition to BDE, presented with craniofacial dysmorphism, normal stature and bone age, and was demonstrated to carry a de novo heterozygous c.166C>T(p.R56*) mutation. Our paper reports on the two novel truncating PTHLH variants, resulting in variable combination of BDE and other symptoms. Data shown here expand the knowledge on the phenotypic presentation of PTHLH mutations, highlighting significant clinical variability and incomplete penetrance of the PTHLH-related symptoms.

  14. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    PubMed

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryja, T.P.; Han, L.B.; Cowley, G.S.

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150more » patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.« less

  16. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    PubMed Central

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  17. Novel Single-Base Deletional Mutation in Major Intrinsic Protein (MIP) in Autosomal Dominant Cataract

    PubMed Central

    Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824

  18. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. IGF-1 in autosomal dominant cerebellar ataxia - open-label trial.

    PubMed

    Sanz-Gallego, Irene; Rodriguez-de-Rivera, Francisco J; Pulido, Irene; Torres-Aleman, Ignacio; Arpa, Javier

    2014-01-01

    The objective of this clinical open-label trial was to test the safety, tolerability and efficacy of IGF-1 therapy for autosomal dominant cerebellar ataxia (ADCA) patients. A total of 19 molecularly confirmed patients with SCA3, 1 patient with SCA6 and 6 patients with SCA7 completed our study. They were 8 females and 18 males, 28 to 74 years of age (average ± SD: 49.3 ± 14.1). Patients were treated with IGF-1 therapy with a dosage of 50 μg/kg twice a day for 12 months. The efficacy of this therapy was assessed by change from baseline on the scale for the assessment and rating of ataxia (SARA). Ten patients, consecutively selected, continued their assigned dosages in a second year open-label extension trial. A statistically significant improvement in SARA scores was observed for patients with SCA3, patients with SCA7 and all patients grouped together after the first year of IGF-1 therapy, while a stabilization of the disease was confirmed during the second year (extension study). The single patient with SCA6 showed 3 improvement points in SARA score after 3 four-month periods of IGF-1 therapy when compared with baseline measurements. Our data indicate that IGF-1 is safe and well tolerated in general. Our data, in comparison with results from previous cohorts, indicate a trend for IGF-1 treatment to stabilize the disease progression for patients with SCA, indicating that IGF-1 therapy is able to decrease the progressivity of ADCA.

  20. A novel autosomal partially dominant mutation designated G476D in the keratin 5 gene causing epidermolysis bullosa simplex Weber-Cockayne type: a family study with a genetic twist.

    PubMed

    Kowalewski, Cezary; Hamada, Takahiro; Wozniak, Katarzyna; Kawano, Yuko; Szczecinska, Weronika; Yasumoto, Shinichiro; Schwartz, Robert A; Hashimoto, Takashi

    2007-07-01

    Epidermolysis bullosa simplex Weber-Cockayne type (EBS-WC) is a genetically inherited skin disease characterized by blistering restricted to the palms and soles. Its inheritance in nearly all kindreds is caused by a dominant-negative mutation in either KRT5 or KRT14, the genes encoding keratin 5 and keratin 14 proteins, respectively. Rarely, recessive mutations have also been found. We described a family with EBS-WC caused by a novel autosomal dominant mutation (G476D) in the keratin 5 gene. One family member was first seen with mucosal erosions and generalized blisters localized on the anogenital area, trunk, face and sites of mechanical trauma. Molecular analysis in this patient showed the presence of an additional mutation, an autosomal recessive (G183E) one, in the same gene. This observation suggests an additional effect of a recessively inherited mutation modulating the phenotypic expression of EBS caused by a partially dominant mutation and is important for accurate genetic counseling.

  1. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    PubMed

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Autosomal Dominant Cataract: Intrafamilial Phenotypic Variability, Interocular Asymmetry, and Variable Progression in Four Chilean Families

    PubMed Central

    Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818

  3. A stepwise approach for effective management of chronic pain in autosomal-dominant polycystic kidney disease.

    PubMed

    Casteleijn, Niek F; Visser, Folkert W; Drenth, Joost P H; Gevers, Tom J G; Groen, Gerbrand J; Hogan, Marie C; Gansevoort, Ron T

    2014-09-01

    Chronic pain, defined as pain existing for >4-6 weeks, affects >60% of patients with autosomal-dominant polycystic disease (ADPKD). It can have various causes, indirectly or directly related to the increase in kidney and liver volume in these patients. Chronic pain in ADPKD patients is often severe, impacting physical activity and social relationships, and frequently difficult to manage. This review provides an overview of pathophysiological mechanisms that can lead to pain and discusses the sensory innervation of the kidneys and the upper abdominal organs, including the liver. In addition, the results of a systematic literature search of ADPKD-specific treatment options are presented. Based on pathophysiological knowledge and evidence derived from the literature an argumentative stepwise approach for effective management of chronic pain in ADPKD is proposed. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Autosomal recessive Charcot-Marie-Tooth neuropathy.

    PubMed

    Espinós, Carmen; Calpena, Eduardo; Martínez-Rubio, Dolores; Lupo, Vincenzo

    2012-01-01

    Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

  5. [Autosomal dominant polycystic kidney disease in hemodialysis patients in Southern Brazil].

    PubMed

    Alves, Everton Fernando; Tsuneto, Luiza Tamie; Pelloso, Sandra Marisa; Torres, Paulo Roberto Aranha; Otto, Guido Luis Gomes; Silva, Adaelson Alves; Obregon, José Miguel Viscarra; Silva, Letícia Nicoletti; Carvalho, Maria Dalva de Barros

    2014-01-01

    Autosomal dominant polycystic kidney disease is the most common hereditary renal disease in humans. To examine the prevalence, clinical and laboratory characteristics of patients with polycystic kidneys and relate disease manifestations by gender. This was an observational and retrospective study. All the medical records of patients with polycystic kidneys who initiated hemodialysis between 1995 and 2012, in four centers that treat patients of the coverage area of the 15th regional health Paraná (Brazil), were analyzed. The study included 48 patients with polycystic kidneys, the primary cause of stage 5 CKD. Disease prevalence was one in 10,912 people. The average age of dialysis initiation was 50.7 years and the follow-up time on dialysis until transplantation (36.5 months) was lower among men. Hypertension was the most frequent diagnosis in 73% of patients, predominantly in women (51.4%). The liver cyst was the most frequent extrarenal manifestations in men (60.0%). The death occurred in 10.4% of patients using hemodialysis, and 60% of men. The class of antihypertensive drug used was that acts on the renin-angiotensin system with higher frequency of use among women (53.3%). The post-dialysis urea was significantly higher in men. The prevalence of the disease is low among hemodialysis patients in southern Brazil. The differences observed between genders, with the exception of the post-dialysis urea, were not significant. The findings are different from those reported in North America and Europe.

  6. Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing

    2017-01-01

    ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480

  7. Functional connectivity in autosomal dominant and late-onset Alzheimer disease.

    PubMed

    Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J; Snyder, Abraham Z; Benzinger, Tammie L; Xiong, Chengjie; Raichle, Marcus; Holtzman, David M; Sperling, Reisa A; Mayeux, Richard; Ghetti, Bernardino; Ringman, John M; Salloway, Stephen; McDade, Eric; Rossor, Martin N; Ourselin, Sebastien; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Weiner, Michael W; Thompson, Paul M; Fox, Nick C; Koeppe, Robert A; Jack, Clifford R; Mathis, Chester A; Oliver, Angela; Blazey, Tyler M; Moulder, Krista; Buckles, Virginia; Hornbeck, Russ; Chhatwal, Jasmeer; Schultz, Aaron P; Goate, Alison M; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; Morris, John C; Ances, Beau M

    2014-09-01

    Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional connectivity magnetic resonance imaging at multiple international academic sites. For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.

  8. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease.

    PubMed

    Joe, Elizabeth; Medina, Luis D; Ringman, John M; O'Neill, Joseph

    2018-06-16

    1 H magnetic resonance spectroscopy (MRS) can reveal changes in brain biochemistry in vivo in humans and has been applied to late onset Alzheimer disease (AD). Carriers of mutations for autosomal dominant Alzheimer disease (ADAD) may show changes in levels of metabolites prior to the onset of clinical symptoms. Proton MR spectra were acquired at 1.5 T for 16 cognitively asymptomatic or mildly symptomatic mutation carriers (CDR < 1) and 11 non-carriers as part of a comprehensive cross-sectional study of preclinical ADAD. Levels of N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA), glutamate/glutamine (Glx), creatine/phosphocreate (Cr), choline (Cho), and myo-inositol (mI) in the left and right anterior cingulate and midline posterior cingulate and precuneus were compared between mutation carriers (MCs) and non-carriers (NCs) using multivariate analysis of variance with age as a covariate. Among MCs, correlations between metabolite levels and time until expected age of dementia diagnosis were calculated. MCs had significantly lower levels of NAA and Glx in the left pregenual anterior cingulate cortex, and lower levels of NAA and higher levels of mI and Cho in the precuneus compared to NCs. Increased levels of mI were seen in these regions in association with increased proximity to expected age of dementia onset. MRS shows effects of ADAD similar to those seen in late onset AD even during the preclinical period including lower levels of NAA and higher levels of mI. These indices of neuronal and glial dysfunction might serve as surrogate outcome measures in prevention studies of putative disease-modifying agents.

  9. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimer's disease.

    PubMed

    Carmona-Iragui, María; Balasa, Mircea; Benejam, Bessy; Alcolea, Daniel; Fernández, Susana; Videla, Laura; Sala, Isabel; Sánchez-Saudinós, María Belén; Morenas-Rodriguez, Estrella; Ribosa-Nogué, Roser; Illán-Gala, Ignacio; Gonzalez-Ortiz, Sofía; Clarimón, Jordi; Schmitt, Frederick; Powell, David K; Bosch, Beatriz; Lladó, Albert; Rafii, Michael S; Head, Elizabeth; Molinuevo, José Luis; Blesa, Rafael; Videla, Sebastián; Lleó, Alberto; Sánchez-Valle, Raquel; Fortea, Juan

    2017-11-01

    We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent in genetically determined than in sporadic early-onset forms of Alzheimer's disease (AD) (early-onset AD [EOAD]). Neuroimaging features of CAA, apolipoprotein (APOE), and cerebrospinal fluid amyloid β (Aβ) 40 levels were studied in subjects with Down syndrome (DS, n = 117), autosomal-dominant AD (ADAD, n = 29), sporadic EOAD (n = 42), and healthy controls (n = 68). CAA was present in 31%, 38%, and 12% of cognitively impaired DS, symptomatic ADAD, and sporadic EOAD subjects and in 13% and 4% of cognitively unimpaired DS individuals and healthy controls, respectively. APOE ε4 genotype was borderline significantly associated with CAA in sporadic EOAD (P = .06) but not with DS or ADAD. There were no differences in Aβ040 levels between groups or between subjects with and without CAA. CAA is more frequently found in genetically determined AD than in sporadic EOAD. Cerebrospinal fluid Aβ40 levels are not a useful biomarker for CAA in AD. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  10. Autosomal dominant (Beukes) premature degenerative osteoarthropathy of the hip joint unlinked to COL2A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beighton, P.; Ramesar, R.; Cilliers, H.J.

    1994-12-01

    Molecular investigations have been undertaken in several separate large South African families with autosomal dominant skeletal dysplasias in which premature degenerative osteoarthropathy of the hip joint was the major manifestation. There are sometimes additional minor changes in the spine and these conditions fall into the general spondyloepiphyseal dysplasia (SED) nosological category. In some kindreds, linkage between phenotype and the type II collagen gene (COL2A1) has been established, while in others there is no linkage. We have now completed molecular linkage investigations in an Afrikaner family named Beukes, in which 47 members in 6 generations have premature osteoarthropathy of the hipmore » joint. A LOD score of minus infinity indicates that this condition is not the result of a defect of the COL2A1 gene. 12 refs., 2 figs., 1 tab.« less

  11. Novel association of familial testicular germ cell tumor and autosomal dominant polycystic kidney disease with PKD1 mutation.

    PubMed

    Truscott, Laurel; Gell, Joanna; Chang, Vivian Y; Lee, Hane; Strom, Samuel P; Pillai, Rex; Sisk, Anthony; Martinez-Agosto, Julian A; Anderson, Martin; Federman, Noah

    2017-01-01

    Adolescent brothers were diagnosed with testicular germ cell tumors within the same month. Both were found to have multiple renal cysts on pretreatment imaging done for staging. The proband, his brother, and their mother, were all found to have a novel splice variant in intron 8 of the PKD1 gene by clinical exome sequencing. This is the second family reported with both familial testicular germ cell tumor (FTGCT) and autosomal dominant polycystic kidney disease (ADPKD), and the first described association of FTGCT with a splice variant in PKD1. We suggest that this novel variant in PKD1 may convey increased risk for FTGCT in addition to causing ADPKD. © 2016 Wiley Periodicals, Inc.

  12. Clinical proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with autosomal dominant polycystic kidney disease: SUISSE ADPKD study

    PubMed Central

    Serra, Andreas L; Kistler, Andreas D; Poster, Diane; Struker, Marian; Wüthrich, Rudolf P; Weishaupt, Dominik; Tschirch, Frank

    2007-01-01

    Background Currently there is no effective treatment available to retard cyst growth and to prevent the progression to end-stage renal failure in patients with autosomal dominant polycystic kidney disease (ADPKD). Evidence has recently been obtained from animal experiments that activation of the mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cyst growth and renal volume expansion, and that the inhibition of mTOR with rapamycin (sirolimus) markedly slows cyst development and renal functional deterioration. Based on these promising results in animals we have designed and initiated the first randomized controlled trial (RCT) to examine the effectiveness, safety and tolerability of sirolimus to retard disease progression in ADPKD. Method/design This single center, randomised controlled, open label trial assesses the therapeutic effect, safety and tolerability of the mTOR inhibitor sirolimus (Rapamune®) in patients with autosomal dominant polycystic kidney disease and preserved renal function. The primary outcome will be the inhibition of kidney volume growth measured by magnetic resonance imaging (MRI) volumetry. Secondary outcome parameters will be preservation of renal function, safety and tolerability of sirolimus. Discussion The results from this proof-of-concept RCT will for the first time show whether treatment with sirolimus effectively retards cyst growth in patients with ADPKD. Trial registration NCT00346918 PMID:17868472

  13. Unilateral Autosomal Recessive Anophthalmia in a Patient with Cystic Craniopharyngioma

    PubMed Central

    Kumar, Amandeep; Bansal, Ankit; Garg, Ajay; Sharma, Bhawani S.

    2014-01-01

    Abstract Anophthalmia is a rare ocular malformation. It is a genetically determined disorder and is typically associated with syndromes. However, sporadic nonsyndromic familial as well as non-familial cases of anophthalmia have also been reported. Non-syndromic familial cases are usually bilateral and have been attributed to autosomal recessive, autosomal dominant, and X-linked inheritance patterns. The authors hereby report a rare case of autosomal recessive unilateral anophthalmia in a patient with no other associated congenital anomaly. Patient was operated for craniopharyngioma. The clinical, radiological and intraoperative findings are discussed. PMID:27928292

  14. Genotyping microarray: Mutation screening in Spanish families with autosomal dominant retinitis pigmentosa

    PubMed Central

    García-Hoyos, María; Cortón, Marta; Ávila-Fernández, Almudena; Riveiro-Álvarez, Rosa; Giménez, Ascensión; Hernan, Inma; Carballo, Miguel; Ayuso, Carmen

    2012-01-01

    Purpose Presently, 22 genes have been described in association with autosomal dominant retinitis pigmentosa (adRP); however, they explain only 50% of all cases, making genetic diagnosis of this disease difficult and costly. The aim of this study was to evaluate a specific genotyping microarray for its application to the molecular diagnosis of adRP in Spanish patients. Methods We analyzed 139 unrelated Spanish families with adRP. Samples were studied by using a genotyping microarray (adRP). All mutations found were further confirmed with automatic sequencing. Rhodopsin (RHO) sequencing was performed in all negative samples for the genotyping microarray. Results The adRP genotyping microarray detected the mutation associated with the disease in 20 of the 139 families with adRP. As in other populations, RHO was found to be the most frequently mutated gene in these families (7.9% of the microarray genotyped families). The rate of false positives (microarray results not confirmed with sequencing) and false negatives (mutations in RHO detected with sequencing but not with the genotyping microarray) were established, and high levels of analytical sensitivity (95%) and specificity (100%) were found. Diagnostic accuracy was 15.1%. Conclusions The adRP genotyping microarray is a quick, cost-efficient first step in the molecular diagnosis of Spanish patients with adRP. PMID:22736939

  15. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11).

    PubMed

    Di Leva, Francesca; D'Adamo, Pio; Cubellis, Maria Vittoria; D'Eustacchio, Angela; Errichiello, Monica; Saulino, Claudio; Auletta, Gennaro; Giannini, Pasquale; Donaudy, Francesca; Ciccodicola, Alfredo; Gasparini, Paolo; Franzè, Annamaria; Marciano, Elio

    2006-01-01

    We ascertained a large Italian family with an autosomal dominant form of non-syndromic sensorineural hearing loss with vestibular involvement. A genome-wide scan found linkage to locus DFNA11. Sequencing of the MYO7A gene in the linked region identified a new missense mutation resulting in an Ala230Val change in the motor domain of the myosin VIIA. Myosin VIIA has already been implicated in several forms of deafness, but this is the third mutation causing a dominant form of deafness, located in the myosin VIIA motor domain in a region never involved in hearing loss until now. A modelled protein structure of myosin VII motor domain provides evidence for a significant functional effect of this missense mutation. Copyright (c) 2006 S. Karger AG, Basel.

  16. Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry.

    PubMed

    Gernez, Yael; Freeman, Alexandra F; Holland, Steven M; Garabedian, Elizabeth; Patel, Niraj C; Puck, Jennifer M; Sullivan, Kathleen E; Akhter, Javeed; Secord, Elizabeth; Chen, Karin; Buckley, Rebecca; Haddad, Elie; Ochs, Hans D; Fuleihan, Ramsay; Routes, John; Muskat, Mica; Lugar, Patricia; Mancini, Julien; Cunningham-Rundles, Charlotte

    Autosomal dominant hyper-IgE syndrome (AD-HIES) is a rare condition. Data from the USIDNET Registry provide a resource to examine the characteristics of patients with rare immune deficiency diseases. A query was submitted to the USIDNET requesting deidentified data for patients with physician-diagnosed AD-HIES through July 2016. Data on 85 patients diagnosed with AD-HIES (50 males; 35 females) born between 1950 and 2013, collected by 14 physicians from 25 states and Quebec, were entered into the USIDNET Registry by July 2016. Cumulative follow-up was 2157 years. Of these patients, 45.9% had a family history of HIES. The complications reported included skin abscesses (74.4%), eczema (57.7%), retained primary teeth (41.4%), fractures (39%), scoliosis (34.1%), and cancer (7%). Reported allergic diseases included food (37.8%), environmental (18%), and drugs (42.7%). The mean serum IgE level was 8383.7 kU/mL and was inversely correlated to the patient's age. A total of 49.4% had eosinophilia; 56% were known to be on trimethoprim-sulfamethoxazole, 26.6% on antifungal coverage, and 30.6% on immunoglobulin replacement therapy. Pneumonias were more commonly attributed to Staphylococcus aureus (55.3%) or Aspergillus fumigatus (22.4%); 19.5% had a history of lung abscess; these were most often associated with Pseudomonas aeruginosa (P Fisher's exact test = .029) or A. fumigatus (P Fisher's exact test = .016). Lung abscesses were significantly associated with drug reactions (P χ 2  = .01; odds ratio: 4.03 [1.2-12.97]), depression (P Fisher's exact test = .036), and lower Karnofsky index scores (P Mann-Whitney = .007). Data from the USIDNET Registry summarize the currently reported clinical characteristics of a large cohort of subjects with AD-HIES. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  17. Phenotypic Variability in a Family with Acrodysostosis Type 2 Caused by a Novel PDE4D Mutation Affecting the Serine Target of Protein Kinase-A Phosphorylation

    PubMed Central

    Hoppmann, Julia; Gesing, Julia; Silve, Caroline; Leroy, Chrystel; Bertsche, Astrid; Hirsch, Franz Wolfgang; Kiess, Wieland; Pfäffle, Roland; Schuster, Volker

    2017-01-01

    Acrodysostosis is a very rare congenital multisystem condition characterized by skeletal dysplasia with severe brachydactyly, midfacial hypoplasia, and short stature, varying degrees of intellectual disability, and possible resistance to multiple G protein-coupled receptor signalling hormones. Two distinct subtypes are differentiated: acrodysostosis type 1 resulting from defects in protein kinase type 1-α regulatory subunit and acrodysostosis type 2 caused by mutations in phosphodiesterase 4D (PDE4D). Most cases are sporadic. We report on a rare multigenerational familial case of acrodysostosis type 2 due to a novel autosomal dominantly inherited PDE4D mutation. A 3.5-year-old boy presented with short stature, midfacial hypoplasia, severe brachydactyly, developmental delay, and behavioural problems. Laboratory investigations revealed mild thyrotropin resistance. His mother shared some characteristic features, such as midfacial hypoplasia and severe brachydactyly, but did not show short stature, intellectual disability or hormonal resistance. Genetic analysis identified the identical, novel heterozygous missense mutation of the PDE4D gene c.569C>T (p.Ser190Phe) in both patients. This case illustrates the significant phenotypic variability of acrodysostosis even within one family with identical mutations. Hence, a specific clinical diagnosis of acrodysostosis remains challenging because of great interindividual variability and a substantial overlap of the two subtypes as well as with other related Gsα-cAMP-signalling-linked disorders. PMID:28515031

  18. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele

    PubMed Central

    Radhakrishna, Uppala; Nath, Swapan K; McElreavey, Ken; Ratnamala, Uppala; Sun, Celi; Maiti, Amit K; Gagnebin, Maryline; Béna, Frédérique; Newkirk, Heather L; Sharp, Andrew J; Everman, David B; Murray, Jeffrey C; Schwartz, Charles E; Antonarakis, Stylianos E; Butler, Merlin G

    2017-01-01

    Background Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele. Methods and findings A genetic linkage study was conducted in a large family with an autosomal dominant transmission of an omphalocele using a genome-wide single nucleotide polymorphism (SNP) array. The analysis revealed significant evidence of linkage (non-parametric NPL = 6.93, p=0.0001; parametric logarithm of odds (LOD) = 2.70 under a fully penetrant dominant model) at chromosome band 1p31.3. Haplotype analysis narrowed the locus to a 2.74 Mb region between markers rs2886770 (63014807 bp) and rs1343981 (65757349 bp). Molecular characterisation of this interval using array comparative genomic hybridisation followed by quantitative microsphere hybridisation analysis revealed a 710 kb duplication located at 63.5–64.2 Mb. All affected individuals who had an omphalocele and shared the haplotype were positive for this duplicated region, while the duplication was absent from all normal individuals of this family. Multipoint linkage analysis using the duplication as a marker yielded a maximum LOD score of 3.2 at 1p31.3 under a dominant model. The 710 kb duplication at 1p31.3 band contains seven known genes including FOXD3, ALG6, ITGB3BP, KIAA1799, DLEU2L, PGM1, and the proximal portion of ROR1. Importantly, this duplication is absent from the database of genomic variants. Conclusions The present study suggests that development of an omphalocele in this family is controlled by overexpression of one or more genes in the duplicated region. To the authors’ knowledge, this is the first reported association of an inherited omphalocele condition with a chromosomal rearrangement. PMID:22499347

  19. Water Prescription in Autosomal Dominant Polycystic Kidney Disease: A Pilot Study

    PubMed Central

    Creed, Catherine; Winklhofer, Franz T.; Grantham, Jared J.

    2011-01-01

    Summary Background and objectives In animal models of polycystic kidney disease, the ingestion of large amounts of water promotes diuresis by suppressing plasma levels of arginine vasopressin (AVP) and renal levels of cAMP, slowing cyst progression. Whether simple water ingestion is a potential therapeutic strategy for individuals with autosomal dominant polycystic kidney disease (ADPKD) is unknown. In this study, a simple method to quantify the amount of water to achieve a specific mean urine osmolality target in patients with ADPKD was developed and tested. Design, setting, participants, & measurements In eight ADPKD patients eating typical diets, osmolality and volume were measured in 24-hour urine collections. The amount of additional ingested water required daily to achieve a mean urine osmolality of 285 ± 45 mosm/kg was determined. Participants were instructed to distribute the prescribed water over waking hours for each of 5 days. Blood chemistries, 24-hour urine collections, BP, and weight were measured before and after the period of supplemental water intake. Results Five patients achieved the 285 mosm/kg urine target without difficulty. Mean urine osmolality decreased and mean urine volume increased; serum sodium, weight, and BP were unchanged. Daily osmolar excretion remained constant, indicating a stable ad lib dietary intake of solutes and protein over the 2-week study period. Conclusions The amount of additional water needed to achieve a urine osmolality target can be approximated from the urine osmolar excretion in ADPKD patients eating typical diets, providing a quantitative method to prescribe supplemental water for such individuals. PMID:20876670

  20. A new autosomal dominant syndrome of distinctive face showing ptosis and prominent eyes associated with cleft palate, ear anomalies, and learning disability.

    PubMed

    Tyshchenko, N; Neuhann, T M; Gerlach, E; Hahn, G; Heisch, K; Rump, A; Schrock, E; Tinschert, S; Hackmann, K

    2011-09-01

    We report on three patients from two families with apparently a novel clinical entity. The main features of which include unusual craniofacial dysmorphism with ptosis, prominent eyes, flat midface, Cupid's bow configuration of the upper lip, low-set, posteriorly rotated small ears, as well as conductive hearing loss, cleft palate, heart defect, and mild developmental delay. We suggest that this entity is an autosomal dominant disorder given the occurrence in a mother and daughter as well as in an unrelated boy. Copyright © 2011 Wiley-Liss, Inc.

  1. Familial exudative vitreoretinopathy: A report of an asymptomatic case with autosomal dominant inheritance detected using FZD4 molecular analysis.

    PubMed

    Montecinos-Contreras, C; Sepúlveda-Vázquez, H E; Pelcastre-Luna, E; Zenteno, J C; Villanueva-Mendoza, C

    2017-04-01

    To report a familial case of Familial Exudative Vitreoretinopathy (FEVR) with an autosomal dominant inheritance pattern identified with the molecular analysis of FZD4. The proband is a 13 year-old boy who consulted for low vision. Fundus examination revealed a peripheral avascular zone and macular dragging, consistent with FEVR. Molecular analysis demonstrated a mutation of FZD4 in DNA from both the patient and his asymptomatic mother. This familial case was identified with the molecular analysis of FZD4 and shows the importance to explore first degree relatives in a sporadic FEVR case. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Role of subunit assembly in autosomal dominant retinitis pigmentosa linked to mutations in peripherin 2.

    PubMed

    Molday, Robert S; Molday, Laurie L; Loewen, Christopher J R

    2004-01-01

    Peripherin 2 is a photoreceptor-specific membrane protein implicated in outer segment disk morphogenesis and linked to various retinopathies including autosomal dominant retinitis pigmentosa (ADRP). Peripherin 2 and ROM1 assemble as a mixture of core noncovalent homomeric and heteromeric tetramers that further link together through disulfide bonds to form higher order oligomers. These complexes are critical for disk rim formation and outer segment structure through interaction with the cGMP-gated channel and other photoreceptor proteins. We have examined the role of subunit assembly in peripherin 2 targeting to disks, outer segment structure, and photoreceptor degeneration by examining molecular and cellular properties of peripherin 2 mutants in COS-1 cells and transgenic Xenopus laevis rod photoreceptors. Wild-type (WT) and the ADRP-linked P216L mutant were transported and incorporated into newly formed outer segment disks of transgenic X. laevis. The P216L mutant, however, induced progressive outer segment instability and photoreceptor degeneration possibly through the introduction of a new N-linked oligosaccharide chain. In contrast, the C214S and L185P disease-linked, tetramerization-defective mutants, were retained in the inner segment, but did not affect outer segment structure or induce photoreceptor degeneration. Together, these results indicate that peripherin 2 mutations can cause ADRP either through a deficiency in WT peripherin 2 (C214S, 1.185P) or by a dominant negative effect on disk stability (P216L).

  3. A previously unreported, dominantly inherited syndrome of shortness of stature, ear malformations, and hip dislocation: the coxoauricular syndrome--autosomal or X-linked male-lethal.

    PubMed

    Duca, D; Pană, I; Ciovirnache, M; Simionesu, L; Ispas, I; Maxililian, C

    1981-01-01

    We reported an apparently previously undescribed syndrome, designated the coxoauricular syndrome, in a mother and her 3 daughters, all of whom shared in variable manner shortness of stature, minor vertebral and pelvic changes, dislocated hip(s), and microtia with corresponding hearing loss. The oldest daughter had coincidental Ullrich-Turner syndrome with 46, Xdel(X)(q 13) chromosome constitution. Inheritance of the trait in this family is dominant, either autosomal or X-linked, with hemizygote lethality.

  4. Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease.

    PubMed

    Al-Allaf, Faisal A; Athar, Mohammad; Abduljaleel, Zainularifeen; Taher, Mohiuddin M; Khan, Wajahatullah; Ba-Hammam, Faisal A; Abalkhail, Hala; Alashwal, Abdullah

    2015-07-01

    Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is an autosomal dominant disease, caused by variants in Ldlr, ApoB or Pcsk9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. Sequencing whole genome for screening variants for FH are not suitable due to high cost. Hence, in this study we performed targeted customized sequencing of FH 12 genes (Ldlr, ApoB, Pcsk9, Abca1, Apoa2, Apoc3, Apon2, Arh, Ldlrap1, Apoc2, ApoE, and Lpl) that have been implicated in the homozygous phenotype of a proband pedigree to identify candidate variants by NGS Ion torrent PGM. Only three genes (Ldlr, ApoB, and Pcsk9) were found to be highly associated with FH based on the variant rate. The results showed that seven deleterious variants in Ldlr, ApoB, and Pcsk9 genes were pathological and were clinically significant based on predictions identified by SIFT and PolyPhen. Targeted customized sequencing is an efficient technique for screening variants among targeted FH genes. Final validation of seven deleterious variants conducted by capillary resulted to only one novel variant in Ldlr gene that was found in exon 14 (c.2026delG, p. Gly676fs). The variant found in Ldlr gene was a novel heterozygous variant derived from a male in the proband. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum.

    PubMed Central

    Ito, M; Jameson, J L; Ito, M

    1997-01-01

    Mutations in the arginine vasopressin (AVP) gene cause autosomal dominant familial neurohypophyseal diabetes insipidus (FNDI). The dominant inheritance pattern has been postulated to reflect neuronal toxicity of the mutant proteins, but the mechanism for such cytotoxicity is unknown. In this study, wild-type or several different mutant AVP genes were stably expressed in neuro2A neuroblastoma cells. When cells were treated with valproic acid to induce neuronal differentiation, each of the mutants caused reduced viability. Metabolic labeling revealed diminished intracellular trafficking of mutant AVP precursors and confirmed inefficient secretion of immunoreactive AVP. Immunofluorescence studies demonstrated marked accumulation of mutant AVP precursors within the endoplasmic reticulum. These studies suggest that the cellular toxicity in FNDI may be caused by the intracellular accumulation of mutant precursor proteins. PMID:9109434

  6. Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib.

    PubMed

    Sano, Shinichiro; Iwata, Hiromi; Matsubara, Keiko; Fukami, Maki; Kagami, Masayo; Ogata, Tsutomu

    2015-01-01

    Pseudohypoparathyroidism (PHP) is associated with compromised signal transductions via PTH receptor (PTH-R) and other G-protein-coupled receptors including GHRH-R. To date, while GH deficiency (GHD) has been reported in multiple patients with PHP-Ia caused by mutations on the maternally expressed GNAS coding regions and in two patients with sporadic form of PHP-Ib accompanied by broad methylation defects of maternally derived GNAS differentially methylated regions (DMRs), it has not been identified in a patient with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) accompanied by an STX16 microdeletion and an isolated loss of methylation (LOM) at exon A/B-DMR. We studied 5 4/12-year-old monozygotic twins with short stature (both -3.4 SD) and GHD (peak GH values, <6.0 μg/L after arginine and clonidine stimulations). Molecular studies revealed maternally derived STX16 microdeletions and isolated LOMs at exon A/B-DMR in the twins, confirming the diagnosis of AD-PHP-Ib. GNAS mutation was not identified, and neither mutation nor copy number variation was detected in GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1 in the twins. The results, in conjunction with the previous finding that GNAS shows maternal expression in the pituitary, suggest that GHD of the twins is primarily ascribed to compromised GHRH-R signaling caused by AD-PTH-Ib. Thus, resistance to multiple hormones including GHRH should be considered in AD-PHP-Ib.

  7. Real-world costs of autosomal dominant polycystic kidney disease in the Nordics.

    PubMed

    Eriksson, Daniel; Karlsson, Linda; Eklund, Oskar; Dieperink, Hans; Honkanen, Eero; Melin, Jan; Selvig, Kristian; Lundberg, Johan

    2017-08-15

    There is limited real-world data on the economic burden of patients with autosomal dominant polycystic kidney disease (ADPKD). The objective of this study was to estimate the annual direct and indirect costs of patients with ADPKD by severity of the disease: chronic kidney disease (CKD) stages 1-3; CKD stages 4-5; transplant recipients; and maintenance dialysis patients. A retrospective study of ADPKD patients was undertaken April-December 2014 in Denmark, Finland, Norway and Sweden. Data on medical resource utilisation were extracted from medical charts and patients were asked to complete a self-administered questionnaire. A total of 266 patients were contacted, 243 (91%) of whom provided consent to participate in the study. Results showed that the economic burden of ADPKD was substantial at all levels of the disease. Lost wages due to reduced productivity were large in absolute terms across all disease strata. Mean total annual costs were highest in dialysis patients, driven by maintenance dialysis care, while the use of immunosuppressants was the main cost component for transplant care. Costs were twice as high in patients with CKD stages 4-5 compared to CKD stages 1-3. Costs associated with ADPKD are significant and the progression of the disease is associated with an increased frequency and intensity of medical resource utilisation. Interventions that can slow the progression of the disease have the potential to lead to substantial reductions in costs for the treatment of ADPKD.

  8. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome 1 q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, J.E.; Lichter, P.R.; Torrez, D.

    1994-01-01

    A large Caucasian family is presented, in which a juvenile-onset form of open-angle glaucoma is transmitted in an autosomal dominant fashion. Sixteen affected family members were identified from 31 at-risk individuals descended from the affected founder. Affected patients developed high intraocular pressures (sometimes >40 mm Hg) within the first 2 decades of life. Linkage analysis between the disease phenotype and 12 microsatellite repeat markers located on chromosome 1 q gave a maximum lod score of 8.38 at a recombination fraction of zero for marker D1S210. Analysis of recombinant haplotypes suggests a total inclusion region of about 14 cM between markersmore » D1S194 and D1S218 at 1q21-q31. This represents the second juvenile-glaucoma family, in which the disease has been mapped to the long arm of chromosome 1. 57 refs., 2 figs., 3 tabs.« less

  9. [Clinical features in a Japanese patient with autosomal dominant lateral temporal epilepsy having LGI1 mutation].

    PubMed

    Fujita, Youshi; Ikeda, Akio; Kadono, Kentaro; Kawamata, Jun; Tomimoto, Hidekazu; Fukuyama, Hidenao; Takahashi, Ryosuke

    2009-04-01

    We described a clinical feature of autosomal dominant lateral temporal epilepsy (ADLTE) in a Japanese patient having LGI1 mutation. The patient was a 27-year-old woman who had her first seizure at the age of 10 years, a nocturnal generalized seizure. She then had partial seizures manifesting auditory symptoms with or without anxiety, panic attack, déjà vu, sensory aphasia and visual symptoms. Repeated EEGs were normal. Brain MRI showed small left superior temporal gyrus. 18F-deoxyglucose positron emission tomography (PDG-PET) demonstrated glucose hypometabolism in the left lateral temporal lobe. Sequencing of the LGI1 revealed a single base substitution in exon 8 (1642C-->T) causing missense mutation at residue 473 of the LGI1 protein (S473 L). When one demonstrates ictal symptoms arising from the lateral temporal to occipital area with psychotic symptoms, ADLTE should be suspected and a detailed family history is warranted.

  10. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less

  11. Autosomal dominant inheritance of Williams-Beuren syndrome in a father and son with haploinsufficiency for FKBP6.

    PubMed

    Metcalfe, Kay; Simeonov, Emil; Beckett, William; Donnai, Dian; Tassabehji, May

    2005-04-01

    Williams-Beuren syndrome (WBS) is a neurodevelopmental microdeletion disorder that usually occurs sporadically due to its location within a highly repetitive genomic region that is unstable and prone to unequal cross-over during meiosis. The consequential loss of chromosomal material includes approximately 1.5 Mb of DNA at 7q11.23. Whilst cases of dominant inheritance have been described in the literature, there have been few reports of molecular confirmation and none have carried out detailed genotyping. We describe a Bulgarian father and son with WBS detected by fluorescent in situ hybridisation (with an elastin gene probe) and loss of heterozygosity mapping using microsatellite markers located in the critical region. These individuals appear to have a common WBS heterozygous deletion, confirming the expected dominant transmission and adding to the few familial cases reported. The deletion includes the gene FKBP6 which has recently been shown to play a role in homologous chromosome pairing in meiosis and male fertility in mouse models. Homozygous Fkbp6 -/- male mice are infertile and our data suggests that haploinsufficiency for FKBP6 does not appear to preclude male fertility in WBS, although male infertility involving this gene has the potential to follow the mouse model as a human autosomal recessive condition.

  12. Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database.

    PubMed

    Ringman, John M; Monsell, Sarah; Ng, Denise W; Zhou, Yan; Nguyen, Andy; Coppola, Giovanni; Van Berlo, Victoria; Mendez, Mario F; Tung, Spencer; Weintraub, Sandra; Mesulam, Marek-Marsel; Bigio, Eileen H; Gitelman, Darren R; Fisher-Hubbard, Amanda O; Albin, Roger L; Vinters, Harry V

    2016-03-01

    Alzheimer disease (AD) represents a genetically heterogeneous entity. To elucidate neuropathologic features of autosomal dominant AD ([ADAD] due to PSEN1, APP, or PSEN2 mutations), we compared hallmark AD pathologic findings in 60 cases of ADAD and 120 cases of sporadic AD matched for sex, race, ethnicity, and disease duration. Greater degrees of neuritic plaque and neurofibrillary tangle formation and cerebral amyloid angiopathy (CAA) were found in ADAD (p values < 0.01). Moderate to severe CAA was more prevalent in ADAD (63.3% vs. 39.2%, p = 0.003), and persons with PSEN1 mutations beyond codon 200 had higher average Braak scores and severity and prevalence of CAA than those with mutations before codon 200. Lewy body pathology was less extensive in ADAD but was present in 27.1% of cases. We also describe a novel pathogenic PSEN1 mutation (P267A). The finding of more severe neurofibrillary pathology and CAA in ADAD, particularly in carriers of PSEN1 mutations beyond codon 200, warrants consideration when designing trials to treat or prevent ADAD. The finding of Lewy body pathology in a substantial minority of ADAD cases supports the assertion that development of Lewy bodies may be in part driven by abnormal β-amyloid protein precursor processing. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  13. "An evil heritage": interview study of pain and autosomal dominant polycystic kidney disease.

    PubMed

    Heiwe, Susanne; Bjuke, Monica

    2009-09-01

    Pain is a common problem for patients with autosomal dominant polycystic kidney disease (ADPKD). Knowledge about patients' experience of the pain, pain management, and pain's effect on everyday life is, however, limited. In clinical practice there is a need to improve the care of these patients. To be able to do so, information about how the disease and its pain affect the patients is required. This study explores patients' experience of living with ADPKD and its pain. The findings are based on in-depth semistructured interviews. The participants were 22 patients with ADPKD. The data were transcribed and analyzed by using phenomenology. Findings showed that the patients experienced limitations in their everyday life due to inexplicable and unpredictable pain and fatigue. Also, pain management was experienced as suboptimal and pain was seldom discussed at health care appointments. Emotional distress concerning the hereditary nature of the disease was also present. Health care providers need to increase their focus on pain and pain management to reduce the disease's intrusion in patients' everyday life. Also, patients and people in the patients' immediate surroundings need to be given information and education about the disease and its pain as well as the opportunity to talk about their worries concerning heredity. By implementing the findings of the present study when meeting a patient with ADPKD, improved patient satisfaction and health-related quality of life could be accomplished.

  14. A missense mutation in the arginine-vasopressin neurophysin-II gene causes autosomal dominant neurohypophyseal diabetes insipidus in a Chinese family.

    PubMed

    Ye, Dan; Dong, FengQin; Lu, WeiQin; Zhang, Zhe; Lu, XunLiang; Li, ChengJiang; Liu, YanNing

    2013-06-01

    Familial neurohypophyseal diabetes insipidus, an autosomal dominant disorder, is mostly caused by mutations in the genes that encode AVP or its intracellular binding protein, neurophysin-II. The mutations lead to aberrant preprohormone processing and progressive destruction of AVP-secreting cells, which gradually manifests a progressive polyuria and polydipsia during early childhood, and a disorder of water homeostasis. We characterized the clinical and biochemical features, and sequenced the AVP neurophysin-II(AVP-NPII) gene of the affected individuals with autosomal dominant neurohypophyseal diabetes insipidus(ADNDI)to determine whether this disease was genetically determined. We obtained the histories of eight affected and four unaffected family individuals. The diagnosis of ADNDI was established using a water deprivation test and exogenous AVP administration. For molecular analysis, genomic DNA was extracted and the AVP-NPII gene was amplified using polymerase chain reaction and sequenced. The eight affected individuals showed different spectra of age of onsets (7-15 years) and urine volumes (132-253 ml/kg/24 h). All affected individuals responded to vasopressin administration, with a resolution of symptoms and an increase in urine osmolality by more than 50%. The characteristic hyperintense signal in the posterior pituitary on T1-weighted magnetic resonance imaging was absent in six family members and present in one. Sequencing analysis revealed a missense heterozygous mutation 1516G > T (Gly17Val) in exon 2 of the AVP-NPII gene among the ADNDI individuals. We identified a missense mutation in the AVP-NPII gene and the same mutation showed different spectra of age of onsets and urine volumes in a new Chinese family with ADNDI. The mutation may provide a molecular basis for understanding the characteristics of NPII and add to our knowledge of the pathogenesis of ADNDI, which would allow the presymptomatic diagnosis of asymptomatic subjects. © 2012 John Wiley

  15. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, genetic homogeneity, and mapping of the locus within a 2-cM interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducros, A.; Alamowitch, S.; Nagy, T.

    1996-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a recently identified autosomal dominant cerebral arteriopathy characterized by the recurrence of subcortical infarcts leading to dementia. A genetic linkage analysis conducted in two large families recently allowed us to map the affected gene on chromosome 19 in a 12-cM interval bracketed by D19S221 and D19S215. In the present study, these first 2 families and 13 additional ones, including a total of 199 potentially informative meiosis, have been genotyped with eight polymorphic markers located between D19S221 and D19S215. All families were linked to chromosome 19. The highest combined lodmore » score (Z{sub max} = 37.24 at {theta} = .01) was obtained with marker D19S841, a new CA{sub n} microsatellite marker that we isolated from chromosome 19 cosmids. The recombinant events observed within these families were used to refine the genetic mapping of CADASIL within a 2-cM interval that is now bracketed by D19S226 and D19S199 on 19p13.1. These data strongly suggest the genetic homogeneity of this recently identified condition and establish the value of its clinical and neuroimaging diagnostic criteria. Besides their importance for the ongoing positional cloning of the CADASIL gene, these data help to refine the genetic mapping of CADASIL relative to familial hemiplegic migraine and hereditary paroxysmal cerebellar ataxia, conditions that we both mapped within the same chromosome 19 region. 35 refs., 5 figs., 2 tabs.« less

  16. Novel semi-automated kidney volume measurements in autosomal dominant polycystic kidney disease.

    PubMed

    Muto, Satoru; Kawano, Haruna; Isotani, Shuji; Ide, Hisamitsu; Horie, Shigeo

    2018-06-01

    We assessed the effectiveness and convenience of a novel semi-automatic kidney volume (KV) measuring high-speed 3D-image analysis system SYNAPSE VINCENT ® (Fuji Medical Systems, Tokyo, Japan) for autosomal dominant polycystic kidney disease (ADPKD) patients. We developed a novel semi-automated KV measurement software for patients with ADPKD to be included in the imaging analysis software SYNAPSE VINCENT ® . The software extracts renal regions using image recognition software and measures KV (VINCENT KV). The algorithm was designed to work with the manual designation of a long axis of a kidney including cysts. After using the software to assess the predictive accuracy of the VINCENT method, we performed an external validation study and compared accurate KV and ellipsoid KV based on geometric modeling by linear regression analysis and Bland-Altman analysis. Median eGFR was 46.9 ml/min/1.73 m 2 . Median accurate KV, Vincent KV and ellipsoid KV were 627.7, 619.4 ml (IQR 431.5-947.0) and 694.0 ml (IQR 488.1-1107.4), respectively. Compared with ellipsoid KV (r = 0.9504), Vincent KV correlated strongly with accurate KV (r = 0.9968), without systematic underestimation or overestimation (ellipsoid KV; 14.2 ± 22.0%, Vincent KV; - 0.6 ± 6.0%). There were no significant slice thickness-specific differences (p = 0.2980). The VINCENT method is an accurate and convenient semi-automatic method to measure KV in patients with ADPKD compared with the conventional ellipsoid method.

  17. Prevalence of autosomal dominant polycystic kidney disease in the European Union.

    PubMed

    Willey, Cynthia J; Blais, Jaime D; Hall, Anthony K; Krasa, Holly B; Makin, Andrew J; Czerwiec, Frank S

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of end-stage renal disease, but estimates of its prevalence vary by >10-fold. The objective of this study was to examine the public health impact of ADPKD in the European Union (EU) by estimating minimum prevalence (point prevalence of known cases) and screening prevalence (minimum prevalence plus cases expected after population-based screening). A review of the epidemiology literature from January 1980 to February 2015 identified population-based studies that met criteria for methodological quality. These examined large German and British populations, providing direct estimates of minimum prevalence and screening prevalence. In a second approach, patients from the 2012 European Renal Association‒European Dialysis and Transplant Association (ERA-EDTA) Registry and literature-based inflation factors that adjust for disease severity and screening yield were used to estimate prevalence across 19 EU countries (N = 407 million). Population-based studies yielded minimum prevalences of 2.41 and 3.89/10 000, respectively, and corresponding estimates of screening prevalences of 3.3 and 4.6/10 000. A close correspondence existed between estimates in countries where both direct and registry-derived methods were compared, which supports the validity of the registry-based approach. Using the registry-derived method, the minimum prevalence was 3.29/10 000 (95% confidence interval 3.27-3.30), and if ADPKD screening was implemented in all countries, the expected prevalence was 3.96/10 000 (3.94-3.98). ERA-EDTA-based prevalence estimates and application of a uniform definition of prevalence to population-based studies consistently indicate that the ADPKD point prevalence is <5/10 000, the threshold for rare disease in the EU. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA.

  18. Familial temporal lobe epilepsy autosomal dominant inheritance in a large pedigree from southern Italy.

    PubMed

    Gambardella, A; Messina, D; Le Piane, E; Oliveri, R L; Annesi, G; Zappia, M; Andermann, E; Quattrone, A; Aguglia, U

    2000-02-01

    To further elucidate the inheritance pattern and range of phenotypic manifestations of benign familial temporal lobe epilepsy (FTLE), we report a large family recently identified in southern Italy. There were 8 patients (4 men), ranging in age from 31 to 68 years in three generations. One affected patient was deceased at the time of the study. Genealogical study strongly supported autosomal dominant inheritance with incomplete penetrance, as three unaffected individuals transmitted the disease. Clinical anticipation could not be assessed because of the ascertainment method. Male to male transmission occurred. Identifiable antecedents for seizures were present in only two patients, who had a simple febrile convulsion and a closed head trauma, respectively. Migraine was overrepresented in this family. Onset of seizures ranged from 17 to 52 years (mean: 27 years). All patients had weekly simple partial seizures suggestive of temporal origin with vegetative or experiential phenomena. Very rare partial complex seizures occurred in 6/7 patients. One had two generalized nocturnal seizures as well. Two had previously been misdiagnosed as having gastritis or panic attacks, and one had not been diagnosed. Interictal anteromesiotemporal spiking was seen in 5/7 patients, and occurred mostly during NREM sleep. Neurological examination, brain CT or MR scans were normal. Antiepileptic medication always controlled the seizures.

  19. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: phenotypic and molecular characterization.

    PubMed

    Li, Dong; Opas, Evan E; Tuluc, Florin; Metzger, Daniel L; Hou, Cuiping; Hakonarson, Hakon; Levine, Michael A

    2014-09-01

    Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth.

  20. Autosomal Dominant Hypoparathyroidism Caused by Germline Mutation in GNA11: Phenotypic and Molecular Characterization

    PubMed Central

    Li, Dong; Opas, Evan E.; Tuluc, Florin; Metzger, Daniel L.; Hou, Cuiping; Hakonarson, Hakon

    2014-01-01

    Context: Most cases of autosomal dominant hypoparathyroidism (ADH) are caused by gain-of-function mutations in CASR or dominant inhibitor mutations in GCM2 or PTH. Objective: Our objectives were to identify the genetic basis for ADH in a multigenerational family and define the underlying disease mechanism. Subjects: Here we evaluated a multigenerational family with ADH in which affected subjects had normal sequences in these genes and were shorter than unaffected family members. Methods: We collected clinical and biochemical data from 6 of 11 affected subjects and performed whole-exome sequence analysis on DNA from two affected sisters and their affected father. Functional studies were performed after expression of wild-type and mutant Gα11 proteins in human embryonic kidney-293-CaR cells that stably express calcium-sensing receptors. Results: Whole-exome-sequencing followed by Sanger sequencing revealed a heterozygous mutation, c.179G>T; p.R60L, in GNA11, which encodes the α-subunit of G11, the principal heterotrimeric G protein that couples calcium-sensing receptors to signal activation in parathyroid cells. Functional studies of Gα11 R60L showed increased accumulation of intracellular concentration of free calcium in response to extracellular concentration of free calcium with a significantly decreased EC50 compared with wild-type Gα11. By contrast, R60L was significantly less effective than the oncogenic Q209L form of Gα11 as an activator of the MAPK pathway. Compared to subjects with CASR mutations, patients with GNA11 mutations lacked hypercalciuria and had normal serum magnesium levels. Conclusions: Our findings indicate that the germline gain-of-function mutation of GNA11 is a cause of ADH and implicate a novel role for GNA11 in skeletal growth. PMID:24823460

  1. A novel mutation of the glomulin gene in an Italian family with autosomal dominant cutaneous glomuvenous malformations.

    PubMed

    Borroni, Riccardo G; Narula, Nupoor; Diegoli, Marta; Grasso, Maurizia; Concardi, Monica; Rosso, Renato; Cerica, Alessandra; Brazzelli, Valeria; Arbustini, Eloisa

    2011-12-01

    Glomuvenous malformations (GVM) are hamartomas characterized histologically by glomus cells, which should be distinguished from glomus tumors. Familial GVM are rare, often present as multiple lesions, and exhibit familial aggregation, with autosomal dominant transmission. GVM are caused by mutations of the glomulin (GLMN) gene on chromosome 1p21-p22. Their development is thought to follow the 'two-hit' hypothesis, with a somatic mutation required in addition to the inherited germline mutation. We describe a novel GLMN mutation in an Italian family with GVM in which some members present with the less commonly observed phenotype of solitary lesions. A second somatic 'hit' mutation in GLMN was not discovered in our family. We further provide histological, immunohistochemical and electron microscopic data exhibiting the classic features of GVM. The diagnosis of GVM is critical because of distinction from venous malformations and blue rubber bleb nevus syndrome, which may demonstrate clinical similarities but require different treatment. © 2011 John Wiley & Sons A/S.

  2. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggs, J.L.; Paglinauan, C.; Fine, A.

    1994-05-15

    Glaucoma is a common disorder that results in irreversible damage to the optic nerve, causing absolute blindness. In most cases, the optic nerve is damaged by an elevation of the intraocular pressure that is the result of an abnormality in the normal drainage function of the trabecular meshwork. A family history of glaucoma is an important risk factor for the disease, suggesting that genetic defects predisposing to this condition are likely. Three pedigrees segregating an autosomal dominant juvenile glaucoma demonstrated significant linkage to a group of closely spaced markers on chromosome 1. These results confirm the initial mapping of thismore » disease and suggest that this region on chromosome 1 contains an important locus for juvenile glaucoma. The authors describe recombination events that improve the localization of the responsible gene, reducing the size of the candidate region from 30 to 12 cM. 27 refs., 2 figs., 1 tab.« less

  3. Further refinement of the location for autosomal dominant retinitis pigmentosa on chromosome 7p (RP9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.F.; Keen, T.J.; Al-Maghtheh, M.

    1994-04-01

    A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this regionmore » and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus. 21 refs., 3 figs., 1 tab.« less

  4. Blood pressure in early autosomal dominant polycystic kidney disease.

    PubMed

    Schrier, Robert W; Abebe, Kaleab Z; Perrone, Ronald D; Torres, Vicente E; Braun, William E; Steinman, Theodore I; Winklhofer, Franz T; Brosnahan, Godela; Czarnecki, Peter G; Hogan, Marie C; Miskulin, Dana C; Rahbari-Oskoui, Frederic F; Grantham, Jared J; Harris, Peter C; Flessner, Michael F; Bae, Kyongtae T; Moore, Charity G; Chapman, Arlene B

    2014-12-11

    Hypertension is common in autosomal dominant polycystic kidney disease (ADPKD) and is associated with increased total kidney volume, activation of the renin-angiotensin-aldosterone system, and progression of kidney disease. In this double-blind, placebo-controlled trial, we randomly assigned 558 hypertensive participants with ADPKD (15 to 49 years of age, with an estimated glomerular filtration rate [GFR] >60 ml per minute per 1.73 m(2) of body-surface area) to either a standard blood-pressure target (120/70 to 130/80 mm Hg) or a low blood-pressure target (95/60 to 110/75 mm Hg) and to either an angiotensin-converting-enzyme inhibitor (lisinopril) plus an angiotensin-receptor blocker (telmisartan) or lisinopril plus placebo. The primary outcome was the annual percentage change in the total kidney volume. The annual percentage increase in total kidney volume was significantly lower in the low-blood-pressure group than in the standard-blood-pressure group (5.6% vs. 6.6%, P=0.006), without significant differences between the lisinopril-telmisartan group and the lisinopril-placebo group. The rate of change in estimated GFR was similar in the two medication groups, with a negative slope difference in the short term in the low-blood-pressure group as compared with the standard-blood-pressure group (P<0.001) and a marginally positive slope difference in the long term (P=0.05). The left-ventricular-mass index decreased more in the low-blood-pressure group than in the standard-blood-pressure group (-1.17 vs. -0.57 g per square meter per year, P<0.001); urinary albumin excretion was reduced by 3.77% with the low-pressure target and increased by 2.43% with the standard target (P<0.001). Dizziness and light-headedness were more common in the low-blood-pressure group than in the standard-blood-pressure group (80.7% vs. 69.4%, P=0.002). In early ADPKD, the combination of lisinopril and telmisartan did not significantly alter the rate of increase in total kidney volume. As

  5. Cerebro-costo-mandibular syndrome in a father and a female fetus: early prenatal ultrasonographic diagnosis and autosomal dominant transmission.

    PubMed

    Morin, G; Gekas, J; Naepels, P; Gondry, J; Devauchelle, B; Testelin, S; Sevestre, H; Thépôt, F; Mathieu, M

    2001-10-01

    Ultrasonography in a female fetus revealed cystic cervical hygroma, severe micrognathia, and vertebral and upper limb anomalies suggestive of cerebro-costo-mandibular syndrome (CCMS) which was diagnosed ultrasonographically at 16 weeks' gestation. The father is affected and presents with a Pierre Robin sequence, short stature and typical costovertebral anomalies. CCMS is a rare and severe disorder. The high frequency of sporadic cases, vertical transmission, and the excess of sibs affected via horizontal transmission suggest dominant autosomal mutation with possible germinal mosaicism. The vertical familial case detailed in the present report is a reminder of the high risk when one parent or one sibling is affected and the extreme variability of phenotype and costal ossification. Early prenatal ultrasound diagnosis is possible in a severely affected fetus. Copyright 2001 John Wiley & Sons, Ltd.

  6. Decreased platelet APP isoform ratios in autosomal dominant Alzheimer's disease: baseline data from a DIAN cohort subset.

    PubMed

    Chatterjee, Pratishtha; Gupta, Veer B; Fagan, Anne M; Jasielec, Mateusz S; Xiong, Chengjie; Sohrabi, Hamid R; Dhaliwal, Satvinder; Taddei, Kevin; Bourgeat, Pierrick; Brown, Belinda M; Benzinger, Tammie; Bateman, Randall J; Morris, John C; Martins, Ralph N

    2015-01-01

    This study examines platelet amyloid precursor protein (APP) isoform ratios of 120KDa to 110KDa (APPr) between mutation carriers (MC) carrying a mutation for autosomal dominant Alzheimer's disease (ADAD) and non-carriers (NC). Two previous studies reported no significant difference in APPr between ADAD MC and NC, which may have been due to the small sample size in both studies. The current study examines APPr in MC versus NC in a larger sample. In addition, it investigated whether APPr correlate with neuroimaging data, neuropsychological data and cerebrospinal fluid biomarkers in a cohort subset derived from the Dominantly Inherited Alzheimer Network (DIAN) study. APPr were quantified by western blotting. Fifteen MC (symptomatic and asymptomatic) were compared against twelve NC using univariate general linear model. All participants underwent neuroimaging and neuropsychological testing which were correlated with APPr using Pearson's correlation coefficient (r). APPr were lower in MC compared to NC (p=0.003) while Mini-Mental State Examination (MMSE) scores were not significantly different (p>0.1). Furthermore, APPr inversely correlated with amyloid imaging in the Caudate Nucleus (r=-0.505; p<0.05) and Precuneus (r=-0.510; p<0.05). APPr are lower in ADAD MC compared to NC, and inversely correlated with brain amyloid load prior to significant differences in cognitive health. However, the use of APPr as a biomarker needs to be explored further.

  7. Association Between Amyloid and Tau Accumulation in Young Adults With Autosomal Dominant Alzheimer Disease.

    PubMed

    Quiroz, Yakeel T; Sperling, Reisa A; Norton, Daniel J; Baena, Ana; Arboleda-Velasquez, Joseph F; Cosio, Danielle; Schultz, Aaron; Lapoint, Molly; Guzman-Velez, Edmarie; Miller, John B; Kim, Leo A; Chen, Kewei; Tariot, Pierre N; Lopera, Francisco; Reiman, Eric M; Johnson, Keith A

    2018-05-01

    It is critically important to improve our ability to diagnose and track Alzheimer disease (AD) as early as possible. Individuals with autosomal dominant forms of AD can provide clues as to which and when biological changes are reliably present prior to the onset of clinical symptoms. To characterize the associations between amyloid and tau deposits in the brains of cognitively unimpaired and impaired carriers of presenilin 1 (PSEN1) E280A mutation. In this cross-sectional imaging study, we leveraged data from a homogeneous autosomal dominant AD kindred, which allowed us to examine measurable tau deposition as a function of individuals' proximity to the expected onset of dementia. Cross-sectional measures of carbon 11-labeled Pittsburgh Compound B positron emission tomography (PET) and flortaucipir F 18 (previously known as AV 1451, T807) PET imaging were assessed in 24 PSEN1 E280A kindred members (age range, 28-55 years), including 12 carriers, 9 of whom were cognitively unimpaired and 3 of whom had mild cognitive impairment, and 12 cognitively unimpaired noncarriers. We compared carbon 11-labeled Pittsburgh Compound B PET cerebral with cerebellar distribution volume ratios as well as flortaucipir F 18 PET cerebral with cerebellar standardized uptake value ratios in mutation carriers and noncarriers. Spearman correlations characterized the associations between age and mean cortical Pittsburgh Compound B distribution volume ratio levels or regional flortaucipir standardized uptake value ratio levels in both groups. Of the 24 individuals, the mean (SD) age was 38.0 (7.4) years, or approximately 6 years younger than the expected onset of clinical symptoms in carriers. Compared with noncarriers, cognitively unimpaired mutation carriers had elevated mean cortical Pittsburgh Compound B distribution volume ratio levels in their late 20s, and 7 of 9 carriers older than 30 years reached the threshold for amyloidosis (distribution volume ratio level > 1.2). Elevated

  8. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease.

    PubMed

    Yamamoto, Junya; Nishio, Saori; Hattanda, Fumihiko; Nakazawa, Daigo; Kimura, Toru; Sata, Michio; Makita, Minoru; Ishikawa, Yasunobu; Atsumi, Tatsuya

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1 flox/flox :Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Autosomal Dominant Hypercalciuria in a Mouse Model Due to a Mutation of the Epithelial Calcium Channel, TRPV5

    PubMed Central

    Loh, Nellie Y.; Verkaart, Sjoerd; Tammaro, Paolo; Gorvin, Caroline M.; Stechman, Michael J.; Ahmad, Bushra N.; Hannan, Fadil M.; Piret, Sian E.; Evans, Holly; Bellantuono, Ilaria; Hough, Tertius A.; Fraser, William D.; Hoenderop, Joost G. J.; Ashcroft, Frances M.; Brown, Steve D. M.; Bindels, René J. M.; Cox, Roger D.; Thakker, Rajesh V.

    2013-01-01

    Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1). Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5) and 6 (Trpv6) genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P). Compared to wild-type littermates, heterozygous (Trpv5 682P/+) and homozygous (Trpv5 682P/682P) mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5 682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5 682P/+ and Trpv5 682P/682P mice consistent with a trafficking defect. In addition, Trpv5682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings indicate that the

  10. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

    PubMed

    Loh, Nellie Y; Bentley, Liz; Dimke, Henrik; Verkaart, Sjoerd; Tammaro, Paolo; Gorvin, Caroline M; Stechman, Michael J; Ahmad, Bushra N; Hannan, Fadil M; Piret, Sian E; Evans, Holly; Bellantuono, Ilaria; Hough, Tertius A; Fraser, William D; Hoenderop, Joost G J; Ashcroft, Frances M; Brown, Steve D M; Bindels, René J M; Cox, Roger D; Thakker, Rajesh V

    2013-01-01

    Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1). Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5) and 6 (Trpv6) genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P). Compared to wild-type littermates, heterozygous (Trpv5(682P/+)) and homozygous (Trpv5(682P/682P)) mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5(682P/682P) mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D(3) concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5(682P/+) and Trpv5(682P/682P) mice consistent with a trafficking defect. In addition, Trpv5(682P/682P) mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D(28K), consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings indicate

  11. Iron Supplementation Associated With Loss of Phenotype in Autosomal Dominant Hypophosphatemic Rickets.

    PubMed

    Kapelari, Klaus; Köhle, Julia; Kotzot, Dieter; Högler, Wolfgang

    2015-09-01

    Autosomal dominant hypophosphatemic rickets (ADHR) is the only hereditary disorder of renal phosphate wasting in which patients may regain the ability to conserve phosphate. Low iron status plays a role in the pathophysiology of ADHR. This study reports of a girl with ADHR, iron deficiency, and a paternal history of hypophosphatemic rickets that resolved without treatment. The girl's biochemical phenotype resolved with iron supplementation. A 26-month-old girl presented with typical features of hypophosphatemic rickets, short stature (79 cm; -2.82 SDS), and iron deficiency. Treatment with elemental phosphorus and calcitriol improved her biochemical profile and resolved the rickets. The girl's father had presented with rickets at age 11 months but never received medication. His final height was reduced (154.3 cm; -3.51 SDS), he had undergone corrective leg surgery and had an adult normal phosphate, fibroblast growth factor 23, and iron status. Father and daughter were found to have a heterozygous mutation in exon 3 of the FGF23 gene (c.536G>A, p.Arg179Gln), confirming ADHR. Withdrawal of rickets medication was attempted off and on iron supplementation. Withdrawal of rickets medication in the girl was unsuccessful in the presence of low-normal serum iron levels at age 5.6 years but was later successful in the presence of high-normal serum iron levels following high-dose iron supplementation. We report an association between iron supplementation and a complete loss of biochemical ADHR phenotype, allowing withdrawal of rickets medication. Experience from this case suggests that reduction and withdrawal of rickets medication should be attempted only after iron status has been optimized.

  12. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    PubMed

    Dickman, Christopher T D; Moehring, Amanda J

    2013-01-01

    When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  13. Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: seek and you will find.

    PubMed

    Raffler, Gabriele; Zitt, Emanuel; Sprenger-Mähr, Hannelore; Nagel, Mato; Lhotta, Karl

    2016-04-01

    Uromodulin (UMOD)-associated kidney disease belongs to the group of autosomal dominant interstitial kidney diseases and is caused by mutations in the UMOD gene. Affected patients present with hyperuricemia, gout, and progressive renal failure. The disease is thought to be very rare but is probably underdiagnosed. Two index patients from two families with tubulointerstitial nephropathy and hyperuricemia were examined, including blood and urine chemistry, ultrasound, and mutation analysis of the UMOD gene. In addition, other available family members were studied. In a 46-year-old female patient with a fractional excretion of uric acid of 3 %, analysis of the UMOD gene revealed a p.W202S missense mutation. The same mutation was found in her 72-year-old father, who suffers from gout and end-stage renal disease. The second index patient was a 47-year-old female with chronic kidney disease and gout for more than 10 years. Her fractional uric acid excretion was 3.5 %. Genetic analysis identified a novel p.H250Q UMOD mutation that was also present in her 12-year-old son, who had normal renal function and uric acid levels. In patients suffering from chronic tubulointerstitial nephropathy, hyperuricemia, and a low fractional excretion of uric acid mutation, analysis of the UMOD gene should be performed to diagnose UMOD-associated kidney disease.

  14. Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heon, E.; Sheth, B.P.; Kalenak, J.W.

    1994-09-01

    Genetic factors have been implicated in a variety of types of glaucoma including primary open-angle glaucoma, infantile glaucoma, pigmentary glaucoma, and juvenile open-angle glaucoma. We previously mapped the disease-causing gene for one type of juvenile open angle glaucoma to chromosome 1q21-31. Weatherill and Hart (1969) and Pearce (1983) each noted the association of iris hypoplasia and early-onset autosomal dominant glaucoma. We recently had the opportunity to study a large family (12 affected members) with this phenotype. Affected individuals developed glaucoma at an average age of 30 years. These patients also have a strikingly underdeveloped iris stroma which causes a peculiarmore » eye color. Linkage analysis was able to completely exclude the 1q glaucoma locus from involvement in the disorder that affects this family. A complete clinical description of the family and linkage results at additional candidate loci will be presented.« less

  15. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1.

    PubMed

    Benomar, A; Krols, L; Stevanin, G; Cancel, G; LeGuern, E; David, G; Ouhabi, H; Martin, J J; Dürr, A; Zaim, A

    1995-05-01

    Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy (ADCA type II) is a rare neurodegenerative disorder with marked anticipation. We have mapped the ADCA type II locus to chromosome 3 by linkage analysis in a genome-wide search and found no evidence for genetic heterogeneity among four families of different geographic origins. Haplotype reconstruction initially restricted the locus to the 33 cM interval flanked by D3S1300 and D3S1276 located at 3p12-p21.1. Combined multipoint analysis, using the Zmax-1 method, further reduced the candidate interval to an 8 cM region around D3S1285. Our results show that ADCA type II is a genetically homogenous disorder, independent of the heterogeneous group of type I cerebellar ataxias.

  16. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding formore » polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open

  17. A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy.

    PubMed

    Tsai, Pei-Chien; Soong, Bing-Wen; Mademan, Inès; Huang, Yen-Hua; Liu, Chia-Rung; Hsiao, Cheng-Tsung; Wu, Hung-Ta; Liu, Tze-Tze; Liu, Yo-Tsen; Tseng, Yen-Ting; Lin, Kon-Ping; Yang, Ueng-Cheng; Chung, Ki Wha; Choi, Byung-Ok; Nicholson, Garth A; Kennerson, Marina L; Chan, Chih-Chiang; De Jonghe, Peter; Cheng, Tzu-Hao; Liao, Yi-Chu; Züchner, Stephan; Baets, Jonathan; Lee, Yi-Chung

    2017-05-01

    Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS. © The Author (2017). Published by Oxford University Press on behalf of

  18. Nephrotic Syndrome and Idiopathic Membranous Nephropathy Associated with Autosomal-Dominant Polycystic Kidney Disease

    PubMed Central

    Peces, Ramón; Martínez-Ara, Jorge; Peces, Carlos; Picazo, Mariluz; Cuesta-López, Emilio; Vega, Cristina; Azorín, Sebastián; Selgas, Rafael

    2011-01-01

    We report the case of a 38-year-old male with autosomal-dominant polycystic kidney disease (ADPKD) and concomitant nephrotic syndrome secondary to membranous nephropathy (MN). A 3-month course of prednisone 60 mg daily and losartan 100 mg daily resulted in resistance. Treatment with chlorambucil 0.2 mg/kg daily, low-dose prednisone, plus an angiotensin-converting enzyme inhibitor (ACEI) and an angiotensin II receptor blocker (ARB) for 6 weeks resulted in partial remission of his nephrotic syndrome for a duration of 10 months. After relapse of the nephrotic syndrome, a 13-month course of mycophenolate mofetil (MFM) 2 g daily and low-dose prednisone produced complete remission for 44 months. After a new relapse, a second 24-month course of MFM and low-dose prednisone produced partial to complete remission of proteinuria with preservation of renal function. Thirty-six months after MFM withdrawal, complete remission of nephrotic-range proteinuria was maintained and renal function was preserved. This case supports the idea that renal biopsy is needed for ADPKD patients with nephrotic-range proteinuria in order to exclude coexisting glomerular disease and for appropriate treatment/prevention of renal function deterioration. To the best of our knowledge, this is the first reported case of nephrotic syndrome due to MN in a patient with ADPKD treated with MFM, with remission of proteinuria and preservation of renal function after more than 10 years. Findings in this patient also suggest that MFM might reduce cystic cell proliferation and fibrosis, preventing progressive renal scarring with preservation of renal function. PMID:21552769

  19. A case of unilateral nephrectomy performed for autosomal dominant polycystic kidney disease with marked unilateral enlargement.

    PubMed

    Makabe, Shiho; Kataoka, Hiroshi; Kondo, Tsunenori; Tanabe, Kazunari; Tsuchiya, Ken; Nitta, Kosaku; Mochizuki, Toshio

    2018-05-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the occurrence of multiple cysts that increase the size of both kidneys, progressively reducing kidney function. Usually the cysts occur bilaterally, and there is no difference in the degree of cyst enlargement between the left and right. Here, we report a case of ADPKD in which kidney size increased markedly on the left side and was accompanied by severe abdominal distension and discomfort. Renal dynamic scintigraphy revealed a severe reduction in function of the left kidney compared with the right. Open left nephrectomy was performed. No change in renal function was observed postoperatively [preoperative estimated glomerular filtration rate (eGFR): 57.6 mL/min/1.73 m 2 , 3-month postoperative eGFR: 56.4 mL/min/1.73 m 2 ], and the abdominal symptoms subsided. When one kidney is markedly larger than the other, the cause and status of the laterality should be evaluated by using renal dynamic scintigraphy in addition to other examinations such as computed tomography or magnetic resonance imaging. Unilateral nephrectomy should be considered as a potential treatment.

  20. Insights into cellular and molecular basis for urinary tract infection in autosomal-dominant polycystic kidney disease.

    PubMed

    Gao, Chao; Zhang, Long; Zhang, Ye; Wallace, Darren P; Lopez-Soler, Reynold I; Higgins, Paul J; Zhang, Wenzheng

    2017-11-01

    Urinary tract infection (UTI) is a broad term referring to an infection of the kidneys, ureters, bladder, and/or urethra. Because of its prevalence, frequent recurrence, and rising resistance to antibiotics, UTI has become a challenge in clinical practice. Autosomal-dominant polycystic kidney disease (ADPKD) is the most common monogenic disorder of the kidney and is characterized by the growth of fluid-filled cysts in both kidneys. Progressive cystic enlargement, inflammation, and interstitial fibrosis result in nephron loss with subsequent decline in kidney function. ADPKD patients frequently develop UTI; however, the cellular and molecular mechanisms responsible for the high UTI incidence in ADPKD patients remain virtually unaddressed. Emerging evidence suggests that α-intercalated cells (α-ICs) of the collecting ducts function in the innate immune defense against UTI. α-ICs inhibit bacterial growth by acidifying urine and secreting neutrophil gelatinase-associated lipocalin (NGAL) that chelates siderophore-containing iron. It is necessary to determine, therefore, if ADPKD patients with recurrent UTI have a reduced number and/or impaired function of α-ICs. Identification of the underlying cellular and molecular mechanisms may lead to the development of novel strategies to reduce UTI in ADPKD. Copyright © 2017 the American Physiological Society.

  1. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons

    PubMed Central

    Russell, Theron A.; Ito, Masafumi; Ito, Mika; Yu, Richard N.; Martinson, Fred A.; Weiss, Jeffrey; Jameson, J. Larry

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder caused by mutations in the arginine vasopressin (AVP) precursor. The pathogenesis of FNDI is proposed to involve mutant protein–induced loss of AVP-producing neurons. We established murine knock-in models of two different naturally occurring human mutations that cause FNDI. A mutation in the AVP signal sequence [A(–1)T] is associated with a relatively mild phenotype or delayed presentation in humans. This mutation caused no apparent phenotype in mice. In contrast, heterozygous mice expressing a mutation that truncates the AVP precursor (C67X) exhibited polyuria and polydipsia by 2 months of age and these features of DI progressively worsened with age. Studies of the paraventricular and supraoptic nuclei revealed induction of the chaperone protein BiP and progressive loss of AVP-producing neurons relative to oxytocin-producing neurons. In addition, Avp gene products were not detected in the neuronal projections, suggesting retention of WT and mutant AVP precursors within the cell bodies. In summary, this murine model of FNDI recapitulates many features of the human disorder and demonstrates that expression of the mutant AVP precursor leads to progressive neuronal cell loss. PMID:14660745

  2. The Value of Pre-Screening in the Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease Trial.

    PubMed

    Rios-Romenets, S; Giraldo-Chica, M; López, H; Piedrahita, F; Ramos, C; Acosta-Baena, N; Muñoz, C; Ospina, P; Tobón, C; Cho, W; Ward, M; Langbaum, J B; Tariot, P N; Reiman, E M; Lopera, F

    2018-01-01

    The Alzheimer's Prevention Initiative (API) Autosomal Dominant Alzheimer's Disease (ADAD) trial evaluates the anti-amyloid-β antibody crenezumab in cognitively unimpaired persons who, based on genetic background and age, are at high imminent risk of clinical progression, and provides a powerful test of the amyloid hypothesis. The Neurosciences Group of Antioquia implemented a pre-screening process with the goals of decreasing screen failures and identifying participants most likely to adhere to trial requirements of the API ADAD trial in cognitively unimpaired members of Presenilin1 E280A mutation kindreds. The pre-screening failure rate was 48.2%: the primary reason was expected inability to comply with the protocol, chiefly due to work requirements. More carriers compared to non-carriers, and more males compared to females, failed pre-screening. Carriers with illiteracy or learning/comprehension difficulties failed pre-screening more than non-carriers. With the Colombian API Registry and our prescreening efforts, we randomized 169 30-60 year-old cognitively unimpaired carriers and 83 non-carriers who agreed to participate in the trial for at least 60 months. Our findings suggest multiple benefits of implementing a pre-screening process for enrolling prevention trials in ADAD.

  3. Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes–Brocks Syndrome

    PubMed Central

    Webb, Bryn D.; Metikala, Sanjeeva; Wheeler, Patricia G.; Sherpa, Mingma D.; Houten, Sander M.; Horb, Marko E.; Schadt, Eric E.

    2017-01-01

    A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419* variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419* protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes–Brocks syndrome. PMID:28054444

  4. Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome.

    PubMed

    Webb, Bryn D; Metikala, Sanjeeva; Wheeler, Patricia G; Sherpa, Mingma D; Houten, Sander M; Horb, Marko E; Schadt, Eric E

    2017-04-01

    A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419 * variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419 * protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes-Brocks syndrome. © 2017 WILEY PERIODICALS, INC.

  5. Mapping of the locus for autosomal dominant amelogenesis imperfecta (AIH2) to a 4-Mb YAC contig on chromosome 4q11-q21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaerrman, C.; Holmgren, G.; Forsman, K.

    1997-01-15

    Amelogenesis imperfecta (Al) is a clinically and genetically heterogeneous group of inherited enamel defects. We recently mapped a locus for autosomal dominant local hypoplastic amelogenesis imperfecta (AIH2) to the long arm of chromosome 4. The disease gene was localized to a 17.6-cM region between the markers D4S392 and D4S395. The albumin gene (ALB), located in the same interval, was a candidate gene for autosomal dominant AI (ADAI) since albumin has a potential role in enamel maturation. Here we describe refined mapping of the AIH2 locus and the construction of marker maps by radiation hybrid mapping and yeast artificial chromosome (YAC)-basedmore » sequence tagged site-content mapping. A radiation hybrid map consisting of 11 microsatellite markers in the 5-cM interval between D4S409 and D4S1558 was constructed. Recombinant haplotypes in six Swedish ADAI families suggest that the disease gene is located in the interval between D4S2421 and ALB. ALB is therefore not likely to be the disease-causing gene. Affected members in all six families share the same allele haplotypes, indicating a common ancestral mutation in all families. The AIH2 critical region is less than 4 cM and spans a physical distance of approximately 4 Mb as judged from radiation hybrid maps. A YAC contig over the AIH2 critical region including several potential candidate genes was constructed. 35 refs., 4 figs., 1 tab.« less

  6. [Renal glycosuria: dominant or recessive autosome anomaly? Mode of hereditary transmission based on the analysis of a 3-generation family tree].

    PubMed

    De Marchi, S; Proto, G; Jengo, A; Collinassi, P; Basile, A

    1983-02-25

    Assessment of the pedigree of 7 persons in 3 generations showed that interpretation of the transmission modality of renal glycosuria may be influenced by the diagnostic criteria employed. Analysis of renal glucose curves and evaluation of glycosuria after an oral glucose tolerance test made it clear that albeit slight detects could be detected in family members who would be regarded as healthy according to the criteria of Marble. Distribution of the character pointed to dominant transmission, as opposed to the recessive autosomal transmission favoured in the literature. Variations in the clinical gravity of the tubular defect may be ascribable to a difference in the expressiveness of the abnormal gene or to genetic heterogeneity. Persons homozygous and heterozygous for the gene were present in the pedigree concerned.

  7. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    PubMed

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  8. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) associated with a novel C82R mutation in the NOTCH3 gene.

    PubMed

    Zea-Sevilla, M Ascensión; Bermejo-Velasco, Pedro; Serrano-Heranz, Regino; Calero, Miguel

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare inherited cerebrovascular disease associated with mutations in the NOTCH3 gene on chromosome 19, and represents the most common hereditary stroke disorder. We describe a pedigree, which suffered the classical clinical CADASIL pattern of migraine headaches, recurrent subcortical infarcts, and subcortical dementia, associated with a previously undescribed missense mutation (c.[244T>C], p.[C82R]) in NOTCH3. This new mutation extends the list of known pathogenic mutations responsible for CADASIL, which are associated with an odd number of cysteine residues within any of the epidermal growth factor-like repeats of Notch3 receptor protein.

  9. Novel autosomal dominant mandibulofacial dysostosis with ptosis: clinical description and exclusion of TCOF1.

    PubMed

    Hedera, P; Toriello, H V; Petty, E M

    2002-07-01

    Treacher Collins syndrome (TCS), the most common type of mandibulofacial dysostosis (MFD), is genetically homogeneous. Other types of MFD are less common and, of these, only the Bauru type of MFD has an autosomal dominant (AD) mode of inheritance established. Here we report clinical features of a kindred with a unique AD MFD with the exclusion of linkage to the TCS locus (TCOF1) on chromosome 5q31-q32. Six affected family members underwent a complete medical genetics physical examination and two affected subjects had skeletal survey. All available medical records were reviewed. Linkage analysis using the markers spanning the TCOF1 locus was performed. One typically affected family member had a high resolution karyotype. Affected subjects had significant craniofacial abnormalities without any significant acral changes and thus had a phenotype consistent with a MFD variant. Distinctive features included hypoplasia of the zygomatic complex, micrognathia with malocclusion, auricular abnormalities with conductive hearing loss, and ptosis. Significantly negative two point lod scores were obtained for markers spanning the TCOF1 locus, excluding the possibility that the disease in our kindred is allelic with TCS. High resolution karyotype was normal. We report a kindred with a novel type of MFD that is not linked to the TCOF1 locus and is also clinically distinct from other types of AD MFD. Identification of additional families will facilitate identification of the gene causing this type of AD MFD and further characterisation of the clinical phenotype.

  10. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  11. Autosomal dominant retinitis pigmentosa: No evidence for nonallelic genetic heterogeneity on 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar-Singh, R.; He Wang; Humphries, P.

    1993-02-01

    Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue the authors have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have foundmore » a likelihood ratio of heterogeneity versus homogeneity of 4.90. They performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test they obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses they have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, they have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Z[sub m]) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, they have mapped (Z[sub m] = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome. 27 refs., 3 figs., 3 tabs.« less

  12. White Matter Abnormalities Track Disease Progression in PSEN1 Autosomal Dominant Alzheimer's Disease.

    PubMed

    Sánchez-Valle, Raquel; Monté, Gemma C; Sala-Llonch, Roser; Bosch, Beatriz; Fortea, Juan; Lladó, Albert; Antonell, Anna; Balasa, Mircea; Bargalló, Nuria; Molinuevo, José Luis

    2016-01-01

    PSEN1 mutations are the most frequent cause of autosomal dominant Alzheimer's disease (ADAD), and show nearly full penetrance. There is presently increasing interest in the study of biomarkers that track disease progression in order to test therapeutic interventions in ADAD. We used white mater (WM) volumetric characteristics and diffusion tensor imaging (DTI) metrics to investigate correlations with the normalized time to expected symptoms onset (relative age ratio) and group differences in a cohort of 36 subjects from PSEN1 ADAD families: 22 mutation carriers, 10 symptomatic (SMC) and 12 asymptomatic (AMC), and 14 non-carriers (NC). Subjects underwent a 3T MRI. WM morphometric data and DTI metrics were analyzed. We found that PSEN1 MC showed significant negative correlation between fractional anisotropy (FA) and the relative age ratio in the genus and body of corpus callosum and corona radiate (p <  0.05 Family-wise error correction (FWE) at cluster level) and positive correlation with mean diffusivity (MD), axial diffusivity (AxD), and radial diffusivity (RD) in the splenium of corpus callosum. SMC presented WM volume loss, reduced FA and increased MD, AxD, and RD in the anterior and posterior corona radiate, corpus callosum (p <  0.05 FWE) compared with NC. No significant differences were observed between AMC and NC in WM volume or DTI measures. These findings suggest that the integrity of the WM deteriorates linearly in PSEN1 ADAD from the early phases of the disease; thus DTI metrics might be useful to monitor the disease progression. However, the lack of significant alterations at the preclinical stages suggests that these indexes might not be good candidates for early markers of the disease.

  13. Relationship between intracranial aneurysms and the severity of autosomal dominant polycystic kidney disease.

    PubMed

    Yoshida, Hiroki; Higashihara, Eiji; Maruyama, Keisuke; Nutahara, Kikuo; Nitatori, Toshiaki; Miyazaki, Isao; Shiokawa, Yoshiaki

    2017-12-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disease characterized by the progressive enlargement of innumerable renal cysts. Although the association of intracranial aneurysms (ICANs) with ADPKD is well known, the relationship between the ICAN and the disease severity including total kidney volume (TKV) and estimated glomerular filtration rate (eGFR) is poorly understood. We screened 265 patients with ADPKD (mean age, 48.8 years; range, 14.9-88.3 years) with MR angiography. The patients with a past history related to ICANs were excluded from the study. The incidence and characteristics of ICAN in patients with ADPKD were evaluated. TKV was measured by volumetric analyses of MR imaging. We detected 65 ICANs in 49 patients (37 women and 12 men, mean age, 52.7 years; range, 20.4-86 years). The incidence of ICANs was 18.5% and female patients had was higher incidence (23.1%) than male patients (11.4%) (p = 0.02). An age of those with ICANs was significantly higher than those without (p = 0.006), and the cumulative risk of diagnosis of ICANs increased with age. TKV was significantly larger in those with ICANs than those without (p = 0.001), but eGFR was not different between two groups (p = 0.07). By multivariate analyses, only TKV was significantly related to the development of ICANs (p = 0.02). The incidence of ICANs increased with age, was higher in females, and correlated with kidney enlargement in patients with ADPKD. Necessity of screening ICANs would be particularly high in elderly women with large kidneys.

  14. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    PubMed

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  15. Pharmacokinetics and Pharmacodynamics of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease: Phase 2 Trials for Dose Selection in the Pivotal Phase 3 Trial

    PubMed Central

    Chapman, Arlene B.; Torres, Vicente E.; Ouyang, John; Czerwiec, Frank S.

    2017-01-01

    Abstract In the pivotal TEMPO 3:4 trial, the arginine vasopressin V2‐receptor antagonist tolvaptan reduced the rate of kidney growth in patients with autosomal dominant polycystic kidney disease. Tolvaptan was initiated as daily morning/afternoon doses of 45/15 mg, and uptitrated weekly to 60/30 mg and 90/30 mg according to patient‐reported tolerability. The current report describes 3 phase 2 trials in adult autosomal dominant polycystic kidney disease subjects that were the basis for the titrated split‐dose regimen: a single ascending‐dose trial (tolvaptan 15 to 120 mg; n = 11), a multiple split‐dose trial (tolvaptan 15/15 mg, 30/0 mg, 30/15 mg, and 30/30 mg; n = 37), and an 8‐week open‐label safety and efficacy trial in 46 of the 48 subjects who participated in the prior 2 trials (tolvaptan 30/15 mg, 45/15 mg, 60/30 mg, and 90/30 mg). Urine osmolality (Uosm) was chosen as the biomarker of V2 receptor inhibition. Two tolvaptan doses per day were necessary to suppress Uosm to <300 mOsm/kg for 24 hours. The 45/15‐mg regimen was well tolerated and effective in suppressing Uosm in >50% of subjects. Therefore, this regimen was selected as the starting regimen for the TEMPO 3:4 trial. The 90/30‐mg regimen suppressed Uosm in 85% of subjects tested; however, only 28/46 subjects agreed to uptitrate to 90/30 mg due to tolerability. Higher concentrations of tolvaptan were less well tolerated, resulting in adverse events of pollakiuria, thirst, polyuria, nocturia, and a higher number of times out of bed to urinate. Subjects who agreed to uptitrate to 90/30 mg had lower eGFR than those who did not uptitrate. PMID:28218410

  16. Type III Bartter-like syndrome in an infant boy with Gitelman syndrome and autosomal dominant familial neurohypophyseal diabetes insipidus.

    PubMed

    Brugnara, Milena; Gaudino, Rossella; Tedeschi, Silvana; Syrèn, Marie-Louise; Perrotta, Silverio; Maines, Evelina; Zaffanello, Marco

    2014-09-01

    We report the case of an infant boy with polyuria and a familial history of central diabetes insipidus. Laboratory blood tests disclosed hypokalemia, metabolic alkalosis, hyperreninemia, and hyperaldosteronism. Plasma magnesium concentration was slightly low. Urine analysis showed hypercalciuria, hyposthenuria, and high excretion of potassium. Such findings oriented toward type III Bartter syndrome (BSIII). Direct sequencing of the CLCNKB gene revealed no disease-causing mutations. The water deprivation test was positive. Magnetic resonance imaging showed a lack of posterior pituitary hyperintensity. Finally, direct sequencing of the AVP-NPII gene showed a point mutation (c.1884G>A) in a heterozygous state, confirming an autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). This condition did not explain the patient's phenotype; thus, we investigated for Gitelman syndrome (GS). A direct sequencing of the SLC12A3 gene showed c.269A>C and c.1205C>A new mutations. In conclusion, the patient had a genetic combination of GS and adFNDI with a BSIII-like phenotype.

  17. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma

    PubMed Central

    Liu, Chunqiao; Widen, Sonya A.; Williamson, Kathleen A.; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P.; Strachan, Erin; Manjunath, Souparnika H.; Balakrishnan, Archana; Floyd, James A.; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P.; Lehmann, Ordan J.; FitzPatrick, David R.; Swaroop, Anand

    2016-01-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt–Frizzled (FZD) signaling in ocular development and directly implicate WNT–FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622

  18. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension.

    PubMed

    Koot, Bart G P; Alders, Marielle; Verheij, Joanne; Beuers, Ulrich; Cobben, Jan M

    2016-04-01

    Non-cirrhotic portal hypertension is characterized by histopathological abnormalities in the liver, mostly affecting small intrahepatic portal veins that cause portal hypertension in the absence of cirrhosis. It can be secondary to coagulation disorders or toxic agents. However, most cases are idiopathic non-cirrhotic portal hypertension (INCPH) and familial cases are rare. We report a family in which a father and three of his four children conceived with three different mothers are affected by INCPH. Whole exome and Sanger sequencing showed the father to have a de novo single nucleotide substitution c.1348G>C in the KCNN3 gene that was transmitted to all three of his affected offspring. The KCNN3 gene encodes small conductance calcium-activated potassium (SK) channel 3. SK channels are involved in the regulation of arterial and venous vascular tone by causing smooth muscle relaxation on activation. No data exist on the expression and function of SK channels in portal veins. The autosomal dominant inheritance in this unique pedigree and the single de novo mutation identified, strongly suggests that KCNN3 mutations have a pathogenetic role in INCPH. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  20. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family.

    PubMed

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-06

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  1. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    PubMed

    Wang, Xia; Charng, Wu-Lin; Chen, Chun-An; Rosenfeld, Jill A; Al Shamsi, Aisha; Al-Gazali, Lihadh; McGuire, Marianne; Mew, Nicholas Ah; Arnold, Georgianne L; Qu, Chunjing; Ding, Yan; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Walkiewicz, Magdalena; Xia, Fan; Plon, Sharon E; Lupski, James R; Schaaf, Christian P; Yang, Yaping

    2017-04-01

    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL1 in the Philadelphia chromosome of leukemia cancer cells. Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants cosegregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found to occur de novo or cosegregate with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in a sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both the p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and experimental findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans and developmental defects in Abl1 knockout mice, suggest that ABL1 has an important role during organismal development.

  2. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26)

    PubMed Central

    van Wijk, E; Krieger, E; Kemperman, M; De Leenheer, E M R; Huygen, P; Cremers, C; Cremers, F; Kremer, H

    2003-01-01

    Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the γ-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the γ 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform. PMID:14684684

  3. Percutaneous Nephrolithotomy in Autosomal Dominant Polycystic Kidney Disease: Is it Different from Percutaneous Nephrolithotomy in Normal Kidney?

    PubMed

    Singh, Vishwajeet; Sinha, Rahul Janak; Gupta, Dheeraj Kumar

    2013-08-01

    Nephrolithiasis has been reported in 20-28% of patients, of whom 50% are symptomatic for stone disease and 20% require definite urologic intervention. The management of nephrolithiasis includes oral alkali dissolution therapy, extracorporeal shock wave lithotripsy and surgical treatment. In such patients, percutaneous nephrolithotomy (PNL) as a method of stone treatment has been reported in few cases with limited experience. The aim of this study is to present our experience of PNL in autosomal dominant polycystic kidney disease (ADPKD) and assessing the outcome results. From 2002 to 2011, 22 patients (26 renal units) suffering from ADPKD with stone were managed by PNL. Demographic characteristics, operative parameters and postoperative complications were recorded and analysed. The overall success rate of PNL was 82.1% and PNL with extracorporeal shock wave lithotripsy for clinically significant residual fragments was 92.85% respectively. The hematuria required blood transfusion (n = 9), postoperative fever due to cyst infection (n = 4) and paralytic ileus (n = 3) were recorded. The PNL in ADPKD PNL is safe and effective but have more postoperative complications such as bleeding requiring transfusions, fever due to cyst infection and paralytic ileus.

  4. X-linked dominant retinitis pigmentosa in an American family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, R.E.; Daiger, S.P.; Blanton, S.H.

    1994-09-01

    Retinitis pigmentosa is a genetically heterogeneous disease with autosomal dominant (adRP), autosomal recessive and X-linked forms. At least 3 forms of X-linked retinitis pigmentosa have been reported: RP2 which maps to Xp11.4-p 11.23, RP3 which maps to Xp21.1 and RP6, which maps to Xp21.3-p21.1. The X-linked forms of retinitis pigmentosa are generally considered to be recessive as female carriers are not affected or are much less affected than males. Here we report a five generation American family with X-linked retinitis pigmentosa in which both males and females are significantly affected. The disease locus in this family appears to be distinctmore » from RP2 and RP3. The American family (UTAD054) presents with early-onset retinitis pigmentosa. The family appeared to fit an autosomal dominant pattern; however, linkage testing excluded all known adRP loci. Absence of male-to-male transmission in the pedigree suggested the possibility of X-linked dominant inheritance. Thus we tested six microsatellite markers that map to Xp (DXS987, DXS989, DXS993, DXS999, DXS1003 and DXS1110). Of these, DXS989 showed tight linkage with one allele (199) showing a 100% concordance with disease status. The odds favoring an X-linked dominant mode of inheritance in this family, versus autosomal dominant, are 10{sup 5}:1. In addition, recombinations for DXS999, and dXS1110, the two markers flanking DXS989, were observed in affected individuals. These data map the disease locus in this family to a 9 mb region on the X chromosome between Xp22.11 and Xp21.41. In addition, the recombinant individuals exclude close linkage to RP2 and RP3. The observance of high penetrance in females indicates that this family has X-linked dominant retinitis pigmentosa. We suggest that this mode of inheritance should be considered in other families with dominant retinitis pigmentosa but an absence of male-to-male transmission.« less

  5. [The cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy].

    PubMed

    Jin, De-xin; Chen, Xiu-yun; Huang, He; Zhang, Xu

    2006-12-01

    To investigate the cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The blood flow velocity of cerebral arteries was measured by using transcranial Doppler ultrasound (TCD) in 6 cases with CADASIL and a quite number of age and sex matched control subjects. All patients (4 were symptomatic and 2 asymptomatic), being an established CADASIL family with the diagnosis confirmed by clinical characteristics, neuroimaging, pathology and molecular genetics, had abnormal mark signals on MR imagining and no history of hypertension, diabetes, heart disease and migraine. A routinely TCD detection, including peak-systolic velocity (Vp), end-diastolic velocity (Vd), mean velocity (Vm) and pulsatility index (PI), was carried out on the bilateral middle cerebral arteries (MCA), anterior cerebral arteries (ACA), posterior cerebral arteries (PCA) and vertebral arteries (VA) as well as the basilar artery (BA). A comparison between the cases and controls was made. Then, the changes of flow velocity in middle cerebral arteries (MCA) of the patients with CADASIL were observed before and after breathholding tests. In addition, brain CT perfusion imaging (CTP) was carried out in all the cases by using 16-slice spiral CT. The appearances of frequency spectrum were nearly normal in all the cases and there was no abnormality between the two sides on velocity (P > 0.05). As compared with the controls, the bilateral Vp, Vd and Vm in ACA and PCA were decreased obviously (P < 0.05). The velocity parameters of MCA with the exception of left Vm and right PI showed changes (P < 0.05) and there were no changes of PI in the bilateral ACA, PCA and Left MCA (P > 0.05). Moreover, there were marked changes in MCA (including Vm, Vd and PI) of all the cases as compared with the controls after breathholding (P < 0.01). Brain perfusion imaging showing the regional cerebral blood flow and regional cerebral blood volume in frontal

  6. An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia.

    PubMed

    Martín, B; Solanas-Barca, M; García-Otín, A-L; Pampín, S; Cofán, M; Ros, E; Rodríguez-Rey, J-C; Pocoví, M; Civeira, F

    2010-05-01

    A substantial number of subjects with autosomal dominant hypercholesterolemia (ADH) do not have LDL receptor (LDLR) or apolipoprotein B (APOB) mutations. Some ADH subjects appear to hyperabsorb sterols from the intestine, thus we hypothesized that they could have variants of the Niemann-Pick C1-Like 1 gene (NPC1L1). NPC1L1 encodes a crucial protein involved in intestinal sterol absorption. Four NPC1L1 variants (-133A>G, -18C>A, 1679C>G, 28650A>G) were analyzed in 271 (155 women and 116 men) ADH bearers without mutations in LDLR or APOB aged 30-70years and 274 (180 women and 94 men) control subjects aged 25-65years. The AC haplotype determined by the -133A>G and -18C>A variants was underrepresented in ADH subjects compared to controls (p=0.01). In the ADH group, cholesterol absorption/synthesis markers were significantly lower in AC homozygotes that in all others haplotypes. Electrophoretic mobility shift assay (EMSA) results revealed that the -133A-specific oligonucleotide produced a retarded band stronger than the -133G allele. Luciferase activity with NPC1L1 -133G variant was 2.5-fold higher than with the -133A variant. The -133A>G polymorphism exerts a significant effect on NPC1L1 promoter activity. NPC1L1 promoter variants might explain in part the hypercholesterolemic phenotype of some subjects with nonLDLR/nonAPOB ADH. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria.

    PubMed

    Cui, Ying-Xia; Xia, Xin-Yi; Zhou, Yang; Gao, Lin; Shang, Xue-Jun; Ni, Tong; Wang, Wei-Ping; Fan, Xiao-Buo; Yin, Hong-Lin; Jiang, Shao-Jun; Yao, Bing; Hu, Yu-An; Wang, Gang; Li, Xiao-Jun

    2013-01-01

    Dyschromatosis universalis hereditaria (DUH) is a rare heterogeneous pigmentary genodermatosis, which was first described in 1933. The genetic cause has recently been discovered by the discovery of mutations in ABCB6. Here we investigated a Chinese family with typical features of autosomal dominant DUH and 3 unrelated patients with sporadic DUH. Skin tissues were obtained from the proband, of this family and the 3 sporadic patients. Histopathological examination and immunohistochemical analysis of ABCB6 were performed. Peripheral blood DNA samples were obtained from 21 affected, 14 unaffected, 11 spouses in the family and the 3 sporadic patients. A genome-wide linkage scan for the family was carried out to localize the causative gene. Exome sequencing was performed from 3 affected and 1 unaffected in the family. Sanger sequencing of ABCB6 was further used to identify the causative gene for all samples obtained from available family members, the 3 sporadic patients and a panel of 455 ethnically-matched normal Chinese individuals. Histopathological analysis showed melanocytes in normal control's skin tissue and the hyperpigmented area contained more melanized, mature melanosomes than those within the hypopigmented areas. Empty immature melanosomes were found in the hypopigmented melanocytes. Parametric multipoint linkage analysis produced a HLOD score of 4.68, with markers on chromosome 2q35-q37.2. A missense mutation (c.1663 C>A, p.Gln555Lys) in ABCB6 was identified in this family by exome and Sanger sequencing. The mutation perfectly cosegregated with the skin phenotype. An additional mutation (g.776 delC, c.459 delC) in ABCB6 was found in an unrelated sporadic patient. No mutation in ABCB6 was discovered in the other two sporadic patients. Neither of the two mutations was present in the 455 controls. Melanocytes showed positive immunoreactivity to ABCB6. Our data add new variants to the repertoire of ABCB6 mutations with DUH.

  8. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model

    PubMed Central

    Tu, Hung-Ya; Chen, Yu-Jiun; McQuiston, Adam R.; Chiao, Chuan-Chin; Chen, Ching-Kang

    2016-01-01

    It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD. PMID:26793064

  9. Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele.

    PubMed

    Reiterová, Jana; Štekrová, Jitka; Merta, Miroslav; Kotlas, Jaroslav; Elišáková, Veronika; Lněnička, Petr; Korabečná, Marie; Kohoutová, Milada; Tesař, Vladimír

    2013-03-15

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.

  10. Comprehensive PKD1 and PKD2 Mutation Analysis in Prenatal Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Audrézet, Marie-Pierre; Corbiere, Christine; Lebbah, Said; Morinière, Vincent; Broux, Françoise; Louillet, Ferielle; Fischbach, Michel; Zaloszyc, Ariane; Cloarec, Sylvie; Merieau, Elodie; Baudouin, Véronique; Deschênes, Georges; Roussey, Gwenaelle; Maestri, Sandrine; Visconti, Chiara; Boyer, Olivia; Abel, Carine; Lahoche, Annie; Randrianaivo, Hanitra; Bessenay, Lucie; Mekahli, Djalila; Ouertani, Ines; Decramer, Stéphane; Ryckenwaert, Amélie; Cornec-Le Gall, Emilie; Salomon, Rémi; Ferec, Claude; Heidet, Laurence

    2016-03-01

    Prenatal forms of autosomal dominant polycystic kidney disease (ADPKD) are rare but can be recurrent in some families, suggesting a common genetic modifying background. Few patients have been reported carrying, in addition to the familial mutation, variation(s) in polycystic kidney disease 1 (PKD1) or HNF1 homeobox B (HNF1B), inherited from the unaffected parent, or biallelic polycystic kidney and hepatic disease 1 (PKHD1) mutations. To assess the frequency of additional variations in PKD1, PKD2, HNF1B, and PKHD1 associated with the familial PKD mutation in early ADPKD, these four genes were screened in 42 patients with early ADPKD in 41 families. Two patients were associated with de novo PKD1 mutations. Forty patients occurred in 39 families with known ADPKD and were associated with PKD1 mutation in 36 families and with PKD2 mutation in two families (no mutation identified in one family). Additional PKD variation(s) (inherited from the unaffected parent when tested) were identified in 15 of 42 patients (37.2%), whereas these variations were observed in 25 of 174 (14.4%, P=0.001) patients with adult ADPKD. No HNF1B variations or PKHD1 biallelic mutations were identified. These results suggest that, at least in some patients, the severity of the cystic disease is inversely correlated with the level of polycystin 1 function. Copyright © 2016 by the American Society of Nephrology.

  11. Molecular Typing of Staphylococcus aureus Isolated from Patients with Autosomal Dominant Hyper IgE Syndrome

    PubMed Central

    Sastalla, Inka; Williams, Kelli W.; Anderson, Erik D.; Myles, Ian A.; Reckhow, Jensen D.; Espinoza-Moraga, Marlene; Freeman, Alexandra F.; Datta, Sandip K.

    2017-01-01

    Autosomal dominant hyper IgE syndrome (AD-HIES) is a primary immunodeficiency caused by a loss-of-function mutation in the Signal Transducer and Activator of Transcription 3 (STAT3). This immune disorder is clinically characterized by increased susceptibility to cutaneous and sinopulmonary infections, in particular with Candida and Staphylococcus aureus. It has recently been recognized that the skin microbiome of patients with AD-HIES is altered with an overrepresentation of certain Gram-negative bacteria and Gram-positive staphylococci. However, these alterations have not been characterized at the species- and strain-level. Since S. aureus infections are influenced by strain-specific expression of virulence factors, information on colonizing strain characteristics may provide insights into host-pathogen interactions and help guide management strategies for treatment and prophylaxis. The aim of this study was to determine whether the immunodeficiency of AD-HIES selects for unique strains of colonizing S. aureus. Using multi-locus sequence typing (MLST), protein A (spa) typing, and PCR-based detection of toxin genes, we performed a detailed analysis of the S. aureus isolates (n = 13) found on the skin of twenty-one patients with AD-HIES. We found a low diversity of sequence types, and an abundance of strains that expressed methicillin resistance, Panton-Valentine leukocidin (PVL), and staphylococcal enterotoxins K and Q (SEK, SEQ). Our results indicate that patients with AD-HIES may often carry antibiotic-resistant strains that harbor key virulence factors. PMID:28587312

  12. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study.

    PubMed

    Mullis, Primus E; Robinson, Iain C A F; Salemi, Souzan; Eblé, Andrée; Besson, Amélie; Vuissoz, Jean-Marc; Deladoey, Johnny; Simon, Dominique; Czernichow, Paul; Binder, Gerhard

    2005-04-01

    Four distinct familial types of isolated GH deficiency have been described so far, of which type II is the autosomal dominant inherited form. It is mainly caused by mutations within the first 6 bp of intervening sequence 3. However, other splice site and missense mutations have been reported. Based on in vitro experiments and transgenic animal data, there is strong evidence that there is a wide variability in phenotype in terms of the severity of GH deficiency. Therefore, we studied a total of 57 subjects belonging to 19 families suffering from different splice site as well as missense mutations within the GH-1 gene. The subjects presenting with a splice site mutation within the first 2 bp of intervening sequence 3 (5'IVS +1/+2 bp) leading to a skipping of exon 3 were found to be more likely to present in the follow-up with other pituitary hormone deficiencies. In addition, although the patients with missense mutations have previously been reported to be less affected, a number of patients presenting with the P89L missense GH form, showed some pituitary hormone impairment. The development of multiple hormonal deficiencies is not age dependent, and there is a clear variability in onset, severity, and progression, even within the same families. The message of clinical importance from these studies is that the pituitary endocrine status of all such patients should continue to be monitored closely over the years because further hormonal deficiencies may evolve with time.

  13. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene.

    PubMed

    Toustrup, Lise Bols; Zhou, Yan; Kvistgaard, Helene; Gregersen, Niels; Rittig, Søren; Aagaard, Lars; Corydon, Thomas Juhl; Luo, Yonglun; Christensen, Jane H

    2017-03-01

    Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A new mutation in the COL4A3 gene responsible for autosomal dominant Alport syndrome, which only generates hearing loss in some carriers.

    PubMed

    Rosado, Consolación; Bueno, Elena; Fraile, Pilar; García-Cosmes, Pedro; González-Sarmiento, Rogelio

    2015-01-01

    Bilateral sensorineural hearing loss is a characteristic feature of Alport syndrome, which is always linked to renal manifestations so they have a parallel evolution and prognosis, and deafness helps to identify the renal disease. We report a family that suffers an autosomal dominant Alport syndrome caused by a previously undescribed mutation in the COL4A3 gene, in which several members have hearing impairment as the only clinical manifestation, suggesting that in this family deafness can occur independent of renal disease. This mutation is also present in a patient with anterior lenticonus, an observation only found in families with recessive and sex-linked Alport disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. A paradoxical presentation of rickets and secondary osteomyelitis of the jaw in Type II autosomal dominant osteopetrosis: Rare case reports.

    PubMed

    Jayachandran, S; Kumar, M Suresh

    2016-01-01

    Osteopetrosis is a rare genetic bone disorder arising due to a defect in the differentiation or function of osteoclast which results in a generalized increase in bone mass. Osteomyelitis is one of the most common complications because of decreased bone marrow function and compromised blood supply. Radiologist plays a vital role in diagnosing osteopetrosis. Here, we present two cases of autosomal dominant osteopetrosis Type II (ADO II) with secondary osteomyelitis changes which were reported to our department. One of these two cases presented with secondary osteomyelitis in both maxilla and mandible and features of rickets, which is very rarely seen in ADO II. To the best of our knowledge, the presentation of rickets with ADO is the first of its kind to be reported. In this paper, we describe the clinical and radiological features leading to the diagnosis of ADO in these two patients. Further, a review of the literature regarding ADO is discussed.

  16. Clinical and ERG data in a family with autosomal dominant RP and Pro-347-Arg mutation in the rhodopsin gene.

    PubMed

    Niemeyer, G; Trüb, P; Schinzel, A; Gal, A

    1992-01-01

    In a family with autosomal dominant retinitis pigmentosa, documented over six generations, a previously undescribed point mutation in the rhodopsin gene could be identified. The mutation found in the six affected members examined but in none of the controls, including healthy members of the family, was a point mutation in codon 347 predicting a substitution of the amino acid arginine for proline, designated Pro-347-Arg. Six affected members from two generations were examined clinically and with ganzfeld rod and cone electroretinography. The cone and, more dramatically, the rod electroretinograms were reduced to residual b-wave amplitudes or were non-detectable as early as ages 18 to 22 years. The Pro-347-Arg mutation resulted in a subjectively and clinically homogeneous phenotype: early onset of night blindness before age 11, relatively preserved usable visual fields until about age 30, blindness at ages 40 to 60, and change from an initial apparently sine pigmento to a hyperpigmented and atrophic fundus picture between 30 and 50 years of age.

  17. Localization of a new autosomal dominant retinitis pigmentosa gene on chromosome 17p screeningof candidate genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, J.; Goliath, R.; Shugart, Y.Y.

    1994-09-01

    A new gene locus for autosomal dominant retinitis pigmentosa (ADRP) on 17p has been identified in a large South African (SA) family consisting of 28 living affected individuals in 4 successive generations. This is the first ADRP gene to be reported from SA. The human recoverin (RCVN) gene, which codes for a retinal-specific protein important in recovery to the dark state after visual excitation, has been mapped to 17p13.1 and was considered as a prime candidate gene for the disorder in this family. Mutation screening (using 8 different electrophoretic conditions to resolve heteroduplexes and SSCPs) did not produce any evidencemore » of RCVN being involved in the pathogenesis of ADRP in this SA family. In addition, a mobility shift detected within exon 1 of the RCVN gene did not track with the ADRP phenotype. RP patients from 77 SA families and 30 normal individuals are being examined to establish the frequency of this polymorphism in the SA population. Highly polymorphic markers from 17p13 are now being sought in order to establish the minimum region containing this novel ADRP-SA gene. Two additional recently described retinal-expressed cDNAs, guanylyl cyclase and pigment epithelium-derived factor, which map to 17p13.1, will be tested for tight linkage to ADRP-SA.« less

  18. The influence of renal manifestations to the progression of autosomal dominant polycystic kidney disease

    PubMed Central

    Idrizi, A; Barbullushi, M; Petrela, E; Kodra, S; Koroshi, A; Thereska, N

    2009-01-01

    Background: Renal stones, urinary tract infections (UTI) and gross hematuria (GH) are the most important renal manifestations of autosomal dominant polycystic kidney disease (ADPKD). They are not only common, but are also frequent cause of morbidity, influencing renal dysfunction. The aim of this study was to evaluate the frequency of these manifestations in our patients with ADPKD and their impact on renal function. Methods: One hundred eighty ADPKD patients were included in the study. Subjects were studied for the presence of UTI, gross hematuria frequency and responsible factors of nephrolithiasis. Survival times were calculated as the time to renal replacement therapy or time of serum creatinine value up to 10 mg/dl. Kaplan-Meier product-limit survival curves were constructed, and log rank test was used to compare the survival curves. Results: Kidney stones were present in 76/180 (42% of pts). The stones were composed of urate (47%) calcium oxalate (39%), and other compounds 14%. UTI was observed in 60% (108 patients). Patients treated with urinary disinfectants had a significant lower frequency of urinary infection (p<0.001) and hematuria (p<0.001) after one year than untreated patients. Gross hematuria was present in 113 patients (63%). In 43 patients hematuria was diagnosed before age 30 (38%), while in 70 patients it was diagnosed after age 30 (62%). Conclusions: UTI is frequent in our ADPKD patients. The correct treatment of UTI decreases its frequency and has beneficial role in the rate of progression to renal failure in ADPKD patients. Patients with recurrent episodes of gross hematuria may be at risk for more severe renal disease. PMID:19918304

  19. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging

    PubMed Central

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Purpose Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Methods Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Results Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. Conclusions AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A. This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. PMID:29074494

  20. The disruption of a novel limb cis-regulatory element of SHH is associated with autosomal dominant preaxial polydactyly-hypertrichosis

    PubMed Central

    Petit, Florence; Jourdain, Anne-Sophie; Holder-Espinasse, Muriel; Keren, Boris; Andrieux, Joris; Duterque-Coquillaud, Martine; Porchet, Nicole; Manouvrier-Hanu, Sylvie; Escande, Fabienne

    2016-01-01

    The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date. We report a family affected with a novel condition associating PPD and hypertrichosis of the upper back, following an autosomal dominant mode of inheritance. This phenotype is consistent with deregulation of SHH expression during limb and follicle development. In affected members, we identified a 2 kb deletion located ~240 kb upstream from the SHH promoter. The deleted sequence is capable of repressing the transcriptional activity of the SHH promoter in vitro, consistent with a silencer activity. We hypothesize that the deletion of this silencer could be responsible for SHH deregulation during development, leading to a PPD-hypertrichosis phenotype. PMID:25782671

  1. Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Biancalana, Valérie; DeChene, Elizabeth T.; Bitoun, Marc; Pierson, Christopher R.; Schaefer, Elise; Karasoy, Hatice; Dempsey, Melissa A.; Klein, Fabrice; Dondaine, Nicolas; Kretz, Christine; Haumesser, Nicolas; Poirson, Claire; Toussaint, Anne; Greenleaf, Rebecca S.; Barger, Melissa A.; Mahoney, Lane J.; Kang, Peter B.; Zanoteli, Edmar; Vissing, John; Witting, Nanna; Echaniz-Laguna, Andoni; Wallgren-Pettersson, Carina; Dowling, James; Merlini, Luciano; Oldfors, Anders; Ousager, Lilian Bomme; Melki, Judith; Krause, Amanda; Jern, Christina; Oliveira, Acary S. B.; Petit, Florence; Jacquette, Aurélia; Chaussenot, Annabelle; Mowat, David; Leheup, Bruno; Cristofano, Michele; Aldea, Juan José Poza; Michel, Fabrice; Furby, Alain; Llona, Jose E. Barcena; Van Coster, Rudy; Bertini, Enrico; Urtizberea, Jon Andoni; Drouin-Garraud, Valérie; Béroud, Christophe; Prudhon, Bernard; Bedford, Melanie; Mathews, Katherine; Erby, Lori A. H.; Smith, Stephen A.; Roggenbuck, Jennifer; Crowe, Carol A.; Spitale, Allison Brennan; Johal, Sheila C.; Amato, Anthony A.; Demmer, Laurie A.; Jonas, Jessica; Darras, Basil T.; Bird, Thomas D.; Laurino, Mercy; Welt, Selman I.; Trotter, Cynthia; Guicheney, Pascale; Das, Soma; Mandel, Jean-Louis; Beggs, Alan H.; Laporte, Jocelyn

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. PMID:22396310

  2. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    PubMed Central

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  3. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Bahnsen, U; Oosting, P; Swaab, D F; Nahke, P; Richter, D; Schmale, H

    1992-01-01

    Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI. Images PMID:1740104

  4. Plasma lipoprotein(a) levels in patients with homozygous autosomal dominant hypercholesterolemia.

    PubMed

    Sjouke, Barbara; Yahya, Reyhana; Tanck, Michael W T; Defesche, Joep C; de Graaf, Jacqueline; Wiegman, Albert; Kastelein, John J P; Mulder, Monique T; Hovingh, G Kees; Roeters van Lennep, Jeanine E

    Patients with autosomal dominant hypercholesterolemia (ADH), caused by mutations in either low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin-kexin type 9 (PCSK9) are characterized by high low-density lipoprotein cholesterol levels and in some studies also high lipoprotein(a) (Lp(a)) levels were observed. The question remains whether this effect on Lp(a) levels is gene-dose-dependent in individuals with either 0, 1, or 2 LDLR or APOB mutations. We set out to study whether Lp(a) levels differ among bi-allelic ADH mutation carriers, and their relatives, in the Netherlands. Bi-allelic ADH mutation carriers were identified in the database of the national referral laboratory for DNA diagnostics of inherited dyslipidemias. Family members were invited by the index cases to participate. Clinical parameters and Lp(a) levels were measured in bi-allelic ADH mutation carriers and their heterozygous and unaffected relatives. We included a total of 119 individuals; 34 bi-allelic ADH mutation carriers (20 homozygous/compound heterozygous LDLR mutation carriers (HoFH), 2 homozygous APOB mutation carriers (HoFDB), and 12 double heterozygotes for an LDLR and APOB mutation), 63 mono-allelic ADH mutation carriers (50 heterozygous LDLR [HeFH], 13 heterozygous APOB [HeFDB] mutation carriers), and 22 unaffected family members. Median Lp(a) levels in unaffected relatives, HeFH, and HoFH patients were 19.9 (11.1-41.5), 24.4 (5.9-70.6), and 47.3 (14.9-111.7) mg/dL, respectively (P = .150 for gene-dose dependency). Median Lp(a) levels in HeFDB and HoFDB patients were 50.3 (18.7-120.9) and 205.5 (no interquartile range calculated), respectively (P = .012 for gene-dose-dependency). Double heterozygous carriers of LDLR and APOB mutations had median Lp(a) levels of 27.0 (23.5-45.0), which did not significantly differ from HoFH and HoFDB patients (P = .730 and .340, respectively). A (trend toward) increased plasma Lp(a) levels in homozygous

  5. Behavioral Retardation in a Macaque with Autosomal Trisomy and Aging Mother.

    ERIC Educational Resources Information Center

    Waal, Frans B. M. de; And Others

    1996-01-01

    The social development of a female rhesus monkey was followed from birth until death, age 32 months. The monkey had an extra autosome and was hydrocephalic. The monkey showed serious motor deficiencies, delayed social development, poorly established dominance relationships, and heavy dependence on mother and kin. The monkey was, however, well…

  6. A family with spondyloepimetaphyseal dwarfism: a 'new' dysplasia or Kniest disease with autosomal recessive inheritance?

    PubMed Central

    Farag, T I; Al-Awadi, S A; Hunt, M C; Satyanath, S; Zahran, M; Usha, R; Uma, R

    1987-01-01

    We present an Arab family with some features of Kniest disease. The proband was a six year old boy with rhizomelic short limbed dwarfism, 'dish-like' facies, cleft palate, deafness, and camptodactyly. Most radiological changes were compatible with Kniest disease. Two younger sibs, similarly affected, had died at a few months old, and the pedigree shows strong evidence of autosomal recessive inheritance, unlike previously reported cases of Kniest disease which have shown autosomal dominant inheritance. Images PMID:3681904

  7. Autosomal dominant hereditary sensory neuropathy with chronic cough and gastro-oesophageal reflux: clinical features in two families linked to chromosome 3p22-p24.

    PubMed

    Spring, Penelope J; Kok, Cindy; Nicholson, Garth A; Ing, Alvin J; Spies, Judith M; Bassett, Mark L; Cameron, John; Kerlin, Paul; Bowler, Simon; Tuck, Roger; Pollard, John D

    2005-12-01

    Autosomal dominant hereditary sensory neuropathy (HSN I) is a clinically and genetically heterogeneous group of disorders, and in some families it is due to mutations in the serine palmitoyltransferase (SPTLC1) gene. We have characterized two families with HSN I associated with cough and gastro-oesophageal reflux (GOR). From a large Australian family, 27 individuals and from a smaller family, 11 individuals provided clinical information and blood for genetic analysis. Affected individuals had an adult onset of paroxysmal cough, GOR and distal sensory loss. Cough could be triggered by noxious odours or by pressure in the external auditory canal (Arnold's ear-cough reflex). Other features included throat clearing, hoarse voice, cough syncope and sensorineural hearing loss. Neurophysiological and pathological studies demonstrated a sensory axonal neuropathy. Gastric emptying studies were normal, and autonomic function and sweat tests were either normal or showed distal hypohidrosis. Cough was likely to be due to a combination of denervation hypersensitivity of the upper airways and oesophagus, and prominent GOR. Most affected individuals were shown on 24 h ambulatory oesophageal pH monitoring to have multiple episodes of GOR, closely temporally associated with coughing. Hoarse voice was probably attributable to acid-induced laryngeal damage, and there was no evidence of vocal cord palsy. No other cause for cough was found on most respiratory or otorhinological studies. Linkage to chromosome 3p22-p24 has been found in both families, with no evidence of linkage to loci for known HSN I, autosomal dominant hereditary motor and sensory neuropathy, hereditary GOR or triple A syndrome. These families represent a genetically novel variant of HSN I, with a distinctive cough owing to involvement of the upper aerodigestive tract.

  8. Identifying and integrating consumer perspectives in clinical practice guidelines on autosomal-dominant polycystic kidney disease.

    PubMed

    Tong, Allison; Tunnicliffe, David J; Lopez-Vargas, Pamela; Mallett, Andrew; Patel, Chirag; Savige, Judy; Campbell, Katrina; Patel, Manish; Tchan, Michel C; Alexander, Stephen I; Lee, Vincent; Craig, Jonathan C; Fassett, Robert; Rangan, Gopala K

    2016-02-01

    This study aimed to identify consumer perspectives on topics and outcomes to integrate in the Kidney Health Australia Caring for Australasians with Renal Impairment (KHA-CARI) clinical practice guidelines on autosomal-dominant polycystic kidney disease (ADPKD). A workshop involving three concurrent focus groups with 18 consumers (patients with ADPKD (n = 15), caregivers (n = 3)) was convened. Guideline topics, interventions and outcomes were identified, and integrated into guideline development. Thematic analysis was used to analyse the reasons for their choices. Twenty-two priority topics were identified, with most focussed on non-pharmacological management (diet, fluid intake, physical activity, complementary medicine), pain management and psychosocial care (mental health, counselling, cognitive and behavioural training, education, support groups). They also identified 26 outcomes including quality of life (QoL), progression of kidney disease, kidney function, cyst growth and nephrotoxity. Almost all topics and outcomes suggested were identified by health professionals with the exception of five topics/outcomes. Six themes reflected reasons for their choices: clarifying ambiguities, resolving debilitating pain, concern for family, preparedness for the future, taking control and significance of impact. Although there was considerable concordance between the priority topics and outcomes of health professionals and consumers for guidelines of ADPKD, there was also important discordance with consumers focused on fewer issues, but particularly on lifestyle, psychosocial support, pain, and QoL and renal outcomes. Active consumer engagement in guidelines development can help to ensure the inclusion of patient-centred recommendations, which may lead to better management of disease progression, symptoms, complications, and psychosocial impact. © 2015 Asian Pacific Society of Nephrology.

  9. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia.

    PubMed

    Baran, Natalia; ter Braak, Michael; Saffrich, Rainer; Woelfle, Joachim; Schmitz, Udo

    2015-05-15

    Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. P136L CaR mutation was predicted to cause gain of function of CaR. Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene.

    PubMed

    Martinsson, T; Oldfors, A; Darin, N; Berg, K; Tajsharghi, H; Kyllerman, M; Wahlstrom, J

    2000-12-19

    We here report on a human myopathy associated with a mutation in a fast myosin heavy chain (MyHC) gene, and also the genetic defect in a hereditary inclusion body myopathy. The disorder has previously been described in a family with an "autosomal dominant myopathy, with joint contractures, ophthalmoplegia, and rimmed vacuoles." Linkage analysis and radiation hybrid mapping showed that the gene locus (Human Genome Map locus name: IBM3) is situated in a 2-Mb region of chromosome 17p13, where also a cluster of MyHC genes is located. These include the genes encoding embryonic, IIa, IIx/d, IIb, perinatal, and extraocular MyHCs. Morphological analysis of muscle biopsies from patients from the family indicated to us that the type 2A fibers frequently were abnormal, whereas other fiber types appeared normal. This observation prompted us to investigate the MyHC-IIa gene, since MyHC-IIa is the major isoform in type 2A fibers. The complete genomic sequence for this gene was deduced by using an "in silico" strategy. The gene, found to consist of 38 exons, was subjected to a complete mutation scan in patients and controls. We identified a missense mutation, Glu-706 --> Lys, which is located in a highly conserved region of the motor domain, the so-called SH1 helix region. By conformational changes this region communicates activity at the nucleotide-binding site to the neck region, resulting in the lever arm swing. The mutation in this region is likely to result in a dysfunctional myosin, compatible with the disorder in the family.

  11. Role of renin-angiotensin-aldosterone system gene polymorphisms and hypertension-induced end-stage renal disease in autosomal dominant polycystic kidney disease.

    PubMed

    Ramanathan, Gnanasambandan; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar

    2014-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disease of the kidneys and is marked by progressive cyst growth and decline in kidney function, resulting in end-stage renal disease (ESRD). Hypertension is thought to be a significant modifying factor in the progression of renal failure in ADPKD. A number of genetic variations involved in renin-angiotensin-aldosterone system (RAAS) pathway genes have clinical or physiological impacts on pathogenesis of hypertension-induced ESRD in ADPKD. Information on RAAS pathway gene polymorphisms and their association with ESRD and ADPKD, published till March 2013, was collected using MEDLINE search. The present review deals with RAAS gene polymorphisms focused on hypertension-induced ESRD in ADPKD in different populations. The results were inconclusive and limited by heterogeneity in the study designs and the population stratification. In lieu of applying next generation sequencing technologies to study complex diseases, it is also possible to apply the same to unravel the complexity of ESRD in ADPKD.

  12. A YAC contig encompassing the chromosome 7p locus for autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.F.; Keen, T.J.; Ratel, R.

    1994-09-01

    Retinitis pigmentosa is an inherited retinal degeneration characterized by night blindness and loss of peripheral vision, often leading to complete blindness. The autosomal dominant form (adRP) maps to at least six different loci, including the rhodopsin and peripherin/Rds genes and four loci identified only by linkage analysis on chromosomes 7p, 7q, 8cen and 19q. The 7p locus was reported by this laboratory in a large English family, with a lod score of 16.5. Several new genetic markers have been tested in the family and this locus has now been refined to an interval of approximately 1 cM between markers D7S795more » and D7S484 in the 7p13-15 region. In order to clone the gene for adRP, we have used microsatellites and STSs from the region to identify over 80 YACs, from four different libraries, which map to this interval. End clones from key YACs were isolated for the generation of additional STSs. Eleven microsatellite markers between D7S435 (distal) and D7S484 (proximal) have been ordered by a combination of both physical and genetic mapping. In this way we have now obtained a YAC contig spanning approximately 3 megabases of chromosome 7p within which the adRP gene must lie. One gene (aquaporin) and one chromosome 7 brain EST have been placed on the contig but both map distal to the region of interest. Sixteen other ESTs and three further known 7p genes mapping in the region have been excluded. We are now attempting to build a cosmid contig in the defined interval and identify further expressed sequences from both YACs and cosmids to test as candidates for the adRP gene.« less

  13. Suitability of Patients with Autosomal Dominant Polycystic Kidney Disease for Renal Transcatheter Arterial Embolization

    PubMed Central

    Ubara, Yoshifumi; Mise, Koki; Ueno, Toshiharu; Sumida, Keiichi; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Imafuku, Aya; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei

    2016-01-01

    In patients with autosomal dominant polycystic kidney disease (ADPKD), massive renal enlargement is a serious problem. Renal transcatheter arterial embolization (TAE) can reduce renal volume (RV), but effectiveness varies widely, and the reasons remain unclear. We investigated factors affecting renal volume reduction rate (RVRR) after renal TAE in all 449 patients with ADPKD who received renal TAE at Toranomon Hospital from January of 2006 to July of 2013, including 228 men and 221 women (mean age =57.0±9.1 years old). One year after renal TAE, the RVRR ranged from 3.9% to 84.8%, and the least squares mean RVRR calculated using a linear mixed model was 45.5% (95% confidence interval [95% CI], 44.2% to 46.8%). Multivariate analysis using the linear mixed model revealed that RVRR was affected by the presence of large cysts with wall thickening (regression coefficient [RC], −6.10; 95% CI, −9.04 to −3.16; P<0.001), age (RC, −0.82; 95% CI, −1.03 to −0.60; P<0.001), dialysis duration (RC, −0.10; 95% CI, −0.18 to −0.03; P<0.01), systolic BP (RC, 0.39; 95% CI, 0.19 to 0.59; P<0.001), and the number of microcoils used for renal TAE (RC, 1.35; 95% CI, 0.83 to 1.86; P<0.001). Significantly more microcoils were needed to achieve renal TAE in patients with younger age and shorter dialysis duration. In conclusion, cyst wall thickening had an important effect on cyst volume reduction. Renal TAE was more effective in patients who were younger, had shorter dialysis duration, or had hypertension, parameters that might associate with cyst wall stiffness and renal artery blood flow. PMID:26620095

  14. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.

    PubMed

    Imel, Erik A; Peacock, Munro; Gray, Amie K; Padgett, Leah R; Hui, Siu L; Econs, Michael J

    2011-11-01

    In autosomal dominant hypophosphatemic rickets (ADHR), fibroblast growth factor 23 (FGF23) resists cleavage, causing increased plasma FGF23 levels. The clinical phenotype includes variable onset during childhood or adulthood and waxing/waning of hypophosphatemia. Delayed onset after puberty in females suggests iron status may be important. Studies were performed to test the hypothesis that plasma C-terminal and intact FGF23 concentrations are related to serum iron concentrations in ADHR. Cross-sectional and longitudinal studies of ADHR and a cross-sectional study in healthy subjects were conducted at an academic medical center. Participants included 37 subjects with ADHR mutations from four kindreds and 158 healthy adult controls. The relationships of serum iron concentrations with plasma C-terminal and intact FGF23 concentrations were evaluated. Serum phosphate and 1,25-dihydroxyvitamin D correlated negatively with C-terminal FGF23 and intact FGF23 in ADHR but not in controls. Serum iron was negatively correlated to both C-terminal FGF23 (r = -0.386; P < 0.05) and intact FGF23 (r = -0.602; P < 0.0001) in ADHR. However, control subjects also demonstrated a negative relationship of serum iron with C-terminal FGF23 (r = -0.276; P < 0.001) but no relationship with intact FGF23. Longitudinally in ADHR subjects, C-terminal FGF23 and intact FGF23 concentrations changed negatively with iron concentrations (P < 0.001 and P = 0.055, respectively), serum phosphate changed negatively with C-terminal FGF23 and intact FGF23 (P < 0.001), and there was a positive relationship between serum iron and phosphate (P < 0.001). Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression.

  15. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics.

    PubMed

    Fujioka, Shinsuke; Sundal, Christina; Wszolek, Zbigniew K

    2013-01-18

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.

  16. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics

    PubMed Central

    2013-01-01

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413

  17. Suitability of Patients with Autosomal Dominant Polycystic Kidney Disease for Renal Transcatheter Arterial Embolization.

    PubMed

    Suwabe, Tatsuya; Ubara, Yoshifumi; Mise, Koki; Ueno, Toshiharu; Sumida, Keiichi; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Imafuku, Aya; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei

    2016-07-01

    In patients with autosomal dominant polycystic kidney disease (ADPKD), massive renal enlargement is a serious problem. Renal transcatheter arterial embolization (TAE) can reduce renal volume (RV), but effectiveness varies widely, and the reasons remain unclear. We investigated factors affecting renal volume reduction rate (RVRR) after renal TAE in all 449 patients with ADPKD who received renal TAE at Toranomon Hospital from January of 2006 to July of 2013, including 228 men and 221 women (mean age =57.0±9.1 years old). One year after renal TAE, the RVRR ranged from 3.9% to 84.8%, and the least squares mean RVRR calculated using a linear mixed model was 45.5% (95% confidence interval [95% CI], 44.2% to 46.8%). Multivariate analysis using the linear mixed model revealed that RVRR was affected by the presence of large cysts with wall thickening (regression coefficient [RC], -6.10; 95% CI, -9.04 to -3.16; P<0.001), age (RC, -0.82; 95% CI, -1.03 to -0.60; P<0.001), dialysis duration (RC, -0.10; 95% CI, -0.18 to -0.03; P<0.01), systolic BP (RC, 0.39; 95% CI, 0.19 to 0.59; P<0.001), and the number of microcoils used for renal TAE (RC, 1.35; 95% CI, 0.83 to 1.86; P<0.001). Significantly more microcoils were needed to achieve renal TAE in patients with younger age and shorter dialysis duration. In conclusion, cyst wall thickening had an important effect on cyst volume reduction. Renal TAE was more effective in patients who were younger, had shorter dialysis duration, or had hypertension, parameters that might associate with cyst wall stiffness and renal artery blood flow. Copyright © 2016 by the American Society of Nephrology.

  18. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging.

    PubMed

    Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina

    2018-01-01

    Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease

    PubMed Central

    Sharma, Kanishka; Caroli, Anna; Quach, Le Van; Petzold, Katja; Bozzetto, Michela; Serra, Andreas L.; Remuzzi, Giuseppe; Remuzzi, Andrea

    2017-01-01

    Background In autosomal dominant polycystic kidney disease (ADPKD), total kidney volume (TKV) is regarded as an important biomarker of disease progression and different methods are available to assess kidney volume. The purpose of this study was to identify the most efficient kidney volume computation method to be used in clinical studies evaluating the effectiveness of treatments on ADPKD progression. Methods and findings We measured single kidney volume (SKV) on two series of MR and CT images from clinical studies on ADPKD (experimental dataset) by two independent operators (expert and beginner), twice, using all of the available methods: polyline manual tracing (reference method), free-hand manual tracing, semi-automatic tracing, Stereology, Mid-slice and Ellipsoid method. Additionally, the expert operator also measured the kidney length. We compared different methods for reproducibility, accuracy, precision, and time required. In addition, we performed a validation study to evaluate the sensitivity of these methods to detect the between-treatment group difference in TKV change over one year, using MR images from a previous clinical study. Reproducibility was higher on CT than MR for all methods, being highest for manual and semiautomatic contouring methods (planimetry). On MR, planimetry showed highest accuracy and precision, while on CT accuracy and precision of both planimetry and Stereology methods were comparable. Mid-slice and Ellipsoid method, as well as kidney length were fast but provided only a rough estimate of kidney volume. The results of the validation study indicated that planimetry and Stereology allow using an importantly lower number of patients to detect changes in kidney volume induced by drug treatment as compared to other methods. Conclusions Planimetry should be preferred over fast and simplified methods for accurately monitoring ADPKD progression and assessing drug treatment effects. Expert operators, especially on MR images, are required

  20. Cyst infection in autosomal dominant polycystic kidney disease: causative microorganisms and susceptibility to lipid-soluble antibiotics.

    PubMed

    Suwabe, T; Araoka, H; Ubara, Y; Kikuchi, K; Hazue, R; Mise, K; Hamanoue, S; Ueno, T; Sumida, K; Hayami, N; Hoshino, J; Imafuku, A; Kawada, M; Hiramatsu, R; Hasegawa, E; Sawa, N; Takaichi, K

    2015-07-01

    Cyst infection is a frequent and serious complication of autosomal dominant polycystic kidney disease (ADPKD). Lipid-soluble antibiotics like fluoroquinolones show good penetration into cysts and are recommended for cyst infection, but causative microorganisms are often resistant to these agents. This study investigated the profile of the microorganisms causing cyst infection in ADPKD, their susceptibility to lipid-soluble antibiotics, and clinical outcomes. This retrospective study reviewed all ADPKD patients admitted to Toranomon Hospital with a diagnosis of cyst infection from January 2004 to March 2014. All patients who underwent cyst drainage and had positive cyst fluid cultures were enrolled. Patients with positive blood cultures who satisfied our criteria for cyst infection or probable infection were also enrolled. There were 99 episodes with positive cyst fluid cultures and 93 episodes with positive blood cultures. The majority of patients were on dialysis. The death rate was high when infection was caused by multiple microorganisms or when there were multiple infected cysts. Gram-negative bacteria accounted for 74-79 % of the isolates in all groups, except for patients with positive hepatic cyst fluid cultures. The susceptibility of Escherichia coli to fluoroquinolones was very low in patients with hepatic cyst infection, especially those with frequent episodes and those with hepatomegaly. Fungi were detected in two episodes. Fluoroquinolone-resistant microorganisms showed a high prevalence in cyst infection. It is important to identify causative microorganisms to avoid the overuse of fluoroquinolones and to improve the outcome of cyst infection in ADPKD.

  1. A Case of New Familiar Genetic Variant of Autosomal Dominant Polycystic Kidney Disease-2: A Case Study.

    PubMed

    Litvinchuk, Tetiana; Tao, Yunxia; Singh, Ruchi; Vasylyeva, Tetyana L

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal cyst formation due to mutations in genes coding for polycystin-1 [PKD1 (85-90% of cases), on ch 16p13.3] and polycystin-2 [PKD2 (10-15% of cases), on ch 4q13-23] and PKD3 gene (gene unmapped). It is also associated with TSC2/PKD1 contiguous gene syndrome. ADPKD is usually inherited, but new mutations without a family history occur in approximately 10% of the cases. A 17-year-old boy was followed up for bilateral cystic kidney disease, hypertension, and obesity since he was 13 years old. The diagnosis was an accidental finding during abdominal CT at age 13 to rule out appendicitis. A renal ultrasonogram also demonstrated a multiple bilateral cysts. Because of parental history of bilateral renal cysts, PKD1 and PKD2, genetic testing was ordered. Results showed, PKD2 variant 1:3 bp deletion of TGT; nucleotide position: 1602-1604; codon position: 512-513; mRNA reading frame maintained. The same mutation was later identified in his father. A smaller number of patients have a defect in the PKD2 locus on chromosome 4 (resulting in PKD2 disease). There are no known published cases on this familiar genetic variant of ADPKD-2 cystic kidney disease. In this case, the disease is present unusually early in life.

  2. Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease.

    PubMed

    Capuano, Alessandra; Bucciotti, Francesco; Farwell, Kelly D; Tippin Davis, Brigette; Mroske, Cameron; Hulick, Peter J; Weissman, Scott M; Gao, Qingshen; Spessotto, Paola; Colombatti, Alfonso; Doliana, Roberto

    2016-01-01

    Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio-exome sequencing of a 55-year-old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN-1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN-1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal-dominant connective tissue disorder. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  3. Anesthetic management of a patient diagnosed with CADASIL (cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy).

    PubMed

    Errando, C L; Navarro, L; Vila, M; Pallardó, M A

    2012-02-01

    CADASIL (cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leu-koencephalopathy) is an infrequent inherited disease that could have anesthetic implica-tions. However these have rarely been reported. We present a male patient previously diagnosed with CADASIL, who had suffered an ischemic vascular cerebral accident with a MRI compatible with leukoencephalopathy, and who was dependent for daily activities, and sustained dementia, mood alterations, apathy, and urine incontinence. He had famil-ial antecedents of psychiatric symptoms and ischemic stroke events in several relatives including his father, two brothers and one sister. He was scheduled for arthrodesis of the left knee because of multiple infectious complications of prosthetic knee surgery. He was under clopidogrel treatment which was withdrawn seven days before surgery. The pro-cedure was performed under combined spinal-epidural anesthesia, intraoperative seda-tion with midazolam, and postoperative multimodal analgesia including epidural patient controlled analgesia. The perioperative management was uneventful and we outline the adequacy of managing these patients under regional anesthesia and analgesia, as these permit to maintain hemodynamic stability leading to adequate cerebral perfusion, key to avoid an increase in the effects of the chronic arteriopathy patients with CADASIL sustain. Copyright © 2012 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  4. Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an Inactivation Mutation in the ENPP1 Gene

    PubMed Central

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-01-01

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772

  5. Effects of Lacunar Infarctions on Cognitive Impairment in Patients with Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

    PubMed Central

    Choi, Jay Chol; Kang, Sa-Yoon; Kang, Ji-Hoon; Na, Hae Ri; Park, Ji-Kang

    2011-01-01

    Background and Purpose Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited microangiopathy caused by mutations in the Notch3 gene. Although previous studies have shown an association between lacunar infarction and cognitive impairment, the relationship between MRI parameters and cognition remains unclear. In this study we investigated the influence of MRI parameters on cognitive impairment in CADASIL. Methods We applied a prospective protocol to 40 patients. MRI analysis included the normalized volume of white-matter hyperintensities (nWMHs), number of lacunes, and number of cerebral microbleeds. Cognition was assessed with the aid of psychometric tests [Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognition (ADAS-cog), Trail-Making Test, and Stroop interference (Stroop IF)]. Results A multivariate regression analysis revealed that the total number of lacunes influenced the performance in the MMSE, ADAS-cog, and Stroop IF, while nWMHs had a strong univariate association with ADAS-cog and Stroop IF scores. However, this association disappeared in the multivariate analysis. Conclusions These findings demonstrate that the number of lacunes is the main predictive factor of cognitive impairment in CADASIL. PMID:22259617

  6. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  7. The Value of Pre-Screening in the Alzheimer’s Prevention Initiative (API) Autosomal Dominant Alzheimer’s Disease Trial

    PubMed Central

    Rios-Romenets, S.; Giraldo-Chica, M.; López, H.; Piedrahita, F.; Ramos, C.; Acosta-Baena, N.; Muñoz, C.; Ospina, P.; Tobón, C.; Cho, W.; Ward, M.; Langbaum, J.B.; Tariot, P.N.; Reiman, E.M.; Lopera, F.

    2018-01-01

    The Alzheimer’s Prevention Initiative (API) Autosomal Dominant Alzheimer’s Disease (ADAD) trial evaluates the anti-amyloid-β antibody crenezumab in cognitively unimpaired persons who, based on genetic background and age, are at high imminent risk of clinical progression, and provides a powerful test of the amyloid hypothesis. The Neurosciences Group of Antioquia implemented a pre-screening process with the goals of decreasing screen failures and identifying participants most likely to adhere to trial requirements of the API ADAD trial in cognitively unimpaired members of Presenilin1 E280A mutation kindreds. The pre-screening failure rate was 48.2%: the primary reason was expected inability to comply with the protocol, chiefly due to work requirements. More carriers compared to non-carriers, and more males compared to females, failed pre-screening. Carriers with illiteracy or learning/comprehension difficulties failed pre-screening more than non-carriers. With the Colombian API Registry and our prescreening efforts, we randomized 169 30–60 year-old cognitively unimpaired carriers and 83 non-carriers who agreed to participate in the trial for at least 60 months. Our findings suggest multiple benefits of implementing a pre-screening process for enrolling prevention trials in ADAD. PMID:29405233

  8. Associations Between Biomarkers and Age in the Presenilin 1 E280A Autosomal Dominant Alzheimer Disease Kindred A Cross-sectional Study

    PubMed Central

    Fleisher, Adam S.; Chen, Kewei; Quiroz, Yakeel T.; Jakimovich, Laura J.; Gomez, Madelyn Gutierrez; Langois, Carolyn M.; Langbaum, Jessica B. S.; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M.; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J.; Tariot, Pierre N.; Lopera, Francisco; Reiman, Eric M.

    2015-01-01

    IMPORTANCE Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and noncarriers from the world’s largest known autosomal dominant Alzheimer disease (AD) kindred. OBJECTIVE To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). MAIN OUTCOMES AND MEASURES We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. RESULTS Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau

  9. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study.

    PubMed

    Fleisher, Adam S; Chen, Kewei; Quiroz, Yakeel T; Jakimovich, Laura J; Gutierrez Gomez, Madelyn; Langois, Carolyn M; Langbaum, Jessica B S; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J; Tariot, Pierre N; Lopera, Francisco; Reiman, Eric M

    2015-03-01

    Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1)E280A mutation carriers and noncarriers from the world's largest known autosomal dominant Alzheimer disease (AD) kindred. To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau, age 13 years (95% CI, 8-19 years) for phosphorylated tau181, and age 6 years (95% CI, 1

  10. Affected parent sex and severity of autosomal dominant polycystic kidney disease: a retrospective cohort study
.

    PubMed

    Nowak, Kristen L; Chonchol, Michel; You, Zhiying; Gupta, Malika; Gitomer, Berenice

    2018-03-01

    Parental inheritance may differentially affect autosomal dominant polycystic kidney disease (-ADPKD) severity via genetic imprinting or in utero epigenetic modifications; however, evidence is inconsistent. We conducted a longitudinal retrospective cohort study to assess the association between sex of the affected parent and time to hypertension diagnosis, end-stage renal disease (ESRD), and death in patients with the PKD1 genotype. 814 individuals who participated in research at the University of Colorado were studied. Kaplan-Meier survival analysis was performed. The predictor was parental sex, and outcomes were diagnosis of hypertension, progression to ESRD, and death. We also examined associations in four strata according to affected parent and participant sex, as previous studies have reported earlier onset of ESRD in males compared to females. The median follow-up for each outcome was as follows: hypertension, 30 (interquartile range (IQR): 18, 37); ESRD, 43 (IQR: 31, 52), death 39 (IQR: 25, 52) years of age. Among affected offspring in the entire cohort, there was no difference in hypertension diagnosis (p = 0.97) or progression to ESRD (p = 0.79) according to affected parent sex; however, participants with an affected mother were more likely to die than participants with an affected father (p < 0.05). In stratified analyses, males were more likely than females to develop hypertension and reach ESRD when the affected parent was the father (p < 0.01) but not when the affected parent was the mother (p ≥ 0.11). Our results are largely in contrast to the hypothesis that severity of ADPKD is worse with maternal inheritance of disease.
.

  11. Psychiatric comorbidities in patients from seven families with autosomal dominant cortical tremor, myoclonus, and epilepsy.

    PubMed

    Coppola, Antonietta; Caccavale, Carmela; Santulli, Lia; Balestrini, Simona; Cagnetti, Claudia; Licchetta, Laura; Esposito, Marcello; Bisulli, Francesca; Tinuper, Paolo; Provinciali, Leandro; Minetti, Carlo; Zara, Federico; Striano, Pasquale; Striano, Salvatore

    2016-03-01

    The objective of this report was to assess the psychiatric comorbidity in a group of patients affected by autosomal dominant cortical tremor, myoclonus, and epilepsy (ADCME). Reliable and validated psychodiagnostic scales including the BDI (Beck Depression Inventory), STAI-Y1 and 2 (State-Trait Anxiety Inventory - Y; 1 and 2), MMPI-2 (Minnesota Multiphasic Personality Inventory - 2), and QoLIE-31 (Quality of Life in Epilepsy Inventory - 31) were administered to 20 patients with ADCME, 20 patients with juvenile myoclonic epilepsy (JME), and 20 healthy controls. There was a higher prevalence of mood disorders in patients with ADCME compared to patients with JME and healthy controls, particularly depression (p=0.035 and p=0.017, respectively) and state anxiety (p=0.024 and p=0.019, respectively). Trait anxiety was not different from JME (p=0.102) but higher than healthy controls (p=0.017). The myoclonus score positively correlated with both state (rho: 0.58, p=0.042) and trait anxiety (rho: 0.65, p=0.011). These psychiatric features were also often associated with pathological traits of personality: paranoid (OR: 25.7, p=0.003), psychasthenia (OR: 7.0, p=0.023), schizophrenia (OR: 8.5, p=0.011), and hypomania (OR: 5.5, p=0.022). Finally, in patients with ADCME, decreased quality of life correlated with these psychiatric symptoms. Patients with ADCME show a significant psychiatric burden that impairs their quality of life. A comprehensive psychiatric evaluation should be offered at the time of diagnosis to detect these comorbidities and to treat them. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia

    PubMed Central

    Massink, Maarten P.G.; Créton, Marijn A.; Spanevello, Francesca; Fennis, Willem M.M.; Cune, Marco S.; Savelberg, Sanne M.C.; Nijman, Isaäc J.; Maurice, Madelon M.; van den Boogaard, Marie-José H.; van Haaften, Gijs

    2015-01-01

    Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs∗8], c.1779dupT [p.Glu594∗], and c.2224_2225dupTT [p.Leu742Phefs∗7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein’s signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics. PMID:26387593

  13. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system.

    PubMed

    Brons, A-K; Henthorn, P S; Raj, K; Fitzgerald, C A; Liu, J; Sewell, A C; Giger, U

    2013-01-01

    Cystinuria, one of the first recognized inborn errors of metabolism, has been reported in many dog breeds. To determine urinary cystine concentrations, inheritance, and mutations in the SLC3A1 and SLC7A9 genes associated with cystinuria in 3 breeds. Mixed and purebred Labrador Retrievers (n = 6), Australian Cattle Dogs (6), Miniature Pinschers (4), and 1 mixed breed dog with cystine urolithiasis, relatives and control dogs. Urinary cystinuria and aminoaciduria was assessed and exons of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA. In each breed, male and female dogs, independent of neuter status, were found to form calculi. A frameshift mutation in SLC3A1 (c.350delG) resulting in a premature stop codon was identified in autosomal-recessive (AR) cystinuria in Labrador Retrievers and mixed breed dogs. A 6 bp deletion (c.1095_1100del) removing 2 threonines in SLC3A1 was found in autosomal-dominant (AD) cystinuria with a more severe phenotype in homozygous than in heterozygous Australian Cattle Dogs. A missense mutation in SLC7A9 (c.964G>A) was discovered in AD cystinuria in Miniature Pinschers with only heterozygous affected dogs observed to date. Breed-specific DNA tests were developed, but the prevalence of each mutation remains unknown. These studies describe the first AD inheritance and the first putative SLC7A9 mutation to cause cystinuria in dogs and expand our understanding of this phenotypically and genetically heterogeneous disease, leading to a new classification system for canine cystinuria and better therapeutic management and genetic control in these breeds. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  14. Generation of induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient with a p.Ser1457fs mutation in PKD1.

    PubMed

    Huang, Ching-Ying; Ho, Ming-Ching; Lee, Jia-Jung; Hwang, Daw-Yang; Ko, Hui-Wen; Cheng, Yu-Che; Hsu, Yu-Hung; Lu, Huai-En; Chen, Hung-Chun; Hsieh, Patrick C H

    2017-10-01

    Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa.

    PubMed

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L; Loh, Abigail; Wright, Graham D; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K; Choudhri, Asim F; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N; Mundlos, Stefan; Villarroel, Camilo E; Byers, Peter; Masri, Amira; Robertson, Stephen P; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-09-03

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Autosomal dominant polycystic kidney disease and pain - a review of the disease from aetiology, evaluation, past surgical treatment options to current practice.

    PubMed

    Badani, K K; Hemal, A K; Menon, M

    2004-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), often referred to as "adult" polycystic kidney disease, is one of the commonest hereditary disorders. It affects approximately 4 to 6 million individuals worldwide. The disease progresses to end-stage renal disease and it accounts for 10-15% of patients requiring dialysis in the United States. A comprehensive Medline search for aetiology, evaluation, screening, cellular biology, and treatment was utilized to locate, extract, and synthesize relevant data with respect to this topic. Special attention was focused on urologic literature and surgical textbooks regarding operative treatment of pain associated with ADPKD. Now, patients with ADPKD have more treatment options. More specifically, several therapeutic alternatives are now available for the management of pain in these patients. A recent review of literature supports the performance of open or laparoscopic cyst decortication procedures for control of pain and infection without the worry of causing further renal impairment in those with preserved renal function.

  17. Novel calcium-sensing receptor cytoplasmic tail deletion mutation causing autosomal dominant hypocalcemia: molecular and clinical study.

    PubMed

    Obermannova, Barbora; Sumnik, Zdenek; Dusatkova, Petra; Cinek, Ondrej; Grant, Michael; Lebl, Jan; Hendy, Geoffrey N

    2016-04-01

    Autosomal dominant hypocalcemia (ADH) is a rare disorder caused by activating mutations of the calcium-sensing receptor (CASR). The treatment of ADH patients with 1α-hydroxylated vitamin D derivatives can cause hypercalciuria leading to nephrocalcinosis. We studied a girl who presented with hypoparathyroidism and asymptomatic hypocalcemia at age 2.5 years. Mutations of CASR were investigated by DNA sequencing. Functional analyses of mutant and WT CASRs were done in transiently transfected human embryonic kidney (HEK293) cells. The proband and her father are heterozygous for an eight-nucleotide deletion c.2703_2710delCCTTGGAG in the CASR encoding the intracellular domain of the protein. Transient expression of CASR constructs in kidney cells in vitro suggested greater cell surface expression of the mutant receptor with a left-shifted extracellular calcium dose-response curve relative to that of the WT receptor consistent with gain of function. Initial treatment of the patient with calcitriol led to increased urinary calcium excretion. Evaluation for mosaicism in the paternal grandparents of the proband was negative. We describe a novel naturally occurring deletion mutation within the CASR that apparently arose de novo in the father of the ADH proband. Functional analysis suggests that the cytoplasmic tail of the CASR contains determinants that regulate the attenuation of signal transduction. Early molecular analysis of the CASR gene in patients with isolated idiopathic hypoparathyroidism is recommended because of its relevance to clinical outcome and treatment choice. In ADH patients, calcium supplementation and low-dose cholecalciferol avoids hypocalcemic symptoms without compromising renal function. © 2016 European Society of Endocrinology.

  18. Exon sequencing of PKD1 gene in an Iranian patient with autosomal-dominant polycystic kidney disease.

    PubMed

    Hafizi, Atousa; Khatami, Saeid Reza; Galehdari, Hamid; Shariati, Gholamreza; Saberi, Ali Hossein; Hamid, Mohammad

    2014-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrated an important allelic variability among patients, but very few data are known about the genetic variation among Iranian populations. In this study, exon direct sequencing of PKD1 was performed in a seven-year old boy with ADPKD and in his parents. The patient's father was ADPKD who was affected without any kidney dysfunction, and the patient's mother was congenitally missing one kidney. Molecular genetic testing found a mutation in all three members of this family. It was a missense mutation GTG>ATG at position 3057 in exon 25 of PKD1. On the other hand, two novel missense mutations were reported just in the 7-year-old boy: ACA>GCA found in exon 15 at codon 2241 and CAC>AAC found in exon 38 at codon 3710. For checking the pathogenicity of these mutations, exons 15, 25, and 38 of 50 unrelated normal cases were sequenced. our findings suggested that GTG>ATG is a polymorphism with high frequency (60%) as well as ACA>GCA and CAC>AAC are polymorphisms with frequencies of 14% and 22%, respectively in the population of Southwest Iran.

  19. Evidence against a second autosomal dominant retinitis pigmentosa locus close to rhodopsin on chromosome 3q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.; Bhattacharya, S.; Farrar, J.

    1993-08-01

    In 1989 McWilliam et al. reported close linkage of the autosomal dominant retinitis pigmentosa (adRP) locus to chromosome 3q marker D3S47 in a large Irish pedigree (McWilliam et al 1989). Subsequent studies confirmed linkage in two other adRP families (Lester et al 1990; Olsson et al. 1990). Shortly afterward, utations in the rhodopsin (RHO) gene, mapping to 3q21-24, were implicated in disease causation, and it is now known that around one-third of adRP results from such mutations (Dryja et al. 1991; Sung et al. 1991; Inglchearn et al. 1992a). At that time, sequencing studies had failed to find rhodopsin mutationsmore » in the three families first linked to 3q. Several adRP families in which rhodopsin mutations had been found gave lod scores that, when pooled, had a peak of 4.47 at a theta of .12 (Inglehearn et al. 1992b). The apparent lack of mutations in families TCDM1, adRP3, and 20 together with the linkage data in these and the proved RHO-RP families, led to speculation that two adRP loci existed on chromosome 3q (Olsson et al. 1990; Inglehearn et al. 1992b). However this situation has been reversed by more recent analysis, since rhodopsin mutations have now been found in all three families. There is therefore no longer any evidence to support the hypothesis that a second adRP locus exists close to rhodopsin on chromosome 3q.« less

  20. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Rousseau, Annick; Hourmant, Maryvonne; Renaudineau, Eric; Charasse, Christophe; Morin, Marie-Pascale; Moal, Marie-Christine; Dantal, Jacques; Wehbe, Bassem; Perrichot, Régine; Frouget, Thierry; Vigneau, Cécile; Potier, Jérôme; Jousset, Philippe; Guillodo, Marie-Paule; Siohan, Pascale; Terki, Nazim; Sawadogo, Théophile; Legrand, Didier; Menoyo-Calonge, Victorio; Benarbia, Seddik; Besnier, Dominique; Longuet, Hélène; Férec, Claude; Le Meur, Yannick

    2016-03-01

    The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD. Copyright © 2016 by the American Society of Nephrology.

  1. Clinical and molecular genetic characterisation of a family segregating autosomal dominant retinitis pigmentosa and sensorineural deafness.

    PubMed

    Kenna, P; Mansergh, F; Millington-Ward, S; Erven, A; Kumar-Singh, R; Brennan, R; Farrar, G J; Humphries, P

    1997-03-01

    To characterise clinically a large kindred segregating retinitis pigmentosa and sensorineural hearing impairment in an autosomal dominant pattern and perform genetic linkage studies in this family. Extensive linkage analysis in this family had previously excluded the majority of loci shown to be involved in the aetiologies of RP, some other forms of inherited retinal degeneration, and inherited deafness. Members of the family were subjected to detailed ophthalmic and audiological assessment. In addition, some family members underwent skeletal muscle biopsy, electromyography, and electrocardiography. Linkage analysis using anonymous microsatellite markers was performed on DNA samples from all living members of the pedigree. Patients in this kindred have a retinopathy typical of retinitis pigmentosa in addition to a hearing impairment. Those members of the pedigree examined demonstrated a subclinical myopathy, as evidence by abnormal skeletal muscle histology, electromyography, and electrocardiography. LOD scores of Zmax = 3.75 (theta = 0.10), Zmax = 3.41 (theta = 0.10), and Zmax = 3.25 (theta = 0.15) respectively were obtained with the markers D9S118, D9S121, and ASS, located on chromosome 9q34-qter, suggesting that the causative gene in this family may lie on the long arm (q) of chromosome 9. These data indicate that the gene responsible for the phenotype in this kindred is located on chromosome 9 q. These data, together with evidence that a murine deafness gene is located in a syntenic area of the mouse genome, should direct the research community to consider this area as a candidate region for retinopathy and/or deafness genes.

  2. Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa

    PubMed Central

    Sullivan, Lori S.; Avery, Cheryl E.; Sasser, Elizabeth M.; Roorda, Austin; Duncan, Jacque L.; Wheaton, Dianna H.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Sieving, Paul A.; Daiger, Stephen P.

    2013-01-01

    Purpose The purpose of this project was to determine the spectrum and frequency of mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) that cause autosomal dominant retinitis pigmentosa (adRP). Methods A well-characterized adRP cohort of 251 families was tested for mutations in the exons and intron/exon junctions of SNRNP200 using fluorescent dideoxy sequencing. An additional 21 adRP families from the eyeGENE® Network were tested for possible mutations. Bioinformatic and segregation analysis was performed on novel variants. Results SNRNP200 mutations were identified in seven of the families tested. Two previously reported mutations, p.Arg681Cys and p.Ser1087Leu, were found in two families each. One family had the previously reported p.Arg681His mutation. Two novel SNRNP200 variants, p.Pro682Ser and p.Ala542Val, were also identified in one family each. Bioinformatic and segregation analyses suggested that these novel variants are likely to be pathogenic. Clinical examination of patients with SNRNP200 mutations showed a wide range of clinical symptoms and severity, including one instance of non-penetrance. Conclusions Mutations in SNRNP200 caused 1.6% of disease in our adRP cohort. Pathogenic mutations were found primarily in exons 16 and 25, but the novel p.Ala542Val mutation in exon 13 suggests that variation in other genetic regions is also responsible for causing dominant disease. SNRNP200 mutations were associated with a wide range of clinical symptoms similar to those of individuals with other splice-factor gene mutations. PMID:24319334

  3. Fine genetic mapping of a gene for autosomal recessive retinitis pigmentosa on chromosome 6p21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shugart, Yin Y.; Banerjee, P.; Knowles, J.A.

    1995-08-01

    The inherited retinal degenerations known as retinitis pigmentosa (RP) can be caused by mutations at many different loci and can be inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait. Two forms of autosomal recessive (arRP) have been reported to cosegregate with mutations in the rhodopsin gene and the beta-subunit of rod phosphodiesterase on chromosome 4p. Genetic linkage has been reported on chromosomes 6p and 1q. In a large Dominican family, we reported an arRp gene near the region of the peripherin/RDS gene. Four recombinations were detected between the disease locus and an intragenic marker derived from peripherin/RDS.more » 26 refs., 2 figs., 1 tab.« less

  4. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation

    PubMed Central

    Tenhola, Sirpa; Voutilainen, Raimo; Reyes, Monica; Toiviainen-Salo, Sanna; Jüppner, Harald; Mäkitie, Outi

    2016-01-01

    Objective Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 1 is caused by activating mutations in the calcium-sensing receptor (CASR), a G-protein-coupled receptor signaling through α11 (Gα11) and αq (Gαq) subunits. Heterozygous activating mutations in GNA11, the gene encoding Gα11, underlie ADH type 2. This study describes disease characteristics in a family with ADH caused by a presumed gain-of-function mutation in GNA11. Design A three-generation family with seven members (3 adults, 4 children) presenting with ADH. Methods Biochemical parameters of calcium metabolism, clinical, genetic and brain imaging findings were analyzed. Results Sanger sequencing revealed a heterozygous GNA11 missense mutation (c.1018G>A, p.V340M) in all seven hypocalcemic subjects, but not in the healthy family members (n = 4). The adult patients showed clinical symptoms of hypocalcemia, while the children were asymptomatic. Plasma ionized calcium ranged from 0.95 to 1.14 mmol/L, yet plasma PTH was inappropriately low for the degree of hypocalcemia. Serum 25OHD was normal. Despite hypocalcemia 1,25(OH)2D and urinary calcium excretion were inappropriately in the reference range. None of the patients had nephrocalcinosis. Two adults and one child (of the two MRI scanned children) had distinct intracranial calcifications. All affected subjects had short stature (height s.d. scores ranging from −3.4 to −2.3 vs −0.5 in the unaffected children). Conclusions The identified GNA11 mutation results in biochemical abnormalities typical for ADH. Additional features, including short stature and early intracranial calcifications, cosegregated with the mutation. These findings may indicate a wider role for Gα11 signaling besides calcium regulation. PMID:27334330

  5. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    PubMed Central

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  6. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation.

    PubMed

    Tenhola, Sirpa; Voutilainen, Raimo; Reyes, Monica; Toiviainen-Salo, Sanna; Jüppner, Harald; Mäkitie, Outi

    2016-09-01

    Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 1 is caused by activating mutations in the calcium-sensing receptor (CASR), a G-protein-coupled receptor signaling through α11 (Gα11) and αq (Gαq) subunits. Heterozygous activating mutations in GNA11, the gene encoding Gα11, underlie ADH type 2. This study describes disease characteristics in a family with ADH caused by a gain-of-function mutation in GNA11. A three-generation family with seven members (3 adults, 4 children) presenting with ADH. Biochemical parameters of calcium metabolism, clinical, genetic and brain imaging findings were analyzed. Sanger sequencing revealed a heterozygous GNA11 missense mutation (c.1018G>A, p.V340M) in all seven hypocalcemic subjects, but not in the healthy family members (n=4). The adult patients showed clinical symptoms of hypocalcemia, while the children were asymptomatic. Plasma ionized calcium ranged from 0.95 to 1.14mmol/L, yet plasma PTH was inappropriately low for the degree of hypocalcemia. Serum 25OHD was normal. Despite hypocalcemia 1,25(OH)2D and urinary calcium excretion were inappropriately in the reference range. None of the patients had nephrocalcinosis. Two adults and one child (of the two MRI scanned children) had distinct intracranial calcifications. All affected subjects had short stature (height s.d. scores ranging from -3.4 to -2.3 vs -0.5 in the unaffected children). The identified GNA11 mutation results in biochemical abnormalities typical for ADH. Additional features, including short stature and early intracranial calcifications, cosegregated with the mutation. These findings may indicate a wider role for Gα11 signaling besides calcium regulation. © 2016 European Society of Endocrinology.

  7. Premature coronary heart disease and autosomal dominant hypercholesterolemia: Increased risk in women with LDLR mutations.

    PubMed

    Ahmad, Zahid; Li, Xilong; Wosik, Jedrek; Mani, Preethi; Petr, Joye; McLeod, George; Murad, Shatha; Song, Li; Adams-Huet, Beverley; Garg, Abhimanyu

    2016-01-01

    For patients with autosomal dominant hypercholesterolemia (ADH), it remains unclear whether differences exist in the risk of premature coronary heart disease (CHD) between patients with confirmed mutations in low-density lipoprotein receptor (LDLR) vs those without detectable mutations. This study sought to assess the risk of premature CHD in ADH patients with mutations in LDLR (referred to as familial hypercholesterolemia [FH]) vs those without detectable mutations (unexplained ADH), stratified by sex. Comparative study of premature CHD in a multiethnic cohort of 111 men and 165 women meeting adult Simon-Broome criteria for ADH. Women with FH (n = 51) had an increased risk of premature CHD compared with unexplained ADH women (n = 111; hazard ratio [HR], 2.74; 95% confidence interval, 1.40-5.34; P = .003) even after adjustment for lipid levels and traditional CHD risk factors (HR, 2.53 [1.10-5.83]; P = .005). Men with FH (n = 42), in contrast, had a similar risk of premature CHD when compared with unexplained ADH men (n = 66; unadjusted: HR, 1.48 [0.84-2.63]; P = .18; adjusted: HR, 1.04 [0.46-2.37]; P = .72). To address whether mutation status provides additional information beyond LDL-cholesterol level, we analyzed premature CHD risk for FH vs unexplained ADH at various percentiles of LDL-cholesterol: the risk ratios were significant for women at 25th percentile (HR, 4.90 [1.69-14.19]) and 50th percentile (HR, 3.44 [1.42-8.32]) but not at 75th percentile (HR, 1.99 [0.95-4.17]), and were not significant for men at any percentile. Our findings suggest that genetic confirmation of ADH may be important to identify patient's risk of CHD, especially for female LDLR mutation carriers. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients.

    PubMed

    Trender-Gerhard, I; Sweeney, M G; Schwingenschuh, P; Mir, P; Edwards, M J; Gerhard, A; Polke, J M; Hanna, M G; Davis, M B; Wood, N W; Bhatia, K P

    2009-08-01

    An autosomal dominantly inherited defect in the GCH1 gene that encodes guanosine triphosphate cyclohydrolase 1 (GTPCH1) is the most common cause of dopa-responsive dystonia (DRD). A classic phenotype of young-onset lower-limb dystonia, diurnal fluctuations and excellent response to levodopa has been well recognised in association with GCH1 mutations, and rare atypical presentations have been reported. However, a number of clinical issues remain unresolved including phenotypic variability, long-term response to levodopa and associated non-motor symptoms, and there are limited data on long-term follow-up of genetically proven cases. A detailed clinical evaluation of 34 patients (19 women, 15 men), with confirmed mutations in the GCH1 gene, is presented. The classic phenotype was most frequent (n = 23), with female predominance (F:M = 16:7), and early onset (mean 4.5 years) with involvement of legs. However, a surprisingly large number of patients developed craniocervical dystonia, with spasmodic dysphonia being the predominant symptom in two subjects. A subset of patients, mainly men, presented with either a young-onset (mean 6.8 years) mild DRD variant not requiring treatment (n = 4), or with an adult-onset (mean 37 years) Parkinson disease-like phenotype (n = 4). Two siblings were severely affected with early hypotonia and delay in motor development, associated with compound heterozygous GCH1 gene mutations. The study also describes a number of supplementary features including restless-legs-like symptoms, influence of female sex hormones, predominance of tremor or parkinsonism in adult-onset cases, initial reverse reaction to levodopa, recurrent episodes of depressive disorder and specific levodopa-resistant symptoms (writer's cramp, dysphonia, truncal dystonia). Levodopa was used effectively and safely in 20 pregnancies, and did not cause any fetal abnormalities.

  9. Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia.

    PubMed

    Massink, Maarten P G; Créton, Marijn A; Spanevello, Francesca; Fennis, Willem M M; Cune, Marco S; Savelberg, Sanne M C; Nijman, Isaäc J; Maurice, Madelon M; van den Boogaard, Marie-José H; van Haaften, Gijs

    2015-10-01

    Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs(∗)8], c.1779dupT [p.Glu594(∗)], and c.2224_2225dupTT [p.Leu742Phefs(∗)7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein's signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. The clinical phenotype of autosomal dominant lateral temporal lobe epilepsy related to reelin mutations.

    PubMed

    Michelucci, Roberto; Pulitano, Patrizia; Di Bonaventura, Carlo; Binelli, Simona; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Serioli, Elena; Dazzo, Emanuela; Fanciulli, Manuela; Nobile, Carlo

    2017-03-01

    To describe the clinical phenotype of 7 families with Autosomal Dominant Lateral Temporal Lobe Epilepsy (ADLTE) related to Reelin (RELN) mutations comparing the data with those observed in 12 LGI1-mutated pedigrees belonging to our series. Out of 40 Italian families with ADLTE, collected by epileptologists participating in a collaborative study of the Commission for Genetics of the Italian League against Epilepsy encompassing a 14-year period (2000-2014), 7 (17.5%) were found to harbor heterozygous RELN mutations. The whole series also included 12 (30%) LGI1 mutated families and 21 (52.5%) non-mutated pedigrees. The clinical, neurophysiological, and neuroradiological findings of RELN and LGI1 mutated families were analyzed. Out of 28 affected individuals belonging to 7 RELN mutated families, 24 had sufficient clinical data available for the study. In these patients, the epilepsy onset occurred at a mean age of 20years, with focal seizures characterized by auditory auras in about 71% of the cases, associated in one-third of patients with aphasia, visual disturbances or other less common symptoms (vertigo or déjà-vu). Tonic-clonic seizures were reported by almost all patients (88%), preceded by typical aura in 67% of cases. Seizures were precipitated by environmental noises in 8% of patients and were completely or almost completely controlled by antiepileptic treatment in the vast majority of cases (96%). The interictal EEG recordings showed epileptiform abnormalities or focal slow waves in 80% of patients, localized over the temporal regions, with marked left predominance and conventional 1,5T MRI scans were not contributory. By comparing these findings with those observed in families with LGI1 mutations, we did not observe significant differences except for a higher rate of left-sided EEG abnormalities in the RELN group. Heterozygous RELN mutations cause a typical ADLTE syndrome, indistinguishable from that associated with LGI1 mutations. Copyright © 2017 The

  11. Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans

    PubMed Central

    Peacock, Munro; Gray, Amie K.; Padgett, Leah R.; Hui, Siu L.; Econs, Michael J.

    2011-01-01

    Context: In autosomal dominant hypophosphatemic rickets (ADHR), fibroblast growth factor 23 (FGF23) resists cleavage, causing increased plasma FGF23 levels. The clinical phenotype includes variable onset during childhood or adulthood and waxing/waning of hypophosphatemia. Delayed onset after puberty in females suggests iron status may be important. Objective: Studies were performed to test the hypothesis that plasma C-terminal and intact FGF23 concentrations are related to serum iron concentrations in ADHR. Design and Setting: Cross-sectional and longitudinal studies of ADHR and a cross-sectional study in healthy subjects were conducted at an academic medical center. Participants: Participants included 37 subjects with ADHR mutations from four kindreds and 158 healthy adult controls. Main Outcome Measure: The relationships of serum iron concentrations with plasma C-terminal and intact FGF23 concentrations were evaluated. Results: Serum phosphate and 1,25-dihydroxyvitamin D correlated negatively with C-terminal FGF23 and intact FGF23 in ADHR but not in controls. Serum iron was negatively correlated to both C-terminal FGF23 (r = −0.386; P < 0.05) and intact FGF23 (r = −0.602; P < 0.0001) in ADHR. However, control subjects also demonstrated a negative relationship of serum iron with C-terminal FGF23 (r = −0.276; P < 0.001) but no relationship with intact FGF23. Longitudinally in ADHR subjects, C-terminal FGF23 and intact FGF23 concentrations changed negatively with iron concentrations (P < 0.001 and P = 0.055, respectively), serum phosphate changed negatively with C-terminal FGF23 and intact FGF23 (P < 0.001), and there was a positive relationship between serum iron and phosphate (P < 0.001). Conclusions: Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression. PMID:21880793

  12. FDG-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection.

    PubMed

    Pijl, Jordy Pieter; Glaudemans, Andor W J M; Slart, Riemer H J A; Kwee, Thomas Christian

    2018-04-13

    Purpose: To determine the value of 18 F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) for diagnosing renal or hepatic cyst infection in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This retrospective single-center study included all patients with ADPKD who underwent FDG-PET/CT because of suspected cyst infection between 2010 and 2017. Results: Thirty FDG-PET/CT scans of thirty individual patients were included, of which 19 were positive for cyst infection. According to a previously established clinical and biochemical reference standard, FDG-PET/CT achieved sensitivity of 88.9%, specificity of 75.0%, positive predictive value of 84.2%, and negative predictive value of 81.8% for the diagnosis of cyst infection. In 5 cases, FDG-PET/CT suggested a different pathologic process that explained the symptoms, including pneumonia ( n = 1), generalized peritonitis ( n = 1), pancreatitis ( n = 1), colitis ( n = 1), and cholangitis ( n = 1). Total duration of hospital stay and duration between FDG-PET/CT scan and hospital discharge of patients with an FDG-PET/CT scan positive for cyst infection were significantly longer than those with a negative scan ( P = 0.005 and P = 0.009, respectively). Creatinine levels were significantly higher in patients with an FDG-PET/CT scan positive for cyst infection than in patients with a negative scan ( P = 0.015). Other comparisons of clinical parameters (age, gender, presence of fever (>38.5°C) for more than 3 days, abdominal pain, history of solid organ transplantation and nephrectomy, immune status), laboratory values (C-reactive protein level (CRP), leukocyte count, estimated glomerular filtration rate), and microbiologic results (blood and urine cultures) were not significantly different ( P = 0.13-1.00) between FDG-PET/CT-positive and -negative patients. Conclusion: FDG-PET/CT is a useful and recommendable (upfront) imaging modality for the evaluation of

  13. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease

    PubMed Central

    Kwon, Michelle; Pavlov, Tengis S.; Nozu, Kandai; Rasmussen, Shauna A.; Ilatovskaya, Daria V.; Lerch-Gaggl, Alexandra; North, Lauren M.; Kim, Hyunho; Qian, Feng; Sweeney, William E.; Avner, Ellis D.; Blumer, Joe B.; Staruschenko, Alexander; Park, Frank

    2012-01-01

    Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease. PMID:23236168

  14. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  15. Muscle morphology and mitochondrial investigations of a family with autosomal dominant cerebellar ataxia and retinal degeneration mapped to chromosome 3p12-p21.1.

    PubMed

    Forsgren, L; Libelius, R; Holmberg, M; von Döbeln, U; Wibom, R; Heijbel, J; Sandgren, O; Holmgren, G

    1996-12-01

    The autosomal dominant cerebellar ataxias (ADCA) are a group of neurodegenerative disorders with ataxia and dysarthria as early and dominant signs. In ADCA type II, retinal degeneration causes severe visual impairment. ADCA type II has recently been mapped to chromosome 3p by three independent groups. In the family with ADCA type II studied here, the disease has been mapped to chromosome 3p12-p21.1. Histochemical examination of muscle biopsies in 5 cases showed slight neurogenic atrophy and irregular lobulated appearance or focal decreases of enzyme activity when staining for NADH dehydrogenase, succinic dehydrogenase and cytochrome oxidase. Ragged-red fibres were scarce. Electron microscopic examination showed uneven distribution of mitochondria with large fibre areas devoid of mitochondria and/or large subsarcolemmal accumulations of small rounded mitochondria, and frequent autophagic vacuoles. These vacuoles contained remnants of multiple small rounded organelles, possibly mitochondria, and had a remarkably consistent ultrastructural appearance. Biochemical investigation of mitochondrial function showed reduced activity of complex IV and slightly reduced activity of complex I in the respiratory chain in a severely affected child while no abnormalities were found in his affected uncle.

  16. Autosomal Recessive Oculodentodigital Dysplasia: A Case Report and Review of the Literature.

    PubMed

    Taşdelen, Elifcan; Durmaz, Ceren D; Karabulut, Halil G

    2018-06-15

    Oculodentodigital dysplasia (ODDD) is a rare condition characterized by a typical facial appearance and variable findings of the eyes, teeth, and fingers. ODDD is caused by mutations in the GJA1 gene in chromosome 6q22 and inherited in an autosomal dominant manner in the majority of the patients. However, in recent clinical reports, autosomal recessive ODDD cases due to by GJA1 mutations were also described. Here, we report on a 14-year-old boy with microphthalmia, microcornea, narrow nasal bridge, hypoplastic alae nasi, prominent columnella, hypodontia, dental caries, and partial syndactyly of the 2nd and 3rd toes. These clinical findings were concordant with the diagnosis of ODDD, and a novel homozygous mutation (c.442C>T, p.Arg148Ter) was determined in the GJA1 gene leading to a premature stop codon. His phenotypically normal parents were found to be carriers of the same mutation. This is the third family in the literature in which ODDD segregates in an autosomal recessive manner. © 2018 S. Karger AG, Basel.

  17. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene.

    PubMed

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-02-12

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Dominantly inherited syndrome of microcephaly and cleft palate.

    PubMed

    Halal, F

    1983-05-01

    Two sisters and their mother had a syndrome of microcephaly, cleft palate, and variable anomalies such as unusual facial appearance, hypotelorism, abnormal retinal pigmentation, maxillary hypoplasia, goiter, camptodactyly, mild mental retardation, and abnormal dermatoglyphics. This is an evidently dominantly inherited trait, either autosomal or X-linked.

  19. Growth of arachnoid cysts in patients with autosomal dominant polycystic kidney disease: serial imaging and clinical relevance

    PubMed Central

    Krauer, Fabienne; Ahmadli, Uzeyir; Kollias, Spyros; Bleisch, Jörg; Wüthrich, Rudolf P.; Serra, Andreas L.; Poster, Diane

    2012-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder that results in the growth of cysts in the kidneys and other organs. Multisystemic involvement is common including affection of the central nervous system with cerebral aneurysms and arachnoid cysts. Methods This is a prospective cohort study to investigate the prevalence and growth rate of arachnoid cysts in ADPKD patients. Participants enrolled in the SUISSE ADPKD cohort were offered cranial imaging for the detection of intracranial alterations. In the case of identified arachnoid cysts, patients were suggested to undergo follow-up imaging to assess the growth rate of the cysts. Volume of arachnoid cysts at the baseline and at follow-up visits was assessed by manual segmentation on a dedicated workstation. Results A total of 109 ADPKD patients agreed to undergo cranial imaging. In 14 (12.8%) patients (9 males and 5 females), 18 singular arachnoid cysts were identified. The baseline volumes of individual cysts ranged from 1.8 to 337.6 cm3. During a mean follow-up period of 24 months, the volume changes of 12 individual arachnoid cysts of nine patients ranged from −3.1 to 3.7 cm3. Cystic lesions were mostly localized in the middle fossa. All affected patients were clinically asymptomatic. Conclusions We found a higher prevalence of arachnoid cysts in ADPKD patients with more advanced disease. There was a large variability in size and growth. These arachnoid cysts were clinically silent and their growth pattern was subtle and unpredictable, in contrast to the much more foreseeable growth of the renal cysts. PMID:26019816

  20. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer.

    PubMed

    Zheng, Yu; Wang, Hai-Lin; Li, Jian-Kang; Xu, Li; Tellier, Laurent; Li, Xiao-Lin; Huang, Xiao-Yan; Li, Wei; Niu, Tong-Tong; Yang, Huan-Ming; Zhang, Jian-Guo; Liu, Dong-Ning

    2018-01-01

    To study the genes responsible for retinitis pigmentosa. A total of 15 Chinese families with retinitis pigmentosa, containing 94 sporadically afflicted cases, were recruited. The targeted sequences were captured using the Target_Eye_365_V3 chip and sequenced using the BGISEQ-500 sequencer, according to the manufacturer's instructions. Data were aligned to UCSC Genome Browser build hg19, using the Burroughs Wheeler Aligner MEM algorithm. Local realignment was performed with the Genome Analysis Toolkit (GATK v.3.3.0) IndelRealigner, and variants were called with the Genome Analysis Toolkit Haplotypecaller, without any use of imputation. Variants were filtered against a panel derived from 1000 Genomes Project, 1000G_ASN, ESP6500, ExAC and dbSNP138. In all members of Family ONE and Family TWO with available DNA samples, the genetic variant was validated using Sanger sequencing. A novel, pathogenic variant of retinitis pigmentosa, c.357_358delAA (p.Ser119SerfsX5) was identified in PRPF31 in 2 of 15 autosomal-dominant retinitis pigmentosa (ADRP) families, as well as in one, sporadic case. Sanger sequencing was performed upon probands, as well as upon other family members. This novel, pathogenic genotype co-segregated with retinitis pigmentosa phenotype in these two families. ADRP is a subtype of retinitis pigmentosa, defined by its genotype, which accounts for 20%-40% of the retinitis pigmentosa patients. Our study thus expands the spectrum of PRPF31 mutations known to occur in ADRP, and provides further demonstration of the applicability of the BGISEQ500 sequencer for genomics research.

  1. AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus.

    PubMed

    Turkkahraman, Doga; Saglar, Emel; Karaduman, Tugce; Mergen, Hatice

    2015-12-01

    Familial central diabetes insipidus (DI), usually an autosomal dominant disorder, is caused by mutations in arginine vasopressin-neurophysin II (AVP-NPII) gene that leads to aberrant preprohormone processing and gradual destruction of AVP-secreting cells. To determine clinical and molecular characteristics of patients with familial central DI from two different Turkish families. The diagnosis of central DI was established by 24-h urine collection, water deprivation test, and desmopressin challenge. To confirm the diagnosis of familial central DI, the entire coding region of AVP-NPII gene was amplified and sequenced. A total of eight affected patients and three unaffected healthy relatives from two families were studied. Genetic analysis revealed a previously reported heterozygous mutation (p.C98X) in family A, and a heterozygous novel mutation (p.G45C) in family B, both detected in exon 2 of AVP-NPII gene. When we compared the clinical characteristics of the two families, it was noticed that as the age of onset of symptoms in family A ranges between 4 and 7 years, it was <1 year in family B. Additionally, pituitary bright spot was present in the affected siblings, but absent in their affected parents. Familial central DI is a progressive disease, and age of onset of symptoms can differ depending on the mutation. Bright spot on pituitary MRI might be present at onset, but become invisible over time. Genetic testing and appropriate counseling should be given in familial cases of central DI to ensure adequate treatment, and to avoid chronic water deprivation that might result in growth retardation in childhood.

  2. Mutation in the PCSK9 Gene in Omani Arab Subjects with Autosomal Dominant Hypercholesterolemia and its Effect on PCSK9 Protein Structure.

    PubMed

    Al-Waili, Khalid; Al-Zidi, Ward Al-Muna; Al-Abri, Abdul Rahim; Al-Rasadi, Khalid; Al-Sabti, Hilal Ali; Shah, Karna; Al-Futaisi, Abdullah; Al-Zakwani, Ibrahim; Banerjee, Yajnavalka

    2013-01-01

    Proprotein convertase subtilisin/kexin type (PCSK9) is a crucial protein in LDL cholesterol (LDL-C) metabolism by virtue of its pivotal role in the degradation of the LDL receptor. Mutations in the PCSK9 gene have previously been found to segregate with autosomal dominant familial hypercholesterolemia (ADFH). In this study, DNA sequencing of the 12 exons of the PCSK9 gene has been performed for two patients with a clinical diagnosis of familial hypercholesterolemia where mutation in the LDL-receptor gene hasn't been excluded. One missense mutation was detected in the exon 9 PCSK9 gene in the two ADFH patients. The patients were found to be heterozygote for Ile474Val (SNP rs562556). Using an array of in silico tools, we have investigated the effect of the above mutation on different structural levels of the PCSK9 protein. Although, the mutation has already been reported in the literature for other populations, to the best of our knowledge this is the first report of a mutation in the PCSK9 gene from the Arab population, including the Omani population.

  3. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the presenilin 1 E280A kindred: a case-control study.

    PubMed

    Reiman, Eric M; Quiroz, Yakeel T; Fleisher, Adam S; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M; Shah, Aarti R; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A; Dickerson, Brad; Stern, Chantal E; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A; Huentelman, Matthew J; Alexander, Gene E; Langbaum, Jessica B S; Kosik, Kenneth S; Tariot, Pierre N; Lopera, Francisco

    2012-12-01

    We have previously characterised functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's disease. To gain further knowledge on the preclinical phase of Alzheimer's disease, we sought to characterise structural and functional MRI, CSF, and plasma biomarkers in a cohort of young adults carrying a high-penetrance autosomal dominant mutation that causes early-onset Alzheimer's disease. Between January and August, 2010, 18-26-year-old presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the Colombian Alzheimer's Prevention Initiative Registry in Medellín Antioquia, Colombia, had structural MRI, functional MRI during associative memory encoding and novel viewing and control tasks, and cognitive assessments. Consenting participants also had lumbar punctures and venepunctures. Outcome measures were task-dependent hippocampal or parahippocampal activations and precuneus or posterior cingulate deactivations, regional grey matter reductions, CSF Aβ(1-42), total tau and phospho-tau(181) concentrations, and plasma Aβ(1-42) concentrations and Aβ(1-42):Aβ(1-40) ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to Alzheimer's disease. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. 44 participants were included: 20 PSEN1 E280A mutation carriers and 24 non-carriers. The carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ɛ4 carriers. Compared with non-carriers, carriers had greater right hippocampal and parahippocampal activation (p=0·001 and p<0·014, respectively, after correction for multiple comparisons), less precuneus and posterior cingulate deactivation (all p<0·010 after correction), and less grey matter in several parietal regions (all p<0·002 uncorrected and corrected p=0·009 in the right parietal search region

  4. Cognitive Decline in a Colombian Kindred With Autosomal Dominant Alzheimer Disease

    PubMed Central

    Aguirre-Acevedo, Daniel C.; Lopera, Francisco; Henao, Eliana; Tirado, Victoria; Muñoz, Claudia; Giraldo, Margarita; Bangdiwala, Shrikant I.; Reiman, Eric M.; Tariot, Pierre N.; Langbaum, Jessica B.; Quiroz, Yakeel T.; Jaimes, Fabian

    2017-01-01

    IMPORTANCE Data from an autosomal dominant Alzheimer disease (ADAD) kindred were used to track the longitudinal trajectory of cognitive decline associated with preclinical ADAD and explore factors that may modify the rate of cognitive decline. OBJECTIVES To evaluate the onset and rate of cognitive decline during preclinical ADAD and the effect of socioeconomic, vascular, and genetic factors on the cognitive decline. DESIGN, SETTING, AND PARTICIPANTS We performed a retrospective cohort study from January 1, 1995, through June 31, 2012, of individuals from Antioquia, Colombia, who tested positive for the ADAD-associated PSEN1 E280A mutation. Data analysis was performed from August 20, 2014, through November 30, 2015. A mixed-effects model was used to estimate annual rates of change in cognitive test scores and to mark the onset of cognitive decline. MAIN OUTCOMES AND MEASURES Memory, language, praxis, and total scores from the Consortium to Establish a Registry for Alzheimer Disease test battery. Chronologic age was used as a time scale in the models. We explore the effects of sex; educational level; socioeconomic status; residence area; occupation type; marital status; history of hypertension, diabetes mellitus, and dyslipidemia; tobacco and alcohol use; and APOE ε4 on the rates of cognitive decline. RESULTS A total of 493 carriers met the inclusion criteria and were analyzed. A total of 256 carriers had 2 or more assessments. At the time of the initial assessment, participants had a mean (SD) age of 33.4 (11.7) years and a mean (SD) educational level of 7.2 (4.2) years. They were predominantly female (270 [54.8%]), married (293 [59.4%]), and of low socioeconomic status (322 [65.3%]). Word list recall scores provided the earliest indicator of preclinical cognitive decline at 32 years of age, 12 and 17 years before the kindred’s respective median ages at mild cognitive impairment and dementia onset. After the change point, carriers had a statistically significant

  5. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome.

    PubMed

    Schaefer, Elise; Collet, Corinne; Genevieve, David; Vincent, Marie; Lohmann, Dietmar R; Sanchez, Elodie; Bolender, Chantal; Eliot, Marie-Madeleine; Nürnberg, Gudrun; Passos-Bueno, Maria-Rita; Wieczorek, Dagmar; van Maldergem, Lionel; Doray, Bérénice

    2014-09-01

    Treacher Collins syndrome is a mandibulofacial dysostosis caused by mutations in genes involved in ribosome biogenesis and synthesis. TCOF1 mutations are observed in ~80% of the patients and are inherited in an autosomal dominant manner. Recently, two other genes have been reported in <2% of patients--POLR1D in patients with autosomal dominant inheritance, and POLR1C in patients with autosomal recessive inheritance. We performed direct sequencing of TCOF1, POLR1C, and POLR1D in two unrelated consanguineous families. The four affected children shared the same homozygous mutation in POLR1D (c.163C>G, p.Leu55Val). This mutation is localized in a region encoding the dimerization domain of the RNA polymerase. It is supposed that this mutation impairs RNA polymerase, resulting in a lower amount of mature dimeric ribosomes. A functional analysis of the transcripts of TCOF1 by real-time quantitative reverse transcription-polymerase chain reaction was performed in the first family, demonstrating a 50% reduction in the index case, compatible with this hypothesis. This is the first report of POLR1D mutation being responsible for an autosomal recessive inherited Treacher Collins syndrome. These results reinforce the concept of genetic heterogeneity of Treacher Collins syndrome and underline the importance of combining clinical expertise and familial molecular analyses for appropriate genetic counseling.

  6. A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed

    Santiprabhob, Jeerunda; Browning, James; Repaske, David

    2002-01-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is an inherited disease caused by progressive deficiency of the hormone arginine vasopressin (AVP) that typically becomes clinically apparent in the first decade of life. The genetic locus of ADNDI is the arginine vasopressin-neurophysin II (AVP-NPII) gene and mutations that cause ADNDI have been found in the nucleotides encoding the signal peptide, vasopressin, and neurophysin II peptides. In this study we have analyzed the AVP-NPII gene in a 20-year-old female who was diagnosed with ADNDI at 2 years of age. A heterozygous missense mutation (1684G>T) was found in exon 2 that predicts replacement of cysteine with phenylalanine at position 73 of neurophysin II. The mutation was confirmed by subcloning exon 2 PCR products to sequence each allele independently. Two out of four clones were found to have the missense mutation and two have the normal sequence, confirming the presence of the mutation and heterozygosity. Neurophysin II is an intracellular carrier protein for AVP during axonal transport from the hypothalamus to the posterior pituitary and contains 14 cysteine residues forming 7 disulfide bonds. This mutation is predicted to disrupt the disulfide bridge between Cys73 and Cys61 within the neurophysin II moiety. This finding of a novel mutation substituting cysteine with phenylalanine in one AVP-NPII gene allele supports the hypothesis that inability to form normal disulfide bonds in neurophysin II leads to ADNDI.

  7. Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing.

    PubMed

    Trujillano, Daniel; Bullich, Gemma; Ossowski, Stephan; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet

    2014-09-01

    Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long-range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysis using conventional techniques limits its widespread application in clinical settings. We performed targeted next-generation sequencing (NGS) of PKD1 and PKD2. Pooled barcoded DNA patient libraries were enriched by in-solution hybridization with PKD1 and PKD2 capture probes. Bioinformatics analysis was performed using an in-house developed pipeline. We validated the assay in a cohort of 36 patients with previously known PKD1 and PKD2 mutations and five control individuals. Then, we used the same assay and bioinformatics analysis in a discovery cohort of 12 uncharacterized patients. We detected 35 out of 36 known definitely, highly likely, and likely pathogenic mutations in the validation cohort, including two large deletions. In the discovery cohort, we detected 11 different pathogenic mutations in 10 out of 12 patients. This study demonstrates that laborious long-range PCRs of the repeated PKD1 region can be avoided by in-solution enrichment of PKD1 and PKD2 and NGS. This strategy significantly reduces the cost and time for simultaneous PKD1 and PKD2 sequence analysis, facilitating routine genetic diagnostics of ADPKD.

  8. Development of the Autosomal Dominant Polycystic Kidney Disease Impact Scale: A New Health-Related Quality-of-Life Instrument.

    PubMed

    Oberdhan, Dorothee; Cole, Jason C; Krasa, Holly B; Cheng, Rebecca; Czerwiec, Frank S; Hays, Ron D; Chapman, Arlene B; Perrone, Ronald D

    2018-02-01

    The impact of autosomal dominant polycystic kidney disease (ADPKD) on health-related quality of life (HRQoL) is not well understood due to a lack of instruments specific to the condition. Content for a new self-administered patient-reported outcome (PRO) questionnaire to assess ADPKD-related HRQoL was developed through clinical expert and patient focus group discussions. The new PRO instrument was administered to study patients with ADPKD to evaluate its reliability and validity. 1,674 adult patients with ADPKD participated in this research: 285 patients in focus groups to generate questionnaire content, 15 patients in debriefing interviews to refine the PRO questionnaire, and 1,374 patients to assess the performance and measurement properties of the PRO questionnaire. A new PRO questionnaire. The ADPKD Impact Scale (ADPKD-IS), consisting of 14 items representing 3 conceptual domains (physical, emotional, and fatigue) plus 4 additional questions, was developed. The instrument's reliability (regarding internal consistency and test-retest consistency) and validity (content and construct) were supported. Need for more responsiveness testing when more data from clinical use become available over time. Complex concepts such as ADPKD-related pain and impact on a patient's HRQoL need further evaluation. The ADPKD-IS is a new patient-centric tool that reliably and validly provides a standardized method for assessing HRQoL and overall disease burden in patients with ADPKD. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less

  10. A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy.

    PubMed

    Milillo, Annamaria; La Carpia, Francesca; Costanzi, Stefano; D'Urbano, Vanessa; Martini, Maurizio; Lanuti, Paola; Vischini, Gisella; Larocca, Luigi M; Marchisio, Marco; Miscia, Sebastiano; Amoroso, Antonio; Gurrieri, Fiorella; Sangiorgi, Eugenio

    2015-12-01

    IgA nephropathy (IgAN) represents the most common primary glomerulonephritis worldwide with a prevalence of 25-50% among patients with primary glomerulopathies. In ~5-10% of the patients the disease segregates with an autosomal dominant (AD) pattern. Association studies identified loci on chromosomes 1q32, 6p21, 8p23, 17p13, 22q12, whereas classical linkage studies on AD families identified loci on chromosomes 2q36, 4q26-31, 6q22, 17q12-22. We have studied a large Sicilian family where IgAN segregates with an AD transmission. To identify the causal gene, the exomes of two affected and one unaffected individual have been sequenced. From the bioinformatics analysis a p.(Arg119Trp) variant in the SPRY2 gene was identified as the probable disease-causing mutation. Moreover, functional characterization of this variant showed that it is responsible for the inhibition of the MAPK/ERK1/2 pathway. The same effect was observed in two sporadic IgAN patients carriers of wild-type SPRY2, suggesting that downregulation of the MAPK/ERK1/2 pathway represents a common mechanism leading to IgAN.

  11. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  12. Autosomal dominant deficiency of the interleukin-17F in recurrent aphthous stomatitis: Possible novel mutation in a new entity.

    PubMed

    Zare Bidoki, Alireza; Massoud, Ahmad; Najafi, Shamsolmoulouk; Mohammadzadeh, Mahsa; Rezaei, Nima

    2018-05-15

    Recurrent Aphthous Stomatitis (RAS) is a common oral inflammatory disease with unknown pathogenesis. Although the immune system alterations could be involved in predisposition of individuals to oral candidiasis, precise etiologies of RAS have not been understood yet. A recent study showed that autosomal dominant IL17F deficiency could cause chronic mucocutaneous candidiasis. Considering the inflammatory nature of interleukin (IL)-17F and RAS, this study was performed to check any disease-associated mutation in a number of patients with RAS. Sixty-two Iranian individuals with RAS were investigated in this study. After DNA extraction using a phenol-chloroform method from the whole blood, amplification was accomplished by polymerase chain reaction and the products were sequenced using a 3730 ABI sequencer. The results of sequencing revealed a missense, heterozygous mutation of IL17F, converting a threonine to proline in a patient with RAS (T79P). The Poly-phen software suggested a damaging probability predicting this substitution to have a harmful effect on IL-17F protein function. This mutation was checked in fifty healthy individuals, and was not detected in any of them. This is the first study showing that a mutation in IL-17F is associated with susceptibility to RAS. However, functional studies and further studies on more patients with RAS are required to confirm such association. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi

    2014-01-01

    Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142

  14. The autosomal dominant familial exudative vitreoretinopathy locus maps on 11q and is closely linked to D11S533

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuen; Schwinger, D.; Gal, A.

    1992-10-01

    Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. The authors report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest compiled two-point lod score (3.67, at a recombination fraction of .07)more » was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S526 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S526. 15 refs., 3 figs., 4 tabs.« less

  15. Novel three-dimensional imaging volumetry in autosomal dominant polycystic kidney disease: comparison with 2D volumetry.

    PubMed

    Shin, Dongsuk; Lee, Kyu-Beck; Hyun, Young Youl; Lee, Young Rae; Hwang, Young-Hwan; Park, Hayne Cho; Ahn, Curie

    2014-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) volumetry is an important marker for evaluating the progression of disease. Three-dimensional (3D) volumetry is generally more timesaving than 2D volumetry, but its reliability and accuracy are uncertain. Small and large phantoms simulating polycystic kidneys and 20 patients with ADPKD underwent magnetic resonance imaging (MRI) volumetry. We evaluated the total kidney volume (TKV) and total cyst volume (TCV) using a novel 3D volumetry program (XelisTM) and compared 3D volumetry data with the conventional 2D method (the reference volume values). After upload and threshold setting, the other organs surrounding the kidney were removed by picking and sculpting. The novel method involves drawing of the kidney or cyst and automatic measurement of kidney volume and cyst volume in 3D images. The 3D volume estimation of the small and large phantoms differed from the actual values by 6.9% and -8.2%, respectively, for TKV and by 2.1% and 1.4% for TCV. In ADPKD patients, the intra-reader reliability of 3D volumetry was 30 ± 180 mL (1.3 ± 10.3%) and 25 ± 113 mL (1.2 ± 9.4%), respectively, for TKV and TCV. Correlation between 3D volumetry and 2D volumetry of TKV and TCV resulted in a high correlation coefficient and a regression slope approaching 1.00 (r = 0.97 - 0.98). The mean of the volume percentage differences for 3D vs. 2D for TKV : TCV were -6.0 ± 8.9% : 2.0 ± 11.8% in large ADPKD and -16.1 ± 10.4% : 13.2 ± 21.9% in small ADPKD. Our study showed that 3D volumetry has reliability and accuracy compared with 2D volumetry in ADPKD. 3D volumetry is more accurate for TCV and large ADPKD.

  16. [18F-FDG PET/CT diagnosis of liver cyst infection in a patient with autosomal dominant polycystic kidney disease and fever of unknown origin].

    PubMed

    Banzo, J; Ubieto, M A; Gil, D; Prats, E; Razola, P; Tardín, L; Andrés, A; Rambalde, E F; Ayala, S M; Cáncer, L; Velilla, J

    2013-01-01

    The diagnosis, localization and treatment of infected cysts in the kidney or liver of patients with autosomal dominant polycystic kidney disease (ADPKD) remain a clinical challenge. We report the findings of (18)F-FDG PET-CT in an ADPKD diagnosed patient who required renal transplantation five years before and in his follow up presented repeated episodes of bacteriemia without known focus on radiological tests performed. The (18)F-FDG PET-CT scan showed numerous hypermetabolic images with focal or ring-shaped morphology related to the content and the wall of some hepatic cysts. The increased metabolic activity was localized on segments VI and VII. We proceeded to drainage of one cyst in segment VI, removing 110 cc of purulent fluid which grew E. Coli BLEE. The (18)F-FDG PET/CT scan should be included in the diagnostic algorithm for detecting infected liver cysts in patients with ADPKD and fever of unknown origin. Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  17. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    PubMed

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease.

    PubMed

    Torres, Vicente E; Abebe, Kaleab Z; Schrier, Robert W; Perrone, Ronald D; Chapman, Arlene B; Yu, Alan S; Braun, William E; Steinman, Theodore I; Brosnahan, Godela; Hogan, Marie C; Rahbari, Frederic F; Grantham, Jared J; Bae, Kyongtae T; Moore, Charity G; Flessner, Michael F

    2017-02-01

    The CRISP study of polycystic kidney disease (PKD) found that urinary sodium excretion associated with the rate of total kidney volume increase. Whether sodium restriction slows the progression of Autosomal Dominant PKD (ADPKD) is not known. To evaluate this we conducted a post hoc analysis of the HALT-PKD clinical trials of renin-angiotensin blockade in patients with ADPKD. Linear mixed models examined whether dietary sodium affected rates of total kidney volume or change in estimated glomerular filtration rate (eGFR) in patients with an eGFR over 60 ml/min/1.73 m 2 (Study A) or the risk for a composite endpoint of 50% reduction in eGFR, end-stage renal disease or death, or the rate of eGFR decline in patients with an eGFR 25-60 ml/min/1.73 m 2 (Study B) all in patients initiated on an under100 mEq sodium diet. During the trial urinary sodium excretion significantly declined by an average of 0.25 and 0.41 mEq/24 hour per month in studies A and B, respectively. In Study A, averaged and time varying urinary sodium excretions were significantly associated with kidney growth (0.43%/year and 0.09%/year, respectively, for each 18 mEq urinary sodium excretion). Averaged urinary sodium excretion was not significantly associated with faster eGFR decline (-0.07 ml/min/1.73m 2 /year for each 18 mEq urinary sodium excretion). In Study B, the averaged but not time-varying urinary sodium excretion significantly associated with increased risk for the composite endpoint (hazard ratio 1.08 for each 18 mEq urinary sodium excretion) and a significantly faster eGFR decline (-0.09 ml/min/1.73m 2 /year for each mEq 18 mEq urinary sodium excretion). Thus, sodium restriction is beneficial in the management of ADPKD. Copyright © 2016 International Society of Nephrology. All rights reserved.

  19. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD).

    PubMed

    Nakajima, Akiko; Lu, Yan; Kawano, Haruna; Horie, Shigeo; Muto, Satoru

    2015-12-01

    Experimental studies suggest a detrimental role for cyclic adenosine monophosphate (cAMP) and vasopressin in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). It is unknown, however, whether urinary cAMP and copeptin concentration are associated with disease severity in patients with ADPKD. Urinary cAMP (u-cAMP) and copeptin concentration (u-copeptin) were measured by immunoassay in ADPKD patients with CKD stage ≤4. We compared our measurements with clinical parameters including estimated glomerular filtration rate (eGFR), total kidney volume (TKV), and height-adjusted TKV (htTKV). Logarithmic transformation of all variables was performed to fulfill the requirement of equal distribution of the residuals. We included 50 patients in this study (24 females and 26 males; mean age: 49.3 years). The median eGFR and TKV were 53.2 ml/min/1.73 m(2) (interquartile range: IQR; 29.4-68.45) and 1138.1 ml (IQR; 814.7-2065.0), respectively. The median u-copeptin level was 12.19 (IQR; 6.91-22.32) ng/ml. Although u-cAMP/u-Cr was not significantly correlated with TKV (R = -0.006, p = 0.967) and eGFR (R = 0.077, p = 0.602), urinary copeptin/u-Cr was statistically associated with the various markers of disease severity in ADPKD [positively with TKV (R = 0.351, p = 0.014), htTKV (R = 0.383, p = 0.008) and negatively with eGFR (R = -0.304, p = 0.036)]. In ADPKD subjects, a higher u-copeptin is associated with disease progression, suggesting that u-copeptin may be a new surrogate marker to predict renal prognosis in ADPKD.

  20. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP).

    PubMed

    Baxter, Sally L; Allard, Denise E; Crowl, Christopher; Sherwood, Nina Tang

    2014-08-01

    Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases. © 2014. Published by The Company of Biologists Ltd.

  1. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer

    PubMed Central

    Zheng, Yu; Wang, Hai-Lin; Li, Jian-Kang; Xu, Li; Tellier, Laurent; Li, Xiao-Lin; Huang, Xiao-Yan; Li, Wei; Niu, Tong-Tong; Yang, Huan-Ming; Zhang, Jian-Guo; Liu, Dong-Ning

    2018-01-01

    AIM To study the genes responsible for retinitis pigmentosa. METHODS A total of 15 Chinese families with retinitis pigmentosa, containing 94 sporadically afflicted cases, were recruited. The targeted sequences were captured using the Target_Eye_365_V3 chip and sequenced using the BGISEQ-500 sequencer, according to the manufacturer's instructions. Data were aligned to UCSC Genome Browser build hg19, using the Burroughs Wheeler Aligner MEM algorithm. Local realignment was performed with the Genome Analysis Toolkit (GATK v.3.3.0) IndelRealigner, and variants were called with the Genome Analysis Toolkit Haplotypecaller, without any use of imputation. Variants were filtered against a panel derived from 1000 Genomes Project, 1000G_ASN, ESP6500, ExAC and dbSNP138. In all members of Family ONE and Family TWO with available DNA samples, the genetic variant was validated using Sanger sequencing. RESULTS A novel, pathogenic variant of retinitis pigmentosa, c.357_358delAA (p.Ser119SerfsX5) was identified in PRPF31 in 2 of 15 autosomal-dominant retinitis pigmentosa (ADRP) families, as well as in one, sporadic case. Sanger sequencing was performed upon probands, as well as upon other family members. This novel, pathogenic genotype co-segregated with retinitis pigmentosa phenotype in these two families. CONCLUSION ADRP is a subtype of retinitis pigmentosa, defined by its genotype, which accounts for 20%-40% of the retinitis pigmentosa patients. Our study thus expands the spectrum of PRPF31 mutations known to occur in ADRP, and provides further demonstration of the applicability of the BGISEQ500 sequencer for genomics research. PMID:29375987

  2. Punctiform and Polychromatophilic Dominant Pre-Descemet Corneal Dystrophy.

    PubMed

    Lagrou, Lisa; Midgley, Julian; Romanchuk, Kenneth Gerald

    2016-04-01

    To describe the slit-lamp appearance and corneal confocal microscopy of autosomal dominant punctiform and polychromatophilic pre-Descemet corneal dystrophy in 3 members of the same family. Slit-lamp examination of a 9-year-old boy showed bilateral polychromatophilic corneal opacities in a pre-Descemet membrane location evenly deposited limbus to limbus, both horizontally and vertically, with an intervening clear cornea. The corneal endothelium was normal on corneal confocal microscopy, with hyperreflective opacities of various sizes located pre-Descemet membrane. Slit-lamp examination of the patient's father and brother revealed identical crystalline deposition in the pre-Descemet corneal stroma. The remainders of the eye examinations were otherwise normal in all 3 individuals, and all were asymptomatic. The general physical examination and laboratory investigations of the patient were all normal, as were the laboratory investigations of the other 2 family members. There was no progression in the corneal findings over 6 months of follow-up. These patients likely illustrate a rare autosomal dominant pre-Descemet crystalline keratopathy that has been reported only once previously.

  3. Prenatal diagnosis of Carpenter syndrome: looking beyond craniosynostosis and polysyndactyly.

    PubMed

    Victorine, Anna S; Weida, Jennifer; Hines, Karrie A; Robinson, Barrett; Torres-Martinez, Wilfredo; Weaver, David D

    2014-03-01

    Carpenter syndrome is an autosomal recessive disorder comprising craniosynostosis, polysyndactyly, and brachydactyly. It occurs in approximately 1 birth per million. We present a patient with Carpenter syndrome (confirmed by molecular diagnosis) who has several unique and previously unreported manifestations including a large ovarian cyst and heterotaxy with malrotation of stomach, intestine, and liver. These findings were first noted by prenatal ultrasound and may assist in prenatally diagnosing additional cases of Carpenter syndrome. © 2014 Wiley Periodicals, Inc.

  4. Autosomal-recessive SASH1 variants associated with a new genodermatosis with pigmentation defects, palmoplantar keratoderma and skin carcinoma

    PubMed Central

    Courcet, Jean- Benoît; Elalaoui, Siham Chafai; Duplomb, Laurence; Tajir, Mariam; Rivière, Jean-Baptiste; Thevenon, Julien; Gigot, Nadège; Marle, Nathalie; Aral, Bernard; Duffourd, Yannis; Sarasin, Alain; Naim, Valeria; Courcet-Degrolard, Emilie; Aubriot-Lorton, Marie- Hélène; Martin, Laurent; Abrid, Jamal Eddin; Thauvin, Christel; Sefiani, Abdelaziz; Vabres, Pierre; Faivre, Laurence

    2015-01-01

    SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an unclassified phenotype associating an abnormal pigmentation pattern (hypo- and hyperpigmented macules of the trunk and face and areas of reticular hypo- and hyperpigmentation of the extremities), alopecia, palmoplantar keratoderma, ungueal dystrophy and recurrent spinocellular carcinoma. We identified a homozygous variant in SASH1 (c.1849G>A; p.Glu617Lys) in both affected individuals. Wound-healing assay showed that the patient's fibroblasts were better able than control fibroblasts to migrate. Following the identification of SASH1 heterozygous variants in dyschromatosis, we used reverse phenotyping to show that autosomal-recessive variants of this gene could be responsible for an overlapping but more complex phenotype that affected skin appendages. SASH1 should be added to the list of genes responsible for autosomal-dominant and -recessive genodermatosis, with no phenotype in heterozygous patients in the recessive form, and to the list of genes responsible for a predisposition to skin cancer. PMID:25315659

  5. Autosomal-recessive SASH1 variants associated with a new genodermatosis with pigmentation defects, palmoplantar keratoderma and skin carcinoma.

    PubMed

    Courcet, Jean-Benoît; Elalaoui, Siham Chafai; Duplomb, Laurence; Tajir, Mariam; Rivière, Jean-Baptiste; Thevenon, Julien; Gigot, Nadège; Marle, Nathalie; Aral, Bernard; Duffourd, Yannis; Sarasin, Alain; Naim, Valeria; Courcet-Degrolard, Emilie; Aubriot-Lorton, Marie-Hélène; Martin, Laurent; Abrid, Jamal Eddin; Thauvin, Christel; Sefiani, Abdelaziz; Vabres, Pierre; Faivre, Laurence

    2015-07-01

    SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an unclassified phenotype associating an abnormal pigmentation pattern (hypo- and hyperpigmented macules of the trunk and face and areas of reticular hypo- and hyperpigmentation of the extremities), alopecia, palmoplantar keratoderma, ungueal dystrophy and recurrent spinocellular carcinoma. We identified a homozygous variant in SASH1 (c.1849G>A; p.Glu617Lys) in both affected individuals. Wound-healing assay showed that the patient's fibroblasts were better able than control fibroblasts to migrate. Following the identification of SASH1 heterozygous variants in dyschromatosis, we used reverse phenotyping to show that autosomal-recessive variants of this gene could be responsible for an overlapping but more complex phenotype that affected skin appendages. SASH1 should be added to the list of genes responsible for autosomal-dominant and -recessive genodermatosis, with no phenotype in heterozygous patients in the recessive form, and to the list of genes responsible for a predisposition to skin cancer.

  6. Hydrops fetalis and pulmonary lymphangiectasia due to FOXC2 mutation: an autosomal dominant hereditary lymphedema syndrome with variable expression.

    PubMed

    de Bruyn, Gwendolyn; Casaer, Alexandra; Devolder, Katrien; Van Acker, Geert; Logghe, Hilde; Devriendt, Koen; Cornette, Luc

    2012-03-01

    Non-immune hydrops fetalis may find its origin within genetically determined lymphedema syndromes, caused by mutations in FOXC2 and SOX-18. We describe a newborn girl, diagnosed with non-immune hydrops fetalis at a gestational age of 30 weeks. Family history revealed the presence of an autosomal dominant late-onset form of lymphedema of the lower limbs in her father, associated with an aberrant implantation of the eyelashes in some individuals. The newborn, hydropic girl suffered from severe pulmonary lymphangiectasia, resulting in terminal respiratory failure at the age of 3 months. Genetic analysis in both the father and the newborn girl demonstrated a heterozygous FOXC2 mutation, i.e., c.939C>A, p.Tyr313X. Her two older sisters are currently asymptomatic and the parents decided not to test them for the FOXC2 mutation. Patients with a mutation in the FOXC2 transcription factor usually show lower limb lymphedema with onset at or after puberty, together with distichiasis. However, the eye manifestations can be very mild and easily overlooked. The association between FOXC2 mutation and neonatal hydrops resulting in terminal respiratory failure is not reported so far. Therefore, in sporadic patients diagnosed with non-immune hydrops fetalis, lymphangiogenic genes should be systematically screened for mutations. In addition, all cases of fetal edema must prompt a thorough analysis of the familial pedigree, in order to detect familial patterns and to facilitate adequate antenatal counseling.

  7. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome

    PubMed Central

    Consugar, Mark B.; Wong, Wai C.; Lundquist, Patrick A.; Rossetti, Sandro; Kubly, Vickie J.; Walker, Denise L.; Rangel, Laureano J.; Aspinwall, Richard; Niaudet, W. Patrick; Özen, Seza; David, Albert; Velinov, Milen; Bergstralh, Eric J.; Bae, Kyongtae T.; Chapman, Arlene B.; Guay-Woodford, Lisa M.; Grantham, Jared J.; Torres, Vicente E.; Sampson, Julian R.; Dawson, Brian D.; Harris, Peter C.

    2009-01-01

    Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD. PMID:18818683

  8. Identification of a Novel Mutation in BRD4 that Causes Autosomal Dominant Syndromic Congenital Cataracts Associated with Other Neuro-Skeletal Anomalies

    PubMed Central

    Jin, Hyun-Seok; Kim, Jeonhyun; Kwak, Woori; Jeong, Hyeonsoo; Lim, Gyu-Bin

    2017-01-01

    Congenital cataracts can occur as a non-syndromic isolated ocular disease or as a part of genetic syndromes accompanied by a multi-systemic disease. Approximately 50% of all congenital cataract cases have a heterogeneous genetic basis. Here, we describe three generations of a family with an autosomal dominant inheritance pattern and common complex phenotypes, including bilateral congenital cataracts, short stature, macrocephaly, and minor skeletal anomalies. We did not find any chromosomal aberrations or gene copy number abnormalities using conventional genetic tests; accordingly, we conducted whole-exome sequencing (WES) to identify disease-causing genetic alterations in this family. Based on family WES data, we identified a novel BRD4 missense mutation as a candidate causal variant and performed cell-based experiments by ablation of endogenous BRD4 expression in human lens epithelial cells. The protein expression levels of connexin 43, p62, LC3BII, and p53 differed significantly between control cells and cells in which endogenous BRD4 expression was inhibited. We inferred that a BRD4 missense mutation was the likely disease-causing mutation in this family. Our findings may improve the molecular diagnosis of congenital cataracts and support the use of WES to clarify the genetic basis of complex diseases. PMID:28076398

  9. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    PubMed

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  10. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1.

    PubMed

    Holmberg, M; Johansson, J; Forsgren, L; Heijbel, J; Sandgren, O; Holmgren, G

    1995-08-01

    We present linkage analysis on a large Swedish five-generation family of 15 affected individuals with autosomal dominant cerebellar ataxia (ADCA) associated with retinal degeneration and anticipation. Common clinical signs in this family include ataxia, dysarthria and severely impaired vision with the phenotype ADCA type II. Different subtypes of ADCA have proven difficult to classify clinically due to extensive phenotypic variability within and between families. Genetic analysis of a number of ADCA type I families shows that heterogeneity exists also genetically. During the last few years several types of ADCA type I have been localized and to date six genetically distinct forms have been identified including SCA1 (6p), SCA2 (12q), SCA3 and Machado-Joseph disease (MJD) (14q), SCA4 (16q), and finally SCA5 (11). We performed a genome-wide search of the Swedish ADCA type II family using a total of 270 microsatellite markers. Positive lod scores were obtained with a number of microsatellite markers located on chromosome 3p12-p21.1. Three markers gave lod scores over 3 with a maximum lod score of 4.53 achieved with the marker D3S1600. The ADCA type II gene could be restricted to a region of 32 cM by the markers D3S1547 and D3S1274.

  11. A dominantly inherited form of arthrogryposis multiplex congenita with unusual dermatoglyphics.

    PubMed

    Sack, G H

    1978-12-01

    A father and daughter with arthrogryposis multiplex congenita and similar dermatoglyphic patterns are described. No evidence was found of chromosomal abnormality, neuropathy or myopathy, and there were no other affected family members. The findings are compatible with autosomal dominant inheritance.

  12. Urinary Proteomic Biomarkers for Diagnosis and Risk Stratification of Autosomal Dominant Polycystic Kidney Disease: A Multicentric Study

    PubMed Central

    Kistler, Andreas D.; Serra, Andreas L.; Siwy, Justyna; Poster, Diane; Krauer, Fabienne; Torres, Vicente E.; Mrug, Michal; Grantham, Jared J.; Bae, Kyongtae T.; Bost, James E.; Mullen, William; Wüthrich, Rudolf P.; Mischak, Harald; Chapman, Arlene B.

    2013-01-01

    Treatment options for autosomal dominant polycystic kidney disease (ADPKD) will likely become available in the near future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online coupled to mass spectrometry (CE-MS), we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included, but were not limited to markers previously associated with acute kidney injury (AKI). The diagnostic biomarker model was highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases, including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score was developed to predict height adjusted total kidney volume (htTKV) based on proteomic analysis of 134 ADPKD patients and showed a correlation of r = 0.415 (p<0.0001) with htTKV in an independent validation cohort consisting of 158 ADPKD patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD. PMID:23326375

  13. Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans

    PubMed Central

    Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert

    2005-01-01

    We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263

  14. Syndromes, disorders and maternal risk factors associated with neural tube defects (I).

    PubMed

    Chen, Chih-Ping

    2008-03-01

    Fetuses with neural tube defects (NTDs) may be associated with syndromes, disorders, and maternal risk factors. This article provides a comprehensive review of syndromes, disorders, and maternal risk factors associated with NTDs, such as acrocallosal syndrome, autosomal dominant brachydactyly-clinodactyly syndrome, Manouvrier syndrome, short rib-polydactyly syndrome, Disorganization ( Ds )-like human malformations, isolated hemihyperplasia, X-linked NTDs, meroanencephaly, schisis association, diprosopus, fetal valproate syndrome, DiGeorge syndrome/velocardiofacial syndrome, Waardenburg syndrome, folic acid antagonists, diabetes mellitus, and obesity. NTDs associated with syndromes, disorders, and maternal risk factors are a rare but important cause of NTDs. The recurrence risk and the preventive effect of maternal folic acid intake in NTDs associated with syndromes, disorders, and maternal risk factors may be different from those of non-syndromic multifactorial NTDs. Perinatal identification of NTDs should alert one to the syndromes, disorders, and maternal risk factors associated with NTDs, and prompt a thorough etiologic investigation and genetic counseling.

  15. Homozygous variegate porphyria presenting with developmental and language delay in childhood.

    PubMed

    Pinder, V A E; Holden, S T; Deshpande, C; Siddiqui, A; Mellerio, J E; Wraige, E; Powell, A M

    2013-10-01

    Variegate porphyria is an autosomal dominant disorder that usually presents with photosensitivity and acute neurological crises in adulthood. It is caused by heterozygous mutations in the protoporphyrinogen oxidase gene (PPOX). A rarer variant, homozygous variegate porphyria (HVP), presents in childhood with recurrent skin blisters and scarring. More variable features of HVP are short stature, brachydactyly, nystagmus, epilepsy, developmental delay and mental retardation. We describe a child who presented with nystagmus, developmental delay and ataxia, combined with a photosensitive eruption. Analysis of porphyrins in plasma, urine and stool supported a clinical diagnosis of HVP. DNA from the patient showed that he is compound heterozygous for two novel missense mutations in the PPOX coding region: c.169G>C (p.Gly57Arg) and c.1259C>G (Pro420Arg). Interestingly, cranial magnetic resonance imaging showed an absence of myelin, a feature not previously reported in HVP, which expands the differential diagnosis of childhood hypomyelinating leucoencephalopathies. © 2013 British Association of Dermatologists.

  16. A specific collagen type II gene (COL2A1) mutation presenting as spondyloperipheral dysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabel, B.; Hilbert, K.; Spranger, J.

    1996-05-03

    We report on a patient with a skeletal dysplasia characterized by short stature, spondylo-epiphyseal involvement, and brachydactyly E-like changes. This condition has been described as spondyloperipheral dysplasia and the few published cases suggest autosomal dominant inheritance with considerable clinical variability. We found our sporadic case to be due to a collagen type II defect resulting from a specific COL2A1 mutation. This mutation is the first to be located at the C-terminal outside the helical domain of COL2A1. A frameshift as consequence of a 5 bp duplication in exon 51 leads to a stop codon. The resulting truncated C-propeptide region seemsmore » to affect helix formation and produces changes of chondrocyte morphology, collagen type II fibril structure and cartilage matrix composition. Our case with its distinct phenotype adds another chondrodysplasia to the clinical spectrum of type II collagenopathies. 16 refs., 4 figs.« less

  17. An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression.

    PubMed

    Niedermaier, Michael; Schwabe, Georg C; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B; Mundlos, Stefan

    2005-04-01

    Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.

  18. An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression

    PubMed Central

    Niedermaier, Michael; Schwabe, Georg C.; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B.; Mundlos, Stefan

    2005-01-01

    Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development. PMID:15841179

  19. Loss of the arginine methyltranserase PRMT7 causes syndromic intellectual disability with microcephaly and brachydactyly.

    PubMed

    Kernohan, K D; McBride, A; Xi, Y; Martin, N; Schwartzentruber, J; Dyment, D A; Majewski, J; Blaser, S; Boycott, K M; Chitayat, D

    2017-05-01

    Post-translational protein modifications exponentially expand the functional complement of proteins encoded by the human genome. One such modification is the covalent addition of a methyl group to arginine or lysine residues, which is used to regulate a substantial proportion of the proteome. Arginine and lysine methylation are catalyzed by protein arginine methyltransferase (PRMTs) and protein lysine methyltransferase proteins (PKMTs), respectively; each methyltransferase has a specific set of target substrates. Here, we report a male with severe intellectual disability, facial dysmorphism, microcephaly, short stature, brachydactyly, cryptorchidism and seizures who was found to have a homozygous 15,309 bp deletion encompassing the transcription start site of PRMT7, which we confirmed is functionally a null allele. We show that the patient's cells have decreased levels of protein arginine methylation, and that affected proteins include the essential histones, H2B and H4. Finally, we demonstrate that patient cells have altered Wnt signaling, which may have contributed to the skeletal abnormalities. Our findings confirm the recent disease association of PRMT7, expand the phenotypic manifestations of this disorder and provide insight into the molecular pathogenesis of this new condition. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Early behavioural changes in familial Alzheimer's disease in the Dominantly Inherited Alzheimer Network.

    PubMed

    Ringman, John M; Liang, Li-Jung; Zhou, Yan; Vangala, Sitaram; Teng, Edmond; Kremen, Sarah; Wharton, David; Goate, Alison; Marcus, Daniel S; Farlow, Martin; Ghetti, Bernardino; McDade, Eric; Masters, Colin L; Mayeux, Richard P; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Cummings, Jeffrey L; Buckles, Virginia; Bateman, Randall; Morris, John C

    2015-04-01

    Prior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and

  1. Dominant inheritance of cerebral gigantism.

    PubMed

    Zonana, J; Sotos, J F; Romshe, C A; Fisher, D A; Elders, M J; Rimoin, D L

    1977-08-01

    Cerebral gigantism is a syndrome consisting of characteristic dysmorphic features, accelerated growth in early childhood, and variable degrees of mental retardation. Its etiology and pathogenesis have not been defined. Three families are presented with multiple affected members. The vertical transmission of the trait and equal expression in both sexes in these families indicates a genetic etiology with a dominant pattern of inheritance, probably autosomal. As in previously reported cases, extensive endocrine evaluation failed to define the pathogenesis of the accelerated growth present in this disorder.

  2. Novel BICD2 mutation in a Japanese family with autosomal dominant lower extremity-predominant spinal muscular atrophy-2.

    PubMed

    Yoshioka, Mieko; Morisada, Naoya; Toyoshima, Daisaku; Yoshimura, Hajime; Nishio, Hisahide; Iijima, Kazumoto; Takeshima, Yasuhiro; Uehara, Tomoko; Kosaki, Kenjiro

    2018-04-01

    The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogenous and largely remain to be elucidated. We present a father and son with atrophy and weakness of the lower leg muscles since infancy. Genetic studies in this family revealed a novel BICD2 mutation causing autosomal dominant lower extremity-predominant SMA type 2. The proband was the father, aged 30, and the son was aged 3. Both of them were born uneventfully to nonconsanguineous parents. While the father first walked at the age of 19 months, the son was unable to walk at age 3 years. In both, knee and ankle reflexes were absent and sensation was intact. Serum creatine kinase levels were normal. The son showed congenital arthrogryposis and underwent orthopedic corrections for talipes calcaneovalgus. Investigation of the father at the age of 5 years revealed normal results on nerve conduction studies and sural nerve biopsy. Electromyography showed chronic neurogenic change, and muscle biopsy showed features suggestive of denervation. The father was diagnosed clinically with a sporadic distal SMA. Follow-up studies showed very slow progression. Next-generation and Sanger sequencing revealed a deleterious mutation in BICD2: c.1667A>G, p.Tyr556Cys, in this family. BICD2 is a cytoplasmic conserved motor-adaptor protein involved in anterograde and retrograde transport along the microtubules. Next-generation sequencing will further clarify the genetic basis of non-5q SMA. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Autosomal-dominant chronic mucocutaneous candidiasis with STAT1-mutation can be complicated with chronic active hepatitis and hypothyroidism.

    PubMed

    Hori, Tomohiro; Ohnishi, Hidenori; Teramoto, Takahide; Tsubouchi, Kohji; Naiki, Takafumi; Hirose, Yoshinobu; Ohara, Osamu; Seishima, Mariko; Kaneko, Hideo; Fukao, Toshiyuki; Kondo, Naomi

    2012-12-01

    To describe a case of autosomal-dominant (AD)-chronic mucocutaneous candidiasis (CMC) with a signal transducer and activator of transcription (STAT) 1 gene mutation, and some of the important complications of this disease such as chronic hepatitis. We present a 23-year-old woman with CMC, chronic active hepatitis, and hypothyroidism. Her father also had CMC. We performed several immunological analyses of blood and liver samples, and searched for gene mutations for CMC in the patient and her father. We identified the heterozygous substitution c.821 G > A (p.Arg274Gln) in the STAT1 gene of both the patient and her father. The level of β-glucan induced interferon (IFN)-γ in her blood cells was significantly low. Immunoblot analysis detected serum anti-interleukin (IL)-17 F autoantibody. She was found to have increased (low-titer) antibodies related to her hypothyroidism and hepatitis. Her serum IL-18 levels fluctuated with her AST and ALT levels. Liver biopsy revealed CD68-positive cell infiltration and IL-18 expression in the sinusoidal regions. These results suggest that the chronic active hepatitis in this patient may be exacerbated by the excessive IL-18 accumulation caused by recurrent mucocutaneous fungal infection, and decreased IFN-γ production. AD-CMC is known to be caused by a gain-of-function mutation of the STAT1 gene. Chronic active hepatitis is a rare complication of AD-CMC, with currently unknown pathogenesis. It seems that the clinical phenotype in this patient is modified by autoimmune mechanisms and cytokine dysregulation. AD-CMC can be complicated by various immune disorders including autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.

  4. Mutations in the novel gene FOPV are associated with familial autosomal dominant and non-familial obliterative portal venopathy.

    PubMed

    Besmond, Claude; Valla, Dominique; Hubert, Laurence; Poirier, Karine; Grosse, Brigitte; Guettier, Catherine; Bernard, Olivier; Gonzales, Emmanuel; Jacquemin, Emmanuel

    2018-02-01

    Obliterative portal venopathy (OPV) is characterized by lesions of portal vein intrahepatic branches and is thought to be responsible for many cases of portal hypertension in the absence of cirrhosis or obstruction of large portal or hepatic veins. In most cases the cause of OPV remains unknown. The aim was to identify a candidate gene of OPV. Whole exome sequencing was performed in two families, including 6 patients with OPV. Identified mutations were confirmed by Sanger sequencing and expression of candidate gene transcript was studied by real time qPCR in human tissues. In both families, no mutations were identified in genes previously reported to be associated with OPV. In each family, we identified a heterozygous mutation (c.1783G>A, p.Gly595Arg and c.4895C>T, p.Thr1632Ile) in a novel gene located on chromosome 4, that we called FOPV (Familial Obliterative Portal Venopathy), and having a cDNA coding for 1793 amino acids. The FOPV mutations segregated with the disease in families and the pattern of inheritance was suggestive of autosomal dominant inherited OPV, with incomplete penetrance and variable expressivity. In silico analysis predicted a deleterious effect of each mutant and mutations concerned highly conserved amino acids in mammals. A deleterious heterozygous FOPV missense mutation (c.4244T>C, p.Phe1415Ser) was also identified in a patient with non-familial OPV. Expression study in liver veins showed that FOPV transcript was mainly expressed in intrahepatic portal vein. This report suggests that FOPV mutations may have a pathogenic role in some cases of familial and non-familial OPV. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease

    PubMed Central

    Requena, Teresa; Cabrera, Sonia; Martín-Sierra, Carmen; Price, Steven D.; Lysakowski, Anna; Lopez-Escamez, José A.

    2015-01-01

    Meniere's disease (MD) is a chronic disorder of the inner ear defined by sensorineural hearing loss, tinnitus and episodic vertigo, and familial MD is observed in 5–15% of sporadic cases. Although its pathophysiology is largely unknown, studies in human temporal bones have found an accumulation of endolymph in the scala media of the cochlea. By whole-exome sequencing, we have identified two novel heterozygous single-nucleotide variants in FAM136A and DTNA genes, both in a Spanish family with three affected cases in consecutive generations, highly suggestive of autosomal-dominant inheritance. The nonsense mutation in the FAM136A gene leads to a stop codon that disrupts the FAM136A protein product. Sequencing revealed two mRNA transcripts of FAM136A in lymphoblasts from patients, which were confirmed by immunoblotting. Carriers of the FAM136A mutation showed a significant decrease in the expression level of both transcripts in lymphoblastoid cell lines. The missense mutation in the DTNA gene produces a novel splice site which skips exon 21 and leads to a shorter alternative transcript. We also demonstrated that FAM136A and DTNA proteins are expressed in the neurosensorial epithelium of the crista ampullaris of the rat by immunohistochemistry. While FAM136A encodes a mitochondrial protein with unknown function, DTNA encodes a cytoskeleton-interacting membrane protein involved in the formation and stability of synapses with a crucial role in the permeability of the blood–brain barrier. Neither of these genes has been described in patients with hearing loss, FAM136A and DTNA being candidate gene for familiar MD. PMID:25305078

  6. Characterization of a Recurrent In-frame UMOD Indel Mutation Causing Late-onset Autosomal Dominant End-Stage Renal Failure

    PubMed Central

    Smith, Graham D.; Robinson, Caroline; Stewart, Andrew P.; Edwards, Emily L.; Karet, Hannah I.; Norden, Anthony G. W.; Sandford, Richard N.

    2011-01-01

    Summary Background and objectives In a single-center renal clinic, we have established routine mutation testing to diagnose UMOD-associated kidney disease (UAKD), an autosomal dominant disorder typically characterized by gout, hyperuricemia, and renal failure in the third to sixth decades. Design, setting, participants, & measurements Four probands and their multigeneration kindreds were assessed by clinical, historical, and biochemical means. Diagnostic UMOD sequencing was performed, and mutant uromodulin was characterized in vitro. Results All available affected members of the four kindreds harbored the same complex indel change in UMOD, which was associated with almost complete absence of gout and a later onset of CKD; the youngest age at ESRD or death was 38 years (range, 38 to 68 years) compared with 3 to 70 years in other reports. Three mutation carriers (all ≤35 years) are currently asymptomatic. The indel sequence (c.278_289del TCTGCCCCGAAGinsCCGCCTCCT; p.V93_G97del/ins AASC) results in the replacement of five amino acids, including one cysteine, by four novel residues, also including a cysteine. Uromodulin staining of the only available patient biopsy suggested disorganized intracellular trafficking with cellular accumulation. Functional characterization of the mutant isoform revealed retarded intracellular trafficking associated with endoplasmic reticulum (ER) retention and reduced secretion into cell culture media, but to a lesser extent than we observed with the previously reported C150S mutation. Conclusions The indel mutation is associated with a relatively mild clinical UAKD phenotype, consistent with our in vitro analysis. UAKD should be routinely considered as a causative gene for ESRD of unknown cause, especially where there is an associated family history or where biopsy reveals interstitial fibrosis. PMID:22034507

  7. Phenotypic Variability in Autosomal Dominant Familial Alzheimer Disease due to the S170F Mutation of Presenilin-1.

    PubMed

    Tiedt, Hannes O; Benjamin, Beate; Niedeggen, Michael; Lueschow, Andreas

    2018-02-22

    In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age. © 2018 S. Karger AG, Basel.

  8. Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD)

    PubMed Central

    Carrera, Paola; Calzavara, Silvia; Magistroni, Riccardo; den Dunnen, Johan T.; Rigo, Francesca; Stenirri, Stefania; Testa, Francesca; Messa, Piergiorgio; Cerutti, Roberta; Scolari, Francesco; Izzi, Claudia; Edefonti, Alberto; Negrisolo, Susanna; Benetti, Elisa; Alibrandi, Maria Teresa Sciarrone; Manunta, Paolo; Boletta, Alessandra; Ferrari, Maurizio

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common hereditary kidney disease. We analysed PKD1 and PKD2, in a large cohort of 440 unrelated Italian patients with ADPKD and 203 relatives by direct sequencing and MLPA. Molecular and detailed phenotypic data have been collected and submitted to the PKD1/PKD2 LOVD database. This is the first large retrospective study in Italian patients, describing 701 variants, 249 (35.5%) already associated with ADPKD and 452 (64.5%) novel. According to the criteria adopted, the overall detection rate was 80% (352/440). Novel variants with uncertain significance were found in 14% of patients. Among patients with pathogenic variants, in 301 (85.5%) the disease is associated with PKD1, 196 (55.7%) truncating, 81 (23%) non truncating, 24 (6.8%) IF indels, and in 51 (14.5%) with PKD2. Our results outline the high allelic heterogeneity of variants, complicated by the presence of variants of uncertain significance as well as of multiple variants in the same subject. Classification of novel variants may be particularly cumbersome having an important impact on the genetic counselling. Our study confirms the importance to improve the assessment of variant pathogenicity for ADPKD; to this point databasing of both clinical and molecular data is crucial. PMID:27499327

  9. Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions.

    PubMed

    Escher, Pascal; Passarin, Olga; Munier, Francis L; Tran, Viet H; Vaclavik, Veronika

    2018-01-01

    To expand the genotype/phenotype correlations in patients with autosomal dominant retinitis pigmentosa (adRP) harboring PRPF8 variants. Two patients, a father and his daughter, harboring a novel p.PRPF8-Glu2331* variant, underwent ophthalmic examination at 3-year-interval, including fundus photography, fundus autofluorescence, optical coherence tomography, and ISCEV standard full field ERGs. All reported disease-causing PRPF8 variants were collected and localized in the PRPF8 and PRPF8/SNRNP200 protein structures. The p.PRPF8-Glu2331* variant results in a truncated PRPF8 protein lacking the last five C-terminal amino acids and caused in the two patients a severe clinical phenotype, with the macula being affected from the second decade on. All but two adRP-linked variants are located in the last exon 43 encoding the C-terminal tail of the C-terminal PRPF8 Jab1 domain. The p.PRPF8-Ser2118Phe and -Asn2280Lys variants encoded by exons 39 and 42, respectively, are located at the basis of the C-terminal tail. Frame-shift mutations and nonconservative amino acid changes in PRPF8 typically cause severe clinical phenotypes. The conservative missense variant p.PRPF8-Arg2310Lys that is not altering the global charge of the C-terminal tail, and variants located at the basis of the C-terminal tail show milder clinical phenotypes, in accordance with functional data on PRPF8/SNRNP200 interactions in yeast.

  10. New mutations in the Notch3 gene in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL).

    PubMed

    Abramycheva, Natalya; Stepanova, Maria; Kalashnikova, Lyudmila; Zakharova, Maria; Maximova, Marina; Tanashyan, Marine; Lagoda, Olga; Fedotova, Ekaterina; Klyushnikov, Sergey; Konovalov, Rodion; Sakharova, Alla; Illarioshkin, Sergey

    2015-02-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is a cerebrovascular small-vessel disease caused by stereotyped mutations in the Notch3 gene altering the number of cysteine residues. We directly sequenced exons 2-23 of the Notch3 gene in 30 unrelated Russian patients with clinical/neuroimaging picture suggestive of CADASIL. To confirm the pathogenicity of new nucleotide variants, we used the standard bioinformatics tools and screened 200 ethnically matched individuals as controls. We identified 16 different point mutations in the Notch3 gene in 18 unrelated patients, including 4 new missense mutations (C194G, V252M, C338F, and C484G). All but two mutations affected the cysteine residue. The non-cysteine change V322M was shown to be associated with CADASIL-specific deposits of granular osmiophilic material in the vascular smooth-muscle cells, which confirmed the pathogenicity of this Notch3 variant. Two patients were shown to be compound-heterozygotes carrying two pathogenic Notch3 mutations. The disease was characterized by marked clinical variability, without evident phenotype-genotype correlations. In our sample, 60% of Russian patients with 'clinically suspected' CADASIL received the definitive molecularly proven diagnosis. Careful assessment of genealogical, clinical, and neuroimaging data in patients with lacunar stroke can help selecting patients with a high probability of finding mutations on genetic screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels.

    PubMed

    Mets, Sarah; Tryon, Rebecca; Veach, Patricia McCarthy; Zierhut, Heather A

    2016-04-01

    The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.

  12. Dominant-negative diabetes insipidus and other endocrinopathies

    PubMed Central

    Phillips, John A.

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) in humans is an autosomal dominant disorder caused by a variety of mutations in the arginine vasopressin (AVP) precursor. A new report demonstrates how heterozygosity for an AVP mutation causes FNDI (see the related article beginning on page 1697). Using an AVP knock-in mutation in mice, the study shows that FNDI is caused by retention of AVP precursors and progressive loss of AVP-producing neurons. PMID:14660740

  13. Probable autosomal recessive Marfan syndrome.

    PubMed Central

    Fried, K; Krakowsky, D

    1977-01-01

    A probable autosomal recessive mode of inheritance is described in a family with two affected sisters. The sisters showed the typical picture of Marfan syndrome and were of normal intelligence. Both parents and all four grandparents were personally examined and found to be normal. Homocystinuria was ruled out on repeated examinations. This family suggests genetic heterogeneity in Marfan syndrome and that in some rare families the mode of inheritance may be autosomal recessive. Images PMID:592353

  14. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss.

    PubMed

    Hildebrand, Michael S; Morín, Matías; Meyer, Nicole C; Mayo, Fernando; Modamio-Hoybjor, Silvia; Mencía, Angeles; Olavarrieta, Leticia; Morales-Angulo, Carmelo; Nishimura, Carla J; Workman, Heather; DeLuca, Adam P; del Castillo, Ignacio; Taylor, Kyle R; Tompkins, Bruce; Goodman, Corey W; Schrauwen, Isabelle; Wesemael, Maarten Van; Lachlan, K; Shearer, A Eliot; Braun, Terry A; Huygen, Patrick L M; Kremer, Hannie; Van Camp, Guy; Moreno, Felipe; Casavant, Thomas L; Smith, Richard J H; Moreno-Pelayo, Miguel A

    2011-07-01

    The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL. © 2011 Wiley-Liss, Inc.

  15. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Heyer, Christina M; Sundsbak, Jamie L; Abebe, Kaleab Z; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Bae, Kyongtae T; Schrier, Robert W; Perrone, Ronald D; Braun, William E; Steinman, Theodore I; Mrug, Michal; Yu, Alan S L; Brosnahan, Godela; Hopp, Katharina; Irazabal, Maria V; Bennett, William M; Flessner, Michael F; Moore, Charity G; Landsittel, Douglas; Harris, Peter C

    2016-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype. Copyright © 2016 by the American Society of Nephrology.

  16. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo.

    PubMed

    Shimada, Takashi; Muto, Takanori; Urakawa, Itaru; Yoneya, Takashi; Yamazaki, Yuji; Okawa, Katsuya; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi

    2002-08-01

    FGF-23 is involved in the pathogenesis of two similar hypophosphatemic diseases, autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and tumor-induced osteomalacia (TIO). We have shown that the overproduction of FGF-23 by tumors causes TIO. In contrast, ADHR derives from missense mutations in FGF-23 gene. However, it has been unclear how those mutations affect phosphate metabolism. Therefore, we produced mutant as well as wild-type FGF-23 proteins and examined their biological activity. Western blot analysis using site-specific antibodies showed that wild-type FGF-23 secreted into conditioned media was partially cleaved between Arg(179) and Ser(180). In addition, further processing of the cleaved N-terminal portion was observed. In constrast, mutant FGF-23 proteins found in ADHR were resistant to the cleavage. In order to clarify which molecule has the biological activity to induce hypophosphatemia, we separated full-length protein, the N-terminal and C-terminal fragments of wild-type FGF-23. When the activity of each fraction was examined in vivo, only the full-length FGF-23 decreased serum phosphate. Mutant FGF-23 protein that was resistant to the cleavage also retained the activity to induce hypophosphatemia. The extent of hypophosphatemia induced by the single administration of either wild-type or the mutant full-length FGF-23 protein was similar. In addition, implantation of CHO cells expressing the mutant FGF-23 protein caused hypophosphatemia and the decrease of bone mineral content. We conclude that ADHR is caused by hypophosphatemic action of mutant full-length FGF-23 proteins that are resistant to the cleavage between Arg(179) and Ser(180).

  17. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular

  18. [Impact of autosomal dominant polycystic kidney disease on the outcomes of intracytoplasmic sperm injection in infertile males].

    PubMed

    Su, Huang; Liu, Bian-jiang; Yang, Xiao-yu; Song, Ning-hong; Yin, Chang-jun; Zhang, Wei; Liu, Jia-yin

    2015-01-01

    To summarize the features and treatment of male infertility induced by autosomal dominant polycystic kidney disease (ADPKD), and compare the outcomes of intracytoplasmic sperm injection (ICSI) for infertile men with ADPKD and those with congenital bilateral absence of vas deferens (CBAVD). We retrospectively analyzed 21 cases of ADPKD-induced infertility, 15 treated by ICSI (group A), and another 164 cases of strictly matched CBAVD-induced infertility (group B). We compared the two groups in the couples' age, the number of ICSI oocytes, and the rates of fertilization, transferrable embryos, good embryos, embryos implanted, clinical pregnancy, biochemical pregnancy, early abortion, singleton and twins in the first cycle. After 28 cycles of ICSI, 10 of the 15 ADPKD-induced infertility patients achieved clinical pregnancy, including 7 cases of live birth, 1 case of spontaneous abortion, and 2 cases of pregnancy maintenance. No significant differences were observed between groups A and B in the couples' age, the wives' BMI, or the numbers of ICSI oocytes and embryos transplanted (P >0.05), nor in the rates of ICSI fertilization (72.64% vs 76.17%), transferrable embryos (51.28% vs 63.24%), quality embryos (38.46% vs 49.83%), embryo implantation (17.64% vs 38.50%), abortion (0 vs 9.23%), singleton (50% vs 81.54%) and twins (50% vs 18.46%). However, the rates of clinical pregnancy (13.33% vs 42.68%, P = 0.023 <0.05) and biochemical pregnancy (13.33% vs 39.63%, P = 0.032 <0.05) were significantly lower in group A than in B. ICSI is effective in the treatment of male infertility induced by either ADPKD or CBAVD, but the ADPKD cases have a lower success rate than the CBAVD cases in an individual cycle. The affected couples should be informed of the necessity of prenatal genetic diagnosis before embryo implantation and the inevitable vertical transmission of genetic problems to the offspring.

  19. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group

    PubMed Central

    Chang, Audrey S.; Noor, Mohamed A. F.

    2009-01-01

    Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F1 hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F1 hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana. We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F1 hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date identification of dominant-acting autosomal “speciation genes” has been challenging. PMID:19686263

  20. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group.

    PubMed

    Chang, Audrey S; Noor, Mohamed A F

    2010-01-01

    Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F(1) hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F(1) hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana. We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F(1) hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.

  1. Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease: Prevalence and Association with PKD2 Gene Mutations.

    PubMed

    Kim, Jin Ah; Blumenfeld, Jon D; Chhabra, Shalini; Dutruel, Silvina P; Thimmappa, Nanda Deepa; Bobb, Warren O; Donahue, Stephanie; Rennert, Hanna E; Tan, Adrian Y; Giambrone, Ashley E; Prince, Martin R

    2016-09-01

    Purpose To define the magnetic resonance (MR) imaging prevalence of pancreatic cysts in a cohort of patients with autosomal dominant polycystic kidney disease (ADPKD) compared with a control group without ADPKD that was matched for age, sex, and renal function. Materials and Methods In this HIPAA-compliant, institutional review board-approved study, all patients with ADPKD provided informed consent; for control subjects, informed consent was waived. Patients with ADPKD (n = 110) with mutations identified in PKD1 or PKD2 and control subjects without ADPKD or known pancreatic disease (n = 110) who were matched for age, sex, estimated glomerular filtration rate, and date of MR imaging examination were evaluated for pancreatic cysts by using axial and coronal single-shot fast spin-echo T2-weighted images obtained at 1.5 T. Total kidney volume and liver volume were measured. Univariate and multivariable logistic regression analyses were conducted to evaluate potential associations between collected variables and presence of pancreatic cysts among patients with ADPKD. The number, size, location, and imaging characteristics of the cysts were recorded. Results Patients with ADPKD were significantly more likely than control subjects to have at least one pancreatic cyst (40 of 110 patients [36%] vs 25 of 110 control subjects [23%]; P = .027). In a univariate analysis, pancreatic cysts were more prevalent in patients with ADPKD with mutations in PKD2 than in PKD1 (21 of 34 patients [62%] vs 19 of 76 patients [25%]; P = .0002). In a multivariable logistic regression model, PKD2 mutation locus was significantly associated with the presence of pancreatic cysts (P = .0004) and with liver volume (P = .038). Patients with ADPKD and a pancreatic cyst were 5.9 times more likely to have a PKD2 mutation than a PKD1 mutation after adjusting for age, race, sex, estimated glomerular filtration rate, liver volume, and total kidney volume. Conclusion Pancreatic cysts were more prevalent in

  2. Autosomal Dominant Tubulointerstitial Kidney Disease: Clinical Presentation of Patients With ADTKD-UMOD and ADTKD-MUC1.

    PubMed

    Ayasreh, Nadia; Bullich, Gemma; Miquel, Rosa; Furlano, Mónica; Ruiz, Patricia; Lorente, Laura; Valero, Oliver; García-González, Miguel Angel; Arhda, Nisrine; Garin, Intza; Martínez, Víctor; Pérez-Gómez, Vanessa; Fulladosa, Xavier; Arroyo, David; Martínez-Vea, Alberto; Espinosa, Mario; Ballarín, Jose; Ars, Elisabet; Torra, Roser

    2018-05-18

    Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a rare underdiagnosed cause of end-stage renal disease (ESRD). ADTKD is caused by mutations in at least 4 different genes: MUC1, UMOD, HNF1B, and REN. Retrospective cohort study. 56 families (131 affected individuals) with ADTKD referred from different Spanish hospitals. Clinical, laboratory, radiologic, and pathologic data were collected, and genetic testing for UMOD, MUC1, REN, and HNF1B was performed. Hyperuricemia, ultrasound findings, renal histology, genetic mutations. Age at ESRD, rate of decline in estimated glomerular filtration rate. ADTKD was diagnosed in 25 families (45%), 9 carried UMOD pathogenic variants (41 affected members), and 16 carried the MUC1 pathogenic mutation c.(428)dupC (90 affected members). No pathogenic variants were identified in REN or HNF1B. Among the 77 individuals who developed ESRD, median age at onset of ESRD was 51 years for those with ADTKD-MUC1 versus 56 years (P=0.1) for those with ADTKD-UMOD. Individuals with the MUC1 duplication presented higher risk for developing ESRD (HR, 2.24; P=0.03). The slope of decline in estimated glomerular filtration rate showed no significant difference between groups (-3.0mL/min/1.73m 2 per year in the ADTKD-UMOD group versus -3.9mL/min/1.73m 2 per year in the ADTKD-MUC1 group; P=0.2). The prevalence of hyperuricemia was significantly higher in individuals with ADTKD-UMOD (87% vs 54%; P=0.006). Although gout occurred more frequently in this group, the difference was not statistically significant (24% vs 7%; P=0.07). Relatively small Spanish cohort. MUC1 analysis limited to cytosine duplication. The main genetic cause of ADTKD in our Spanish cohort is the MUC1 pathogenic mutation c.(428)dupC. Renal survival may be worse in individuals with the MUC1 mutation than in those with UMOD mutations. Clinical presentation does not permit distinguishing between these variants. However, hyperuricemia and gout are more frequent in individuals

  3. Cerebral Microbleeds and the Risk of Incident Ischemic Stroke in CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy).

    PubMed

    Puy, Laurent; De Guio, François; Godin, Ophélia; Duering, Marco; Dichgans, Martin; Chabriat, Hugues; Jouvent, Eric

    2017-10-01

    Cerebral microbleeds are associated with an increased risk of intracerebral hemorrhage. Recent data suggest that microbleeds may also predict the risk of incident ischemic stroke. However, these results were observed in elderly individuals undertaking various medications and for whom causes of microbleeds and ischemic stroke may differ. We aimed to test the relationship between the presence of microbleeds and incident stroke in CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy)-a severe monogenic small vessel disease known to be responsible for both highly prevalent microbleeds and a high incidence of ischemic stroke in young patients. We assessed microbleeds on baseline MRI in all 378 patients from the Paris-Munich cohort study. Incident ischemic strokes were recorded during 54 months. Survival analyses were used to test the relationship between microbleeds and incident ischemic stroke. Three hundred sixty-nine patients (mean age, 51.4±11.4 years) were followed-up during a median time of 39 months (interquartile range, 19 months). The risk of incident ischemic stroke was higher in patients with microbleeds than in patients without (35.8% versus 19.6%, hazard ratio, 1.87; 95% confidence interval, 1.16-3.01; P =0.009). These results persisted after adjustment for history of ischemic stroke, age, sex, vascular risk factors, and antiplatelet agents use (hazard ratio, 1.89; 95% confidence interval, 1.10-3.26; P =0.02). The presence of microbleeds is an independent risk marker of incident ischemic stroke in CADASIL, emphasizing the need to carefully interpret MRI data. © 2017 American Heart Association, Inc.

  4. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Spithoven, E M; Meijer, E; Borns, C; Boertien, W E; Gaillard, C A J M; Kappert, P; Greuter, M J W; van der Jagt, E; Vart, P; de Jong, P E; Gansevoort, R T

    2016-03-01

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBFMRI) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBFMRI measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBFMRI. After validation, we measured RBFMRI in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBFMRI and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBFMRI measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBFMRI compared to RBFHip, whereas in subjects with lower eGFRs, this was significantly less for RBFMRI. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. Renal blood flow (RBF) can be accurately measured by phase-contrast MRI in ADPKD patients. RBF measured by phase-contrast is associated with ADPKD disease severity. RBF measurement by phase-contrast MRI may be less feasible in patients with an impaired eGFR.

  5. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  6. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

    PubMed

    Wang, Honghan; Wang, Xinwei; He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2015-03-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant.

  7. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-07-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.

  8. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss

    PubMed Central

    Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young

    2014-01-01

    Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041

  9. A new locus on 3p23–p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H

    PubMed Central

    Bisceglia, Luigi; Zoccolella, Stefano; Torraco, Alessandra; Piemontese, Maria Rosaria; Dell'Aglio, Rosa; Amati, Angela; De Bonis, Patrizia; Artuso, Lucia; Copetti, Massimiliano; Santorelli, Filippo Maria; Serlenga, Luigi; Zelante, Leopoldo; Bertini, Enrico; Petruzzella, Vittoria

    2010-01-01

    Limb-girdle muscular dystrophies (LGMDs) are a genetically heterogeneous group of neuromuscular disorders with a selective or predominant involvement of shoulder and pelvic girdles. We clinically examined 19 members in a four-generation Italian family with autosomal-dominant LGMD. A total of 11 subjects were affected. Clinical findings showed variable expressivity in terms of age at onset and disease severity. Five subjects presented with a slowly progressive proximal muscle weakness, in both upper and lower limbs, with onset during the fourth–fifth decade of life, which fulfilled the consensus diagnostic criteria for LGMD. Earlier onset of the disease was observed in a group of patients presenting with muscle weakness and/or calf hypertrophy, and/or occasionally high CK and lactate serum levels. Two muscle biopsies showed morphological findings compatible with MD associated with subsarcolemmal accumulation of mitochondria and the presence of multiple mitochondrial DNA deletions. A genome-wide scan performed using microsatellite markers mapped the disease on chromosome 3p23–p25.1 locus in a 25-cM region between markers D3S1263 and D3S3685. The highest two-point LOD score was 3.26 (θ=0) at marker D3S1286 and D3S3613, whereas non-parametric analysis reached a P-value=0.0004. Four candidate genes within the refined region were analysed but did not reveal any mutations. Our findings further expand the clinical and genetic heterogeneity of LGMDs. PMID:20068593

  10. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D.

    PubMed

    Stunkel, Maria L; Brodie, Scott E; Cideciyan, Artur V; Pfeifer, Wanda L; Kennedy, Elizabeth L; Stone, Edwin M; Jacobson, Samuel G; Drack, Arlene V

    2018-06-01

    GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. Retrospective case series. Multicenter study of 5 patients (3 male, 2 female). All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Unique autosomal recessive variant of palmoplantar keratoderma associated with hearing loss not caused by known mutations*

    PubMed Central

    Hegazi, Moustafa Abdelaal; Manou, Sommen; Sakr, Hazem; Camp, Guy Van

    2017-01-01

    Inherited Palmoplantar Keratodermas are rare disorders of genodermatosis that are conventionally regarded as autosomal dominant in inheritance with extensive clinical and genetic heterogeneity. This is the first report of a unique autosomal recessive Inherited Palmoplantar keratoderma - sensorineural hearing loss syndrome which has not been reported before in 3 siblings of a large consanguineous family. The patients presented unique clinical features that were different from other known Inherited Palmoplantar Keratodermas - hearing loss syndromes. Mutations in GJB2 or GJB6 and the mitochondrial A7445G mutation, known to be the major causes of diverse Inherited Palmoplantar Keratodermas -hearing loss syndromes were not detected by Sanger sequencing. Moreover, the pathogenic mutation could not be identified using whole exome sequencing. Other known Inherited Palmoplantar keratoderma syndromes were excluded based on both clinical criteria and genetic analysis. PMID:29267478

  12. Chronic asymptomatic pyuria precedes overt urinary tract infection and deterioration of renal function in autosomal dominant polycystic kidney disease

    PubMed Central

    2013-01-01

    Background Urinary tract infection (UTI) occurs in 30%-50% of individuals with autosomal dominant polycystic kidney disease (ADPKD). However, the clinical relevance of asymptomatic pyuria in ADPKD patients remains unknown. Methods We retrospectively reviewed medical records of 256 ADPKD patients who registered to the ADPKD clinic at Seoul National University Hospital from Aug 1999 to Aug 2010. We defined the asymptomatic pyuria as more than 5-9 white blood cells in high-power field with no related symptoms or signs of overt UTI. Patients were categorized into 2 groups depending on its duration and frequency: Group A included non-pyuria and transient pyuria patients; Group B included recurrent and persistent pyuria patients. The association between asymptomatic pyuria and both the development of overt UTI and the deterioration of renal function were examined. Results With a mean follow-up duration of 65.3 months, 176 (68.8%) out of 256 patients experienced 681 episodes of asymptomatic pyuria and 50 episodes of UTI. The annual incidence of asymptomatic pyuria was 0.492 episodes/patient/year. The patients in group B showed female predominance (58.5% vs. 42.0%, P=0.01) and experienced an upper UTI more frequently (hazard ratio: 4.612, 95% confidence interval: 1.735-12.258; P=0.002, adjusted for gender and hypertension). The annual change in estimated glomerular filtration rate (ΔeGFR) was significantly larger in magnitude in group B than in group A (-2.7±4.56 vs. -1.17±5.8, respectively; P=0.01). Age and Group B found to be the independent variables for ΔeGFR and developing end-stage renal disease (16.0% vs. 4.3%, respectively; P=0.001). Conclusions Chronic asymptomatic pyuria may increase the risk of developing overt UTI and may contribute to declining renal function in ADPKD. PMID:23295127

  13. Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling.

    PubMed

    Aboudehen, Karam; Farahani, Shayan; Kanchwala, Mohammed; Chan, Siu Chiu; Avdulov, Svetlana; Mickelson, Alan; Lee, Dayeon; Gearhart, Micah D; Patel, Vishal; Xing, Chao; Igarashi, Peter

    2018-06-15

    Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease that is characterized by the accumulation of numerous fluid-filled cysts in the kidney. ADPKD is primarily caused by mutations in two genes, PKD1 and PKD2 Long noncoding RNAs (lncRNA), defined by a length >200 nucleotides and absence of a long ORF, have recently emerged as epigenetic regulators of development and disease; however, their involvement in PKD has not been explored previously. Here, we performed deep RNA-Seq to identify lncRNAs that are dysregulated in two orthologous mouse models of ADPKD (kidney-specific Pkd1 and Pkd2 mutant mice). We identified a kidney-specific, evolutionarily conserved lncRNA called Hoxb3os that was down-regulated in cystic kidneys from Pkd1 and Pkd2 mutant mice. The human ortholog HOXB3-AS1 was down-regulated in cystic kidneys from ADPKD patients. Hoxb3os was highly expressed in renal tubules in adult WT mice, whereas its expression was lost in the cyst epithelium of mutant mice. To investigate the function of Hoxb3os , we utilized CRISPR/Cas9 to knock out its expression in mIMCD3 cells. Deletion of Hoxb3os resulted in increased phosphorylation of mTOR and its downstream targets, including p70 S6 kinase, ribosomal protein S6, and the translation repressor 4E-BP1. Consistent with activation of mTORC1 signaling, Hoxb3os mutant cells displayed increased mitochondrial respiration. The Hoxb3os mutant phenotype was partially rescued upon re-expression of Hoxb3os in knockout cells. These findings identify Hoxb3os as a novel lncRNA that is down-regulated in ADPKD and regulates mTOR signaling and mitochondrial respiration. © 2018 Aboudehen et al.

  14. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy and right-to-left shunt: lack of evidence for an association in a prevalence study.

    PubMed

    Mazzucco, S; Anzola, G P; Ferrarini, M; Taioli, F; Olivato, S; Burlina, A P; Fabrizi, G M; Rizzuto, N

    2009-01-01

    Up to more than 50% of cryptogenetic stroke patients and patients with migraine with aura (MA) are found to have a right-to-left shunt (RLS), which is usually due to a patent foramen ovale. Moreover, both MA and stroke are cardinal features of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL). Notch3 mutations have been suggested to induce an abnormally high incidence of atrial septal defects in a family harbouring an Arg141Cys pathogenetic mutation. We sought to determine the prevalence of RLS in CADASIL patients with different Notch3 mutations, both with and without migraine as a clinical feature. Subjects with a molecular diagnosis of CADASIL were tested for the presence of an RLS by means of contrast-enhanced transcranial Doppler (TCD). The diagnosis of migraine was made according to the 2004 International Headache Classification. Sixteen CADASIL patients were tested; 6 had MA. Four patients displayed an RLS on contrast-enhanced TCD examination. Three of these patients had MA. Both patients with Arg141Cys displayed a large RLS. We conclude that RLS is not necessarily linked to CADASIL as a comorbidity factor. Nevertheless, there could be a relation between RLS and specific Notch3 mutations, such as Arg141Cys. 2008 S. Karger AG, Basel.

  15. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    PubMed

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  16. Rationale and Design of a Clinical Trial Investigating Tolvaptan Safety and Efficacy in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Torres, Vicente E; Devuyst, Olivier; Chapman, Arlene B; Gansevoort, Ron T; Perrone, Ronald D; Ouyang, John; Blais, Jaime D; Czerwiec, Frank S; Sergeyeva, Olga

    2017-01-01

    In TEMPO 3:4, the vasopressin V2-receptor antagonist tolvaptan slowed kidney growth and function decline in autosomal dominant polycystic kidney disease (ADPKD) patients with relatively preserved kidney function. Prospective, phase 3b, multi-center, randomized-withdrawal, placebo-controlled, double-blind trial of tolvaptan in ADPKD patients with late stage 2 to early stage 4 chronic kidney disease (CKD). The primary endpoint was estimated glomerular filtration rate (eGFR) change from pre-treatment baseline to post-treatment follow-up. Secondary endpoints included annualized eGFR slope, incidence of ADPKD complications, and overall and hepatic safety profiles. Participants were 18-55 year-old ADPKD patients with baseline eGFR ≥25 and ≤65 mL/min/1.73 m2 or 56-65 year-old with eGFR ≥25 and ≤44 mL/min/1.73 m2 and evidence of eGFR decline >2.0 mL/min/1.73 m2 per year. Daily split doses of tolvaptan were titrated to tolerance (30/15, 45/15, 60/30, or 90/30 mg) and maintained for 12 months, after an 8-week pre-randomization period to screen out subjects unable to tolerate at least 60/30 mg for 3 weeks. Of 1,495 subjects who entered the tolvaptan titration period, 125 (8.4%) discontinued the study before randomization. One thousand three hundred seventy subjects (684 tolvaptan, 686 placebo) from 213 centers across 21 countries were randomized. Baseline demographics were well balanced across treatment arms. Information collected during the study included eGFR, survey scores (PKD history and outcome), adverse events, vital signs, hematology, urinalysis, and serum chemistry tests. Replicating Evidence of Preserved Renal Function: An Investigation of Tolvaptan Safety and Efficacy (REPRISE) determines whether tolvaptan administered over 1 year exhibits disease-modifying properties in ADPKD patients with late stage 2 to early stage 4 CKD, which provides an important therapeutic advancement for this difficult-to-treat disease. © 2017 S. Karger AG, Basel.

  17. Mutation analysis of COL4A3 and COL4A4 genes in a Chinese autosomal-dominant Alport syndrome family.

    PubMed

    Guo, Liwei; Li, Duan; Dong, Shuangshuang; Wan, Donghao; Yang, Baosheng; Huang, Yanmei

    2017-06-01

    Autosomal dominant Alport syndrome (ADAS) accounts for 5% of all cases of Alport syndrome (AS), a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family.Mutations in COL4A3 and COL4A4 genes were reported to be associated with ADAS. In this study, clinical data in a large consanguineous family with seven affected members were reviewed, and genomic DNA was extracted. For mutation screening, all exons of COL4A3 and COL4A4 genes were polymerase chain reaction-amplified and direct sequenced from genomic DNA, and the mutations were analyzed by comparing with members in this family, 100 ethnicitymatched controls and the sequence of COL4A3 and COL4A4 genes from GenBank. A novel mutation determining a nucleotide change was found, i.e. c.4195 A>T (p.Met1399Leu) at 44th exon of COL4A4 gene, and this mutation showed heterozygous in all patients of this family. Also a novel intron mutation (c.4127+11 C>T) was observed at COL4A4 gene. Thus the novel missense mutation c.4195 A>T (p.Met1399Leu) and the intron mutation (c.4127+11 C>T) at COL4A4 gene might be responsible for ADAS of this family. Our results broadened the spectrum of mutations in COL4A4 and had important implications in the diagnosis, prognosis, and genetic counselling of ADAS.

  18. Clustering of dystonia in some pedigrees with autosomal dominant essential tremor suggests the existence of a distinct subtype of essential tremor

    PubMed Central

    2010-01-01

    Background There is an ongoing debate whether essential tremor (ET) represents a monosymptomatic disorder or other neurologic symptoms are compatible with the diagnosis of ET. Many patients with clinically definite ET develop dystonia. It remains unknown whether tremor associated with dystonia represent a subtype of ET. We hypothesized that ET with dystonia represents a distinct subtype of ET. Methods We studied patients diagnosed with familial ET and dystonia. We included only those patients whose first-degree relatives met diagnostic criteria for ET or dystonia with tremor. This cohort was ascertained for the presence of focal, segmental, multifocal, hemidystonia or generalized dystonia, and ET. Results We included 463 patients from 97 kindreds with autosomal dominant mode of inheritance (AD), defined by the vertical transmission of the disease. ET was the predominant phenotype in every ascertained family and each was phenotypically classified as AD ET. "Pure" ET was present in 365 individuals. Focal or segmental dystonia was present in 98 of the 463 patients; 87 of the 98 patients had ET associated with dystonia, one had dystonic tremor and ten had isolated dystonia. The age of onset and tremor severity did not differ between patients with "pure" ET and ET associated with dystonia. We did not observe a random distribution of dystonia in AD ET pedigrees and all patients with dystonia associated with ET were clustered in 28% of all included pedigrees (27/97, p < 0.001). Conclusions Our results suggest that familial ET associated with dystonia may represent a distinct subtype of ET. PMID:20670416

  19. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II).

    PubMed

    Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin

    2016-07-01

    Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense

  20. PKD2-Related Autosomal Dominant Polycystic Kidney Disease: Prevalence, Clinical Presentation, Mutation Spectrum, and Prognosis.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Renaudineau, Eric; Hourmant, Maryvonne; Charasse, Christophe; Michez, Eric; Frouget, Thierry; Vigneau, Cécile; Dantal, Jacques; Siohan, Pascale; Longuet, Hélène; Gatault, Philippe; Ecotière, Laure; Bridoux, Frank; Mandart, Lise; Hanrotel-Saliou, Catherine; Stanescu, Corina; Depraetre, Pascale; Gie, Sophie; Massad, Michiel; Kersalé, Aude; Séret, Guillaume; Augusto, Jean-François; Saliou, Philippe; Maestri, Sandrine; Chen, Jian-Min; Harris, Peter C; Férec, Claude; Le Meur, Yannick

    2017-10-01

    PKD2-related autosomal dominant polycystic kidney disease (ADPKD) is widely acknowledged to be of milder severity than PKD1-related disease, but population-based studies depicting the exact burden of the disease are lacking. We aimed to revisit PKD2 prevalence, clinical presentation, mutation spectrum, and prognosis through the Genkyst cohort. Case series, January 2010 to March 2016. Genkyst study participants are individuals older than 18 years from 22 nephrology centers from western France with a diagnosis of ADPKD based on Pei criteria or at least 10 bilateral kidney cysts in the absence of a familial history. Publicly available whole-exome sequencing data from the ExAC database were used to provide an estimate of the genetic prevalence of the disease. Molecular analysis of PKD1 and PKD2 genes. Renal survival, age- and sex-adjusted estimated glomerular filtration rate. The Genkyst cohort included 293 patients with PKD2 mutations (203 pedigrees). PKD2 patients with a nephrology follow-up corresponded to 0.63 (95% CI, 0.54-0.72)/10,000 in Brittany, while PKD2 genetic prevalence was calculated at 1.64 (95% CI, 1.10-3.51)/10,000 inhabitants in the European population. Median age at diagnosis was 42 years. Flank pain was reported in 38.9%; macroscopic hematuria, in 31.1%; and cyst infections, in 15.3% of patients. At age 60 years, the cumulative probability of end-stage renal disease (ESRD) was 9.8% (95% CI, 5.2%-14.4%), whereas the probability of hypertension was 75.2% (95% CI, 68.5%-81.9%). Although there was no sex influence on renal survival, men had lower kidney function than women. Nontruncating mutations (n=36) were associated with higher age-adjusted estimated glomerular filtration rates. Among the 18 patients with more severe outcomes (ESRD before age 60), 44% had associated conditions or nephropathies likely to account for the early progression to ESRD. Younger patients and patients presenting with milder forms of PKD2-related disease may not be diagnosed

  1. A Third Locus for Autosomal Dominant Cerebellar Ataxia Type 1 Maps to Chromosome 14q24.3-qter: Evidence for the Existence of a Fourth Locus

    PubMed Central

    Stevanin, Giovanni; Le Guern, Eric; Ravisé, Nicole; Chneiweiss, Hervé; Dürr, Alexandra; Cancel, Géraldine; Vignal, Alain; Boch, Anne-Laure; Ruberg, Merle; Penet, Christiane; Pothin, Yolaine; Lagroua, Isabelle; Haguenau, Michel; Rancurel, Gérald; Weissenbach, Jean; Agid, Yves; Brice, Alexis

    1994-01-01

    The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus. PMID:8279460

  2. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.

    PubMed

    Johnston, Jennifer J; van der Smagt, Jasper J; Rosenfeld, Jill A; Pagnamenta, Alistair T; Alswaid, Abdulrahman; Baker, Eva H; Blair, Edward; Borck, Guntram; Brinkmann, Julia; Craigen, William; Dung, Vu Chi; Emrick, Lisa; Everman, David B; van Gassen, Koen L; Gulsuner, Suleyman; Harr, Margaret H; Jain, Mahim; Kuechler, Alma; Leppig, Kathleen A; McDonald-McGinn, Donna M; Can, Ngoc Thi Bich; Peleg, Amir; Roeder, Elizabeth R; Rogers, R Curtis; Sagi-Dain, Lena; Sapp, Julie C; Schäffer, Alejandro A; Schanze, Denny; Stewart, Helen; Taylor, Jenny C; Verbeek, Nienke E; Walkiewicz, Magdalena A; Zackai, Elaine H; Zweier, Christiane; Zenker, Martin; Lee, Brendan; Biesecker, Leslie G

    2018-02-22

    PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.Genet Med advance online publication, 22 February 2018; doi:10.1038/gim.2017.249.

  3. Developing an international network for Alzheimer research: The Dominantly Inherited Alzheimer Network

    PubMed Central

    Morris, John C.; Aisen, Paul S.; Bateman, Randall J.; Benzinger, Tammie L.S.; Cairns, Nigel J.; Fagan, Anne M.; Ghetti, Bernardino; Goate, Alison M.; Holtzman, David M.; Klunk, William E.; McDade, Eric; Marcus, Daniel S.; Martins, Ralph N.; Masters, Colin L.; Mayeux, Richard; Oliver, Angela; Quaid, Kimberly; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Selsor, Natalie J.; Sperling, Reisa A.; Weiner, Michael W.; Xiong, Chengjie; Moulder, Krista L.; Buckles, Virginia D.

    2012-01-01

    The Dominantly Inherited Alzheimer Network (DIAN) is a collaborative effort of international Alzheimer disease (AD) centers that are conducting a multifaceted prospective biomarker study in individuals at-risk for autosomal dominant AD (ADAD). DIAN collects comprehensive information and tissue in accordance with standard protocols from asymptomatic and symptomatic ADAD mutation carriers and their non-carrier family members to determine the pathochronology of clinical, cognitive, neuroimaging, and fluid biomarkers of AD. This article describes the structure, implementation, and underlying principles of DIAN, as well as the demographic features of the initial DIAN cohort. PMID:23139856

  4. Developing an international network for Alzheimer research: The Dominantly Inherited Alzheimer Network.

    PubMed

    Morris, John C; Aisen, Paul S; Bateman, Randall J; Benzinger, Tammie L S; Cairns, Nigel J; Fagan, Anne M; Ghetti, Bernardino; Goate, Alison M; Holtzman, David M; Klunk, William E; McDade, Eric; Marcus, Daniel S; Martins, Ralph N; Masters, Colin L; Mayeux, Richard; Oliver, Angela; Quaid, Kimberly; Ringman, John M; Rossor, Martin N; Salloway, Stephen; Schofield, Peter R; Selsor, Natalie J; Sperling, Reisa A; Weiner, Michael W; Xiong, Chengjie; Moulder, Krista L; Buckles, Virginia D

    2012-10-01

    The Dominantly Inherited Alzheimer Network (DIAN) is a collaborative effort of international Alzheimer disease (AD) centers that are conducting a multifaceted prospective biomarker study in individuals at-risk for autosomal dominant AD (ADAD). DIAN collects comprehensive information and tissue in accordance with standard protocols from asymptomatic and symptomatic ADAD mutation carriers and their non-carrier family members to determine the pathochronology of clinical, cognitive, neuroimaging, and fluid biomarkers of AD. This article describes the structure, implementation, and underlying principles of DIAN, as well as the demographic features of the initial DIAN cohort.

  5. Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford

    ClinicalTrials.gov

    2017-09-28

    ; Episodic Ataxia Type 7; Episodic Ataxia Type 6; Episodic Ataxia Type 5; Episodic Ataxia Type 4; Episodic Ataxia Type 3; Episodic Ataxia Type 1; Epilepsy and/or Ataxia With Myoclonus as Major Feature; Early-onset Spastic Ataxia-neuropathy Syndrome; Early-onset Progressive Neurodegeneration - Blindness - Ataxia - Spasticity; Early-onset Cerebellar Ataxia With Retained Tendon Reflexes; Early-onset Ataxia With Dementia; Childhood-onset Autosomal Recessive Slowly Progressive Spinocerebellar Ataxia; Dilated Cardiomyopathy With Ataxia; Cataract - Ataxia - Deafness; Cerebellar Ataxia, Cayman Type; Cerebellar Ataxia With Peripheral Neuropathy; Cerebellar Ataxia - Hypogonadism; Cerebellar Ataxia - Ectodermal Dysplasia; Cerebellar Ataxia - Areflexia - Pes Cavus - Optic Atrophy - Sensorineural Hearing Loss; Brain Tumor Ataxia; Brachydactyly - Nystagmus - Cerebellar Ataxia; Benign Paroxysmal Tonic Upgaze of Childhood With Ataxia; Autosomal Recessive Syndromic Cerebellar Ataxia; Autosomal Recessive Spastic Ataxia With Leukoencephalopathy; Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay; Autosomal Recessive Spastic Ataxia - Optic Atrophy - Dysarthria; Autosomal Recessive Spastic Ataxia; Autosomal Recessive Metabolic Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to Repeat Expansions That do Not Encode Polyglutamine; Autosomal Recessive Ataxia, Beauce Type; Autosomal Recessive Ataxia Due to Ubiquinone Deficiency; Autosomal Recessive Ataxia Due to PEX10 Deficiency; Autosomal Recessive Degenerative and Progressive Cerebellar Ataxia; Autosomal Recessive Congenital Cerebellar Ataxia Due to MGLUR1 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia Due to GRID2 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia; Autosomal Recessive Cerebellar Ataxia-pyramidal Signs-nystagmus-oculomotor Apraxia Syndrome; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to WWOX Deficiency; Autosomal Recessive Cerebellar Ataxia

  6. A novel mutation (ASn244Lys) in the peripherin/RDS gene causing autosomal dominant retinitis pigmentosa associated with bull's eye maculopathy detected by nonradioisotopic SSCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikawa, Emi; Nakazawa, Mitsuru; Chida, Yasushi

    1994-03-01

    Retinitis pigmentosa (RP) is characterized by night blindness, an eventual loss of visual field, a diminished response on the electroretinogram, and pigmentary retinal degeneration. These features are primarily explained by the degeneration of photoreceptors. The recent development of the molecular genetic approach has enabled the identification of genes responsible for parts of autosomal dominant RP (ADRP). Rhodopsin and peripherin/RDS genes, in particular, have been successfully shown to cosegregate with ADRP. The authors, therefore, screened 42 unrelated Japanese patients with ADRP to search for mutations in the peripherin/RDS gene. The method we employed for screening was a nonradioisotopic modification of single-strandmore » conformation polymorphism. Among 42 unrelated patients with ADRP, the DNA from one patient (SY) showed an abnormal pattern in exon 2 on SSCP. The DNA fragments were then amplified from affected and nonaffected members of the same family as SY. The alteration in the DNA sequence that was commonly found in the affected members of the family was identified as a heterozygous transversional change of C to A at the third nucleotide in codon 244, resulting in the amino acid replacement of asparagine residue with lysine residue. None of unaffected family members or 30 normal control individuals had this alteration.« less

  7. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

    PubMed

    Craggs, Lucinda J L; Yamamoto, Yumi; Ihara, Masafumi; Fenwick, Richard; Burke, Matthew; Oakley, Arthur E; Roeber, Sigrun; Duering, Marco; Kretzschmar, Hans; Kalaria, Raj N

    2014-08-01

    Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (P<0.01) with the WM underlying the primary motor cortex exhibiting the most severe change. SMI32 immunoreactive axons in CADASIL were invariably increased compared with controls (P<0.01), with most prominent axonal abnormalities observed in the frontal WM (P<0.05). The SIs of arterioles in CADASIL were increased by 25-45% throughout the regions assessed, with the highest change in the mid-frontal region (P=0.000). Our results suggest disruption of either cortico-cortical or subcortical-cortical networks in the WM of the frontal lobe that may explain motor deficits and executive dysfunction in CADASIL. Widespread WM axonal changes arise from differential stenosis and sclerosis of arterioles in the WM of CADASIL subjects, possibly affecting some axons of projection neurones connecting to targets in the subcortical structures. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British

  8. Bethlem myopathy: An autosomal dominant myopathy with flexion contractures, keloids, and follicular hyperkeratosis.

    PubMed

    Saroja, Aralikatte Onkarappa; Naik, Karkal Ravishankar; Nalini, Atcharayam; Gayathri, Narayanappa

    2013-10-01

    Bethlem myopathy and Ullrich congenital muscular dystrophy form a spectrum of collagenopathies caused by genetic mutations encoding for any of the three subunits of collagen VI. Bethlem phenotype is relatively benign and is characterized by proximal dominant myopathy, keloids, contractures, distal hyperextensibility, and follicular hyperkeratosis. Three patients from a single family were diagnosed to have Bethlem myopathy based on European Neuromuscular Centre Bethlem Consortium criteria. Affected father and his both sons had slowly progressive proximal dominant weakness and recurrent falls from the first decade. Both children aged 18 and 20 years were ambulant at presentation. All had flexion contractures, keloids, and follicular hyperkeratosis without muscle hypertrophy. Creatinine kinase was mildly elevated and electromyography revealed myopathic features. Muscle imaging revealed severe involvement of glutei and vasti with "central shadow" in rectus femoris. Muscle biopsy in the father showed dystrophic changes with normal immmunostaining for collagen VI, sarcoglycans, and dysferlin.

  9. Structure-Function Modeling of Optical Coherence Tomography and Standard Automated Perimetry in the Retina of Patients with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Smith, Travis B.; Parker, Maria; Steinkamp, Peter N.; Weleber, Richard G.; Smith, Ning; Wilson, David J.

    2016-01-01

    Purpose To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Methods Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Results Structure-function relationships were accurately modeled (conditional R2>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R2 = 0.85, p<10−10). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Conclusions Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline. PMID:26845445

  10. Structure-Function Modeling of Optical Coherence Tomography and Standard Automated Perimetry in the Retina of Patients with Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Smith, Travis B; Parker, Maria; Steinkamp, Peter N; Weleber, Richard G; Smith, Ning; Wilson, David J

    2016-01-01

    To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Structure-function relationships were accurately modeled (conditional R(2)>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R(2) = 0.85, p<10(-10)). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline.

  11. Cognitive Decline in a Colombian Kindred With Autosomal Dominant Alzheimer Disease: A Retrospective Cohort Study.

    PubMed

    Aguirre-Acevedo, Daniel C; Lopera, Francisco; Henao, Eliana; Tirado, Victoria; Muñoz, Claudia; Giraldo, Margarita; Bangdiwala, Shrikant I; Reiman, Eric M; Tariot, Pierre N; Langbaum, Jessica B; Quiroz, Yakeel T; Jaimes, Fabian

    2016-04-01

    Data from an autosomal dominant Alzheimer disease (ADAD) kindred were used to track the longitudinal trajectory of cognitive decline associated with preclinical ADAD and explore factors that may modify the rate of cognitive decline. To evaluate the onset and rate of cognitive decline during preclinical ADAD and the effect of socioeconomic, vascular, and genetic factors on the cognitive decline. We performed a retrospective cohort study from January 1, 1995, through June 31, 2012, of individuals from Antioquia, Colombia, who tested positive for the ADAD-associated PSEN1 E280A mutation. Data analysis was performed from August 20, 2014, through November 30, 2015. A mixed-effects model was used to estimate annual rates of change in cognitive test scores and to mark the onset of cognitive decline. Memory, language, praxis, and total scores from the Consortium to Establish a Registry for Alzheimer Disease test battery. Chronologic age was used as a time scale in the models. We explore the effects of sex; educational level; socioeconomic status; residence area; occupation type; marital status; history of hypertension, diabetes mellitus, and dyslipidemia; tobacco and alcohol use; and APOE ε4 on the rates of cognitive decline. A total of 493 carriers met the inclusion criteria and were analyzed. A total of 256 carriers had 2 or more assessments. At the time of the initial assessment, participants had a mean (SD) age of 33.4 (11.7) years and a mean (SD) educational level of 7.2 (4.2) years. They were predominantly female (270 [54.8%]), married (293 [59.4%]), and of low socioeconomic status (322 [65.3%]). Word list recall scores provided the earliest indicator of preclinical cognitive decline at 32 years of age, 12 and 17 years before the kindred's respective median ages at mild cognitive impairment and dementia onset. After the change point, carriers had a statistically significant cognitive decline with a loss of 0.24 (95% CI, -0.26 to -0.22) points per year for the word

  12. Intermediate Volume on Computed Tomography Imaging Defines a Fibrotic Compartment that Predicts Glomerular Filtration Rate Decline in Autosomal Dominant Polycystic Kidney Disease Patients

    PubMed Central

    Caroli, Anna; Antiga, Luca; Conti, Sara; Sonzogni, Aurelio; Fasolini, Giorgio; Ondei, Patrizia; Perico, Norberto; Remuzzi, Giuseppe; Remuzzi, Andrea

    2011-01-01

    Total kidney and cyst volumes have been used to quantify disease progression in autosomal dominant polycystic kidney disease (ADPKD), but a causal relationship with progression to renal failure has not been demonstrated. Advanced image processing recently allowed to quantify extracystic tissue, and to identify an additional tissue component named “intermediate,” appearing hypoenhanced on contrast-enhanced computed tomography (CT). The aim of this study is to provide a histological characterization of intermediate volume, investigate its relation with renal function, and provide preliminary evidence of its role in long-term prediction of functional loss. Three ADPKD patients underwent contrast-enhanced CT scans before nephrectomy. Histological samples of intermediate volume were drawn from the excised kidneys, and stained with hematoxylin and eosin and with saturated picrosirius solution for histological analysis. Intermediate volume showed major structural changes, characterized by tubular dilation and atrophy, microcysts, inflammatory cell infiltrate, vascular sclerosis, and extended peritubular interstitial fibrosis. A significant correlation (r = −0.69, P < 0.001) between relative intermediate volume and baseline renal function was found in 21 ADPKD patients. Long-term prediction of renal functional loss was investigated in an independent cohort of 13 ADPKD patients, followed for 3 to 8 years. Intermediate volume, but not total kidney or cyst volume, significantly correlated with glomerular filtration rate decline (r = −0.79, P < 0.005). These findings suggest that intermediate volume may represent a suitable surrogate marker of ADPKD progression and a novel therapeutic target. PMID:21683674

  13. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney disease and end-stage renal disease.

    PubMed

    Orskov, Bjarne; Sørensen, Vibeke Rømming; Feldt-Rasmussen, Bo; Strandgaard, Svend

    2012-04-01

    With the improved prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD), causes of death and the risk of cancer might have changed. This was investigated in a Danish population with ADPKD and end-stage renal disease (ESRD) between 1 January 1993 and 31 December 2008. Data were retrieved from three Danish national registries and a total of 823 patients were identified of which 431 had died during the study period. The 16 years were divided into two 8-year periods and the causes of death were divided into six categories: cancer, cardiovascular, cerebrovascular, infection, other and unknown. Cardiovascular disease was the major cause of death. A multivariate competing risk model comparing the two 8-year periods, adjusted for age at ESRD, gender and treatment modality, showed that deaths from cardiovascular disease decreased by 35% [hazard ratios (HR) 0.65, P=0.008] and deaths from cerebrovascular disease decreased by 69% (HR 0.31, P=0.0003) from the first to the second time period. There were no significant changes between the time periods in death from cancer, infection, other or unknown. From the first to the second 8-year interval, the prevalence of cancer increased by 35% (P=0.0002) while the cancer incidence was stable. In Danish patients with ADPKD and ESRD, there was a significant reduction in cardiovascular and cerebrovascular deaths from 1993 to 2008. The prevalence of cancer increased without significant change in cancer incidence or deaths from cancer.

  14. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression.

    PubMed

    Pejchinovski, Martin; Siwy, Justyna; Metzger, Jochen; Dakna, Mohammed; Mischak, Harald; Klein, Julie; Jankowski, Vera; Bae, Kyongtae T; Chapman, Arlene B; Kistler, Andreas D

    2017-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by slowly progressive bilateral renal cyst growth ultimately resulting in loss of kidney function and end-stage renal disease (ESRD). Disease progression rate and age at ESRD are highly variable. Therapeutic interventions therefore require early risk stratification of patients and monitoring of disease progression in response to treatment. We used a urine peptidomic approach based on capillary electrophoresis-mass-spectrometry (CE-MS) to identify potential biomarkers reflecting the risk for early progression to ESRD in the Consortium of Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort. A biomarker-based classifier consisting of 20 urinary peptides allowed the prediction of ESRD within 10-13 years of follow-up in patients 24-46 years of age at baseline. The performance of the biomarker score approached that of height-adjusted total kidney volume (htTKV) and the combination of the biomarker panel with htTKV improved prediction over either one alone. In young patients (<24 years at baseline), the same biomarker model predicted a 30 mL/min/1.73 m 2 glomerular filtration rate decline over 8 years. Sequence analysis of the altered urinary peptides and the prediction of the involved proteases by in silico analysis revealed alterations in distinct proteolytic pathways, in particular matrix metalloproteinases and cathepsins. We developed a urinary test that accurately predicts relevant clinical outcomes in ADPKD patients and suggests altered proteolytic pathways involved in disease progression. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor

    PubMed Central

    Xu, Jian; Cohen, Bruce N.; Zhu, Yongling; Dziewczapolski, Gustavo; Panda, Satchidananda; Lester, Henry A.; Heinemann, Stephen F.; Contractor, Anis

    2010-01-01

    High-affinity nicotinic receptors containing beta2 subunits (β2*) are widely expressed in the brain, modulating many neuronal processes and contributing to neuropathologies such as Alzheimer’s disease, Parkinson’s disease and epilepsy. Mutations in both the α4 and β2 subunits are associated with a rare partial epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Here we introduced one such human missense mutation into the mouse genome to generate a knock-in strain carrying a valine-to-leucine mutation β2V287L.β2V287L mice were viable and born at an expected Mendelian ratio. Surprisingly, mice did not display an overt seizure phenotype; however homozygous mice did display significant alterations in their activity-rest patterns. This was manifest as an increase in activity during the light cycle suggestive of disturbances in the normal sleep patterns of mice; a parallel phenotype to that found in human ADNFLE patients. Consistent with the role of nicotinic receptors in reward pathways, we found that β2V287L mice did not develop a normal proclivity to voluntary wheel running, a model for natural reward. Anxiety-related behaviors were also affected by the V287L mutation. Mutant mice spent more time in the open arms on the elevated plus maze (EPM) suggesting that they had reduced levels of anxiety. Together, these findings emphasize several important roles of β2* nicotinic receptors in complex biological processes including the activity-rest cycle, natural reward, and anxiety. PMID:20603624

  16. Polysomnographic and neurometabolic features may mark preclinical autosomal dominant cerebellar ataxia, deafness, and narcolepsy due to a mutation in the DNA (cytosine-5-)-methyltransferase gene, DNMT1.

    PubMed

    Moghadam, Keivan Kaveh; Pizza, Fabio; Tonon, Caterina; Lodi, Raffaele; Carelli, Valerio; Poli, Francesca; Franceschini, Christian; Barboni, Piero; Seri, Marco; Ferrari, Simona; La Morgia, Chiara; Testa, Claudia; Cornelio, Ferdinando; Liguori, Rocco; Winkelmann, Juliane; Lin, Ling; Mignot, Emmanuel; Plazzi, Giuseppe

    2014-05-01

    We aimed to report the clinical picture of two asymptomatic daughters of a patient with autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN) due to a mutation in the DNA (cytosine-5-)-methyltransferase gene, DNMT1. Clinical assessment based on history, neurologic examination, sleep recordings, neurophysiologic neuroimaging, and genetic tests was performed. History and neurologic examination in both subjects were unremarkable. Genetic analysis disclosed in both the paternally-inherited heterozygous point mutation in the DNMT1 gene. Sleep recordings found sleep-onset rapid eye movement periods (SOREMPs) and proton magnetic resonance spectroscopy (MRS) revealed increased cerebellar myoinositol (mI) in both subjects. Auditory and ophthalmologic investigations as well as structural brain magnetic resonance imaging (MRI) scans revealed no abnormalities. The two asymptomatic carriers of the heterozygous DNMT1 mutation for ADCA-DN, a late-onset neurodegenerative disease, presented with SOREMPs associated with an increase of mI in the brain, a marker of glial cell activity and density characteristic of early stages of neurodegenerative diseases. Therefore, SOREMPs may precede the clinical picture of ADCA-DN as an early polysomnographic marker of central nervous system involvement detected by MRS. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Identification and Functional Study of a New Missense Mutation in the Motor Head Domain of Myosin VIIA in a Family with Autosomal Dominant Hearing Impairment (DFNA11)

    PubMed Central

    Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

    2013-01-01

    The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed. PMID:23383098

  18. Identification and functional study of a new missense mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).

    PubMed

    Sang, Qing; Yan, Xukun; Wang, Huan; Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei

    2013-01-01

    The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.

  19. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  20. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model.

    PubMed

    McEwan, Phil; Bennett Wilton, Hayley; Ong, Albert C M; Ørskov, Bjarne; Sandford, Richard; Scolari, Francesco; Cabrera, Maria-Cristina V; Walz, Gerd; O'Reilly, Karl; Robinson, Paul

    2018-02-13

    Autosomal dominant polycystic kidney disease (ADPKD) is the leading inheritable cause of end-stage renal disease (ESRD); however, the natural course of disease progression is heterogeneous between patients. This study aimed to develop a natural history model of ADPKD that predicted progression rates and long-term outcomes in patients with differing baseline characteristics. The ADPKD Outcomes Model (ADPKD-OM) was developed using available patient-level data from the placebo arm of the Tolvaptan Efficacy and Safety in Management of ADPKD and its Outcomes Study (TEMPO 3:4; ClinicalTrials.gov identifier NCT00428948). Multivariable regression equations estimating annual rates of ADPKD progression, in terms of total kidney volume (TKV) and estimated glomerular filtration rate, formed the basis of the lifetime patient-level simulation model. Outputs of the ADPKD-OM were compared against external data sources to validate model accuracy and generalisability to other ADPKD patient populations, then used to predict long-term outcomes in a cohort matched to the overall TEMPO 3:4 study population. A cohort with baseline patient characteristics consistent with TEMPO 3:4 was predicted to reach ESRD at a mean age of 52 years. Most patients (85%) were predicted to reach ESRD by the age of 65 years, with many progressing to ESRD earlier in life (18, 36 and 56% by the age of 45, 50 and 55 years, respectively). Consistent with previous research and clinical opinion, analyses supported the selection of baseline TKV as a prognostic factor for ADPKD progression, and demonstrated its value as a strong predictor of future ESRD risk. Validation exercises and illustrative analyses confirmed the ability of the ADPKD-OM to accurately predict disease progression towards ESRD across a range of clinically-relevant patient profiles. The ADPKD-OM represents a robust tool to predict natural disease progression and long-term outcomes in ADPKD patients, based on readily available and/or measurable

  1. Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: prevalence, risk of rupture, and management. A systematic review.

    PubMed

    Cagnazzo, Federico; Gambacciani, Carlo; Morganti, Riccardo; Perrini, Paolo

    2017-05-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder associated with high incidences of intracranial aneurysms. We performed a systematic review with the purpose of clarifying the prevalence, risk of rupture, and appropriate management of intracranial aneurysms in the ADPKD population. PRISMA guidelines were followed. We conducted a comprehensive literature search of three databases (PubMed, Ovid MEDLINE, and Ovid EMBASE) on all series reporting ADPKD patients with intracranial aneurysms. Our systematic review included 16 articles with a total of 563 patients with ADPKD and intracranial aneurysms. The prevalence of unruptured aneurysms was 11.5% (95% CI = 10.1-13%), whereas 1.9% (95% CI = 1.3-2.6%) of aneurysms were ruptured. Hypertension was present in 79.3% of patients with ADPKD and renal impairment in 65%. The mean size of ruptured aneurysms was slightly higher than unruptured (6 mm vs. 4.4 mm). The most common locations of unruptured and ruptured aneurysms were the ICA (40.5%) and MCA (45%), respectively. Asymptomatic patients studied with four-vessel angiography experienced 25% transient complications. Overall, 74% unruptured aneurysms were surgically treated with lower complication rates compared to endovascular treatment (11% vs. 27.7%). Among conservatively treated aneurysms, 2.9% ruptured at follow-up (rupture rate 0.4%/patient-year). Finally, the growth rate was 0.4% per patient-year, and the incidence of de novo aneurysm formation was 1.4% per patient-year. The prevalence of unruptured intracranial aneurysms in the ADPKD population is approximately 11%. Given the non-negligible rate of procedural complications, the management of these patients must be cautious and individualised. The rupture rate appears comparable to that of the general population. On the other hand, the 1.4% rate per patient-year of de novo aneurysms is non-negligible. These findings should be considered when counselling ADPKD patients regarding the

  2. A novel missense variant (Gln220Arg) of GNB4 encoding guanine nucleotide-binding protein, subunit beta-4 in a Japanese family with autosomal dominant motor and sensory neuropathy.

    PubMed

    Miura, Shiroh; Morikawa, Takuya; Fujioka, Ryuta; Noda, Kazuhito; Kosaka, Kengo; Taniwaki, Takayuki; Shibata, Hiroki

    2017-09-01

    Dominant intermediate Charcot-Marie-Tooth disease F (CMTDIF) is an autosomal dominant hereditary form of Charcot-Marie-Tooth disease (CMT) caused by variations in the guanine nucleotide-binding protein, subunit beta-4 gene (GNB4). We examined two Japanese familial cases with CMT. Case 1 was a 49-year-old male whose chief complaint was slowly progressive gait disturbance and limb dysesthesia that appeared at the age of 47. On neurological examination, he showed hyporeflexia or areflexia, distal limb muscle weakness, and distal sensory impairment with lower dominancy. Nerve conduction studies demonstrated demyelinating sensorimotor neuropathy with reduced action potentials in the lower limbs. Case 2 was an 80-year-old man, Case 1's father, who reported difficulty in riding a bicycle at the age of 76. On neurological examination, he showed areflexia in the upper and lower limbs. Distal sensory impairment in the lower limbs was also observed. Nerve conduction studies revealed mainly axonal involvement. Exome sequencing identified a novel heterozygous nonsynonymous variant (NM_021629.3:c.659T > C [p.Gln220Arg]) in GNB4 exon 8, which is known to be responsible for CMT. Sanger sequencing confirmed that both patients are heterozygous for the variation, which causes an amino acid substitution, Gln220Arg, in the highly conserved region of the WD40 domain of GNB4. The frequency of this variant in the Exome Aggregation Consortium Database was 0.000008247, and we confirmed its absence in 502 Japanese control subjects. We conclude that this novel GNB4 variant is causative for CMTDIF in these patients, who represent the first record of the disease in the Japanese population. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Effect of renal transcatheter arterial embolization on quality of life in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Suwabe, Tatsuya; Ubara, Yoshifumi; Sekine, Akinari; Ueno, Toshiharu; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei

    2017-07-01

    Currently, there are few strategies for improving the quality of life (QOL) in patients with autosomal dominant polycystic kidney disease (ADPKD) and massive kidneys. Renal transcatheter arterial embolization (TAE) reduces kidney volume, but its impact on QOL in ADPKD patients on hemodialysis is unknown. This study investigated the influence of renal TAE on QOL in ADPKD patients with massive kidneys receiving hemodialysis. This prospective observational study enrolled 188 ADPKD patients on hemodialysis (92 men and 96 women; mean age 56.7 ± 9.1 years) who underwent renal TAE at Toranomon Hospital between August 2010 and July 2014. The 36-item Short Form Health Survey (SF-36) and our original 15-item questionnaire were used to evaluate QOL. Using a linear mixed model, the least squares mean values of the SF-36 physical component summary (PCS), mental component summary (MCS) and role/social component summary (RCS) before renal TAE were calculated as 38.21 [95% confidence interval (CI) 36.50-39.91], 48.45 (47.05-49.86) and 43.04 (40.70-45.37), respectively. These values improved to 42.0 (40.22-43.77; P < 0.001 versus before TAE), 51.25 (49.78-52.71; P = 0.001) and 49.67 (47.22-52.12; P < 0.001), respectively, 1 year after renal TAE. Scores for abdominal fullness, poor appetite and heartburn showed marked improvement after renal TAE, while scores for fever, bodily pain and sleep disorder also improved slightly, but significantly. Scores for constipation and use of analgesics/sleeping medications/laxatives did not improve significantly. All of the SF-36 scores and the scores for specific symptoms (except bodily pain, snoring and constipation) were significantly correlated with the sequential decrease of the height-adjusted total kidney volume. In ADPKD patients on hemodialysis, renal TAE was effective in improving abdominal fullness, appetite, heartburn and SF-36 scores (MCS and RCS scores), but not for sleep disturbance, constipation and physical

  4. Low-dose rapamycin (sirolimus) effects in autosomal dominant polycystic kidney disease: an open-label randomized controlled pilot study.

    PubMed

    Braun, William E; Schold, Jesse D; Stephany, Brian R; Spirko, Rita A; Herts, Brian R

    2014-05-01

    The two largest studies of mammalian target of rapamycin inhibitor treatment of autosomal dominant polycystic kidney disease (ADPKD) demonstrated no clear benefit on the primary endpoint of total kidney volume (TKV) or on eGFR. The present study evaluated two levels of rapamycin on the 12-month change in (125)I-iothalamate GFR (iGFR) as the primary endpoint and TKV secondarily. In a 12-month open-label pilot study, 30 adult patients with ADPKD were randomly assigned to low-dose (LD) rapamycin (rapamycin trough blood level, 2-5 ng/ml) (LD group, n=10), standard-dose (STD) rapamycin trough level (>5-8 ng/ml) (STD group, n=10), or standard care (SC group, n=10). They were evaluated with iGFR and noncontrast computed tomography. Change in iGFR at 12 months was significantly higher in the LD group (7.7±12.5 ml/min per 1.73 m(2); n=9) than in the SC group (-11.2 ± 9.1 ml/min per 1.73 m(2); n=9) (LD versus SC: P<0.01). Change in iGFR at 12 months in the STD group (1.6 ± 12.1 ml/min per 1.73 m(2); n=8) was not significantly greater than that in the SC group (P=0.07), but it was in the combined treatment groups (LD+STD versus SC: P<0.01). Neither eGFR calculated by the CKD-Epidemiology Collaboration equation nor TKV (secondary endpoint) changed significantly from baseline to 12 months in any of the groups. On the basis of results of the mixed model, during the study, patients in the LD group had significantly lower trough blood levels of rapamycin (mean range ± SD, 2.40 ± 0.64 to 2.90 ± 1.20 ng/ml) compared with those in the STD group (3.93 ± 2.27 to 5.77 ± 1.06 ng/ml) (P<0.01). Patients with ADPKD receiving LD rapamycin demonstrated a significant increase in iGFR compared with those receiving standard care, without a significant effect on TKV after 12 months.

  5. Phenotypic similarities between late-onset autosomal dominant and sporadic Alzheimer disease: A single-family case-control study

    PubMed Central

    Day, Gregory S; Musiek, Erik S; Roe, Catherine M; Norton, Joanne; Goate, Alison M; Cruchaga, Carlos; Cairns, Nigel J; Morris, John C

    2016-01-01

    Importance The “amyloid hypothesis” posits that disrupted amyloid-beta (Aβ) homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant Alzheimer disease (ADAD) has an early symptomatic onset and is caused by single gene mutations that result in overproduction of Aβ42. To the extent that “sporadic” late-onset Alzheimer disease (LOAD) also results from dysregulated Aβ42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. Objective To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) mutation to mitigate the potential confound of age when comparing ADAD and LOAD. Design Case-control study of a family with late-onset ADAD and individuals with histopathologically-proven LOAD. Setting The Knight Alzheimer Disease Research Center, Washington University, St Louis, and other National Institutes of Aging-funded Alzheimer Disease Centers in the United States. Participants Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD (median age-at-onset, 75.0 [63–77] years) and 12 noncarrier family members, followed at the Knight Alzheimer Disease Research Center (1985–2015); and 1115 individuals with neuropathologically confirmed LOAD (median age-at-onset, 74.0 [60–101] years) from the National Alzheimer Coordinating Center database (09/2005-12/14). Main Outcome and Measure Planned comparison of clinical characteristics between cohorts, including age at symptomatic onset, associated symptoms and signs, rates of progression, and disease duration. Results Seven (70%) mutation carriers developed AD dementia, while three are yet asymptomatic in their 7th and 8th decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptomatic onset, presenting symptoms and duration, and rate of progression of dementia. Early emergence of comorbid hallucinations and delusions were

  6. Autosomal recessive cerebellar ataxias

    PubMed Central

    Palau, Francesc; Espinós, Carmen

    2006-01-01

    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia. PMID:17112370

  7. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome.

    PubMed

    Karaca, Ender; Yuregir, Ozge O; Bozdogan, Sevcan T; Aslan, Huseyin; Pehlivan, Davut; Jhangiani, Shalini N; Akdemir, Zeynep C; Gambin, Tomasz; Bayram, Yavuz; Atik, Mehmed M; Erdin, Serkan; Muzny, Donna; Gibbs, Richard A; Lupski, James R

    2015-11-01

    Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. The association of serum angiogenic growth factors with renal structure and function in patients with adult autosomal dominant polycystic kidney disease.

    PubMed

    Coban, Melahat; Inci, Ayca

    2018-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common congenital chronic kidney disease (CKD). We report here the relationship of serum angiopoietin-1 (Ang-1), Ang-2, and vascular endothelial growth factor (VEGF) with total kidney volume (TKV), total cyst volume (TCV), and renal failure in adult ADPKD patients at various stages of CKD. This cross-sectional study was conducted with 50 patients diagnosed with ADPKD and a control group of 45 age-matched healthy volunteers. In patient group, TKV and TCV were determined with upper abdominal magnetic resonance imaging, whereas in controls, TKV was determined with ultrasonography according to ellipsoid formula. Renal function was assessed with serum creatinine, estimated glomerular filtration rate (eGFR), and spot urinary protein/creatinine ratio (UPCR). Ang-1, Ang-2, and VEGF were measured using enzyme-linked immunosorbent assay. Patients with ADPKD had significantly higher TKV (p < 0.001) and UPCR (p < 0.001), and lower eGFR (p ≤ 0.001) compared to the controls. Log 10 Ang-2 was found to be higher in ADPKD patients at all CKD stages. Multiple linear regression analysis showed that there was no association between log 10 Ang-1, log 10 Ang-2, or log 10 VEGF and creatinine, eGFR, UPCR, log 10 TKV (p > 0.05). There was no association of serum angiogenic growth factors with TKV or renal failure in ADPKD patients. Increased serum Ang-2 observed in stages 1-2 CKD suggests that angiogenesis plays a role in the progression of early stage ADPKD, but not at later stages of the disease. This may be explained by possible cessation of angiogenesis in advanced stages of CKD due to the increased number of sclerotic glomeruli.

  9. Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families.

    PubMed

    Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai

    2015-01-01

    To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.

  10. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    DOE PAGES

    Giorgio, E.; Robyr, D.; Spielmann, M.; ...

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in amore » postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.« less

  11. Map refinement of locus RP13 to human chromosome 17p13.3 in a second family with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojis, T.L.; Heinzmann, C.; Ngo, J.T.

    1996-02-01

    In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yieldedmore » a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. 39 refs., 4 figs., 3 tabs.« less

  12. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  13. Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing

    PubMed Central

    Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José

    2013-01-01

    Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859

  14. Linkage to D3S47 (C17) in one large autosomal dominant retinitis pigmentosa family and exclusion in another: confirmation of genetic heterogeneity.

    PubMed Central

    Lester, D H; Inglehearn, C F; Bashir, R; Ackford, H; Esakowitz, L; Jay, M; Bird, A C; Wright, A F; Papiha, S S; Bhattacharya, S S

    1990-01-01

    Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome. Images Figure 2 Figure 3 Figure 4 PMID:2393026

  15. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant hyper-IgE syndrome.

    PubMed

    Patel, N C; Gallagher, J L; Torgerson, T R; Gilman, A L

    2015-07-01

    Autosomal dominant hyper-IgE syndrome (AD-HIES), caused by mutations in Signal Transducer and Activator of Transcription 3 (STAT3) is associated with defective STAT3 signaling and Th17 differentiation and recurrent bacterial and fungal infections. Most patients suffer significant morbidity and premature mortality. Hematopoietic stem cell transplantation (HSCT) has been reported in a small number of cases, with mixed outcomes. We report successful haploidentical donor HSCT in a patient with AD-HIES. Evaluation of lymphocyte subsets, STAT3 signaling, and Th17 cells was performed pre- and post-HSCT. A 14-year old female with AD-HIES developed recurrent methicillin-resistant Staphylococcus aureus (MRSA) abscesses. Immunologic analysis showed elevated IgE (4331 kU/L), absent Th17 cells, and markedly decreased STAT3 phosphorylation in cytokine stimulated peripheral blood mononuclear cells. She had breakthrough abscesses despite clindamycin and trimethoprim-sulfamethoxazole prophylaxis, and developed steroid refractory autoimmune hemolytic anemia. She underwent T-cell depleted haploidentical HSCT from her father following reduced intensity conditioning. She developed one MRSA hand abscess after transplant. Twenty-four months post transplant, she had complete donor chimerism (>95 % donor), normal absolute T cell numbers, and a normal percentage of Th17 cells. IgE was normal at 25 kU/L. She remains well 42 months after transplantation off all antibacterial prophylaxis. Haploidentical HSCT led to successful bone marrow engraftment, normalization of STAT3 signaling in hematopoietic cells, normalization of IgE, and restoration of immune function in this patient with AD-HIES.

  16. Autosomal dominant retinitis pigmentosa with macular involvement associated with a disease haplotype that included a novel PRPH2 variant (p.Cys250Gly).

    PubMed

    Katagiri, Satoshi; Hayashi, Takaaki; Mizobuchi, Kei; Yoshitake, Kazutoshi; Iwata, Takeshi; Nakano, Tadashi

    2018-06-01

    It is known that PRPH2 variants appear to be rare causes of retinitis pigmentosa (RP) in the Japanese population. The purpose of this study was to describe clinical and genetic features in autosomal dominant RP (adRP) patients with a novel disease-causing variant in the PRHP2 gene. A total of 57 unrelated Japanese probands with adRP were investigated in this study. Comprehensive ophthalmic examinations include fundus photography, fundus autofluorescence imaging, spectral-domain optical coherence tomography, and electroretinography. Whole exome sequencing or Sanger sequencing for 25 targeted exons of multiple genes causing adRP was performed to identify disease-causing variants. Co-segregation and haplotype analyses were performed to determine a disease-causing gene variant and its haplotype. Genetic analysis identified a novel heterozygous PRPH2 variant (c.748T>G, p.Cys250Gly) as disease causing in four probands from four families. The variant co-segregated with the RP phenotype in the eight affected patients in all families. At least three of the four families shared the same haplotype for the variant allele. Clinically, seven of the eight affected patients exhibited typical RP presentation, as well as variable macular involvement including cystoid macular change, vitelliform-like appearance, choroidal neovascularization, and macular atrophy. The same disease haplotype that included a novel PRPH2 variant (p.Cys250Gly) was identified in three of the four Japanese families with adRP, suggesting a founder effect. Our clinical findings indicate that adRP caused by the p.Cys250Gly variant may accompany macular involvement with high frequency.

  17. Effect of Sirolimus on Native Total Kidney Volume After Transplantation in Patients with Autosomal Dominant Polycystic Kidney Disease: A Randomized Controlled Pilot Study.

    PubMed

    Davis, S; Gralla, J; Chan, L; Wiseman, A; Edelstein, C L

    2018-06-01

    The mammalian target of rapamycin (mTOR) pathway has been shown to be central to cyst formation and growth in patients with autosomal dominant polycystic kidney disease (ADPKD). Drugs that suppress mTOR signaling are frequently used as antiproliferative agents for maintenance immunosuppression in patients who have undergone kidney transplantation. The aim of this study was to determine the effect of sirolimus, an mTOR inhibitor, on cyst volume regression in patients with ADPKD who have undergone renal transplantation. In this single-center, prospective, open-label, parallel-group, randomized trial, 23 adult patients with ADPKD who successfully underwent renal transplantation from 2008 to 2012 were subsequently randomized (on a 1:1 basis) to a maintenance immunosuppression regimen with either sirolimus (sirolimus, tacrolimus, prednisone) or mycophenolate (mycophenolate, tacrolimus, prednisone). Total kidney volumes were measured by means of high-resolution magnetic resonance imaging within 2 weeks after transplantation and at 1 year. The primary end point was change in total kidney volume at 1 year. Sixteen patients completed the 1-year study (8 patients in each group). There was a decrease in kidney volume in both the sirolimus group (percentage change from baseline, 20.5%; P < .001) and mycophenolate group (percentage change from baseline, 17%; P = .048), but there was no significant difference in percentage change of total kidney volume between the groups (P = .665). In ADPKD patients at 1 year after kidney transplantation, there was a similar decrease in polycystic kidney volume in patients receiving an immunosuppression regimen containing sirolimus compared with patients receiving mycophenolate. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Patterns of Kidney Function Decline in Autosomal Dominant Polycystic Kidney Disease: A Post Hoc Analysis From the HALT-PKD Trials.

    PubMed

    Brosnahan, Godela M; Abebe, Kaleab Z; Moore, Charity G; Rahbari-Oskoui, Frederic F; Bae, Kyongtae T; Grantham, Jared J; Schrier, Robert W; Braun, William E; Chapman, Arlene B; Flessner, Michael F; Harris, Peter C; Hogan, Marie C; Perrone, Ronald D; Miskulin, Dana C; Steinman, Theodore I; Torres, Vicente E

    2018-05-01

    Previous clinical studies of autosomal dominant polycystic kidney disease (ADPKD) reported that loss of kidney function usually follows a steep and relentless course. A detailed examination of individual patterns of decline in estimated glomerular filtration rate (eGFR) has not been performed. Longitudinal post hoc analysis of data collected during the Halt Progression of Polycystic Kidney Disease (HALT-PKD) trials. 494 HALT-PKD Study A participants (younger; preserved eGFR) and 435 Study B participants (older; reduced eGFR) who had more than 3 years of follow-up and 7 or more eGFR assessments. Longitudinal eGFR assessments using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation. Demographic, clinical, laboratory, and imaging features of participants. Probability of linear and nonlinear decline patterns or of stable eGFR calculated for each participant from a Bayesian model of individual eGFR trajectories. Most (62.5% in Study A and 81% in Study B) participants had a linear decline in eGFR during up to 8 years of follow-up. A proportion (22% in Study A and 13% in Study B) of progressors had a nonlinear pattern. 15.5% of participants in Study A and 6% in Study B had a prolonged (≥4.5 years) period of stable eGFRs. These individuals (Study A) had significantly smaller total kidney volumes, higher renal blood flows, lower urinary albumin excretion, and lower body mass index at baseline and study end. In Study B, participants with reduced but stable eGFRs were older than the progressors. Two-thirds of nonprogressors in both studies had PKD1 mutations, with enrichment for weak nontruncating mutations. Relatively short follow-up of a clinical trial population. Although many individuals with ADPKD have a linear decline in eGFR, prolonged intervals of stable GFRs occur in a substantial fraction. Lower body mass index was associated with more stable kidney function in early ADPKD. Copyright © 2017 National Kidney Foundation, Inc

  19. Autosomal Dominant STAT3 Deficiency and Hyper-IgE Syndrome Molecular, Cellular, and Clinical Features From a French National Survey

    PubMed Central

    Chandesris, Marie-Olivia; Melki, Isabelle; Natividad, Angels; Puel, Anne; Fieschi, Claire; Yun, Ling; Thumerelle, Caroline; Oksenhendler, Eric; Boutboul, David; Thomas, Caroline; Hoarau, Cyrille; Lebranchu, Yvon; Stephan, Jean-Louis; Cazorla, Celine; Aladjidi, Nathalie; Micheau, Marguerite; Tron, Fran[cedil]cois; Baruchel, Andre; Barlogis, Vincent; Palenzuela, Gilles; Mathey, Catherine; Dominique, Stephane; Body, Gerard; Munzer, Martine; Fouyssac, Fanny; Jaussaud, Rolland; Bader-Meunier, Brigitte; Mahlaoui, Nizar; Blanche, Stephane; Debre, Marianne; Le Bourgeois, Muriel; Gandemer, Virginie; Lambert, Nathalie; Grandin, Virginie; Ndaga, Stephanie; Jacques, Corinne; Harre, Chantal; Forveille, Monique; Alyanakian, Marie-Alexandra; Durandy, Anne; Bodemer, Christine; Suarez, Felipe; Hermine, Olivier; Lortholary, Olivier; Casanova, Jean-Laurent; Fischer, Alain; Picard, Capucine

    2013-01-01

    Autosomal dominant deficiency of signal transducer and activator of transcription 3 (STAT3) is the main genetic etiology of hyper-immunoglobulin (Ig) E syndrome. We documented the molecular, cellular, and clinical features of 60 patients with heterozygous STAT3 mutations from 47 kindreds followed in France. We identified 11 known and 13 new mutations of STAT3. Low levels of interleukin (IL)-6-dependent phosphorylation and nuclear translocation (or accumulation) of STAT3 were observed in Epstein-Barr virus-transformed B lymphocytes (EBV-B cells) from all STAT3-deficient patients tested. The immunologic phenotype was characterized by high serum IgE levels (96% of the patients), memory B-cell lymphopenia (94.5%), and hypereosinophilia (80%). A low proportion of IL-17A-producing circulating T cells was found in 14 of the 15 patients tested. Mucocutaneous infections were the most frequent, typically caused by Staphylococcus aureus (all patients) and Candida albicans (85%). Up to 90% of the patients had pneumonia, mostly caused by Staph. aureus (31%) or Streptococcus pneumoniae (30%). Recurrent pneumonia was associated with secondary bronchiectasis and pneumatocele (67%), as well as secondary aspergillosis (22%). Up to 92% of the patients had dermatitis and connective tissue abnormalities, with facial dysmorphism (95%), retention of decidual teeth (65%), osteopenia (50%), and hyperextensibility (50%). Four patients developed non-Hodgkin lymphoma. The clinical outcome was favorable, with 56 patients, including 43 adults, still alive at the end of study (mean age, 21 yr; range, 1 mo to 46 yr). Only 4 patients died, 3 from severe bacterial infection (aged 1, 15, and 29 yr, respectively). Antibiotic prophylaxis (90% of patients), antifungal prophylaxis (50%), and IgG infusions (53%) improved patient health, as demonstrated by the large decrease in pneumonia recurrence. Overall, the prognosis of STAT3 deficiency may be considered good, provided that multiple prophylactic

  20. Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS).

    PubMed

    Tang, Mengxuan; Ryman, Davis C; McDade, Eric; Jasielec, Mateusz S; Buckles, Virginia D; Cairns, Nigel J; Fagan, Anne M; Goate, Alison; Marcus, Daniel S; Xiong, Chengjie; Allegri, Ricardo F; Chhatwal, Jasmeer P; Danek, Adrian; Farlow, Martin R; Fox, Nick C; Ghetti, Bernardino; Graff-Radford, Neill R; Laske, Christopher; Martins, Ralph N; Masters, Colin L; Mayeux, Richard P; Ringman, John M; Rossor, Martin N; Salloway, Stephen P; Schofield, Peter R; Morris, John C; Bateman, Randall J

    2016-12-01

    Autosomal dominant familial Alzheimer's disease (ADAD) is a rare disorder with non-amnestic neurological symptoms in some clinical presentations. We aimed to compile and compare data from symptomatic participants in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) with those reported in the literature to estimate the prevalences of non-amnestic neurological symptoms in participants with ADAD. We prospectively collected data from the DIAN-OBS database, which recruited participants from study centres in the USA, Europe, and Australia, between Feb 29, 2008, and July 1, 2014. We also did a systematic review of publications to extract individual-level clinical data for symptomatic participants with ADAD. We used data for age of onset (from first report of cognitive decline), disease course from onset to death, and the presence of 13 neurological findings that have been reported in association with ADAD. Using multivariable linear regression, we investigated the prevalences of various non-amnestic neurological symptoms and the contributions of age of onset and specific mutation type on symptoms. The DIAN-OBS dataset included 107 individuals with detailed clinical data (forming the DIAN-OBS cohort). Our systematic review yielded 188 publications reporting on 1228 symptomatic individuals, with detailed neurological examination descriptions available for 753 individuals (forming the published data cohort). The most prevalent non-amnestic cognitive manifestations in participants in the DIAN-OBS cohort were those typical of mild to moderate Alzheimer's disease, including visual agnosia (55·1%, 95% CI 45·7-64·6), aphasia (57·9%, 48·6-67·3), and behavioural changes (61·7%, 51·5-70·0). Non-amnestic cognitive manifestations were less prevalent in the published data cohort (eg, visual agnosia [5·6%, 3·9-7·2], aphasia [23·0%, 20·0-26·0], and behavioural changes [31·7%, 28·4-35·1]). Prevalence of non-cognitive neurological manifestations in

  1. [Copy number variation of trinucleotide repeat in dynamic mutation sites of autosomal dominant cerebellar ataxias related genes].

    PubMed

    Chen, Pu; Ma, Mingyi; Shang, Huifang; Su, Dan; Zhang, Sizhong; Yang, Yuan

    2009-12-01

    To standardize the experimental procedure of the gene test for autosomal dominant cerebellar ataxias (ADCA), and provide the basis for quantitative criteria of the dynamic mutation of spinocerebellar ataxia (SCA) genes in Chinese population. Genotyping of the dynamic mutation loci of the SCA1, SCA2, SCA3, SCA6 and SCA7 genes was performed, using florescence PCR-capillary electrophoresis followed by DNA sequencing, to investigate the variation range of copy number of CAG tandem repeat of the genes in 263 probands of ADCA pedigrees and 261 non-related normal controls. Based on the sequencing result, the bias of the CAG copy number estimation using capillary electrophoresis with different DNA controls was compared to analyze the technical detailes of the electrophresis method in testing the dynamic mutation sites. PCR products containing dynamic mutation loci of the SCA genes showed significantly higher mobility than that of molecular weigh marker with relatively balanced GC content. This was particularly obvious in the SCA2, SCA 6 and SCA7 genes whereas the deviation of copy number could be corrected to +/-1 when known CAG copy number fragments were used as controls. The mobility of PCR products was primarily related to the copy number of CAG repeat when the fragments contained normal CAG repeat. In the 263 ADCA pedigrees, 6 (2.28%) carried SCA1 gene mutation, 8 (3.04%) had SCA2 mutation and 81 (30.80%) harbored SCA3 mutation. The gene mutation of SCA6 and SCA7 was not found. The normal variation range of the CAG repeat was 17-36 copies in SCA1 gene, 13-30 copies in SCA2, 14-39 copies in SCA3, 6-16 copies in SCA6 and 6-13 copies in SCA7. The heterozygosity was 76.1%, 17.7%, 74.4%, 72.1% and 41.3%, respectively. The mutation range of the CAG repeat was 49-56 copies in SCA1 gene, 36-41 copies in SCA2, 59-81 copies in SCA3. Neither homozygous mutation of an SCA gene nor double heterozygous mutation of the SCA genes was observed in the study. The copy number of the CAG

  2. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study.

    PubMed

    Quiroz, Yakeel T; Schultz, Aaron P; Chen, Kewei; Protas, Hillary D; Brickhouse, Michael; Fleisher, Adam S; Langbaum, Jessica B; Thiyyagura, Pradeep; Fagan, Anne M; Shah, Aarti R; Muniz, Martha; Arboleda-Velasquez, Joseph F; Munoz, Claudia; Garcia, Gloria; Acosta-Baena, Natalia; Giraldo, Margarita; Tirado, Victoria; Ramírez, Dora L; Tariot, Pierre N; Dickerson, Bradford C; Sperling, Reisa A; Lopera, Francisco; Reiman, Eric M

    2015-08-01

    Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation-carrying and noncarrying children with ADAD. Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellín, Colombia, between August 2011 and June 2012. All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding-dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task-related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were -0.590 [0.50] for noncarriers and -0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation-carrying children demonstrated increased functional connectivity of the posterior

  3. Tolvaptan and Kidney Pain in Patients With Autosomal Dominant Polycystic Kidney Disease: Secondary Analysis From a Randomized Controlled Trial

    PubMed Central

    Casteleijn, Niek F.; Blais, Jaime D.; Chapman, Arlene B.; Czerwiec, Frank S.; Devuyst, Olivier; Higashihara, Eiji; Leliveld, Anna M.; Ouyang, John; Perrone, Ronald D.; Torres, Vicente E.; Gansevoort, Ron T.

    2017-01-01

    Background Kidney pain is a common complication in patients with autosomal dominant polycystic kidney disease (ADPKD), and data from the TEMPO 3:4 trial suggested that tolvaptan, a vasopressin V2 receptor antagonist, may have a positive effect on kidney pain in this patient group. Because pain is difficult to measure, the incidence of kidney pain leading to objective medical interventions was used in the present study to assess pain. Study Design Secondary analysis from a randomized controlled trial. Setting & Participants Patients with ADPKD with preserved kidney function. Intervention Tolvaptan or placebo. Outcomes Kidney pain events defined by objective medical interventions. Measurements Kidney pain events were recorded and independently adjudicated. Incidence of a first kidney pain event was assessed overall and categorized into 5 subgroups according to severity. Results Of 1,445 participating patients (48.4% women; mean age, 39 ± 7 [SD] years; mean estimated glomerular filtration rate, 81 ± 22 mL/min/1.73 m2; median total kidney volume, 1,692 [IQR, 750–7,555] mL), 50.9% reported a history of kidney pain at baseline. History of urinary tract infections, kidney stones, or hematuria (all P < 0.001) and female sex (P < 0.001) were significantly associated with history of kidney pain. Tolvaptan use resulted in a significantly lower incidence of kidney pain events when compared to placebo: 10.1% versus 16.8% (P < 0.001), with a risk reduction of 36% (HR, 0.64; 95% CI, 0.48–0.86). The reduction in pain event incidence by tolvaptan was found in all groups irrespective of pain severity and was independent of predisposing factors (P for interaction > 0.05). The effect of tolvaptan was explained at least in part by a decrease in incidence of urinary tract infections, kidney stones, and hematuria when compared to placebo. Limitations Trial has specific inclusion criteria for total kidney volume and kidney function. Conclusions Tolvaptan decreased the incidence of

  4. Short-term Effects of Tolvaptan in Individuals With Autosomal Dominant Polycystic Kidney Disease at Various Levels of Kidney Function.

    PubMed

    Boertien, Wendy E; Meijer, Esther; de Jong, Paul E; ter Horst, Gert J; Renken, Remco J; van der Jagt, Eric J; Kappert, Peter; Ouyang, John; Engels, Gerwin E; van Oeveren, Willem; Struck, Joachim; Czerwiec, Frank S; Oberdhan, Dorothee; Krasa, Holly B; Gansevoort, Ron T

    2015-06-01

    A recent study showed that tolvaptan, a vasopressin V2 receptor antagonist, decreased total kidney volume (TKV) growth and estimated glomerular filtration rate (GFR) loss in autosomal dominant polycystic kidney disease (ADPKD) with creatinine clearance≥60mL/min. The aim of our study was to determine whether the renal hemodynamic effects and pharmacodynamic efficacy of tolvaptan in ADPKD are dependent on GFR. Clinical trial with comparisons before and after treatment. Patients with ADPKD with a wide range of measured GFRs (mGFRs; 18-148 mL/min) in a hospital setting. Participants were studied at baseline and after 3 weeks of treatment with tolvaptan given in increasing dosages, if tolerated (doses of 60, 90, and 120mg/d in weeks 1, 2, and 3, respectively). Change in markers for aquaresis (free-water clearance, urine and plasma osmolality, 24-hour urine volume, and plasma copeptin) and kidney injury (TKV and kidney injury biomarkers). GFR was measured by (125)I-iothalamate clearance; TKV, by magnetic resonance imaging; biomarker excretion, by enzyme-linked immunosorbent assay; and osmolality, by freezing point depression. In 27 participants (52% men; aged 46±10 years; mGFR, 69±39mL/min; TKV, 2.15 [IQR, 1.10-2.77] L), treatment with tolvaptan led to an increase in urine volume and free-water clearance and a decrease in urine osmolality, TKV, and kidney injury marker excretion. Changes in urine volume and osmolality with treatment were less in participants with lower baseline mGFRs (both P<0.01). However, change in fractional free-water clearance was greater at lower baseline mGFRs (P=0.001), suggesting that participants with decreased GFRs responded more to tolvaptan per functioning nephron. Limited sample size, no control group. In patients with ADPKD with decreased kidney function, response to tolvaptan is lower for TKV, urinary volume, and osmolality, but larger for fractional free-water clearance. This latter finding suggests that patients with ADPKD with

  5. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedigrees and genetic linkage to 3p12-p21.1.

    PubMed Central

    Jöbsis, G J; Weber, J W; Barth, P G; Keizers, H; Baas, F; van Schooneveld, M J; van Hilten, J J; Troost, D; Geesink, H H; Bolhuis, P A

    1997-01-01

    OBJECTIVES: To investigate relations between clinical and neuropathological features and age of onset, presence of anticipation, and genetic linkage in autosomal dominant cerebellar ataxia type II (ADCA II). METHODS: The natural history of ADCA II was studied on the basis of clinical and neuropathological findings in two pedigrees and genetic linkage studies were carried out with polymorphic DNA markers in the largest, four generation, pedigree. RESULTS: Ataxia was constant in all age groups. Retinal degeneration with early extinction of the electroretinogram constituted an important component in juvenile and early adult (< 25 years) onset but was variable in late adult presentation. Neuromuscular involvement due to spinal anterior horn disease was an important contributing factor to illness in juvenile cases. Postmortem findings in four patients confirm the general neurodegenerative nature of the disease, which includes prominent spinal anterior horn involvement and widespread involvement of grey and white matter. Genetic linkage was found with markers to chromosome 3p12-p21.1 (maximum pairwise lod score 4.42 at D3S1285). CONCLUSIONS: The sequence of clinical involvement seems related to age at onset. Retinal degeneration is variable in late onset patients and neuromuscular features are important in patients with early onset. Strong anticipation was found in subsequent generations. Linkage of ADCA II to chromosome 3p12-p21.1 is confirmed. Images PMID:9120450

  6. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedigrees and genetic linkage to 3p12-p21.1.

    PubMed

    Jöbsis, G J; Weber, J W; Barth, P G; Keizers, H; Baas, F; van Schooneveld, M J; van Hilten, J J; Troost, D; Geesink, H H; Bolhuis, P A

    1997-04-01

    To investigate relations between clinical and neuropathological features and age of onset, presence of anticipation, and genetic linkage in autosomal dominant cerebellar ataxia type II (ADCA II). The natural history of ADCA II was studied on the basis of clinical and neuropathological findings in two pedigrees and genetic linkage studies were carried out with polymorphic DNA markers in the largest, four generation, pedigree. Ataxia was constant in all age groups. Retinal degeneration with early extinction of the electroretinogram constituted an important component in juvenile and early adult (< 25 years) onset but was variable in late adult presentation. Neuromuscular involvement due to spinal anterior horn disease was an important contributing factor to illness in juvenile cases. Postmortem findings in four patients confirm the general neurodegenerative nature of the disease, which includes prominent spinal anterior horn involvement and widespread involvement of grey and white matter. Genetic linkage was found with markers to chromosome 3p12-p21.1 (maximum pairwise lod score 4.42 at D3S1285). The sequence of clinical involvement seems related to age at onset. Retinal degeneration is variable in late onset patients and neuromuscular features are important in patients with early onset. Strong anticipation was found in subsequent generations. Linkage of ADCA II to chromosome 3p12-p21.1 is confirmed.

  7. Characteristics of Intracranial Aneurysms in the Else Kröner-Fresenius Registry of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Neumann, Hartmut P.H.; Malinoc, Angelica; Bacher, Janina; Nabulsi, Zinaida; Ivanovas, Vera; Bruechle, Nadine Ortiz; Mader, Irina; Hoffmann, Michael M.; Riegler, Peter; Kraemer-Guth, Annette; Burchardi, Christian; Schaeffner, Elke; Martin, Rodolfo S.; Azurmendi, Pablo J.; Zerres, Klaus; Jilg, Cordula; Eng, Charis; Gläsker, Sven

    2012-01-01

    Background Patients who harbor intracranial aneurysms (IAs) run a risk for aneurysm rupture and subsequent subarachnoid hemorrhage which frequently results in permanent deficits or death. Prophylactic treatment of unruptured aneurysms is possible and recommended depending on the size and location of the aneurysm as well as patient age and condition. IAs are major manifestations of autosomal dominant polycystic kidney disease (ADPKD). Current guidelines do not suggest surveillance of IAs in ADPKD except in the setting of family history if IA was known in any relative with ADPKD. Management of IAs in ADPKD is problematic because limited data exist from large studies. Methods We established the Else Kröner-Fresenius Registry for ADPKD in Germany. Clinical data were assessed for age at diagnosis of IAs, stage of renal insufficiency, and number, location and size of IAs as well as family history of cerebral events. Patients with symptomatic or asymptomatic IAs were included. All patients with ADPKD-related IAs were offered mutation scanning of the susceptibility genes for ADPKD, the PKD1 and PKD2 genes. Results Of 463 eligible ADPKD patients from the population base of Germany, 32 (7%) were found to have IAs, diagnosed at the age of 2–71 years, 19 females and 13 males. Twenty (63%) of these 32 patients were symptomatic, whereas IAs were detected in an asymptomatic stage in 12 patients. IAs were multifocal in 12 and unifocal in 20 patients. In 26 patients (81%), IAs were diagnosed before end-stage renal failure. Twenty-five out of 27 unrelated index cases (93%) had no IAs or cerebral events documented in their relatives with ADPKD. In 16 unrelated index patients and 3 relatives, we detected germline mutations. The mutations were randomly distributed across the PKD1 gene in 14 and the PKD2 gene in 2 index cases. Questionnaires answered for 320/441 ADPKD patients without IAs revealed that only 45/320 (14%) had MR angiography. Conclusion In ADPKD, rupture of IAs occurs

  8. Characteristics of intracranial aneurysms in the else kröner-fresenius registry of autosomal dominant polycystic kidney disease.

    PubMed

    Neumann, Hartmut P H; Malinoc, Angelica; Bacher, Janina; Nabulsi, Zinaida; Ivanovas, Vera; Bruechle, Nadine Ortiz; Mader, Irina; Hoffmann, Michael M; Riegler, Peter; Kraemer-Guth, Annette; Burchardi, Christian; Schaeffner, Elke; Martin, Rodolfo S; Azurmendi, Pablo J; Zerres, Klaus; Jilg, Cordula; Eng, Charis; Gläsker, Sven

    2012-01-01

    Patients who harbor intracranial aneurysms (IAs) run a risk for aneurysm rupture and subsequent subarachnoid hemorrhage which frequently results in permanent deficits or death. Prophylactic treatment of unruptured aneurysms is possible and recommended depending on the size and location of the aneurysm as well as patient age and condition. IAs are major manifestations of autosomal dominant polycystic kidney disease (ADPKD). Current guidelines do not suggest surveillance of IAs in ADPKD except in the setting of family history if IA was known in any relative with ADPKD. Management of IAs in ADPKD is problematic because limited data exist from large studies. We established the Else Kröner-Fresenius Registry for ADPKD in Germany. Clinical data were assessed for age at diagnosis of IAs, stage of renal insufficiency, and number, location and size of IAs as well as family history of cerebral events. Patients with symptomatic or asymptomatic IAs were included. All patients with ADPKD-related IAs were offered mutation scanning of the susceptibility genes for ADPKD, the PKD1 and PKD2 genes. Of 463 eligible ADPKD patients from the population base of Germany, 32 (7%) were found to have IAs, diagnosed at the age of 2-71 years, 19 females and 13 males. Twenty (63%) of these 32 patients were symptomatic, whereas IAs were detected in an asymptomatic stage in 12 patients. IAs were multifocal in 12 and unifocal in 20 patients. In 26 patients (81%), IAs were diagnosed before end-stage renal failure. Twenty-five out of 27 unrelated index cases (93%) had no IAs or cerebral events documented in their relatives with ADPKD. In 16 unrelated index patients and 3 relatives, we detected germline mutations. The mutations were randomly distributed across the PKD1 gene in 14 and the PKD2 gene in 2 index cases. Questionnaires answered for 320/441 ADPKD patients without IAs revealed that only 45/320 (14%) had MR angiography. In ADPKD, rupture of IAs occurs frequently before the start of dialysis

  9. How many entities exist for the spectrum of disorders associated with brachydactyly, syndactyly, short stature, microcephaly, and intellectual disability?

    PubMed

    Ravel, Aimé; Chouery, Eliane; Stora, Samantha; Jalkh, Nadine; Villard, Laurent; Temtamy, Samia; Mégarbané, André

    2011-04-01

    We describe a French young man with digital anomalies consisting of brachydactyly, F1-5 bilateral camptodactyly, interdigital webbing, F5 bilateral radial clinodactyly, and partial syndactyly of some fingers and toes. He had psychomotor retardation, short stature, umbilical hernia, a secundum atrial septal defect, seizures, hearing impairment, and dysmorphic features consisting of microcephaly, a prominent metopic ridge, upslanting palpebral fissures, synophrys, enophthalmia, large ears, a bulbous nose, a high palate, a smooth and short philtrum, a low hanging columella, a thin upper vermillion, an everted lower lip, prognathism, pectum excavatum, and supernumerary nipples. Osteotendinous reflexes were brisk. Mild nystagmus, myopia, and astigmatia were also noted. Total body X-rays showed short terminal phalanges of the hands, short middle phalanges of the index and little fingers, clinodactyly of the little fingers, short and fused proximal 4th and 5th metacarpals of the right hand, a short 5th metacarpal of the left hand, a fused left lunate-triquetrum, fused capitate-hamates, a prominent mandibula, and partial sacral agenesis. A thin posterior corpus callosum was apparent by MRI. Differential diagnoses for mainly the Rubinstein-Taybi syndrome, the Tsukahara syndrome, the Filippi syndrome, the Feingold syndrome, and the Tonoki syndrome are discussed, and the possibility that we might be reporting a novel entity is raised. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  10. Autosomal Dominant Polycystic Kidney Disease

    MedlinePlus

    ... replacement therapies—hemodialysis and kidney transplantation, developed through fundamental NIH research in the 1960s—were increasingly available ... possible to restore lost kidney function. More aggressive management of diabetes and high blood pressure, as well ...

  11. Syndrome disintegration: Exome sequencing reveals that Fitzsimmons syndrome is a co-occurrence of multiple events.

    PubMed

    Armour, Christine M; Smith, Amanda; Hartley, Taila; Chardon, Jodi Warman; Sawyer, Sarah; Schwartzentruber, Jeremy; Hennekam, Raoul; Majewski, Jacek; Bulman, Dennis E; Suri, Mohnish; Boycott, Kym M

    2016-07-01

    In 1987 Fitzsimmons and Guilbert described identical male twins with progressive spastic paraplegia, brachydactyly with cone shaped epiphyses, short stature, dysarthria, and "low-normal" intelligence. In subsequent years, four other patients, including one set of female identical twins, a single female child, and a single male individual were described with the same features, and the eponym Fitzsimmons syndrome was adopted (OMIM #270710). We performed exome analysis of the patient described in 2009, and one of the original twins from 1987, the only patients available from the literature. No single genetic etiology exists that explains Fitzsimmons syndrome; however, multiple different genetic causes were identified. Specifically, the twins described by Fitzsimmons had heterozygous mutations in the SACS gene, the gene responsible for autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS), as well as a heterozygous mutation in the TRPS1, the gene responsible in Trichorhinophalangeal syndrome type 1 (TRPS1 type 1) which includes brachydactyly as a feature. A TBL1XR1 mutation was identified in the patient described in 2009 as contributing to his cognitive impairment and autistic features with no genetic cause identified for his spasticity or brachydactyly. The findings show that these individuals have multiple different etiologies giving rise to a similar phenotype, and that "Fitzsimmons syndrome" is in fact not one single syndrome. Over time, we anticipate that continued careful phenotyping with concomitant genome-wide analysis will continue to identify the causes of many rare syndromes, but it will also highlight that previously delineated clinical entities are, in fact, not syndromes at all. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes.

    PubMed

    Cenarro, Ana; Etxebarria, Aitor; de Castro-Orós, Isabel; Stef, Marianne; Bea, Ana M; Palacios, Lourdes; Mateo-Gallego, Rocío; Benito-Vicente, Asier; Ostolaza, Helena; Tejedor, Teresa; Martín, César; Civeira, Fernando

    2016-05-01

    The p.Leu167del mutation in the APOE gene has been associated with hyperlipidemia. Our objective was to determine the frequency of p.Leu167del mutation in APOE gene in subjects with autosomal dominant hypercholesterolemia (ADH) in whom LDLR, APOB, and PCSK9 mutations had been excluded and to identify the mechanisms by which this mutant apo E causes hypercholesterolemia. The APOE gene was analyzed in a case-control study. The study was conducted at a University Hospital Lipid Clinic. Two groups (ADH, 288 patients; control, 220 normolipidemic subjects) were included. We performed sequencing of APOE gene and proteomic and cellular experiments. To determine the frequency of the p.Leu167del mutation and the mechanism by which it causes hypercholesterolemia. In the ADH group, nine subjects (3.1%) were carriers of the APOE c.500_502delTCC, p.Leu167del mutation, cosegregating with hypercholesterolemia in studied families. Proteomic quantification of wild-type and mutant apo E in very low-density lipoprotein (VLDL) from carrier subjects revealed that apo E3 is almost a 5-fold increase compared to mutant apo E. Cultured cell studies revealed that VLDL from mutation carriers had a significantly higher uptake by HepG2 and THP-1 cells compared to VLDL from subjects with E3/E3 or E2/E2 genotypes. Transcriptional down-regulation of LDLR was also confirmed. p.Leu167del mutation in APOE gene is the cause of hypercholesterolemia in the 3.1% of our ADH subjects without LDLR, APOB, and PCSK9 mutations. The mechanism by which this mutation is associated to ADH is that VLDL carrying the mutant apo E produces LDLR down-regulation, thereby raising plasma low-density lipoprotein cholesterol levels.

  13. A comparison of the effects of ramipril and losartan on blood pressure control and left ventricle hypertrophy in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Ulusoy, Sükrü; Ozkan, Gülsüm; Orem, Cihan; Kaynar, Kübra; Koşucu, Polat; Kiriş, Abdulkadir

    2010-01-01

    Hypertension is frequently seen in autosomal dominant polycystic kidney disease (ADPKD), and it has a negative effect on renal progression. Hypertension and left ventricle hypertrophy (LVH) are related in terms of pathogenesis and their effects on renal progression. In this study, we aimed to compare the effects of losartan and ramipril on blood pressure (BP) control, LVH, and renal progression in patients with hypertensive ADPKD. Thirty-two ADPKD patients with ages ranging between 18 and 70 years who were stage 1-2 hypertensive were included in this study. Routine biochemical tests and echocardiography were obtained at first examination of the patients. Following these, the patients were randomized. One group was given losartan and the other ramipril. They were followed up for 1 year, and their echocardiographies and routine biochemical tests were repeated at the end of the year. BP values decreased in both the groups at the end of the first year (p < 0.001). There was a statistically significant difference in LVH in both the groups at the end of the first year than at the beginning (losartan, p = 0.007; ramipril, p < 0.001). In this study, effective BP control was obtained with losartan and ramipril and LVH was found to be regressed significantly in the hypertensive patients with ADPKD. These two groups of antihypertensive drugs may also have beneficial effects on the retardation of renal progression and in reducing cardiovascular mortality in hypertensive patients with ADPKD.

  14. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    PubMed Central

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  15. A novel TRPS1 mutation in a Moroccan family with Tricho-rhino-phalangeal syndrome type III: case report.

    PubMed

    Smaili, W; Elalaoui, S Chafai; Meier, S; Zerkaoui, M; Sefiani, A; Heinimann, K

    2017-05-03

    Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant disorder characterized by craniofacial and skeletal malformations including short stature, thin scalp hair, sparse lateral eyebrows, pear-shaped nose and cone shaped epiphyses. This condition is caused by haploinsufficiency of the TRPS1 gene. Previous genotype-phenotype studies have correlated exon 6 missense mutations with TRPS type III, a severe form of type I with pronounced, facial characteristics, short stature and brachydactyly and differing from type II by the absence of exostoses and mental retardation. We report the first case of a Moroccan family, a father and his three children, in which the diagnosis of type III TRPS was suspected based on severe clinical and radiological features. Molecular analysis of the TRPS1 gene revealed a novel missense mutation in exon 6, (p.Ala932Ser), located in the GATA-type DNA-binding zinc finger domain. Our observations in this kindred support the previous genotype-phenotype results suggesting that patients with more pronounced facial characteristics and more severe shortening of hands and feet are more likely to have mutation in exon 6 of TRPS1.

  16. Allele frequency distribution for 21 autosomal STR loci in Bhutan.

    PubMed

    Kraaijenbrink, Thirsa; van Driem, George L; Tshering of Gaselô, Karma; de Knijff, Peter

    2007-07-20

    We studied the allele frequency distribution of 21 autosomal STR loci contained in the AmpFlSTR Identifiler (Applied Biosystems), the Powerplex 16 (Promega) and the FFFL (Promega) multiplex PCR kits among 936 individuals from the Royal Kingdom of Bhutan. As such these are the first published autosomal DNA results from this country.

  17. Genetics Home Reference: autosomal recessive hypotrichosis

    MedlinePlus

    ... Autosomal recessive hypotrichosis is a condition that affects hair growth. People with this condition have sparse hair ( hypotrichosis ) ... erosions) on the scalp. In areas of poor hair growth, they may also develop bumps called hyperkeratotic follicular ...

  18. Dominant fitness costs of resistance to fipronil in Musca domestica Linnaeus (Diptera: Muscidae).

    PubMed

    Abbas, Naeem; Shah, Rizwan Mustafa; Shad, Sarfraz Ali; Azher, Faheem

    2016-08-15

    House fly, Musca domestica L., (Diptera: Muscidae) a common pest of poultry, has developed resistance to the commonly used insecticide fipronil. The life history traits were examined in the fipronil-selected (Fipro-SEL), susceptible counterpart (UNSEL), and their hybrid progeny strains in order to design an effective resistant management strategy. Compared to the UNSEL strain, the Fipro-SEL was 181.94-fold resistant to fipronil. This resistance was unstable after five generations without selection. The Fipro-SEL had a significantly longer larval duration, lower pupal weight, lower fecundity, lower hatchability, lower number of next generation larvae, lower intrinsic rate of population increase and lower biotic potential than the UNSEL strain. Most fitness parameters of the hybrid progeny were similar and significantly lower than that in the UNSEL strain, suggesting autosomal and dominant fitness costs. Compared to the UNSEL strain, relative the fitness of the Fipro-SEL, Hybrid1 and Hybrid2 was 0.13, 0.33 and 0.30, respectively. Fipronil resistance resulted in high fitness costs and these fitness costs were dominant and autosomal in the Fipro-SEL strain of M. domestica. Rotation of fipronil with other insecticides having no cross resistance should be useful for delaying the development of resistance in M. domestica. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bovine Polledness – An Autosomal Dominant Trait with Allelic Heterogeneity

    PubMed Central

    Medugorac, Ivica; Seichter, Doris; Graf, Alexander; Russ, Ingolf; Blum, Helmut; Göpel, Karl Heinrich; Rothammer, Sophie; Förster, Martin; Krebs, Stefan

    2012-01-01

    The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ∼381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations. PMID:22737241

  20. Risk of Japanese carriers of hyperphosphorylated paratarg-7, the first autosomal-dominantly inherited risk factor for hematological neoplasms, to develop monoclonal gammopathy of undetermined significance and multiple myeloma.

    PubMed

    Grass, Sandra; Iida, Shinsuke; Wikowicz, Aleksandra; Preuss, Klaus-Dieter; Inagaki, Atsushi; Shimizu, Kazuyuki; Ziepert, Marita; Ueda, Ryuzo; Pfreundschuh, Michael

    2011-03-01

    Hyperphosphorylated paratarg-7 (pP-7) is a frequent target of paraproteins in German patients with monoclonal gammopathy of undetermined significance (MGUS)/multiple myeloma (MM). The frequency of MGUS/MM is lower in Japan than in Europe. As pP-7, the first molecularly defined autosomal-dominant risk factor for any hematological neoplasm, is inherited in a dominant fashion, we determined the incidence of the pP-7 carrier state in a Japanese population, and compared the frequency of pP-7-specific paraproteins and the pP-7 carrier state in Japanese and German patients with MGUS/MM. Peripheral blood from 111 Japanese patients with MGUS/MM and 278 healthy blood donors was analyzed for the pP-7 carrier state by isoelectric focusing and for pP-7-specific antibodies by ELISA. The Japanese group was compared with 252 German MGUS/MM patients and 200 healthy controls. Five of 111 (4.5%) Japanese and 35/252 (13.9%) German IgA/IgG MGUS/MM patients had a pP-7-specific paraprotein (P=0.009). The prevalence of healthy pP-7 carriers in the Japanese study group was 1/278 (0.36%), whereas it was 4/200 in the German group (P=0.166). The relative risk for pP-7 carriers developing MGUS/MM had an odds ratio of 13.1 in the Japanese and 7.9 in the German group. In conclusion, the fraction of pP-7 carriers with a pP-7-specific paraprotein is lower among Japanese than in German patients with MGUS/MM, but pP-7 carriers in both ethnic groups have a high risk of developing MGUS/MM. © 2011 Japanese Cancer Association.

  1. Compound Heterozygosity of Dominant and Recessive COL7A Alleles in a Severely Affected Patient with a Family History of Dystrophic Epidermolysis Bullosa: Clinical Findings, Genetic Testing, and Treatment Implications.

    PubMed

    Watson, Kendra D; Schoch, Jennifer J; Beek, Geoffrey J; Hand, Jennifer L

    2017-03-01

    An 8-year-old girl born to a family with more than three generations of dominant dystrophic epidermolysis bullosa (DDEB) presented with life-threatening confluent skin erosions, mitten hand deformity, and failure to thrive. Reassessment of her family history and genetic testing showed compound heterozygous COL7A mutations, one inherited from her DDEB-affected mother and one from her unaffected, healthy father. This family illustrates the risk of unexpected, severe, autosomal recessive epidermolysis bullosa (EB) in a family with milder, multigenerational autosomal dominant EB. Clinicians should recognize the clinical spectrum of dystrophic EB and recommend genetic consultation when the phenotype conflicts with family history. © 2017 Wiley Periodicals, Inc.

  2. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    PubMed Central

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  3. Cyst infection in hospital-admitted autosomal dominant polycystic kidney disease patients is predominantly multifocal and associated with kidney and liver volume

    PubMed Central

    Balbo, B.E.P.; Sapienza, M.T.; Ono, C.R.; Jayanthi, S.K.; Dettoni, J.B.; Castro, I.; Onuchic, L.F.

    2014-01-01

    Positron-emission tomography/computed tomography (PET/CT) has improved cyst infection (CI) management in autosomal dominant polycystic kidney disease (ADPKD). The determinants of kidney and/or liver involvement, however, remain uncertain. In this study, we evaluated clinical and imaging factors associated with CI in kidney (KCI) and liver (LCI) in ADPKD. A retrospective cohort study was performed in hospital-admitted ADPKD patients with suspected CI. Clinical, imaging and surgical data were analyzed. Features of infected cysts were evaluated by PET/CT. Total kidney (TKV) and liver (TLV) volumes were measured by CT-derived multiplanar reconstruction. CI was detected in 18 patients who experienced 24 episodes during an interval of 30 months (LCI in 12, KCI in 10 and concomitant infection in 2). Sensitivities of CT, magnetic resonance imaging and PET/CT were 25.0, 71.4, and 95.0%. Dysuria (P<0.05), positive urine culture (P<0.01), and previous hematuria (P<0.05) were associated with KCI. Weight loss (P<0.01) and increased C-reactive protein levels (P<0.05) were associated with LCI. PET/CT revealed that three or more infected cysts were present in 70% of the episodes. TKV was higher in kidney-affected than in LCI patients (AUC=0.91, P<0.05), with a cut-off of 2502 mL (72.7% sensitivity, 100.0% specificity). TLV was higher in liver-affected than in KCI patients (AUC=0.89, P<0.01) with a cut-off of 2815 mL (80.0% sensitivity, 87.5% specificity). A greater need for invasive procedures was observed in LCI (P<0.01), and the overall mortality was 20.8%. This study supports PET/CT as the most sensitive imaging method for diagnosis of cyst infection, confirms the multifocal nature of most hospital-admitted episodes, and reveals an association of kidney and liver volumes with this complication. PMID:24919173

  4. Ectrodactyly with aplasia of long bones (OMIM; 119100) in a large inbred Arab family with an apparent autosomal dominant inheritance and reduced penetrance: clinical and genetic analysis.

    PubMed

    Naveed, Mohammed; Al-Ali, Mahmoud T; Murthy, Sabita K; Al-Hajali, Sarah; Al-Khaja, Najib; Deutsch, Samuel; Bottani, Armand; Antonarakis, Stylianos E; Nath, Swapan K; Radhakrishna, Uppala

    2006-07-01

    Ectrodactyly with aplasia of long bones syndrome is one of the most recognizable defects involving the extremities. We have studied a very large eight-generation consanguineous Arab family from the United Arab Emirates (UAE) with multiple severe limb anomalies resembling this condition (OMIM; 119100), for which the affected gene is unknown. The pedigree consists of 145 individuals including 23 affected (14 males/9 females) with limb anomalies. Of these, 18 had tibial aplasia (TA) usually on the right side. The expression of the phenotype was variable and ranged from bilateral to unilateral TA with ectrodactyly and other defects of the extremities. The mode of inheritance appears to be autosomal dominant with reduced penetrance. There were 10 consanguineous marriages observed in this pedigree. This could suggest possible pseudodominance due to high frequency of the mutant allele. Candidate loci for the described syndrome include GLI3 (OMIM: 165240) on 7p13, sonic hedgehog; (OMIM: 600725) on 7q36, Langer-Giedion syndrome (OMIM: 150230) on 8q24.1 and split-hand/foot malformation 3 (OMIM: 600095) on 10q24. In addition, bilateral tibial hemimelia and unilateral absence of the ulna was previously observed to co-segregate with deletion of 8q24.1. Two-point linkage and haplotype analyses did not show the involvement of the above regions in this family. (c) 2006 Wiley-Liss, Inc.

  5. Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene.

    PubMed

    Stone, Edwin M; Luo, Xunda; Héon, Elise; Lam, Byron L; Weleber, Richard G; Halder, Jennifer A; Affatigato, Louisa M; Goldberg, Jacqueline B; Sumaroka, Alexander; Schwartz, Sharon B; Cideciyan, Artur V; Jacobson, Samuel G

    2011-12-28

    To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Patients with RP and MAK gene mutations (n = 24; age, 32-77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior-temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium.

  6. An autosomal dwarfism in the domestic fowl.

    PubMed

    Cole, R K

    2000-11-01

    A mutation in the Cornell K-strain of White Leghorns, first recognized when two adult males in a pedigreed family were definitely smaller than their two other brothers, proved to be an autosomal recessive mutation and gave rise to the autosomal dwarf stock. The effect of this gene (adw) can be recognized during embryonic development and leads to a normal adult, except for a 30% reduction in body weight. Selection for small size, egg production, and egg weight over a period of 15 yr yielded an efficient layer. Production for 11 mo from first egg was at a rate of 70%, with egg weight at 56 g and body weight at 1,160 g at 10 to 11 mo of age, based on data for the last four generations. Viability of the caged hens averaged over 95% for the 13 generations involved. Sexual maturity was delayed by about 2 wk, and good incubation (85+%) required 18+/- more hours than normal. When an autosomal dwarf male is used as a sire and mated to sex-linked dwarf (dw) females, all progeny are of normal size. Compared with problems of mating normal size males with dwarf females, the use of the two types of dwarfism can yield good fertility.

  7. Low penetrance of autosomal dominant lateral temporal epilepsy in Italian families without LGI1 mutations.

    PubMed

    Michelucci, Roberto; Pasini, Elena; Malacrida, Sandro; Striano, Pasquale; Bonaventura, Carlo Di; Pulitano, Patrizia; Bisulli, Francesca; Egeo, Gabriella; Santulli, Lia; Sofia, Vito; Gambardella, Antonio; Elia, Maurizio; de Falco, Arturo; Neve, Angela la; Banfi, Paola; Coppola, Giangennaro; Avoni, Patrizia; Binelli, Simona; Boniver, Clementina; Pisano, Tiziana; Marchini, Marco; Dazzo, Emanuela; Fanciulli, Manuela; Bartolini, Yerma; Riguzzi, Patrizia; Volpi, Lilia; de Falco, Fabrizio A; Giallonardo, Anna Teresa; Mecarelli, Oriano; Striano, Salvatore; Tinuper, Paolo; Nobile, Carlo

    2013-07-01

    In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. In a collaborative study of the Commission of Genetics of the Italian League Against Epilepsy (LICE) encompassing a 10-year period (2000-2010), we collected 33 ADLTE families, selected on the basis of the following criteria: presence of at least two members concordant for unprovoked partial seizures with prominent auditory and or aphasic symptoms, absence of any known structural brain pathology or etiology, and normal neurologic examination. The clinical, neurophysiologic, and neuroradiologic findings of all patients were analyzed and a genealogic tree was built for each pedigree. The probands' DNA was tested for LGI1 mutations by direct sequencing and, if negative, were genotyped with single-nucleotide polymorphism (SNP) array to search for disease-linked copy-number variation CNV. The disease penetrance in mutated and nonmutated families was assessed as a proportion of obligate carriers who were affected. The 33 families included a total of 127 affected individuals (61 male, 66 female, 22 deceased). The age at onset ranged between 2 and 60 years (mean 18.7 years). Ninety-one patients (72%) had clear-cut focal (elementary, complex, or secondarily generalized) seizures, characterized by prominent auditory auras in 68% of the cases. Other symptoms included complex visual hallucinations, vertigo, and déjà vu. Aphasic seizures, associated or not with auditory features, were observed in 20% of the cases, whereas tonic-clonic seizures occurred in 86% of the overall series. Sudden noises could precipitate the seizures

  8. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  9. Long-term effect of coffee consumption on autosomal dominant polycystic kidneys disease progression: results from the Suisse ADPKD, a Prospective Longitudinal Cohort Study.

    PubMed

    Girardat-Rotar, Laura; Puhan, Milo A; Braun, Julia; Serra, Andreas L

    2018-02-01

    Previous in vitro experiments of human polycystic kidney disease (PKD) cells reported that caffeine is a risk factor for the promotion of cyst enlargement in patients with autosomal dominant PKD (ADPKD). The relentless progression of ADPKD inclines the majority of physicians to advocate minimization of caffeine consumption despite the absence of clinical data supporting such a recommendation so far. This is the first clinical study to assess prospectively the association between coffee consumption and disease progression in a longitudinal ADPKD cohort. Information on coffee consumption and disease progression was collected at each follow-up visit using standardized measurement methods. The main model for the outcomes, kidney size (height-adjusted total kidney volume, htTKV) and kidney function (estimated glomerular filtration rate, eGFR), was a linear mixed model. Patients entered the on-going Swiss ADPKD study between 2006 and June 2014 and had at least 1 visit every year. The sample size of the study population was 151 with a median follow-up of 4 visits per patient and a median follow-up time of 4.38 years. After multivariate adjustment for age, smoking, hypertension, sex, body mass index and an interaction term (coffee*visit), coffee drinkers did not have a statistically significantly different kidney size compared to non-coffee drinkers (difference of -33.03 cm 3 height adjusted TKV, 95% confidence interval (CI) from -72.41 to 6.34, p = 0.10). After the same adjustment, there was no statistically significant difference in eGFR between coffee and non-coffee drinkers (2.03 ml/min/1.73 m 2 , 95% CI from -0.31 to 4.31, p = 0.089). Data derived from our prospective longitudinal study do not confirm that drinking coffee is a risk factor for ADPKD progression.

  10. Live Donor Renal Transplant With Simultaneous Bilateral Nephrectomy for Autosomal Dominant Polycystic Kidney Disease Is Feasible and Satisfactory at Long-term Follow-up.

    PubMed

    Ahmad, Sarwat B; Inouye, Brian; Phelan, Michael S; Kramer, Andrew C; Sulek, Jay; Weir, Matthew R; Barth, Rolf N; LaMattina, John C; Schweitzer, Eugene J; Leeser, David B; Niederhaus, Silke V; Bartlett, Stephen T; Bromberg, Jonathan S

    2016-02-01

    Timing of bilateral nephrectomy (BN) is controversial in patients with refractory symptoms of autosomal dominant polycystic kidney disease (APKD) in need of a renal transplant. Adults who underwent live donor renal transplant (LRT) + simultaneous BN (SBN) from August 2003 to 2013 at a single transplant center (n = 66) were retrospectively compared to a matched group of APKD patients who underwent LRT alone (n = 52). All patients received general health and polycystic kidney symptom surveys. Simultaneous BN increased operative duration, estimated blood loss, transfusions, intravenous fluid, and hospital length of stay. Most common indications for BN were pain, loss of abdominal domain, and early satiety. There were more intraoperative complications for LRT + SBN (6 vs 0, P = 0.03; 2 vascular, 2 splenic, and 1 liver injury; 1 reexploration to adjust graft positioning). There were no differences in Clavien-Dindo grade I or II (39% vs 25%, P = 0.12) or grade III or IV (7.5% vs 5.7%, P = 1.0) complications during the hospital course. There were no surgery-related mortalities. There were no differences in readmission rates (68% vs 48%, P = 0.19) or readmissions requiring procedures (25% vs. 20%, P = 0.51) over 12 months. One hundred percent of LRT + SBN allografts functioned at longer than 1 year for those available for follow-up. Survey response rate was 40% for LRT-alone and 56% for LRT + SBN. One hundred percent of LRT + SBN survey responders were satisfied with their choice of having BN done simultaneously. Excellent outcomes for graft survival, satisfaction, and morbidity suggest that the combined operative approach be preferred for patients with symptomatic APKD to avoid multiple procedures, dialysis, and costs of staged operations.

  11. Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othmane, K.B.; Loprest, L.J.; Wilkinson, K.M.

    1993-08-01

    Charcot-Marie-Tooth (CMT) disease type 2 (CMT2) is an inherited peripheral neuropathy characterized by variable age of onset and normal or slightly diminished nerve conduction velocity. CMT2 is pathologically and genetically distinct from CMT type 1 (CMT1). While CMT1 has been shown to be genetically heterogeneous, no chromosomal localization has been established for CMT2. The authors have performed pedigree linkage analysis in six large autosomal dominant CMT2 families and have demonstrated linkage and heterogeneity to a series of microsatellites (D1S160, D1S170, D1S244, D1S228 and D1S199) in the distal region of the short arm of chromosome 1. Significant evidence for heterogeneity wasmore » found using admixture analyses and the two-point lod scores. Admixture analyses using the multipoint results for the markers D1S244, D1S228, and D1S199 supported the two-point findings. Three families, DUK662, DUK1241, and 1523 gave posterior probabilities of 1.0, 0.98, and 0.88 of being of the linked type. Multipoint analysis examining the [open quotes]linked[close quotes] families showed that the most favored location for the CMT2A gene is within the interval flanked by D1S244 and D1S228 (odds approximately 70:1 of lying within versus outside that interval). These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrate further heterogeneity in the CMT phenotype.« less

  12. Mitochondrial Hsp60 Chaperonopathy Causes an Autosomal-Recessive Neurodegenerative Disorder Linked to Brain Hypomyelination and Leukodystrophy

    PubMed Central

    Magen, Daniella; Georgopoulos, Costa; Bross, Peter; Ang, Debbie; Segev, Yardena; Goldsher, Dorit; Nemirovski, Alexandra; Shahar, Eli; Ravid, Sarit; Luder, Anthony; Heno, Bayan; Gershoni-Baruch, Ruth; Skorecki, Karl; Mandel, Hanna

    2008-01-01

    Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration. PMID:18571143

  13. Y-autosome translocation interferes with meiotic sex inactivation and expression of autosomal genes: a case study in the pig.

    PubMed

    Barasc, H; Mary, N; Letron, R; Calgaro, A; Dudez, A M; Bonnet, N; Lahbib-Mansais, Y; Yerle, M; Ducos, A; Pinton, A

    2012-01-01

    Y-autosome translocations are rare in humans and pigs. In both species, these rearrangements can be responsible for meiotic arrest and subsequent infertility. Chromosome pairing abnormalities on the SSCX, SSCY and SSC1 chromatin domains were identified by analyzing pachytene spermatocytes from a boar carrying a (Y;1) translocation by immunolocalization of specific meiotic protein combined with FISH. Disturbance of the meiotic sex chromosome inactivation (MSCI) was observed by Cot-RNA-FISH and analysis of ZFY gene expression by sequential RNA- and DNA-FISH on spermatocytes. We hypothesized that the meiotic arrest observed in this boar might be due to the silencing of critical autosomal genes and/or the reactivation of some sex chromosome genes. Copyright © 2011 S. Karger AG, Basel.

  14. Neurological Manifestations of Autosomal Dominant Alzheimer’s Disease from the DIAN cohort and a meta-analysis

    PubMed Central

    Tang, Mengxuan; Ryman, Davis C.; McDade, Eric; Jasielec, Mateusz S.; Buckles, Virginia D.; Cairns, Nigel J.; Fagan, Anne M.; Goate, Alison; Marcus, Daniel S.; Xiong, Chengjie; Allegri, Ricardo F.; Chhatwal, Jasmeer P.; Danek, Adrian; Farlow, Martin R.; Fox, Nick; Ghetti, Bernardino; Graff-Radford, Neill R.; Laske, Christopher; Martins, Ralph N.; Masters, Colin L.; Mayeux, Richard P.; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen P.; Schofield, Peter R.; Morris, John C.; Bateman, Randall J.

    2016-01-01

    Background To evaluate the prevalence rates of non-amnestic neurological symptoms of autosomal dominant Alzheimer’s disease (ADAD) in the DIAN Observational Study (DIAN–OBS) and the published literature. Analyses were conducted to clarify the prevalence of neurological manifestations of ADAD mutation carriers as a group. Methods Using the DIAN-OBS study database and 189 peer-reviewed publications on ADAD families, we extracted individual-level data on age of symptom onset, disease course from onset to death, and the presence of fourteen neurological findings that have been reported in association with ADAD and included symptomatic subjects only. The primary outcomes were the rates of various neurological symptoms and the contribution of age and specific mutations on the prevalence of the neurological symptoms. Analyses were done using descriptive statistics, comparisons of means and frequencies and multivariable linear regression. Findings Our meta-analysis dataset includes 1228 affected individuals, with detailed clinical descriptions of 753. The DIAN–OBS dataset included 107 individuals with detailed clinical data. The most prevalent non-amnestic cognitive manifestations in DIAN were those typical of mild-moderate Alzheimer’s disease, including visual agnosia (95% CI 45·7%–64·6%), aphasia (43·8%–62·7%), and behavioral changes (51·5%–70·0%). The prevalence of non-amnestic cognitive manifestations from the published literature were (95% CI 3·9%–7·2%) for visual agnosia, (20%–26%) for aphasia, and (28·4%–35·1%) for behavioral changes. Prevalence of non-cognitive neurological manifestations in DIAN was low, including myoclonus and spasticity (3·8%–15·0%), seizures (0·5%–9·1%) and moderate for parkinsonism (5·3%–17·1%). Whereas, in the published literature the prevalence was (95% CI 16·6%–22·2% and 12·5%–17·6%) for myoclonus and spasticity, (10·1%–15·0%) for parkinsonism, and (17·4%–23·2%) for seizures. Age of

  15. Further expansion of the mutational spectrum of spondylo-meta-epiphyseal dysplasia with abnormal calcification.

    PubMed

    Ürel-Demir, Gizem; Simsek-Kiper, Pelin Ozlem; Akgün-Doğan, Özlem; Göçmen, Rahşan; Wang, Zheng; Matsumoto, Naomichi; Miyake, Noriko; Utine, Gülen Eda; Nishimura, Gen; Ikegawa, Shiro; Boduroglu, Koray

    2018-06-08

    Spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type, is a rare autosomal recessive disorder of the skeleton characterized by disproportionate short stature with narrow chest and dysmorphic facial features. The skeletal manifestations include platyspondyly, short flared ribs, short tubular bones with abnormal metaphyses and epiphyses, severe brachydactyly, and premature stippled calcifications in the cartilage. The abnormal calcifications are so distinctive as to point to the definitive diagnosis. However, they may be too subtle to attract diagnostic attention in infancy. Homozygous variants in DDR2 cause this disorder. We report on a 5-year-old girl with the classic phenotype of SMED, SL-AC in whom a novel homozygous nonsense mutation in DDR2 was detected using exome sequencing.

  16. Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

    PubMed Central

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-01-01

    Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER–oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY. PMID:22357960

  17. Tubular secretion of creatinine in autosomal dominant polycystic kidney disease: consequences for cross-sectional and longitudinal performance of kidney function estimating equations.

    PubMed

    Spithoven, Edwin M; Meijer, Esther; Boertien, Wendy E; Sinkeler, Steef J; Tent, Hilde; de Jong, Paul E; Navis, Gerjan; Gansevoort, Ron T

    2013-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal tubular cell proliferation and dedifferentiation, which may influence tubular secretion of creatinine (CCr[TS]). Diagnostic test study. We therefore investigated CCr(TS) in patients with ADPKD and controls and studied consequences for the performance of glomerular filtration rate (GFR) estimating equations. In patients with ADPKD and healthy controls, we measured GFR as (125)I-iothalamate clearance while simultaneously determining creatinine clearance. 24-hour urinary albumin excretion. In 121 patients with ADPKD (56% men; mean age, 40 ± 11 [SD] years) and 215 controls (48% men; mean age, 53 ± 10 years), measured GFR (mGFR) was 78 ± 30 and 98 ± 17 mL/min/1.73 m(2), respectively, and CCr(TS) was 15.9 ± 10.8 and 10.9 ± 10.6 mL/min/1.73 m(2), respectively (P < 0.001). The higher CCr(TS) in patients with ADPKD remained significant after adjustment for covariates and appeared to be dependent on mGFR. Correlation and accuracy between mGFR and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) estimated GFR (eGFR) were 0.95 and 99%, respectively; between mGFR and MDRD (Modification of Diet in Renal Disease) Study eGFR, they were 0.93 and 97%, respectively. Values for bias, precision, and accuracy were similar or slightly better than in controls. In addition, change in mGFR during 3 years of follow-up in 45 patients with ADPKD correlated well with change in eGFR. Cross-sectional, single center. CCr(TS) in patients with ADPKD is higher than that in controls, but this effect is limited and observed at only high-normal mGFR. Consequently, the CKD-EPI and MDRD Study equations perform relatively well in estimating GFR and change in GFR in patients with ADPKD. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Autosomal Recessive Retinitis Pigmentosa Caused by Mutations in the MAK Gene

    PubMed Central

    Luo, Xunda; Héon, Elise; Lam, Byron L.; Weleber, Richard G.; Halder, Jennifer A.; Affatigato, Louisa M.; Goldberg, Jacqueline B.; Sumaroka, Alexander; Schwartz, Sharon B.; Cideciyan, Artur V.; Jacobson, Samuel G.

    2011-01-01

    Purpose. To determine the disease expression in autosomal recessive (ar) retinitis pigmentosa (RP) caused by mutations in the MAK (male germ cell-associated kinase) gene. Methods. Patients with RP and MAK gene mutations (n = 24; age, 32–77 years at first visit) were studied by ocular examination, perimetry, and optical coherence tomography (OCT). Results. All but one MAK patient were homozygous for an identical truncating mutation in exon 9 and had Ashkenazi Jewish heritage. The carrier frequency of this mutation among 1207 unrelated Ashkenazi control subjects was 1 in 55, making it the most common cause of heritable retinal disease in this population and MAK-associated RP the sixth most common Mendelian disease overall in this group. Visual acuities could be normal into the eighth decade of life. Kinetic fields showed early loss in the superior–temporal quadrant. With more advanced disease, superior and midperipheral function was lost, but the nasal field remained. Only a central island was present at late stages. Pigmentary retinopathy was less prominent in the superior nasal quadrant. Rod-mediated vision was abnormal but detectable in the residual field; all patients had rod>cone dysfunction. Photoreceptor layer thickness was normal centrally but decreased with eccentricity. At the stages studied, there was no evidence of photoreceptor ciliary elongation. Conclusions. The patterns of disease expression in the MAK form of arRP showed some resemblance to patterns described in autosomal dominant RP, especially the form caused by RP1 mutations. The similarity in phenotypes is of interest, considering that there is experimental evidence of interaction between Mak and RP1 in the photoreceptor cilium. PMID:22110072

  19. Genetics Home Reference: autosomal recessive congenital methemoglobinemia

    MedlinePlus

    ... it alters a molecule within these cells called hemoglobin . Hemoglobin carries oxygen to cells and tissues throughout the ... autosomal recessive congenital methemoglobinemia , some of the normal hemoglobin is replaced by an abnormal form called methemoglobin, ...

  20. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    PubMed

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic