Science.gov

Sample records for autosomal dominant distal

  1. Relative Contribution of Mutations in Genes for Autosomal Dominant Distal Hereditary Motor Neuropathies: A Genotype-Phenotype Correlation Study

    ERIC Educational Resources Information Center

    Dierick, Ines; Baets, Jonathan; Irobi, Joy; Jacobs, An; De Vriendt, Els; Deconinck, Tine; Merlini, Luciano; Van den Bergh, Peter; Rasic, Vedrana Milic; Robberecht, Wim; Fischer, Dirk; Morales, Raul Juntas; Mitrovic, Zoran; Seeman, Pavel; Mazanec, Radim; Kochanski, Andrzej; Jordanova, Albena; Auer-Grumbach, Michaela; Helderman-van den Enden, A. T. J. M.; Wokke, John H. J.; Nelis, Eva; De Jonghe, Peter; Timmerman, Vincent

    2008-01-01

    Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal alpha-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; "glycyl-tRNA synthetase (GARS)," "dynactin 1 (DCTN1)," "small heat shock 27 kDa protein 1 (HSPB1),"…

  2. Mutation Conferring Apical-Targeting Motif on AE1 Exchanger Causes Autosomal Dominant Distal RTA

    PubMed Central

    Fry, Andrew C.; Su, Ya; Yiu, Vivian; Cuthbert, Alan W.; Trachtman, Howard

    2012-01-01

    Mutations in SLC4A1 that mislocalize its product, the chloride/bicarbonate exchanger AE1, away from its normal position on the basolateral membrane of the α-intercalated cell cause autosomal dominant distal renal tubular acidosis (dRTA). We studied a family exhibiting dominant inheritance and defined a mutation (AE1-M909T) that affects the C terminus of AE1, a region rich in potential targeting motifs that are incompletely characterized. Expression of AE1-M909T in Xenopus oocytes confirmed preservation of its anion exchange function. Wild-type GFP-tagged AE1 localized to the basolateral membrane of polarized MDCK cells, but AE1-M909T localized to both the apical and basolateral membranes. Wild-type AE1 trafficked directly to the basolateral membrane without apical passage, whereas AE1-M909T trafficked to both cell surfaces, implying the gain of an apical-targeting signal. We found that AE1-M909T acquired class 1 PDZ ligand activity that the wild type did not possess. In summary, the AE1-M909T mutation illustrates the role of abnormal targeting in dRTA and provides insight into C-terminal motifs that govern normal trafficking of AE1. PMID:22518001

  3. Mutation conferring apical-targeting motif on AE1 exchanger causes autosomal dominant distal RTA.

    PubMed

    Fry, Andrew C; Su, Ya; Yiu, Vivian; Cuthbert, Alan W; Trachtman, Howard; Karet Frankl, Fiona E

    2012-07-01

    Mutations in SLC4A1 that mislocalize its product, the chloride/bicarbonate exchanger AE1, away from its normal position on the basolateral membrane of the α-intercalated cell cause autosomal dominant distal renal tubular acidosis (dRTA). We studied a family exhibiting dominant inheritance and defined a mutation (AE1-M909T) that affects the C terminus of AE1, a region rich in potential targeting motifs that are incompletely characterized. Expression of AE1-M909T in Xenopus oocytes confirmed preservation of its anion exchange function. Wild-type GFP-tagged AE1 localized to the basolateral membrane of polarized MDCK cells, but AE1-M909T localized to both the apical and basolateral membranes. Wild-type AE1 trafficked directly to the basolateral membrane without apical passage, whereas AE1-M909T trafficked to both cell surfaces, implying the gain of an apical-targeting signal. We found that AE1-M909T acquired class 1 PDZ ligand activity that the wild type did not possess. In summary, the AE1-M909T mutation illustrates the role of abnormal targeting in dRTA and provides insight into C-terminal motifs that govern normal trafficking of AE1. PMID:22518001

  4. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis

    PubMed Central

    Karet, F. E.; Gainza, F. J.; Györy, A. Z.; Unwin, R. J.; Wrong, O.; Tanner, M. J. A.; Nayir, A.; Alpay, H.; Santos, F.; Hulton, S. A.; Bakkaloglu, A.; Ozen, S.; Cunningham, M. J.; di Pietro, A.; Walker, W. G.; Lifton, R. P.

    1998-01-01

    Primary distal renal tubular acidosis (dRTA) is characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Kindreds showing either autosomal dominant or recessive transmission are described. Mutations in the chloride-bicarbonate exchanger AE1 have recently been reported in four autosomal dominant dRTA kindreds, three of these altering codon Arg589. We have screened 26 kindreds with primary dRTA for mutations in AE1. Inheritance was autosomal recessive in seventeen kindreds, autosomal dominant in one, and uncertain due to unknown parental phenotype or sporadic disease in eight kindreds. No mutations in AE1 were detected in any of the autosomal recessive kindreds, and analysis of linkage showed no evidence of linkage of recessive dRTA to AE1. In contrast, heterozygous mutations in AE1 were identified in the one known dominant dRTA kindred, in one sporadic case, and one kindred with two affected brothers. In the dominant kindred, the mutation Arg-589/Ser cosegregated with dRTA in the extended pedigree. An Arg-589/His mutation in the sporadic case proved to be a de novo mutation. In the third kindred, affected brothers both have an intragenic 13-bp duplication resulting in deletion of the last 11 amino acids of AE1. These mutations were not detected in 80 alleles from unrelated normal individuals. These findings underscore the key role of Arg-589 and the C terminus in normal AE1 function, and indicate that while mutations in AE1 cause autosomal dominant dRTA, defects in this gene are not responsible for recessive disease. PMID:9600966

  5. Autosomal dominant vitreoretinochoroidopathy (ADVIRC).

    PubMed Central

    Blair, N P; Goldberg, M F; Fishman, G A; Salzano, T

    1984-01-01

    We report the second family recognised to have autosomal dominant vitreoretinochoroidopathy. The clinical features were (1) autosomal dominant inheritance; (2) peripheral, coarse pigmentary degeneration of the fundus for 360 degrees, with a relatively discrete posterior border in the equatorial region (this finding may be pathognomonic); (3) superficial punctate yellowish-white opacities in the retina; (4) various vascular abnormalities; (5) breakdown of the blood-retinal barrier; (6) retinal neovascularisation; (7) vitreous abnormalities; and (8) choroidal atrophy. Visual reduction was mainly due to macular oedema or vitreous haemorrhage. Images PMID:6689931

  6. A new family linked to the RP13 locus for autosomal dominant retinitis pigmentosa on distal 17p.

    PubMed

    Tarttelin, E E; Plant, C; Weissenbach, J; Bird, A C; Bhattacharya, S S; Inglehearn, C F

    1996-06-01

    A form of autosomal dominant retinitis pigmentosa (ADRP) mapping to chromosome 17p has been reported in a single large South African family. We now report a new family with severe early onset ADRP which maps to 17p. Linkage and haplotype analysis in this family places the ADRP locus in the 5 cM interval between markers AFMc024za5 and D17S1845, confirming the data obtained in the South African family. The discovery of a second 17p linked family may imply that this is one of the more common loci for dominant RP. In addition, the confirmation of an RP diagnosis at this locus is of interest since loci for a dominant cone dystrophy and Leber's congenital amaurosis (LCA1) have recently been linked to the same markers. While the cone dystrophy locus may be allelic with RP, our data and that of Goliath et al show that distinct genes are responsible for dominant RP and Leber's congenital amaurosis on chromosome 17p. PMID:8782056

  7. Genetics Home Reference: autosomal dominant vitreoretinochoroidopathy

    MedlinePlus

    ... autosomal dominant vitreoretinochoroidopathy: a degenerative disease with a range of developmental ocular anomalies. Eye (Lond). 2011 Jan;25(1):113-8. doi: 10.1038/eye.2010.165. Epub 2010 Nov 12. Citation on PubMed or Free article on PubMed Central Yardley J, Leroy BP, ...

  8. Autosomal dominant rolandic epilepsy with speech dyspraxia.

    PubMed

    Scheffer, I E

    2000-01-01

    Autosomal Dominant Rolandic Epilepsy with Speech Dyspraxia (ADRESD) is a rare disorder which highlights the relationship between Benign Rolandic Epilepsy (BRE) and speech and language disorders. Subtle speech and language disorders have recently been well characterised in BRE. ADRESD is associated with long term, more severe speech and language difficulties. The time course of rolandic epilepsy in ADRESD is typical of that of BRE. ADRESD is inherited in an autosomal dominant manner with anticipation. It is postulated that the anticipation may be due to an, as yet unidentified, triplet repeat expansion in a gene for rolandic epilepsy. BRE follows complex inheritance but it is possible that ADRESD may hold some valuable clues to the pathogenesis of BRE. PMID:11231219

  9. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    MedlinePlus

    ... Genetics Home Health Conditions ADPEAF autosomal dominant partial epilepsy with auditory features Enable Javascript to view the ... Open All Close All Description Autosomal dominant partial epilepsy with auditory features ( ADPEAF ) is an uncommon form ...

  10. Genetics Home Reference: autosomal dominant congenital stationary night blindness

    MedlinePlus

    ... stationary night blindness autosomal dominant congenital stationary night blindness Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is ...

  11. Frontometaphyseal dysplasia: evidence for autosomal dominant inheritance.

    PubMed

    Kassner, E G; Haller, J O; Reddy, V H; Mitarotundo, A; Katz, I

    1976-12-01

    Frontometaphyseal dysplasia is a syndrome that encompasses cranial hyperostosis, abnormal tubulation of cylindrical bones, and other skeletal and extraskeletal abnormalities. The most striking features are overgrowth of the supraorbital ridges which results in a Mephistophelian facial appearance and a radiographic configuration of the skull that has been likened to a soldier's helmet. Most patients have severe hearing loss, defective dentition, poorly developed musculature, and joint contractures. Dominant inheritance has been suggested in previous reports, but an appropriate pedigree has been documented in only one family. This paper describes three additional patients in two unrelated families: (1) an 8-year-old boy whose mother has mild metaphyseal dysplasia and several minor skeletal abnormalities that have occurred in patients with the syndrome; and (2) two maternal half-brothers. These cases provide additional evidence that frontometaphyseal dysplasia is an autosomal dominant trait with variable penetrance. PMID:998829

  12. Cleidocranial Dysplasia with Autosomal Dominant Inheritance Pattern

    PubMed Central

    Bhargava, P; Khan, S; Sharma, R; Bhargava, S

    2014-01-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disease with a wide range of expression, characterized by clavicular hypoplasia, retarded cranial ossification, delayed bone and teeth development, supernumerary teeth, stomatognathic, craniofacial and skeletal abnormalities. This paper presents a case of CCD in a female with brachycephalic skull, depressed frontal bone and nasal bridge, hypoplastic middle one-third of face with mandibular prognathism and hyper mobility of both shoulders with associated radiographic features. Odontologist is often the first professional who patient of CCD approaches, since there is a delay in the eruption or absence of permanent teeth. The premature diagnosis allows a scope for proper treatment modalities, offering a better life quality for patient. PMID:25184084

  13. Cleidocranial dysplasia with autosomal dominant inheritance pattern.

    PubMed

    Bhargava, P; Khan, S; Sharma, R; Bhargava, S

    2014-07-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disease with a wide range of expression, characterized by clavicular hypoplasia, retarded cranial ossification, delayed bone and teeth development, supernumerary teeth, stomatognathic, craniofacial and skeletal abnormalities. This paper presents a case of CCD in a female with brachycephalic skull, depressed frontal bone and nasal bridge, hypoplastic middle one-third of face with mandibular prognathism and hyper mobility of both shoulders with associated radiographic features. Odontologist is often the first professional who patient of CCD approaches, since there is a delay in the eruption or absence of permanent teeth. The premature diagnosis allows a scope for proper treatment modalities, offering a better life quality for patient. PMID:25184084

  14. Non-syndromic autosomal-dominant deafness.

    PubMed

    Petersen, M B

    2002-07-01

    Non-syndromic deafness is a paradigm of genetic heterogeneity. More than 70 loci have been mapped, and 25 of the nuclear genes responsible for non-syndromic deafness have been identified. Autosomal-dominant genes are responsible for about 20% of the cases of hereditary non-syndromic deafness, with 16 different genes identified to date. In the present article we review these 16 genes, their function and their contribution to deafness in different populations. The complexity is underlined by the fact that several of the genes are involved in both dominant and recessive non-syndromic deafness or in both non-syndromic and syndromic deafness. Mutations in eight of the genes have so far been detected in only single dominant deafness families, and their contribution to deafness on a population base might therefore be limited, or is currently unknown. Identification of all genes involved in hereditary hearing loss will help in the understanding of the basic mechanisms underlying normal hearing, will facilitate early diagnosis and intervention and might offer opportunities for rational therapy. PMID:12123480

  15. Evidence for further genetic heterogeneity in autosomal dominant retinitis pigmentosa

    SciTech Connect

    Kumar-Singh, R.; Kenna, P.F.; Farrar, G.J.; Humphries, P. )

    1993-01-01

    We have investigated the possible involvement of further genetic heterogeneity in autosomal dominant retinitis pigmentosa using a previously unreported large Irish family with the disease. We have utilized polymorphic microsatellite markers to exclude the disease gene segregating in this family from 3q, 6p, and the pericentric region of 8, that is, each of the three chromosomal regions to which adRP loci are known to map. Hence, we provide definitive evidence for the involvement of a fourth locus in autosomal dominant retinitis pigmentosa. 25 refs., 2 figs.

  16. Nonallelic heterogeneity in autosomal dominant retinitis pigmentosa with incomplete penetrance

    SciTech Connect

    Kim, S.K.; Berson, E.L.; Dryja, T.P.

    1994-08-01

    Retinitis pigmentosa is a group of retinal diseases in which photoreceptor cells throughout the retina degenerate. Although there is considerable genetic heterogeneity (autosomal dominant, autosomal recessive, and X-linked forms exist), there is a possibility that some clinically defined subtypes of the disease may be the result of mutations at the same locus. One possible clinically defined subtype is that of autosomal dominant retinitis pigmentosa (ADRP) with incomplete penetrance. Whereas in most families with ADRP, carriers can be clearly identified because of visual loss, ophthalmological findings, or abnormal electroretinograms (ERGs), in occasional families some obligate carriers are asymptomatic and have normal or nearly normal ERGs even late in life. A recent paper reported the mapping of the diseases locus in one pedigree (designated adRP7) with ADRP with incomplete penetrance to chromosome 7p. To test the idea that ADRP with incomplete penetrance may be genetically homogeneous, we have evaluated whether a different family with incomplete penetrance also has a disease gene linked to the same region. 4 refs., 1 fig., 1 tab.

  17. RNA Interference Prevents Autosomal-Dominant Hearing Loss.

    PubMed

    Shibata, Seiji B; Ranum, Paul T; Moteki, Hideaki; Pan, Bifeng; Goodwin, Alexander T; Goodman, Shawn S; Abbas, Paul J; Holt, Jeffrey R; Smith, Richard J H

    2016-06-01

    Hearing impairment is the most common sensory deficit. It is frequently caused by the expression of an allele carrying a single dominant missense mutation. Herein, we show that a single intracochlear injection of an artificial microRNA carried in a viral vector can slow progression of hearing loss for up to 35 weeks in the Beethoven mouse, a murine model of non-syndromic human deafness caused by a dominant gain-of-function mutation in Tmc1 (transmembrane channel-like 1). This outcome is noteworthy because it demonstrates the feasibility of RNA-interference-mediated suppression of an endogenous deafness-causing allele to slow progression of hearing loss. Given that most autosomal-dominant non-syndromic hearing loss in humans is caused by this mechanism of action, microRNA-based therapeutics might be broadly applicable as a therapy for this type of deafness. PMID:27236922

  18. Autosomal dominant polycystic kidney disease: the last 3 years

    PubMed Central

    Torres, Vicente E.; Harris, Peter C.

    2010-01-01

    Autosomal dominant polycystic kidney disease is the most prevalent, potentially lethal monogenic disorder. It has large inter- and intra-familial variability explained to a large extent by its genetic heterogeneity and modifier genes. An increased understanding of its underlying genetic, molecular, and cellular mechanisms and a better appreciation of its progression and systemic manifestations have laid out the foundation for the development of clinical trials and potentially effective therapies. The purpose of this review is to update the core of knowledge in this area with recent publications that have appeared during 2006–2009. PMID:19455193

  19. Autosomal dominant polycystic kidney disease: recent advances in clinical management

    PubMed Central

    Mao, Zhiguo; Chong, Jiehan; Ong, Albert C. M.

    2016-01-01

    The first clinical descriptions of autosomal dominant polycystic kidney disease (ADPKD) go back at least 500 years to the late 16 th century. Advances in understanding disease presentation and pathophysiology have mirrored the progress of clinical medicine in anatomy, pathology, physiology, cell biology, and genetics. The identification of PKD1 and PKD2, the major genes mutated in ADPKD, has stimulated major advances, which in turn have led to the first approved drug for this disorder and a fresh reassessment of patient management in the 21 st century. In this commentary, we consider how clinical management is likely to change in the coming decade. PMID:27594986

  20. Autosomal dominant polycystic kidney disease: recent advances in clinical management.

    PubMed

    Mao, Zhiguo; Chong, Jiehan; Ong, Albert C M

    2016-01-01

    The first clinical descriptions of autosomal dominant polycystic kidney disease (ADPKD) go back at least 500 years to the late 16 (th) century. Advances in understanding disease presentation and pathophysiology have mirrored the progress of clinical medicine in anatomy, pathology, physiology, cell biology, and genetics. The identification of PKD1 and PKD2, the major genes mutated in ADPKD, has stimulated major advances, which in turn have led to the first approved drug for this disorder and a fresh reassessment of patient management in the 21 (st) century. In this commentary, we consider how clinical management is likely to change in the coming decade. PMID:27594986

  1. Familial multiple lipomatosis with clear autosomal dominant inheritance and onset in early adolescence.

    PubMed

    Lee, Cheng-Hiang; Spence, Roy A J; Upadhyaya, Meena; Morrison, Patrick J

    2011-01-01

    Familial multiple lipomatosis is rare. Several modes of inheritance have been proposed but no conclusive evidence shown, although some families have suggested autosomal dominant inheritance. The authors describe a family with multiple lipomatosis showing clear autosomal dominant inheritance, and no mutations within the NF1, SPRED1 or Cowden disease (PTEN) genes. Familial autosomal dominant lipomatosis is a rare but distinct entity. PMID:22707495

  2. Nutraceutical for Autosomal Dominant Polycystic Kidney Disease Therapy.

    PubMed

    Yuajit, Chaowalit; Chatsudthipong, Varanuj

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder caused by mutations of either PKD1 or PKD2 gene. Cyst formation initiates from a combination of abnormal cell proliferation along with enhanced fluid secretion. ADPKD is characterized by the progressive enlargement of cysts which destroy the renal parenchymal cells, resulting in renal failure. Currently, there is no effective treatment for this disease. Interestingly, several relevant therapeutic effects of herbal medicine relevant to pathogenic process of ADPKD have urged the researchers to search for potential candidate herb as nutraceutical for ADPKD therapy. Up to now, several natural compounds, such as triptolide, curcumin, ginkolide B, and steviol (stevia extract) have been shown to be able to retard cyst progression in ADPKD. The detailed mechanism of these compounds showed that triptolide enhanced calcium restoration, curcumin inhibited ERK & p-STAT3 pathways, ginkolide B inhibited Ras/MAPK pathway, and steviol activated AMPK, which inhibited CFTR channel and mTOR pathway in cell and mouse models of PKD. In addition, they are currently inpreclinical and clinical studies, respectively. This review focuses on the pathophysiology of ADPKD and the recent therapeutic approaches, especially a potential use of nutraceutical for the treatment of autosomal dominant polycystic kidney disease. PMID:26817244

  3. GCAP1 mutations associated with autosomal dominant cone dystrophy

    PubMed Central

    Jiang, Li; Baehr, Wolfgang

    2010-01-01

    We discuss the heterogeneity of autosomal dominant cone and cone-rod dystrophies (adCD, and adCORD, respectively). As one of the best characterized adCD genes, we focus on the GUCA1A gene encoding guanylate cyclase activating protein 1 (GCAP1), a protein carrying three high affinity Ca2+ binding motifs (EF hands). GCAP1 senses changes in cytoplasmic free [Ca2+] and communicates these changes to GC1, by either inhibiting it (at high free [Ca2+]), or stimulating it (at low free [Ca2+]). A number of missense mutations altering the structure and Ca2+ affinity of EF hands have been discovered. These mutations are associated with a gain of function, producing dominant cone and cone rod dystrophy phenotypes. In this article we review these mutations and describe the consequences of specific mutations on GCAP1 structure and GC stimulation. PMID:20238026

  4. Homozygotes for the autosomal dominant neoplasia syndrome (MEN1)

    SciTech Connect

    Brandi, M.L.; Falchetti, A.; Tonelli, F. ); Weber, G.; Svensson, A.; Larsson, C. ); Castello, R.; Furlani, L.; Scappaticci, S.; Fraccaro, M.

    1993-12-01

    Families in which both parents are heterozygotes for the same autosomal dominant neoplasia syndrome are extremely unusual. Recently, the authors had the unique opportunity to evaluate three symptomatic siblings from the union between two unrelated individuals affected by multiple endocrine neoplasia type 1 (MEN1). When the three siblings and their parents and relatives were genotyped for 12 markers tightly linked to the MEN1 locus, at 11q13, two of the siblings were found to be homozygotes, and one a heterozygote, for MEN1. With regard to the MEN1 syndrome, no phenotypic differences were observed between the two homozygotes and the heterozygotes. However, the two homozygotes showed unexplained infertility, which was not the case for any of the heterozygotes. Thus, MEN1 appears to be a disease with complete dominance, and the presence of two MEN1 alleles with mutations of the type that occur constitutionally may be insufficient for tumor development. 28 refs., 2 figs.

  5. The pathogenesis of autosomal dominant polycystic kidney disease: an update.

    PubMed

    Somlo, S; Markowitz, G S

    2000-07-01

    The identification of PKD1 and PKD2, the two major genes responsible for autosomal dominant polycystic kidney disease, are the seminal discoveries upon which much of the current investigation into the pathogenesis of this common heritable disease is based. A major mechanistic insight was achieved with the discovery that autosomal dominant polycystic kidney disease occurs by a two-hit mechanism requiring somatic inactivation of the normal allele in individual polarized epithelial cells. Most recent advances are focused on the function of the respective protein products, polycystin-1 and polycystin-2. Indirect evidence supports an interaction between polycystin-1 and -2, albeit it is unlikely that they work in concert in all tissues and at all times. They associate in yeast two hybrid and cotransfection assays and there is a striking similarity in the renal and pancreatic cystic phenotypes of Pkd2-/- and Pkd1del34/del34 mice. Also, the respective homologues of both proteins are expressed in the same sensory neuronal cells in the nematode and the human disease phenotypes remain completely overlapping with the major difference being in relative severity. Mounting evidence supports the hypothesis that polycystin-1 is a cell surface receptor. A close homologue in the sea urchin sperm mediates the acrosome reaction in response to contact with egg-jelly, the nematode homologue functions in mechano- or chemosensation, and the solution structure of the repeated extracellular polycystic kidney disease domains reveals a beta-sandwich fold commonly found in surface receptor molecules. Indirect evidence also supports the initial hypothesis that polycystin-2 is a calcium channel subunit. Several closely related homologues retain the calcium channel signature motif but differ in their predicted interaction domains, and one of these homologues has been shown to be a calcium regulated cation channel. Several important distinctions in polcystin-1 and -2 function have also been

  6. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related. PMID:23958762

  7. [Autosomal dominant polycystic kidney disease: is the treatment for tomorrow?].

    PubMed

    Cornec-Le Gall, Emilie; Le Meur, Yannick

    2014-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent Mendelian inherited disorder. It covers 6.1% of incident ESRD patients in France in 2011. Long left untreated, this disease will soon benefit from targeted therapies currently under evaluation. Several molecules have already reached the stage of clinical trials: the evaluation of mTOR inhibitors yielded deceiving results and, more recently, 2 different molecules demonstrated a slight impact on the progression of total kidney volume (TKV): tolvaptan, vasopressin receptor-V2 inhibitor and somatostatin analogues; both of these molecules acting throughout the decrease of intracellular AMPc. The purpose of this review is to briefly describe the signaling pathways involved, then to present both the published and ongoing clinical trials and the promising molecules evaluated in murine models. PMID:25086476

  8. Autism in siblings with autosomal dominant nocturnal frontal lobe epilepsy.

    PubMed

    Miyajima, Tomoko; Kumada, Tomohiro; Saito, Keiko; Fujii, Tatsuya

    2013-02-01

    In 1999, Hirose et al. reported a Japanese family with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) associated with a neuronal nicotinic acetylcholine receptor α4 subunit mutation (S252L). We followed the siblings of this family, and found that the elder brother had Asperger's disorder without mental retardation (MR) and the younger brother had autistic disorder with profound MR. The clinical epileptic features of the siblings were very similar, and both had deficits in socialization, but their cognitive development differed markedly. It thus seems that epilepsy is the direct phenotype of the S252L mutation, whereas other various factors modulate the cognitive and social development. No patients with ADNFLE have previously been reported to have autism spectrum disorder or profound MR. PMID:22883468

  9. Mitochondrial anomalies in a Swiss family with autosomal dominant myoglobinuria

    SciTech Connect

    Martin-du Pan, R.C.; Favre, H.; Junod, A.

    1997-04-14

    We report on a Swiss family in which 10 individuals of both sexes in 4 successive generations suffered from myoglobinuria, precipitated by febrile illness. It is the second family described with autosomal dominant inheritance of myoglobinuria. Four individuals suffered acute renal failure, which in two was reversible only after dialysis. In a recent case, a mitochondrial disorder was suspected because of an abnormal increase in lactate levels during an exercise test and because of a subsarcolemmal accumulation of mitochondria in a muscle biopsy, associated with a lack of cytochrome C oxidase in some muscle fibers. No mutation in the mitochondrial DNA was identified. Along with the inheritance pattern, these findings suggest that the myoglobinuria in this family is caused by a nuclear-encoded mutation affecting the respiratory chain. 22 refs., 2 figs.

  10. Platelet counts in autosomal dominant polycystic kidney disease.

    PubMed

    Setyapranata, Stella; Holt, Stephen G

    2016-05-01

    Platelet counts in patients with autosomal dominant polycystic kidney disease (ADPKD) have been reported to be lower than in control populations in one small study but data are sparse. We retrospectively audited real world platelet data from 290 ADPKD patients with corresponding age and sex-matched controls. We analysed 42 972 individual blood counts and patients with ADPKD had statistically lower platelet counts (213 ± 63 vs. 238 ± 69 × 10(9)/L, p < 0.01) on dialysis. In the transplant and chronic kidney disease (CKD) groups, there were no significant differences in the platelet counts. The magnitude of the difference in platelet numbers was small and unlikely to be clinically significant, so findings of low platelets in ADPKD should be further investigated. PMID:26270278

  11. Molecular diagnosis of autosomal dominant polycystic kidney disease.

    PubMed

    Torra Balcells, R; Ars Criach, E

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder. Its estimated prevalence is 1 per 800 individuals. ADPKD patients constitute 8% of the population on dialysis or kidney transplantation. The disease can be diagnosed using radiological or genetic procedures. Direct genetic diagnosis of the disease can now be performed in Spain; however, it is not an easy or cheap test. This is why every case should be considered individually to determine whether genetic testing is appropriate, and to determine which genetic test is most adequate. Genetic testing in ADPKD is of special interest for living donors and neonatal and sporadic cases. Genetic testing offers the chance of performing prenatal or pre-implantation testing of embryos in families with severe cases of the disease. Also, this will enable the disease to be treated, when specific treatment becomes available, in cases that would not be candidates for treatment without genetic confirmation. PMID:21270911

  12. Novel therapeutic approaches to autosomal dominant polycystic kidney disease.

    PubMed

    LaRiviere, Wells B; Irazabal, Maria V; Torres, Vicente E

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the progressive growth of renal cysts that, over time, destroy the architecture of the renal parenchyma and typically lead to kidney failure by the sixth decade of life. ADPKD is common and represents a leading cause of renal failure worldwide. Currently, there are no Food and Drug Administration-approved treatments for the disease, and the existing standard of care is primarily supportive in nature. However, significant advances in the understanding of the molecular biology of the disease have inspired investigation into potential new therapies. Several drugs designed to slow or arrest the progression of ADPKD have shown promise in preclinical models and clinical trials, including vasopressin receptor antagonists and somatostatin analogs. This article examines the literature underlying the rationale for molecular therapies for ADPKD and reviews the existing clinical evidence for their indication for human patients with the disease. PMID:25438190

  13. Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3

    PubMed Central

    Chong, Jessica X.; Burrage, Lindsay C.; Beck, Anita E.; Marvin, Colby T.; McMillin, Margaret J.; Shively, Kathryn M.; Harrell, Tanya M.; Buckingham, Kati J.; Bacino, Carlos A.; Jain, Mahim; Alanay, Yasemin; Berry, Susan A.; Carey, John C.; Gibbs, Richard A.; Lee, Brendan H.; Krakow, Deborah; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Shendure, Jay; Nickerson, Deborah A.; Abecasis, Gonçalo R.; Anderson, Peter; Blue, Elizabeth Marchani; Annable, Marcus; Browning, Brian L.; Buckingham, Kati J.; Chen, Christina; Chin, Jennifer; Chong, Jessica X.; Cooper, Gregory M.; Davis, Colleen P.; Frazar, Christopher; Harrell, Tanya M.; He, Zongxiao; Jain, Preti; Jarvik, Gail P.; Jimenez, Guillaume; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Krauter, Stephanie A.; Krumm, Niklas; Leal, Suzanne M.; Luksic, Daniel; Marvin, Colby T.; McMillin, Margaret J.; McGee, Sean; O’Reilly, Patrick; Paeper, Bryan; Patterson, Karynne; Perez, Marcos; Phillips, Sam W.; Pijoan, Jessica; Poel, Christa; Reinier, Frederic; Robertson, Peggy D.; Santos-Cortez, Regie; Shaffer, Tristan; Shephard, Cindy; Shively, Kathryn M.; Siegel, Deborah L.; Smith, Joshua D.; Staples, Jeffrey C.; Tabor, Holly K.; Tackett, Monica; Underwood, Jason G.; Wegener, Marc; Wang, Gao; Wheeler, Marsha M.; Yi, Qian; Bamshad, Michael J.

    2015-01-01

    Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development. PMID:25957469

  14. MOLECULAR ADVANCES IN AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE

    PubMed Central

    Gallagher, Anna Rachel; Germino, Gregory G.; Somlo, Stefan

    2010-01-01

    Autosomal dominant polycystic disease (ADPKD) is the most common form of inherited kidney disease that results renal failure. The understanding the pathogenesis of ADPKD has advanced significantly since the discovery of the two causative genes, PKD1 or PKD2. Dominantly inherited gene mutations followed by somatic second hit mutations inactivating the normal copy of the respective gene result in renal tubular cyst formation that deforms the kidney and eventually impairs its function. The respective gene products, polycystin-1 and polycystin-2, work together in a common cellular pathway. Polycystin-1, a large receptor molecule, forms a receptor-channel complex with polycystin-2, which is a cation channel belonging to the TRP family. Both polycystin proteins have been localized to the primary cilium, a non-motile microtubule based structure that extends from the apical membrane of tubular cells into the lumen. Here we discuss recent insights in the pathogenesis of ADPKD including the genetics of ADPKD, the properties of the respective polycystin proteins, the role of cilia, and some cell signaling pathways that have been implicated in the pathways related to PKD1 and PKD2. PMID:20219615

  15. Autosomal Dominant Diabetes Arising From a Wolfram Syndrome 1 Mutation

    PubMed Central

    Bonnycastle, Lori L.; Chines, Peter S.; Hara, Takashi; Huyghe, Jeroen R.; Swift, Amy J.; Heikinheimo, Pirkko; Mahadevan, Jana; Peltonen, Sirkku; Huopio, Hanna; Nuutila, Pirjo; Narisu, Narisu; Goldfeder, Rachel L.; Stitzel, Michael L.; Lu, Simin; Boehnke, Michael; Urano, Fumihiko; Collins, Francis S.; Laakso, Markku

    2013-01-01

    We used an unbiased genome-wide approach to identify exonic variants segregating with diabetes in a multigenerational Finnish family. At least eight members of this family presented with diabetes with age of diagnosis ranging from 18 to 51 years and a pattern suggesting autosomal dominant inheritance. We sequenced the exomes of four affected members of this family and performed follow-up genotyping of additional affected and unaffected family members. We uncovered a novel nonsynonymous variant (p.Trp314Arg) in the Wolfram syndrome 1 (WFS1) gene that segregates completely with the diabetic phenotype. Multipoint parametric linkage analysis with 13 members of this family identified a single linkage signal with maximum logarithm of odds score 3.01 at 4p16.2-p16.1, corresponding to a region harboring the WFS1 locus. Functional studies demonstrate a role for this variant in endoplasmic reticulum stress, which is consistent with the β-cell failure phenotype seen in mutation carriers. This represents the first compelling report of a mutation in WFS1 associated with dominantly inherited nonsyndromic adult-onset diabetes. PMID:23903355

  16. Evidence for locus heterogeneity in human autosomal dominant split hand/split foot malformation

    SciTech Connect

    Palmer, S.E.; Wijsman, E.M.; Stephens, K.; Evans, J.P. ); Scherer, S.W.; Tsui, L.C. ); Kukolich, M. )

    1994-07-01

    Split hand/split foot (SHSF; also known as ectrodactyly) is a human developmental disorder characterized by missing central digits and other distal limb malformations. An association between SHSF and cytogenetically visible rearrangements of chromosome 7 at bands q21-q22 provides compelling evidence for the location of a causative gene at this location, and the locus has been designated SHFD1. In the present study, marker loci were localized to the SHFD1 critical region through the analysis of somatic cell hybrids derived from individuals with SHSF and cytogenetic abnormalities involving the 7q21-q22 region. Combined genetic and physical data suggest that the order of markers in the SHFD1 critical region is cen-D7S492-D7S527-(D7S479-D7S491)-SHFD1-D7S553-D7S518-qter. Dinucleotide repeat polymorphisms at three of these loci were used to test for linkage of SHSF to this region in a large pedigree that demonstrates autosomal dominant SHSF. Evidence against linkage of the SHSF gene to 7q21-q22 was obtained in this pedigree. Therefore, combined molecular and genetic data provide evidence for locus heterogeneity in autosomal dominant SHSF. The authors propose the name SHSF2 for this second locus. 34 refs., 4 figs., 1 tab.

  17. Evaluation of polyglutamine repeats in autosomal dominant Parkinson's disease.

    PubMed

    Yamashita, Chikara; Tomiyama, Hiroyuki; Funayama, Manabu; Inamizu, Saeko; Ando, Maya; Li, Yuanzhe; Yoshino, Hiroyo; Araki, Takehisa; Ichikawa, Tadashi; Ehara, Yoshiro; Ishikawa, Kinya; Mizusawa, Hidehiro; Hattori, Nobutaka

    2014-07-01

    We evaluated the contributions of various polyglutamine (polyQ) disease genes to Parkinson's disease (PD). We compared the distributions of polyQ repeat lengths in 8 common genes (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1, and HTT) in 299 unrelated patients with autosomal dominant PD (ADPD) and 329 normal controls. We also analyzed the possibility of genetic interactions between ATXN1 and ATXN2, ATXN2 and ATXN3, and ATXN2 and CACNA1A. Intermediate-length polyQ expansions (>24 Qs) of ATXN2 were found in 7 ADPD patients and no controls (7/299 = 2.34% and 0/329 = 0%, respectively; p = 0.0053 < 0.05/8 after Bonferroni correction). These patients showed typical L-DOPA-responsive PD phenotypes. Conversely, no significant differences in polyQ repeat lengths were found between the ADPD patients and the controls for the other 7 genes. Our results may support the hypothesis that ATXN2 polyQ expansion is a specific predisposing factor for multiple neurodegenerative diseases. PMID:24534762

  18. Imaging-based diagnosis of autosomal dominant polycystic kidney disease.

    PubMed

    Pei, York; Hwang, Young-Hwan; Conklin, John; Sundsbak, Jamie L; Heyer, Christina M; Chan, Winnie; Wang, Kairong; He, Ning; Rattansingh, Anand; Atri, Mostafa; Harris, Peter C; Haider, Masoom A

    2015-03-01

    The clinical use of conventional ultrasonography (US) in autosomal dominant polycystic kidney disease (ADPKD) is currently limited by reduced diagnostic sensitivity, especially in at-risk subjects younger than 30 years of age. In this single-center prospective study, we compared the diagnostic performance of MRI with that of high-resolution (HR) US in 126 subjects ages 16-40 years born with a 50% risk of ADPKD who underwent both these renal imaging studies and comprehensive PKD1 and PKD2 mutation screening. Concurrently, 45 healthy control subjects without a family history of ADPKD completed the same imaging protocol. We analyzed 110 at-risk subjects whose disease status was unequivocally defined by molecular testing and 45 unaffected healthy control subjects. Using a total of >10 cysts as a test criterion in subjects younger than 30 years of age, we found that MRI provided both a sensitivity and specificity of 100%. Comparison of our results from HR US with those from a previous study of conventional US using the test criterion of a total of three or more cysts found a higher diagnostic sensitivity (approximately 97% versus approximately 82%) with a slightly decreased specificity (approximately 98% versus 100%) in this study. Similar results were obtained in test subjects between the ages of 30 and 40 years old. These results suggest that MRI is highly sensitive and specific for diagnosis of ADPKD. HR US has the potential to rival the diagnostic performance of MRI but is both center- and operator-dependent. PMID:25074509

  19. [Clinical diagnosis of Autosomal Dominant Polycystic Kidney Disease].

    PubMed

    Magistroni, Riccardo; Izzi, Claudia; Scolari, Francesco

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder related to kidney. ADPKD is usually easy to diagnose in people who have a family history of ADPKDs developing typical symptoms, including flank, abdominal pain or macroscopic hematuria. In this setting, diagnosis in adults at risk for ADPKD is commonly performed by ultrasonography, which reveals two enlarged kidneys with multiple bilateral cysts. ADPKD may be more difficult to diagnose in the absence of family history or in subjects with atypical presentation, including asymmetric or focal renal imaging findings, discordant disease within family, early onset of ADPKD and development of ESRD before 30 yr of age. The presence of a total of three or more renal cysts for at-risk subjects aged 15-39 years and two cysts or more in each kidney for at-risk subjects aged 40-59 years are sufficient for the diagnosis of ADPKD. The absence of any renal cyst is sufficient for disease exclusion only for at-risk subjects aged 40 years or older. If the family history is negative, the diagnosis of ADPKD can be made in a patient with enlarged kidneys, numerous cysts, presence of liver cysts and absence of findings suggesting a different cystic disease. If the imaging diagnosis is not clear or showing atypical manifestations in subjects, molecular genetic testing should be performed. PMID:27067212

  20. Renal transplantation in autosomal dominant polycystic kidney disease.

    PubMed

    Kanaan, Nada; Devuyst, Olivier; Pirson, Yves

    2014-08-01

    In patients with autosomal dominant polycystic kidney disease (ADPKD) evaluated for kidney transplantation, issues related to native nephrectomy, cystic liver involvement, screening for intracranial aneurysms and living-related kidney donation deserve special consideration. Prophylactic native nephrectomy is restricted to patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. Patients with liver involvement require pretransplant imaging. Selection of patients for pretransplant screening of intracranial aneurysms should follow the general recommendations for patients with ADPKD. In living related-donor candidates aged <30 years and at-risk of ADPKD, molecular genetic testing should be carried out when ultrasonography and MRI findings are normal or equivocal. After kidney transplantation, patient and graft survival rates are excellent and the volume of native kidneys decreases. However, liver cysts continue to grow and treatment with a somatostatin analogue should be considered in patients with massive cyst involvement. Cerebrovascular events have a marginal effect on post-transplant morbidity and mortality. An increased risk of new-onset diabetes mellitus and nonmelanoma skin cancers has been reported, but several studies have challenged these findings. Finally, no data currently support the preferential use of mammalian target of rapamycin inhibitors as immunosuppressive agents in transplant recipients with ADPKD. PMID:24935705

  1. Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease.

    PubMed

    Vece, Timothy J; Watkin, Levi B; Nicholas, Sarah K; Canter, Debra; Braun, Michael C; Guillerman, Robert Paul; Eldin, Karen W; Bertolet, Grant; McKinley, Scott D; de Guzman, Marietta; Forbes, Lisa R; Chinn, Ivan; Orange, Jordan S

    2016-05-01

    Inherently defective immunity typically results in either ineffective host defense, immune regulation, or both. As a category of primary immunodeficiency diseases, those that impair immune regulation can lead to autoimmunity and/or autoinflammation. In this review we focus on one of the most recently discovered primary immunodeficiencies that leads to immune dysregulation: "Copa syndrome". Copa syndrome is named for the gene mutated in the disease, which encodes the alpha subunit of the coatomer complex-I that, in aggregate, is devoted to transiting molecular cargo from the Golgi complex to the endoplasmic reticulum (ER). Copa syndrome is autosomal dominant with variable expressivity and results from mutations affecting a narrow amino acid stretch in the COPA gene-encoding COPα protein. Patients with these mutations typically develop arthritis and interstitial lung disease with pulmonary hemorrhage representing a striking feature. Immunologically Copa syndrome is associated with autoantibody development, increased Th17 cells and pro-inflammatory cytokine expression including IL-1β and IL-6. Insights have also been gained into the underlying mechanism of Copa syndrome, which include excessive ER stress owing to the impaired return of proteins from the Golgi, and presumably resulting aberrant cellular autophagy. As such it represents a novel cellular disorder of intracellular trafficking associated with a specific clinical presentation and phenotype. PMID:27048656

  2. Why kidneys fail in autosomal dominant polycystic kidney disease.

    PubMed

    Grantham, Jared J; Mulamalla, Sumanth; Swenson-Fields, Katherine I

    2011-10-01

    The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease. PMID:21862990

  3. Reproductive issues for adults with autosomal dominant polycystic kidney disease.

    PubMed

    Vora, Neeta; Perrone, Ronald; Bianchi, Diana W

    2008-02-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common disorder. However, the consequences of ADPKD on male and female reproductive health are not widely known. Several abnormalities are found in men with ADPKD, including necrospermia, immotile sperm, seminal vesicle cysts, and ejaculatory duct cysts. Female fertility is not affected. Affected women with ADPKD and normal renal function have a high rate of successful uncomplicated pregnancies. Pregnant women with ADPKD with compromised kidney function should be monitored carefully for the development of hypertension and preeclampsia. Their fetuses should be examined sonographically for signs of uteroplacental insufficiency, such as intrauterine growth restriction and oligohydramnios. The diagnosis of ADPKD should always be considered when prenatal sonographic findings of hyperechogenic enlarged kidneys are found. In this setting, a family history and renal sonogram of both parents is indicated. Sequencing of the PKD1 and PKD2 genes is available and can be used for both prenatal and preimplantation genetic diagnosis. We review in detail these topics to familiarize physicians taking care of patients with ADPKD with the reproductive issues that confront affected individuals. PMID:18215709

  4. Imaging for the prognosis of autosomal dominant polycystic kidney disease.

    PubMed

    Bae, Kyongtae T; Grantham, Jared J

    2010-02-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the unrelenting enlargement of innumerable cysts derived from renal tubules. This cystic growth often leads to a grotesque renal enlargement. Relatively early in life, the cysts trigger secondary complications including pain, hypertension and gross hematuria; renal insufficiency is usually not detected until the fifth or sixth decade of life. Therapies targeted to molecular and pathophysiological abnormalities slow cyst growth and protect renal function in animal models of the disease. Unfortunately, the translation of these treatments into clinical trials is hampered since glomerular filtration rate, the usual biomarker of renal disease progression, does not decrease substantially until extensive and irreversible damage to noncystic parenchyma occurs. Ultrasonography, CT and MRI have been used for many years to quantify the increase in renal volume in patients with ADPKD. Imaging with these techniques has also been used to accurately quantify the rate of increased kidney and total cyst volume in patients. In this Review we discuss the overwhelming evidence in support of the view that imaging is an invaluable tool to monitor the onset and progression of ADPKD and is well-suited to gauge the response of this disease to targeted therapy before renal function begins to decline. PMID:20111050

  5. Autosomal dominant polycystic kidney disease: time for a change?

    PubMed

    Chapman, Arlene B

    2007-05-01

    Diagnosis and treatment of autosomal dominant polycystic kidney disease (ADPKD) is rapidly changing. Cellular pathways that involve the polycystins are being mapped and involve the primary cilium, intracellular calcium and cAMP regulation, and the mammalian target of rapamycin (mTOR) pathway. With the use of new imaging approaches, earlier diagnosis of hepatic cystic disease is possible, and measurement of kidney and cystic growth as well as kidney blood flow is possible over relatively short periods. PKD gene type, gender, proteinuria, and the presence of hypertension relate to the rate of kidney growth in ADPKD. On the basis of risk factors for progression to ESRD and the pathogenic roles that intracellular cAMP and mTOR play in cystogenesis, novel therapies are now being tested, including maximal inhibition of the renin-angiotensin system, inhibition of renal intracellular cAMP using vasopressin V2 receptor antagonists, and somatostatin analogues, as well as inhibitors of mTOR. This review addresses the current understanding of the pathogenesis and the natural history of ADPKD; accuracy and reliability of diagnostic approaches in utero, childhood, and adulthood; the value of reliable magnetic resonance imaging to measure disease progression early in the course of ADPKD; and novel therapeutic approaches that are being evaluated in ADPKD. PMID:17429048

  6. Autosomal dominant Parkinson's disease caused by SNCA duplications.

    PubMed

    Konno, Takuya; Ross, Owen A; Puschmann, Andreas; Dickson, Dennis W; Wszolek, Zbigniew K

    2016-01-01

    The discovery in 1997 that mutations in the SNCA gene cause Parkinson's disease (PD) greatly advanced our understanding of this illness. There are pathogenic missense mutations and multiplication mutations in SNCA. Thus, not only a mutant protein, but also an increased dose of wild-type protein can produce autosomal dominant parkinsonism. We review the literature on SNCA duplications and focus on pathologically-confirmed cases. We also report a newly-identified American family with SNCA duplication whose proband was autopsied. We found that over half of the reported cases with SNCA duplication had early-onset parkinsonism and non-motor features, such as dysautonomia, rapid eye movement sleep behavior disorder (RBD), hallucinations (usually visual) and cognitive deficits leading to dementia. Only a few cases have presented with typical features of PD. Our case presented with depression and RBD that preceded parkinsonism, and dysautonomia that led to an initial diagnosis of multiple system atrophy. Dementia and visual hallucinations followed. Our patient and the other reported cases with SNCA duplications had widespread cortical Lewy pathology. Neuronal loss in the hippocampal cornu ammonis 2/3 regions were seen in about half of the autopsied SNCA duplication cases. Similar pathology was also observed in SNCA missense mutation and triplication carriers. PMID:26350119

  7. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    SciTech Connect

    Palmer, S.E.; Stephens, K.; Dale, D.C.

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  8. Recent advances in autosomal-dominant polycystic kidney disease.

    PubMed

    Rangan, G K; Tchan, M C; Tong, A; Wong, A T Y; Nankivell, B J

    2016-08-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease in adults, affecting one in every 1000 Australians. It is caused by loss-of-function heterozygous mutations in either PKD1 or PKD2 , which encode the proteins, polycystin-1 and polycystin-2 respectively. The disease hallmark is the development of hundreds of microscopic fluid-filled cysts in the kidney during early childhood, which grow exponentially and continuously through life at varying rates (between 2% and 10% per year), causing loss of normal renal tissue and up to a 50% lifetime risk of dialysis-dependent kidney failure. Other systemic complications include hypertensive cardiac disease, hepatic cysts, intracranial aneurysms, diverticular disease and hernias. Over the last two decades, advances in the genetics and pathogenesis of this disease have led to novel treatments that reduce the rate of renal cyst growth and may potentially delay the onset of kidney failure. New evidence indicates that conventional therapies (such as angiotensin inhibitors and statins) have mild attenuating effects on renal cyst growth and that systemic levels of vasopressin are critical for promoting renal cyst growth in the postnatal period. Identifying and integrating patient-centred perspectives in clinical trials is also being advocated. This review will provide an update on recent advances in the clinical management of ADPKD. PMID:27553994

  9. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis

    SciTech Connect

    Palmer, S.E. |; Dale, D.C.

    1996-12-30

    Cyclic hematopoiesis (CH, or cyclic neutropenia) is a rare disease manifested by transient severe neutropenia that recurs approximately every 21 days. The hematologic profile of families with the autosomal dominant form (ADCH) has not been well characterized, and it is unknown if the phenotype is distinct from the more common sporadic congenital or acquired forms of CH. We studied nine ADCH families whose children displayed typical CH blood patterns. Pedigrees confirmed dominant inheritance without evidence of heterogeneity or decreased penetrance; three pedigrees suggested new mutations. Families were Caucasian with exception of one with a Cherokee Native American founder. A wide spectrum of symptom severity, ranging from asymptomatic to life-threatening illness, was observed within families. The phenotype changed with age. Children displayed typical neutrophil cycles with symptoms of mucosal ulceration, lymphadenopathy, and infections. Adults often had fewer and milder symptoms, sometimes accompanied by mild chronic neutropenia without distinct cycles. While CH is commonly described as {open_quotes}benign{close_quotes}, four children in three of the nine families died of Clostridium or E. coli colitis, documenting the need for urgent evaluation of abdominal pain. Misdiagnosis with other neutropenias was common but can be avoided by serial blood counts in index cases. Genetic counseling requires specific histories and complete blood counts in relatives at risk to assess status regardless of symptoms, especially to determine individuals with new mutations. We propose diagnostic criteria for ADCH in affected children and adults. Recombinant human granulocyte colony-stimulating factor treatment resulted in dramatic improvement of neutropenia and morbidity. The differential diagnosis from other forms of familial neutropenia is reviewed. 45 refs., 4 figs., 1 tab.

  10. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy

    PubMed Central

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C.E.; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-01-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  11. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations. PMID:26601658

  12. Review of tolvaptan for autosomal dominant polycystic kidney disease.

    PubMed

    Baur, Brian P; Meaney, Calvin J

    2014-06-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by bilateral renal cysts, kidney pain, hypertension, and progressive loss of renal function. It is a leading cause of end-stage renal disease and the most common inherited kidney disease in the United States. Despite its prevalence, disease-modifying treatment options do not currently exist. Tolvaptan is an orally active, selective arginine vasopressin V2 receptor antagonist already in use for hyponatremia. Tolvaptan exhibits dose-proportional pharmacokinetics with a half-life of ~12 hours. Metabolism occurs through the cytochrome P450 3A4 isoenzyme, and tolvaptan is a substrate for P-glycoprotein, resulting in numerous drug interactions. Recent research has highlighted the beneficial effect of tolvaptan on delaying the progression of ADPKD, which is the focus of this review. Pharmacologic, preclinical, and phase II and III clinical trial studies have demonstrated that tolvaptan is an effective treatment option that targets underlying pathogenic mechanisms of ADPKD. Tolvaptan delays the increase in total kidney volume (surrogate marker for disease progression), slows the decline in renal function, and reduces kidney pain. However, tolvaptan has significant adverse effects including aquaretic effects (polyuria, nocturia, polydipsia) and elevation of aminotransferase enzyme concentrations with the potential for acute liver failure. Appropriate patient selection is critical to optimize long-term benefits while minimizing adverse effects and hepatotoxic risk factors. Overall, tolvaptan is the first pharmacotherapeutic intervention to demonstrate significant benefit in the treatment of ADPKD, but practitioners and regulatory agencies must carefully weigh the risks versus benefits. Additional research should focus on incidence and risk factors of liver injury, cost-effectiveness, clinical management of drug-drug interactions, and long-term disease outcomes. PMID:24706579

  13. Practical genetics for autosomal dominant polycystic kidney disease.

    PubMed

    Pei, York

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common mendelian disorder of the kidney and accounts for ~5% of end-stage renal disease in North America. It is characterized by focal development of renal cysts which increase in number and size with age. Mutations of PKD1 and PKD2 account for most cases. Although the clinical manifestations of both gene types overlap completely, PKD1 is associated with more severe disease than PKD2, with larger kidneys and earlier onset of end-stage renal disease. Furthermore, marked within-family renal disease variability is well documented in ADPKD and suggests a strong modifier effect from as yet unknown genetic and environmental factors. In turn, the significant inter- and intra-familial renal disease variability poses a challenge for diagnosis and genetic counseling. In general, renal ultrasonography is commonly used for the diagnosis, and age-dependent criteria have been defined for subjects at risk of PKD1. However, the utility of the PKD1 ultrasound criteria in the clinical setting is unclear since their performance characteristics have not been defined for the milder PKD2 and the gene type for most test subjects is unknown. Recently, highly predictive ultrasound diagnostic criteria have been derived for at-risk subjects of unknown gene type. Additionally, both DNA linkage and gene-based direct sequencing are available for the diagnosis of ADPKD, especially in subjects with equivocal imaging results, a negative or indeterminate family history, or in younger at-risk individuals being evaluated as potential living related kidney donor. This review will highlight the utility and limitations of clinical predictors of gene types, imaging- and molecular-based diagnostic tests, and present an integrated approach for evaluating individuals suspected to have ADPKD. PMID:21071968

  14. Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy.

    PubMed

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C E; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-06-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  15. Early Renal Abnormalities in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Meijer, Esther; Rook, Mieneke; Tent, Hilde; Navis, Gerjan; van der Jagt, Eric J.; de Jong, Paul E.

    2010-01-01

    Background and objectives: Potential therapeutic interventions are being developed for autosomal dominant polycystic kidney disease (ADPKD). A pivotal question will be when to initiate such treatment, and monitoring disease progression will thus become more important. Therefore, the prevalence of renal abnormalities in ADPKD at different ages was evaluated. Design, setting, participants, & measurements: Included were 103 prevalent ADPKD patients (Ravine criteria). Measured were mean arterial pressure (MAP), total renal volume (TRV), GFR, effective renal plasma flow (ERPF), renal vascular resistance (RVR), and filtration fraction (FF). Twenty-four-hour urine was collected. ADPKD patients were compared with age- and gender-matched healthy controls. Results: Patients and controls were subdivided into quartiles of age (median ages 28, 37, 42, and 52 years). Patients in the first quartile of age had almost the same GFR when compared with controls, but already a markedly decreased ERPF and an increased FF (GFR 117 ± 32 versus 129 ± 17 ml/min, ERPF 374 ± 119 versus 527 ± 83 ml/min, FF 32% ± 4% versus 25% ± 2%, and RVR 12 (10 to 16) versus 8 (7 to 8) dynes/cm2, respectively). Young adult ADPKD patients also had higher 24-hour urinary volumes, lower 24-hour urinary osmolarity, and higher urinary albumin excretion (UAE) than healthy controls, although TRV in these young adult patients was modestly enlarged (median 1.0 L). Conclusions: Already at young adult age, ADPKD patients have marked renal abnormalities, including a decreased ERPF and increased FF and UAE, despite modestly enlarged TRV and near-normal GFR. ERPF, FF, and UAE may thus be better markers for disease severity than GFR. PMID:20413443

  16. Current management of autosomal dominant polycystic kidney disease.

    PubMed

    Akoh, Jacob A

    2015-09-01

    Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines. PMID:26380198

  17. Current management of autosomal dominant polycystic kidney disease

    PubMed Central

    Akoh, Jacob A

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines. PMID:26380198

  18. Angiotensin Blockade in Late Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Torres, Vicente E.; Abebe, Kaleab Z.; Chapman, Arlene B.; Schrier, Robert W.; Braun, William E.; Steinman, Theodore I.; Winklhofer, Franz T.; Brosnahan, Godela; Czarnecki, Peter G.; Hogan, Marie C.; Miskulin, Dana C.; Rahbari-Oskoui, Frederic F.; Grantham, Jared J.; Harris, Peter C.; Flessner, Michael F.; Moore, Charity G.; Perrone, Ronald D.

    2014-01-01

    BACKGROUND Hypertension develops early in patients with autosomal dominant polycystic kidney disease (ADPKD) and is associated with disease progression. The renin–angiotensin–aldosterone system (RAAS) is implicated in the pathogenesis of hypertension in patients with ADPKD. Dual blockade of the RAAS may circumvent compensatory mechanisms that limit the efficacy of monotherapy with an angiotensin-converting–enzyme (ACE) inhibitor or angiotensin II–receptor blocker (ARB). METHODS In this double-blind, placebo-controlled trial, we randomly assigned 486 patients, 18 to 64 years of age, with ADPKD (estimated glomerular filtration rate [GFR], 25 to 60 ml per minute per 1.73 m2 of body-surface area) to receive an ACE inhibitor (lisinopril) and placebo or lisinopril and an ARB (telmisartan), with the doses adjusted to achieve a blood pressure of 110/70 to 130/80 mm Hg. The composite primary outcome was the time to death, end-stage renal disease, or a 50% reduction from the baseline estimated GFR. Secondary outcomes included the rates of change in urinary aldosterone and albumin excretion, frequency of hospitalizations for any cause and for cardiovascular causes, incidence of pain, frequency of ADPKD-related symptoms, quality of life, and adverse study-medication effects. Patients were followed for 5 to 8 years. RESULTS There was no significant difference between the study groups in the incidence of the composite primary outcome (hazard ratio with lisinopril–telmisartan, 1.08; 95% confidence interval, 0.82 to 1.42). The two treatments controlled blood pressure and lowered urinary aldosterone excretion similarly. The rates of decline in the estimated GFR, urinary albumin excretion, and other secondary outcomes and adverse events, including hyperkalemia and acute kidney injury, were also similar in the two groups. CONCLUSIONS Monotherapy with an ACE inhibitor was associated with blood-pressure control in most patients with ADPKD and stage 3 chronic kidney disease

  19. Blood Pressure in Early Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Schrier, Robert W.; Abebe, Kaleab Z.; Perrone, Ronald D.; Torres, Vicente E.; Braun, William E.; Steinman, Theodore I.; Winklhofer, Franz T.; Brosnahan, Godela; Czarnecki, Peter G.; Hogan, Marie C.; Miskulin, Dana C.; Rahbari-Oskoui, Frederic F.; Grantham, Jared J.; Harris, Peter C.; Flessner, Michael F.; Bae, Kyongtae T.; Moore, Charity G.; Chapman, Arlene B.

    2015-01-01

    BACKGROUND Hypertension is common in autosomal dominant polycystic kidney disease (ADPKD) and is associated with increased total kidney volume, activation of the renin–angiotensin–aldosterone system, and progression of kidney disease. METHODS In this double-blind, placebo-controlled trial, we randomly assigned 558 hypertensive participants with ADPKD (15 to 49 years of age, with an estimated glomerular filtration rate [GFR] >60 ml per minute per 1.73 m2 of body-surface area) to either a standard blood-pressure target (120/70 to 130/80 mm Hg) or a low blood-pressure target (95/60 to 110/75 mm Hg) and to either an angiotensin-converting–enzyme inhibitor (lisinopril) plus an angiotensin-receptor blocker (telmisartan) or lisinopril plus placebo. The primary outcome was the annual percentage change in the total kidney volume. RESULTS The annual percentage increase in total kidney volume was significantly lower in the low-blood-pressure group than in the standard-blood-pressure group (5.6% vs. 6.6%, P = 0.006), without significant differences between the lisinopril–telmisartan group and the lisinopril–placebo group. The rate of change in estimated GFR was similar in the two medication groups, with a negative slope difference in the short term in the low-blood-pressure group as compared with the standard-blood-pressure group (P<0.001) and a marginally positive slope difference in the long term (P = 0.05). The left-ventricular-mass index decreased more in the low-blood-pressure group than in the standard-blood-pressure group (−1.17 vs. −0.57 g per square meter per year, P<0.001); urinary albumin excretion was reduced by 3.77% with the low-pressure target and increased by 2.43% with the standard target (P<0.001). Dizziness and light-headedness were more common in the low-blood-pressure group than in the standard-blood-pressure group (80.7% vs. 69.4%, P = 0.002). CONCLUSIONS In early ADPKD, the combination of lisinopril and telmisartan did not significantly

  20. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    PubMed Central

    Ferrell, R E; Chakravarti, A; Hittner, H M; Riccardi, V M

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic heterogeneity of aniridia phenotypes. PMID:6929510

  1. Genetics Home Reference: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions CADASIL cerebral autosomal dominant arteriopathy ...

  2. Vertebral Aspergillosis in a Patient with Autosomal-Dominant Hyper-IgE Syndrome

    PubMed Central

    Ma, Hong; Kuang, Lei; Wang, Bing; Lian, Zhesi

    2014-01-01

    We present a report of an autosomal-dominant hyper-IgE syndrome patient with vertebral aspergillosis. Early diagnosis and antifungal therapy with surgery are crucial for improving the outcome of this aggressive condition. PMID:24197892

  3. A gene for autosomal dominant congenital nystagmus localizes to 6p12

    SciTech Connect

    Kerrison, J.B.; Arnould, V.J.; Koenekoop, R.K.

    1996-05-01

    Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at {theta} = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257, D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor mystagmus to an 18-cM region between D6S271 and D6S455. 16 refs., 1 fig., 1 tab.

  4. A YAC contig encompassing the chromosome 7p locus for autosomal dominant retinitis pigmentosa

    SciTech Connect

    Inglehearn, C.F.; Keen, T.J.; Ratel, R.

    1994-09-01

    Retinitis pigmentosa is an inherited retinal degeneration characterized by night blindness and loss of peripheral vision, often leading to complete blindness. The autosomal dominant form (adRP) maps to at least six different loci, including the rhodopsin and peripherin/Rds genes and four loci identified only by linkage analysis on chromosomes 7p, 7q, 8cen and 19q. The 7p locus was reported by this laboratory in a large English family, with a lod score of 16.5. Several new genetic markers have been tested in the family and this locus has now been refined to an interval of approximately 1 cM between markers D7S795 and D7S484 in the 7p13-15 region. In order to clone the gene for adRP, we have used microsatellites and STSs from the region to identify over 80 YACs, from four different libraries, which map to this interval. End clones from key YACs were isolated for the generation of additional STSs. Eleven microsatellite markers between D7S435 (distal) and D7S484 (proximal) have been ordered by a combination of both physical and genetic mapping. In this way we have now obtained a YAC contig spanning approximately 3 megabases of chromosome 7p within which the adRP gene must lie. One gene (aquaporin) and one chromosome 7 brain EST have been placed on the contig but both map distal to the region of interest. Sixteen other ESTs and three further known 7p genes mapping in the region have been excluded. We are now attempting to build a cosmid contig in the defined interval and identify further expressed sequences from both YACs and cosmids to test as candidates for the adRP gene.

  5. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy

    PubMed Central

    Oda, Tetsuya; Xiong, Hui; Kobayashi, Kazuhiro; Wang, Shuo; Satake, Wataru; Jiao, Hui; Yang, Yanling; Cha, Pei-Chieng; Hayashi, Yukiko K; Nishino, Ichizo; Suzuki, Yutaka; Sugano, Sumio; Wu, Xiru; Toda, Tatsushi

    2015-01-01

    Laing distal myopathy (LDM) is an autosomal dominant myopathy that is caused by mutations in the slow/beta cardiac myosin heavy-chain (MYH7) gene. It has been recently reported that LDM presents with a wide range of clinical manifestations. We herein report a large Chinese family with autosomal dominant myopathy. The affected individuals in the family presented with foot drop in early childhood, along with progressive distal and proximal limb weakness. Their characteristic symptoms include scapular winging and scoliosis in the early disease phase and impairment of ambulation in the advanced phase. Although limb-girdle muscle dystrophy (LGMD) was suspected initially, a definite diagnosis could not be reached. As such, we performed linkage analysis and detected four linkage regions, namely 1q23.2-24.1, 14q11.2-12, 15q26.2-26.3 and 17q24.3. Through subsequent whole exome sequencing, we found a de novo p.K1617del causative mutation in the MYH7 gene and diagnosed the disease as LDM. This is the first LDM case in China. Our patients have severe clinical manifestations that mimic LGMD in comparison with the patients with the same mutation reported elsewhere. PMID:27081534

  6. A de novo mutation of the MYH7 gene in a large Chinese family with autosomal dominant myopathy.

    PubMed

    Oda, Tetsuya; Xiong, Hui; Kobayashi, Kazuhiro; Wang, Shuo; Satake, Wataru; Jiao, Hui; Yang, Yanling; Cha, Pei-Chieng; Hayashi, Yukiko K; Nishino, Ichizo; Suzuki, Yutaka; Sugano, Sumio; Wu, Xiru; Toda, Tatsushi

    2015-01-01

    Laing distal myopathy (LDM) is an autosomal dominant myopathy that is caused by mutations in the slow/beta cardiac myosin heavy-chain (MYH7) gene. It has been recently reported that LDM presents with a wide range of clinical manifestations. We herein report a large Chinese family with autosomal dominant myopathy. The affected individuals in the family presented with foot drop in early childhood, along with progressive distal and proximal limb weakness. Their characteristic symptoms include scapular winging and scoliosis in the early disease phase and impairment of ambulation in the advanced phase. Although limb-girdle muscle dystrophy (LGMD) was suspected initially, a definite diagnosis could not be reached. As such, we performed linkage analysis and detected four linkage regions, namely 1q23.2-24.1, 14q11.2-12, 15q26.2-26.3 and 17q24.3. Through subsequent whole exome sequencing, we found a de novo p.K1617del causative mutation in the MYH7 gene and diagnosed the disease as LDM. This is the first LDM case in China. Our patients have severe clinical manifestations that mimic LGMD in comparison with the patients with the same mutation reported elsewhere. PMID:27081534

  7. Autosomal dominant cortical tremor, myoclonus, and epilepsy (ADCME) in a unique south Indian community.

    PubMed

    Mahadevan, Radha; Viswanathan, Natarajan; Shanmugam, Ganesan; Sankaralingam, Saravanan; Essaki, Bobby; Chelladurai, Rachel P

    2016-03-01

    Autosomal dominant cortical tremor, myoclonus, and epilepsy (ADCME)/familial adult onset myoclonic epilepsy (FAME) is a nonprogressive disorder characterized by (1) distal tremors that are usually precipitated by posture and action; (2) stimulus-sensitive myoclonus that is predominantly seen in the upper limb and is precipitated by photic stimuli, fatigue, emotional stress, and sleep deprivation; (3) seizures that were predominantly of the generalized tonic-clonic type that showed significant response to antiepileptic drugs (AEDs). ADCME has been reported worldwide with different genetic loci in Japanese families (8q23.3-q24.1), Italian families (2p11.1-q12.2), a French family (5p15.3.1-p15.1), and a Thai family (3q26.32-q28). ADCME has not been reported in South India and is still not recognized as an independent entity under the International League Against Epilepsy (ILAE). We report 241 patients with ADCME identified belonging to 48 families. The 48 families are domiciled in two southern districts of Tamilnadu in India, belonging to a community called "Nadar" whose nativity is confined to these southern districts, with reported unique genetic characteristics. This study is reported for the presentation of this rare disease in a unique ethnic group, and is the largest single report on ADCME worldwide. PMID:26749494

  8. Clinical, pathological and genetic characteristics of autosomal dominant inherited dynamin 2 centronuclear myopathy.

    PubMed

    Liu, Xinhong; Wu, Huamin; Gong, Jian; Wang, Tao; Yan, Chuanzhu

    2016-05-01

    The aim of the present study was to report on a family with pathologically and genetically diagnosed autosomal dominant inherited centronuclear myopathy (CNM). In addition, this study aimed to investigate the clinical, pathological and molecular genetic characteristics of the disease. This pedigree was traced back three generations, four patients underwent neurological examination, two patients underwent muscle biopsy, and eight family members were subjected to dynamin 2 (DNM2) gene mutation analysis. DNM2 mutations were detected in seven family members, of which four patients exhibited DNM2 mutation‑specific clinical and pathological features. Lower extremity weakness was the predominant symptom of these patients, however, proximal and distal lower extremity involvement was inconsistent. All patients exhibited marked systematic muscle atrophy and various degrees of facial muscle involvement. The patients presented the typical pathological changes of CNM, and their muscle tissues were heavily replaced by adipose tissue, with clustered distribution of muscle fibers as another notable feature. DNM2‑CNM patients of this pedigree exhibited heterogeneous clinical and pathological features, providing a basis for further molecular genetic analysis. PMID:27035234

  9. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD).

    PubMed

    Norman, Jill

    2011-10-01

    The age on onset of decline in renal function and end-stage renal disease (ESRD) in autosomal polycystic kidney disease (ADPKD) is highly variable and there are currently no prognostic tools to identify patients who will progress rapidly to ESRD. In ADPKD, expansion of cysts and loss of renal function are associated with progressive fibrosis. Similar to the correlation between tubulointerstitial fibrosis and progression of chronic kidney disease (CKD), in ADPKD, fibrosis has been identified as the most significant manifestation associated with an increased rate of progression to ESRD. Fibrosis in CKD has been studied extensively. In contrast, little is known about the mechanisms underlying progressive scarring in ADPKD although some commonality may be anticipated. Current data suggest that fibrosis associated with ADPKD shares at least some of the "classical" features of fibrosis in CKD (increased interstitial collagens, changes in matrix metalloproteinases (MMPs), over-expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), over-expression of plasminogen activator inhibitor-1 (PAI-1) and increased transforming growth factor beta (TGFβ) but that there are also some unique and stage-specific features. Epithelial changes appear to precede and to drive interstitial changes leading to the proposal that development of fibrosis in ADPKD is biphasic with alterations in cystic epithelia precipitating changes in interstitial fibroblasts and that reciprocal interactions between these cell types drives progressive accumulation of extracellular matrix (ECM). Since fibrosis is a major component of ADPKD it follows that preventing or slowing fibrosis should retard disease progression with obvious therapeutic benefits. The development of effective anti-fibrotic strategies in ADPKD is dependent on understanding the precise mechanisms underlying initiation and progression of fibrosis in ADPKD and the role of the intrinsic genetic defect in these processes. This article is

  10. Pontobulbar palsy and neurosensory deafness (Brown-Vialetto-Van Laere syndrome) with possible autosomal dominant inheritance.

    PubMed

    Hawkins, S A; Nevin, N C; Harding, A E

    1990-03-01

    A female with the Brown-Vialetto-Van Laere syndrome is described. The patient's father, a paternal uncle, and possibly a paternal first cousin had neurosensory deafness and a paternal aunt had clinical symptoms indicative of the syndrome. This family raises the possibility that the disorder is genetically heterogeneous with autosomal recessive and autosomal dominant forms. Alternatively, it could be caused by a mutant gene on the X chromosome. PMID:2325091

  11. Pontobulbar palsy and neurosensory deafness (Brown-Vialetto-Van Laere syndrome) with possible autosomal dominant inheritance.

    PubMed Central

    Hawkins, S A; Nevin, N C; Harding, A E

    1990-01-01

    A female with the Brown-Vialetto-Van Laere syndrome is described. The patient's father, a paternal uncle, and possibly a paternal first cousin had neurosensory deafness and a paternal aunt had clinical symptoms indicative of the syndrome. This family raises the possibility that the disorder is genetically heterogeneous with autosomal recessive and autosomal dominant forms. Alternatively, it could be caused by a mutant gene on the X chromosome. Images PMID:2325091

  12. A genome-wide search for genes predisposing to manic-depression, assuming autosomal dominant inheritance

    SciTech Connect

    Coon, H.; Jensen, S.; Hoff, M.; Holik, J.; Plaetke, R.; Reimherr, F.; Wender, P.; Leppert, M.; Byerley, W. )

    1993-06-01

    Manic-depressive illness (MDI), also known as [open quotes]bipolar affective disorder[close quotes], is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, the authors ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping at 5 cM from the disease gene, the pedigree sample has >97% power to detect a dominant allele under genetic homogeneity and has >73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores <[minus]2.0 at [theta] = .05, and 4 DNA marker loci yielded lod scores >1 (chromosome 5 -- D5S39, D5S43, and D5S62; chromosome 11 -- D11S85). Of the markers giving lod scores >1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, the linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk. 72 refs., 2 tabs.

  13. A genome-wide search for genes predisposing to manic-depression, assuming autosomal dominant inheritance.

    PubMed Central

    Coon, H; Jensen, S; Hoff, M; Holik, J; Plaetke, R; Reimherr, F; Wender, P; Leppert, M; Byerley, W

    1993-01-01

    Manic-depressive illness (MDI), also known as "bipolar affective disorder," is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, we ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping 5 cM from the disease gene, the pedigree sample has > 97% power to detect a dominant allele under genetic homogeneity and has > 73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores < -2.0 at recombination fraction (theta) = .0, 174 DNA loci produced lod scores < -2.0 at theta = .05, and 4 DNA marker loci yielded lod scores > 1 (chromosome 5--D5S39, D5S43, and D5S62; chromosome 11--D11S85). Of the markers giving lod scores > 1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, our linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk. PMID:8503452

  14. Absence of ocular manifestations in autosomal dominant Alport syndrome associated with haematological abnormalties.

    PubMed

    Colville, D; Wang, Y Y; Jamieson, R; Collins, F; Hood, J; Savige, J

    2000-12-01

    Most patients with Alport syndrome have X-linked or autosomal recessive disease that is characterised by renal failure, hearing loss, and, in nearly 75% of the cases, a dot-and-fleck retinopathy and anterior lenticonus. There are only case reports of individuals with the rare autosomal dominant form, who can have haematuria or renal failure, deafness, and, in addition, low platelet counts and neutrophil inclusions. The ocular features of autosomal dominant inheritance have not been described. We have examined the eyes in the members of two families where Alport syndrome was diagnosed on the basis of the clinical features and family history, and where autosomal dominant inheritance was confirmed by father-to-son disease transmission, the associated haematological abnormalities, and haplotypes that segregated with the recently described locus at chromosome 22q. In Family A, the eyes of two individuals with haematuria, hearing loss, and haematological abnormalities and of nine unaffected family members were examined. In Family B, the eyes of two individuals with renal failure, normal hearing, and haematological abnormalities were examined. None of the affected or unaffected members in either family had a dot-and-fleck retinopathy, anterior lenticonus, a history suggesting recurrent corneal erosions, or corneal dystrophy. These results indicate that the protein abnormality in autosomal dominant Alport syndrome does not produce the retinopathy and lenticonus typical of X-linked and autosomal recessive disease. This may be because the abnormal protein is not present or is less important in the ocular basement membranes than elsewhere, or because the presence of a normal allele in autosomal dominant disease compensates for the defective allele. PMID:11135492

  15. Clinical and Radiological Findings of Autosomal Dominant Osteopetrosis Type II: A Case Report

    PubMed Central

    Kant, Priyanka; Sharda, Neelkamal; Bhowate, Rahul R.

    2013-01-01

    Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton caused by the absence or malfunction of osteoclasts. Three distinct forms of the disease have been recognized, autosomal dominant osteopetrosis being the most common. Autosomal dominant osteopetrosis exhibits a heterogeneous trait with milder symptoms, often at later childhood or adulthood. The aim of this case report is to present the clinical and radiographic features of a 35-year-old female patient with autosomal dominant osteopetrosis type II who exhibited features of chronic generalised periodontitis, and the radiographs revealed generalised osteosclerosis and hallmark radiographic features of ADO type II, that is, “bone-within-bone appearance” and “Erlenmeyer-flask deformity.” PMID:24260721

  16. Bovine Polledness – An Autosomal Dominant Trait with Allelic Heterogeneity

    PubMed Central

    Medugorac, Ivica; Seichter, Doris; Graf, Alexander; Russ, Ingolf; Blum, Helmut; Göpel, Karl Heinrich; Rothammer, Sophie; Förster, Martin; Krebs, Stefan

    2012-01-01

    The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ∼381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations. PMID:22737241

  17. Evidence of autosomal dominant mutations in childhood-onset proximal spinal muscular atrophy

    SciTech Connect

    Rudnik-Schoeneborn, S.; Wirth, B.; Zerres, K. )

    1994-07-01

    Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explanation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (= .09[+-].06 for onset at 10-36 mo and .13[+-].07 for onset at >36 mo; and P = .09[+-]0.7 for SMA IIIa and .12[+-].07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given. 29 refs., 2 figs., 5 tabs.

  18. Bone Mineral Density and Microarchitecture in Patients With Autosomal Dominant Osteopetrosis: A Report of Two Cases.

    PubMed

    Arruda, Mariana; Coelho, Maria Caroline Alves; Moraes, Aline Barbosa; de Paula Paranhos-Neto, Francisco; Madeira, Miguel; Farias, Maria Lucia Fleiuss; Neto, Leonardo Vieira

    2016-03-01

    The aim of this case study is to describe changes in areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) scan, as well as volumetric bone density and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in two patients with autosomal dominant osteopetrosis (ADO) and compare with 20 healthy subjects. We describe a 44-year-old male patient with six low-impact fractures since he was age 16 years, and a 32-year-old female patient with four low-impact fractures on her past history. Radiographic changes were typical of ADO. Consistent with the much higher aBMD, total volumetric BMD (average bone density of the whole bone, including trabecular and cortical compartments) at distal radius and tibia (HR-pQCT) was more than twice the mean values found in healthy subjects in both patients. Trabecular number and thickness were higher, leading to an evident increase in trabecular bone volume to tissue volume. Also, an enormous increase in cortical thickness was found. Most important, a great heterogeneity in bone microstructure of the affected patients was evident on HR-pQCT images: islets of very dense bone were interposed with areas with apparent normal density. The increase in aBMD, volumetric BMD, and most indices of trabecular and cortical bone, associated with the great heterogeneity on bone tridimensional microarchitecture, reflect the accumulation of old and fragile bone randomly distributed along the skeleton. These alterations in bone microstructure probably compromise bone quality, which might justify the high prevalence of low-impact fractures in patients with ADO, despite abnormally elevated BMD. © 2015 American Society for Bone and Mineral Research. PMID:26387875

  19. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency - a clinical research center study

    SciTech Connect

    Cogan, J.D.; Prince, M.; Phillips, J.

    1995-12-01

    Familial isolated GH deficiency type II (IGHD-II) is an autosomal dominant disorder that has been previously shown in some patients to be caused by heterogeneous GH gene defects that affect GH messenger RNA (mRNA) splicing. We report here our findings of multiple G{r_arrow}A transitions of the first base of the donor splice site of IVS 3 (+1G{r_arrow}A) in IGHD II subjects from three nonrelated kindreds from Sweden, North America, and South Africa. This + 1G{r_arrow}A substitution creates an NlaIII site that was used to demonstrate that all affected individuals in all three families were heterozygous for the mutation. To determine the effect of this mutation of GH mRNA processing, HeLa cells were transfected with expression plasmids containing normal or mutant +1G{r_arrow}A alleles, and complementary DNAs from the resulting GH mRNAs were sequenced. The mutation was found to destroy the GH IVS3 donor splice site, causing skipping of exon 3 and loss of the codons for amino acids 32-71 of the mature GH peptide from the mutant GH mRNA. Our finding of exon 3 skipping in transcripts of the +1G{r_arrow}A mutant allele is identical to our previous report of a different sixth base transition (+6T{r_arrow}C) mutation of the IVS 3 donor splice site that also causes IGHD II. Microsatellite analysis of an affected subjects` DNA from each of the three nonrelated kindreds indicates that the +1G{r_arrow}A mutation arose independently in each family. Finding that neither grandparent has the mutation in the first family suggests that it arose de novo in that family. Our data indicate that (1) +1G{r_arrow}A IVS 3 mutations perturb GH mRNA splicing and cause IGHD II; and (2) these mutations can present as de novo GHD cases. 13 refs., 4 figs., 1 tab.

  20. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation

    PubMed Central

    McDermott, David H.; Gammon, Bryan; Snijders, Peter J.; Mbata, Ihunanya; Phifer, Beth; Hartley, A. Howland; Lee, Chyi-Chia Richard; Murphy, Philip M.; Hwang, Sam T.

    2012-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to infection with specific human papillomavirus (HPV) serotypes. EV is a genetically heterogeneous disease, and autosomal recessive and X-linked inheritance patterns have been reported. Nonsense mutations in the genes EVER1 and EVER2 have been identified in over 75% of cases. We present EV in a father and son with typical histologic and clinical findings that occur in the absence of mutations in EVER1 or EVER2. EV in this father/son pair in a non-consanguinous pedigree is consistent with autosomal dominant inheritance. This is the first report of autosomal dominant transmission of EV, providing further evidence of the genetic heterogeneity of EV. PMID:19706093

  1. A locus for autosomal dominant colobomatous microphthalmia maps to chromosome 15q12-q15.

    PubMed

    Morlé, L; Bozon, M; Zech, J C; Alloisio, N; Raas-Rothschild, A; Philippe, C; Lambert, J C; Godet, J; Plauchu, H; Edery, P

    2000-12-01

    Congenital microphthalmia is a common developmental ocular disorder characterized by shortened axial length. Isolated microphthalmia is clinically and genetically heterogeneous and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. Here, we studied a five-generation family of Sephardic Jewish origin that included 38 members, of whom 7 have either unilateral or bilateral microphthalmia of variable severity inherited as an autosomal dominant trait with incomplete penetrance. After exclusion of several candidate loci, we performed a genome-scan study and demonstrated linkage to chromosome 15q12-q15. Positive LOD scores were obtained with a maximum at the D15S1007 locus (maximum LOD score 3.77, at recombination fraction 0.00). Haplotype analyses supported the location of the disease-causing gene in a 13.8-cM interval between loci D15S1002 and D15S1040. PMID:11035633

  2. Familial Paroxysmal Exercise-Induced Dystonia: Atypical Presentation of Autosomal Dominant GTP-Cyclohydrolase 1 Deficiency

    ERIC Educational Resources Information Center

    Dale, Russell C.; Melchers, Anna; Fung, Victor S. C.; Grattan-Smith, Padraic; Houlden, Henry; Earl, John

    2010-01-01

    Paroxysmal exercise-induced dystonia (PED) is one of the rarer forms of paroxysmal dyskinesia, and can occur in sporadic or familial forms. We report a family (male index case, mother and maternal grandfather) with autosomal dominant inheritance of paroxysmal exercise-induced dystonia. The dystonia began in childhood and was only ever induced…

  3. Evaluation and Management of Pain in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Hogan, Marie C.; Norby, Suzanne M.

    2014-01-01

    Transient episodes of pain are common in autosomal dominant polycystic kidney disease (ADPKD). A small fraction of patients have disabling chronic pain. In this review, we discuss the etiologies of pain in ADPKD; review how ADPKD patients should be assessed; and discuss medical, surgical, and other management options. PMID:20439087

  4. Molecular analysis and genetic mapping of the rhodopsin gene in families with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Bunge, S.; Wedemann, H.; Samanns, C.; Horn, M.; Schwinger, E.; Gal, A. ); David, D. ); Terwilliger, D.J.; Ott, J. ); Born, L.I. van den )

    1993-07-01

    Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, with a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.

  5. An autosomal dominant syndrome of renal and anogenital malformations with syndactyly.

    PubMed

    Green, A J; Sandford, R N; Davison, B C

    1996-07-01

    We describe a family with autosomal dominant inheritance of anal anomalies, renal tract abnormalities, genital malformations, and syndactyly. These clinical manifestations do not clearly fall into any previously described syndrome. A mother and daughter had almost identical congenital malformations, short stature, and unusual facies. The proband was born with anal stenosis, a rectovaginal fistula, clitoral hypertrophy, a pelvic right kidney, and syndactyly of both feet. Her daughter had the same anal, clitoral, and foot anomalies, a solitary pelvic kidney, and no fistula. This family is likely to represent autosomal dominant inheritance of a new combination of malformations, which may overlap with the Townes-Brocks syndrome, but does not fall into a current diagnostic category. PMID:8818947

  6. Imaging characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL)

    PubMed Central

    Stojanov, Dragan; Aracki-Trenkic, Aleksandra; Vojinovic, Slobodan; Ljubisavljevic, Srdjan; Benedeto-Stojanov, Daniela; Tasic, Aleksandar; Vujnovic, Sasa

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is an autosomal dominant vascular disorder. Diagnosis and follow-up in patients with CADASIL are based mainly on magnetic resonance imaging (MRI). MRI shows white matter hyperintensities (WMHs), lacunar infarcts and cerebral microbleeds (CMBs). WMHs lesions tend to be symmetrical and bilateral, distributed in the periventricular and deep white matter. The anterior temporal lobe and external capsules are predilection sites for WMHs, with higher specificity and sensitivity of anterior temporal lobe involvement compared to an external capsule involvement. Lacunar infarcts are presented by an imaging signal that has intensity of cerebrospinal fluid in all MRI sequences. They are localized within the semioval center, thalamus, basal ganglia and pons. CMBs are depicted as focal areas of signal loss on T2 images which increases in size on the T2*-weighted gradient echo planar images (“blooming effect”). PMID:25725137

  7. Molecular Pathways and Therapies in Autosomal-Dominant Polycystic Kidney Disease

    PubMed Central

    Saigusa, Takamitsu

    2015-01-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies. PMID:25933820

  8. Successful conservative treatment of bilateral emphysematous pyelonephritis in autosomal dominant polycystic kidney disease

    PubMed Central

    Jaisuresh, K.; Bavaharan, R.

    2013-01-01

    Emphysematous pyelonephritis is a rare, potentially lethal complication of polycystic kidney disease. Treatment mostly includes emergency nephrectomy of the affected kidney. We report a case of bilateral emphysematous pyelonephritis in a 57-year-old diabetic male with autosomal dominant polycystic kidney disease, who recovered with conservative treatment. Escherichia coli was cultured from the cyst aspirate. He was treated with percutaneous needle aspiration of infected cysts and intravenous antibiotics (meropenem and pazufloxacin) for 3 weeks. PMID:23814427

  9. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease.

    PubMed

    Saigusa, Takamitsu; Bell, P Darwin

    2015-05-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies. PMID:25933820

  10. A rare novel mutation in TECTA causes autosomal dominant nonsyndromic hearing loss in a Mongolian family

    PubMed Central

    2014-01-01

    Background The genetic basis of autosomal dominant nonsyndromic hearing loss is complex. Genetic factors are responsible for approximately 50% of cases with congenital hearing loss. However, no previous studies have documented the clinical phenotype and genetic basis of autosomal dominant nonsyndromic hearing loss in Mongolians. Methods In this study, we performed exon capture sequencing of a Mongolian family with hereditary hearing loss and identified a novel mutation in TECTA gene, which encodes α -tectorin, a major component of the inner ear extracellular matrix that contacts the specialized sensory hair cells. Results The novel G → T missense mutation at nucleotide 6016 results in a substitution of amino acid aspartate at 2006 with tyrosine (Asp2006Tyr) in a highly conserved zona pellucida (ZP) domain of α-tectorin. The mutation is not found in control subjects from the same family with normal hearing and a genotype-phenotype correlation is observed. Conclusion A novel missense mutation c.6016 G > T (p.Asp2006Tyr) of TECTA gene is a characteristic TECTA-related mutation which causes autosomal dominant nonsyndromic hearing loss. Our result indicated that mutation in TECTA gene is responsible for the hearing loss in this Mongolian family. PMID:25008054

  11. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months.

    PubMed

    Kistler, Andreas D; Poster, Diane; Krauer, Fabienne; Weishaupt, Dominik; Raina, Shagun; Senn, Oliver; Binet, Isabelle; Spanaus, Katharina; Wüthrich, Rudolf P; Serra, Andreas L

    2009-01-01

    Kidney volume growth is considered the best surrogate marker predicting the decline of renal function in autosomal dominant polycystic kidney disease. To assess the therapeutic benefit of new drugs more rapidly, changes in kidney volume need to be determined over a short time interval. Here we measured renal volume changes by manual segmentation volumetry applied to magnetic resonance imaging scans obtained with an optimized T1-weighted acquisition protocol without gadolinium-based contrast agents. One hundred young patients with autosomal dominant polycystic kidney disease and preserved renal function had a significant increase in total kidney volume by 2.71+/-4.82% in 6 months. Volume measurements were highly reproducible and accurate, as indicated by correlation coefficients of 1.000 for intra-observer and 0.996 for inter-observer agreement, with acceptable within-subject standard deviations. The change in renal volume correlated with baseline total kidney volume in all age subgroups. Total kidney volume positively correlated with male gender, hypertension, albuminuria and a history of macrohematuria but negatively with creatinine clearance. Albuminuria was associated with accelerated volume progression. Our study shows that increases in kidney volume can be reliably measured over a 6 month period in early autosomal dominant polycystic kidney disease using unenhanced magnetic resonance imaging sequences. PMID:18971924

  12. Autosomal dominant brachyolmia in a large Swedish family: phenotypic spectrum and natural course.

    PubMed

    Grigelioniene, Giedre; Geiberger, Stefan; Horemuzova, Eva; Moström, Eva; Jäntti, Nina; Neumeyer, Lo; Åström, Eva; Nordenskjöld, Magnus; Nordgren, Ann; Mäkitie, Outi

    2014-07-01

    Autosomal dominant brachyolmia (Type 3, OMIM #113500) belongs to a group of skeletal dysplasias caused by mutations in the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) gene, encoding a Ca++-permeable, non-selective cation channel. The disorder is characterized by disproportionate short stature with short trunk, scoliosis and platyspondyly. The phenotypic variability and long-term natural course remain inadequately characterized. The purpose of this study was to describe a large Swedish family with brachyolmia type 3 due to a heterozygous TRPV4 mutation c.1847G>A (p.R616Q) in 11 individuals. The mutation has previously been detected in another family with autosomal dominant brachyolmia [Rock et al., 2008]. Review of hospital records and patient assessments indicated that clinical symptoms of brachyolmia became evident by school age with chronic pain in the spine and hips; radiographic changes were evident earlier. Growth was not affected during early childhood but deteriorated with age in some patients due to increasing spinal involvement. Affected individuals had a wide range of subjective symptoms with chronic pain in the extremities and the spine, and paresthesias. Our findings indicate that autosomal dominant brachyolmia may be associated with significant long-term morbidity, as seen in this family. PMID:24677493

  13. A Dominant Mutation in FBXO38 Causes Distal Spinal Muscular Atrophy with Calf Predominance

    PubMed Central

    Sumner, Charlotte J.; d’Ydewalle, Constantin; Wooley, Joe; Fawcett, Katherine A.; Hernandez, Dena; Gardiner, Alice R.; Kalmar, Bernadett; Baloh, Robert H.; Gonzalez, Michael; Züchner, Stephan; Stanescu, Horia C.; Kleta, Robert; Mankodi, Ami; Cornblath, David R.; Boylan, Kevin B.; Reilly, Mary M.; Greensmith, Linda; Singleton, Andrew B.; Harms, Matthew B.; Rossor, Alexander M.; Houlden, Henry

    2013-01-01

    Spinal muscular atrophies (SMAs) are a heterogeneous group of inherited disorders characterized by degeneration of anterior horn cells and progressive muscle weakness. In two unrelated families affected by a distinct form of autosomal-dominant distal SMA initially manifesting with calf weakness, we identified by genetic linkage analysis and exome sequencing a heterozygous missense mutation, c.616T>C (p.Cys206Arg), in F-box protein 38 (FBXO38). FBXO38 is a known coactivator of the transcription factor Krüppel-like factor 7 (KLF7), which regulates genes required for neuronal axon outgrowth and repair. The p.Cys206Arg substitution did not alter the subcellular localization of FBXO38 but did impair KLF7-mediated transactivation of a KLF7-responsive promoter construct and endogenous KLF7 target genes in both heterologously expressing human embryonic kidney 293T cells and fibroblasts derived from individuals with the FBXO38 missense mutation. This transcriptional dysregulation was associated with an impairment of neurite outgrowth in primary motor neurons. Together, these results suggest that a transcriptional regulatory pathway that has a well-established role in axonal development could also be critical for neuronal maintenance and highlight the importance of FBXO38 and KLF7 activity in motor neurons. PMID:24207122

  14. Evidence for Locus Heterogeneity in Autosomal Dominant Limb-Girdle Muscular Dystrophy

    PubMed Central

    Speer, Marcy C.; Gilchrist, James M.; Chutkow, Jerry G.; McMichael, Robert; Westbrook, Carol A.; Stajich, Jeffrey M.; Jorgenson, Eric M.; Gaskell, P. Craig; Rosi, Barbara L.; Ramesar, Raj; Vance, Jeffery M.; Yamaoka, Larry H.; Roses, Allen D.; Pericak-Vance, Margaret A.

    1995-01-01

    Limb-girdle muscular dystrophy (LGMD) is a diagnostic classification encompassing a broad group of proximal myopathies. A gene for the dominant form of LGMD (LGMD1A) has recently been localized to a 7-cM region of chromosome 5q between D5S178 and IL9. We studied three additional dominant LGMD families for linkage to these two markers and excluded all from localization to this region, providing evidence for locus heterogeneity within the dominant form of LGMD. Although the patterns of muscle weakness were similar in all families studied, the majority of affected family members in the chromosome 5–linked pedigree have a dysarthric speech pattern, which is not present in any of the five unlinked families. The demonstration of heterogeneity within autosomal dominant LGMD is the first step in attempting to subclassify these families with similar clinical phenotypes on a molecular level. PMID:8533766

  15. Evidence for locus heterogeneity in autosomal dominant limb-girdle muscular dystrophy

    SciTech Connect

    Speer, M.C.; Stajich, J.M.; Gaskell, P.C.

    1995-12-01

    Limb-girdle muscular dystrophy (LGMD) is a diagnostic classification encompassing a broad group of proximal myopathies. A gene for the dominant form of LGMD (LGMD1A) has recently been localized to a 7-cM region of chromosome 5q between D5S178 and IL9. We studied three additional dominant LGMD families for linkage to these two markers and excluded all from localization to this region, providing evidence for locus heterogeneity within the dominant form of LGMD. Although the patterns of muscle weakness were similar in all families studied, the majority of affected family members in the chromosome 5-linked pedigree have a dysarthric speech pattern, which is not present in any of the five unlinked families. The demonstration of heterogeneity within autosomal dominant LGMD is the first step in attempting to subclassify these families with similar clinical phenotypes on a molecular level. 33 refs., 1 fig., 2 tabs.

  16. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

    PubMed

    Rodriguez-Vieitez, Elena; Saint-Aubert, Laure; Carter, Stephen F; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-03-01

    See Schott and Fox (doi:10.1093/brain/awv405) for a scientific commentary on this article.Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants

  17. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease

    PubMed Central

    Saint-Aubert, Laure; Carter, Stephen F.; Almkvist, Ove; Farid, Karim; Schöll, Michael; Chiotis, Konstantinos; Thordardottir, Steinunn; Graff, Caroline; Wall, Anders; Långström, Bengt; Nordberg, Agneta

    2016-01-01

    See Schott and Fox (doi:10.1093/brain/awv405) for a scientific commentary on this article. Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer 11C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition (11C-Pittsburgh compound B), and glucose metabolism (18F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into 11C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and 11C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants

  18. The anterior segment disorder autosomal dominant keratitis is linked to the Aniridia/PAX-6 gene

    SciTech Connect

    Mirzayans, F.; Pearce, W.G.; Mah, T.S.

    1994-09-01

    Autosomal dominant keratitis (ADK) is an eye disease characterized by anterior stromal corneal opacification and vascularization in the peripheral cornea. Progression into the central cornea may compromise visual acuity. Other anterior segment features include minimal radial defects of the iris stroma. Posterior segment involvement is characterized by foveal hypoplasia with minimal effect on visual acuity. Aniridia is a second autosomal dominantly inherited ocular disorder defined by structural defects of the iris, frequently severe enough to cause an almost complete absence of iris. This may be accompanied by other anterior segment manifestations, including cataract and keratitis. Posterior segment involvement in aniridia is characterized by foveal hypoplasia resulting in a highly variable impairment of visual acuity, often with nystagmus. Aniridia is usually inherited as an autosomal dominant disease and occurs in 1 in 50,000 to 100,000 people. Aniridia has been shown to result from mutations in PAX-6, a gene thought to regulate fetal eye development. The similar clinical findings in ADK and aniridia, with the similar patterns of inheritance, compelled us to investigate if these two ocular disorders are variants of the same genetic disorder. We have tested for linkage between PAX-6 and ADK within an ADK family with 33 members over four generations, including 11 affected individuals. Linkage studies reveal that D11S914 (located within 3 cM of PAX-6) does not recombine with ADK (LOD score 3.61; {theta} = 0.00), consistent with PAX-6 mutations being responsible for ADK. Direct sequencing of PAX-6 RT-PCR products from ADK patients is underway to identify the mutation within the PAX-6 gene that results in ADK. The linkage of PAX-6 with ADK, along with a recent report that mutations in PAX-6 also underlie Peter`s anomaly, implicates PAX-6 widely in anterior segment malformations.

  19. Nephrectomy in Autosomal Dominant Polycystic Kidney Disease: A Patient with Exceptionally Large, Still Functioning Kidneys

    PubMed Central

    Spithoven, Edwin M.; Casteleijn, Niek F.; Berger, Paul; Goldschmeding, Roel

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. It is characterized by progressive cyst formation in both kidneys, often leading to end-stage kidney disease. Indications for surgical removal of an ADPKD kidney include intractable pain, hematuria, infection, or exceptional enlargement and small abdominal cavity hampering implantation of a donor kidney. We report the case of an extraordinarily large ADPKD kidney weighing 8.7 kg (19.3 lb) with a maximal length of 48 cm (19 inch), and with cysts filled with both clear and bloody fluid. PMID:25028584

  20. A transducin-like gene maps to the autosomal dominant polycystic kidney disease gene region

    SciTech Connect

    Weinstat-Saslow, D.L.; Reeders, S.T.; Germino, G.G.; Somlo, S. )

    1993-12-01

    A novel human gene (sazD) that maps to the autosomal dominant polycystic kidney disease region shares sequence similarity with members of the [beta]-transducin superfamily. The cDNA sazD-c predicts an [approximately]58-kDa protein (sazD) with seven internal repeats, similar to the WD-40 motif of the transducin family. The size of this protein family has been expanding rapidly; however, neither the structure nor the function of this repeated motif is known. Preliminary data do not suggest that sazD is mutated in patients with polycystic kidney disease. 13 refs., 2 figs.

  1. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease

    SciTech Connect

    Daoust, M.C.; Bichet, D.G.; Reynolds, D.M.

    1995-02-10

    Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disease with loci on chromosomes 16p and 4q. It has a moderately high spontaneous mutation rate, although the relative frequency of such mutations at each gene locus is unknown. In studying genetic heterogeneity in the French-Canadian population, we identified a family in which a classical clinical presentation of ADPKD resulted from a mutation at a locus genetically distinct from either of the previously described loci for this disease. This suggests the existence of a third genetic locus for ADPKD. 21 refs., 1 fig., 1 tab.

  2. Asymmetric crying facies with microcephaly and mental retardation. An autosomal dominant syndrome with variable expressivity.

    PubMed

    Silengo, M C; Bell, G L; Biagioli, M; Guala, A; Bianco, R; Strandoni, P; De Sario, P N; Franceschini, P

    1986-12-01

    An infant boy with asymmetric crying facies, microcephaly, developmental retardation and failure to thrive is reported. His two siblings died in the newborn period because of complex congenital heart defects. The mother and the maternal grandmother have asymmetric crying facies, microcephaly and normal intelligence. A maternal aunt has severe physical and mental retardation, facial asymmetry, microcephaly, and cleft palate. This family allows an expansion of the spectrum of malformations associated with asymmetric crying facies and suggests autosomal dominant inheritance with variable expressivity. PMID:3815881

  3. Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-12-01

    There is evidence that overactivity of both mammalian target of rapamycin (mTOR) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes importantly to the progressive expansion of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). Recent research has established that AMP-activated kinase (AMPK) can suppress the activity of each of these proteins. Clinical AMPK activators such as metformin and berberine may thus have potential in the clinical management of ADPKD. The traditional use of berberine in diarrhea associated with bacterial infections may reflect, in part, the inhibitory impact of AMPK on chloride extrusion by small intestinal enterocytes. PMID:19570618

  4. Will introduction of tolvaptan change clinical practice in autosomal dominant polycystic kidney disease?

    PubMed

    Horie, Shigeo

    2015-07-01

    The vasopressin inhibitor tolvaptan is clinically effective in slowing growth of renal cysts and reduction in estimated glomerular filtration rate (eGFR) in autosomal dominant polycystic kidney disease (ADPKD), but these effects are mitigated by the associated polyuria. Changes of total kidney volume, eGFR, and symptoms will guide physicians and patients in tolvaptan treatment. Guidance about when to initiate treatment in the course of ADPKD may be forthcoming. Ongoing long-term observations will inform future recommendations about tolvaptan use in ADPKD. PMID:26126090

  5. Hypokalemic Hypertension Leading to a Diagnosis of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Vutthikraivit, Wasawat; Assanatham, Montira

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disease. Hypertension is common and occurs before decline in renal function. However, the coexistence of hypertension and hypokalemia is rare in ADPKD patients. We report on a 32-year-old woman with secondary aldosteronism. Magnetic resonance imaging of the renal arteries revealed multiple cysts of varying sizes in both the kidneys and the liver, compatible with ADPKD. Increased reninangiotensin-aldosterone system activity was secondary to cyst expansion. After initiation of angiotensin II receptor blocker, her blood pressure was controlled without additional requirement of potassium. PMID:27453714

  6. Dialysis-induced Subdural Hematoma in an Arachnoid Cyst Associated with Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Takata, Tadayuki; Kokudo, Yohei; Kume, Kodai; Ikeda, Kazuyo; Kamada, Masaki; Touge, Tetsuo; Deguchi, Kazushi; Masaki, Tsutomu

    2016-01-01

    Arachnoid cyst (AC) is a neurological complication of autosomal dominant polycystic kidney disease (ADPKD). Although an AC can increase the risk of a subdural hematoma, the clinical presentation of bleeding into an AC associated with ADPKD is not well known. We herein report the case of a 59-year-old woman in whom the initiation of hemodialysis for renal failure led to AC bleeding. A change of anticoagulant from heparin to nafamostat mesilate allowed dialysis to continue without rebleeding. These findings suggest that hemodialysis in patients with an AC associated with ADPKD may increase the risk of bleeding. Nafamostat mesilate may be useful in such cases. PMID:27477416

  7. DVL1 Frameshift Mutations Clustering in the Penultimate Exon Cause Autosomal-Dominant Robinow Syndrome

    PubMed Central

    White, Janson; Mazzeu, Juliana F.; Hoischen, Alexander; Jhangiani, Shalini N.; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M.; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T.; Steehouwer, Marloes; Muzny, Donna M.; Sutton, V. Reid; Gibbs, Richard A.; Lupski, James R.; Brunner, Han G.; van Bon, Bregje W.M.; Carvalho, Claudia M.B.

    2015-01-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct −1 reading-frame terminus. Study of the transcripts extracted from affected subjects’ leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  8. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.

    PubMed

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander; Jhangiani, Shalini N; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T; Steehouwer, Marloes; Muzny, Donna M; Sutton, V Reid; Gibbs, Richard A; Lupski, James R; Brunner, Han G; van Bon, Bregje W M; Carvalho, Claudia M B

    2015-04-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct -1 reading-frame terminus. Study of the transcripts extracted from affected subjects' leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  9. A novel C202F mutation in the connexin26 gene (GJB2) associated with autosomal dominant isolated hearing loss.

    PubMed

    Morlé, L; Bozon, M; Alloisio, N; Latour, P; Vandenberghe, A; Plauchu, H; Collet, L; Edery, P; Godet, J; Lina-Granade, G

    2000-05-01

    Mutations in the GJB2 gene encoding connexin26 (CX26) account for up to 50% of cases of autosomal recessive hearing loss. In contrast, only one GJB2 mutation has been reported to date in an autosomal dominant form of isolated prelingual hearing loss. We report here a novel heterozygous 605G-->T mutation in GJB2 in all affected members of a large family with late childhood onset of autosomal dominant isolated hearing loss. The resulting C202F substitution, which lies in the fourth (M4) transmembrane domain of CX26, may impair connexin oligomerisation. Finally, our study suggests that GJB2 should be screened for heterozygous mutations in patients with autosomal dominant isolated hearing impairment, whatever the severity of the disease. PMID:10807696

  10. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    PubMed Central

    Chen, Ting; Lu, Xiang-Hui; Wang, Hui-Fang; Ban, Rui; Liu, Hua-Xu; Shi, Qiang; Wang, Qian; Yin, Xi; Pu, Chuan-Qiang

    2016-01-01

    Background: Myopathies with rimmed vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies. Here, we describe a novel autosomal dominant myopathy with rimmed vacuoles in a large family with 11 patients of three generations affected. Methods: A clinical study including family history, obstetric, pediatric, and development history was recorded. Clinical examinations including physical examination, electromyography (EMG), serum creatine kinase (CK), bone X-rays, and brain magnetic resonance imaging (MRI) were performed in this family. Open muscle biopsies were performed on the proband and his mother. To find the causative gene, the whole-exome sequencing was carried out. Results: Disease onset was from adolescence to adulthood, but the affected patients of the third generation presented an earlier onset and more severe clinical manifestations than the older generations. Clinical features were characterized as dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision. However, not every patient manifested all symptoms. Serum CK was mildly elevated and EMG indicated a myopathic pattern. Brain MRI showed cerebellum and brain stem mildly atrophy. Rimmed vacuoles and inclusion bodies were observed in muscle biopsy. The whole-exome sequencing was performed, but the causative gene has not been found. Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study. PMID:27453229

  11. Autosomal Dominant Alzheimer Disease: A Unique Resource to Study CSF Biomarker Changes in Preclinical AD

    PubMed Central

    Schindler, Suzanne Elizabeth; Fagan, Anne M.

    2015-01-01

    Our understanding of the pathogenesis of Alzheimer disease (AD) has been greatly influenced by investigation of rare families with autosomal dominant mutations that cause early onset AD. Mutations in the genes coding for amyloid precursor protein (APP), presenilin 1 (PSEN-1), and presenilin 2 (PSEN-2) cause over-production of the amyloid-β peptide (Aβ) leading to early deposition of Aβ in the brain, which in turn is hypothesized to initiate a cascade of processes, resulting in neuronal death, cognitive decline, and eventual dementia. Studies of cerebrospinal fluid (CSF) from individuals with the common form of AD, late-onset AD (LOAD), have revealed that low CSF Aβ42 and high CSF tau are associated with AD brain pathology. Herein, we review the literature on CSF biomarkers in autosomal dominant AD (ADAD), which has contributed to a detailed road map of AD pathogenesis, especially during the preclinical period, prior to the appearance of any cognitive symptoms. Current drug trials are also taking advantage of the unique characteristics of ADAD and utilizing CSF biomarkers to accelerate development of effective therapies for AD. PMID:26175713

  12. A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia

    PubMed Central

    Saal, Howard M.; Prows, Cynthia A.; Guerreiro, Iris; Donlin, Milene; Knudson, Luke; Sund, Kristen L.; Chang, Ching-Fang; Brugmann, Samantha A.; Stottmann, Rolf W.

    2015-01-01

    Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia. PMID:25759469

  13. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management--A KDIGO consensus report.

    PubMed

    Eckardt, Kai-Uwe; Alper, Seth L; Antignac, Corinne; Bleyer, Anthony J; Chauveau, Dominique; Dahan, Karin; Deltas, Constantinos; Hosking, Andrew; Kmoch, Stanislav; Rampoldi, Luca; Wiesener, Michael; Wolf, Matthias T; Devuyst, Olivier

    2015-10-01

    Rare autosomal dominant tubulointerstitial kidney disease is caused by mutations in the genes encoding uromodulin (UMOD), hepatocyte nuclear factor-1β (HNF1B), renin (REN), and mucin-1 (MUC1). Multiple names have been proposed for these disorders, including 'Medullary Cystic Kidney Disease (MCKD) type 2', 'Familial Juvenile Hyperuricemic Nephropathy (FJHN)', or 'Uromodulin-Associated Kidney Disease (UAKD)' for UMOD-related diseases and 'MCKD type 1' for the disease caused by MUC1 mutations. The multiplicity of these terms, and the fact that cysts are not pathognomonic, creates confusion. Kidney Disease: Improving Global Outcomes (KDIGO) proposes adoption of a new terminology for this group of diseases using the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' (ADTKD) appended by a gene-based subclassification, and suggests diagnostic criteria. Implementation of these recommendations is anticipated to facilitate recognition and characterization of these monogenic diseases. A better understanding of these rare disorders may be relevant for the tubulointerstitial fibrosis component in many forms of chronic kidney disease. PMID:25738250

  14. Mutations in INF2 Are a Major Cause of Autosomal Dominant Focal Segmental Glomerulosclerosis

    PubMed Central

    Boyer, Olivia; Benoit, Geneviève; Gribouval, Olivier; Nevo, Fabien; Tête, Marie-Josèphe; Dantal, Jacques; Gilbert-Dussardier, Brigitte; Touchard, Guy; Karras, Alexandre; Presne, Claire; Grunfeld, Jean-Pierre; Legendre, Christophe; Joly, Dominique; Rieu, Philippe; Mohsin, Nabil; Hannedouche, Thierry; Moal, Valérie; Gubler, Marie-Claire; Broutin, Isabelle; Mollet, Géraldine

    2011-01-01

    The recent identification of mutations in the INF2 gene, which encodes a member of the formin family of actin-regulating proteins, in cases of familial FSGS supports the importance of an intact actin cytoskeleton in podocyte function. To determine better the prevalence of INF2 mutations in autosomal dominant FSGS, we screened 54 families (78 patients) and detected mutations in 17% of them. All mutations were missense variants localized to the N-terminal diaphanous inhibitory domain of the protein, a region that interacts with the C-terminal diaphanous autoregulatory domain, thereby competing for actin monomer binding and inhibiting depolymerization. Six of the seven distinct altered residues localized to an INF2 region that corresponded to a subdomain of the mDia1 diaphanous inhibitory domain reported to co-immunoprecipitate with IQ motif–containing GTPase-activating protein 1 (IQGAP1). In addition, we evaluated 84 sporadic cases but detected a mutation in only one patient. In conclusion, mutations in INF2 are a major cause of autosomal dominant FSGS. Because IQGAP1 interacts with crucial podocyte proteins such as nephrin and PLCε1, the identification of mutations that may alter the putative INF2–IQGAP1 interaction provides additional insight into the pathophysiologic mechanisms linking formin proteins to podocyte dysfunction and FSGS. PMID:21258034

  15. Ultrastructural appearance of renal and other basement membranes in the Bull terrier model of autosomal dominant hereditary nephritis.

    PubMed

    Hood, J C; Savige, J; Seymour, A E; Dowling, J; Martinello, P; Colville, D; Sinclair, R; Naito, I; Jennings, G; Huxtable, C

    2000-08-01

    Bull terrier hereditary nephritis may represent a model for autosomal dominant Alport's syndrome because affected dogs have the typically lamellated glomerular basement membrane (GBM) and father-to-son disease transmission occurs. This study examined the ultrastructural appearance of the renal and extrarenal basement membranes and their composition in affected Bull terriers. Affected stillborn animals and puppies had subepithelial frilling and vacuolation of the GBM. In adult dogs, lamellation was common, and subepithelial frilling and vacuolation were less prominent. Foot-process effacement and mesangial matrix expansion occurred frequently. Basement membranes in the glomeruli, tubules, and Bowman's capsule were significantly thickened and often mineralized. Immunohistochemical examination showed alpha 1(IV) and alpha 2(IV) collagen chains in all renal basement membranes; alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains in the GBM, distal tubular basement membrane, and Bowman's capsule; and the alpha 6(IV) chain in Bowman's capsule. Conversely, the basement membranes from the affected Bull terrier cornea, lens capsule, retina, skin, lung, and muscle had a normal ultrastructural appearance and were not thickened compared with membranes in normal age-matched dogs. The distribution of basement membrane abnormalities in Bull terrier hereditary nephritis may occur because the defective protein is present exclusively or more abundantly in the kidney and is structurally more important in the kidney or because of local intrarenal stresses. PMID:10922317

  16. Mitochondrial Oxidative Phosphorylation Compensation May Preserve Vision in Patients with OPA1-Linked Autosomal Dominant Optic Atrophy

    PubMed Central

    Van Bergen, Nicole J.; Crowston, Jonathan G.; Kearns, Lisa S.; Staffieri, Sandra E.; Hewitt, Alex W.; Cohn, Amy C.; Mackey, David A.; Trounce, Ian A.

    2011-01-01

    Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies. PMID:21731710

  17. The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies.

    PubMed Central

    Wallgren-Pettersson, C; Clarke, A; Samson, F; Fardeau, M; Dubowitz, V; Moser, H; Grimm, T; Barohn, R J; Barth, P G

    1995-01-01

    Clinical differences exist between the three forms of myotubular myopathy. They differ regarding age at onset, severity of the disease, and prognosis, and also regarding some of the clinical characteristics. The autosomal dominant form mostly has a later onset and milder course than the X linked form, and the autosomal recessive form is intermediate in both respects. These differences are, however, quantitative rather than qualitative. Muscle biopsy studies of family members are useful in some cases, and immunohistochemical staining of desmin and vimentin may help distinguish between the X linked and autosomal forms. Determining the mode of inheritance and prognosis in individual families, especially those with a single male patient, still poses a problem. Current molecular genetic results indicate that the gene for the X linked form is located in the proximal Xq28 region. Further molecular genetic studies are needed to examine the existence of genetic heterogeneity in myotubular myopathy and to facilitate diagnosis. Images PMID:8544184

  18. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa.

    PubMed

    Millington-Ward, Sophia; Chadderton, Naomi; O'Reilly, Mary; Palfi, Arpad; Goldmann, Tobias; Kilty, Claire; Humphries, Marian; Wolfrum, Uwe; Bennett, Jean; Humphries, Peter; Kenna, Paul F; Farrar, G Jane

    2011-04-01

    For dominantly inherited disorders development of gene therapies, targeting the primary genetic lesion has been impeded by mutational heterogeneity. An example is rhodopsin-linked autosomal dominant retinitis pigmentosa with over 150 mutations in the rhodopsin gene. Validation of a mutation-independent suppression and replacement gene therapy for this disorder has been undertaken. The therapy provides a means of correcting the genetic defect in a mutation-independent manner thereby circumventing the mutational diversity. Separate adeno-associated virus (AAV) vectors were used to deliver an RNA interference (RNAi)-based rhodopsin suppressor and a codon-modified rhodopsin replacement gene resistant to suppression due to nucleotide alterations at degenerate positions over the RNAi target site. Viruses were subretinally coinjected into P347S mice, a model of dominant rhodopsin-linked retinitis pigmentosa. Benefit in retinal function and structure detected by electroretinography (ERG) and histology, respectively, was observed for at least 5 months. Notably, the photoreceptor cell layer, absent in 5-month-old untreated retinas, contained 3-4 layers of nuclei, whereas photoreceptor ultrastructure, assessed by transmission electron microscopy (TEM) improved significantly. The study provides compelling evidence that codelivered suppression and replacement is beneficial, representing a significant step toward the clinic. Additionally, dual-vector delivery of combined therapeutics represents an exciting approach, which is potentially applicable to other inherited disorders. PMID:21224835

  19. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients with retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.

  20. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.

    2016-01-01

    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959

  1. [Evidence for autosomal dominant inheritance through the maternal line in a case of primary ciliary diskinesia].

    PubMed

    Alvarez González, J; Busto Castañón, L; Nistal Serrano, M

    2006-01-01

    An atypical case of primary ciliary dyskinesia is presented in which the inheritance, rather than the classical autosomal recessive, appears to be transmitted as an autosomal dominant trait through the maternal line. The case involves two brothers of 29 and 30 years of age, married without children, with a history of infertility, frequent episodes of sinusitis, and recurrent pulmonary infections. Their mother and sister have chronic bronchopathy of unknown etiology. Their father is healthy without pulmonary problems or sinusitis. At physical exam, both brothers, sister and mother presented with bronchial rhonchi at lung auscultation. Blood analysis and pulmonary function, liver and renal tests were all normal. The ultraestructual study of the sperm flagellum by electron microscopy revealed that both brothers have the same anomaly. Namely, in the majority of the cross-sections, both dynein arms are missing. The nexin filament was present, as well as the radial spokes and the central pair of microtubules. In some sperm, besides the absence of dynein arms, there was also absence of the central pair of microtubules. Neither anomalies of the fibrous sheath nor of the dense fibers were found. In approximately 50% of the spermatozoa, the midpiece had a decreased number of mitochondria and extra non-aligned mitochondria. Other findings included extra peripheral microtubules in the axoneme. PMID:17058621

  2. Fine localization of the locus for autosomal dominant retinitis pigmentosa on chromosome 17p

    SciTech Connect

    Goliath, R.; Janssens, P.; Beighton, P.

    1995-10-01

    The term {open_quotes}retintis pigmentosa{close_quotes} (RP) refers to a group of inherited retinal degenerative disorders. Clinical manifestations include night-blindness, with variable age of onset, followed by constriction of the visual field that may progress to total loss of sight in later life. Previous studies have shown that RP is caused by mutations within different genes and may be inherited as an X-linked recessive (XLRRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) trait. The AD form of this group of conditions has been found to be caused by mutations within the rhodopsin gene in some families and the peripherin/RDS gene in others. In addition, some ADRP families have been found to be linked to anonymous markers on 8cen, 7p, 7q,19q, and, more recently, 17p. The ADRP gene locus on the short arm of chromosome 17 was identified in a large South African family (ADRP-SA) of British origin. The phenotypic expression of the disorder, which has been described elsewhere is consistent in the pedigree with an early onset of disease symptoms. In all affected subjects in the family, onset of symptoms commenced before the age of 10 years. 16 refs., 3 figs., 1 tab.

  3. Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses.

    PubMed

    Carrozzo, R; Hirano, M; Fromenty, B; Casali, C; Santorelli, F M; Bonilla, E; DiMauro, S; Schon, E A; Miranda, A F

    1998-01-01

    Multiple mitochondrial DNA (mtDNA) deletions have been described in patients with autosomal dominant progressive external ophthalmoplegia (AD-PEO) and in autosomal recessive disorders including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and autosomal recessive cardiomyopathy ophthalmoplegia (ARCO). The pathogenic bases of these disorders are unknown. We studied three patients with AD-PEO and three patients with autosomal recessive (AR)-PEO (two patients with MNGIE and one patient with ARCO). Histochemistry and Southern blot analyses of DNA were performed in skeletal muscle from the patients. Muscle mtDNA was used to characterize the pattern and amounts of the multiple mtDNA rearrangements; PCR analysis was performed to obtain finer maps of the deleted regions in both conditions. The patients with AD-PEO had myopathic features; the patients with AR-PEO had multisystem disorders. The percentage of ragged-red and cytochrome c oxidase-negative fibers tended to be higher in muscle from the patients with AD-PEO (19% +/- 13.9, 29.7 +/- 26.3) than in muscle from the patients with AR-PEO (1.4% +/- 1.4, 3.3% +/- 3.2; p < 0.10). The sizes of the multiple mtDNA deletions ranged from approximately 4.0 to 10.0 kilobases in muscle from both groups of patients, and in both groups, we identified only deleted and no duplicated mtDNA molecules. Patients with AD-PEO harbored a greater proportion of deleted mtDNA species in muscle (31% +/- 5.3) than did patients with AR-PEO (9.7% +/- 9.1; p < 0.05). In the patients with AD-PEO, we identified a deletion that included the mtDNA heavy strand promoter (HSP) region, which had been previously described as the HSP deletion. The HSP deletion was not present in the patients with AR-PEO. Our findings show the clinical, histologic, and molecular genetic heterogeneity of these complex disorders. In particular, the proportions of multiple mtDNA deletions were higher in muscle samples from patients with AD-PEO than in those from

  4. DISTAL MYOPATHIES

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Over a century ago, Gowers described two young patients in whom distal muscles weakness involved the hand, foot, sternocleidomastoid, and facial muscles in the other case the shoulder and distal leg musculature. Soon after, , similar distal myopathy cases were reported whereby the absence of sensory symptoms and of pathologic changes in the peripheral nerves and spinal cord at postmortem examination allowed differentiation from Charcot-Marie-Tooth disease. In 1951, Welander described autosomal dominant (AD) distal arm myopathy in a large Scandanavian cohort. Since then the number of well-characterized distal myopathies has continued to grow such that the distal myopathies have formed a clinically and genetically heterogeneous group of disorders. Affected kindred commonly manifest weakness that is limited to foot and toe muscles even in advanced stages of the disease, with variable mild proximal leg, distal arm, neck and laryngeal muscle involvement in selected individuals. An interesting consequence of the molecular characterization of the distal myopathies has been the recognition that mutation in a single gene can lead to more than one clinical disorder. For example, Myoshi myopathy (MM) and limb girdle muscular dystrophy (LGMD) type 2B are allelic disorders due to defects in the gene that encodes dysferlin. The six well described distal myopathy syndromes are shown in Table 1. Table 2 lists advances in our understanding of the myofibrillar myopathy group and Table 3 includes more recently delineated and less common distal myopathies. In the same manner, the first section of this review pertains to the more traditional six distal myopathies followed by discussion of the myofibrillar myopathies. In the third section, we review other clinically and genetically distinctive distal myopathy syndromes usually based upon single or smaller family cohorts. The fourth section considers other neuromuscular disorders that are important to recognize as they display prominent

  5. Autosomal Dominant Hypercalciuria in a Mouse Model Due to a Mutation of the Epithelial Calcium Channel, TRPV5

    PubMed Central

    Loh, Nellie Y.; Verkaart, Sjoerd; Tammaro, Paolo; Gorvin, Caroline M.; Stechman, Michael J.; Ahmad, Bushra N.; Hannan, Fadil M.; Piret, Sian E.; Evans, Holly; Bellantuono, Ilaria; Hough, Tertius A.; Fraser, William D.; Hoenderop, Joost G. J.; Ashcroft, Frances M.; Brown, Steve D. M.; Bindels, René J. M.; Cox, Roger D.; Thakker, Rajesh V.

    2013-01-01

    Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1). Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5) and 6 (Trpv6) genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P). Compared to wild-type littermates, heterozygous (Trpv5682P/+) and homozygous (Trpv5682P/682P) mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5682P/+ and Trpv5682P/682P mice consistent with a trafficking defect. In addition, Trpv5682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings indicate that the TRPV5

  6. Perinatal Management of Pregnancy Complicated by Autosomal Dominant Emery–Dreifuss Muscular Dystrophy

    PubMed Central

    Sato, Megumi; Shirasawa, Hiromitsu; Makino, Kenichi; Miura, Hiroshi; Sato, Wataru; Shimizu, Dai; Sato, Naoki; Kumagai, Jin; Sato, Akira; Terada, Yukihiro

    2016-01-01

    Introduction Autosomal dominant Emery–Dreifuss muscular dystrophy (AD-EDMD) is rare compared with other forms of muscular dystrophy and is characterized by cardiac conduction defects. Here, we present the case of a patient diagnosed with AD-EDMD during the first trimester of pregnancy who developed acute preeclampsia and subsequently, congestive heart failure (CHF) following cesarean section. Case A 36-year-old, gravida 0 para 0 woman was diagnosed with AD-EDMD by genetic testing during the first trimester of pregnancy, and she suddenly developed preeclampsia and partial HELLP (hemolytic anemia, elevated liver enzymes, and low platelets) syndrome at 33 weeks of gestation. The patient subsequently developed CHF following cesarean section. Conclusion CHF can occur as a direct result of the cardiac defects arising due to EDMD, and therefore, careful prenatal and postpartum management is recommended for such cases. PMID:27054045

  7. Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation.

    PubMed

    Kiphuth, I C; Krause, S; Huttner, H B; Dekomien, G; Struffert, T; Schröder, R

    2010-04-01

    Nemaline myopathy (NM) is a genetically and clinically heterogenous muscle disorder, which is myopathologically characterized by nemaline bodies. Mutations in six genes have been reported to cause NM: Nebulin (NEB Pelin 1999), alpha-skeletal muscle actin (ACTA1 Nowak 1999), alpha-slow tropomyosin (TPM3 Laing 1995), beta-tropomyosin (TPM2 Donner 2002), slow troponin T (TNNT1 Johnston 2000) and cofilin 2 (CFL2 Agrawal 2007). The majority of cases are due to mutation in NEB and ACTA1. We report on the clinical, myopathological and muscle MRI findings in a German family with autosomal dominant NM due to a novel pathogenic TPM3 mutation (p.Ala156Thr). PMID:20012312

  8. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  9. Autosomal dominant retinitis pigmentosa mapping to chromosome 7p exhibits variable expression.

    PubMed Central

    Kim, R Y; Fitzke, F W; Moore, A T; Jay, M; Inglehearn, C; Arden, G B; Bhattacharya, S S; Bird, A C

    1995-01-01

    The genetic locus causing autosomal dominant retinitis pigmentosa (adRP) has recently been mapped in a large English family to chromosome 7p. Eight affected members of this family were studied electrophysiologically and psychophysically with dark adapted static threshold perimetry and dark adaptometry. The phenotypes observed fell into three categories: minimally affected with no symptoms, and normal (or near normal) electrophysiology and psychophysics; moderately affected with mild symptoms, abnormal electroretinograms, and equal loss of rod and cone function in affected areas of the retina; and severely affected with extinguished electroretinograms and barely detectable dark adapted static threshold sensitivities. The mutation in the gene on 7p causing adRP in this family causes regional retinal dysfunction with greatly variable expressivity ranging from normal to profoundly abnormal in a manner not explained by age. PMID:7880785

  10. Autosomal dominant retinitis pigmentosa with apparent incomplete penetrance: a clinical, electrophysiological, psychophysical, and molecular genetic study.

    PubMed Central

    Moore, A T; Fitzke, F; Jay, M; Arden, G B; Inglehearn, C F; Keen, T J; Bhattacharya, S S; Bird, A C

    1993-01-01

    Twenty five symptomatic individuals and six asymptomatic obligate gene carriers from four families with autosomal dominant retinitis pigmentosa (adRP) showing apparent incomplete penetrance have been studied. Symptomatic individuals from three families showed early onset of night blindness, non-recordable rod electroretinograms, and marked elevation of both rod and cone thresholds in all subjects tested. In the fourth family, there was more variation in the age of onset of night blindness and some symptomatic individuals showed well preserved rod and cone function in some retinal areas. All asymptomatic individuals tested had evidence of mild abnormalities of rod and cone function, indicating that these families show marked variation in expressivity rather than true non-penetrance of the adRP gene. No mutations of the rhodopsin or RDS genes were found in these families and the precise genetic mutation(s) remain to be identified. PMID:8025041

  11. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  12. Autosomal dominant (Beukes) premature degenerative osteoarthropathy of the hip joint unlinked to COL2A1

    SciTech Connect

    Beighton, P.; Ramesar, R.; Cilliers, H.J.

    1994-12-01

    Molecular investigations have been undertaken in several separate large South African families with autosomal dominant skeletal dysplasias in which premature degenerative osteoarthropathy of the hip joint was the major manifestation. There are sometimes additional minor changes in the spine and these conditions fall into the general spondyloepiphyseal dysplasia (SED) nosological category. In some kindreds, linkage between phenotype and the type II collagen gene (COL2A1) has been established, while in others there is no linkage. We have now completed molecular linkage investigations in an Afrikaner family named Beukes, in which 47 members in 6 generations have premature osteoarthropathy of the hip joint. A LOD score of minus infinity indicates that this condition is not the result of a defect of the COL2A1 gene. 12 refs., 2 figs., 1 tab.

  13. Linkage disequilibrium in the region of the autosomal dominant polycystic kidney disease gene (PKD1)

    SciTech Connect

    Snarey, A. ); Thomas, S.; Harris, P.C. ); Schneider, M.C. ); Pound, S.E.; Wright, A.F. ); Barton, N.; Somlo, S.; Germino, G.G.; Reeders, S.T.

    1994-08-01

    The gene for autosomal dominant polycystic kidney disease (PKD1) is located on chromosome 16p, between the flanking markers D16S84 and D16S125 (26.6 prox). This region is 750 kb long and has been cloned. The authors have looked at the association of 10 polymorphic markers from the region, with the disease and with each other. This was done in a set of Scottish families that had previously shown association with D16S94, a marker proximal to the PKD1 region. They report significant association between two CA repeat markers and the disease but have not found evidence for a single founder haplotype in these families, indicating the presence of several mutations in this population. Their results favor a location of the PKD1 gene in the proximal part of the candidate region. 25 refs., 1 fig., 4 tabs.

  14. High-density renal cysts in autosomal dominant polycystic kidney disease demonstrated by CT

    SciTech Connect

    Levine, E.; Grantham, J.J.

    1985-02-01

    Unenhanced abdominal CT scans of 35 patients with autosomal dominant polycystic kidney disease (ADPKD) showed multiple high-density (58-84 HU) renal cysts in 42.9% of patients, occasional high-density cysts in 25.7%, and no high-density cysts in 31.4%. These high-density cysts were usually subcapsular and were more frequent in patients with markedly enlarged kidneys and flank pain at the time of CT. Follow-up CT often showed a reduction in cyst densities, although some cysts developed mural calcification and calcification of their contents. Renal carcinomas occur rarely in ADPKD and may occasionally be hyperdense. However, high-density cysts may usually be distinguished from carcinomas on CT by their smooth contours, sharp interfaces with renal parenchyma, homogeneity, and lack of contrast enhancement.

  15. Refined localisation of the second gene for autosomal dominant polycystic kidney disease

    SciTech Connect

    Peters, D.J.M.; Saris, J.J.; Spruit, L.

    1994-09-01

    The PKD1-gene responsible for autosomal dominant polycystic kidney disease in 85% of the families maps to chromosome 16q13. Last year the PKD2-gene was localized on chromosome 4q21-23 between the markers D4S231 and D4S231 and D4S423, an interval of about 8cM. In a collaborative effort to narrow down the PKD2-region, families with recombinants have been analyzed with several markers within the interval. First, an integrated map had to be constructed which contains previously published markers of different sources. To construct this map, cosmids and/or YACs isolated with the markers have been mapped by two-color FISH and were screened with the other markers. Affected recombinants localize the disease between D4S1534 and D4S1544.

  16. [Photic sneeze reflex or autosomal dominant compelling helio-ophthalmic outburst syndrome].

    PubMed

    García-Moreno, J M

    2006-01-01

    Sneeze is an ubiquitous phenomenon that happens to everyone. In spite of this, little attention has been paid to it, among medical literature in general, and even less in neurologic texts. A curious entity, called photic sneeze reflex, solar sneeze reflex, light sneeze reflex or autosomal dominant compelling helio-ophthalmic outburst syndrome, known perhaps since ancient Greek, has been scarcely described in the scientific literature, mainly as clinical notes and letters to the editor, but in a detailed way, we can find just a few reports. This reflex appears when subjects are exposed suddenly to intense sunlight and it consists of long incoercible sneeze bursts. It is usually ignored by its sufferers, who report it as a curiosity or a minor complaint, and its importance has been neglected in spite of its hereditary nature and its apparently high prevalence. We review the history, epidemiology, genetics, neuroanatomy, neurophysiology and physiopathology of this reflex hereditary response. PMID:16525923

  17. Autosomal dominant zonular cataract with sutural opacities localized to chromosome 17q11-12

    SciTech Connect

    Padma, T.; Ayyagari, R.; Murty, J.S.

    1995-10-01

    Congenital cataracts constitute a morphologically and genetically heterogeneous group of diseases that are a major cause of childhood blindness. Different loci for hereditary congenital cataracts have been mapped to chromosomes 1, 2, 16, and 17q24. We report linkage of a gene causing a unique form of autosomal dominant zonular cataracts with Y-sutural opacities to chromosome 17q11-12 in a three-generation family exhibiting a maximum lod score of 3.9 at D17S805. Multipoint analysis gave a Mod confidence interval of 17 cM. This interval is bounded by the markers D17S799 and D17S798, a region that would encompass a number of candidate genes including that coding for {Beta}A3/A1-crystallin. 30 refs., 2 figs., 1 tab.

  18. Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation.

    PubMed

    Scheffer, I E; Jones, L; Pozzebon, M; Howell, R A; Saling, M M; Berkovic, S F

    1995-10-01

    We describe a family of 9 affected individuals in three generations with nocturnal oro-facio-brachial partial seizures, secondarily generalized partial seizures, and centro-temporal epileptiform discharges, associated with oral and speech dyspraxia and cognitive impairment. The speech disorder was prominent, but differed from that of Landau-Kleffner syndrome and of epilepsy with continuous spike and wave during slow-wave sleep. The electroclinical features of this new syndrome of autosomal dominant rolandic epilepsy resemble those of benign rolandic epilepsy, a common inherited epilepsy of childhood. This family shows clinical anticipation of the seizure disorder, the oral and speech dyspraxia, and cognitive dysfunction, suggesting that the genetic mechanism could be expansion of an unstable triplet repeat. Molecular studies on this syndrome, where the inheritance pattern is clear, could also be relevant to identifying a gene for benign rolandic epilepsy where anticipation does not occur and the mode of inheritance is uncertain. PMID:7574460

  19. A stepwise approach for effective management of chronic pain in autosomal-dominant polycystic kidney disease

    PubMed Central

    Casteleijn, Niek F.; Visser, Folkert W.; Drenth, Joost P.H.; Gevers, Tom J.G.; Groen, Gerbrand J.; Hogan, Marie C.; Gansevoort, Ron T.; Drenth, J.P.H.; de Fijter, J.W.; Gansevoort, R.T.; Peters, D.J.M.; Wetzels, J.; Zietse, R.

    2014-01-01

    Chronic pain, defined as pain existing for >4–6 weeks, affects >60% of patients with autosomal-dominant polycystic disease (ADPKD). It can have various causes, indirectly or directly related to the increase in kidney and liver volume in these patients. Chronic pain in ADPKD patients is often severe, impacting physical activity and social relationships, and frequently difficult to manage. This review provides an overview of pathophysiological mechanisms that can lead to pain and discusses the sensory innervation of the kidneys and the upper abdominal organs, including the liver. In addition, the results of a systematic literature search of ADPKD-specific treatment options are presented. Based on pathophysiological knowledge and evidence derived from the literature an argumentative stepwise approach for effective management of chronic pain in ADPKD is proposed. PMID:25165181

  20. Autosomal dominant polycystic kidney disease: the changing face of clinical management.

    PubMed

    Ong, Albert C M; Devuyst, Olivier; Knebelmann, Bertrand; Walz, Gerd

    2015-05-16

    Autosomal dominant polycystic kidney disease is the most common inherited kidney disease and accounts for 7-10% of all patients on renal replacement therapy worldwide. Although first reported 500 years ago, this disorder is still regarded as untreatable and its pathogenesis is poorly understood despite much study. During the past 40 years, however, remarkable advances have transformed our understanding of how the disease develops and have led to rapid changes in diagnosis, prognosis, and treatment, especially during the past decade. This Review will summarise the key findings, highlight recent developments, and look ahead to the changes in clinical practice that will likely arise from the adoption of a new management framework for this major kidney disease. PMID:26090645

  1. Chronic renal failure in a patient with Sotos syndrome due to autosomal dominant polycystic kidney disease.

    PubMed

    Cefle, K; Yildiz, A; Palanduz, S; Ozturk, S; Ozbey, N; Kylyçaslan, I; Colakoglu, S; Balci, C

    2002-05-01

    Sotos syndrome is characterised by accelerated growth, acromegalic appearance, mental retardation and social maladjustment. Most cases are sporadic, but familial cases have also been reported. We report a case of Sotos syndrome presenting with chronic renal failure due to autosomal dominant polycystic kidney disease (ADPKD). Ultrasonographic examination of the patient, his father and other family members revealed polycystic kidneys. Renal failure was present only in the Sotos case, who also had considerably larger cysts than other family members. We suggest that the underlying mechanism responsible from the somatic overgrowth in Sotos syndrome may also be linked with the development of larger cysts and earlier onset of renal failure in ADPKD. Although Sotos syndrome has been associated with urological abnormalities, chronic renal failure is very rare. To our knowledge, Sotos syndrome associated with ADPKD has not been reported before. PMID:12074220

  2. [Retracted] Clinical, pathological and genetic characteristics of autosomal dominant inherited dynamin 2 centronuclear myopathy.

    PubMed

    Liu, Xinhong; Wu, Huamin; Gong, Jian; Wang, Tao; Yan, Chuanzhu

    2016-07-01

    We wish to retract our article entitled 'Clinical, pathological and genetic characteristics of autosomal dominant inherited dynamin 2 centronuclear myopathy' published in Molecular Medicine Reports 13: 4273-4278, 2016. The article was submitted by the first author, Xinhong Liu, without the prior knowledge of the corresponding author, Chuanzhu Yan, or the other authors included on the paper. Furthermore, the details of the paper were not discussed by the authors prior to the submission, and all are in agreement that the paper contains data therein (and interpretations thereof) which are either inaccurate or inappropriate. All the authors agree to this retraction, and we apologize for the inconvenience caused in this regard.[the original article was published in the Molecular Medicine Reports 13: 4273-4278, 2016; DOI: 10.3892/mmr.2016.5047]. PMID:27176730

  3. Bethlem myopathy: An autosomal dominant myopathy with flexion contractures, keloids, and follicular hyperkeratosis.

    PubMed

    Saroja, Aralikatte Onkarappa; Naik, Karkal Ravishankar; Nalini, Atcharayam; Gayathri, Narayanappa

    2013-10-01

    Bethlem myopathy and Ullrich congenital muscular dystrophy form a spectrum of collagenopathies caused by genetic mutations encoding for any of the three subunits of collagen VI. Bethlem phenotype is relatively benign and is characterized by proximal dominant myopathy, keloids, contractures, distal hyperextensibility, and follicular hyperkeratosis. Three patients from a single family were diagnosed to have Bethlem myopathy based on European Neuromuscular Centre Bethlem Consortium criteria. Affected father and his both sons had slowly progressive proximal dominant weakness and recurrent falls from the first decade. Both children aged 18 and 20 years were ambulant at presentation. All had flexion contractures, keloids, and follicular hyperkeratosis without muscle hypertrophy. Creatinine kinase was mildly elevated and electromyography revealed myopathic features. Muscle imaging revealed severe involvement of glutei and vasti with "central shadow" in rectus femoris. Muscle biopsy in the father showed dystrophic changes with normal immmunostaining for collagen VI, sarcoglycans, and dysferlin. PMID:24339618

  4. Bethlem myopathy: An autosomal dominant myopathy with flexion contractures, keloids, and follicular hyperkeratosis

    PubMed Central

    Saroja, Aralikatte Onkarappa; Naik, Karkal Ravishankar; Nalini, Atcharayam; Gayathri, Narayanappa

    2013-01-01

    Bethlem myopathy and Ullrich congenital muscular dystrophy form a spectrum of collagenopathies caused by genetic mutations encoding for any of the three subunits of collagen VI. Bethlem phenotype is relatively benign and is characterized by proximal dominant myopathy, keloids, contractures, distal hyperextensibility, and follicular hyperkeratosis. Three patients from a single family were diagnosed to have Bethlem myopathy based on European Neuromuscular Centre Bethlem Consortium criteria. Affected father and his both sons had slowly progressive proximal dominant weakness and recurrent falls from the first decade. Both children aged 18 and 20 years were ambulant at presentation. All had flexion contractures, keloids, and follicular hyperkeratosis without muscle hypertrophy. Creatinine kinase was mildly elevated and electromyography revealed myopathic features. Muscle imaging revealed severe involvement of glutei and vasti with “central shadow” in rectus femoris. Muscle biopsy in the father showed dystrophic changes with normal immmunostaining for collagen VI, sarcoglycans, and dysferlin. PMID:24339618

  5. Autosomal dominant familial spastic paraplegia: Tight linkage to chromosome 15q

    SciTech Connect

    Fink, J.K.; Wu, C.T.B.; Jones, S.M.

    1994-09-01

    Familial spastic paraplegia (FSP) (MIM No.18260) constitutes a clinically and genetically diverse group of disorders that share the primary feature of progressive, severe, lower extremity spasticity. FSP is classified according to the mode of inheritance and whether progressive spasticity occurs in isolation ({open_quotes}uncomplicated FSP{close_quotes}) or with other neurologic abnormalities ({open_quotes}complicated FSP{close_quotes}), including optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, ataxia, ichthyosis, mental retardation, or deafness. Recently, autosomal dominant, uncomplicated FSP was shown to be genetically heterogeneous and tightly linked to a group of microsatellite markers on chromosome 14q in one large kindred. We examined 126 members of a non-consanguineous North American kindred of Irish descent. FSP was diagnosed in 31 living subjects who developed insidiously progressive gait disturbance between ages 12 and 35 years. Using genetic linkage analysis to microsatellite DNA polymorphisms, we showed that the FSP locus on chromosome 14q was exluded from linkage with the disorder in our family. Subsequently, we searched for genetic linkage between the disorder and microsatellite DNA polymorphisms spanning approximately 50% of the genome. We observed significantly positive, two-point maximum lod scores (Z) for markers on chromosome 15q: D15S128 (Z=9.70, {theta}=0.05), D15S165 (Z=3.30, {theta}=0.10), and UT511 (Z=3.86, {theta}=0.10). Our data clearly establishes that one locus for autosomal dominant, uncomplicated FSP is mapped to the pericentric region of chromosome 15q. Identifying genes responsible for chromosome 15q-linked and chromosome 14q-linked FSP will greatly advance our understanding of this condition and hopefully other inherited and degenerative brain and spinal cord disorders that are also characterized by axonal degeneration.

  6. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P. )

    1994-05-15

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 of 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.

  7. CHMP4B, a Novel Gene for Autosomal Dominant Cataracts Linked to Chromosome 20q

    PubMed Central

    Shiels, Alan ; Bennett, Thomas M. ; Knopf, Harry L. S. ; Yamada, Koki ; Yoshiura, Koh-ichiro ; Niikawa, Norio ; Shim, Soomin ; Hanson, Phyllis I. 

    2007-01-01

    Cataracts are a clinically diverse and genetically heterogeneous disorder of the crystalline lens and a leading cause of visual impairment. Here we report linkage of autosomal dominant “progressive childhood posterior subcapsular” cataracts segregating in a white family to short tandem repeat (STR) markers D20S847 (LOD score [Z] 5.50 at recombination fraction [θ] 0.0) and D20S195 (Z=3.65 at θ=0.0) on 20q, and identify a refined disease interval (rs2057262–(3.8 Mb)–rs1291139) by use of single-nucleotide polymorphism (SNP) markers. Mutation profiling of positional-candidate genes detected a heterozygous transversion (c.386A→T) in exon 3 of the gene for chromatin modifying protein-4B (CHMP4B) that was predicted to result in the nonconservative substitution of a valine residue for a phylogenetically conserved aspartic acid residue at codon 129 (p.D129V). In addition, we have detected a heterozygous transition (c.481G→A) in exon 3 of CHMP4B cosegregating with autosomal dominant posterior polar cataracts in a Japanese family that was predicted to result in the missense substitution of lysine for a conserved glutamic acid residue at codon 161 (p.E161K). Transfection studies of cultured cells revealed that a truncated form of recombinant D129V-CHMP4B had a different subcellular distribution than wild type and an increased capacity to inhibit release of virus-like particles from the cell surface, consistent with deleterious gain-of-function effects. These data provide the first evidence that CHMP4B, which encodes a key component of the endosome sorting complex required for the transport-III (ESCRT-III) system of mammalian cells, plays a vital role in the maintenance of lens transparency. PMID:17701905

  8. Localization of genes for autosomal dominant congenital cataracts to chromosomes 2 and 17

    SciTech Connect

    Ayyagari, R.; Scott, M.; Wozencraft, L.

    1994-09-01

    Linkage analysis was performed in a seven generation family in which 28 of 52 individuals examined had autosomal dominant congenital pulverulent cataracts and a five generation family in which 10 of 17 individuals examined had autosomal dominant congenital zonular cataracts with sutural opacities. Initial analysis with 21 microsatellite markers in 7 candidate gene regions localized the pulverulent cataract locus to the long arm of chromosome 2 near the {beta}B2-crystallin gene. A lod score of 3.6 was obtained with D2S72 ({theta}=0.12), 3.5 with CRYG ({theta}=0.06), 3.4 with ({theta}=0.05), 2.0 with D2S117 ({theta}=0.22) and 6.6 with D2S128 ({theta}=0.05). Multipoint linkage analysis gave Zmax=4.2 at D2S157 with a one lod confidence interval covering 19 cM. The closest flanking markers showing obligate recombinants are D2S157 and D2S173. The zonular cataract locus was mapped to chromosome 2 near the {gamma}-crystallin gene cluster. A maximum lod score of 3.8 was obtained with D17S805 ({theta}=0.0), 2.1 with D17S798 ({theta}=0.60), and 3.7 with NF1 ({theta}=0.0). Multipoint analysis showed Zmax=3.81 at D17S805 with a one lod confidence interval covering 17 cM based on the Genethon map, localizing cataracts between markers D17S799 and D17S800. Further efforts are being directed at refining the localization of these cataract loci and examining the nearby crystallin genes for possible mutations.

  9. Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse

    SciTech Connect

    Cunningham, M.L.; Nunes, M.E.

    1994-09-01

    Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We have recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.

  10. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family

    PubMed Central

    Conidi, Maria E.; Bernardi, Livia; Puccio, Gianfranco; Smirne, Nicoletta; Muraca, Maria G.; Curcio, Sabrina A.M.; Colao, Rosanna; Piscopo, Paola; Gallo, Maura; Anfossi, Maria; Frangipane, Francesca; Clodomiro, Alessandra; Mirabelli, Maria; Vasso, Franca; Cupidi, Chiara; Torchia, Giusi; Di Lorenzo, Raffaele; Mandich, Paola; Confaloni, Annamaria; Maletta, Raffaele G.

    2015-01-01

    Objective: To report, for the first time, a large autosomal dominant Alzheimer disease (AD) family in which the APP A713T mutation is present in the homozygous and heterozygous state. To date, the mutation has been reported as dominant, and in the heterozygous state associated with familial AD and cerebrovascular lesions. Methods: The family described here has been genealogically reconstructed over 6 generations dating back to the 19th century. Plasma β-amyloid peptide was measured. Sequencing of causative AD genes was performed. Results: Twenty-one individuals, all but 1 born from 2 consanguineous unions, were studied: 8 were described as affected through history, 5 were studied clinically and genetically, and 8 were asymptomatic at-risk subjects. The A713T mutation was detected in the homozygous state in 3 patients and in the heterozygous state in 8 subjects (6 asymptomatic and 2 affected). Conclusions: Our findings, also supported by the β-amyloid plasma assay, confirm (1) the pathogenic role of the APP A713T mutation, (2) the specific phenotype (AD with cerebrovascular lesions) associated with this mutation, and (3) the large span of age at onset, not influenced by APOE, TOMM40, and TREM2 genes. No substantial differences concerning clinical phenotype were evidenced between heterozygous and homozygous patients, in line with the classic definition of dominance. Therefore, in this study, AD followed the classic definition of a dominant disease, contrary to that reported in a previously described AD family with recessive APP mutation. This confirms that genetic AD may be considered a disease with dominant and recessive traits of inheritance. PMID:25948718

  11. Prevalence of Mutations in eyeGENE Probands With a Diagnosis of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Reeves, Melissa J.; Blain, Delphine; Goetz, Kerry; NDifor, Vida; Vitez, Sally; Wang, Xinjing; Tumminia, Santa J.; Daiger, Stephen P.

    2013-01-01

    Purpose. To screen samples from patients with presumed autosomal dominant retinitis pigmentosa (adRP) for mutations in 12 disease genes as a contribution to the research and treatment goals of the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE). Methods. DNA samples were obtained from eyeGENE. A total of 170 probands with an intake diagnosis of adRP were tested through enrollment in eyeGENE. The 10 most common genes causing adRP (IMPDH1, KLHL7, NR2E3, PRPF3/RP18, PRPF31/RP11, PRPF8/RP13, PRPH2/RDS, RHO, RP1, and TOPORS) were chosen for PCR-based dideoxy sequencing, along with the two X-linked RP genes, RPGR and RP2. RHO, PRPH2, PRPF31, RPGR, and RP2 were completely sequenced, while only mutation hotspots in the other genes were analyzed. Results. Disease-causing mutations were identified in 52% of the probands. The frequencies of disease-causing mutations in the 12 genes were consistent with previous studies. Conclusions. The Laboratory for Molecular Diagnosis of Inherited Eye Disease at the University of Texas in Houston has thus far received DNA samples from 170 families with a diagnosis of adRP from the eyeGENE Network. Disease-causing mutations in autosomal genes were identified in 48% (81/170) of these families while mutations in X-linked genes accounted for an additional 4% (7/170). Of the 55 distinct mutations detected, 19 (33%) have not been previously reported. All diagnostic results were returned by eyeGENE to participating patients via their referring clinician. These genotyped samples along with their corresponding phenotypic information are also available to researchers who may request access to them for further study of these ophthalmic disorders. (ClinicalTrials.gov number, NCT00378742.) PMID:23950152

  12. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  13. Preclinical trials in autosomal dominant AD: Implementation of the DIAN-TU trial

    PubMed Central

    Mills, S.M.; Mallmann, J.; Santacruz, A.M.; Fuqua, A.; Carril, M.; Aisen, P.S.; Althage, M.C.; Belyew, S.; Benzinger, T.L.; Brooks, W.S.; Buckles, V.D.; Cairns, N.J.; Clifford, D.; Danek, A.; Fagan, A.M.; Farlow, M.; Fox, N.; Ghetti, B.; Goate, A.M.; Heinrichs, D.; Hornbeck, R.; Jack, C.; Jucker, M.; Klunk, W.E.; Marcus, D.S.; Martins, R.N.; Masters, C.M.; Mayeux, R.; McDade, E.; Morris, J.C.; Oliver, A.; Ringman, J.M.; Rossor, M.N.; Salloway, S.; Schofield, P.R.; Snider, J.; Snyder, P.; Sperling, R.A.; Stewart, C.; Thomas, R.G.; Xiong, C.; Bateman, R.J.

    2013-01-01

    The Dominantly Inherited Alzheimer’s Network Trials Unit (DIAN-TU) was formed to direct the design and management of interventional therapeutic trials of international DIAN and autosomal dominant Alzheimer’s disease (ADAD) participants. The goal of the DIAN-TU is to implement safe trials that have the highest likelihood of success while advancing scientific understanding of these diseases and clinical effects of proposed therapies. The DIAN-TU has launched a trial design that leverages the existing infrastructure of the ongoing DIAN observational study, takes advantage of a variety of drug targets, incorporates the latest results of biomarker and cognitive data collected during the observational study, and implements biomarkers measuring Alzheimer’s disease (AD) biological processes to improve the efficiency of trial design. The DIAN-TU trial design is unique due to the sophisticated design of multiple drugs, multiple pharmaceutical partners, academics servings as sponsor, geographic distribution of a rare population and intensive safety and biomarker assessments. The implementation of the operational aspects such as home health research delivery, safety magnetic resonance imagings (MRIs) at remote locations, monitoring clinical and cognitive measures, and regulatory management involving multiple pharmaceutical sponsors of the complex DIAN-TU trial are described. PMID:24016464

  14. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity.

    PubMed

    Hopp, Katharina; Ward, Christopher J; Hommerding, Cynthia J; Nasr, Samih H; Tuan, Han-Fang; Gainullin, Vladimir G; Rossetti, Sandro; Torres, Vicente E; Harris, Peter C

    2012-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. The phenotypic spectrum, however, ranges from in utero onset to adequate renal function at old age. Recent patient data suggest that the disease is dosage dependent, where incompletely penetrant alleles influence disease severity. Here, we have developed a knockin mouse model matching a likely disease variant, PKD1 p.R3277C (RC), and have proved that its functionally hypomorphic nature modifies the ADPKD phenotype. While Pkd1+/null mice are normal, Pkd1RC/null mice have rapidly progressive disease, and Pkd1RC/RC animals develop gradual cystogenesis. These models effectively mimic the pathophysiological features of in utero-onset and typical ADPKD, respectively, correlating the level of functional Pkd1 product with disease severity, highlighting the dosage dependence of cystogenesis. Additionally, molecular analyses identified p.R3277C as a temperature-sensitive folding/trafficking mutant, and length defects in collecting duct primary cilia, the organelle central to PKD pathogenesis, were clearly detected for the first time to our knowledge in PKD1. Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing. PMID:23064367

  15. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer disease

    PubMed Central

    Fagan, Anne M.; Xiong, Chengjie; Jasielec, Mateusz S.; Bateman, Randall J.; Goate, Alison M.; Benzinger, Tammie L.S.; Ghetti, Bernardino; Martins, Ralph N.; Masters, Colin L.; Mayeux, Richard; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Sperling, Reisa A.; Marcus, Daniel; Cairns, Nigel J.; Buckles, Virginia D.; Ladenson, Jack H.; Morris, John C.; Holtzman, David M.

    2014-01-01

    Clinicopathologic evidence suggests the pathology of Alzheimer disease (AD) begins many years prior to cognitive symptoms. Biomarkers are required to identify affected individuals during this asymptomatic (“pre-clinical”) stage to permit intervention with potential disease-modifying therapies designed to preserve normal brain function. Studies of families with autosomal-dominant AD (ADAD) mutations provide a unique and powerful means to investigate AD biomarker changes during the asymptomatic period. In this biomarker study comparing cerebrospinal fluid (CSF), plasma and in vivo amyloid imaging, cross-sectional data obtained at baseline in individuals from ADAD families enrolled in the Dominantly Inherited Alzheimer Network (DIAN) demonstrate reduced concentrations of CSF amyloid-β1-42 (Aβ1–42) associated with the presence of β-amyloid plaques, and elevated concentrations of CSF tau, ptau181 and VILIP-1, markers of neurofibrillary tangles and/or neuronal injury/death, in asymptomatic mutation carriers 10-20 years prior to their estimated age at symptom onset (EAO), and prior to detection of cognitive deficits. When compared longitudinally, however, the concentrations of CSF biomarkers of neuronal injury/death within-individuals decrease after their EAO, suggesting a slowing of acute neurodegenerative processes with symptomatic disease progression. These results emphasize the importance of longitudinal, within-person assessment when modeling biomarker trajectories across the course of the disease. If corroborated, this pattern may influence the definition of a positive neurodegenerative biomarker outcome in clinical trials. PMID:24598588

  16. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity

    PubMed Central

    Hopp, Katharina; Ward, Christopher J.; Hommerding, Cynthia J.; Nasr, Samih H.; Tuan, Han-Fang; Gainullin, Vladimir G.; Rossetti, Sandro; Torres, Vicente E.; Harris, Peter C.

    2012-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. The phenotypic spectrum, however, ranges from in utero onset to adequate renal function at old age. Recent patient data suggest that the disease is dosage dependent, where incompletely penetrant alleles influence disease severity. Here, we have developed a knockin mouse model matching a likely disease variant, PKD1 p.R3277C (RC), and have proved that its functionally hypomorphic nature modifies the ADPKD phenotype. While Pkd1+/null mice are normal, Pkd1RC/null mice have rapidly progressive disease, and Pkd1RC/RC animals develop gradual cystogenesis. These models effectively mimic the pathophysiological features of in utero–onset and typical ADPKD, respectively, correlating the level of functional Pkd1 product with disease severity, highlighting the dosage dependence of cystogenesis. Additionally, molecular analyses identified p.R3277C as a temperature-sensitive folding/trafficking mutant, and length defects in collecting duct primary cilia, the organelle central to PKD pathogenesis, were clearly detected for the first time to our knowledge in PKD1. Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing. PMID:23064367

  17. Self-reported disability following distal radius fractures: the influence of hand dominance.

    PubMed

    Beaulé, P E; Dervin, G F; Giachino, A A; Rody, K; Grabowski, J; Fazekas, A

    2000-05-01

    The purpose of this study was to record the spectrum of self-reported disability following distal radius fractures and to gauge for differences in hand dominance in the use of subjective outcome data. Items were generated through patient interviews, literature review, and peer consultation. Fifty-three items were evaluated by a group of 55 patients recovering from a fracture of the distal radius, which established the prevalence, mean severity score, and overall severity score (or impact) of each item as it related to physical function and social/emotional impact. Hand dominance, age, and gender were also recorded. The results confirm that many patients who sustain distal radius fractures experience substantial impairment across a spectrum of quality of life domains. Because patients who sustain a dominant wrist injury are likely to report greater functional impairment across a wider range of activities, they also possess a greater potential for improvement. The practical implication is that outcome studies for the treatment of distal radius fractures should take hand dominance into account. PMID:10811752

  18. Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics

    PubMed Central

    2011-01-01

    Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular

  19. Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation.

    PubMed

    Wang, Xue; Xin, Qian; Li, Lin; Li, Jiangxia; Zhang, Changwu; Qiu, Rongfang; Qian, Chenmin; Zhao, Hailing; Liu, Yongchao; Shan, Shan; Dang, Jie; Bian, Xianli; Shao, Changshun; Gong, Yaoqin; Liu, Qiji

    2014-09-01

    Split-hand/foot malformation (SHFM) is a congenital limb deformity due to the absence or dysplasia of central rays of the autopod. Six SHFM loci have already been identified. Here we describe a Chinese family with autosomal-dominant SHFM1 that has previously been mapped to 7q21.2-21.3. The two affected family members, mother and son, showed deep median clefts between toes, ectrodactyly and syndactyly; the mother also showed triphalangeal thumbs. Exome sequencing and variant screening of candidate genes in the six loci known to be responsible for SHFM revealed a novel heterozygous mutation, c.558G>T (p.(Gln186His)), in distal-less homeobox 5 (DLX5). As DLX5 encodes a transcription factor capable of transactivating MYC, we also tested whether the mutation could affect DLX5 transcription acitivity. Results from luciferase reporter assay revealed that a mutation in DLX5 compromised its transcriptional activity. This is the first report of a mutation in DLX5 leading to autosomal-dominant SHFM1. PMID:24496061

  20. Percutaneous Treatment of Pyocystis in Patients with Autosomal Dominant Polycystic Kidney Disease

    SciTech Connect

    Akinci, Devrim Turkbey, Baris; Yilmaz, Rahmi; Akpinar, Erhan; Ozmen, Mustafa N.; Akhan, Okan

    2008-09-15

    The course of autosomal dominant polycystic kidney disease (ADPKD) is frequently complicated by infection of a cyst within a polycystic kidney, which is a diagnostic and therapeutic dilemma damaging the clinical course of patients. The aim of this study was to demonstrate the safety and efficacy of percutaneous drainage in management of infected cysts in ADPKD patients. Between May 2003 and December 2006, percutaneous drainage was performed in 16 infected renal cysts of four kidneys in three patients (two females, one male), with a mean age of 57.3 years. Cyst dimensions, total amount of drained cyst fluid, catheterization duration, isolated microorganisms, and follow-up duration were recorded. Technical, clinical success rates were 100%; the complication rate was 0%. Diameters of cysts ranged between 3 and 8 cm. Average volume of drained fluid and average duration of catheterization for one cyst were 226 ml and 9.8 days. No recurrence was encountered but one patient (no. 3), who had pyocystis in the right kidney and was treated with catheterization, referred with left flank pain due to pyocystis in her left kidney 3 months later. Follow-up durations were 35, 47, and 11 months for patients 1, 2, and 3, respectively. For patient 3, follow-up duration for the second procedure was 7 months. We conclude that percutaneous drainage with antibiotic therapy should be the initial method in management of infected cysts in ADPKD patients, with high success and low complication rates.

  1. Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa.

    PubMed

    Yu, Xinping; Shi, Wei; Cheng, Lulu; Wang, Yanfang; Chen, Ding; Hu, Xuting; Xu, Jinling; Xu, Limin; Wu, Yaming; Qu, Jia; Gu, Feng

    2016-01-01

    Retinitis pigmentosa (RP) is a genetically highly heterogeneous retinal disease and one of the leading causes of blindness in the world. Next-generation sequencing technology has enormous potential for determining the genetic etiology of RP. We sought to identify the underlying genetic defect in a 35-year-old male from an autosomal-dominant RP family with 14 affected individuals. By capturing next-generation sequencing (CNGS) of 144 genes associated with retinal diseases, we identified eight novel DNA variants; however, none of them cosegregated for all the members of the family. Further analysis of the CNGS data led to identification of a recurrent missense mutation (c.403C > T, p.R135W) in the rhodopsin (RHO) gene, which cosegregated with all affected individuals in the family and was not observed in any of the unaffected family members. The p.R135W mutation has a reference single nucleotide polymorphism (SNP) ID (rs104893775), and it appears to be responsible for the disease in this large family. This study highlights the importance of examining NGS data with reference SNP IDs. Thus, our study is important for data analysis of NGS-based clinical genetic diagnoses. PMID:26794436

  2. A novel locus for autosomal dominant cone-rod dystrophy maps to chromosome 10q

    PubMed Central

    Kamenarova, Kunka; Cherninkova, Sylvia; Romero Durán, Margarita; Prescott, DeQuincy; Valdés Sánchez, Maria Lourdes; Mitev, Vanio; Kremensky, Ivo; Kaneva, Radka; Bhattacharya, Shomi S; Tournev, Ivailo; Chakarova, Christina

    2013-01-01

    Here we report recruitment of a three-generation Romani (Gypsy) family with autosomal dominant cone-rod dystrophy (adCORD). Involvement of known adCORD genes was excluded by microsatellite (STR) genotyping and linkage analysis. Subsequently, two independent total-genome scans using STR markers and single-nucleotide polymorphisms (SNPs) were performed. Haplotype analysis revealed a single 6.7-Mb novel locus between markers D10S1757 and D10S1782 linked to the disease phenotype on chromosome 10q26. Linkage analysis gave a maximum LOD score of 3.31 for five fully informative STR markers within the linked interval corresponding to the expected maximum in the family. Multipoint linkage analysis of SNP genotypes yielded a maximum parametric linkage score of 2.71 with markers located in the same chromosomal interval. There is no previously mapped CORD locus in this interval, and therefore the data reported here is novel and likely to identify a new gene that may eventually contribute to new knowledge on the pathogenesis of this condition. Sequencing of several candidate genes within the mapped interval led to negative findings in terms of the underlying molecular pathogenesis of the disease in the family. Analysis by comparative genomic hybridization excluded large chromosomal aberrations as causative of adCORD in the pedigree. PMID:22929024

  3. Effective Small Interfering RNA Therapy to Treat CLCN7-dependent Autosomal Dominant Osteopetrosis Type 2

    PubMed Central

    Capulli, Mattia; Maurizi, Antonio; Ventura, Luca; Rucci, Nadia; Teti, Anna

    2015-01-01

    In about 70% of patients affected by autosomal dominant osteopetrosis type 2 (ADO2), osteoclast activity is reduced by heterozygous mutations of the CLCN7 gene, encoding the ClC-7 chloride/hydrogen antiporter. CLCN7G215R-, CLCN7R767W-, and CLCN7R286W-specific siRNAs silenced transfected mutant mRNA/EGFP in HEK293 cells, in RAW264.7 cells and in human osteoclasts, with no change of CLCN7WT mRNA and no effect of scrambled siRNA on the mutant transcripts. Osteoclasts from Clcn7G213R ADO2 mice showed reduced bone resorption, a condition rescued by Clcn7G213R-specific siRNA. Treatment of ADO2 mice with Clcn7G213R-specific siRNA induced increase of bone resorption variables and decrease of trabecular bone mass, leading to an overall improvement of the osteopetrotic bone phenotype. Treatment did not induce overt adverse effects and was effective also with siRNAs specific for other mutants. These results demonstrate that a siRNA-based experimental treatment of ADO2 is feasible, and underscore a translational impact for future strategy to cure this therapeutically neglected form of osteopetrosis. PMID:26325626

  4. Functional Connectivity in Autosomal Dominant and Late-Onset Alzheimer Disease

    PubMed Central

    Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J; Snyder, Abraham Z; Benzinger, Tammie L; Xiong, Chengjie; Raichle, Marcus; Holtzman, David M; Sperling, Reisa A; Mayeux, Richard; Ghetti, Bernardino; Ringman, John M; Salloway, Stephen; McDade, Eric; Rossor, Martin N; Ourselin, Sebastien; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Weiner, Michael W; Thompson, Paul M; Fox, Nick C; Koeppe, Robert A; Jack, Clifford R; Mathis, Chester A; Oliver, Angela; Blazey, Tyler M; Moulder, Krista; Buckles, Virginia; Hornbeck, Russ; Chhatwal, Jasmeer; Schultz, Aaron P; Goate, Alison M; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; Morris, John C; Ances, Beau M

    2014-01-01

    Importance Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in three specific genes, in contrast to late-onset Alzheimer Disease (LOAD), which has a more polygenetic risk profile. Design, Setting, and Participants We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of ADAD (N=79) and LOAD (N=444) human participants using resting state functional connectivity MRI (rs-fcMRI) at multiple international academic sites. Main Outcomes and Measures For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity as measured by clinical dementia rating (CDR). In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within five RSNs. Results Functional connectivity decreases with increasing CDR were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in each type of AD accurately predicted CDR stage in the other, further demonstrating similarity of functional connectivity loss in each disease type. Among ADAD participants, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared to asymptomatic mutation non-carriers. Conclusions and Relevance rs-fcMRI changes with progressing AD severity are similar between ADAD and LOAD. Rs-fcMRI may be a useful endpoint for LOAD and ADAD therapy trials. ADAD disease process may be an effective model for LOAD disease process. PMID:25069482

  5. Further refinement of the location for autosomal dominant retinitis pigmentosa on chromosome 7p (RP9)

    SciTech Connect

    Inglehearn, C.F.; Keen, T.J.; Al-Maghtheh, M.; Gregory, C.Y.; Bhattacharya, S.S.; Jay, M.R.; Moore, A.T.; Bird, A.C. )

    1994-04-01

    A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this region and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus. 21 refs., 3 figs., 1 tab.

  6. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Dryja, T.P.; Han, L.B.; Cowley, G.S.; McGee, T.L.; Berson, E.L. )

    1991-10-15

    The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150 patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.

  7. Localization of a new autosomal dominant retinitis pigmentosa gene on chromosome 17p screeningof candidate genes

    SciTech Connect

    Greenberg, J.; Goliath, R.; Shugart, Y.Y.

    1994-09-01

    A new gene locus for autosomal dominant retinitis pigmentosa (ADRP) on 17p has been identified in a large South African (SA) family consisting of 28 living affected individuals in 4 successive generations. This is the first ADRP gene to be reported from SA. The human recoverin (RCVN) gene, which codes for a retinal-specific protein important in recovery to the dark state after visual excitation, has been mapped to 17p13.1 and was considered as a prime candidate gene for the disorder in this family. Mutation screening (using 8 different electrophoretic conditions to resolve heteroduplexes and SSCPs) did not produce any evidence of RCVN being involved in the pathogenesis of ADRP in this SA family. In addition, a mobility shift detected within exon 1 of the RCVN gene did not track with the ADRP phenotype. RP patients from 77 SA families and 30 normal individuals are being examined to establish the frequency of this polymorphism in the SA population. Highly polymorphic markers from 17p13 are now being sought in order to establish the minimum region containing this novel ADRP-SA gene. Two additional recently described retinal-expressed cDNAs, guanylyl cyclase and pigment epithelium-derived factor, which map to 17p13.1, will be tested for tight linkage to ADRP-SA.

  8. A gene for autosomal dominant hearing loss on the short arm of chromosome 1

    SciTech Connect

    Van Camp, G.; Coucke, P.; Willems, P.J.

    1994-09-01

    Hearing loss is the most common form of sensory impairment and many cases are attributable to genetic causes. The genetic defects underlying several syndromic forms of deafness have been identified, but little is known about the causes of non-syndromic hereditary deafness which accounts for the majority of inherited hearing loss. We report here a large Indonesian family with non-syndromal postlingual hearing loss starting in the high frequencies and showing autosomal dominant inheritance. To locate the gene responsible for the hearing loss in this family, we performed a genome search by genetic linkage analysis with microsatellite markers distributed over the whole genome. We have mapped the gene causing deafness in an extended Indonesian family to chromosome 1p with a multipoint lod score higher than 7. Two other smaller families, showing a similar hereditary hearing loss, were also tested for linkage with chromosome 1p. One family originating from the U.S. was linked to this new locus with a multipoint lod score exceeding 5. In another family from the Netherlands this locus was excluded. The flanking markers D1S255 and D1S211 define a region of 6 cM on chromosome 1p which is likely to contain the deafness gene present in the Indonesian and American family.

  9. Peritoneal dialysis for autosomal dominant polycystic kidney disease: a retrospective study*

    PubMed Central

    Xie, Xi-shao; Xie, Zhou-tao; Xiang, Shi-long; Yan, Xing-qun; Zhang, Xiao-hui; Shou, Zhang-fei; Chen, Jiang-hua

    2016-01-01

    To describe the long-term clinical outcomes of patients with autosomal dominant polycystic kidney disease (ADPKD) who are on peritoneal dialysis (PD) therapy. We performed a retrospective matched-cohort analysis comparing the clinical outcomes of 30 ADPKD patients with those of 30 non-diabetic patients who had bilateral small kidneys between July 1 2007 and July 31 2014. The patient groups were matched by age, gender, and time of PD initiation. There were no significant differences in the demographic or biochemical parameters, comorbid conditions, residual glomerular filtration rate, or Charlson comorbidity score at the beginning of PD. The median renal volume was 1315 ml for the ADPKD group and 213 ml for the control group. Patients with ADPKD had similar 3-year patient survival (90.6% versus 86.3%, P=0.807) and technique survival (89.2% versus 74.3%, P=0.506) compared with non-ADPKD patients. Also, there was no significant difference in the peritonitis-free survival between the ADPKD and control groups (P=0.22), and rates of peritonitis were similar (0.19 versus 0.21 episodes per patient-year, P=0.26). No differences were observed in the incidence of PD-related complications, such as hernia and dialysate leak. ADPKD is not a contraindication for PD, and a subgroup of ADPKD patients with relatively small kidney volume can be treated using PD. PMID:27143265

  10. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family.

    PubMed

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-01-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy. PMID:25374051

  11. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  12. Role of follicle-stimulating hormone on biliary cyst growth in autosomal dominant polycystic kidney disease

    PubMed Central

    Onori, Paolo; Mancinelli, Romina; Franchitto, Antonio; Carpino, Guido; Renzi, Anastasia; Brozzetti, Stefania; Venter, Julie; Francis, Heather; Glaser, Shannon; Jefferson, Douglas M.; Alpini, Gianfranco; Gaudio, Eugenio

    2014-01-01

    Background Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the progressive development of renal and hepatic cysts. Follicle-stimulating hormone (FSH) has been demonstrated to be a trophic factor for biliary cells in normal rats and experimental cholestasis induced by bile duct ligation (BDL). Aims To assess the effect of FSH on cholangiocyte proliferation during ADPKD using both in vivo and in vitro models. Methods Evaluation of FSH receptor (FSHR), FSH, phospho-extracellular-regulated kinase (pERK) and c-myc expression in liver fragments from normal patients and patients with ADPKD. In vitro, we studied proliferating cell nuclear antigen (PCNA) and cAMP levels in a human immortalized, non-malignant cholangiocyte cell line (H69) and in an immortalized cell line obtained from the epithelium lining the hepatic cysts from the patients with ADPKD (LCDE) with or without transient silencing of the FSH gene. Results Follicle-stimulating hormone is linked to the active proliferation of the cystic wall and to the localization of p-ERK and c-myc. This hormone sustains the biliary growth by activation of the cAMP/ERK signalling pathway. Conclusion These results showed that FSH has an important function in cystic growth acting on the cAMP pathway, demonstrating that it provides a target for medical therapy of hepatic cysts during ADPKD. PMID:23617956

  13. A Mutation in a Skin-Specific Isoform of SMARCAD1 Causes Autosomal-Dominant Adermatoglyphia

    PubMed Central

    Nousbeck, Janna; Burger, Bettina; Fuchs-Telem, Dana; Pavlovsky, Mor; Fenig, Shlomit; Sarig, Ofer; Itin, Peter; Sprecher, Eli

    2011-01-01

    Monogenic disorders offer unique opportunities for researchers to shed light upon fundamental physiological processes in humans. We investigated a large family affected with autosomal-dominant adermatoglyphia (absence of fingerprints) also known as the “immigration delay disease.” Using linkage and haplotype analyses, we mapped the disease phenotype to 4q22. One of the genes located in this interval is SMARCAD1, a member of the SNF subfamily of the helicase protein superfamily. We demonstrated the existence of a short isoform of SMARCAD1 exclusively expressed in the skin. Sequencing of all SMARCAD1 coding and noncoding exons revealed a heterozygous transversion predicted to disrupt a conserved donor splice site adjacent to the 3′ end of a noncoding exon uniquely present in the skin-specific short isoform of the gene. This mutation segregated with the disease phenotype throughout the entire family. Using a minigene system, we found that this mutation causes aberrant splicing, resulting in decreased stability of the short RNA isoform as predicted by computational analysis and shown by RT-PCR. Taken together, the present findings implicate a skin-specific isoform of SMARCAD1 in the regulation of dermatoglyph development. PMID:21820097

  14. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia.

    PubMed

    Nousbeck, Janna; Burger, Bettina; Fuchs-Telem, Dana; Pavlovsky, Mor; Fenig, Shlomit; Sarig, Ofer; Itin, Peter; Sprecher, Eli

    2011-08-12

    Monogenic disorders offer unique opportunities for researchers to shed light upon fundamental physiological processes in humans. We investigated a large family affected with autosomal-dominant adermatoglyphia (absence of fingerprints) also known as the "immigration delay disease." Using linkage and haplotype analyses, we mapped the disease phenotype to 4q22. One of the genes located in this interval is SMARCAD1, a member of the SNF subfamily of the helicase protein superfamily. We demonstrated the existence of a short isoform of SMARCAD1 exclusively expressed in the skin. Sequencing of all SMARCAD1 coding and noncoding exons revealed a heterozygous transversion predicted to disrupt a conserved donor splice site adjacent to the 3' end of a noncoding exon uniquely present in the skin-specific short isoform of the gene. This mutation segregated with the disease phenotype throughout the entire family. Using a minigene system, we found that this mutation causes aberrant splicing, resulting in decreased stability of the short RNA isoform as predicted by computational analysis and shown by RT-PCR. Taken together, the present findings implicate a skin-specific isoform of SMARCAD1 in the regulation of dermatoglyph development. PMID:21820097

  15. Molecular genetic study of autosomal dominant retinitis pigmentosa in Lithuanian patients.

    PubMed

    Kucinskas, V; Payne, A M; Ambrasiene, D; Jurgelevicius, V; Steponaviciūte, D; Arciuliene, J V; Daktaraviciene, E; Bhattacharya, S

    1999-03-01

    Lithuanian patients with visual problems were clinically examined for retinitis pigmentosa (RP). A total of 33 unrelated families with autosomal dominant RP (adRP) were identified. Screening for mutations in the rhodopsin (RHO) and peripherin/RDS (RDS) genes was performed using DNA heteroduplex analysis. Direct DNA sequencing in the cases of heteroduplex formation showed the presence of the following mutations and polymorphisms in 14 adRP patients: RHO gene - Lys248Arg (1 case), and Pro347Leu (2 cases); RDS gene - Glu304Gln (12 cases), Lys310Arg (5 cases), and Gly338Asp (12 cases). The presence of these mutations (except Lys248Arg in the RHO gene) was confirmed by relevant restriction enzyme digestion. The frequency of the RDS gene mutations Glu304Gln and Gly338Asp was estimated to be 36.4%, while mutation Lys310Arg was less frequent (15.2%). These 3 RDS gene mutations appear to be polypeptide polymorphisms not related to adRP. PMID:10077725

  16. Further refinement of the location for autosomal dominant retinitis pigmentosa on chromosome 7p (RP9).

    PubMed Central

    Inglehearn, C. F.; Keen, T. J.; al-Maghtheh, M.; Gregory, C. Y.; Jay, M. R.; Moore, A. T.; Bird, A. C.; Bhattacharya, S. S.

    1994-01-01

    A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this region and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus. PMID:8128965

  17. Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease.

    PubMed

    Reed, Berenice Y; Masoumi, Amirali; Elhassan, Elwaleed; McFann, Kim; Cadnapaphornchai, Melissa A; Maahs, David M; Snell-Bergeon, Janet K; Schrier, Robert W

    2011-01-01

    Renal cysts, pain, and hematuria are common presentations of autosomal dominant polycystic kidney disease (ADPKD) in children. Renal function, however, is typically preserved in these patients despite increased renal volume. Since angiogenesis has been implicated in promotion of renal cyst growth in ADPKD, we measured the serum level of various angiogenic factors and early renal structural changes and cardiovascular parameters in 71 patients with ADPKD, with a mean age of 16 years. Renal structure and left ventricular mass index were measured by magnetic resonance imaging or by echocardiogram. Renal function was assessed by creatinine clearance and urinary protein excretion. Serum growth factor levels were measured by enzyme-linked immunosorbent assay. Because of skewed distributions, the various parameters are reported as log(10). Serum log(10) vascular endothelial growth factor was positively correlated with renal and cardiac structure, but negatively with creatinine clearance. Serum angiopoietin 1 levels significantly correlated with structural change in both the kidney and the heart and with urinary protein. Thus, the correlation between angiogenic growth factors with both renal and cardiac disease severity is compatible with a possible role for angiogenesis in the early progression of disease in ADPKD. PMID:20881939

  18. Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease

    PubMed Central

    Reed, Berenice; Masoumi, Amirali; Elhassan, Elwaleed; McFann, Kim; Cadnapaphornchai, Melissa; Maahs, David; Snell-Bergeon, Janet; Schrier, Robert W.

    2013-01-01

    Renal cysts, pain and hematuria are common presentations of autosomal dominant polycystic kidney disease (ADPKD) in children. Renal function, however, is typically preserved in these patients despite increased renal volume. Since angiogenesis has been implicated in promotion of renal cyst growth in ADPKD we measured the serum level of various angiogenic factors and early renal structural changes and cardiovascular parameters in 71 patients with ADPKD with a mean age of 16 years. Renal structure and left ventricular mass index were measured by magnetic resonance imaging or by echocardiogram. Renal function was assessed by creatinine clearance, and urinary protein excretion. Serum growth factor levels were measured by enzyme-linked immunosorbent assay. Because of skewed distributions, the various parameters are reported as log10. Serum Log10 vascular endothelial growth factor was positively correlated with renal and cardiac structure, but negatively correlated with creatinine clearance. Serum angiopoietin 1 levels significantly correlated with structural change in both the kidney and the heart and with urinary protein. Thus, the correlation between angiogenic growth factors with both renal and cardiac disease severity is compatible with a possible role for angiogenesis in the early progression of disease in ADPKD. PMID:20881939

  19. Liver cysts in autosomal-dominant polycystic kidney disease: clinical and computed tomographic study

    SciTech Connect

    Levine, E.; Cook, L.T.; Grantham, J.J.

    1985-08-01

    Hepatic CT findings were analyzed in 44 patients with autosomal-dominant polycystic kidney disease and were correlated with liver and renal function tests and liver, splenic, and renal CT volume measurements. CT showed many large liver cysts in 31.8% of patients, small liver cysts in 25%, and no liver cysts in 43.2%. Patients with many large cysts often showed increased liver volumes. There was no correlation between severity of liver involvement and extent of renal cystic disease as determined from urea nitrogen and creatinine levels and renal volumes. Liver function tests were normal except in two patients, one with a cholangiocarcinoma, which may have arisen from a cyst, and the other with an infected liver cyst and chronic active hepatitis. Accordingly, if liver function tests are abnormal, an attempt should be made to identify complications of polycystic liver disease such as tumor cyst infection, and biliary obstruction. CT is a useful method for detecting liver cysts and identifying patients at risk for these complications.

  20. Identification of the autosomal dominant polycystic kidney disease gene, PKD1

    SciTech Connect

    Schneider, M.C.; Zhang, F.; Geng, L.

    1994-09-01

    The PKDl gene was localized to an {approximately}480 kb interval of chromosome 16pl3. More than 20 independent transcripts were found in the interval. In view of the high new mutation rate in autosomal dominant polycystic kidney diseases (ADPKD), we anticipated the PKD1 gene would be large. The largest transcript in the region was represented by five cDNA clones located adjacent to the tuberin gene (TSC2). Two of these clones, KG8 and NKG9, contain {approximately}4.5 kb of contiguous sequence corresponding to the 3{prime} end of the 14 kb mRNA which is transcribed from telomeric to centromeric. They spans 11 exons, and to evaluate the reading frame of the cDNA, we have compared the human and monkey sequence using human primers, and found 90-94% identity at the DNA level, and by observing amino acid conservation, determined the reading frame. To date, our open-reading frame of {approximately}800 amino-acids contained only a potential threonine kinase site, but no other recognizable peptide motifs or repeats, and was not homologous to sequences in Swissprot and GenBank. No Southern blot abnormalities have been detected with the cDNA probes used. However, an exon-by-exon scan of 8 exons for mutations by SSCP and genomic sequencing (predicted missense changes) has identified 3 patients with mutations not found in normals, and identify the KG8 gene as the PKD1 gene.

  1. Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing.

    PubMed

    Tan, Adrian Y; Michaeel, Alber; Liu, Genyan; Elemento, Olivier; Blumenfeld, Jon; Donahue, Stephanie; Parker, Tom; Levine, Daniel; Rennert, Hanna

    2014-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2. However, genetic analysis is complicated by six PKD1 pseudogenes, large gene sizes, and allelic heterogeneity. We developed a new clinical assay for PKD gene analysis using paired-end next-generation sequencing (NGS) by multiplexing individually bar-coded long-range PCR libraries and analyzing them in one Illumina MiSeq flow cell. The data analysis pipeline has been optimized and automated with Unix shell scripts to accommodate variant calls. This approach was validated using a cohort of 25 patients with ADPKD previously analyzed by Sanger sequencing. A total of 250 genetic variants were identified by NGS, spanning the entire exonic and adjacent intronic regions of PKD1 and PKD2, including all 16 pathogenic mutations. In addition, we identified three novel mutations in a mutation-negative cohort of 24 patients with ADPKD previously analyzed by Sanger sequencing. This NGS method achieved sensitivity of 99.2% (95% CI, 96.8%-99.9%) and specificity of 99.9% (95% CI, 99.7%-100.0%), with cost and turnaround time reduced by as much as 70%. Prospective NGS analysis of 25 patients with ADPKD demonstrated a detection rate comparable with Sanger standards. In conclusion, the NGS method was superior to Sanger sequencing for detecting PKD gene mutations, achieving high sensitivity and improved gene coverage. These characteristics suggest that NGS would be an appropriate new standard for clinical genetic testing of ADPKD. PMID:24374109

  2. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. PMID:24641620

  3. Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects.

    PubMed

    Chang, Ming-Yang; Ong, Albert C M

    2012-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, accounting for up to 10% of patients on renal replacement therapy. There are presently no proven treatments for ADPKD and an effective disease-modifying drug would have significant implications for patients and their families. Since the identification of PKD1 and PKD2, there has been an explosion in knowledge identifying new disease mechanisms and testing new drugs. Currently, the three major treatment strategies are to: (1) reduce cAMP levels; (2) inhibit cell proliferation, and (3) reduce fluid secretion. Several compounds shown to be effective in preclinical models have already undergone clinical trials and more are planned. In addition, a whole raft of other compounds have been developed from preclinical studies. The purpose of this paper is to evaluate the results of recent published trials, review current trials and highlight the most promising compounds in the pipeline. There appears to be no shortage of potential candidates, but several key issues need to be addressed to facilitate clinical translation. PMID:22205396

  4. Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs.

    PubMed

    Tan, Ying-Cai; Blumenfeld, Jon; Rennert, Hanna

    2011-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common, monogenic multi-systemic disorder characterized by the development of renal cysts and various extrarenal manifestations. Worldwide, it is a common cause of end-stage renal disease. ADPKD is caused by mutation in either one of two principal genes, PKD1 and PKD2, but has large phenotypic variability among affected individuals, attributable to PKD genic and allelic variability and, possibly, modifier gene effects. Recent studies have generated considerable information regarding the genetic basis and molecular diagnosis of this disease, its pathogenesis, and potential strategies for targeted treatment. The purpose of this article is to provide a comprehensive review of the genetics of ADPKD, including mechanisms responsible for disease development, the role of gene variations and mutations in disease presentation, and the putative role of microRNAs in ADPKD etiology. The emerging and important role of genetic testing and the advent of novel molecular diagnostic applications also are reviewed. This article is part of a Special Issue entitled: Polycystic Kidney Disease. PMID:21392578

  5. Delayed diagnosis of primary aldosteronism in patients with autosomal dominant polycystic kidney diseases.

    PubMed

    Kao, Chih-Chin; Wu, Vin-Cent; Kuo, Chin-Chi; Lin, Yen-Hung; Hu, Ya-Hui; Tsai, Yao-Chou; Wu, Che-Hsiung; Wu, Kwan-Dun

    2013-06-01

    Hypertension is a frequent early manifestation of autosomal dominant polycystic kidney disease (ADPKD). Several mechanisms can cause hypertension in ADPKD patients, although, primary aldosteronism (PA) as a possible manifestation of hypertension in ADPKD is extremely rare. We retrospectively reviewed the Taiwan Primary Aldosteronism Investigation (TAIPAI) database, which listed a total of 346 patients diagnosed with PA. Of these 346 patients, only three cases of concurrent PA and ADPKD were identified. These patients presented with hypertensive crisis and hypokalemia, and subsequent testing revealed aldosterone-producing adenomas (APAs) that were removed by laparoscopic adrenalectomy. Postoperatively, aldosterone-renin ratios (ARRs) and potassium levels normalized, and blood pressure improved. The diagnosis of PA in ADPKD is extremely challenging because multiple renal cysts can obscure the identification of adrenal adenomas, and ADPKD is associated with hypertension in almost all cases.(1) Because of frequent delays in the diagnosis of PA in ADPKD patients, future prospective studies to screen PA in hypertensive ADPKD patients may be necessary to evaluate the exact prevalence of coexistence of PA and ADPKD. PMID:22791703

  6. Helicobacter cinaedi kidney cyst infection and bacteremia in a patient with autosomal dominant polycystic kidney disease.

    PubMed

    Mandai, Shintaro; Kasagi, Yuri; Kusaka, Keita; Shikuma, Satomi; Akita, Wataru; Kuwahara, Michio

    2014-11-01

    A 48-year-old man with autosomal dominant polycystic kidney disease (ADPKD) was admitted to our hospital with a 5-day history of lower right back pain, high-grade fever, and arthralgia. He was diagnosed with right kidney cyst infection and bacteremia due to Helicobacter cinaedi (H. cinaedi) based on these symptoms, highly elevated CRP (32.25 mg/dL), abdominal magnetic resonance imaging findings, and the identification of H. cinaedi from blood cultures using PCR and sequence analysis of the 16S ribosomal DNA gene. Intravenous cefotaxime 0.5 g twice daily followed by meropenem 0.5 g twice daily and ciprofloxacin 200 mg twice daily were partially effective; oral doxycycline added at 200 mg/day finally eradicated the infection. Total duration of antimicrobial therapy was 9 weeks. H. cinaedi infections typically present as bacteremia with or without cellulitis in immunocompromised patients such as those with AIDS or malignant disease. To our knowledge, this is the first report describing an ADPKD patient with H. cinaedi cyst infection. Although H. cinaedi infections are increasingly recognized, even in immunocompetent subjects, numerous cases may still be overlooked given that this bacterium is slow-growing, and is difficult to culture, be Gram-stained, and identify on phenotypic tests. Consideration of this bacterium as a possible pathogen and sufficient duration of incubation with molecular testing are necessary in treating ADPKD patients with cyst infection. PMID:25131293

  7. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts.

    PubMed

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  8. Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts

    PubMed Central

    Yu, Yinhui; Wu, Menghan; Chen, Xinyi; Zhu, Yanan; Gong, Xiaohua; Yao, Ke

    2016-01-01

    Autosomal dominant congenital cataracts (ADCC) are clinically and genetically heterogeneous diseases. The present study recruited two Chinese families with bilateral nuclear cataract or zonular pulverulent phenotype. Direct sequencing of candidate genes identified two novel missense mutations of Cx50, Cx50P59A (c.175C > G) and Cx50R76H (c.227G > A), both co-segregated well with all affected individuals. Bioinformatics analysis predicted deleterious for both mutations. Functional and cellular behaviors of wild type and mutant Cx50 examined by stably transfecting recombinant systems revealed similar protein expression levels. Protein distribution pattern by fluorescence microscopy showed that Cx50R76H localized at appositional membranes forming gap junctions with enormous cytoplasmic protein accumulation, whereas the Cx50P59A mutation was found inefficient at forming detectable plaques. Cell growth test by MTT assay showed that induction of Cx50P59A decreased cell viability. Our study constitutes the first report that the Cx50P59A and Cx50R76H mutations are associated with ADCC and expands the mutation spectrum of Cx50 in association with congenital cataracts. The genetic, cellular, and functional data suggest that the altered intercellular communication governed by mutated Cx50 proteins may act as the molecular mechanism underlying ADCC, which further confirms the role of Cx50 in the maintenance of human lens transparency. PMID:27216975

  9. A new autosomal dominant eye and lung syndrome linked to mutations in TIMP3 gene

    PubMed Central

    Meunier, Isabelle; Bocquet, Béatrice; Labesse, Gilles; Zeitz, Christina; Defoort-Dhellemmes, Sabine; Lacroux, Annie; Mauget-Faysse, Martine; Drumare, Isabelle; Gamez, Anne-Sophie; Mathieu, Cyril; Marquette, Virginie; Sagot, Lola; Dhaenens, Claire-Marie; Arndt, Carl; Carroll, Patrick; Remy-Jardin, Martine; Cohen, Salomon Yves; Sahel, José-Alain; Puech, Bernard; Audo, Isabelle; Mrejen, Sarah; Hamel, Christian P.

    2016-01-01

    To revisit the autosomal dominant Sorsby fundus dystrophy (SFD) as a syndromic condition including late-onset pulmonary disease. We report clinical and imaging data of ten affected individuals from 2 unrelated families with SFD and carrying heterozygous TIMP3 mutations (c.572A > G, p.Y191C, exon 5, in family 1 and c.113C > G, p.S38C, exon 1, in family 2). In family 1, all SFD patients older than 50 (two generations) had also a severe emphysema, despite no history of smoking or asthma. In the preceding generation, the mother died of pulmonary emphysema and she was blind after the age of 50. Her two great-grandsons (<20 years), had abnormal Bruch Membrane thickness, a sign of eye disease. In family 2, eye and lung diseases were also associated in two generations, both occurred later, and lung disease was moderate (bronchiectasis). This is the first report of a syndromic SFD in line with the mouse model uncovering the role of TIMP3 in human lung morphogenesis and functions. The TIMP3 gene should be screened in familial pulmonary diseases with bronchiectasis, associated with a medical history of visual loss. In addition, SFD patients should be advised to avoid tobacco consumption, to practice sports, and to undergo regular pulmonary examinations. PMID:27601084

  10. A new autosomal dominant eye and lung syndrome linked to mutations in TIMP3 gene.

    PubMed

    Meunier, Isabelle; Bocquet, Béatrice; Labesse, Gilles; Zeitz, Christina; Defoort-Dhellemmes, Sabine; Lacroux, Annie; Mauget-Faysse, Martine; Drumare, Isabelle; Gamez, Anne-Sophie; Mathieu, Cyril; Marquette, Virginie; Sagot, Lola; Dhaenens, Claire-Marie; Arndt, Carl; Carroll, Patrick; Remy-Jardin, Martine; Cohen, Salomon Yves; Sahel, José-Alain; Puech, Bernard; Audo, Isabelle; Mrejen, Sarah; Hamel, Christian P

    2016-01-01

    To revisit the autosomal dominant Sorsby fundus dystrophy (SFD) as a syndromic condition including late-onset pulmonary disease. We report clinical and imaging data of ten affected individuals from 2 unrelated families with SFD and carrying heterozygous TIMP3 mutations (c.572A > G, p.Y191C, exon 5, in family 1 and c.113C > G, p.S38C, exon 1, in family 2). In family 1, all SFD patients older than 50 (two generations) had also a severe emphysema, despite no history of smoking or asthma. In the preceding generation, the mother died of pulmonary emphysema and she was blind after the age of 50. Her two great-grandsons (<20 years), had abnormal Bruch Membrane thickness, a sign of eye disease. In family 2, eye and lung diseases were also associated in two generations, both occurred later, and lung disease was moderate (bronchiectasis). This is the first report of a syndromic SFD in line with the mouse model uncovering the role of TIMP3 in human lung morphogenesis and functions. The TIMP3 gene should be screened in familial pulmonary diseases with bronchiectasis, associated with a medical history of visual loss. In addition, SFD patients should be advised to avoid tobacco consumption, to practice sports, and to undergo regular pulmonary examinations. PMID:27601084

  11. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France.

    PubMed

    Wintjens, René; Bozon, Dominique; Belabbas, Khaldia; MBou, Félicien; Girardet, Jean-Philippe; Tounian, Patrick; Jolly, Mathilde; Boccara, Franck; Cohen, Ariel; Karsenty, Alexandra; Dubern, Béatrice; Carel, Jean-Claude; Azar-Kolakez, Ahlam; Feillet, François; Labarthe, François; Gorsky, Anne-Marie Colin; Horovitz, Alice; Tamarindi, Catherine; Kieffer, Pierre; Lienhardt, Anne; Lascols, Olivier; Di Filippo, Mathilde; Dufernez, Fabienne

    2016-03-01

    Autosomal dominant hypercholesterolemia (ADH) is a human disorder characterized phenotypically by isolated high-cholesterol levels. Mutations in the low density lipoprotein receptor (LDLR), APOB, and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes are well known to be associated with the disease. To characterize the genetic background associated with ADH in France, the three ADH-associated genes were sequenced in a cohort of 120 children and 109 adult patients. Fifty-one percent of the cohort had a possible deleterious variant in LDLR, 3.1% in APOB, and 1.7% in PCSK9. We identified 18 new variants in LDLR and 2 in PCSK9. Three LDLR variants, including two newly identified, were studied by minigene reporter assay confirming the predicted effects on splicing. Additionally, as recently an in-frame deletion in the APOE gene was found to be linked to ADH, the sequencing of this latter gene was performed in patients without a deleterious variant in the three former genes. An APOE variant was identified in three patients with isolated severe hypercholesterolemia giving a frequency of 1.3% in the cohort. Therefore, even though LDLR mutations are the major cause of ADH with a large mutation spectrum, APOE variants were found to be significantly associated with the disease. Furthermore, using structural analysis and modeling, the identified APOE sequence changes were predicted to impact protein function. PMID:26802169

  12. Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Menezes, Luis F.; Lin, Cheng-Chao; Zhou, Fang; Germino, Gregory G.

    2016-01-01

    Background The major gene mutated in autosomal dominant polycystic kidney disease was first identified over 20 years ago, yet its function remains poorly understood. We have used a systems-based approach to examine the effects of acquired loss of Pkd1 in adult mouse kidney as it transitions from normal to cystic state. Methods We performed transcriptional profiling of a large set of male and female kidneys, along with metabolomics and lipidomics analyses of a subset of male kidneys. We also assessed the effects of a modest diet change on cyst progression in young cystic mice. Fatty acid oxidation and glycolytic rates were measured in five control and mutant pairs of epithelial cells. Results We find that females have a significantly less severe kidney phenotype and correlate this protection with differences in lipid metabolism. We show that sex is a major determinant of the transcriptional profile of mouse kidneys and that some of this difference is due to genes involved in lipid metabolism. Pkd1 mutant mice have transcriptional profiles consistent with changes in lipid metabolism and distinct metabolite and complex lipid profiles in kidneys. We also show that cells lacking Pkd1 have an intrinsic fatty acid oxidation defect and that manipulation of lipid content of mouse chow modifies cystic disease. Interpretation Our results suggest PKD could be a disease of altered cellular metabolism. PMID:27077126

  13. Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa

    PubMed Central

    Yu, Xinping; Shi, Wei; Cheng, Lulu; Wang, Yanfang; Chen, Ding; Hu, Xuting; Xu, Jinling; Xu, Limin; Wu, Yaming; Qu, Jia; Gu, Feng

    2016-01-01

    Retinitis pigmentosa (RP) is a genetically highly heterogeneous retinal disease and one of the leading causes of blindness in the world. Next-generation sequencing technology has enormous potential for determining the genetic etiology of RP. We sought to identify the underlying genetic defect in a 35-year-old male from an autosomal-dominant RP family with 14 affected individuals. By capturing next-generation sequencing (CNGS) of 144 genes associated with retinal diseases, we identified eight novel DNA variants; however, none of them cosegregated for all the members of the family. Further analysis of the CNGS data led to identification of a recurrent missense mutation (c.403C > T, p.R135W) in the rhodopsin (RHO) gene, which cosegregated with all affected individuals in the family and was not observed in any of the unaffected family members. The p.R135W mutation has a reference single nucleotide polymorphism (SNP) ID (rs104893775), and it appears to be responsible for the disease in this large family. This study highlights the importance of examining NGS data with reference SNP IDs. Thus, our study is important for data analysis of NGS-based clinical genetic diagnoses. PMID:26794436

  14. Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database.

    PubMed

    Ringman, John M; Monsell, Sarah; Ng, Denise W; Zhou, Yan; Nguyen, Andy; Coppola, Giovanni; Van Berlo, Victoria; Mendez, Mario F; Tung, Spencer; Weintraub, Sandra; Mesulam, Marek-Marsel; Bigio, Eileen H; Gitelman, Darren R; Fisher-Hubbard, Amanda O; Albin, Roger L; Vinters, Harry V

    2016-03-01

    Alzheimer disease (AD) represents a genetically heterogeneous entity. To elucidate neuropathologic features of autosomal dominant AD ([ADAD] due to PSEN1, APP, or PSEN2 mutations), we compared hallmark AD pathologic findings in 60 cases of ADAD and 120 cases of sporadic AD matched for sex, race, ethnicity, and disease duration. Greater degrees of neuritic plaque and neurofibrillary tangle formation and cerebral amyloid angiopathy (CAA) were found in ADAD (p values < 0.01). Moderate to severe CAA was more prevalent in ADAD (63.3% vs. 39.2%, p = 0.003), and persons with PSEN1 mutations beyond codon 200 had higher average Braak scores and severity and prevalence of CAA than those with mutations before codon 200. Lewy body pathology was less extensive in ADAD but was present in 27.1% of cases. We also describe a novel pathogenic PSEN1 mutation (P267A). The finding of more severe neurofibrillary pathology and CAA in ADAD, particularly in carriers of PSEN1 mutations beyond codon 200, warrants consideration when designing trials to treat or prevent ADAD. The finding of Lewy body pathology in a substantial minority of ADAD cases supports the assertion that development of Lewy bodies may be in part driven by abnormal β-amyloid protein precursor processing. PMID:26888304

  15. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease.

    PubMed

    Lee, Seung Hun; Somlo, Stefan

    2014-06-01

    The primary cilium of renal epithelia acts as a transducer of extracellular stimuli. Polycystin (PC)1 is the protein encoded by the PKD1 gene that is responsible for the most common and severe form of autosomal dominant polycystic kidney disease (ADPKD). PC1 forms a complex with PC2 via their respective carboxy-terminal tails. Both proteins are expressed in the primary cilia. Mutations in either gene affect the normal architecture of renal tubules, giving rise to ADPKD. PC1 has been proposed as a receptor that modulates calcium signals via the PC2 channel protein. The effect of PC1 dosage has been described as the rate-limiting modulator of cystic disease. Reduced levels of PC1 or disruption of the balance in PC1/PC2 level can lead to the clinical features of ADPKD, without complete inactivation. Recent data show that ADPKD resulting from inactivation of polycystins can be markedly slowed if structurally intact cilia are also disrupted at the same time. Despite the fact that no single model or mechanism from these has been able to describe exclusively the pathogenesis of cystic kidney disease, these findings suggest the existence of a novel cilia-dependent, cyst-promoting pathway that is normally repressed by polycystin function. The results enable us to rethink our current understanding of genetics and cilia signaling pathways of ADPKD. PMID:26877954

  16. Autosomal dominant polycystic kidney disease: new treatment options and how to test their efficacy.

    PubMed

    Wüthrich, Rudolf P; Serra, Andreas L; Kistler, Andreas D

    2009-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) represents a slowly progressing cystic kidney disorder which evolves into end-stage renal disease in the majority of patients. Currently, there are no established treatments to retard the progression of the disease, but several promising therapeutic options are being tested in ongoing clinical trials. An inherent dilemma for the investigation of therapies in ADPKD is the dissociation of the early onset and constant rate of cyst growth from the delayed but accelerated loss of renal function. In order to prevent the latter, one needs to act on the former, i.e. current belief by experts in the field is that (1) retardation of cyst growth will ultimately improve the loss of glomerular filtration rate, and (2) cyst volume is an ideal surrogate parameter for outcome in early ADPKD. The present review will discuss the utility and the techniques for kidney and cyst volume measurements to assess disease progression in ADPKD, and summarizes ongoing clinical trials testing novel therapeutic options. PMID:19887826

  17. Determinants of renal volume in autosomal-dominant polycystic kidney disease.

    PubMed

    Grantham, J J; Cook, L T; Torres, V E; Bost, J E; Chapman, A B; Harris, P C; Guay-Woodford, L M; Bae, K T

    2008-01-01

    The Consortium of Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) recently showed that renal enlargement in autosomal-dominant polycystic kidney disease mimicked exponential growth. We determined the effects of cyst initiation rate, total number, and growth rate on the time-dependent change of total cyst volume (TCV). Mathematical models with equations integrating cyst surface area, volume, and an invariant growth rate constant were used to compute the time-dependent change in volume of solitary and multiple cysts. Multiple expanding cysts increased TCV in an exponential-like pattern even when individual cysts formed at different rates or exhibited different but constant growth rates. TCV depended on the rate of cyst initiation and on the total number of cysts; however, the compounding effect of exponential-like growth was the most powerful determinant of long-term cyst expansion. Extrapolation of TCV data plots for individual subjects back to an age of 18 predicted TCV values within an established range. We conclude that cysts started early in life were the main contributor to eventual TCV while their growth rate primarily determined renal size; although the rate of formation and the ultimate number of cysts also contributed. The good fit between the exponential models and the extrapolated CRISP data indicates that the TCV growth rate is a defining trait for individual patients and may be used as a prognostic marker. PMID:17960141

  18. Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Kasmala, Lorraine; Bond, Wesley S.; de Lucas Cerrillo, Ana M.; Wynn, Kristi; Lewin, Alfred S.

    2016-01-01

    Purpose To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa. Methods Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age. Results The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. Conclusions Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone. PMID:27299810

  19. Mutation of the PAX6 gene in patients with autosomal dominant keratitis.

    PubMed Central

    Mirzayans, F; Pearce, W G; MacDonald, I M; Walter, M A

    1995-01-01

    Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; theta = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The SeyNeu mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the SeyNeu mouse is an excellent animal model of ADK. The finding that mutations in PAX6 underlie ADK, along with a recent report that mutations in PAX6 also underlie Peters anomaly, implicates PAX6 broadly in human anterior segment malformations. Images Figure 2 Figure 1 Figure 3 PMID:7668281

  20. BEST1-related autosomal dominant vitreoretinochoroidopathy: a degenerative disease with a range of developmental ocular anomalies

    PubMed Central

    Vincent, A; McAlister, C; VandenHoven, C; Héon, E

    2011-01-01

    Purpose To describe the spectrum of phenotypic characteristics of BEST1-related autosomal dominant vitreoretinochoroidopathy (ADVIRC) in a family with p.V86M mutation. Methods A retrospective review of the clinical, psychophysical, and electrophysiological phenotypes of six subjects with ADVIRC. Five family members were sequenced for mutations in the BEST1gene. Results A heterozygous change, p.V86M (c.256G>A), was identified in the BEST1gene in the three affected subjects tested, and was shown to segregate with the disease phenotype. The distance visual acuity ranged from ⩾20/25 to absent perception of light. Clinical features observed included angle closure glaucoma (n=2), microcornea with shallow anterior chamber (n=1), iris dysgenesis (n=2), cataracts (n=4), classical peripheral concentric band of retinal hyperpigmentation (n=5), and optic nerve dysplasia (n=1). Full-field electroretinogram response amplitudes ranged from low normal (two cases; 27 and 32 years) to non-recordable (two cases; 42 and 63 years). Goldmann fields were normal in two (27 and 28 years) but were abnormal in two older subjects. Optical coherence tomography showed macular thinning in the proband, whereas his affected daughter had normal macular thickness. Electro-oculography showed borderline Arden's ratio (1.50) in the lone case tested (27 years). Conclusion ADVIRC is a slowly progressive vitreoretinal degeneration that demonstrates marked intra-familial phenotypic variability. Optic nerve dysplasia and iris dysgenesis are novel observations that extend the ocular phenotype of ADVIRC. PMID:21072067

  1. Mutation of the PAX6 gene in patients with autosomal dominant keratitis

    SciTech Connect

    Mirzayans, F.; Pearce, W.G.; MacDonald, I.M.; Walter, M.A.

    1995-09-01

    Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; {theta} = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The Sey{sup Neu} mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the Sey{sup Neu} mouse is an excellent animal model of ADK. The finding that mutations in PAX6 also underlie Peters anomaly implicates PAX6 broadly in human anterior segment malformations. 42 refs., 5 figs., 3 tabs.

  2. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease.

    PubMed

    Pottier, C; Hannequin, D; Coutant, S; Rovelet-Lecrux, A; Wallon, D; Rousseau, S; Legallic, S; Paquet, C; Bombois, S; Pariente, J; Thomas-Anterion, C; Michon, A; Croisile, B; Etcharry-Bouyx, F; Berr, C; Dartigues, J-F; Amouyel, P; Dauchel, H; Boutoleau-Bretonnière, C; Thauvin, C; Frebourg, T; Lambert, J-C; Campion, D

    2012-09-01

    Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD. PMID:22472873

  3. Peritoneal dialysis for autosomal dominant polycystic kidney disease: a retrospective study.

    PubMed

    Xie, Xi-Shao; Xie, Zhou-Tao; Xiang, Shi-Long; Yan, Xing-Qun; Zhang, Xiao-Hui; Shou, Zhang-Fei; Chen, Jiang-Hua

    2016-05-01

    To describe the long-term clinical outcomes of patients with autosomal dominant polycystic kidney disease (ADPKD) who are on peritoneal dialysis (PD) therapy. We performed a retrospective matched-cohort analysis comparing the clinical outcomes of 30 ADPKD patients with those of 30 non-diabetic patients who had bilateral small kidneys between July 1 2007 and July 31 2014. The patient groups were matched by age, gender, and time of PD initiation. There were no significant differences in the demographic or biochemical parameters, comorbid conditions, residual glomerular filtration rate, or Charlson comorbidity score at the beginning of PD. The median renal volume was 1315 ml for the ADPKD group and 213 ml for the control group. Patients with ADPKD had similar 3-year patient survival (90.6% versus 86.3%, P=0.807) and technique survival (89.2% versus 74.3%, P=0.506) compared with non-ADPKD patients. Also, there was no significant difference in the peritonitis-free survival between the ADPKD and control groups (P=0.22), and rates of peritonitis were similar (0.19 versus 0.21 episodes per patient-year, P=0.26). No differences were observed in the incidence of PD-related complications, such as hernia and dialysate leak. ADPKD is not a contraindication for PD, and a subgroup of ADPKD patients with relatively small kidney volume can be treated using PD. PMID:27143265

  4. Genetic analysis of Iranian autosomal dominant polycystic kidney disease: new insight to haplotype analysis.

    PubMed

    Entezam, M; Khatami, M R; Saddadi, F; Ayati, M; Roozbeh, J; Saghafi, H; Keramatipour, M

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) caused by mutations in two PKD1 and PKD2 genes. Due to the complexity of the PKD1 gene, its direct mutation screening is an expensive and time-consuming procedure. Pedigree-based haplotype analysis is a useful indirect approach to identify the responsible gene in families with multiple affected individuals, before direct mutation analysis. Here, we applied this approach to investigate 15 appropriate unrelated ADPKD families, selected from 25 families, who referred for genetic counseling. Four polymorphic microsatellite markers were selected around each PKD1 and PKD2 loci. In addition, by investigating the genomic regions, two novel flanking tetranucleotide STR markers were identified. Haplotype analysis and calculating Lod score confirmed linkage to PKD1 in 9 families (60%) and to PKD2 in 2 families (13%). Linkage to both loci was excluded in one family (6.6%). In 2 families (13%) the Lod scores were inconclusive. Causative mutation was identified successfully by direct analysis in two families with confirmed linkage, one to PKD1 and another to PKD2 locus. The study showed that determining the causative locus prior to direct mutation analysis is an efficient strategy to reduce the resources required for genetic analysis of ADPKD families. This is more prominent in PKD2-linked families. Selection of suitable markers, and appropriate PCR multiplexing strategy, using fluorescent labeled primers and 3 primer system, will also add value to this approach. PMID:26950445

  5. Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database

    PubMed Central

    Ringman, John M.; Monsell, Sarah; Ng, Denise W.; Zhou, Yan; Nguyen, Andy; Coppola, Giovanni; Van Berlo, Victoria; Mendez, Mario F.; Tung, Spencer; Weintraub, Sandra; Mesulam, Marek-Marsel; Bigio, Eileen H.; Gitelman, Darren R.; Fisher-Hubbard, Amanda O.; Albin, Roger L.; Vinters, Harry V.

    2016-01-01

    Alzheimer disease (AD) represents a genetically heterogeneous entity. To elucidate neuropathologic features of autosomal dominant AD ([ADAD] due to PSEN1, APP, or PSEN2 mutations), we compared hallmark AD pathologic findings in 60 cases of ADAD and 120 cases of sporadic AD matched for sex, race, ethnicity, and disease duration. Greater degrees of neuritic plaque and neurofibrillary tangle formation and cerebral amyloid angiopathy (CAA) were found in ADAD (p values < 0.01). Moderate to severe CAA was more prevalent in ADAD (63.3% vs. 39.2%, p = 0.003), and persons with PSEN1 mutations beyond codon 200 had higher average Braak scores and severity and prevalence of CAA than those with mutations before codon 200. Lewy body pathology was less extensive in ADAD but was present in 27.1% of cases. We also describe a novel pathogenic PSEN1 mutation (P267A). The finding of more severe neurofibrillary pathology and CAA in ADAD, particularly in carriers of PSEN1 mutations beyond codon 200, warrants consideration when designing trials to treat or prevent ADAD. The finding of Lewy body pathology in a substantial minority of ADAD cases supports the assertion that development of Lewy bodies may be in part driven by abnormal β-amyloid protein precursor processing. PMID:26888304

  6. A Missense Mutation in HK1 Leads to Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Wang, Feng; Wang, Yandong; Zhang, Bin; Zhao, Li; Lyubasyuk, Vera; Wang, Keqing; Xu, Mingchu; Li, Yumei; Wu, Frances; Wen, Cindy; Bernstein, Paul S.; Lin, Danni; Zhu, Susanna; Wang, Hui; Zhang, Kang; Chen, Rui

    2014-01-01

    Purpose. Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 60 causative genes known to date. Nevertheless, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing genes are yet to be identified. In this study, we aimed to identify the causative mutation for a large autosomal dominant RP (adRP) family with negative results from known retinal disease gene screening. Methods. Linkage analysis followed by whole-exome sequencing was performed. Stringent variant filtering and prioritization was carried out to identify the causative mutation. Results. Linkage analysis identified a minimal disease region of 8 Mb on chromosome 10 with a peak parametric logarithm (base 10) of odds (LOD) score of 3.500. Further whole-exome sequencing identified a heterozygous missense mutation (NM_000188.2:c.2539G>A, p.E847K) in hexokinase 1 (HK1) that segregated with the disease phenotype in the family. Biochemical assays showed that the E847K mutation does not affect hexokinase enzymatic activity or the protein stability, suggesting that the mutation may impact other uncharacterized function or result in a gain of function of HK1. Conclusions. Here, we identified HK1 as a novel causative gene for adRP. This is the first report that associates the glucose metabolic pathway with human retinal degenerative disease, suggesting a potential new disease mechanism. PMID:25316723

  7. Pathogenesis of Autosomal Dominant Hereditary Spastic Paraplegia (SPG6) Revealed by a Rat Model

    PubMed Central

    Watanabe, Fumihiro; Arnold, William D.; Hammer, Robert E.; Ghodsizadeh, Odelia; Moti, Harmeet; Schumer, Mackenzie; Hashmi, Ahmed; Hernandez, Anthony; Sneh, Amita; Sahenk, Zarife

    2013-01-01

    Abstract Hereditary spastic paraplegias (HSPs) are characterized by progressive spasticity and weakness in the lower extremities that result from length-dependent central to peripheral axonal degeneration. Mutations in the non-imprinted Prader-Willi/Angelman syndrome locus 1 (NIPA1) transmembrane protein cause an autosomal dominant form of HSP (SPG6). Here, we report that transgenic (Tg) rats expressing a human NIPA1/SPG6 mutation in neurons (Thy1.2-hNIPA1G106R) show marked early onset behavioral and electrophysiologic abnormalities. Detailed morphologic analyses reveal unique histopathologic findings, including the accumulation of tubulovesicular organelles with endosomal features that start at axonal and dendritic terminals, followed by multifocal vacuolar degeneration in both the CNS and peripheral nerves. In addition, the NIPA1G106R mutation in the spinal cord from older Tg rats results in an increase in bone morphogenetic protein type II receptor expression, suggesting that its degradation is impaired. This Thy1.2-hNIPA1G106R Tg rat model may serve as a valuable tool for understanding endosomal trafficking in the pathogenesis of a subgroup of HSP with an abnormal interaction with bone morphogenetic protein type II receptor, as well as for developing potential therapeutic strategies for diseases with axonal degeneration and similar pathogenetic mechanisms. PMID:24128679

  8. Identification of Gene Mutations in Autosomal Dominant Polycystic Kidney Disease through Targeted Resequencing

    PubMed Central

    Hopp, Katharina; Sikkink, Robert A.; Sundsbak, Jamie L.; Lee, Yean Kit; Kubly, Vickie; Eckloff, Bruce W.; Ward, Christopher J.; Winearls, Christopher G.; Torres, Vicente E.; Harris, Peter C.

    2012-01-01

    Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1–32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations. PMID:22383692

  9. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    SciTech Connect

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan; Dai, Xianning; Zhou, Huihui; Dong, Xujie; Liu, Xiao-Ling; Guan, Min-Xin

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  10. A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia

    PubMed Central

    Mencacci, Niccolo E.; Rubio-Agusti, Ignacio; Zdebik, Anselm; Asmus, Friedrich; Ludtmann, Marthe H.R.; Ryten, Mina; Plagnol, Vincent; Hauser, Ann-Kathrin; Bandres-Ciga, Sara; Bettencourt, Conceição; Forabosco, Paola; Hughes, Deborah; Soutar, Marc M.P.; Peall, Kathryn; Morris, Huw R.; Trabzuni, Daniah; Tekman, Mehmet; Stanescu, Horia C.; Kleta, Robert; Carecchio, Miryam; Zorzi, Giovanna; Nardocci, Nardo; Garavaglia, Barbara; Lohmann, Ebba; Weissbach, Anne; Klein, Christine; Hardy, John; Pittman, Alan M.; Foltynie, Thomas; Abramov, Andrey Y.; Gasser, Thomas; Bhatia, Kailash P.; Wood, Nicholas W.

    2015-01-01

    Myoclonus-dystonia (M-D) is a rare movement disorder characterized by a combination of non-epileptic myoclonic jerks and dystonia. SGCE mutations represent a major cause for familial M-D being responsible for 30%–50% of cases. After excluding SGCE mutations, we identified through a combination of linkage analysis and whole-exome sequencing KCTD17 c.434 G>A p.(Arg145His) as the only segregating variant in a dominant British pedigree with seven subjects affected by M-D. A subsequent screening in a cohort of M-D cases without mutations in SGCE revealed the same KCTD17 variant in a German family. The clinical presentation of the KCTD17-mutated cases was distinct from the phenotype usually observed in M-D due to SGCE mutations. All cases initially presented with mild myoclonus affecting the upper limbs. Dystonia showed a progressive course, with increasing severity of symptoms and spreading from the cranio-cervical region to other sites. KCTD17 is abundantly expressed in all brain regions with the highest expression in the putamen. Weighted gene co-expression network analysis, based on mRNA expression profile of brain samples from neuropathologically healthy individuals, showed that KCTD17 is part of a putamen gene network, which is significantly enriched for dystonia genes. Functional annotation of the network showed an over-representation of genes involved in post-synaptic dopaminergic transmission. Functional studies in mutation bearing fibroblasts demonstrated abnormalities in endoplasmic reticulum-dependent calcium signaling. In conclusion, we demonstrate that the KCTD17 c.434 G>A p.(Arg145His) mutation causes autosomal dominant M-D. Further functional studies are warranted to further characterize the nature of KCTD17 contribution to the molecular pathogenesis of M-D. PMID:25983243

  11. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia.

    PubMed

    Mencacci, Niccolo E; Rubio-Agusti, Ignacio; Zdebik, Anselm; Asmus, Friedrich; Ludtmann, Marthe H R; Ryten, Mina; Plagnol, Vincent; Hauser, Ann-Kathrin; Bandres-Ciga, Sara; Bettencourt, Conceição; Forabosco, Paola; Hughes, Deborah; Soutar, Marc M P; Peall, Kathryn; Morris, Huw R; Trabzuni, Daniah; Tekman, Mehmet; Stanescu, Horia C; Kleta, Robert; Carecchio, Miryam; Zorzi, Giovanna; Nardocci, Nardo; Garavaglia, Barbara; Lohmann, Ebba; Weissbach, Anne; Klein, Christine; Hardy, John; Pittman, Alan M; Foltynie, Thomas; Abramov, Andrey Y; Gasser, Thomas; Bhatia, Kailash P; Wood, Nicholas W

    2015-06-01

    Myoclonus-dystonia (M-D) is a rare movement disorder characterized by a combination of non-epileptic myoclonic jerks and dystonia. SGCE mutations represent a major cause for familial M-D being responsible for 30%-50% of cases. After excluding SGCE mutations, we identified through a combination of linkage analysis and whole-exome sequencing KCTD17 c.434 G>A p.(Arg145His) as the only segregating variant in a dominant British pedigree with seven subjects affected by M-D. A subsequent screening in a cohort of M-D cases without mutations in SGCE revealed the same KCTD17 variant in a German family. The clinical presentation of the KCTD17-mutated cases was distinct from the phenotype usually observed in M-D due to SGCE mutations. All cases initially presented with mild myoclonus affecting the upper limbs. Dystonia showed a progressive course, with increasing severity of symptoms and spreading from the cranio-cervical region to other sites. KCTD17 is abundantly expressed in all brain regions with the highest expression in the putamen. Weighted gene co-expression network analysis, based on mRNA expression profile of brain samples from neuropathologically healthy individuals, showed that KCTD17 is part of a putamen gene network, which is significantly enriched for dystonia genes. Functional annotation of the network showed an over-representation of genes involved in post-synaptic dopaminergic transmission. Functional studies in mutation bearing fibroblasts demonstrated abnormalities in endoplasmic reticulum-dependent calcium signaling. In conclusion, we demonstrate that the KCTD17 c.434 G>A p.(Arg145His) mutation causes autosomal dominant M-D. Further functional studies are warranted to further characterize the nature of KCTD17 contribution to the molecular pathogenesis of M-D. PMID:25983243

  12. Further evidence for a locus for autosomal dominant juvenile glaucoma on chromosome 1q and evidence for genetic heterogeneity

    SciTech Connect

    Wiggs, J.; Paglinauan, C.; Stawski, S.

    1994-09-01

    Glaucoma is a term used to describe a group of disorders which have in common a characteristic degeneration of the optic nerve associated with typical visual field defects and usually associated with elevated intraocular pressure. Two percent of white Americans and 6-10% of black Americans are affected by the disease. Compelling data indicate that susceptibility to many types of glaucoma is inherited. Hereditary juvenile glaucoma is one form of glaucoma that develops in children and is inherited as an autosomal dominant trait with high penetrance. Using a single large Caucasian pedigree affected with autosomal dominant juvenile glaucoma, Sheffield discovered positive linkage to a group of markers that map to a 30 cM region on the long arm of chromosome 1 (1q21-q31). We have subsequently identified three unrelated Caucasian pedigrees affected with autosomal dominant juvenile glaucoma that also demonstrate linkage to this region on chromosome 1, with the highest combined lod score of 5.12 at theta = .05 for marker D1S218. The identification of critical recombinant individuals in our three pedigrees has allowed us to further localize the disease gene to a 12 cM region between markers D1S242 and D1S431. In addition, we have identified several pedigrees which do not demonstrate linkage to chromosome 1q, including a black family affected with autosomal dominant juvenile glaucoma that is indistinguishable clinically from the disorder affecting the caucasian pedigrees and three pedigrees affected with pigmentary dispersion syndrome, a form of glaucoma that also affects the juvenile population and is also inherited as an autosomal dominant trait. These findings provide evidence for genetic heterogeneity in juvenile glaucoma.

  13. White Matter Abnormalities Track Disease Progression in PSEN1 Autosomal Dominant Alzheimer's Disease.

    PubMed

    Sánchez-Valle, Raquel; Monté, Gemma C; Sala-Llonch, Roser; Bosch, Beatriz; Fortea, Juan; Lladó, Albert; Antonell, Anna; Balasa, Mircea; Bargalló, Nuria; Molinuevo, José Luis

    2016-02-20

    PSEN1 mutations are the most frequent cause of autosomal dominant Alzheimer's disease (ADAD), and show nearly full penetrance. There is presently increasing interest in the study of biomarkers that track disease progression in order to test therapeutic interventions in ADAD. We used white mater (WM) volumetric characteristics and diffusion tensor imaging (DTI) metrics to investigate correlations with the normalized time to expected symptoms onset (relative age ratio) and group differences in a cohort of 36 subjects from PSEN1 ADAD families: 22 mutation carriers, 10 symptomatic (SMC) and 12 asymptomatic (AMC), and 14 non-carriers (NC). Subjects underwent a 3T MRI. WM morphometric data and DTI metrics were analyzed. We found that PSEN1 MC showed significant negative correlation between fractional anisotropy (FA) and the relative age ratio in the genus and body of corpus callosum and corona radiate (p <  0.05 Family-wise error correction (FWE) at cluster level) and positive correlation with mean diffusivity (MD), axial diffusivity (AxD), and radial diffusivity (RD) in the splenium of corpus callosum. SMC presented WM volume loss, reduced FA and increased MD, AxD, and RD in the anterior and posterior corona radiate, corpus callosum (p <  0.05 FWE) compared with NC. No significant differences were observed between AMC and NC in WM volume or DTI measures. These findings suggest that the integrity of the WM deteriorates linearly in PSEN1 ADAD from the early phases of the disease; thus DTI metrics might be useful to monitor the disease progression. However, the lack of significant alterations at the preclinical stages suggests that these indexes might not be good candidates for early markers of the disease. PMID:26923015

  14. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy

    PubMed Central

    Becchetti, Andrea; Aracri, Patrizia; Meneghini, Simone; Brusco, Simone; Amadeo, Alida

    2015-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex. PMID:25717303

  15. Phosphodiesterase Isoform Regulation of Cell Proliferation and Fluid Secretion in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Pinto, Cibele S; Raman, Archana; Reif, Gail A; Magenheimer, Brenda S; White, Corey; Calvet, James P; Wallace, Darren P

    2016-04-01

    cAMP stimulates cell proliferation and Cl(-)-dependent fluid secretion, promoting the progressive enlargement of renal cysts in autosomal dominant polycystic kidney disease (ADPKD). Intracellular cAMP levels are determined by the balance of cAMP synthesis by adenylyl cyclases and degradation by phosphodiesterases (PDEs). Therefore, PDE isoform expression and activity strongly influence global and compartmentalized cAMP levels. We report here that PDE3 and PDE4 expression levels are lower in human ADPKD tissue and cells compared with those of normal human kidneys (NHKs), whereas PDE1 levels are not significantly different. Inhibition of PDE4 caused a greater increase in basal and vasopressin (AVP)-stimulated cAMP levels and Cl(-) secretion by ADPKD cells than inhibition of PDE1, and inhibition of PDE4 induced cyst-like dilations in cultured mouse Pkd1(-/-) embryonic kidneys. In contrast, inhibition of PDE1 caused greater stimulation of extracellular signal-regulated kinase (ERK) and proliferation of ADPKD cells than inhibition of PDE4, and inhibition of PDE1 enhanced AVP-induced ERK activation. Notably, inhibition of PDE1, the only family of Ca(2+)-regulated PDEs, also induced a mitogenic response to AVP in NHK cells, similar to the effect of restricting intracellular Ca(2+). PDE1 coimmunoprecipitated with B-Raf and A-kinase anchoring protein 79, and AVP increased this interaction in ADPKD but not NHK cells. These data suggest that whereas PDE4 is the major PDE isoform involved in the regulation of global intracellular cAMP and Cl(-) secretion, PDE1 specifically affects the cAMP signal to the B-Raf/MEK/ERK pathway and regulates AVP-induced proliferation of ADPKD cells. PMID:26289612

  16. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics.

    PubMed

    Fujioka, Shinsuke; Sundal, Christina; Wszolek, Zbigniew K

    2013-01-01

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413

  17. Autosomal dominant retinitis pigmentosa: No evidence for nonallelic genetic heterogeneity on 3q

    SciTech Connect

    Kumar-Singh, R.; He Wang; Humphries, P.; Farrar, G.J. )

    1993-02-01

    Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue the authors have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have found a likelihood ratio of heterogeneity versus homogeneity of 4.90. They performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test they obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses they have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, they have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Z[sub m]) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, they have mapped (Z[sub m] = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome. 27 refs., 3 figs., 3 tabs.

  18. Evidence against a second autosomal dominant retinitis pigmentosa locus close to rhodopsin on chromosome 3q

    SciTech Connect

    Inglehearn, C.; Bhattacharya, S. ); Farrar, J.; Humphries, P. ); Denton, M. ); Gal, A. )

    1993-08-01

    In 1989 McWilliam et al. reported close linkage of the autosomal dominant retinitis pigmentosa (adRP) locus to chromosome 3q marker D3S47 in a large Irish pedigree (McWilliam et al 1989). Subsequent studies confirmed linkage in two other adRP families (Lester et al 1990; Olsson et al. 1990). Shortly afterward, utations in the rhodopsin (RHO) gene, mapping to 3q21-24, were implicated in disease causation, and it is now known that around one-third of adRP results from such mutations (Dryja et al. 1991; Sung et al. 1991; Inglchearn et al. 1992a). At that time, sequencing studies had failed to find rhodopsin mutations in the three families first linked to 3q. Several adRP families in which rhodopsin mutations had been found gave lod scores that, when pooled, had a peak of 4.47 at a theta of .12 (Inglehearn et al. 1992b). The apparent lack of mutations in families TCDM1, adRP3, and 20 together with the linkage data in these and the proved RHO-RP families, led to speculation that two adRP loci existed on chromosome 3q (Olsson et al. 1990; Inglehearn et al. 1992b). However this situation has been reversed by more recent analysis, since rhodopsin mutations have now been found in all three families. There is therefore no longer any evidence to support the hypothesis that a second adRP locus exists close to rhodopsin on chromosome 3q.

  19. Radiologic and Clinical Bronchiectasis Associated with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Moua, Teng; Zand, Ladan; Hartman, Robert P.; Hartman, Thomas E.; Qin, Dingxin; Peikert, Tobias; Qian, Qi

    2014-01-01

    Background Polycystin 1 and 2, the protein abnormalities associated with autosomal dominant polycystic kidney disease (ADPKD), are also found in airway cilia and smooth muscle cells. There is evidence of increased radiologic bronchiectasis associated with ADPKD, though the clinical and functional implications of this association are unknown. We hypothesized an increased prevalence of both radiologic and clinical bronchiectasis is associated with APDKD as compared to non-ADPKD chronic kidney disease (CKD) controls. Materials and Methods A retrospective case-control study was performed at our institution involving consecutive ADPKD and non-ADPKD chronic kidney disease (CKD) patients seen over a 13 year period with both chest CT and PFT. CTs were independently reviewed by two blinded thoracic radiologists. Manually collected clinical data included symptoms, smoker status, transplant history, and PFT findings. Results Ninety-two ADPKD and 95 non-ADPKD CKD control patients were compared. Increased prevalence of radiologic bronchiectasis, predominantly mild lower lobe disease, was found in ADPKD patients compared to CKD control (19 vs. 9%, P = 0.032, OR 2.49 (CI 1.1–5.8)). After adjustment for covariates, ADPKD was associated with increased risk of radiologic bronchiectasis (OR 2.78 (CI 1.16–7.12)). Symptomatic bronchiectasis occurred in approximately a third of ADPKD patients with radiologic disease. Smoking was associated with increased radiologic bronchiectasis in ADPKD patients (OR 3.59, CI 1.23–12.1). Conclusions Radiological bronchiectasis is increased in patients with ADPKD particularly those with smoking history as compared to non-ADPKD CKD controls. A third of such patients have symptomatic disease. Bronchiectasis should be considered in the differential in ADPKD patients with respiratory symptoms and smoking history. PMID:24747723

  20. The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease.

    PubMed

    Belibi, Franck A; Wallace, Darren P; Yamaguchi, Tamio; Christensen, Marcy; Reif, Gail; Grantham, Jared J

    2002-11-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder characterized by the progressive enlargement of cysts derived from tubules. Tubule cell proliferation and chloride-dependent fluid accumulation, mechanisms underlying cyst expansion, are accelerated by adenosine 3':5'-cyclic monophosphate (cAMP). This study examined the extent to which caffeine may stimulate the production of cAMP by cyst epithelial cells, thereby adversely increasing proliferation and fluid secretion. Mural epithelial cells from ADPKD cysts and normal human kidney cortex cells (HKC) were cultured, and cAMP levels were determined in response to caffeine and receptor-mediated agonists linked to adenylyl cyclase. Caffeine, a methylxanthine, slightly increased basal levels of cAMP, as did other nonselective phosphodiesterase (PDE) inhibitors, 1-methyl-3- isobutyl xanthine and theophylline and rolipram, a specific PDE IV inhibitor. More importantly, clinically relevant concentrations of caffeine (10 to 50 micro M) potentiated the effects of desmopressin (DDAVP), prostaglandin E(2) (PGE(2)), and isoproterenol to increase cAMP levels in both ADPKD and HKC cells. By contrast, at concentrations that augmented the DDAVP response, caffeine attenuated cAMP accumulation by adenosine, implicating an action apart from the inhibition of PDE. Caffeine enhanced the effect of DDAVP to stimulate transepithelial short-circuit current of polarized ADPKD monolayers, reflecting an increase in chloride secretion. Caffeine potentiated the effect of DDAVP and PGE(2) to increase the levels of phosphorylated extracellular signal-regulated kinase (P-ERK). By contrast, P-ERK levels in HKC cells were not raised by increased intracellular concentrations of cAMP. It is concluded that PDE inhibition by caffeine increases the accumulation of cAMP, and through this mechanism activates the ERK pathway to cellular proliferation and increases transepithelial fluid secretion in ADPKD cystic epithelium. Caffeine

  1. Autosomal dominant retinitis pigmentosa: no evidence for nonallelic genetic heterogeneity on 3q.

    PubMed Central

    Kumar-Singh, R; Wang, H; Humphries, P; Farrar, G J

    1993-01-01

    Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue we have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have found a likelihood ratio of heterogeneity versus homogeneity of 4.90. We performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test we obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses we have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, we have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Zm) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, we have mapped (Zm = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome. PMID:8430695

  2. Segmentation of Individual Renal Cysts from MR Images in Patients with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Bae, Kyungsoo; Park, Bumwoo; Sun, Hongliang; Wang, Jinhong; Tao, Cheng; Chapman, Arlene B.; Torres, Vicente E.; Grantham, Jared J.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.

    2013-01-01

    Summary Objective To evaluate the performance of a semi-automated method for the segmentation of individual renal cysts from magnetic resonance (MR) images in patients with autosomal dominant polycystic kidney disease (ADPKD). Design, setting, participants, & measurements This semi-automated method was based on a morphologic watershed technique with shape-detection level set for segmentation of renal cysts from MR images. T2-weighted MR image sets of 40 kidneys were selected from 20 patients with mild to moderate renal cyst burden (kidney volume < 1500 ml) in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). The performance of the semi-automated method was assessed in terms of two reference metrics in each kidney: the total number of cysts measured by manual counting and the total volume of cysts measured with a region-based thresholding method. The proposed and reference measurements were compared using intraclass correlation coefficient (ICC) and Bland-Altman analysis. Results Individual renal cysts were successfully segmented with the semi-automated method in all 20 cases. The total number of cysts in each kidney measured with the two methods correlated well (ICC, 0.99), with a very small relative bias (0.3% increase with the semi-automated method; limits of agreement, 15.2% reduction to 17.2% increase). The total volume of cysts measured using both methods also correlated well (ICC, 1.00), with a small relative bias of <10% (9.0% decrease in the semi-automated method; limits of agreement, 17.1% increase to 43.3% decrease). Conclusion This semi-automated method to segment individual renal cysts in ADPKD kidneys provides a quantitative indicator of severity in early and moderate stages of the disease. PMID:23520042

  3. Refining Genotype-Phenotype Correlation in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Hwang, Young-Hwan; Conklin, John; Chan, Winnie; Roslin, Nicole M; Liu, Jannel; He, Ning; Wang, Kairong; Sundsbak, Jamie L; Heyer, Christina M; Haider, Masoom; Paterson, Andrew D; Harris, Peter C; Pei, York

    2016-06-01

    Renal disease variability in autosomal dominant polycystic kidney disease (ADPKD) is strongly influenced by the gene locus (PKD1 versus PKD2). Recent studies identified nontruncating PKD1 mutations in approximately 30% of patients who underwent comprehensive mutation screening, but the clinical significance of these mutations is not well defined. We examined the genotype-renal function correlation in a prospective cohort of 220 unrelated ADPKD families ascertained through probands with serum creatinine ≤1.4 mg/dl at recruitment. We screened these families for PKD1 and PKD2 mutations and reviewed the clinical outcomes of the probands and affected family members. Height-adjusted total kidney volume (htTKV) was obtained in 161 affected subjects. Multivariate Cox proportional hazard modeling for renal and patient survival was performed in 707 affected probands and family members. Overall, we identified pathogenic mutations in 84.5% of our families, in which the prevalence of PKD1 truncating, PKD1 in-frame insertion/deletion, PKD1 nontruncating, and PKD2 mutations was 38.3%, 4.3%, 27.1%, and 30.3%, respectively. Compared with patients with PKD1 truncating mutations, patients with PKD1 in-frame insertion/deletion, PKD1 nontruncating, or PKD2 mutations have smaller htTKV and reduced risks (hazard ratio [95% confidence interval]) of ESRD (0.35 [0.14 to 0.91], 0.10 [0.05 to 0.18], and 0.03 [0.01 to 0.05], respectively) and death (0.31 [0.11 to 0.87], 0.20 [0.11 to 0.38], and 0.18 [0.11 to 0.31], respectively). Refined genotype-renal disease correlation coupled with targeted next generation sequencing of PKD1 and PKD2 may provide useful clinical prognostication for ADPKD. PMID:26453610

  4. Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease?

    PubMed Central

    Higashihara, Eiji; Nutahara, Kikuo; Tanbo, Mitsuhiro; Hara, Hidehiko; Miyazaki, Isao; Kobayashi, Kuninori; Nitatori, Toshiaki

    2014-01-01

    Background The clinical effects of increased water intake on autosomal dominant polycystic kidney disease (ADPKD) progression are unknown. Methods ADPKD patients with creatinine clearance ≧50 mL/min/1.73 m2 were divided into high (H-, n = 18) and free (F-, n = 16) water-intake groups, mainly according to their preference. Prior to the study, 30 patients underwent annual evaluation of total kidney volume (TKV) and 24-h urine for an average of 33 months. During the 1-year study period, TKV and 24-h urine were analyzed at the beginning and end of the study and every 4 months, respectively. Results During the pre-study period, urine volume (UV) in the H-group was higher (P = 0.034), but TKV and kidney function and their slopes were not significantly different between the two groups. After the study commenced, UV further increased (P < 0.001) in the H-group but not in the F-group. During the study period, TKV and kidney function slopes were not significantly different between the two groups (primary endpoint). Plasma copeptin was lower (P = 0.024) in the H-group than in the F-group. TKV and kidney function slopes became worse (P = 0.047 and 0.011, respectively) after high water intake (H-group) but not in the F-group. High UV was associated with increased urine sodium, and urine sodium positively correlated with the % TKV slope (P = 0.014). Conclusions Although the main endpoint was not significant, high water intake enhanced disease progression in the H-group when compared with the pre-study period. These findings necessitate a long-term randomized study before drawing a final conclusion. PMID:24739484

  5. A new locus for autosomal dominant retinitis pigmentosa on the short arm of chromosome 17.

    PubMed

    Greenberg, J; Goliath, R; Beighton, P; Ramesar, R

    1994-06-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous retinopathies, some of which have been shown to result from mutations in two different known retinal genes, rhodopsin (3q) and peripherin-rds (6p). Three additional anonymous loci at 7p, 7q and pericentric 8 have been implicated by linkage studies. There are still, however, a few families in which all known loci have been excluded. In this report we present data indicating a location, on the short arm of chromosome 17, for the autosomal dominant RP (ADRP) locus in a large South African (SA) family of British ancestry. Positive two-point lod scores have been obtained for nine markers (D17S938, Z = 5.43; D17S796, Z = 4.82; D17S849, Z = 3.6; D17S786, Z = 3.55; TP53, Z = 3.55; D17S578, Z = 3.29; D17S960, Z = 3.16; D17S926, Z = 1.51; D17S804, Z = 0.47 all at theta = 0.10 except D17S804 and D17S926, theta = 0.20). These data provide definitive evidence for the localization of an ADRP gene on chromosome 17p. The human recoverin gene has been localized to 17p13.1 and was consequently a prime candidate for ADRP in the family studied. However, mutation screening of the three exons of this gene failed to produce any evidence of recoverin being the gene involved in the pathogenesis of ADRP in this SA family. PMID:7951236

  6. [Pathophysiology, epidemiology, clinical presentation, diagnosis and treatment options for autosomal dominant polycystic kidney disease].

    PubMed

    Noël, Natacha; Rieu, Philippe

    2015-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end-stage renal disease (ESRD) worldwide. Its prevalence is evaluated according to studies and population between 1/1000 and 1/4000 live births and it accounts for 6 to 8% of incident ESRD patients in developed countries. ADPKD is characterized by numerous cysts in both kidneys and various extrarenal manifestations that are detailed in this review. Clinico-radiological and genetic diagnosis are also discussed. Mutations in the PKD1 and PKD2 codifying for polycystin-1 (PC-1) and polycystin-2 (PC-2) are responsible for the 85 and 15% of ADPKD cases, respectively. In primary cilia of normal kidney epithelial cells, PC-1 and PC-2 interact forming a complex involved in flow- and cilia-dependant signalling pathways where intracellular calcium and cAMP play a central role. Alteration of these multiple signal transduction pathways leads to cystogenesis accompanied by dysregulated planar cell polarity, excessive cell proliferation and fluid secretion, and pathogenic interactions of epithelial cells with an abnormal extracellular matrix. The mass effect of expanding cyst is responsible for the decline in glomerular filtration rate that occurs late in the course of the disease. For many decades, the treatment for ADPKD aims to lessen the condition's symptoms, limit kidney damage, and prevent complications. Recently, the development of promising specific treatment raises the hope to slow the growth of cysts and delay the disease. Treatment strategies targeting cAMP signalling such as vasopressin receptor antagonists or somatostatin analogs have been tested successfully in clinical trials with relative safety. Newer treatments supported by preclinical trials will become available in the next future. Recognizing early markers of renal progression (clinical, imaging, and genetic markers) to identify high-risk patients and multidrug approaches with synergistic effects may provide new opportunities

  7. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model.

    PubMed

    Tu, Hung-Ya; Chen, Yu-Jiun; McQuiston, Adam R; Chiao, Chuan-Chin; Chen, Ching-Kang

    2015-01-01

    It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD. PMID:26793064

  8. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model

    PubMed Central

    Tu, Hung-Ya; Chen, Yu-Jiun; McQuiston, Adam R.; Chiao, Chuan-Chin; Chen, Ching-Kang

    2016-01-01

    It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD. PMID:26793064

  9. Suitability of Patients with Autosomal Dominant Polycystic Kidney Disease for Renal Transcatheter Arterial Embolization.

    PubMed

    Suwabe, Tatsuya; Ubara, Yoshifumi; Mise, Koki; Ueno, Toshiharu; Sumida, Keiichi; Yamanouchi, Masayuki; Hayami, Noriko; Hoshino, Junichi; Kawada, Masahiro; Imafuku, Aya; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei

    2016-07-01

    In patients with autosomal dominant polycystic kidney disease (ADPKD), massive renal enlargement is a serious problem. Renal transcatheter arterial embolization (TAE) can reduce renal volume (RV), but effectiveness varies widely, and the reasons remain unclear. We investigated factors affecting renal volume reduction rate (RVRR) after renal TAE in all 449 patients with ADPKD who received renal TAE at Toranomon Hospital from January of 2006 to July of 2013, including 228 men and 221 women (mean age =57.0±9.1 years old). One year after renal TAE, the RVRR ranged from 3.9% to 84.8%, and the least squares mean RVRR calculated using a linear mixed model was 45.5% (95% confidence interval [95% CI], 44.2% to 46.8%). Multivariate analysis using the linear mixed model revealed that RVRR was affected by the presence of large cysts with wall thickening (regression coefficient [RC], -6.10; 95% CI, -9.04 to -3.16; P<0.001), age (RC, -0.82; 95% CI, -1.03 to -0.60; P<0.001), dialysis duration (RC, -0.10; 95% CI, -0.18 to -0.03; P<0.01), systolic BP (RC, 0.39; 95% CI, 0.19 to 0.59; P<0.001), and the number of microcoils used for renal TAE (RC, 1.35; 95% CI, 0.83 to 1.86; P<0.001). Significantly more microcoils were needed to achieve renal TAE in patients with younger age and shorter dialysis duration. In conclusion, cyst wall thickening had an important effect on cyst volume reduction. Renal TAE was more effective in patients who were younger, had shorter dialysis duration, or had hypertension, parameters that might associate with cyst wall stiffness and renal artery blood flow. PMID:26620095

  10. Screening for Unruptured Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease: A Survey of 420 Nephrologists

    PubMed Central

    Flahault, Adrien; Trystram, Denis; Fouchard, Marie; Knebelmann, Bertrand; Nataf, François; Joly, Dominique

    2016-01-01

    Background Despite a high prevalence of intracranial aneurysm (ICA) in autosomal dominant polycystic kidney disease (ADPKD), rupture events are rare. The current recommendations for ICA screening are based on expert opinions and studies with low levels of evidence. Objectives The aim of our study was to describe the attitudes of practicing nephrologists in Europe towards screening for ICA using magnetic resonance angiography (MRA). Methods We conducted a web-based survey among 1315 European French-speaking nephrologists and nephrology residents. An anonymous, electronic questionnaire including 24 independent questions related to ICA screening modalities, indications and participant profiles was sent by email between September and December 2014. Four hundred and twenty nephrologists (mostly from France) participated, including 31 nephrology residents; the response rate was 32%. Results Systematic screening for ICA was advocated by 28% of the nephrologists. A family history of ICA rupture, sudden death, stroke and migraine were consensual indications for screening (> 90% of the panel). In other clinical situations largely not covered by the recommendations (pregnancy, nephrectomy, kidney transplantation, cardiac or hepatic surgery, uncontrolled hypertension, lack of familial ADPKD history, at-risk activity, tobacco use), the attitudes towards screening were highly divergent. ICA screening was influenced by nephrologists experience with ADPKD and by their practice setting. The majority of participants (57%) would not repeat a normal ICA screening. Only a few participants (22%) knew that non-contrast MRA was the reference diagnostic tool for ICA screening, whereas most participants thought that contrast enhancement was necessary to screen for ICA. The results from the nephrology residents were analyzed separately and yielded similar results. Conclusion This practice survey revealed that most nephrologists follow the current recommendations for the initial screening of

  11. The impact of type II diabetes mellitus in patients with autosomal dominant polycystic kidney disease

    PubMed Central

    Reed, Berenice; Helal, Imed; McFann, Kim; Wang, Wei; Yan, Xiang-Dong; Schrier, Robert W.

    2012-01-01

    Background The epidemic of obesity and diabetes is increasing within the USA and worldwide. We have previously shown that body mass index has increased significantly in autosomal dominant polycystic kidney disease (ADPKD) subjects seen at our center in more recent years. However, the impact of Type II diabetes in ADPKD patients has not been well studied. Methods This retrospective cohort study compared clinical characteristics in 44 pre-renal transplant patients with ADPKD and diabetes and 88 age- and sex-matched non-diabetic patients with ADPKD who were seen at the University of Colorado between 1977 and 2008. The primary outcomes in this study were renal volume determined by renal ultrasonography, renal function assessed by estimated glomerular filtration rate and time to onset of end-stage renal disease or death by Kaplan–Meier analyses. Results Diabetic patients had significantly larger kidney volumes than those with ADPKD alone [geometric mean (95% confidence interval (CI)]: 2456 (1510–3992) versus 1358 (1186–1556) cm3, P = 0.02. Among those whose age at hypertension diagnosis was known, the diabetic ADPKD patients had earlier median (95% CI) age at onset of hypertension compared to those with ADPKD alone: 32.5 (28–40) versus 38 (35–42) years, P = 0.04. Diabetic ADPKD patients tended to have an earlier median age of death than those with ADPKD alone. Conclusions Patients with ADPKD and type II diabetes have larger renal volumes, earlier age at diagnosis of hypertension and may die at a younger age compared to those patients with ADPKD alone. This study emphasizes the importance of diabetes risk management in ADPKD. PMID:22207329

  12. Reduced methotrexate clearance and renal impairment in a boy with osteosarcoma and earlier undetected autosomal dominant polycystic kidney disease (ADPKD).

    PubMed

    Alberer, Martin; Hoefele, Julia; Bergmann, Carsten; Hartrampf, Steffen; Hilberath, Jutta; Pawlita, Ingo; Albert, Michael H; Benz, Marcus R; Weber, Lutz T; Schmid, Irene

    2010-11-01

    We report a 12-year-old boy with osteoblastic osteosarcoma of the right femur. He was started on chemotherapy according to the EURAMOS/COSS 1 protocol. Chemotherapy with doxorubicin/cisplatin resulted in reversible acute renal failure and methotrexate levels were repeatedly elevated. Family history suggested an autosomal dominant polycystic kidney disease. Genetic testing revealed a novel mutation c.10707_10712del (p.Val3569_3570del) in exon 36 of the PKD1 gene. Patients with autosomal dominant polycystic kidney disease may be at risk for acute renal failure during chemotherapy without signs of renal impairment. A careful family history is important to exclude risk factors for renal impairment before introducing high-dose chemotherapy. PMID:20921908

  13. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    SciTech Connect

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo; Senno, Laura del; Aguiari, Gianluca

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  14. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II).

    PubMed

    Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin

    2016-07-01

    Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense

  15. Hyperaldosteronism and cardiovascular risk in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Lai, Silvia; Petramala, Luigi; Mastroluca, Daniela; Petraglia, Emanuela; Di Gaeta, Alessandro; Indino, Elena; Panebianco, Valeria; Ciccariello, Mauro; Shahabadi, Hossein H; Galani, Alessandro; Letizia, Claudio; D'Angelo, Anna Rita

    2016-07-01

    Hypertension is commonly associated with autosomal dominant polycystic kidney disease (ADPKD), often discovered before the onset of renal failure, albeit the pathogenetic mechanisms are not well elucidated. Hyperaldosteronism in ADPKD may contribute to the development of insulin resistance and endothelial dysfunction, and progression of cardiorenal disease. The aim of study was to evaluate the prevalence of primary aldosteronism (PA) in ADPKD patients and identify some surrogate biomarkers of cardiovascular risk.We have enrolled 27 hypertensive ADPKD patients with estimated glomerular filtration rate (eGFR) ≥ 60 mL/min, evaluating the renin-angiotensin-aldosterone system (RAAS), inflammatory indexes, nutritional status, homocysteine (Hcy), homeostasis model assessment-insulin resistance (HOMA-IR), mineral metabolism, microalbuminuria, and surrogate markers of atherosclerosis [carotid intima media thickness (cIMT), ankle/brachial index (ABI), flow mediated dilation (FMD), renal resistive index (RRI) and left ventricular mass index (LVMI)]. Furthermore, we have carried out the morpho-functional magnetic resonance imaging (MRI) with high-field 3 T Magnetom Avanto.We have divided patients into group A, with normal plasma aldosterone concentration (PAC) and group B with PA, present in 9 (33%) of overall ADPKD patients. Respect to group A, group B showed a significant higher mean value of LVMI, HOMA-IR and Hcy (P = 0.001, P = 0.004, P = 0.018; respectively), and a lower value of FMD and 25-hydroxyvitamin D (25-OH-VitD) (P = 0.037, P = 0.019; respectively) with a higher prevalence of non-dipper pattern at Ambulatory Blood Pressure Monitoring (ABPM) (65% vs 40%, P < 0.05) at an early stage of the disease.In this study, we showed a high prevalence of PA in ADPKD patients, associated to higher LVMI, HOMA-IR, Hcy, lower FMD, and 25-OH-VitD, considered as surrogate markers of atherosclerosis, compared to ADPKD patients with normal PAC values. Our

  16. Simultaneous Native Nephrectomy and Kidney Transplantation in Patients With Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Veroux, Massimiliano; Zerbo, Domenico; Basile, Giusi; Gozzo, Cecilia; Sinagra, Nunziata; Giaquinta, Alessia; Sanfiorenzo, Angelo; Veroux, Pierfrancesco

    2016-01-01

    Introduction To evaluate the feasibility of simultaneous unilateral nephrectomy with kidney transplantation and to determine the effect of this procedure on perioperative morbidity and mortality and graft and patient survival. Methods Between January 2000 and May 2015, 145 patients with autosomal dominant polycystic kidney disease (ADPKD) underwent kidney transplantation. Of those, 40 (27.5%) underwent concurrent ipsilateral native nephrectomy (group NT). Patients in group NT were compared with patients with ADPKD not undergoing concurrent nephrectomy (group NT-) and asymptomatic patients undergoing pretransplant nephrectomy (group PNT). Results The average follow-up was 66 months. The graft survival rate at 1 and 5 years was 95% and 87.5% versus 93% and 76.2% in the NT and NT- groups, respectively (P = .903 and P = .544, respectively); 1-year patient survival was 100% for NT and 97% for NT- patients (P = .288), whereas 5-year patient survival was 100% and 92% for NT and NT- groups, respectively (P = .128). After propensity score matching (34 patients per group) no significant differences were observed in 1-year (97.1% in NT and 94.1%; P = 1) and 5-year (88.2% in NT and 91.2% in NT-; P = 1) graft survival, and in 1-year (100% for both groups; P = 1) and 5-year (100% in NT and 94.1% in NT-; P = 1) patient survival. Perioperative mortality was 0% among NT and 1.2% among NT- patients, whereas perioperative surgical complications were similar in both groups. One- and 5-year graft and patient survival were similar between the NT and PNT groups, but patients in the PNT group had significantly lower levels of hemoglobin and residual diuresis volumes at the time of transplant. Moreover, PNT patients had a longer pretransplant dialysis and a longer time on the waiting list. Conclusions Simultaneous unilateral nephrectomy does not have a negative effect on patient and graft survival in patients with ADPKD and is associated with low morbidity. Pretransplant nephrectomy should

  17. A novel frameshift mutation of POU4F3 gene associated with autosomal dominant non-syndromic hearing loss

    SciTech Connect

    Lee, Hee Keun; Park, Hong-Joon; Lee, Kyu-Yup; Park, Rekil; Kim, Un-Kyung

    2010-06-04

    Autosomal dominant mutations in the transcription factor POU4F3 gene are associated with non-syndromic hearing loss in humans; however, there have been few reports of mutations in this gene worldwide. We performed a mutation analysis of the POU4F3 gene in 42 unrelated Koreans with autosomal dominant non-syndromic hearing loss, identifying a novel 14-bp deletion mutation in exon 2 (c.662del14) in one patient. Audiometric examination revealed severe bilateral sensorineural hearing loss in this patient. The novel mutation led to a truncated protein that lacked both functional POU domains. We further investigated the functional distinction between wild-type and mutant POU4F3 proteins using in vitro assays. The wild-type protein was completely localized in the nucleus, while the truncation of protein seriously affected its nuclear localization. In addition, the mutant failed to activate reporter gene expression. This is the first report of a POU4F3 mutation in Asia, and moreover our data suggest that further investigation will need to delineate ethnicity-specific genetic background for autosomal dominant non-syndromic hearing loss within Asian populations.

  18. Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts

    PubMed Central

    Chen, Jian-Huan; Huang, Chukai; Yin, Shengjie; Liang, Jiajian; Xu, Ciyan; Huang, Yuqiang; Cen, Ling-Ping; Zheng, Ce; Zhang, Shaobin; Pang, Chi-Pui; Zhang, Mingzhi

    2016-01-01

    Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling. PMID:27294265

  19. Mutation in the zonadhesin-like domain of alpha-tectorin associated with autosomal dominant non-syndromic hearing loss.

    PubMed

    Alloisio, N; Morlé, L; Bozon, M; Godet, J; Verhoeven, K; Van Camp, G; Plauchu, H; Muller, P; Collet, L; Lina-Granade, G

    1999-01-01

    A gene responsible for autosomal dominant non-syndromic hearing impairment in two families (DFNA8 and DFNA12) has recently been identified as TECTA encoding alpha-tectorin, a major component of the tectorial membrane. In these families, missense mutations within the zona pellucida domain of alpha-tectorin were associated with stable severe mid-frequency hearing loss. The present study reports linkage to DFNA12 in a new family with autosomal dominant high frequency hearing loss progressing from mild to moderate severity. The candidate region refined to 3.8 cM still contained the TECTA gene. A missense mutation (C1619S) was identified in the zonadhesin-like domain. This mutation abolishes the first of the vicinal cysteines (1619Cys-Gly-Leu- 1622Cys) present in the D4 von Willebrand factor (vWf) type D repeat. These results further support the involvement of TECTA mutations in autosomal dominant hearing impairment, and suggest that vicinal cysteines are involved in tectorial membrane matrix assembly. PMID:10196713

  20. Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts.

    PubMed

    Chen, Jian-Huan; Huang, Chukai; Zhang, Bining; Yin, Shengjie; Liang, Jiajian; Xu, Ciyan; Huang, Yuqiang; Cen, Ling-Ping; Ng, Tsz-Kin; Zheng, Ce; Zhang, Shaobin; Chen, Haoyu; Pang, Chi-Pui; Zhang, Mingzhi

    2016-06-01

    Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling. PMID:27294265

  1. COL4A4 gene study of a European population: description of new mutations causing autosomal dominant Alport syndrome

    PubMed Central

    Rosado, Consolación; Bueno, Elena; Felipe, Carmen; González-Sarmiento, Rogelio

    2014-01-01

    Background: Autosomal forms of Alport syndrome represent 20% of all patients (15% recessive and 5% dominant). They are caused by mutations in the COL4A3 and COL4A4 genes, which encode a-3 and a-4 collagen IV chains of the glomerular basement membrane, cochlea and eye. Thin basement membrane nephropathy may affect up to 1% of the population. The pattern of inheritance in the 40% of cases is the same as autosomal dominant Alport syndrome: heterozygous mutations in these genes. The aim of this study is to detect new pathogenic mutations in the COL4A4 gene in the patients previously diagnosed with autosomal Alport syndrome and thin basement membrane nephropathy in our hospital. Methods: We conducted a clinical and genetic study in eleven patients belonging to six unrelated families with aforementioned clinical symptoms and a negative study of COL4A3 gene. The molecular study was made by conformation of sensitive gel electrophoresis (CSGE) and direct sequencing of the fragments that show an altered electrophoretic migration pattern. Results: We found two pathogenic mutations, not yet described: IVS3 + 1G > C is a replacement of Guanine to Cytosine in position +1 of intron 3, in the splicing region, which leads to a pathogenic mutation. c.4267C > T; p.P1423S is a missense mutation, also considered pathogenic. We also found seven new polymorphisms. Conclusions: We describe two new pathogenic mutations, responsible for autosomal dominant Alport syndrome. The other families of the study were undiagnosed owing to problems in the method employed and the possibility of mutations in other genes, giving rise to other diseases with similar symptoms. PMID:25755845

  2. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13).

    PubMed

    McKie, A B; McHale, J C; Keen, T J; Tarttelin, E E; Goliath, R; van Lith-Verhoeven, J J; Greenberg, J; Ramesar, R S; Hoyng, C B; Cremers, F P; Mackey, D A; Bhattacharya, S S; Bird, A C; Markham, A F; Inglehearn, C F

    2001-07-15

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive degeneration of the peripheral retina leading to night blindness and loss of visual fields. With an incidence of approximately 1 in 4000, RP can be inherited in X-linked, autosomal dominant or autosomal recessive modes. The RP13 locus for autosomal dominant RP (adRP) was placed on chromosome 17p13.3 by linkage mapping in a large South African adRP family. Using a positional cloning and candidate gene strategy, we have identified seven different missense mutations in the splicing factor gene PRPC8 in adRP families. Three of the mutations cosegregate within three RP13 linked families including the original large South African pedigree, and four additional mutations have been identified in other unrelated adRP families. The seven mutations are clustered within a 14 codon stretch within the last exon of this large 7 kb transcript. The altered amino acid residues at the C-terminus exhibit a high degree of conservation across species as diverse as humans, Arabidopsis and trypanosome, suggesting that some functional significance is associated with this part of the protein. These mutations in this ubiquitous and highly conserved splicing factor offer compelling evidence for a novel pathway to retinal degeneration. PMID:11468273

  3. Weill-Marchesani syndrome - possible linkage of the autosomal dominant form to 15q21.1

    SciTech Connect

    Wirtz, M.K.; Samples, J.R.; Rust, K.

    1996-10-02

    Weill-Marchesani syndrome comprises short stature, brachydactyly, microspherophakia, glaucoma, and ectopia lentis is regarded as an autosomal recessive trait. We present two families each with affected individuals in 3 generations demonstrating autosomal dominant inheritance of Weill-Marchesani syndrome. Linkage analysis in these 2 families suggests a gene for Weill-Marchesani syndrome maps to 15q21.1. The dislocated lenses and connective tissue disorder in these families suggests that fibrillin-1 and microfibril-associated protein 1, which both map to 15q21.1, are candidate genes for Weill-Marchesani syndrome. Immunohistochemistry staining of skin sections from family 1 showed an apparent decrease in fibrillin staining compared to control individuals. 28 refs., 3 figs., 2 tabs.

  4. High prevalence of mutations in peripherin/RDS in autosomal dominant macular dystrophies in a Spanish population

    PubMed Central

    Gamundi, María José; Hernan, Imma; Muntanyola, Marta; Trujillo, María José; García-Sandoval, Blanca; Ayuso, Carmen; Baiget, Montserrat

    2007-01-01

    Purpose Mutations in the peripherin/retinal degeneration slow (RDS) gene are a known cause of various types of central retinal dystrophies. The purpose of this study was to determine the prevalence of mutations in the peripherin/RDS gene in Spanish patients with different types of autosomal dominant macular dystrophy. Methods Ophthalmic and electrophysiological examination was performed in patients from 61 unrelated autosomal dominant macular dystrophy (adMD) Spanish families. Screening for mutations in the peripherin/RDS gene by denaturing gradient gel electrophoresis (DGGE) and direct genomic sequencing was performed in index patients and extended to the family when positive. Results We report four novel mutations in peripherin/RDS and a relatively high frequency (23%) of mutations in this gene in families with adMD. Thirteen different mutations were found in fifteen adMD families. Three novel missense, four nonsense and a cis-acting splicing mutation IVS2+2T>C, were found in a Spanish population while five more missense mutations were also reported in other populations. The Arg142Trp and Arg172Trp mutations, present in several populations, were both detected in two independent Spanish families. All the missense mutations produce an amino acid substitution in the second intradiscal loop of the peripherin, while the nonsense mutations presumably generate a truncated protein. Conclusions A high frequency (23%) of mutations in the peripherin/RDS gene was found in a cohort of 61 unrelated patients with various types of autosomal dominant central retinal dystrophies as compared with a low prevalence (1.3%) of mutations in this gene causing retinitis pigmentosa in a Spanish population. Different macular dystrophy phenotypes according to the mutations in peripherin/RDS are shown. However, a limited phenotype variation was observed for these mutations within the family. PMID:17653047

  5. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind

    PubMed Central

    Quartier, Pierre

    2015-01-01

    All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity. PMID:25645939

  6. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind.

    PubMed

    Boisson, Bertrand; Quartier, Pierre; Casanova, Jean-Laurent

    2015-02-01

    All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity. PMID:25645939

  7. Early structural anomalies observed by high-resolution imaging in two related cases of autosomal-dominant retinitis pigmentosa.

    PubMed

    Park, Sung Pyo; Lee, Winston; Bae, Eun Jin; Greenstein, Vivianne; Sin, Bum Ho; Chang, Stanley; Tsang, Stephen H

    2014-01-01

    The authors report the use of adaptive-optics scanning laser ophthalmoscopy (AO-SLO) to investigate RHO, D190N autosomal-dominant retinitis pigmentosa in two siblings (11 and 16 years old, respectively). Each patient exhibited distinct hyperautofluorescence patterns in which the outer borders corresponded to inner segment ellipsoid band disruption. Areas within the hyperautofluorescence patterns exhibited normal photoreceptor outer segments and retinal pigment epithelium. However, AO-SLO imaging revealed noticeable spacing irregularities in the cone mosaic. AO-SLO allows researchers to characterize retinal structural abnormalities with precision so that early structural changes in retinitis pigmentosa can be identified and reconciled with genetic findings. PMID:25215869

  8. Exome Sequencing Identifies a Mutation in EYA4 as a Novel Cause of Autosomal Dominant Non-Syndromic Hearing Loss.

    PubMed

    Liu, Fei; Hu, Jiongjiong; Xia, Wenjun; Hao, Lili; Ma, Jing; Ma, Duan; Ma, Zhaoxin

    2015-01-01

    Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important. PMID:25961296

  9. Exome Sequencing Identifies a Mutation in EYA4 as a Novel Cause of Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Xia, Wenjun; Hao, Lili; Ma, Jing; Ma, Duan; Ma, Zhaoxin

    2015-01-01

    Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important. PMID:25961296

  10. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations.

    PubMed

    Kachergus, Jennifer; Mata, Ignacio F; Hulihan, Mary; Taylor, Julie P; Lincoln, Sarah; Aasly, Jan; Gibson, J Mark; Ross, Owen A; Lynch, Timothy; Wiley, Joseph; Payami, Haydeh; Nutt, John; Maraganore, Demetrius M; Czyzewski, Krzysztof; Styczynska, Maria; Wszolek, Zbigniew K; Farrer, Matthew J; Toft, Mathias

    2005-04-01

    Autosomal dominant parkinsonism has been attributed to pathogenic amino acid substitutions in leucine-rich repeat kinase 2 (LRRK2). By sequencing multiplex families consistent with a PARK8 assignment, we identified a novel heterozygous LRRK2 mutation. A referral sample of 248 affected probands from families with autosomal dominant parkinsonism was subsequently assessed; 7 (2.8%) were found to carry a heterozygous LRRK2 6055G-->A transition (G2019S). These seven patients originate from the United States, Norway, Ireland, and Poland. In samples of patients with idiopathic Parkinson disease (PD) from the same populations, further screening identified six more patients with LRRK2 G2019S; no mutations were found in matched control individuals. Subsequently, 42 family members of the 13 probands were examined; 22 have an LRRK2 G2019S substitution, 7 with a diagnosis of PD. Of note, all patients share an ancestral haplotype indicative of a common founder, and, within families, LRRK2 G2019S segregates with disease (multipoint LOD score 2.41). Penetrance is age dependent, increasing from 17% at age 50 years to 85% at age 70 years. In summary, our study demonstrates that LRRK2 G2019S accounts for parkinsonism in several families within Europe and North America. Our work highlights the fact that a proportion of clinically typical, late-onset PD cases have a genetic basis. PMID:15726496

  11. Whole Exome Sequencing Identified MCM2 as a Novel Causative Gene for Autosomal Dominant Nonsyndromic Deafness in a Chinese Family

    PubMed Central

    Dong, Cheng; Chen, Siqi; Qi, Yu; Liu, Yuhe

    2015-01-01

    We report the genetic analysis of autosomal dominant, nonsyndromic, progressive sensorineural hearing loss in a Chinese family. Using whole exome sequencing, we identified a missense variant (c.130C>T, p.R44C) in the MCM2 gene, which has a pro-apoptosis effect and is involved in the initiation of eukaryotic genome replication. This missense variant is very likely to be the disease causing variant. It segregated with hearing loss in this pedigree, and was not found in the dbSNP database or databases of genomes and SNP in the Chinese population, in 76 patients with sporadic hearing loss, or in 145 normal individuals. We performed western blot and immunofluorescence to test the MCM2 protein expression in the cochlea of rats and guinea pigs, demonstrating that MCM2 was widely expressed in the cochlea and was also surprisingly expressed in the cytoplasm of terminally differentiated hair cells. We then transiently expressed the variant MCM2 cDNA in HEK293 cells, and found that these cells displayed a slight increase in apoptosis without any changes in proliferation or cell cycle, supporting the view that this variant is pathogenic. In summary, we have identified MCM2 as a novel gene responsible for nonsyndromic hearing loss of autosomal dominant inheritance in a Chinese family. PMID:26196677

  12. DGAT2 Mutation in a Family with Autosomal-Dominant Early-Onset Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Hong, Young Bin; Kang, Junghee; Kim, Ji Hyun; Lee, Jinho; Kwak, Geon; Hyun, Young Se; Nam, Soo Hyun; Hong, Hyun Dae; Choi, Yu-Ri; Jung, Sung-Chul; Koo, Heasoo; Lee, Ji Eun; Choi, Byung-Ok; Chung, Ki Wha

    2016-05-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy and is a genetically and clinically heterogeneous disorder. We examined a Korean family in which two individuals had an autosomal-dominant axonal CMT with early-onset, sensory ataxia, tremor, and slow disease progression. Pedigree analysis and exome sequencing identified a de novo missense mutation (p.Y223H) in the diacylglycerol O-acyltransferase 2 (DGAT2) gene. DGAT2 encodes an endoplasmic reticulum-mitochondrial-associated membrane protein, acyl-CoA:diacylglycerol acyltransferase, which catalyzes the final step of the triglyceride (TG) biosynthesis pathway. The patient showed consistently decreased serum TG levels, and overexpression of the mutant DGAT2 significantly inhibited the proliferation of mouse motor neuron cells. Moreover, the variant form of human DGAT2 inhibited the axonal branching in the peripheral nervous system of zebrafish. We suggest that mutation of DGAT2 is the novel underlying cause of an autosomal-dominant axonal CMT2 neuropathy. This study will help provide a better understanding of the pathophysiology of axonal CMT and contribute to the molecular diagnostics of peripheral neuropathies. PMID:26786738

  13. Whole Exome Sequencing Identified MCM2 as a Novel Causative Gene for Autosomal Dominant Nonsyndromic Deafness in a Chinese Family.

    PubMed

    Gao, Juanjuan; Wang, Qi; Dong, Cheng; Chen, Siqi; Qi, Yu; Liu, Yuhe

    2015-01-01

    We report the genetic analysis of autosomal dominant, nonsyndromic, progressive sensorineural hearing loss in a Chinese family. Using whole exome sequencing, we identified a missense variant (c.130C>T, p.R44C) in the MCM2 gene, which has a pro-apoptosis effect and is involved in the initiation of eukaryotic genome replication. This missense variant is very likely to be the disease causing variant. It segregated with hearing loss in this pedigree, and was not found in the dbSNP database or databases of genomes and SNP in the Chinese population, in 76 patients with sporadic hearing loss, or in 145 normal individuals. We performed western blot and immunofluorescence to test the MCM2 protein expression in the cochlea of rats and guinea pigs, demonstrating that MCM2 was widely expressed in the cochlea and was also surprisingly expressed in the cytoplasm of terminally differentiated hair cells. We then transiently expressed the variant MCM2 cDNA in HEK293 cells, and found that these cells displayed a slight increase in apoptosis without any changes in proliferation or cell cycle, supporting the view that this variant is pathogenic. In summary, we have identified MCM2 as a novel gene responsible for nonsyndromic hearing loss of autosomal dominant inheritance in a Chinese family. PMID:26196677

  14. Report of a kindred with x-linked (or autosomal dominant sex-limited) 46, XY partial gonadal dysgenesis

    SciTech Connect

    Fechner, P.Y.; Marcantonio, S.M.; Ogata, T.; Rosales, T.O.; Smith, K.D.; Goodfellow, P.N.; Migeon, C.J.; Berkovitz, G.D. )

    1993-05-01

    The condition termed 46, XY complete gonadal dysgenesis is characterized by the lack of testicular determination with resulting streak gonads, normal Mullerian structures, and female external genitalia. In the partial form, there is incomplete testicular determination with a wide range in the degree of ambiguous genitalia and sexual duct development. The authors evaluated a kindred in which a partial form of 46, XY gonadal dysgenesis occurred in four subjects from two generations. Pedigree analysis indicated an X-linked or possibly an autosomal sex-limited mode of inheritance. All affected subjects were ascertained because of ambiguous genitalia with minimal virilization. At 10 days of age, the proband had a subnormal plasma level of testosterone, and at 4 months, there was no rise in plasma T after stimulation with hCG. At laparotomy, a dysgenetic gonad was found on the right side, but no gonad was found on the left side. A vas deferens was present on the right, indicating the presence of functional leydig cells early in fetal life. In the other affected subjects, gonadal tissue was also limited to one side of the abdomen and showed poorly developed seminiferous tubules. The sex-determining region Y gene, which encodes the testis-determining factor, was present and unaltered in the genomic DNA of all affected subjects. Duplication of the distal short arm of the X-chromosome has been associated with 46, XY complete gonadal dysgenesis in some patients. In the authors studies, Southern blot analysis revealed that sequences of the distal short arm of the X-chromosome were present in single copy, excluding a large duplication in this area of the X. Several kindreds with familial 46, XY complete gonadal dysgenesis have been reported; five of them had evidence of an X-linked mode of inheritance. The authors study of a kindred with 46, XY partial gonadal dysgenesis further supports the role of an X chromosome gene in testicular determination. 44 refs., 1 fig., 3 tabs.

  15. The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval

    PubMed Central

    Zimprich, Alexander; Müller-Myhsok, Bertram; Farrer, Matthew; Leitner, Petra; Sharma, Manu; Hulihan, Mary; Lockhart, Paul; Strongosky, Audrey; Kachergus, Jennifer; Calne, Donald B.; Stoessl, Jon; Uitti, Ryan J.; Pfeiffer, Ronald F.; Trenkwalder, Claudia; Homann, Nikolaus; Ott, Erwin; Wenzel, Karoline; Asmus, Friedrich; Hardy, John; Wszolek, Zbigniew; Gasser, Thomas

    2004-01-01

    Recently, a new locus (PARK8) for autosomal dominant parkinsonism has been identified in one large Japanese family. Linkage has been shown to a 16-cM centromeric region of chromosome 12, between markers D12S1631 and D12S339. We tested 21 white families with Parkinson disease and an inheritance pattern compatible with autosomal dominant transmission for linkage in this region. Criteria for inclusion were at least three affected individuals in more than one generation. A total of 29 markers were used to saturate the candidate region. One hundred sixty-seven family members were tested (84 affected and 83 unaffected). Under the assumption of heterogeneity and through use of an affecteds-only model, a maximum multipoint LOD score of 2.01 was achieved in the total sample, with an estimated proportion of families with linkage of 0.32. This LOD score is significant for linkage in a replication study and corresponds to a P value of .0047. Two families (family A [German Canadian] and family D [from western Nebraska]) reached significant linkage on their own, with a combined maximum multipoint LOD score of 3.33, calculated with an affecteds-only model (family A: LOD score 1.67, P=.0028; family D: LOD score 1.67, P=.0028). When a penetrance-dependent model was calculated, the combined multipoint LOD score achieved was 3.92 (family A: LOD score 1.68, P=.0027; family D: LOD score 2.24, P=.0007). On the basis of the multipoint analysis for the combined families A and D, the 1-LOD support interval suggests that the most likely disease location is between a CA repeat polymorphism on genomic clone AC025253 (44.5 Mb) and marker D12S1701 (47.7 Mb). Our data provide evidence that the PARK8 locus is responsible for the disease in a subset of families of white ancestry with autosomal dominant parkinsonism, suggesting that it could be a more common locus. PMID:14691730

  16. Clinical and molecular analysis of the enamelin gene ENAM in Colombian families with autosomal dominant amelogenesis imperfecta

    PubMed Central

    Gutiérrez, Sandra; Torres, Diana; Briceño, Ignacio; Gómez, Ana Maria; Baquero, Eliana

    2012-01-01

    In this study, we analyzed the phenotype, clinical characteristics and presence of mutations in the enamelin gene ENAM in five Colombian families with autosomal dominant amelogenesis imperfecta (ADAI). 22 individuals (15 affected and seven unaffected) belonging to five Colombian families with ADAI and eight individuals (three affected and five unaffected) belonging to three Colombian families with autosomal recessive amelogenesis imperfecta (ARAI) that served as controls for molecular alterations and inheritance patterns were studied. Clinical, radiographic and genetic evaluations were done in all individuals. Eight exons and three intron-exon boundaries were sequenced for mutation analysis. Two of the five families with ADAI had the hypoplasic phenotype, two had the hypocalcified phenotype and one had the hypomaturative phenotype. Anterior open bite and mandibular retrognathism were the most frequent skeletal abnormalities in the families with ADAI. No mutations were found. These findings suggest that ADAI in these Colombian families was unrelated to previously described mutations in the ENAM gene. These results also indicate that other regions not included in this investigation, such as the promoter region, introns and other genes should be considered as potential ADAI candidates. PMID:23055792

  17. Linkage analysis excludes the glaucoma locus on 1q from involvement in autosomal dominant glaucoma with iris hypoplasia

    SciTech Connect

    Heon, E.; Sheth, B.P.; Kalenak, J.W.

    1994-09-01

    Genetic factors have been implicated in a variety of types of glaucoma including primary open-angle glaucoma, infantile glaucoma, pigmentary glaucoma, and juvenile open-angle glaucoma. We previously mapped the disease-causing gene for one type of juvenile open angle glaucoma to chromosome 1q21-31. Weatherill and Hart (1969) and Pearce (1983) each noted the association of iris hypoplasia and early-onset autosomal dominant glaucoma. We recently had the opportunity to study a large family (12 affected members) with this phenotype. Affected individuals developed glaucoma at an average age of 30 years. These patients also have a strikingly underdeveloped iris stroma which causes a peculiar eye color. Linkage analysis was able to completely exclude the 1q glaucoma locus from involvement in the disorder that affects this family. A complete clinical description of the family and linkage results at additional candidate loci will be presented.

  18. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees

    SciTech Connect

    Wiggs, J.L.; Paglinauan, C.; Fine, A.; Sporn, C.; Lou, D. ); Haines, J.L. )

    1994-05-15

    Glaucoma is a common disorder that results in irreversible damage to the optic nerve, causing absolute blindness. In most cases, the optic nerve is damaged by an elevation of the intraocular pressure that is the result of an abnormality in the normal drainage function of the trabecular meshwork. A family history of glaucoma is an important risk factor for the disease, suggesting that genetic defects predisposing to this condition are likely. Three pedigrees segregating an autosomal dominant juvenile glaucoma demonstrated significant linkage to a group of closely spaced markers on chromosome 1. These results confirm the initial mapping of this disease and suggest that this region on chromosome 1 contains an important locus for juvenile glaucoma. The authors describe recombination events that improve the localization of the responsible gene, reducing the size of the candidate region from 30 to 12 cM. 27 refs., 2 figs., 1 tab.

  19. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome 1 q

    SciTech Connect

    Richards, J.E.; Lichter, P.R.; Torrez, D.; Wong, D.; Johnson, A.T.; Boehnke, M.; Uro, J.L.A. )

    1994-01-01

    A large Caucasian family is presented, in which a juvenile-onset form of open-angle glaucoma is transmitted in an autosomal dominant fashion. Sixteen affected family members were identified from 31 at-risk individuals descended from the affected founder. Affected patients developed high intraocular pressures (sometimes >40 mm Hg) within the first 2 decades of life. Linkage analysis between the disease phenotype and 12 microsatellite repeat markers located on chromosome 1 q gave a maximum lod score of 8.38 at a recombination fraction of zero for marker D1S210. Analysis of recombinant haplotypes suggests a total inclusion region of about 14 cM between markers D1S194 and D1S218 at 1q21-q31. This represents the second juvenile-glaucoma family, in which the disease has been mapped to the long arm of chromosome 1. 57 refs., 2 figs., 3 tabs.

  20. Pleuritic chest pain from portal hypertensive gastropathy in ESRD patient with autosomal dominant polycystic kidney disease misdiagnosed as pericarditis.

    PubMed Central

    Onuigbo, Macaulay Amechi Chukwukadibia; Agbasi, Nneoma; Achebe, Jennifer; Odenigbo, Charles; Oguejiofor, Fidelis

    2016-01-01

    Portal hypertensive gastropathy (PHG) is a gastric mucosal lesion complicating portal hypertension, with higher prevalence in decompensated cirrhosis. PHG can sometimes complicate autosomal dominant polycystic kidney disease (ADPKD) due to the presence of multiple liver cysts. Besides, PHG is known to present as chest pain, with or without hematemesis. Other causes of chest pain in ADPKD include referred chest pain from progressively enlarging kidney cysts, and rare pericardial cysts. Chest pain, especially if pleuritic, in end-stage renal disease (ESRD) patients, is often ascribed to uremic pericarditis. We present recurrent pleuritic chest pain in a 24-year old ESRD patient with ADPKD that was initially misdiagnosed as uremic pericarditis. It was ultimately shown to represent symptomatic PHG with excellent therapeutic response to proton pump inhibitors. PMID:27069969

  1. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation

    PubMed Central

    Marduel, Marie; Ouguerram, Khadija; Serre, Valérie; Bonnefont-Rousselot, Dominique; Marques-Pinheiro, Alice; Berge, Knut Erik; Devillers, Martine; Luc, Gérald; Lecerf, Jean-Michel; Tosolini, Laurent; Erlich, Danièle; Peloso, Gina M.; Stitziel, Nathan; Nitchké, Patrick; Jaïs, Jean-Philippe; Abifadel, Marianne; Kathiresan, Sekar; Leren, Trond Paul; Rabès, Jean-Pierre; Boileau, Catherine; Varret, Mathilde

    2013-01-01

    Apo E mutants are associated with type III hyperlipoproteinemia characterized by high cholesterol and triglycerides levels. Autosomal Dominant Hypercholesterolemia (ADH), due to mutations in the LDLR, APOB or PCSK9 genes, is characterized by an isolated elevation of cholesterol due to high levels of low-density lipoproteins (LDL). We now report an exceptionally large family including 14 members with ADH. Through genome wide mapping, analysis of regional/functional candidate genes and whole exome sequencing, we identified a mutation in the APOE gene, p.Leu167del previously reported associated with sea-blue histiocytosis and familial combined hyperlipidemia. We confirmed the involvement of the APOE p.Leu167del in ADH, with (1) a predicted destabilization of an alpha-helix in the binding domain; (2) a decreased apo E level in LDL; and (3) a decreased catabolism of LDL. Our results show that mutations in the APOE gene can be associated with bona fide ADH. PMID:22949395

  2. Autosomal Dominant Polycystic Kidney Disease (ADPKD): Executive Summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    PubMed Central

    Chapman, Arlene B.; Devuyst, Olivier; Eckardt, Kai-Uwe; Gansevoort, Ron T.; Harris, Tess; Horie, Shigeo; Kasiske, Bertram L.; Odland, Dwight; Pei, York P.; Perrone, Ronald D.; Pirson, Yves; Schrier, Robert W.; Torra, Roser; Torres, Vicente E.; Watnick, Terry; Wheeler, David C.

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) affects up to 12 million individuals and is the 4th most common cause for renal replacement therapy worldwide. There have been many recent advances in the understanding of its molecular genetics and biology, and in the diagnosis and management of its manifestations. Yet, diagnosis, evaluation, prevention and treatment vary widely and there are no broadly accepted practice guidelines. Barriers to translation of basic science breakthroughs to clinical care exist, with considerable heterogeneity across countries. The KDIGO Controversies Conference on ADPKD brought together a panel of multi-disciplinary clinical expertise and engaged patients to identify areas of consensus, gaps in knowledge, and research and health care priorities related to diagnosis, monitoring of kidney disease progression, management of hypertension, renal function decline and complications, end-stage renal disease, extrarenal complications, and practical integrated patient support. These are summarized in this report. PMID:25786098

  3. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): considerations for routine screening and management.

    PubMed

    Luciano, Randy L; Dahl, Neera K

    2014-02-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is a systemic disease, marked by progressive increase of bilateral renal cysts, resulting in chronic kidney disease (CKD) and often leading to end-stage renal disease (ESRD). Apart from renal cysts, patients often have extra-renal disease, involving the liver, heart and vasculature. Other less common but equally important extra-renal manifestations of ADPKD include diverticular disease, hernias, male infertility and pain. Extra-renal disease burden is often asymptomatic, but may result in increased morbidity and mortality. If the disease burden is significant, screening may prove beneficial. We review the rationale for current screening recommendations and propose some guidelines for screening and management of ADPKD patients. PMID:24215018

  4. Genetic linkage analysis of 14 candidate gene loci in a family with autosomal dominant osteoarthritis without dysplasia.

    PubMed Central

    Meulenbelt, I; Bijkerk, C; Breedveld, F C; Slagboom, P E

    1997-01-01

    The role of various gene loci was investigated in a family in which familial osteoarthritis (FOA), with onset at an early age, is transmitted as an autosomal dominant mendelian trait. The absence of clinical and radiographic signs of dysplasia and calcium pyrophosphate deposition disease (CPDD) indicates that the basic disease process in this family is osteoarthritis (OA). Genetic linkage analysis of 14 candidate genes resulted in the exclusion of 10 important genes (COL2A1, COL9A1, COL9A2, COL11A1, COL11A2, COMP, the CPDD region, CRTL-1, CRTM, and MMP3). Other relevant genes were not informative in this family. The candidate loci previously identified in FOA and heritable skeletal disorders associated with OA are clearly not involved in the development of the primary FOA phenotype in the family investigated, indicating genetic heterogeneity. Images PMID:9429149

  5. Co-existing autosomal dominant polycystic kidney disease and nephrotic syndrome in a Nigerian patient with lupus nephritis.

    PubMed

    Akinbodewa, A A; Adejumo, O A; Ogunsemoyin, A O; Osasan, S A; Adefolalu, O A

    2016-01-01

    A little over 30 cases on co-existing nephrotic syndrome and autosomal dominant polycystic kidney disease (ADPKD) have been reported from different regions of the world since 1957. We present a case report on co-existence of nephrotic syndrome (secondary to lupus nephritis) with ADPKD in a 24-year-old woman from Nigeria. She was positive for anti-double stranded DNA. Renal histology showed International Society of Nephrology/Renal Pathology Society Class II lupus nephritis. The co-existence of nephrotic syndrome and ADPKD may have been overlooked in Africa in the past. There is a need to screen for nephrotic syndrome in patients with ADPKD among clinicians in the African setting. PMID:27044732

  6. Mapping the locus of atrophia areata, a helicoid peripapillary chorioretinal degeneration with autosomal dominant inheritance, to chromosome 11p15.

    PubMed

    Fossdal, R; Magnússon, L; Weber, J L; Jensson, O

    1995-03-01

    Atrophia areata (AA) is an early onset autosomal dominant helicoid peripapillary chorioretinal degeneration, which was first demonstrated to be hereditary in an Icelandic family. It is characterized by bilateral wing-shaped atrophic areas of the retina, radiating from the optic disk. Primary complaints of affected individuals are due to refractive errors and scotomata associated with myopia which increases with age. A genome linkage search with 112 microsatellite DNA markers resulted in the highest probability of location for AA on chromosome 11. We genotyped 18 polymorphic markers on chromosome 11 and seven showed significant linkage to AA. The markers D11S1323 and D11S902 on 11p15 flank the region encompassing the gene for AA. PMID:7795606

  7. Linkage studies in Spanish autosomal dominant polycystic kidney disease-type 2 (ADPKD-2) families

    SciTech Connect

    San Millan, J.L.; Viribay, M.; Perral, B.

    1994-09-01

    ADPKD results from mutations in at least two genetically distinct loci. Most of the cases (ADPKD-1) are due to mutations in the locus PKD1, on the short arm of chromosome 16. ADPKD-2 accounts for 15% of ADPKD in Spanish population. Previous linkage studies have localized the gene for ADPKD-2 (PKD2) in the chromosome region 4q13-q23, and the distance between the flanking markers, D4S231 and D4S423/D4S414, was 7 cM. We have analyzed seven unrelated families with ADPKD not linked to PKD1 by using eight microsatellite markers that map within the candidate region. All the families did show linkage to any of the markers for which they were informative. Pairwise linkage analysis revealed that loci D4S414 and D4S423 are tightly linked to the disease with lod scores of 3.12 and 6.50, respectively, at a recombination fraction of 0.00. Multilocus linkage analysis indicates that the most likely location for PKD2 is distal to D4S1542, with odds of 1000:1 over the location proximal to D4S1542. Two recombination events involving PKD2 chromosomes have been identified in our seven families. These results provide a proximal boundary for the PKD2 locus and, considering previous studies, its localization is further refined to a 3 cM interval flanked by markers D4S1542 and D4S414/D4S423.

  8. Whole exome sequencing identifies a novel NRL mutation in a Chinese family with autosomal dominant retinitis pigmentosa

    PubMed Central

    Gao, Meng; Zhang, Su; Liu, Chunjie; Qin, Yayun; Archacki, Stephen; Jin, Ling; Wang, Yong; Liu, Fei; Chen, Jiaxiang; Liu, Ying; Wang, Jiuxiang; Huang, Mi; Liao, Shengjie; Tang, Zhaohui; Guo, An Yuan; Liu, Mugen

    2016-01-01

    Purpose To investigate the genetic basis and its relationship to the clinical manifestations in a four generation Chinese family with autosomal dominant retinitis pigmentosa. Methods Ophthalmologic examinations including fundus photography, fundus autofluorescence imaging, fundus fluorescein angiography, optical coherence tomography, and a best-corrected visual acuity test were performed to define the clinical features of the patients. We extracted the genomic DNA from peripheral blood samples. The proband’s genomic DNA was submitted to the whole exome sequencing. Results Whole exome sequencing and the subsequent data analysis detected six candidate mutations in the proband of this pedigree. The novel c.146 C>T mutation in NRL was found to be the only mutation that co-segregated with the disease in this pedigree. This mutation resulted in a substitution of proline by a leucine at position 49 of NRL protein (p.P49L). Most importantly, the proline residue at position 49 of NRL is highly conserved from zebrafish to humans. The c.146 C>T mutation was not observed in 200 control individuals. What’s more, we performed the luciferase activity assay to prove that this mutation we detected alters the NRL protein function. Conclusions The c.146 C>T mutation in NRL gene causes autosomal dominant retinitis pigmentosa for this family. Our finding not only expands the mutation spectrum of NRL, but also demonstrates that whole-exome sequencing is a powerful strategy to detect causative genes and mutations in RP patients. This technique may provide a precise diagnosis for rare heterogeneous monogenic disorders such as RP. PMID:27081294

  9. A New Locus on Chromosome 12p13.3 for Pseudohypoaldosteronism Type II, an Autosomal Dominant Form of Hypertension

    PubMed Central

    Disse-Nicodème, Sandra; Achard, Jean-Michel; Desitter, Isabelle; Houot, Anne-Marie; Fournier, Albert; Corvol, Pierre; Jeunemaitre, Xavier

    2000-01-01

    Pseudohypoaldosteronism type II (PHA2) is a rare autosomal dominant form of volume-dependent low-renin hypertension characterized by hyperkalemia and hyperchloremic acidosis but also by a normal glomerular filtration rate. These features, together with the correction of blood pressure and metabolic abnormalities by small doses of thiazide diuretics, suggest a primary renal tubular defect. Two loci have previously been mapped at low resolution to chromosome 1q31-42 (PHA2A) and 17p11-q21 (PHA2B). We have now analyzed a new, large French pedigree, in which 12 affected members over three generations confirmed the autosomal dominant inheritance. Affected subjects had hypertension together with long-term hyperkalemia (range 5.2–6.2 mmol/liter), hyperchloremia (range: 100-109 mmol/liter), normal plasma creatinine (range: 63–129 mmol/liter) and low renin levels. Genetic linkage was excluded for both PHA2A and PHA2B loci (all LOD scores Z<-3.2 at recombination fraction [θ] 0), as well as for the thiazide-sensitive sodium-chloride cotransporter gene. A genome-wide scan using 383 microsatellite markers showed a strong linkage with the chromosome 12p13 region (maximum LOD score Z=6.18, θ=0, at D12S99). Haplotype analysis using 10 additional polymorphic markers led to a minimum 13-cM interval flanked by D12S1652 and D12S336, thus defining a new PHA2C locus. Analysis of two obvious candidate genes (SCNN1A and GNb3) located within the interval showed no deleterious mutation. In conclusion, we hereby demonstrate further genetic heterogeneity of this Mendelian form of hypertension and identify a new PHA2C locus, the most compelling and precise linkage interval described to date. PMID:10869238

  10. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa

    PubMed Central

    Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten

    2016-01-01

    Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874

  11. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease.

    PubMed

    Porath, Binu; Gainullin, Vladimir G; Cornec-Le Gall, Emilie; Dillinger, Elizabeth K; Heyer, Christina M; Hopp, Katharina; Edwards, Marie E; Madsen, Charles D; Mauritz, Sarah R; Banks, Carly J; Baheti, Saurabh; Reddy, Bharathi; Herrero, José Ignacio; Bañales, Jesús M; Hogan, Marie C; Tasic, Velibor; Watnick, Terry J; Chapman, Arlene B; Vigneau, Cécile; Lavainne, Frédéric; Audrézet, Marie-Pierre; Ferec, Claude; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2016-06-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation. PMID:27259053

  12. Mutation in the Novel Nuclear-Encoded Mitochondrial Protein CHCHD10 in a Family with Autosomal Dominant Mitochondrial Myopathy

    PubMed Central

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E.; Mootha, Vamsi K.; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J.; Heiman-Patterson, Terry D.; Siddique, Teepu

    2016-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or the nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of a previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established C22orf16 (later designated as CHCHD10) as the only high scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double missense mutation (R15S; G58R) in cis in CHCHD10 which encodes a coiled-coil helix coiled-coil helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria. PMID:25193783

  13. Rare Variants in MME, Encoding Metalloprotease Neprilysin, Are Linked to Late-Onset Autosomal-Dominant Axonal Polyneuropathies.

    PubMed

    Auer-Grumbach, Michaela; Toegel, Stefan; Schabhüttl, Maria; Weinmann, Daniela; Chiari, Catharina; Bennett, David L H; Beetz, Christian; Klein, Dennis; Andersen, Peter M; Böhme, Ilka; Fink-Puches, Regina; Gonzalez, Michael; Harms, Matthew B; Motley, William; Reilly, Mary M; Renner, Wilfried; Rudnik-Schöneborn, Sabine; Schlotter-Weigel, Beate; Themistocleous, Andreas C; Weishaupt, Jochen H; Ludolph, Albert C; Wieland, Thomas; Tao, Feifei; Abreu, Lisa; Windhager, Reinhard; Zitzelsberger, Manuela; Strom, Tim M; Walther, Thomas; Scherer, Steven S; Züchner, Stephan; Martini, Rudolf; Senderek, Jan

    2016-09-01

    Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade β-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment. PMID:27588448

  14. Linkage and clinical characterization of families with the RP10 (chromosome 7q) form of autosomal dominant retinitis pigmentosa

    SciTech Connect

    Jordan, S.A.; Humphries, P.; McGuire, R.E.

    1994-09-01

    Retinitis pigmentosa is a set of degenerative retinal diseases characterized by night blindness and loss of peripheral vision, often followed by loss of central vision. Genetically heterogeneous, retinitis pigmentosa has been found in autosomal dominant, autosomal recessive and X-linked forms. For autosomal dominant retinitis pigmentosa (adRP), 6 loci have been mapped: rhodopsin on chromosome 3q, peripherin/RDS on 6p, RP9 on 7p, RP10 on 7q, RP1 on 8q, and RP11 on 19q. Jordan et al. first reported linkage to 7q in a Spanish family with early onset disease. Recently, McGuire et al. reported the existence of a second, unrelated family of American descent with adRP that maps to the same region of 7q. The second family also has classical, diffuse retinitis pigmentosa though with later onset. The finding of two unrelated families that map to this region suggests that RP10 may account for a significant fraction of retinitis pigmentosa cases. Combining data from both families localizes the disease gene to 7q31.1-q35. In the Spanish family a Z{sub max} of 7.2 at 0% recombination was found with the marker D7S480 and affected individuals recombinant for D7S486 and D7S650 flank the disease. The American family showed a Z{sub max} of 5.3 at 0% recombination wtih the marker D7S514 and there are affected individuals recombinant for the markers D7S522, D7S677 and D7S486, and one affected individual recombinant for D7S530. Together, these data place the disease locus between D7S522 and D7S650. In addition, blue cone pigment, which maps to 7q31.3-q32, was excluded as a candidate gene in both families by linkage testing using intragenic polymorphisms and mutation screening.

  15. Autosomal dominant familial spastic paraplegia: reduction of the FSP1 candidate region on chromosome 14q to 7 cM and locus heterogeneity.

    PubMed Central

    Gispert, S; Santos, N; Damen, R; Voit, T; Schulz, J; Klockgether, T; Orozco, G; Kreuz, F; Weissenbach, J; Auburger, G

    1995-01-01

    Three large pedigrees of German descent with autosomal dominant "pure" familial spastic paraplegia (FSP) were characterized clinically and genetically. Haplotype and linkage analyses, with microsatellites covering the FSP region on chromosome 14q (locus FSP1), were performed. In pedigree W, we found a haplotype that cosegregates with the disease and observed three crossing-over events, reducing the FSP1 candidate region to 7 cM; in addition, the observation of apparent anticipation in this family suggests a trinucleotide repeat expansion as the mutation. In pedigrees D and S, the gene locus could be excluded from the whole FSP1 region, confirming the locus heterogeneity of autosomal dominant FSP. PMID:7825576

  16. Mutation detection in autosomal dominant Hirschsprung disease: SSCP analysis of the RET proto-oncogene

    SciTech Connect

    Angrist, M.; Bolk, S.; Chakravarti, A.

    1994-09-01

    Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction, with an incidence of 1 in 5000. Recently, linkage of an incompletely penetrant, dominant form of HSCR to the pericentromeric region of chromosome 10 was reported, followed by identification of mutations in the RET proto-oncogene in HSCR patients. RET mutations have also been reported in both sporadic and familial forms of three neuroendrocrine tumor syndromes. Unlike the clustered RET mutations observed in these syndromes, the 18 reported HSCR mutations are distributed throughout the extracellular and tryosine kinase domains of RET. In an effort to determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have begun to screen for mutations among 80 HSCR probands representing a wide range of phenotypes and pedigree structures. Non-isotopic single strand conformation of polymorphism (SSCP) analysis was carried out using the Pharmacia PhastSystem{trademark}. Initial screening of exons 2 through 6 detected variants in 11 patients not seen in 24 controls. One additional band shift in exon 6 has been observed in both patients and controls. Preliminary sequence analysis has revealed two putative familial mutations in exon 2: a single base pair deletion (49Pro del C 296) and a point mutation that leads to a conservative amino acid substitution (93Gly{r_arrow}Ser). These results suggest that HSCR may be associated with a range of alterations in the coding sequence of the RET extracellular domain. Additional mutations will be described.

  17. Decreased Platelet APP Isoform Ratios in Autosomal Dominant Alzheimer’s Disease: Baseline Data from a DIAN Cohort Subset

    PubMed Central

    Chatterjee, Pratishtha; Gupta, Veer B.; Fagan, Anne M.; Jasielec, Mateusz S.; Xiong, Chengjie; Sohrabi, Hamid R.; Dhaliwal, Satvinder; Taddei, Kevin; Bourgeat, Pierrick; Brown, Belinda M.; Benzinger, Tammie; Bateman, Randall J.; Morris, John C.; Martins, Ralph N.

    2015-01-01

    Introduction This study examines platelet amyloid precursor protein (APP) isoform ratios of 120KDa to 110KDa (APPr) between mutation carriers (MC) carrying a mutation for autosomal dominant Alzheimer’s disease (ADAD) and non-carriers (NC). Two previous studies reported no significant difference in APPr between ADAD MC and NC, which may have been due to the small sample size in both studies. The current study examines APPr in MC versus NC in a larger sample. In addition, it investigated whether APPr correlate with neuroimaging data, neuropsychological data and cerebrospinal fluid biomarkers in a cohort subset derived from the Dominantly Inherited Alzheimer Network (DIAN) study. Methods APPr were quantified by western blotting. Fifteen MC (symptomatic and asymptomatic) were compared against twelve NC using univariate general linear model. All participants underwent neuroimaging and neuropsychological testing which were correlated with APPr using Pearson’s correlation coefficient (r). Results APPr were lower in MC compared to NC (p=0.003) while Mini-Mental State Examination (MMSE) scores were not significantly different (p>0.1). Furthermore, APPr inversely correlated with amyloid imaging in the Caudate Nucleus (r=−0.505; p<0.05) and Precuneus (r=−0.510; p<0.05). Conclusion APPr are lower in ADAD MC compared to NC, and inversely correlated with brain amyloid load prior to significant differences in cognitive health. However, the use of APPr as a biomarker needs to be explored further. PMID:25654503

  18. De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission of Retinitis Pigmentosa

    PubMed Central

    Strom, Samuel P.; Clark, Michael J.; Martinez, Ariadna; Garcia, Sarah; Abelazeem, Amira A.; Matynia, Anna; Parikh, Sachin; Sullivan, Lori S.; Bowne, Sara J.; Daiger, Stephen P.; Gorin, Michael B.

    2016-01-01

    Background Retinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic heterogeneity, genome-wide identification and analysis of protein-altering DNA variants by exome sequencing is a powerful tool for novel variant and disease gene discovery. In this study, exome sequencing analysis was used to search for potentially causal DNA variants in a two-generation pedigree with apparent dominant retinitis pigmentosa. Methods Variant identification and analysis of three affected members (mother and two affected offspring) was performed via exome sequencing. Parental samples of the index case were used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedigrees was performed via retrospective analysis or Sanger sequencing. Results and Conclusions A total of 136 high quality coding variants in 123 genes were identified which are consistent with autosomal dominant disease. Of these, one of the strongest genetic and functional candidates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this variant occurred de novo in the index case. No additional putative causal variants in ARL3 were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is an extremely rare phenomenon. PMID:26964041

  19. Acute simultaneous multiple lacunar infarcts as the initial presentation of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    PubMed

    Hsiao, Cheng-Tsung; Chen, Yun-Chung; Liu, Yo-Tsen; Soong, Bing-Wen; Lee, Yi-Chung

    2015-07-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an adult-onset, dominantly inherited small-vessel disease of the brain caused by NOTCH3 mutations and characterized by recurrent subcortical infarctions, dementia, migraine with aura, and mood disturbance. We report a patient with unusual presentation of CADASIL with acute simultaneous multiple subcortical lacunar infarcts as the first manifestation. A 69-year-old man developed confusion, drowsiness, right hemiparesis, and slurred speech following orthopedic surgeries. Brain magnetic resonance imaging revealed diffuse leukoencephalopathy and multiple acute subcortical lacunar infarcts. Brain magnetic resonance angiography, echocardiography and 24-hour electrocardiography were unremarkable. The symptoms improved quickly after treatment with fluid hydration and antiplatelet agent, and his consciousness and mentality totally recovered within 3 days. The NOTCH3 genetic testing showed a heterozygous missense mutation, c.1630C>T (p. Arg544Cys). The experience in this case suggests that brain imaging is important in managing postoperative confusion, and any patient with diffuse leukoencephalopathy of unknown etiology may need to be tested for NOTCH3 mutations. Surgery is an important factor of encephalopathy and acute infarction in individuals with NOTCH3 mutations. Comprehensive presurgical evaluations and proactive perioperative precautions to avoid dehydration and anemia are necessary for patients with CADASIL who are about to receive anesthesia and surgery. PMID:25959358

  20. Two pedigrees of autosomal dominant atrioventricular canal defect (AVCD): Exclusion from the critical region on 8p

    SciTech Connect

    Amati, F.; Mari, A.; Mingarelli, R.

    1995-07-03

    Atrioventricular canal defects (AVCD) constitute the predominant congenital heart defect in Down`s syndrome. For this reason, a candidate gene involved in atrioventricular canal development was previously searched and excluded in dominant pedigrees of AVCD, using linkage analysis of polymorphisms from chromosome 21. Because of the striking association between 8p deletion and AVCD, a search for an AVCD gene was carried out in two pedigrees of individuals with autosomal dominant AVCD using a set of DNA markers of the 8pter{r_arrow}q12 region. These two families include affected individuals and subjects who have transmitted the defect but are not clinically affected. Two-point lod scores were significantly negative for all markers at penetrance levels of 90% and 50%. Multipoint analysis excluded the region covered by the markers LPL-D8S262 and 30 cM to either side of this area. This result corroborates heterogeneity of this heart defect and indicates that the genetic basis of familial AVCD is different from AVCD associated to either trisomy 21 or 8p deletion. 25 refs., 3 figs., 2 tabs.

  1. Age-dependent gait abnormalities in mice lacking the Rnf170 gene linked to human autosomal-dominant sensory ataxia.

    PubMed

    Kim, Youngsoo; Kim, Seong Hun; Kim, Kook Hwan; Chae, Sujin; Kim, Chanki; Kim, Jeongjin; Shin, Hee-Sup; Lee, Myung-Shik; Kim, Daesoo

    2015-12-20

    Really interesting new gene (RING) finger protein 170 (RNF170) is an E3 ubiquitin ligase known to mediate ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate receptors (ITPR1). It has recently been demonstrated that a point mutation of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), which is characterized by an age-dependent increase of walking abnormalities, a rare genetic disorder reported in only two families. Although this mutant allele is known to be dominant, the functional identity thereof has not been clearly established. Here, we generated mice lacking Rnf170 (Rnf170(-/-)) to evaluate the effect of its loss of function in vivo. Remarkably, Rnf170(-/-) mice began to develop gait abnormalities in old age (12 months) in the form of asynchronous stepping between diagonal limb pairs with a fixed step sequence during locomotion, while age-matched wild-type mice showed stable gait patterns using several step sequence repertoires. As reported in ADSA patients, they also showed a reduced sensitivity for proprioception and thermal nociception. Protein blot analysis revealed that the amount of Itpr1 protein was significantly elevated in the cerebellum and spinal cord but intact in the cerebral cortex in Rnf170(-/-) mice. These results suggest that the loss of Rnf170 gene function mediates ADSA-associated phenotypes and this gives insights on the cure of patients with ADSA and other age-dependent walking abnormalities. PMID:26433933

  2. Map refinement of locus RP13 to human chromosome 17p13.3 in a second family with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Kojis, T.L.; Heinzmann, C.; Ngo, J.T.

    1996-02-01

    In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. 39 refs., 4 figs., 3 tabs.

  3. Map refinement of locus RP13 to human chromosome 17p13.3 in a second family with autosomal dominant retinitis pigmentosa.

    PubMed Central

    Kojis, T. L.; Heinzmann, C.; Flodman, P.; Ngo, J. T.; Sparkes, R. S.; Spence, M. A.; Bateman, J. B.; Heckenlively, J. R.

    1996-01-01

    In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. PMID:8571961

  4. Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity

    SciTech Connect

    Othmane, K.B.; Loprest, L.J.; Wilkinson, K.M. ); Middleton, L.T. )

    1993-08-01

    Charcot-Marie-Tooth (CMT) disease type 2 (CMT2) is an inherited peripheral neuropathy characterized by variable age of onset and normal or slightly diminished nerve conduction velocity. CMT2 is pathologically and genetically distinct from CMT type 1 (CMT1). While CMT1 has been shown to be genetically heterogeneous, no chromosomal localization has been established for CMT2. The authors have performed pedigree linkage analysis in six large autosomal dominant CMT2 families and have demonstrated linkage and heterogeneity to a series of microsatellites (D1S160, D1S170, D1S244, D1S228 and D1S199) in the distal region of the short arm of chromosome 1. Significant evidence for heterogeneity was found using admixture analyses and the two-point lod scores. Admixture analyses using the multipoint results for the markers D1S244, D1S228, and D1S199 supported the two-point findings. Three families, DUK662, DUK1241, and 1523 gave posterior probabilities of 1.0, 0.98, and 0.88 of being of the linked type. Multipoint analysis examining the [open quotes]linked[close quotes] families showed that the most favored location for the CMT2A gene is within the interval flanked by D1S244 and D1S228 (odds approximately 70:1 of lying within versus outside that interval). These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrate further heterogeneity in the CMT phenotype.

  5. Localization of a Gene for Autosomal Recessive Distal Renal Tubular Acidosis with Normal Hearing (rdRTA2) to 7q33-34

    PubMed Central

    Karet, Fiona E.; Finberg, Karin E.; Nayir, Ahmet; Bakkaloglu, Aysin; Ozen, Seza; Hulton, Sally A.; Sanjad, Sami A.; Al-Sabban, Essam A.; Medina, Juan F.; Lifton, Richard P.

    1999-01-01

    Summary Failure of distal nephrons to excrete excess acid results in the “distal renal tubular acidoses” (dRTA). Early childhood features of autosomal recessive dRTA include severe metabolic acidosis with inappropriately alkaline urine, poor growth, rickets, and renal calcification. Progressive bilateral sensorineural hearing loss (SNHL) is evident in approximately one-third of patients. We have recently identified mutations in ATP6B1, encoding the B-subunit of the collecting-duct apical proton pump, as a cause of recessive dRTA with SNHL. We now report the results of genetic analysis of 13 kindreds with recessive dRTA and normal hearing. Analysis of linkage and molecular examination of ATP6B1 indicated that mutation in ATP6B1 rarely, if ever, accounts for this phenotype, prompting a genomewide linkage search for loci underlying this trait. The results strongly supported linkage with locus heterogeneity to a segment of 7q33-34, yielding a maximum multipoint LOD score of 8.84 with 68% of kindreds linked. The LOD-3 support interval defines a 14-cM region flanked by D7S500 and D7S688. That 4 of these 13 kindreds do not support linkage to rdRTA2 and ATP6B1 implies the existence of at least one additional dRTA locus. These findings establish that genes causing recessive dRTA with normal and impaired hearing are different, and they identify, at 7q33-34, a new locus, rdRTA2, for recessive dRTA with normal hearing. PMID:10577919

  6. Identification of I411K, a novel missense EYA4 mutation causing autosomal dominant non-syndromic hearing loss

    PubMed Central

    TAN, MINXING; SHEN, XIAOFEI; YAO, JUN; WEI, QINJUN; LU, YAJIE; CAO, XIN; XING, GUANGQIAN

    2014-01-01

    Hearing loss is the most common sensory deficit in humans and gaining a better understanding of the underlying causes is necessary to improve counseling and rehabilitation. In the present study, a genetic analysis of a Chinese family with autosomal dominant non-syndromic progressive hearing impairment was conducted and assessed. Whole-exome sequencing in combination with a co-segregation analysis identified a novel missense mutation in EYA4 exon 15 (c.T1301A; p.I411K). The mutation segregated with the hearing loss of the family. This mutation was not identified in the databases of 1000 Genome Project, dbSNP 130, HapMap and YH project or in matched controls. Bioinformatic analysis confirmed the pathogenic effects of this mutation. To the best of our knowledge, this is the first report to provide a description of a missense mutation in the EYA4 gene resulting in non-syndromic hearing loss. Our results provide additional molecular and clinical information in order to gain improved understanding of the pathogenesis of EYA4 mutations and the genotype-phenotype correlations of DFNA10 hearing loss. PMID:25242383

  7. Identification of I411K, a novel missense EYA4 mutation causing autosomal dominant non‑syndromic hearing loss.

    PubMed

    Tan, Minxing; Shen, Xiaofei; Yao, Jun; Wei, Qinjun; Lu, Yajie; Cao, Xin; Xing, Guangqian

    2014-12-01

    Hearing loss is the most common sensory deficit in humans and gaining a better understanding of the underlying causes is necessary to improve counseling and rehabilitation. In the present study, a genetic analysis of a Chinese family with autosomal dominant non‑syndromic progressive hearing impairment was conducted and assessed. Whole‑exome sequencing in combination with a co‑segregation analysis identified a novel missense mutation in EYA4 exon 15 (c.T1301A; p.I411K). The mutation segregated with the hearing loss of the family. This mutation was not identified in the databases of 1000 genome Project, dbSNP 130, HapMap and YH project or in matched controls. Bioinformatic analysis confirmed the pathogenic effects of this mutation. To the best of our knowledge, this is the first report to provide a description of a missense mutation in the EYA4 gene resulting in non‑syndromic hearing loss. Our results provide additional molecular and clinical information in order to gain improved understanding of the pathogenesis of EYA4 mutations and the genotype‑phenotype correlations of DFNA10 hearing loss. PMID:25242383

  8. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension.

    PubMed

    Koot, Bart G P; Alders, Marielle; Verheij, Joanne; Beuers, Ulrich; Cobben, Jan M

    2016-04-01

    Non-cirrhotic portal hypertension is characterized by histopathological abnormalities in the liver, mostly affecting small intrahepatic portal veins that cause portal hypertension in the absence of cirrhosis. It can be secondary to coagulation disorders or toxic agents. However, most cases are idiopathic non-cirrhotic portal hypertension (INCPH) and familial cases are rare. We report a family in which a father and three of his four children conceived with three different mothers are affected by INCPH. Whole exome and Sanger sequencing showed the father to have a de novo single nucleotide substitution c.1348G>C in the KCNN3 gene that was transmitted to all three of his affected offspring. The KCNN3 gene encodes small conductance calcium-activated potassium (SK) channel 3. SK channels are involved in the regulation of arterial and venous vascular tone by causing smooth muscle relaxation on activation. No data exist on the expression and function of SK channels in portal veins. The autosomal dominant inheritance in this unique pedigree and the single de novo mutation identified, strongly suggests that KCNN3 mutations have a pathogenetic role in INCPH. PMID:26658685

  9. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed Central

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-01-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  10. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease

    PubMed Central

    Nikonova, Anna S.; Deneka, Alexander Y.; Eckman, Louisa; Kopp, Meghan C.; Hensley, Harvey H.; Egleston, Brian L.; Golemis, Erica A.

    2015-01-01

    Aurora-A kinase (AURKA) overexpression in numerous tumors induces aneuploidy, in part because of cytokinetic defects. Alisertib and other small-molecule inhibitors targeting AURKA are effective in some patients as monotherapies or combination therapies. Epidermal growth factor receptor (EGFR) pro-proliferative signaling activity is commonly elevated in cancer, and the EGFR inhibitor erlotinib is commonly used as a standard of care agent for cancer. An erlotinib/alisertib combination therapy is currently under assessment in clinical trials, following pre-clinical studies that indicated synergy of these drugs in cancer. We were interested in further exploring the activity of this drug combination. Beyond well-established functions for AURKA in mitotic progression, additional non-mitotic AURKA functions include control of ciliary stability and calcium signaling. Interestingly, alisertib exacerbates the disease phenotype in mouse models for autosomal-dominant polycystic kidney disease (ADPKD), a common inherited syndrome induced by aberrant signaling from PKD1 and PKD2, cilia-localized proteins that have calcium channel activity. EGFR is also more active in ADPKD, making erlotinib also of potential interest in this disease setting. In this study, we have explored the interaction of alisertib and erlotinib in an ADPKD model. These experiments indicated erlotinib-­restrained cystogenesis, opposing alisertib action. Erlotinib also interacted with alisertib to regulate proliferative signaling proteins, albeit in a complicated manner. Results suggest a nuanced role of AURKA signaling in different pathogenic conditions and inform the clinical use of AURKA inhibitors in cancer patients with comorbidities. PMID:26528438

  11. Aromatase excess syndrome: a rare autosomal dominant disorder leading to pre- or peri-pubertal onset gynecomastia.

    PubMed

    Fukami, Maki; Miyado, Mami; Nagasaki, Keisuke; Shozu, Makio; Ogata, Tsutomu

    2014-03-01

    Overexpression of CYP19A1 encoding aromatase results in a rare genetic disorder referred to as aromatase excess syndrome (AEXS). Male patients with AEXS manifest pre- or peri-pubertal onset gynecomastia, gonadotropin deficiency, and advanced bone age, while female patients are mostly asymptomatic. To date, 30 male patients with molecularly confirmed AEXS have been reported. A total of 12 types of submicroscopic rearrangements, i.e., two simple duplications, four simple deletions, two simple inversions, and four complex rearrangements, have been implicated in AEXS. Clinical severity of AEXS primarily depends on the types of the rearrangements. AEXS appears to account for a small number of cases of pre- or peri-pubertal onset gynecomastia, and should be suspected particularly when gynecomastia is associated with an autosomal dominant inheritance pattern, characteristic hormone abnormalities and/or advanced bone age. Treatment with an aromatase inhibitor appears to benefit patients with AEXS, although long-term safety of this class of drugs remains unknown. PMID:24716396

  12. Mutations in DNAJC5, Encoding Cysteine-String Protein Alpha, Cause Autosomal-Dominant Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Nosková, Lenka; Stránecký, Viktor; Hartmannová, Hana; Přistoupilová, Anna; Barešová, Veronika; Ivánek, Robert; Hůlková, Helena; Jahnová, Helena; van der Zee, Julie; Staropoli, John F.; Sims, Katherine B.; Tyynelä, Jaana; Van Broeckhoven, Christine; Nijssen, Peter C.G.; Mole, Sara E.; Elleder, Milan; Kmoch, Stanislav

    2011-01-01

    Autosomal-dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is characterized by accumulation of autofluorescent storage material in neural tissues and neurodegeneration and has an age of onset in the third decade of life or later. The genetic and molecular basis of the disease has remained unknown for many years. We carried out linkage mapping, gene-expression analysis, exome sequencing, and candidate-gene sequencing in affected individuals from 20 families and/or individuals with simplex cases; we identified in five individuals one of two disease-causing mutations, c.346_348delCTC and c.344T>G, in DNAJC5 encoding cysteine-string protein alpha (CSPα). These mutations—causing a deletion, p.Leu116del, and an amino acid exchange, p.Leu115Arg, respectively—are located within the cysteine-string domain of the protein and affect both palmitoylation-dependent sorting and the amount of CSPα in neuronal cells. The resulting depletion of functional CSPα might cause in parallel the presynaptic dysfunction and the progressive neurodegeneration observed in affected individuals and lysosomal accumulation of misfolded and proteolysis-resistant proteins in the form of characteristic ceroid deposits in neurons. Our work represents an important step in the genetic dissection of a genetically heterogeneous group of ANCLs. It also confirms a neuroprotective role for CSPα in humans and demonstrates the need for detailed investigation of CSPα in the neuronal ceroid lipofuscinoses and other neurodegenerative diseases presenting with neuronal protein aggregation. PMID:21820099

  13. Renal ultrasonographic and computed tomographic appearance, volume, and function of cats with autosomal dominant polycystic kidney disease.

    PubMed

    Reichle, Jean K; DiBartola, Stephen P; Léveillé, Renée

    2002-01-01

    The purpose of this study was to describe the ultrasonographic (US) and computed tomographic (CT) appearance of autosomal dominant polycystic kidney disease (ADPKD) in cats; to compare renal volume in cats with ADPKD (n = 5; mean age 59 +/- 10 months)) and normal cats (n = 5; mean age 66 +/- 10 months) using 2 imaging modalities, US and CT; and to calculate cyst volume using CT. Glomerular filtration rate (GFR) was determined by 2 methods: 99mTc-diethylene-triaminepentaacetic acid (99mTc-DPTA) scintigraphic uptake and 99-Tc-DTPA plasma clearance. Sonographically, ADPKD affected kidneys were characterized by multiple anechoic to hypoechoic, round to irregularly shaped structures with variation in size. Affected kidneys had indistinct corticomedullary junctions and foci of mineralization. Intravenous (IV) contrast medium administration allowed more definitive identification of cysts with CT, and identification of distortion of renal pelves by cysts. A significant difference (Welch ANOVA, P = 0.05) was detected between the US-estimated renal volumes of normal and affected cats. No statistically significant differences were detected in CT volume (between the normal and affected cats, or between US and CT volume measurements) or the 2 GFR methods. In this group of clinically normal, middle-aged ADPKD cats, renal function was within normal limits and not significantly different than normal. PMID:12175002

  14. A novel mutation of the RP1 gene (Lys778ter) associated with autosomal dominant retinitis pigmentosa

    PubMed Central

    Dietrich, K; Jacobi, F K; Tippmann, S; Schmid, R; Zrenner, E; Wissinger, B; Apfelstedt-Sylla, E

    2002-01-01

    Background: Besides the three known genes (RHO, RDS/Peripherin, NRL) involved in autosomal dominant retinitis pigmentosa (adRP), a fourth gene, RP1, has been recently identified. Initial reports suggest that mutations in the RP1 gene are the second most frequent cause of adRP. The clinical findings were described in a family with adRP and a novel mutation in the RP1 gene. Method: Index patients from 15 independent families with adRP in which RHO mutations had been excluded in previous examinations were screened for mutations in the RP1 gene by means of direct DNA sequencing. Evaluation of the RP1 phenotype in patients included funduscopy, kinetic perimetry, dark adapted final threshold test, standard electroretinography and, in one case, multifocal electroretinography. Results: One novel nonsense mutation (Lys778ter) in one of these 15 patients was detected. Cosegregation of the mutation with the disease phenotype could be established in the index patient's family. The phenotype comprises variable expression of clinical disease probably including one case of incomplete penetrance, a onset of symptoms beginning in adulthood, and evidence of regionally varying retinal function loss. Conclusion: The Lys778ter mutation localises inside the critical region harbouring all mutations described so far. The ophthalmic findings support previous observations that variation of disease expression appears as a typical feature of the RP1 phenotype. PMID:11864893

  15. Autosomal dominant polycystic kidney disease: Localization of the second gene to chromosome 4q13-q23

    SciTech Connect

    Kimberling, W.J.; Kumar, S.; Kenyon, J.B.; Connolly, C.J. ); Gabow, P.A. ); Somlo, S. )

    1993-12-01

    At least two loci are known to exist for autosomal dominant polycystic kidney disease (ADPKD). One was localized to 16p, but the second less common locus has remained unlinked. Over 100 microsatellite markers, distributed across all chromosomes, have been typed on informative family members from the large Sicilian kindred in which the genetic heterogeneity was first discovered. Both the affected and the unaffected status of every family member used in the study were consulted in the successful localization of a second ADPKD gene to chromosome 4q. It was found to be flanked by the markers D4S231 and D4S414, defining a segment that spans about 9 cM. The new locus has been designated PKD4. This second localization will allow researchers to target another ADPKD gene for isolation in an effort to understand the pathogenesis of this common disorder. Furthermore, when flanking markers for the second ADPKD gene are used in conjunction with flanking markers for PKD1, the accuracy of the diagnosis of the subtype of ADPKD present in any particular family will be enhanced. This will improve the accuracy of linkage-based presymptomatic diagnoses by reducing the error due to genetic heterogeneity. 42 refs., 3 figs., 1 tab.

  16. Fatal liver cyst rupture in polycystic liver disease complicated with autosomal dominant polycystic kidney disease: A case report.

    PubMed

    Tong, Fang; Liang, Yue; Zhang, Lin; Li, Wenhe; Chen, Peng; Duan, Yijie; Zhou, Yiwu

    2016-05-01

    A 59-year-old man was struck in the abdomen and later presented to the emergency room. His blood pressure dropped and eventually died 16h post trauma and just before emergency exploratory laparotomy. Autopsy revealed two polycystic kidneys and a giant polycystic liver with two ruptures. Blood (2225g) was observed in the peritoneum and the body-surface injury was minor. Genetic testing was performed to confirm that the man had an autosomal dominant polycystic kidney disease (ADPKD) complicated by polycystic liver disease (PLD). Autopsy, histopathology and medical history showed that the cause of death was the ruptures of liver cysts due to trauma. In this communication, we describe a fatal case and hope to increase awareness and recognition of PLD and ADPKD. We also wish to indicate that due to the fragile condition of liver cysts, trauma should be considered even if the body-surface injury is minor in fatal cases of PLD patient with a traumatic history. PMID:27050907

  17. Uncommon cause of chest pain in a renal transplantation patient with autosomal dominant polycystic kidney disease: a case report.

    PubMed

    Rodrigues, L; Neves, M; Machado, S; Sá, H; Macário, F; Alves, R; Mota, A; Campos, M

    2012-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of end-stage renal disease (ESRD) and, because of its intrinsic systemic involvement, its treatment can be a medical and surgical challenge. This condition is often associated with the presence of hepatic cysts and their prevalence generally increases with age. Most patients remain asymptomatic, but some of these will develop complications associated with enlargement and infection of their cysts. Chest pain is a rare manifestation of these complications and, after exclusion of more common cardiovascular and pulmonary causes, should raise the suspicion of an infected hepatic cyst in these patients. We report the case of a 62-year-old male who underwent a kidney transplantation from a cadaveric donor in 1997 (etiology of the ESRD was ADPKD), and was admitted to the emergency department with complaints of chest pain radiating to both shoulders and the interscapular region. An echocardiogram was showed compression of the right atrium by a large liver cyst without associated ventricular dysfunction. Computer tomography-guided drainage of the cyst was performed and an Enterobacter aerogenes sensitive to carbamapenemes was isolated from respective cultures. The patient presented a favorable clinical outcome with prolonged administration of antibiotic therapy according to the antibiotic susceptibility testing. There was no need for surgical intervention. PMID:23026633

  18. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients.

    PubMed

    Audrézet, Marie-Pierre; Cornec-Le Gall, Emilie; Chen, Jian-Min; Redon, Sylvia; Quéré, Isabelle; Creff, Joelle; Bénech, Caroline; Maestri, Sandrine; Le Meur, Yann; Férec, Claude

    2012-08-01

    Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD. PMID:22508176

  19. [Epidemiological and molecular study of autosomal dominant polycystic kidney disease (ADPKD) in the province of Vicenza, Italy: possible founder effect?].

    PubMed

    Corradi, Valentina; Gastaldon, Fiorella; Virzi', Grazia Maria; Clementi, Maurizio; Nalesso, Federico; Cruz, Dinna N; de Cal, Massimo; Torregrossa, Rossella; Ronco, Claudio

    2010-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disorder, with a prevalence of 1:400 to 1:1000. ADPKD is genetically and clinically heterogeneous. In addition, significant intrafamilial renal disease variability is evident. The prevalence of ADPKD patients on renal replacement therapy in Italy has been reported to be 8.2%. In the dialysis population of Vicenza province (northeast Italy), in one area especially, ADPKD cases account for 13.4%. We hypothesize that this high frequency is related to a founder effect in this geographically isolated population. Since April 2007 we have studied the characteristics of ADPKD patients and the presence of haplotypes shared by several families. The clinical profile of patients in the Vicenza province is similar to that described in the literature but there is a high prevalence of ADPKD in several isolated areas. These areas are characterized by the presence of three distinct haplotypes, suggesting a strong lineage-specific gene. PMID:21132648

  20. Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease

    PubMed Central

    Muenchhoff, Julia; Poljak, Anne; Thalamuthu, Anbupalam; Gupta, Veer B.; Chatterjee, Pratishtha; Raftery, Mark; Masters, Colin L.; Morris, John C.; Bateman, Randall J.; Fagan, Anne M.; Martins, Ralph N.; Sachdev, Perminder S.

    2016-01-01

    The autosomal dominant form of Alzheimer’s disease (ADAD) is far less prevalent than late onset Alzheimer’s disease (LOAD), but enables well-informed prospective studies, since symptom onset is near certain and age of onset is predictable. Our aim was to discover plasma proteins associated with early AD pathology by investigating plasma protein changes at the asymptomatic and symptomatic stages of ADAD. Eighty-one proteins were compared across asymptomatic mutation carriers (aMC, n = 15), symptomatic mutation carriers (sMC, n = 8) and related noncarriers (NC, n = 12). Proteins were also tested for associations with cognitive measures, brain amyloid deposition and glucose metabolism. Fewer changes were observed at the asymptomatic than symptomatic stage with seven and 16 proteins altered significantly in aMC and sMC, respectively. This included complement components C3, C5, C6, apolipoproteins A-I, A-IV, C-I and M, histidine-rich glycoprotein, heparin cofactor II and attractin, which are involved in inflammation, lipid metabolism and vascular health. Proteins involved in lipid metabolism differed only at the symptomatic stage, whereas changes in inflammation and vascular health were evident at asymptomatic and symptomatic stages. Due to increasing evidence supporting the usefulness of ADAD as a model for LOAD, these proteins warrant further investigation into their potential association with early stages of LOAD. PMID:27381087

  1. Clinical and Genetic Description of a Family With a High Prevalence of Autosomal Dominant Restless Legs Syndrome

    PubMed Central

    Young, Jessica E.; Vilariño-Güell, Carles; Lin, Siong-Chi; Wszolek, Zbigniew K.; Farrer, Matthew J.

    2009-01-01

    OBJECTIVE: To conduct clinical and molecular genetic analyses of the members of an extended family in Central Indiana with a high prevalence of restless legs syndrome (RLS). PARTICIPANTS AND METHODS: From February 1, 2006, through August 31, 2008, we collected data from members of this family, which is of English descent. Genealogical methods were used to expand the family tree, and family members were screened with an RLS questionnaire. Telephone interviews and personal examinations were performed at Mayo Clinic and during a field trip to Central Indiana. Blood samples were collected for molecular genetic analysis. A follow-up telephone interview was conducted 1 year later. RESULTS: The family tree spans 7 generations with 88 living members, 30 of whom meet the criteria for diagnosis of RLS established by the International Restless Legs Syndrome Study Group. Three affected family members also have Parkinson disease or essential tremor. The mode of RLS inheritance is compatible with an autosomal dominant pattern. The affected family members do not exhibit linkage to the 5 known RLS loci or mutations in the RLS susceptibility genes MEIS1 and BTBD9. CONCLUSION: Of 88 members of this single extended family in Central Indiana, 30 were diagnosed as having RLS. Because our analysis shows that the disease is not linked to any of the known RLS loci or risk-associated genes, we postulate that members of this family may carry a gene mutation in a novel genetic locus. PMID:19181647

  2. PKDB: Polycystic Kidney Disease Mutation Database--a gene variant database for autosomal dominant polycystic kidney disease.

    PubMed

    Gout, Alexander M; Martin, Neilson C; Brown, Alastair F; Ravine, David

    2007-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) arises from mutations in the PKD1 and PKD2 genes. The Polycystic Kidney Disease Mutation Database (PKDB) is an internet-accessible relational database containing comprehensive information about germline and somatic disease-causing variants within these two genes, as well as polymorphisms and variants of indeterminate pathogenicity. The PKDB database structure incorporates an interface between these gene variant data and any associated patient clinical data. An initiative of the Polycystic Kidney Disease Foundation, PKDB is a publicly accessible database that aims to streamline the evaluation of PKD1 and PKD2 gene variants detected in samples from those with ADPKD, as well as to assist ongoing clinical and molecular research in the field. As the accurate reporting of nucleotide variants is essential for ensuring the quality of data within PKDB, a mutation checker has been mounted on the PKDB server allowing contributors to assess the accuracy of their PKD1 and PKD2 variant reports. Researchers and clinicians may submit their PKD1/PKD2 gene variants and any associated deidentified clinical data via standardized downloadable data entry forms accessible through the PKDB site. PKDB has been launched with the full details of PKD1 and PKD2 gene variant reports published in 73 peer-reviewed articles. Through a series of user-friendly advanced search facilities, users are able to query the database as required. The PKDB server is accessible at http://pkdb.mayo.edu. PMID:17370309

  3. Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease: A Biomarker of Disease Progression and Therapeutic Efficacy.

    PubMed

    Alam, Ahsan; Dahl, Neera K; Lipschutz, Joshua H; Rossetti, Sandro; Smith, Patricia; Sapir, Daniel; Weinstein, Jordan; McFarlane, Philip; Bichet, Daniel G

    2015-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially life-threatening monogenic disorder in humans, characterized by progressive development and expansion of fluid-filled cysts in the kidneys and other organs. Ongoing cyst growth leads to progressive kidney enlargement, whereas kidney function remains stable for decades as a result of hyperfiltration and compensation by unaffected nephrons. Kidney function irreversibly declines only in the late stages of the disease, when most of the parenchyma is lost to cystic and fibrotic tissue and the remaining compensatory capacity is overwhelmed. Hence, conventional kidney function measures, such as glomerular filtration rate, do not adequately assess disease progression in ADPKD, especially in its early stages. Given the recent development of potential targeted therapies in ADPKD, it has become critically important to identify relevant biomarkers that can be used to determine the degree of disease progression and evaluate the effects of therapeutic interventions on the course of the disease. We review the current evidence to provide an informed perspective on whether total kidney volume (TKV) is a suitable biomarker for disease progression and whether TKV can be used as an efficacy end point in clinical trials. We conclude that because cystogenesis is the central factor leading to kidney enlargement, TKV appears to be an appropriate biomarker and is gaining wider acceptance. Several studies have identified TKV as a relevant imaging biomarker for monitoring and predicting disease progression and support its use as a prognostic end point in clinical trials. PMID:25960302

  4. Apelin and copeptin: two opposite biomarkers associated with kidney function decline and cyst growth in autosomal dominant polycystic kidney disease.

    PubMed

    Lacquaniti, Antonio; Chirico, Valeria; Lupica, Rosaria; Buemi, Antoine; Loddo, Saverio; Caccamo, Chiara; Salis, Paola; Bertani, Tullio; Buemi, Michele

    2013-11-01

    Vasopressin (AVP) plays a detrimental role in autosomal dominant polycystic kidney disease (ADPKD). Copeptin represents a measurable substitute for circulating AVP whereas apelin counteracts AVP signaling. The aim of this study was to investigate the predictive value of apelin and copeptin for the progression of ADPKD disease. 52 ADPKD patients were enrolled and followed until the end of the observation period or the primary study endpoint was reached, defined by the combined outcome of decrease of glomerular filtration rate associated with a total renal volume increase. Receiver operating characteristics (ROC) analysis was employed for identifying the progression of renal disease and Kaplan-Meier curves assessed the renal survival. Adjusted risk estimates for progression endpoint and incident renal replacement therapy (RRT) were calculated using Cox proportional hazard regression analysis. ADPKD patients were characterized by lower apelin levels and higher copeptin levels when compared with healthy subjects. These biomarkers were strictly correlated with osmolality and markers of renal function. At ROC analysis, apelin and copeptin showed a very good diagnostic profile in identifying ADPKD progression. After the follow up of 24 months, 33 patients reached the endpoint. Cox proportional hazard regression analysis showed that apelin predicted renal disease progression and incident RRT independently of other potential confounders. Apelin is associated with kidney function decline in ADPKD, suggesting that it may be a new marker to predict kidney outcome. PMID:23973863

  5. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?

    PubMed

    Canaud, G; Knebelmann, B; Harris, P C; Vrtovsnik, F; Correas, J-M; Pallet, N; Heyer, C M; Letavernier, E; Bienaimé, F; Thervet, E; Martinez, F; Terzi, F; Legendre, C

    2010-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disease, and sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, has been shown to significantly retard cyst expansion in animal models. The optimal therapeutic dose of sirolimus is not yet defined. Here, we report the history of a previously unknown ADPKD deceased donor whose kidneys were engrafted in two different recipients. One of the two received an immunosuppressive regimen based on sirolimus for 5 years while the other did not. After transplantation, both patients developed severe transplant cystic disease. Donor DNA sequence identified a new hypomorphic mutation in PKD1. The rate of cyst growth was identical in the two patients regardless of the treatment. While sirolimus treatment reduced the activation of mTOR in peripheral blood mononuclear cells, it failed to prevent mTOR activation in kidney tubular cells, this could account for the inefficiency of treatment on cyst growth. Together, our results suggest that the dose of sirolimus required to inhibit mTOR varies according to the tissue. PMID:20642692

  6. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  7. Antihypertensive treatments in adult autosomal dominant polycystic kidney disease: network meta-analysis of the randomized controlled trials

    PubMed Central

    Dai, Bing; Yu, Shengqiang; Xu, Chenggang; Mao, Zhiguo; Ye, Chaoyang; Chen, Dongping; Zhao, Xuezhi; Wu, Jun; Chen, Wansheng; Mei, Changlin

    2015-01-01

    Background Blood pressure (BP) control is one of the most important treatments of Autosomal dominant polycystic kidney disease (ADPKD). The comparative efficacy of antihypertensive treatments in ADPKD patients is inconclusive. Methods Network meta-analysis was used to evaluate randomized controlled trials (RCT) which investigated antihypertensive treatments in ADPKD. PubMed, Embase, Ovid, and Cochrane Collaboration were searched. The primary outcome was estimated glomerular filtration rate (eGFR). Secondary outcomes were serum creatinine (Scr), urinary albumin excretion (UAE), systolic BP (SBP), diastolic BP (DBP), mean artery pressure (MAP) and left ventricular mass index (LVMI). Results We included 10 RCTs with 1386 patients and six interventions: angiotensin-converting enzyme inhibitors (ACEI), Angiotensin II receptor blocker (ARB), combination of ACEI and ARB, calcium channel blockers (CCB), β-blockers and dilazep. There was no difference of eGFR in all the treatments in both network and direct comparisons. No significant differences of Scr, SBP, DBP, MAP, and LVMI were found in network comparisons. However, ACEI significantly reduced SBP, DBP, MAP and LVMI when compared to CCB. Significantly increased UAE was observed in CCB compared with ACEI or ARB. Bayesian probability analysis found ARB ranked first in the surrogate measures of eGFR, UAE and SBP. Conclusions There is little evidence to detect differences of antihypertensive treatments on kidney disease progression in ADPKD patients. More RCTs will be needed in the future. Use of ARB may be an optimal choice in clinical practice. PMID:26636542

  8. Autosomal-dominant inheritance of the prothrombin gene mutation in a Puerto Rican family: A case study.

    PubMed

    Morales-Borges, Raúl H

    2012-12-01

    Splenic infarction is rare and the prothrombin gene mutation (PGM) is not commonly observed in Puerto Rico. PGM is present in 1% of the general population, and in 7% of the people with deep venous thrombosis (DVT); it is found in up to 40% of patients with splenic-portal-mesenteric thrombosis. Our study has identified a Puerto Rican family of four generations whose members all have inherited PGM in an autosomal dominant manner. The eldest member of the family, an 82-year-old male, presented with DVT of the lower extremity. The man's 62-year-old daughter had suffered a splenic infarction; his 37-year-old grandson presented with superficial and deep vein thrombosis (SDVT), and his great-grandson of 8 years was asymptomatic at the time of the report. This is the second report of PGM as the cause of a hypercoagulable state and the first reported PGM-related splenic infarction in Puerto Rico. We need to test for genetic hypercoagulable states in the members of Puerto Rican families with thromboembolism. Once testing has revealed the existence of such states in a given family, it is important that the family members receive genetic counseling. PMID:23844473

  9. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography

    PubMed Central

    Schöll, Michael; Carter, Stephen F.; Westman, Eric; Rodriguez-Vieitez, Elena; Almkvist, Ove; Thordardottir, Steinunn; Wall, Anders; Graff, Caroline; Långström, Bengt; Nordberg, Agneta

    2015-01-01

    Studying autosomal dominant Alzheimer’s disease (ADAD), caused by gene mutations yielding nearly complete penetrance and a distinct age of symptom onset, allows investigation of presymptomatic pathological processes that can identify a therapeutic window for disease-modifying therapies. Astrocyte activation may occur in presymptomatic Alzheimer’s disease (AD) because reactive astrocytes surround β-amyloid (Aβ) plaques in autopsy brain tissue. Positron emission tomography was performed to investigate fibrillar Aβ, astrocytosis and cerebral glucose metabolism with the radiotracers 11C-Pittsburgh compound-B (PIB), 11C-deuterium-L-deprenyl (DED) and 18F-fluorodeoxyglucose (FDG) respectively in presymptomatic and symptomatic ADAD participants (n = 21), patients with mild cognitive impairment (n = 11) and sporadic AD (n = 7). Multivariate analysis using the combined data from all radiotracers clearly separated the different groups along the first and second principal components according to increased PIB retention/decreased FDG uptake (component 1) and increased DED binding (component 2). Presymptomatic ADAD mutation carriers showed significantly higher PIB retention than non-carriers in all brain regions except the hippocampus. DED binding was highest in presymptomatic ADAD mutation carriers. This suggests that non-fibrillar Aβ or early stage plaque depostion might interact with inflammatory responses indicating astrocytosis as an early contributory driving force in AD pathology. The novelty of this finding will be investigated in longitudinal follow-up studies. PMID:26553227

  10. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-05-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  11. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma.

    PubMed

    Liu, Chunqiao; Widen, Sonya A; Williamson, Kathleen A; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P; Strachan, Erin; Manjunath, Souparnika H; Balakrishnan, Archana; Floyd, James A; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P; Lehmann, Ordan J; FitzPatrick, David R; Swaroop, Anand

    2016-04-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622

  12. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus.

    PubMed

    Kuwahara, M; Iwai, K; Ooeda, T; Igarashi, T; Ogawa, E; Katsushima, Y; Shinbo, I; Uchida, S; Terada, Y; Arthus, M F; Lonergan, M; Fujiwara, T M; Bichet, D G; Marumo, F; Sasaki, S

    2001-10-01

    The vasopressin-regulated water channel aquaporin-2 (AQP2) is known to tetramerize in the apical membrane of the renal tubular cells and contributes to urine concentration. We identified three novel mutations, each in a single allele of exon 4 of the AQP2 gene, in three families showing autosomal dominant nephrogenic diabetes insipidus (NDI). These mutations were found in the C-terminus of AQP2: a deletion of G at nucleotide 721 (721 delG), a deletion of 10 nucleotides starting at nucleotide 763 (763-772del), and a deletion of 7 nucleotides starting at nucleotide 812 (812-818del). The wild-type AQP2 is predicted to be a 271-amino acid protein, whereas these mutant genes are predicted to encode proteins that are 330-333 amino acids in length, because of the frameshift mutations. Interestingly, these three mutant AQP2s shared the same C-terminal tail of 61 amino acids. In Xenopus oocytes injected with mutant AQP2 cRNAs, the osmotic water permeability (Pf) was much smaller than that of oocytes with the AQP2 wild-type (14%-17%). Immunoblot analysis of the lysates of the oocytes expressing the mutant AQP2s detected a band at 34 kD, whereas the immunoblot of the plasma-membrane fractions of the oocytes and immunocytochemistry failed to show a significant surface expression, suggesting a defect in trafficking of these mutant proteins. Furthermore, coinjection of wild-type cRNAs with mutant cRNAs markedly decreased the oocyte Pf in parallel with the surface expression of the wild-type AQP2. Immunoprecipitation with antibodies against wild-type and mutant AQP2 indicated the formation of mixed oligomers composed of wild-type and mutant AQP2 monomers. Our results suggest that the trafficking of mutant AQP2 is impaired because of elongation of the C-terminal tail, and the dominant-negative effect is attributed to oligomerization of the wild-type and mutant AQP2s. Segregation of the mutations in the C-terminus of AQP2 with dominant-type NDI underlies the importance of this

  13. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome.

    PubMed

    Milner, Joshua D; Brenchley, Jason M; Laurence, Arian; Freeman, Alexandra F; Hill, Brenna J; Elias, Kevin M; Kanno, Yuka; Spalding, Christine; Elloumi, Houda Z; Paulson, Michelle L; Davis, Joie; Hsu, Amy; Asher, Ava I; O'Shea, John; Holland, Steven M; Paul, William E; Douek, Daniel C

    2008-04-10

    The autosomal dominant hyper-IgE syndrome (HIES, 'Job's syndrome') is characterized by recurrent and often severe pulmonary infections, pneumatoceles, eczema, staphylococcal abscesses, mucocutaneous candidiasis, and abnormalities of bone and connective tissue. Mutations presumed to underlie HIES have recently been identified in stat3, the gene encoding STAT3 (signal transducer and activator of transcription 3) (refs 3, 4). Although impaired production of interferon-gamma and tumour-necrosis factor by T cells, diminished memory T-cell populations, decreased delayed-type-hypersensitivity responses and decreased in vitro lymphoproliferation in response to specific antigens have variably been described, specific immunological abnormalities that can explain the unique susceptibility to particular infections seen in HIES have not yet been defined. Here we show that interleukin (IL)-17 production by T cells is absent in HIES individuals. We observed that ex vivo T cells from subjects with HIES failed to produce IL-17, but not IL-2, tumour-necrosis factor or interferon-gamma, on mitogenic stimulation with staphylococcal enterotoxin B or on antigenic stimulation with Candida albicans or streptokinase. Purified naive T cells were unable to differentiate into IL-17-producing (T(H)17) T helper cells in vitro and had lower expression of retinoid-related orphan receptor (ROR)-gammat, which is consistent with a crucial role for STAT3 signalling in the generation of T(H)17 cells. T(H)17 cells have emerged as an important subset of helper T cells that are believed to be critical in the clearance of fungal and extracellular bacterial infections. Thus, our data suggest that the inability to produce T(H)17 cells is a mechanism underlying the susceptibility to the recurrent infections commonly seen in HIES. PMID:18337720

  14. Four New Families with Autosomal Dominant Partial Epilepsy with Auditory Features: Clinical Description and Linkage to Chromosome 10q24

    PubMed Central

    Winawer, Melodie R.; Boneschi, Filippo Martinelli; Barker-Cummings, Christie; Lee, Joseph H.; Liu, Jianjun; Mekios, Constantine; Gilliam, T. Conrad; Pedley, Timothy A.; Hauser, W. Allen; Ottman, Ruth

    2009-01-01

    Summary Purpose Autosomal dominant partial epilepsy with auditory features (ADPEAF) is a rare form of nonprogressive lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. The gene predisposing to this syndrome was localized to a 10-cM region on chromosome 10q24. We assessed clinical features and linkage evidence in four newly ascertained families with ADPEAF, to refine the clinical phenotype and confirm the genetic localization. Methods We genotyped 41 individuals at seven microsatellite markers spanning the previously defined 10-cM minimal genetic region. We conducted two-point linkage analysis with the ANALYZE computer package, and multipoint parametric and nonparametric linkage analyses as implemented in GENEHUNTER2. Results In the four families, the number of individuals with idiopathic epilepsy ranged from three to nine. Epilepsy was focal in all of those with idiopathic epilepsy who could be classified. The proportion with auditory symptoms ranged from 67 to 100%. Other ictal symptoms also were reported; of these, sensory symptoms were most common. Linkage analysis showed a maximum 2-point LOD score of 1.86 at (θ = 0.0 for marker D10S603, and a maximum multipoint LOD score of 2.93. Conclusions These findings provide strong confirmation of linkage of a gene causing ADPEAF to chromosome 10q24. The results suggest that the susceptibility gene has a differential effect on the lateral temporal lobe, thereby producing the characteristic clinical features described here. Molecular studies aimed at the identification of the causative gene are underway. PMID:11879388

  15. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP)

    PubMed Central

    Baxter, Sally L.; Allard, Denise E.; Crowl, Christopher; Sherwood, Nina Tang

    2014-01-01

    Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases. PMID:24906373

  16. Identification of a Novel Gene on 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (adRP)

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Koboldt, Daniel C.; Blanton, Susan H.; Wheaton, Dianna K.; Avery, Cheryl E.; Cadena, Elizabeth D.; Koenekoop, Robert K.; Fulton, Robert S.; Wilson, Richard K.; Weinstock, George M.; Lewis, Richard A.; Birch, David G.

    2016-01-01

    Whole-genome linkage mapping identified a region on chromosome 10q21.3–q22.1 with a maximum LOD score of 3.0 at 0 % recombination in a six-generation family with autosomal dominant retinitis pigmentosa (adRP). All known adRP genes and X-linked RP genes were excluded in the family by a combination of methods. Whole-exome next-generation sequencing revealed a missense mutation in hexokinase 1, HK1 c.2539G > A, p.Glu847Lys, tracking with disease in all affected family members. One severely-affected male is homozygous for this region by linkage analysis and has two copies of the mutation. No other potential mutations were detected in the linkage region nor were any candidates identified elsewhere in the genome. Subsequent testing detected the same mutation in four additional, unrelated adRP families, for a total of five mutations in 404 probands tested (1.2 %). Of the five families, three are from the Acadian population in Louisiana, one is French Canadian and one is Sicilian. Haplotype analysis of the affected chromosome in each family and the homozygous individual revealed a rare, shared haplotype of 450 kb, suggesting an ancient founder mutation. HK1 is a widely-expressed gene, with multiple, abundant retinal transcripts, coding for hexokinase 1. Hexokinase catalyzes phosphorylation of glucose to glusose-6-phospate, the first step in glycolysis. The Glu847Lys mutation is in a highly-conserved site, outside of the active site or known functional sites. PMID:26427411

  17. Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    PubMed

    Cullen, Breda; Moreton, Fiona C; Stringer, Michael S; Krishnadas, Rajeev; Kalladka, Dheeraj; López-González, Maria R; Santosh, Celestine; Schwarzbauer, Christian; Muir, Keith W

    2016-05-01

    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak -48, -18, -14; ZE = 5.65, pFWE corr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = -0.77, p < 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population. PMID:26929239

  18. Determination of Autosomal Dominant or Recessive Methionine Adenosyltransferase I/III Deficiencies Based on Clinical and Molecular Studies

    PubMed Central

    Kim, Yoo-Mi; Kim, Ja Hye; Choi, Jin-Ho; Kim, Gu-Hwan; Kim, Jae-Min; Kang, Minji; Choi, In-Hee; Cheon, Chong Kun; Sohn, Young Bae; Maccarana, Marco; Yoo, Han-Wook; Lee, Beom Hee

    2016-01-01

    Methionine adenosyltransferase (MAT) I/III deficiency can be inherited as autosomal dominant (AD) or as recessive (AR) traits in which mono- or biallelic MAT1A mutations have been identified, respectively. Although most patients have benign clinical outcomes, some with the AR form have neurological deficits. Here we describe 16 Korean patients with MAT I/III deficiency from 15 unrelated families identified by newborn screening. Ten probands had the AD MAT I/III deficiency, while six had AR MAT I/III deficiency. Plasma methionine (145.7 μmol/L versus 733.2 μmol/L, P < 0.05) and homocysteine levels (12.3 μmol/L versus 18.6 μmol/L, P < 0.05) were lower in the AD type than in AR type. In addition to the only reported AD MAT1A mutation, p.Arg264His, we identified two novel AD mutations, p.Arg249Gln and p.Gly280Arg. In the AR type, four previously reported and two novel mutations, p.Arg163Trp and p.Tyr335*, were identified. No exonic deletions were found by quantitative genomic polymerase chain reaction (PCR). Three-dimensional structural prediction programs indicated that the AD-type mutations were located on the dimer interface or in the substrate binding site, hindering MAT I/III dimerization or substrate binding, respectively, whereas the AR mutations were distant from the interface or substrate binding site. These results indicate that the AD or AR MAT I/III deficiency is correlated with clinical findings, substrate levels and structural features of the mutant proteins, which is important for the neurological management and genetic counseling of the patients. PMID:26933843

  19. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)

    PubMed Central

    Craggs, L J L; Yamamoto, Y; Ihara, M; Fenwick, R; Burke, M; Oakley, A E; Roeber, S; Duering, M; Kretzschmar, H; Kalaria, R N

    2014-01-01

    Background Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. Methods We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. Results The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (P < 0.01) with the WM underlying the primary motor cortex exhibiting the most severe change. SMI32 immunoreactive axons in CADASIL were invariably increased compared with controls (P < 0.01), with most prominent axonal abnormalities observed in the frontal WM (P < 0.05). The SIs of arterioles in CADASIL were increased by 25–45% throughout the regions assessed, with the highest change in the mid-frontal region (P = 0.000). Conclusions Our results suggest disruption of either cortico-cortical or subcortical-cortical networks in the WM of the frontal lobe that may explain motor deficits and executive dysfunction in CADASIL. Widespread WM axonal changes arise from differential stenosis and sclerosis of arterioles in the WM of CADASIL subjects, possibly affecting some axons of projection neurones connecting to targets in the subcortical structures. PMID:23844775

  20. De novo post-transplant thrombotic microangiopathy localized only to the graft in autosomal dominant polycystic kidney disease with thrombophilia

    PubMed Central

    Rolla, Davide; Fontana, Iris; Ravetti, Jean Louis; Marsano, Luigina; Bellino, Diego; Panaro, Laura; Ansaldo, Francesca; Mathiasen, Lisa; Storace, Giulia; Trezzi, Matteo

    2015-01-01

    Introduction: Thrombotic microangiopathy (TMA) is a serious complication of renal transplantation and is mostly related to the prothrombotic effect of calcineurin inhibitors (CNIs). A subset of TMA (29%-38%) is localized only to the graft. Case 1: A young woman suffering from autosomal dominant polycystic kidney disease (ADPKD) underwent kidney transplant. After 2 months, she showed slow renal deterioration (serum creatinine from 1.9 to 3.1 mg/dl), without hematological signs of hemolytic-uremic syndrome (HUS); only LDH enzyme transient increase was detected. Renal biopsy showed TMA: temporary withdraw of tacrolimus and plasmapheresis was performed. The renal function recovered (serum creatinine 1.9 mg/dl). From screening for thrombophilia, we found a mutation of the Leiden factor V gene. Case 2: A man affected by ADPKD underwent kidney transplantation, with delay graft function; first biopsy showed acute tubular necrosis, but a second biopsy revealed TMA, while no altered hematological parameters of HUS was detected. We observed only a slight increase of lactate dehydrogenase (LDH) levels. The tacrolimus was halved and plasmapheresis was performed: LDH levels normalized within 10 days and renal function improved (serum creatinine from 9 to 2.9 mg/dl). We found a mutation of the prothrombin gene. Only a renal biopsy clarifies the diagnosis of TMA, but it is necessary to pay attention to light increasing level of LDH. Conclusion: Prothrombotic effect of CNIs and mTOR inhibitor, mutation of genes encoding factor H or I, anticardiolipin antibodies, vascular rejection, cytomegalovirus infection are proposed to trigger TMA; we detected mutations of factor II and Leiden factor V, as facilitating conditions for TMA in patients affected by ADPKD. PMID:26693501

  1. Somatotroph pituitary adenoma with acromegaly and autosomal dominant polycystic kidney disease: SSTR5 polymorphism and PKD1 mutation.

    PubMed

    Syro, Luis V; Sundsbak, Jamie L; Scheithauer, Bernd W; Toledo, Rodrigo A; Camargo, Mauricio; Heyer, Christina M; Sekiya, Tomoko; Uribe, Humberto; Escobar, Jorge I; Vasquez, Martin; Rotondo, Fabio; Toledo, Sergio P A; Kovacs, Kalman; Horvath, Eva; Babovic-Vuksanovic, Dusica; Harris, Peter C

    2012-09-01

    A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0-5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48-255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Pathologic, cytogenetic, molecular and in silico analysis was undertaken. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.142C>A (p.L48M, rs4988483) in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subjected to extensive morphological, ultrastructural, cytogenetic and molecular studies. The physical proximity of the PKD1 and SSTR5 genes on chromosome 16 suggests a causal relationship between ADPKD and somatotroph adenoma. PMID:21744088

  2. Somatotroph Pituitary Adenoma with Acromegaly and Autosomal Dominant Polycystic Kidney Disease – SSTR5 polymorphism and PKD1 mutation

    PubMed Central

    Syro, Luis V.; Sundsbak, Jamie L.; Scheithauer, Bernd W.; Toledo, Rodrigo A.; Camargo, Mauricio; Heyer, Christina M.; Sekiya, Tomoko; Uribe, Humberto; Escobar, Jorge I.; Vasquez, Martin; Rotondo, Fabio; Toledo, Sergio P. A.; Kovacs, Kalman; Horvath, Eva; Babovic-Vuksanovic, Dusica; Harris, Peter C.

    2014-01-01

    A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0–5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48–255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.143C>A (p.L48M, rs4988483) change in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subject to extensive morphological, ultrastructural, cytogenetic and molecular studies. The question arises whether the physical proximity of the PKD1 and SSTR5 genes on chromosome 16 indicates a causal relationship between ADPKD and the somatotroph adenoma. PMID:21744088

  3. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2015-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis.

  4. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2016-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis. PMID:26844699

  5. Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations.

    PubMed

    Qi, Xiao-Ping; Du, Zhen-Fang; Ma, Ju-Ming; Chen, Xiao-Ling; Zhang, Qing; Fei, Jun; Wei, Xiao-Ming; Chen, Dong; Ke, Hai-Ping; Liu, Xuan-Zhu; Li, Feng; Chen, Zhen-Guang; Su, Zheng; Jin, Hang-Yang; Liu, Wen-Ting; Zhao, Yan; Jiang, Hu-Ling; Lan, Zhang-Zhang; Li, Peng-Fei; Fang, Ming-Yan; Dong, Wei; Zhang, Xian-Ning

    2013-03-01

    Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, and duplication sequences of PKD1. Recently, targeted resequencing by pooling long-range polymerase chain reaction (LR-PCR) amplicons has been used in the identification of mutations in ADPKD. Despite its high sensitivity, specificity and accuracy, LR-PCR is still complicated. We performed whole-exome sequencing on two unrelated typical Chinese ADPKD probands and evaluated the effectiveness of this approach compared with Sanger sequencing. Meanwhile, we performed targeted gene and next-generation sequencing (targeted DNA-HiSeq) on 8 individuals (1 patient from one family, 5 patients and 2 normal individuals from another family). Both whole-exome sequencing and targeted DNA-HiSeq confirmed c.11364delC (p.H3788QfsX37) within the unduplicated region of PKD1 in one proband; in the other family, targeted DNA-HiSeq identified a small insertion, c.401_402insG (p.V134VfsX79), in PKD2. These methods do not overcome the screening complexity of homology. However, the true positives of variants confirmed by targeted gene and next-generation sequencing were 69.4%, 50% and 100% without a false positive in the whole coding region and the duplicated and unduplicated regions, which indicated that the screening accuracy of PKD1 and PKD2 can be largely improved by using a greater sequencing depth and elaborate design of the capture probe. PMID:23266634

  6. Copeptin, a Surrogate Marker of Vasopressin, Is Associated with Disease Severity in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Meijer, Esther; Bakker, Stephan J.L.; van der Jagt, Eric J.; Navis, Gerjan; de Jong, Paul E.; Struck, Joachim

    2011-01-01

    Summary Background and objectives Experimental studies suggest a detrimental role for vasopressin in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). However, it is unknown whether endogenous vasopressin concentration is associated with disease severity in patients with ADPKD. Design, setting, participants, & measurements Plasma copeptin concentration (a marker of endogenous vasopressin levels) was measured in 102 ADPKD patients (diagnosis based on Ravine criteria) by an immunoassay. Plasma and urinary osmolarity were also measured. To assess disease severity, GFR and effective renal blood flow were measured by continuous infusion of 125I-iothalamate and 131I-hippuran, total renal volume by magnetic resonance imaging, and 24-hour urinary albumin excretion by nephelometry. Results In these ADPKD patients, copeptin was associated with the various markers of disease severity in ADPKD (positively with total renal volume [R = 0.47] and albuminuria [R = 0.39] and negatively with GFR [R = −0.58] and effective renal blood flow [R = −0.52], all P < 0.001). These associations were independent of age, gender, and use of diuretics. Copeptin was furthermore associated with plasma osmolarity (P < 0.001) but not with 24-hour urinary volume, 24-hour urinary osmolarity or fractional urea excretion (P = 0.7, 0.9, and 0.3, respectively). Conclusions On cross-sectional analysis, copeptin is associated with disease severity in ADPKD patients, supporting the results of experimental studies that suggest that vasopressin antagonists have a renoprotective effect in ADPKD and offering a good prospect for clinical studies with these agents. PMID:20930090

  7. Increased apoptosis and proliferative capacity are early events in cyst formation in autosomal-dominant, polycystic kidney disease.

    PubMed

    Ibrahim, Salwa

    2007-01-01

    Previous studies have highlighted epithelial proliferation and apoptosis in the cyst lining as common features in animal models of cystic disease. In this study, we sought to evaluate the timing and extent of these changes in renal tissue obtained from patients with autosomal-dominant, polycystic kidney disease (ADPKD) subjected for nephrectomy for a variety of clinical indications. Cell proliferation was assessed using an antibody to proliferating cell nuclear antigen (PCNA), and apoptosis was evaluated by the use of terminal deoxynucleotidyl transferase (TdT) digoxigenin-deoxyuridine (dUTP) nick end-labeling technique (ApopTag(R)). The origin of cystic structures was evaluated using antibodies to epithelial membrane antigen (EMA). The lineage of interstitial mononuclear cells was assessed by anti CD 45 and CD 68 monoclonal antibodies. We found an increased rate of proliferation within the epithelium, not only of cystic, but also of noncystic, tubules that was significantly higher than the corresponding values from normal kidney (p pound 0.0001). Apoptotic index values were significantly increased within the epithelium lining noncystic and cystic structures (p < 0.001). In the interstitium, increased proliferation and apoptosis rates were also noted. Interstitial infiltrates were dense and consisted mainly of CD 68-positive macrophages and CD 45-positive lymphocytes. The present study demonstrated that changes in cell turnover are early events in cyst formation. The observation of mild proportionate elevation of both proliferation and apoptosis values of the epithelium lining cysts explains the lack of increase risk of renal cell carcinoma in ADPKD. The development of heavy interstitial inflammation could contribute to progressive tubulointerstitial scarring, leading to progressive renal failure. PMID:18040538

  8. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Irazabal, Maria V; Torres, Vicente E; Hogan, Marie C; Glockner, James; King, Bernard F; Ofstie, Troy G; Krasa, Holly B; Ouyang, John; Czerwiec, Frank S

    2011-08-01

    Tolvaptan and related V(2)-specific vasopressin receptor antagonists have been shown to delay disease progression in animal models of polycystic kidney disease. Slight elevations in serum creatinine, rapidly reversible after drug cessation, have been found in clinical trials involving tolvaptan. Here, we sought to clarify the potential renal mechanisms to see whether the antagonist effects were dependent on underlying renal function in 20 patients with autosomal dominant polycystic kidney disease (ADPKD) before and after 1 week of daily split-dose treatment. Tolvaptan induced aquaresis (excretion of solute-free water) and a significant reduction in glomerular filtration rate (GFR). The serum uric acid increased because of a decreased uric acid clearance, and the serum potassium fell, but there was no significant change in renal blood flow as measured by para-aminohippurate clearance or magnetic resonance imaging (MRI). No correlation was found between baseline GFR, measured by iothalmate clearance, and percent change in GFR induced by tolvaptan. Blinded post hoc analysis of renal MRIs showed that tolvaptan significantly reduced total kidney volume by 3.1% and individual cyst volume by 1.6%. Preliminary analysis of this small cohort suggested that these effects were more noticeable in patients with preserved renal function and with larger cysts. No correlation was found between changes of total kidney volume and body weight or estimated body water. Thus, functional and structural effects of tolvaptan on patients with ADPKD are likely due to inhibition of V(2)-driven adenosine cyclic 3',5'-monophosphate generation and its aquaretic, hemodynamic, and anti-secretory actions. PMID:21544064

  9. Hereditary error in epidermal growth factor prohormone metabolism in a rat model of autosomal dominant polycystic kidney disease.

    PubMed

    Lakshmanan, J; Eysselein, V

    1993-12-30

    Normal Sprague Dawley (SPRD) rats of both sexes secrete an 165 kDa EGF prohormone in urine. Sexually mature Hannover-Sprague Dawley rats (Han:SPRD) heterozygous males and females with autosomal dominant polycystic kidney disease (ADPKD) secrete a prohormone of similar molecular mass in urine. The male, but not the female, also secretes two variant prohormone isoforms with molecular masses close to 200 kDa. Both the 165 and 200 kDa EGF prohormone isoforms are totally absent, in urine, at 11 months of age in male but not in female heterozygous Han:SPRD rats. At this age, the male kidneys exhibit numerous cysts filled with colorless fluids and these fluids contain abundant quantities of a 66 kDa EGF prohormone metabolite. Homozygous Han:SPRD rats which are born with cystic disease secrete only trace amounts of 165 kDa EGF prohormone in their urine while their normal looking littermates secrete the 165 kDa EGF prohormone in abundant quantities. The cyst fluids of homozygous rats contain trace amounts of 165 and 154 kDa EGF prohormone isoforms while the 66 kDa EGF prohormone metabolites present in abundant quantities. The massive amounts of 66 kDa EGF prohormone metabolite in cyst fluids of PKD rats suggests that EGF prohormone and its isoforms undergo aberrant proteolysis in association with cyst pathogenesis both in heterozygous and homozygous kidneys. The specific retention of the 66 kDa EGF prohormone metabolite within the cyst suggests that this molecule may function as a cystogen. PMID:8280123

  10. Identification of a Novel Gene on 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (adRP).

    PubMed

    Daiger, Stephen P; Sullivan, Lori S; Bowne, Sara J; Koboldt, Daniel C; Blanton, Susan H; Wheaton, Dianna K; Avery, Cheryl E; Cadena, Elizabeth D; Koenekoop, Robert K; Fulton, Robert S; Wilson, Richard K; Weinstock, George M; Lewis, Richard A; Birch, David G

    2016-01-01

    Whole-genome linkage mapping identified a region on chromosome 10q21.3-q22.1 with a maximum LOD score of 3.0 at 0 % recombination in a six-generation family with autosomal dominant retinitis pigmentosa (adRP). All known adRP genes and X-linked RP genes were excluded in the family by a combination of methods. Whole-exome next-generation sequencing revealed a missense mutation in hexokinase 1, HK1 c.2539G > A, p.Glu847Lys, tracking with disease in all affected family members. One severely-affected male is homozygous for this region by linkage analysis and has two copies of the mutation. No other potential mutations were detected in the linkage region nor were any candidates identified elsewhere in the genome. Subsequent testing detected the same mutation in four additional, unrelated adRP families, for a total of five mutations in 404 probands tested (1.2 %). Of the five families, three are from the Acadian population in Louisiana, one is French Canadian and one is Sicilian. Haplotype analysis of the affected chromosome in each family and the homozygous individual revealed a rare, shared haplotype of 450 kb, suggesting an ancient founder mutation. HK1 is a widely-expressed gene, with multiple, abundant retinal transcripts, coding for hexokinase 1. Hexokinase catalyzes phosphorylation of glucose to glusose-6-phospate, the first step in glycolysis. The Glu847Lys mutation is in a highly-conserved site, outside of the active site or known functional sites. PMID:26427411

  11. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia

    SciTech Connect

    Tonacchera, M.; Van Sande, J.; Cetani, F.

    1996-02-01

    We report three unrelated families in which hyperthyroidism associated with thyroid hyperplasia was transmitted in an autosomal dominant fashion, in the absence of signs of autoimmunity. Exon 10 of the TSH receptor gene was directly sequenced after PCR amplification from DNA of peripheral leukocytes. In one family, a C to A transversion resulted in an S505R substitution in the third transmembrane segment; in the second, an A to T transversion caused an N650Y substitution in the sixth transmembrane segment; and in the third family, an A to G transition resulted in an N670S substitution in the seventh transmembrane segment. When expressed by transfection in COS-7 cells, each mutated receptor displayed an increase in constitutive stimulation of cAMP production; no effect on basal accumulation of inositol phosphates (IP) could be detected. In binding studies, cells transfected with wild-type of mutated receptors showed similar levels of expression, with the mutated receptors displaying similar or slightly increased affinity for bovine TSH (bTSH) binding. Cells transfected with S505R and N650Y mutants showed a similar cAMP maximal TSH-stimulated accumulation over the cells transfected with the wild type, whereas N670S transfectants showed a blunted response with an increase in EC{sub 50}. A higher IP response to 100 mU/mL bTSH over that obtained with the wild-type receptor was obtained in cells transfected with N650Y; in contrast, cells transfected with S505R showed a blunted IP production (50% less), and the N670S mutant completely lost the ability to stimulate IP accumulation in response to bTSH. The differential effects of individual mutations on stimulation by bTSH of cAMP or IP accumulation suggest that individual mutant receptors may achieve different active conformations with selective abilities to couple to G{sub s}{alpha} and to G{sub q}{alpha}. 17 refs., 8 figs.

  12. Diagnostic Algorithm in the Management of Acute Febrile Abdomen in Patients with Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Neuville, Marie; Hustinx, Roland; Jacques, Jessica; Krzesinski, Jean-Marie

    2016-01-01

    Background Acute febrile abdomen represents a diagnostic challenge in patients with autosomal dominant polycystic kidney disease (ADPKD). Although criteria have been proposed for cyst infection (CyI) and hemorrhage (CyH), there is a lack of comparative assessments. Furthermore, distinguishing cystic from non-cystic complications remains problematic. Design ADPKD patients presenting with abdominal pain and/or fever between 01/2005 and 06/2015 were retrospectively identified in a systematic computerized billing database. CyH was defined as spontaneous intracystic density above 50 Hounsfield units on computed tomography (CT). CyI was definite if confirmed by cyst puncture, and probable if 4 criteria were met: 3-day fever, loin/liver tenderness, C-reactive protein (CRP) plasma levels >50mg/L and no CT evidence for CyH. Other episodes were grouped as inflammation of unknown origin (IUO). Results Among a cohort of 173 ADPKD patients, 101 presented with 205 episodes of abdominal pain (n = 172) and/or fever (n = 33). 20 patients experienced 30 CyH, whereas 16 presented 23 episodes of definite (n = 11) or probable (n = 12) CyI. 35 IUO were observed in 31 patients. Clinically, fever was observed in 7% vs. 100% vs. 66% of CyH, CyI and IUO, respectively. Biologically, CRP cut-off at 70 mg/dl showed 92% sensitivity and 81% specificity in CyI diagnosis. Urine or blood cultures remained sterile in >90% of CyH, but were contributive in 53.4% of CyI and IUO, with a 74.2% prevalence for E. coli. Radiologically, ultrasounds, CT and magnetic resonance diagnosed CyI in 2.6%, 20% and 16.7% of cases, respectively. 18F-FDG positron-emission tomography (PET)/CT was done within a median period of 7 days post antibiotics, and significantly changed patient management in 71.4%. Conclusions This retrospective single-center series underscores the usefulness of clinical–fever–and biological–CRP–parameters, but emphasizes the limitations of bacteriological and radiological investigations

  13. Low-Dose Rapamycin (Sirolimus) Effects in Autosomal Dominant Polycystic Kidney Disease: An Open-Label Randomized Controlled Pilot Study

    PubMed Central

    Schold, Jesse D.; Stephany, Brian R.; Spirko, Rita A.; Herts, Brian R.

    2014-01-01

    Background and objectives The two largest studies of mammalian target of rapamycin inhibitor treatment of autosomal dominant polycystic kidney disease (ADPKD) demonstrated no clear benefit on the primary endpoint of total kidney volume (TKV) or on eGFR. The present study evaluated two levels of rapamycin on the 12-month change in 125I-iothalamate GFR (iGFR) as the primary endpoint and TKV secondarily. Design, setting, participants, & measurements In a 12-month open-label pilot study, 30 adult patients with ADPKD were randomly assigned to low-dose (LD) rapamycin (rapamycin trough blood level, 2–5 ng/ml) (LD group, n=10), standard-dose (STD) rapamycin trough level (>5–8 ng/ml) (STD group, n=10), or standard care (SC group, n=10). They were evaluated with iGFR and noncontrast computed tomography. Results Change in iGFR at 12 months was significantly higher in the LD group (7.7±12.5 ml/min per 1.73 m2; n=9) than in the SC group (−11.2±9.1 ml/min per 1.73 m2; n=9) (LD versus SC: P<0.01). Change in iGFR at 12 months in the STD group (1.6±12.1 ml/min per 1.73 m2; n=8) was not significantly greater than that in the SC group (P=0.07), but it was in the combined treatment groups (LD+STD versus SC: P<0.01). Neither eGFR calculated by the CKD-Epidemiology Collaboration equation nor TKV (secondary endpoint) changed significantly from baseline to 12 months in any of the groups. On the basis of results of the mixed model, during the study, patients in the LD group had significantly lower trough blood levels of rapamycin (mean range±SD, 2.40±0.64 to 2.90±1.20 ng/ml) compared with those in the STD group (3.93±2.27 to 5.77±1.06 ng/ml) (P<0.01). Conclusion Patients with ADPKD receiving LD rapamycin demonstrated a significant increase in iGFR compared with those receiving standard care, without a significant effect on TKV after 12 months. PMID:24721888

  14. Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

    PubMed Central

    Si-Tayeb, Karim; Idriss, Salam; Champon, Benoite; Caillaud, Amandine; Pichelin, Matthieu; Arnaud, Lucie; Lemarchand, Patricia; Le May, Cédric; Zibara, Kazem; Cariou, Bertrand

    2016-01-01

    ABSTRACT Proprotein convertase subtilisin kexin type 9 (PCSK9) is a critical modulator of cholesterol homeostasis. Whereas PCSK9 gain-of-function (GOF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis, PCSK9 loss-of-function (LOF) mutations have a cardio-protective effect and in some cases can lead to familial hypobetalipoproteinemia (FHBL). However, limitations of the currently available cellular models preclude deciphering the consequences of PCSK9 mutation further. We aimed to validate urine-sample-derived human induced pluripotent stem cells (UhiPSCs) as an appropriate tool to model PCSK9-mediated ADH and FHBL. To achieve our goal, urine-sample-derived somatic cells were reprogrammed into hiPSCs by using episomal vectors. UhiPSC were efficiently differentiated into hepatocyte-like cells (HLCs). Compared to control cells, cells originally derived from an individual with ADH (HLC-S127R) secreted less PCSK9 in the media (−38.5%; P=0.038) and had a 71% decrease (P<0.001) of low-density lipoprotein (LDL) uptake, whereas cells originally derived from an individual with FHBL (HLC-R104C/V114A) displayed a strong decrease in PCSK9 secretion (−89.7%; P<0.001) and had a 106% increase (P=0.0104) of LDL uptake. Pravastatin treatment significantly enhanced LDL receptor (LDLR) and PCSK9 mRNA gene expression, as well as PCSK9 secretion and LDL uptake in both control and S127R HLCs. Pravastatin treatment of multiple clones led to an average increase of LDL uptake of 2.19±0.77-fold in HLC-S127R compared to 1.38±0.49 fold in control HLCs (P<0.01), in line with the good response to statin treatment of individuals carrying the S127R mutation (mean LDL cholesterol reduction=60.4%, n=5). In conclusion, urine samples provide an attractive and convenient source of somatic cells for reprogramming and hepatocyte differentiation, but also a powerful tool to further decipher PCSK9 mutations and function. PMID:26586530

  15. A novel mutation of EYA4 in a large Chinese family with autosomal dominant middle-frequency sensorineural hearing loss by targeted exome sequencing.

    PubMed

    Sun, Yi; Zhang, Zhao; Cheng, Jing; Lu, Yu; Yang, Chang-Liang; Luo, Yan-Yun; Yang, Guang; Yang, Hui; Zhu, Li; Zhou, Jia; Yao, Hang-Qi

    2015-06-01

    The middle-frequency sensorineural hearing loss (MFSNHL) is rare among hereditary non-syndromic hearing loss. To date, only three genes are reported to be associated with MFSNHL, including TECTA, EYA4 and COL11A2. In this report, we analyzed and explored the clinical audiological characteristics and the causative gene of a Chinese family named HG-Z087 with non-syndromic autosomal dominant inherited MFSNHL. Clinical audiological characteristics and inheritance pattern of a family were evaluated, and pedigree was drawn based on medical history investigation. Our results showed that the Chinese family was characterized by late onset, progressive, non-sydromic autosomal dominant MFSNHL. Targeted exome sequencing, conducted using DNA samples of an affected member in this family, revealed a novel heterozygous missense mutation c.1643C>G in exon 18 of EYA4, causing amino-acid (aa) substitution Arg for Thr at a conserved position aa-548. The p.T548R mutation related to hearing loss in the selected Chinese family was validated by Sanger sequencing. However, the mutation was absent in control group containing 100 DNA samples from normal Chinese families. In conclusion, we identified the pathogenic gene and found that the novel missense mutation c.1643C>G (p.T548R) in EYA4 might have caused autosomal dominant non-syndromic hearing impairment in the selected Chinese family. PMID:25809937

  16. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-03-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function. PMID:26666451

  17. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-01-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (RhoS334) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of RhoS334, which prevented retinal degeneration and improved visual function. PMID:26666451

  18. PID in Disguise: Molecular Diagnosis of IRAK-4 Deficiency in an Adult Previously Misdiagnosed With Autosomal Dominant Hyper IgE Syndrome.

    PubMed

    Frans, Glynis; Moens, Leen; Schrijvers, Rik; Wuyts, Greet; Bouckaert, Bernard; Schaballie, Heidi; Dupont, Lieven; Bossuyt, Xavier; Corveleyn, Anniek; Meyts, Isabelle

    2015-11-01

    Autosomal recessive IL-1R-associated kinase 4 (IRAK-4) deficiency is a rare cause of recurrent pyogenic infections with limited inflammatory responses. We describe an adult female patient with severe lung disease who was phenotypically diagnosed as suffering from autosomal dominant Hyper IgE syndrome (AD HIES) because of recurrent skin infections with Staphylococcus aureus, recurrent pneumonia and elevated serum IgE levels. In contrast to findings in AD HIES patients, no abnormalities were found in the Th17 and circulating follicular helper T cell subsets. A panel-based sequencing approach led to the identification of a homozygous IRAK4 stop mutation (c.877C > T, p.Gln293*). PMID:26472314

  19. Evaluation of the contribution of the EYA4 and GRHL2 genes in Korean patients with autosomal dominant non-syndromic hearing loss.

    PubMed

    Kim, Ye-Ri; Kim, Min-A; Sagong, Borum; Bae, Seung-Hyun; Lee, Hyo-Jeong; Kim, Hyung-Jong; Choi, Jae Young; Lee, Kyu-Yup; Kim, Un-Kyung

    2015-01-01

    EYA4 and GRHL2 encode transcription factors that play an important role in regulating many developmental stages. Since EYA4 and GRHL2 were identified as the transcription factors for the DFNA10 and DFNA28, 8 EYA4 mutations and 2 GRHL2 mutations have been reported worldwide. However, these genes have been reported in few studies of the Korean population. In this study, we performed a genetic analysis of EYA4 and GRHL2 in 87 unrelated Korean patients with autosomal dominant non-syndromic hearing loss (NSHL). A total of 4 genetic variants in the EYA4 gene were identified, including the 2 nonsense mutations p.S288X and p.Q393X. The novel mutation p.Q393X (c.1177C>T) resulted in a change in the codon at amino acid position 393 from a glutamine to a stop codon. The p.Q393X allele was predicted to encode a truncated protein lacking the entire C-terminal Eya homolog region (Eya HR), which is essential for the interaction with the transcription factor SIX3. The p.S288X (c.863C>A) mutation was found in a Korean family from a previous study. We analyzed p.S288X-linked microsatellite markers and determined that p.S288X might be a founder mutation and a hotspot mutation in Koreans. In GRHL2, a total of 4 genetic variants were identified, but none were associated with hearing loss in Korean patients. This suggests that GRHL2 may not be a main causal gene for autosomal dominant NSHL in Korean patients. In conclusion, our data provide fundamental information to predict the genotypes of Korean patients diagnosed with autosomal dominant NSHL. PMID:25781927

  20. Evaluation of the Contribution of the EYA4 and GRHL2 Genes in Korean Patients with Autosomal Dominant Non-Syndromic Hearing Loss

    PubMed Central

    Sagong, Borum; Bae, Seung-Hyun; Lee, Hyo-Jeong; Kim, Hyung-Jong; Choi, Jae Young; Lee, Kyu-Yup; Kim, Un-Kyung

    2015-01-01

    EYA4 and GRHL2 encode transcription factors that play an important role in regulating many developmental stages. Since EYA4 and GRHL2 were identified as the transcription factors for the DFNA10 and DFNA28, 8 EYA4 mutations and 2 GRHL2 mutations have been reported worldwide. However, these genes have been reported in few studies of the Korean population. In this study, we performed a genetic analysis of EYA4 and GRHL2 in 87 unrelated Korean patients with autosomal dominant non-syndromic hearing loss (NSHL). A total of 4 genetic variants in the EYA4 gene were identified, including the 2 nonsense mutations p.S288X and p.Q393X. The novel mutation p.Q393X (c.1177C>T) resulted in a change in the codon at amino acid position 393 from a glutamine to a stop codon. The p.Q393X allele was predicted to encode a truncated protein lacking the entire C-terminal Eya homolog region (Eya HR), which is essential for the interaction with the transcription factor SIX3. The p.S288X (c.863C>A) mutation was found in a Korean family from a previous study. We analyzed p.S288X-linked microsatellite markers and determined that p.S288X might be a founder mutation and a hotspot mutation in Koreans. In GRHL2, a total of 4 genetic variants were identified, but none were associated with hearing loss in Korean patients. This suggests that GRHL2 may not be a main causal gene for autosomal dominant NSHL in Korean patients. In conclusion, our data provide fundamental information to predict the genotypes of Korean patients diagnosed with autosomal dominant NSHL. PMID:25781927

  1. Atypical distal renal tubular acidosis confirmed by mutation analysis.

    PubMed

    Weber, S; Soergel, M; Jeck, N; Konrad, M

    2000-12-01

    In autosomal dominant distal renal tubular acidosis type I (dRTA) impaired hydrogen ion secretion is associated with metabolic acidosis, hyperchloremic hypokalemia, hypercalciuria, nephrocalcinosis, and/or nephrolithiasis. A retardation of growth is commonly observed. In this report we present a family with autosomal dominant dRTA with an atypical and discordant clinical picture. The father presented with severe nephrocalcinosis, nephrolithiasis, and isosthenuria but metabolic acidosis was absent. His 6-year-old daughter, however, suffered from metabolic acidosis, hypokalemia, and hypercalciuria. In addition, sonography revealed multiple bilateral renal cysts but no nephrocalcinosis. Mutation analysis of the AE1 gene coding for the renal Cl-/HCO3(-)-exchanger AE1 displayed a heterozygous Arg589Cys exchange in both patients but not in the healthy family members. This point mutation is frequently associated with autosomal dominant dRTA. Diagnosis of autosomal dominant dRTA is supported in this family by results of AE1 mutation analysis. PMID:11149111

  2. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports

    PubMed Central

    2010-01-01

    Background Rod-cone dystrophies are heterogeneous group of inherited retinal disorders both clinically and genetically characterized by photoreceptor degeneration. The mode of inheritance can be autosomal dominant, autosomal recessive or X-linked. The purpose of this study was to identify mutations in one of the genes, PRPF31, in French patients with autosomal dominant RP, to perform genotype-phenotype correlations of those patients, to determine the prevalence of PRPF31 mutations in this cohort and to review previously identified PRPF31 mutations from other cohorts. Methods Detailed phenotypic characterization was performed including precise family history, best corrected visual acuity using the ETDRS chart, slit lamp examination, kinetic and static perimetry, full field and multifocal ERG, fundus autofluorescence imaging and optic coherence tomography. For genetic diagnosis, genomic DNA of ninety families was isolated by standard methods. The coding exons and flanking intronic regions of PRPF31 were PCR amplified, purified and sequenced in the index patient. Results We showed for the first time that 6.7% cases of a French adRP cohort have a PRPF31 mutation. We identified in total six mutations, which were all novel and not detected in ethnically matched controls. The mutation spectrum from our cohort comprises frameshift and splice site mutations. Co-segregation analysis in available family members revealed that each index patient and all affected family members showed a heterozygous mutation. In five families incomplete penetrance was observed. Most patients showed classical signs of RP with relatively preserved central vision and visual field. Conclusion Our studies extended the mutation spectrum of PRPF31 and as previously reported in other populations, it is a major cause of adRP in France. PMID:20939871

  3. c.G2114A MYH9 mutation (DFNA17) causes non-syndromic autosomal dominant hearing loss in a Brazilian family

    PubMed Central

    Dantas, Vitor G.L.; Lezirovitz, Karina; Yamamoto, Guilherme L.; Moura de Souza, Carolina Fischinger; Ferreira, Simone Gomes; Mingroni-Netto, Regina C.

    2014-01-01

    We studied a family presenting 10 individuals affected by autosomal dominant deafness in all frequencies and three individuals affected by high frequency hearing loss. Genomic scanning using the 50k Affymetrix microarray technology yielded a Lod Score of 2.1 in chromosome 14 and a Lod Score of 1.9 in chromosome 22. Mapping refinement using microsatellites placed the chromosome 14 candidate region between markers D14S288 and D14S276 (8.85 cM) and the chromosome 22 near marker D22S283. Exome sequencing identified two candidate variants to explain hearing loss in chromosome 14 [PTGDR – c.G894A:p.R298R and PTGER2 – c.T247G:p.C83G], and one in chromosome 22 [MYH9, c.G2114A:p.R705H]. Pedigree segregation analysis allowed exclusion of the PTGDR and PTGER2 variants as the cause of deafness. However, the MYH9 variant segregated with the phenotype in all affected members, except the three individuals with different phenotype. This gene has been previously described as mutated in autosomal dominant hereditary hearing loss and corresponds to DFNA17. The mutation identified in our study is the same described in the prior report. Thus, although linkage studies suggested a candidate gene in chromosome 14, we concluded that the mutation in chromosome 22 better explains the hearing loss phenotype in the Brazilian family. PMID:25505834

  4. Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss.

    PubMed

    Gao, Xue; Huang, Sha-Sha; Yuan, Yong-Yi; Wang, Guo-Jian; Xu, Jin-Cao; Ji, Yu-Bin; Han, Ming-Yu; Yu, Fei; Kang, Dong-Yang; Lin, Xi; Dai, Pu

    2015-10-01

    Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the transmembrane channel-like gene1 (TMC1) are known to cause autosomal dominant and recessive forms of nonsyndromic hearing loss linked to the loci of DFNA36 and DFNB7/11, respectively. We characterized a six-generation Chinese family (5315) with progressive, postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 82 known deafness genes, next-generation sequencing and bioinformatic analysis, we identified TMC1 c.1714G>A (p. D572N) as the disease-causing mutation. This mutation co-segregated with hearing loss in other family members and was not detected in 308 normal controls. In order to determine the prevalence of TMC1 c.1714G>A in Chinese ADNSHL families, we used DNA samples from 67 ADNSHL families with sloping audiogram and identified two families carry this mutation. To determine whether it arose from a common ancestor, we analyzed nine STR markers. Our results indicated that TMC1 c.1714G>A (p.D572N) account for about 4.4% (3/68) of ADNSHL in the Chinese population. PMID:26079994

  5. Extensive intrafamilial and interfamilial phenotypic variation among patients with autosomal dominant retinal dystrophy and mutations in the human RDS/peripherin gene.

    PubMed Central

    Apfelstedt-Sylla, E; Theischen, M; Rüther, K; Wedemann, H; Gal, A; Zrenner, E

    1995-01-01

    Clinical phenotypes of patients with mutations in the human RDS/peripherin gene are described. A 67-year-old woman, who carried a 1 base pair deletion in codon 307, presented with typical late onset autosomal dominant retinitis pigmentosa (RP). In another autosomal dominant pedigree, a nonsense mutation at codon 46 caused 'inverse' retinitis pigmentosa-like fundus changes associated with progressive cone-rod degeneration in a 58-year-old man, whereas his 40-year-old son presented with yellow deposits in the retinal pigment epithelial layer resembling a pattern dystrophy, and with moderately reduced rod and cone function, as determined by two colour dark adapted threshold perimetry and electroretinography. It is suggested that both clinical pictures within this latter family may represent manifestations of fundus flavimaculatus. The clinical data of the three patients provide further evidence for the remarkable variety of disease expression within and between families with mutations in the RDS/peripherin gene. Currently, the most comprehensive statement could be that RDS/peripherin mutations are associated either with typical RP or with various forms of flecked retinal disease. Images PMID:7880786

  6. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease.

    PubMed

    Harris, Peter C; Bae, Kyongtae T; Rossetti, Sandro; Torres, Vicente E; Grantham, Jared J; Chapman, Arlene B; Guay-Woodford, Lisa M; King, Bernard F; Wetzel, Louis H; Baumgarten, Deborah A; Kenney, Philip J; Consugar, Mark; Klahr, Saulo; Bennett, William M; Meyers, Catherine M; Zhang, Qin Jean; Thompson, Paul A; Zhu, Fang; Miller, J Philip

    2006-11-01

    Data from serial renal magnetic resonance imaging of the Consortium of Radiologic Imaging Study of PKD (CRISP) autosomal dominant polycystic kidney disease (PKD) population showed that cystic expansion occurs at a consistent rate per individual, although it is heterogeneous in the population, and that larger kidneys are associated with more rapid disease progression. The significance of gene type to disease progression is analyzed in this study of the CRISP cohort. Gene type was determined in 183 families (219 cases); 156 (85.2%) had PKD1, and 27 (14.8%) had PKD2. PKD1 kidneys were significantly larger, but the rate of cystic growth (PKD1 5.68%/yr; PKD2 4.82%/yr) was not different (P = 0.24). Cyst number increased with age, and more cysts were detected in PKD1 kidneys (P < 0.0001). PKD1 is more severe because more cysts develop earlier, not because they grow faster, implicating the disease gene in cyst initiation but not expansion. These insights will inform the development of targeted therapies in autosomal dominant PKD. PMID:17035604

  7. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Ieukoencephalopathy, Genetic Homogeneity, and Mapping of the Locus within a 2-cM Interval

    PubMed Central

    Ducros, A.; Nagy, T.; Alamowitch, S.; Nibbio, A.; Joutel, A.; Vahedi, K.; Chabriat, H.; Iba-Zizen, M. T.; Julien, J.; Davous, P.; Goas, J. Y.; Lyon-Caen, O.; Dubois, B.; Ducrocq, X.; Salsa, F.; Ragno, M.; Burkhard, P.; Bassetti, C.; Hutchinson, M.; Vérin, M.; Viader, F.; Chapon, F.; Levasseur, M.; Mas, J. L.; Delrieu, O.; Maciazek, J.; Prieur, M.; Mohrenweiser, H.; Bach, J. F.; Bousser, M. G.; Tournier-Lasserve, E.

    1996-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a recently identified autosomal dominant cerebral arteriopathy characterized by the recurrence of subcortical infarcts leading to dementia. A genetic linkage analysis conducted in two large families recently allowed us to map the affected gene on chromosome 19 in a 12-cM interval bracketed by D19S221 and D19S215. In the present study, these first 2 families and 13 additional ones, including a total of 199 potentially informative meiosis, have been genotyped with eight polymorphic markers located between D19S221 and D19S215. All families were linked to chromosome 19. The highest combined lod score (Zmax = 37.24 at θ = .01) was obtained with marker D19S841, a new CAn microsatellite marker that we isolated from chromosome 19 cosmids. The recombinant events observed within these families were used to refine the genetic mapping of CADASIL within a 2-cM interval that is now bracketed by D19S226 and D19S199 on 19pl3.1. These data strongly suggest the genetic homogeneity of this recently identified condition and establish the value of its clinical and neuroimaging diagnostic criteria. Besides their importance for the ongoing positional cloning of the CADASIL gene, these data help to refine the genetic mapping of CADASIL relative to familial hemiplegic migraine and hereditary paroxysmal cerebellar ataxia, conditions that we both mapped within the same chromosome 19 region. PMID:8554054

  8. Genetics Home Reference: CAV3-related distal myopathy

    MedlinePlus

    ... gene causes a peculiar form of distal myopathy. Neurology. 2002 Jan 22;58(2):323-5. Erratum in: Neurology 2002 Mar 12;58(5):839. Itoyoma Y [ ... 3 cause four distinct autosomal dominant muscle diseases. Neurology. 2004 Feb 24;62(4):538-43. Review. ...

  9. A Novel Mutation (I143NT) in Guanylate Cyclase-Activating Protein 1 (GCAP1) Associated with Autosomal Dominant Cone Degeneration

    PubMed Central

    Nishiguchi, Koji M.; Sokal, Izabela; Yang, Lili; Roychowdhury, Nirmalya; Palczewski, Krzysztof; Berson, Eliot L.; Dryja, Thaddeus P.; Baehr, Wolfgang

    2005-01-01

    PURPOSE. To identify pathogenic mutations in the guanylate cyclase-activating protein 1 (GCAP1) and GCAP2 genes and to characterize the biochemical effect of mutation on guanylate cyclase (GC) stimulation. METHODS. The GCAP1 and GCAP2 genes were screened by direct sequencing for mutations in 216 patients and 421 patients, respectively, with various hereditary retinal diseases. A mutation in GCAP1 segregating with autosomal dominant cone degeneration was further evaluated biochemically by employing recombinant proteins, immunoblotting, Ca2+-dependent stimulation of GC, fluorescence emission spectra, and limited proteolysis in the absence and presence of Ca2+. RESULTS. A novel GCAP1 mutation, I143NT (substitution of Ile at codon 143 by Asn and Thr), affecting the EF4 Ca2+-binding loop, was identified in a heterozygote father and son with autosomal dominant cone degeneration. Both patients had much greater loss of cone function versus rod function; previous histopathologic evaluation of the father's eyes at autopsy (age 75 years) showed no foveal cones but a few, scattered cones remaining in the peripheral retina. Biochemical analysis showed that the GCAP1-I143NT mutant adopted a conformation susceptible to proteolysis, and the mutant inhibited GC only partially at high Ca2+ concentrations. Individual patients with atypical or recessive retinitis pigmentosa (RP) had additional heterozygous GCAP1-T114I and GCAP2 gene changes (V85M and F150C) of unknown pathogenicity. CONCLUSIONS. A novel GCAP1 mutation, I143NT, caused a form of autosomal dominant cone degeneration that destroys foveal cones by mid-life but spares some cones in the peripheral retina up to 75 years. Properties of the GCAP1-I143NT mutant protein suggested that it is incompletely inactivated by high Ca2+ concentrations as should occur with dark adaptation. The continued activity of the mutant GCAP1 likely results in higher-than-normal scotopic cGMP levels which may, in turn, account for the progressive

  10. Two double non allelic heterozygotes for autosomal dominant polycystic kidney disease at loci PKD1 and PKD4 are not more affected than heterozygous relatives

    SciTech Connect

    Bachner, L.; Vinet, M.C.; Kaplan, J.C.

    1994-09-01

    We describe a family in which both members of a non-consanguineous couple are affected by autosomal dominant polycystic kidney disease (ADPKD). They have three affected children without obvious clinical differences, and three affected grand-children. Two different morbid loci for this disease have been localized, PKD1 on chromosome 16p and PKD4 on chromosome 4q. There were four a priori mating possibilities for this couple: PKD1xPKD1, PKD1xPKD4 or PKD4xPKD1 and PKD4xPKD4. We demonstrate by linkage analysis that: (i) the father is heterozygous at the PKD1 locus (most probably a de novo mutation); (ii) the mother is heterozygous at the PKD4 locus. The abnormal alleles segregates as follows: one child has the abnormal PKD1, another child has the abnormal PKD4 while the third child is a compound heterozygote for both abnormal PKD1 and PKD4 alleles, which were both transmitted to one offspring. The clinical status of these subjects is similar to the status of their relatives in the same age range, suggesting that both PKD1 and PKD4 are truly dominant disease. As there is no other example of such a situation for heterogeneous dominant diseases, we discuss this issue and some possible pathogenic processes by comparison with the similar problem of expressivity in homozygotes for dominant diseases.

  11. Clinical variability of the cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy phenotype in two siblings of a large family showing the same mutation

    PubMed Central

    Vyshka, Gentian; Kruja, Jera

    2013-01-01

    A 44-year-old Albanian male was consulted and diagnosed with dementia. His magnetic resonance imaging suggested diffuse white matter changes. The suspicion of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) was raised, and a genetic analysis confirmed such a suspicion through uncovering a pathogenic mutation at the level of exon 4 (c.475C>T) of chromosome 19. The patient came from a large family of 13 children, all of whom underwent clinical, genetic, and imaging examination. The pathogenic mutation was found present only in his eldest sister (50 years old), and she presented also very suggestive signs of CADASIL in her respective imaging study, but without any clinically significant counterpart. All other siblings were free from clinical and radiological signs of the disorder. Our opinion was that we were dealing with a mutation showing a very low level of penetrance, with only two siblings affected in a large Albanian family with 13 children. PMID:24124395

  12. STAT1 Hyperphosphorylation and Defective IL12R/IL23R Signaling Underlie Defective Immunity in Autosomal Dominant Chronic Mucocutaneous Candidiasis

    PubMed Central

    Heinhuis, Bas; Hoischen, Alexander; Joosten, Leo A. B.; Arkwright, Peter D.; Gennery, Andrew; Kullberg, Bart Jan; Veltman, Joris A.; Lilic, Desa; van der Meer, Jos W. M.; Netea, Mihai G.

    2011-01-01

    We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism. Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel strategies for the treatment of this severe immunodeficiency. PMID:22195034

  13. [18F-FDG PET/CT diagnosis of liver cyst infection in a patient with autosomal dominant polycystic kidney disease and fever of unknown origin].

    PubMed

    Banzo, J; Ubieto, M A; Gil, D; Prats, E; Razola, P; Tardín, L; Andrés, A; Rambalde, E F; Ayala, S M; Cáncer, L; Velilla, J

    2013-01-01

    The diagnosis, localization and treatment of infected cysts in the kidney or liver of patients with autosomal dominant polycystic kidney disease (ADPKD) remain a clinical challenge. We report the findings of (18)F-FDG PET-CT in an ADPKD diagnosed patient who required renal transplantation five years before and in his follow up presented repeated episodes of bacteriemia without known focus on radiological tests performed. The (18)F-FDG PET-CT scan showed numerous hypermetabolic images with focal or ring-shaped morphology related to the content and the wall of some hepatic cysts. The increased metabolic activity was localized on segments VI and VII. We proceeded to drainage of one cyst in segment VI, removing 110 cc of purulent fluid which grew E. Coli BLEE. The (18)F-FDG PET/CT scan should be included in the diagnostic algorithm for detecting infected liver cysts in patients with ADPKD and fever of unknown origin. PMID:23153986

  14. Icelandic families with autosomal dominant polycystic kidney disease: families unlinked to chromosome 16p13.3 revealed by linkage analysis.

    PubMed

    Fossdal, R; Böthvarsson, M; Asmundsson, P; Ragnarsson, J; Peters, D; Breuning, M H; Jensson, O

    1993-07-01

    We have mainly used 3 highly polymorphic DNA markers, 3'HVR (D16S85), 16AC2.5 (D16S291) and SM7 (D16S283), flanking the PKD1 region on chromosome 16p13.3 to establish linkage status in seven Icelandic families with autosomal dominant polycystic kidney disease (ADPKD). In four families, the disease locus is in the PKD1 region, and three families are "unlinked" to chromosome 16p13.3. In one of the "unlinked" families, the disease locus is excluded from a part of the long arm of chromosome 2, and we support a theory of more than 2 loci being responsible for ADPKD. Our data confirm the location of the locus YNH24 (D2S44) to chromosome 2q13-q24. PMID:8340115

  15. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behçet's disease

    PubMed Central

    Shigemura, Tomonari; Kaneko, Naoe; Kobayashi, Norimoto; Kobayashi, Keiko; Takeuchi, Yusuke; Nakano, Naoko; Masumoto, Junya; Agematsu, Kazunaga

    2016-01-01

    Objective Although Behçet's disease (BD) is a chronic inflammatory disorder of uncertain aetiology, the existence of familial BD with autosomal-dominant traits suggests that a responsibility gene (or genes) exists. We investigated a Japanese family with a history of BD to search for pathogenic mutations underlying the biological mechanisms of BD. Methods 6 patients over 4 generations who had suffered from frequent oral ulcers, genital ulcers and erythaema nodosum-like lesions in the skin were assessed. Whole-exome sequencing was performed on genomic DNA, and cytokine production was determined from stimulated mononuclear cells. Inflammatory cytokine secretion and Nod2-mediated NF-κB activation were analysed using the transfected cells. Results By whole-exome sequencing, we identified a common heterozygous missense mutation in A20/TNFAIP3, a gene known to regulate NF-κB signalling, for which all affected family members carried a heterozygous C243Y mutation in the ovarian tumour domain. Mononuclear cells obtained from the proband and his mother produced large amounts of interleukin 1β, IL-6 and tumour necrosis factor α (TNF-a) on stimulation as compared with those from normal controls. Although inflammatory cytokine secretion was suppressed by wild-type transfected cells, it was suppressed to a much lesser extent by mutated C243Y A20/TNFAIP3-transfected cells. In addition, impaired suppression of Nod2-mediated NF-κB activation by C243Y A20/TNFAIP3 was observed. Conclusions A C243Y mutation in A20/TNFAIP3 was likely responsible for increased production of human inflammatory cytokines by reduced suppression of NF-κB activation, and may have accounted for the autosomal-dominant Mendelian mode of BD transmission in this family. PMID:27175295

  16. Confirmation and refinement of an autosomal dominant congenital motor nystagmus locus in chromosome 1q31.3-q32.1.

    PubMed

    Li, Lin; Xiao, Xueshan; Yi, Changxian; Jiao, Xiaodong; Guo, Xiangming; Hejtmancik, James Fielding; Zhang, Qingjiong

    2012-12-01

    Congenital motor nystagmus (CMN) is characterized by early-onset bilateral ocular oscillations. To identify the disease locus for autosomal dominant CMN in a Chinese family 86001, clinical data, including slit lamp and funduscopic examination and blood samples were collected from family. Genomic DNA was prepared from leukocytes, and a genome-wide linkage scan was performed using 382 polymorphic microsatellite markers and two-point linkage analysis using the logarithm of odds (LOD) score method as implemented in the LINKAGE program package. Maximum two-point scores were calculated using ILINK, and LINKMAP was used for multipoint analysis. All nine affected individuals in the family showed typical phenotypes for CMN. Maximum two-point LOD scores (3.61 at θ=0) were obtained with D1S2619, D1S2877 and D1S2622.The 24.6 cM (28.07 Mb) linked region is flanked by markers D1S218 and D1S2655, placing the disease locus on chromosome 1q25.2-1q32.1. Multipoint analysis confirmed linkage to the region of D1S218 and D1S2655 with Maximum two-point scores of 3.61. The linkage interval overlaps with that of a newly reported CMN locus on 1q31-q32.2 and narrows down the linked region to 5.90 cM (5.92 Mb). This study confirms and refines a novel locus for autosomal dominant CMN to chromosome 1q31.3-q32.1 (5.90 cM) and demonstrates its presence in the Chinese population. PMID:22914672

  17. Autosomal dominant Kufs` disease: Clinical heterogeneity in nine families, and exclusion of linkage to CLN1 and CLN3 markers in a large American kindred

    SciTech Connect

    Andermann, F.; Andermann, E.; Carpenter, S.

    1994-09-01

    Most forms of neuronal ceroid lipofuscinosis (NCL) are autosomal recessive, and three genes have already been mapped: the infantile form (CLN 1); the juvenile form (CLN 3); and the early juvenile variant (CLN 5) on chromosomes 1, 16 and 13, respectively. Kufs` disease or adolescent-adult onset NCL is usually inherited as an autosomal recessive trait, and presents as three distinct clinical syndromes: progressive myoclonus epilepsy (PME) with onset in the early teens or around age 30; and onset of dementia with motor disability in the 30s. We have studied three families originating from different parts of the USA manifesting dominantly inherited Kufs` disease. Granular osmophilic deposits (GROD) were found in brain, but storage in skin was not an obligatory feature. Six dominantly inherited PME families have been ascertained from three different regions of Spain. No storage was found in skin or muscle in any of these families. The mean age of onset in the American families is earlier, the clinical manifestations more severe, and the progression much more rapid that in the Spanish families. These findings would suggest the possibility of genetic heterogeneity involving two or more loci, or different mutations at the same gene locus. Genetic linkage studies have been carried out in a six-generation New Jersey family in an attempt to characterize the gene(s) responsible for this disorder. The infantile NCL locus on chromosome 1p (CLN1) and the juvenile NCL locus on chromosome 16p (CLN 3) have been excluded in this family. Further clinical, pathological and molecular genetic studies should lead to the clarification of the diagnostic approaches in this disorder.

  18. Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel alpha 1 subunit gene, SCN1A.

    PubMed

    Ito, M; Nagafuji, H; Okazawa, H; Yamakawa, K; Sugawara, T; Mazaki-Miyazaki, E; Hirose, S; Fukuma, G; Mitsudome, A; Wada, K; Kaneko, S

    2002-01-01

    Evidence that febrile seizures have a strong genetic predisposition has been well documented. In families of probands with multiple febrile convulsions, an autosomal dominant inheritance with reduced penetrance is suspected. Four candidate loci for febrile seizures have been suggested to date; FEB1 on 8q13-q21, FEB2 on 19p, FEB3 on 2q23-q24, and FEB4 on 5q14-15. A missense mutation was identified in the voltage-gated sodium (Na(+))-channel beta 1 subunit gene, SCN1B at chromosome 19p13.1 in generalized epilepsy with the febrile seizures plus type 1 (GEFS+1) family. Several missense mutations of the (Na(+))-channel alpha 1 subunit (Nav1.1) gene, SCN1A were also identified in GEFS+2 families at chromosome 2q23-q24.3. The aim of this report is precisely to describe the phenotypes of Japanese patients with novel SCN1A mutations and to reevaluate the entity of GEFS+. Four family members over three generations and one isolated (phenotypically sporadic) case with SCN1A mutations were clinically investigated. The common seizure type in these patients was febrile and afebrile generalized tonic-clonic seizures (FS+). In addition to FS+, partial epilepsy phenotypes were suspected in all affected family members and electroencephalographically confirmed in three patients of two families. GEFS+ is genetically and clinically heterogeneous, and associated with generalized epilepsy and partial epilepsy as well. The spectrum of GEFS+ should be expanded to include partial epilepsies and better to be termed autosomal dominant epilepsy with febrile seizures plus (ADEFS+). PMID:11823106

  19. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia.

    PubMed

    Bolar, Nikhita Ajit; Golzio, Christelle; Živná, Martina; Hayot, Gaëlle; Van Hemelrijk, Christine; Schepers, Dorien; Vandeweyer, Geert; Hoischen, Alexander; Huyghe, Jeroen R; Raes, Ann; Matthys, Erve; Sys, Emiel; Azou, Myriam; Gubler, Marie-Claire; Praet, Marleen; Van Camp, Guy; McFadden, Kelsey; Pediaditakis, Igor; Přistoupilová, Anna; Hodaňová, Kateřina; Vyleťal, Petr; Hartmannová, Hana; Stránecký, Viktor; Hůlková, Helena; Barešová, Veronika; Jedličková, Ivana; Sovová, Jana; Hnízda, Aleš; Kidd, Kendrah; Bleyer, Anthony J; Spong, Richard S; Vande Walle, Johan; Mortier, Geert; Brunner, Han; Van Laer, Lut; Kmoch, Stanislav; Katsanis, Nicholas; Loeys, Bart L

    2016-07-01

    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD. PMID:27392076

  20. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, genetic homogeneity, and mapping of the locus within a 2-cM interval

    SciTech Connect

    Ducros, A.; Alamowitch, S.; Nagy, T.

    1996-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a recently identified autosomal dominant cerebral arteriopathy characterized by the recurrence of subcortical infarcts leading to dementia. A genetic linkage analysis conducted in two large families recently allowed us to map the affected gene on chromosome 19 in a 12-cM interval bracketed by D19S221 and D19S215. In the present study, these first 2 families and 13 additional ones, including a total of 199 potentially informative meiosis, have been genotyped with eight polymorphic markers located between D19S221 and D19S215. All families were linked to chromosome 19. The highest combined lod score (Z{sub max} = 37.24 at {theta} = .01) was obtained with marker D19S841, a new CA{sub n} microsatellite marker that we isolated from chromosome 19 cosmids. The recombinant events observed within these families were used to refine the genetic mapping of CADASIL within a 2-cM interval that is now bracketed by D19S226 and D19S199 on 19p13.1. These data strongly suggest the genetic homogeneity of this recently identified condition and establish the value of its clinical and neuroimaging diagnostic criteria. Besides their importance for the ongoing positional cloning of the CADASIL gene, these data help to refine the genetic mapping of CADASIL relative to familial hemiplegic migraine and hereditary paroxysmal cerebellar ataxia, conditions that we both mapped within the same chromosome 19 region. 35 refs., 5 figs., 2 tabs.

  1. Clinical aspects of an autosomal dominantly inherited hearing impairment linked to the DFNA60 locus on chromosome 2q23.1-2q23.3.

    PubMed

    van Beelen, E; Schraders, M; Huygen, P L M; Oostrik, J; Plantinga, R F; van Drunen, W; Collin, R W J; Kooper, D P; Pennings, R J E; Cremers, C W R J; Kremer, H; Kunst, H P M

    2013-06-01

    A total of 64 loci for autosomal dominant non-syndromic hearing impairment have been described, and the causative genes have been identified for 24 of these. The present study reports on the clinical characteristics of an autosomal dominantly inherited hearing impairment that is linked to a region within the DFNA60 locus located on chromosome 2 in q22.1-24.1. A pedigree spanning four generations was established with 13 affected individuals. Linkage analysis demonstrated that the locus extended over a 2.96 Mb region flanked by markers D2S2335 and D2S2275. The audiograms mainly showed a distinctive U-shaped configuration. Deterioration of hearing started at a wide age range, from 12 to 40 years. Cross-sectional analysis showed rapid progression of hearing impairment from mild to severe, between the ages of 40 and 60 years, a phenomenon that is also observed in DFNA9 patients. The results of the individual longitudinal analyses were generally in line with those obtained by the cross-sectional analysis. Speech recognition scores related to the level of hearing impairment (PTA1,2,4 kHz) appeared to be fairly similar to those of presbyacusis patients. It is speculated that hearing impairment starting in mid-life, as shown by DFNA60 patients, could play a role in the development of presbyacusis. Furthermore, speech recognition did not deteriorate appreciably before the sixth decade of life. We conclude that DFNA60 should be considered in hearing impaired patients who undergo a rapid progression in middle age and are negative for DFNA9. Furthermore, cochlear implantation resulted in good rehabilitation in two DFNA60 patients. PMID:23538131

  2. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.

    PubMed

    Berger, Adeline; Lorain, Stéphanie; Joséphine, Charlène; Desrosiers, Melissa; Peccate, Cécile; Voit, Thomas; Garcia, Luis; Sahel, José-Alain; Bemelmans, Alexis-Pierre

    2015-05-01

    The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission. PMID:25619725

  3. Repair of Rhodopsin mRNA by Spliceosome-Mediated RNA Trans-Splicing: A New Approach for Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Berger, Adeline; Lorain, Stéphanie; Joséphine, Charlène; Desrosiers, Melissa; Peccate, Cécile; Voit, Thomas; Garcia, Luis; Sahel, José-Alain; Bemelmans, Alexis-Pierre

    2015-01-01

    The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission. PMID:25619725

  4. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome.

    PubMed

    White, Janson J; Mazzeu, Juliana F; Hoischen, Alexander; Bayram, Yavuz; Withers, Marjorie; Gezdirici, Alper; Kimonis, Virginia; Steehouwer, Marloes; Jhangiani, Shalini N; Muzny, Donna M; Gibbs, Richard A; van Bon, Bregje W M; Sutton, V Reid; Lupski, James R; Brunner, Han G; Carvalho, Claudia M B

    2016-03-01

    Robinow syndrome is a rare congenital disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features. Recent reports have identified, in individuals with dominant Robinow syndrome, a specific type of variant characterized by being uniformly located in the penultimate exon of DVL1 and resulting in a -1 frameshift allele with a premature termination codon that escapes nonsense-mediated decay. Here, we studied a cohort of individuals who had been clinically diagnosed with Robinow syndrome but who had not received a molecular diagnosis from variant studies of DVL1, WNT5A, and ROR2. Because of the uniform location of frameshift variants in DVL1-mediated Robinow syndrome and the functional redundancy of DVL1, DVL2, and DVL3, we elected to pursue direct Sanger sequencing of the penultimate exon of DVL1 and its paralogs DVL2 and DVL3 to search for potential disease-associated variants. Remarkably, targeted sequencing identified five unrelated individuals harboring heterozygous, de novo frameshift variants in DVL3, including two splice acceptor mutations and three 1 bp deletions. Similar to the variants observed in DVL1-mediated Robinow syndrome, all variants in DVL3 result in a -1 frameshift, indicating that these highly specific alterations might be a common cause of dominant Robinow syndrome. Here, we review the current knowledge of these peculiar variant alleles in DVL1- and DVL3-mediated Robinow syndrome and further elucidate the phenotypic features present in subjects with DVL1 and DVL3 frameshift mutations. PMID:26924530

  5. A Nonsyndromic Autosomal Dominant Oligodontia with A Novel Mutation of PAX9-A Clinical and Genetic Report

    PubMed Central

    Prasanna, Praveen; Athimuthu, Anantharaj; Bhat, Prasanna Kumar; Puttashamachari, Yogish

    2015-01-01

    Oligodontia is congenital absence of one or more teeth which has familial abnormality and attributable to various mutations or polymorphisms of genes often associated with malformative syndromes. The present case reports a rare case of non syndromic oligodontia in an 8-year-old girl with missing 14 permanent teeth excluding third molars in mixed dentition. It is a rare finding which has not been frequently documented in Indian children. Mutations in MSX1 and PAX9 have been described in families in which inherited oligodontia characteristically involves permanent incisors, lateral incisors, premolars and molars. Our study analysed one large family with dominantly inherited oligodontia clinically and genetically. This phonotype is distinct from oligodontia phenotypes associated with mutations in PAX9. Sequencing of the PAX9 revealed a novel mutation in the paired domain of the molecule. The multiple sequence alignment and SNP analysis of the PAX9 exon 2 revealed two mutations. PMID:26266225

  6. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    PubMed Central

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-01-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. PMID:26320891

  7. Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa.

    PubMed

    Fischer-Zirnsak, Björn; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L; Loh, Abigail; Wright, Graham D; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K; Choudhri, Asim F; Krüger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N; Mundlos, Stefan; Villarroel, Camilo E; Byers, Peter; Masri, Amira; Robertson, Stephen P; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe

    2015-09-01

    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling. PMID:26320891

  8. Targeted Genes Sequencing Identified a Novel 15 bp Deletion on GJA8 in a Chinese Family with Autosomal Dominant Congenital Cataracts

    PubMed Central

    Min, Han-Yi; Qiao, Peng-Peng; Asan; Yan, Zhi-Hui; Jiang, Hui-Feng; Zhu, Ya-Ping; Du, Hui-Qian; Li, Qin; Wang, Jia-Wei; Zhang, Jie; Sun, Jun; Yi, Xin; Yang, Ling

    2016-01-01

    Background: Congenital cataract (CC) is the leading cause of visual impairment or blindness in children worldwide. Because of highly genetic and clinical heterogeneity, a molecular diagnosis of the lens disease remains a challenge. Methods: In this study, we tested a three-generation Chinese family with autosomal dominant CCs by targeted sequencing of 45 CC genes on next generation sequencing and evaluated the pathogenicity of the detected mutation by protein structure, pedigree validation, and molecular dynamics (MD) simulation. Results: A novel 15 bp deletion on GJA8 (c.426_440delGCTGGAGGGGACCCT or p. 143_147delLEGTL) was detected in the family. The deletion, concerned with an in-frame deletion of 5 amino acid residues in a highly evolutionarily conserved region within the cytoplasmic loop domain of the gap junction channel protein connexin 50 (Cx50), was in full cosegregation with the cataract phenotypes in the family but not found in 1100 control exomes. MD simulation revealed that the introduction of the deletion destabilized the Cx50 gap junction channel, indicating the deletion as a dominant-negative mutation. Conclusions: The above results support the pathogenic role of the 15 bp deletion on GJA8 in the Chinese family and demonstrate targeted genes sequencing as a resolution to molecular diagnosis of CCs. PMID:26996484

  9. U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer’s disease due to autosomal dominant genetic mutations and trisomy 21

    PubMed Central

    2014-01-01

    Background We recently identified U1 small nuclear ribonucleoprotein (snRNP) tangle-like aggregates and RNA splicing abnormalities in sporadic Alzheimer’s disease (AD). However little is known about snRNP biology in early onset AD due to autosomal dominant genetic mutations or trisomy 21 in Down syndrome. Therefore we investigated snRNP biochemical and pathologic features in these disorders. Findings We performed quantitative proteomics and immunohistochemistry in postmortem brain from genetic AD cases. Electron microscopy was used to characterize ultrastructural features of pathologic aggregates. U1-70k and other snRNPs were biochemically enriched in the insoluble fraction of human brain from subjects with presenilin 1 (PS1) mutations. Aggregates of U1 snRNP-immunoreactivity formed cytoplasmic tangle-like structures in cortex of AD subjects with PS1 and amyloid precursor protein (APP) mutations as well as trisomy 21. Ultrastructural analysis with electron microscopy in an APP mutation case demonstrated snRNP immunogold labeling of paired helical filaments (PHF). Conclusions These studies identify U1 snRNP pathologic changes in brain of early onset genetic forms of AD. Since dominant genetic mutations and trisomy 21 result in dysfunctional amyloid processing, the findings suggest that aberrant β-amyloid processing may influence U1 snRNP aggregate formation. PMID:24773620

  10. Recovery of Dominant, Autosomal Flightless Mutants of Drosophila Melanogaster and Identification of a New Gene Required for Normal Muscle Structure and Function

    PubMed Central

    Cripps, R. M.; Ball, E.; Stark, M.; Lawn, A.; Sparrow, J. C.

    1994-01-01

    To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle. PMID:8056306

  11. A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse associated with autosomal dominant hearing loss in a Chinese family.

    PubMed

    Zhao, Yali; Wang, Dayong; Zong, Liang; Zhao, Feifan; Guan, Liping; Zhang, Peng; Shi, Wei; Lan, Lan; Wang, Hongyang; Li, Qian; Han, Bing; Yang, Ling; Jin, Xin; Wang, Jian; Wang, Jun; Wang, Qiuju

    2014-01-01

    Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear. PMID:24827932

  12. Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

    PubMed Central

    Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun

    2015-01-01

    This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217

  13. Associations Between Biomarkers and Age in the Presenilin 1 E280A Autosomal Dominant Alzheimer Disease Kindred A Cross-sectional Study

    PubMed Central

    Fleisher, Adam S.; Chen, Kewei; Quiroz, Yakeel T.; Jakimovich, Laura J.; Gomez, Madelyn Gutierrez; Langois, Carolyn M.; Langbaum, Jessica B. S.; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M.; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J.; Tariot, Pierre N.; Lopera, Francisco; Reiman, Eric M.

    2015-01-01

    IMPORTANCE Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and noncarriers from the world’s largest known autosomal dominant Alzheimer disease (AD) kindred. OBJECTIVE To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). MAIN OUTCOMES AND MEASURES We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. RESULTS Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau

  14. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  15. A pedigree with autosomal dominant thrombocytopenia, red cell macrocytosis, and an occurrence of t(12:21) positive pre-B acute lymphoblastic leukemia.

    PubMed

    Escher, Robert; Wilson, Peter; Carmichael, Catherine; Suppiah, Ram; Liu, Marjorie; Kavallaris, Maria; Cannon, Ping; Michaud, Joelle; Scott, Hamish S

    2007-01-01

    Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis. PMID:17434765

  16. Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD).

    PubMed

    Carrera, Paola; Calzavara, Silvia; Magistroni, Riccardo; den Dunnen, Johan T; Rigo, Francesca; Stenirri, Stefania; Testa, Francesca; Messa, Piergiorgio; Cerutti, Roberta; Scolari, Francesco; Izzi, Claudia; Edefonti, Alberto; Negrisolo, Susanna; Benetti, Elisa; Alibrandi, Maria Teresa Sciarrone; Manunta, Paolo; Boletta, Alessandra; Ferrari, Maurizio

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common hereditary kidney disease. We analysed PKD1 and PKD2, in a large cohort of 440 unrelated Italian patients with ADPKD and 203 relatives by direct sequencing and MLPA. Molecular and detailed phenotypic data have been collected and submitted to the PKD1/PKD2 LOVD database. This is the first large retrospective study in Italian patients, describing 701 variants, 249 (35.5%) already associated with ADPKD and 452 (64.5%) novel. According to the criteria adopted, the overall detection rate was 80% (352/440). Novel variants with uncertain significance were found in 14% of patients. Among patients with pathogenic variants, in 301 (85.5%) the disease is associated with PKD1, 196 (55.7%) truncating, 81 (23%) non truncating, 24 (6.8%) IF indels, and in 51 (14.5%) with PKD2. Our results outline the high allelic heterogeneity of variants, complicated by the presence of variants of uncertain significance as well as of multiple variants in the same subject. Classification of novel variants may be particularly cumbersome having an important impact on the genetic counselling. Our study confirms the importance to improve the assessment of variant pathogenicity for ADPKD; to this point databasing of both clinical and molecular data is crucial. PMID:27499327

  17. Whole exome sequencing links dental tumor to an autosomal-dominant mutation in ANO5 gene associated with gnathodiaphyseal dysplasia and muscle dystrophies.

    PubMed

    Andreeva, T V; Tyazhelova, T V; Rykalina, V N; Gusev, F E; Goltsov, A Yu; Zolotareva, O I; Aliseichik, M P; Borodina, T A; Grigorenko, A P; Reshetov, D A; Ginter, E K; Amelina, S S; Zinchenko, R A; Rogaev, E I

    2016-01-01

    Tumors of the jaws may represent different human disorders and frequently associate with pathologic bone fractures. In this report, we analyzed two affected siblings from a family of Russian origin, with a history of dental tumors of the jaws, in correspondence to original clinical diagnosis of cementoma consistent with gigantiform cementoma (GC, OMIM: 137575). Whole exome sequencing revealed the heterozygous missense mutation c.1067G > A (p.Cys356Tyr) in ANO5 gene in these patients. To date, autosomal-dominant mutations have been described in the ANO5 gene for gnathodiaphyseal dysplasia (GDD, OMIM: 166260), and multiple recessive mutations have been described in the gene for muscle dystrophies (OMIM: 613319, 611307); the same amino acid (Cys) at the position 356 is mutated in GDD. These genetic data and similar clinical phenotypes demonstrate that the GC and GDD likely represent the same type of bone pathology. Our data illustrate the significance of mutations in single amino-acid position for particular bone tissue pathology. Modifying role of genetic variations in another gene on the severity of the monogenic trait pathology is also suggested. Finally, we propose the model explaining the tissue-specific manifestation of clinically distant bone and muscle diseases linked to mutations in one gene. PMID:27216912

  18. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  19. Role of renin-angiotensin-aldosterone system gene polymorphisms and hypertension-induced end-stage renal disease in autosomal dominant polycystic kidney disease.

    PubMed

    Ramanathan, Gnanasambandan; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar

    2014-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disease of the kidneys and is marked by progressive cyst growth and decline in kidney function, resulting in end-stage renal disease (ESRD). Hypertension is thought to be a significant modifying factor in the progression of renal failure in ADPKD. A number of genetic variations involved in renin-angiotensin-aldosterone system (RAAS) pathway genes have clinical or physiological impacts on pathogenesis of hypertension-induced ESRD in ADPKD. Information on RAAS pathway gene polymorphisms and their association with ESRD and ADPKD, published till March 2013, was collected using MEDLINE search. The present review deals with RAAS gene polymorphisms focused on hypertension-induced ESRD in ADPKD in different populations. The results were inconclusive and limited by heterogeneity in the study designs and the population stratification. In lieu of applying next generation sequencing technologies to study complex diseases, it is also possible to apply the same to unravel the complexity of ESRD in ADPKD. PMID:25001132

  20. Mutation in the PCSK9 Gene in Omani Arab Subjects with Autosomal Dominant Hypercholesterolemia and its Effect on PCSK9 Protein Structure.

    PubMed

    Al-Waili, Khalid; Al-Zidi, Ward Al-Muna; Al-Abri, Abdul Rahim; Al-Rasadi, Khalid; Al-Sabti, Hilal Ali; Shah, Karna; Al-Futaisi, Abdullah; Al-Zakwani, Ibrahim; Banerjee, Yajnavalka

    2013-01-01

    Proprotein convertase subtilisin/kexin type (PCSK9) is a crucial protein in LDL cholesterol (LDL-C) metabolism by virtue of its pivotal role in the degradation of the LDL receptor. Mutations in the PCSK9 gene have previously been found to segregate with autosomal dominant familial hypercholesterolemia (ADFH). In this study, DNA sequencing of the 12 exons of the PCSK9 gene has been performed for two patients with a clinical diagnosis of familial hypercholesterolemia where mutation in the LDL-receptor gene hasn't been excluded. One missense mutation was detected in the exon 9 PCSK9 gene in the two ADFH patients. The patients were found to be heterozygote for Ile474Val (SNP rs562556). Using an array of in silico tools, we have investigated the effect of the above mutation on different structural levels of the PCSK9 protein. Although, the mutation has already been reported in the literature for other populations, to the best of our knowledge this is the first report of a mutation in the PCSK9 gene from the Arab population, including the Omani population. PMID:23386946

  1. Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD)

    PubMed Central

    Carrera, Paola; Calzavara, Silvia; Magistroni, Riccardo; den Dunnen, Johan T.; Rigo, Francesca; Stenirri, Stefania; Testa, Francesca; Messa, Piergiorgio; Cerutti, Roberta; Scolari, Francesco; Izzi, Claudia; Edefonti, Alberto; Negrisolo, Susanna; Benetti, Elisa; Alibrandi, Maria Teresa Sciarrone; Manunta, Paolo; Boletta, Alessandra; Ferrari, Maurizio

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common hereditary kidney disease. We analysed PKD1 and PKD2, in a large cohort of 440 unrelated Italian patients with ADPKD and 203 relatives by direct sequencing and MLPA. Molecular and detailed phenotypic data have been collected and submitted to the PKD1/PKD2 LOVD database. This is the first large retrospective study in Italian patients, describing 701 variants, 249 (35.5%) already associated with ADPKD and 452 (64.5%) novel. According to the criteria adopted, the overall detection rate was 80% (352/440). Novel variants with uncertain significance were found in 14% of patients. Among patients with pathogenic variants, in 301 (85.5%) the disease is associated with PKD1, 196 (55.7%) truncating, 81 (23%) non truncating, 24 (6.8%) IF indels, and in 51 (14.5%) with PKD2. Our results outline the high allelic heterogeneity of variants, complicated by the presence of variants of uncertain significance as well as of multiple variants in the same subject. Classification of novel variants may be particularly cumbersome having an important impact on the genetic counselling. Our study confirms the importance to improve the assessment of variant pathogenicity for ADPKD; to this point databasing of both clinical and molecular data is crucial. PMID:27499327

  2. Intermediate Volume on Computed Tomography Imaging Defines a Fibrotic Compartment that Predicts Glomerular Filtration Rate Decline in Autosomal Dominant Polycystic Kidney Disease Patients

    PubMed Central

    Caroli, Anna; Antiga, Luca; Conti, Sara; Sonzogni, Aurelio; Fasolini, Giorgio; Ondei, Patrizia; Perico, Norberto; Remuzzi, Giuseppe; Remuzzi, Andrea

    2011-01-01

    Total kidney and cyst volumes have been used to quantify disease progression in autosomal dominant polycystic kidney disease (ADPKD), but a causal relationship with progression to renal failure has not been demonstrated. Advanced image processing recently allowed to quantify extracystic tissue, and to identify an additional tissue component named “intermediate,” appearing hypoenhanced on contrast-enhanced computed tomography (CT). The aim of this study is to provide a histological characterization of intermediate volume, investigate its relation with renal function, and provide preliminary evidence of its role in long-term prediction of functional loss. Three ADPKD patients underwent contrast-enhanced CT scans before nephrectomy. Histological samples of intermediate volume were drawn from the excised kidneys, and stained with hematoxylin and eosin and with saturated picrosirius solution for histological analysis. Intermediate volume showed major structural changes, characterized by tubular dilation and atrophy, microcysts, inflammatory cell infiltrate, vascular sclerosis, and extended peritubular interstitial fibrosis. A significant correlation (r = −0.69, P < 0.001) between relative intermediate volume and baseline renal function was found in 21 ADPKD patients. Long-term prediction of renal functional loss was investigated in an independent cohort of 13 ADPKD patients, followed for 3 to 8 years. Intermediate volume, but not total kidney or cyst volume, significantly correlated with glomerular filtration rate decline (r = −0.79, P < 0.005). These findings suggest that intermediate volume may represent a suitable surrogate marker of ADPKD progression and a novel therapeutic target. PMID:21683674

  3. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  4. A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy.

    PubMed

    Milillo, Annamaria; La Carpia, Francesca; Costanzi, Stefano; D'Urbano, Vanessa; Martini, Maurizio; Lanuti, Paola; Vischini, Gisella; Larocca, Luigi M; Marchisio, Marco; Miscia, Sebastiano; Amoroso, Antonio; Gurrieri, Fiorella; Sangiorgi, Eugenio

    2015-12-01

    IgA nephropathy (IgAN) represents the most common primary glomerulonephritis worldwide with a prevalence of 25-50% among patients with primary glomerulopathies. In ~5-10% of the patients the disease segregates with an autosomal dominant (AD) pattern. Association studies identified loci on chromosomes 1q32, 6p21, 8p23, 17p13, 22q12, whereas classical linkage studies on AD families identified loci on chromosomes 2q36, 4q26-31, 6q22, 17q12-22. We have studied a large Sicilian family where IgAN segregates with an AD transmission. To identify the causal gene, the exomes of two affected and one unaffected individual have been sequenced. From the bioinformatics analysis a p.(Arg119Trp) variant in the SPRY2 gene was identified as the probable disease-causing mutation. Moreover, functional characterization of this variant showed that it is responsible for the inhibition of the MAPK/ERK1/2 pathway. The same effect was observed in two sporadic IgAN patients carriers of wild-type SPRY2, suggesting that downregulation of the MAPK/ERK1/2 pathway represents a common mechanism leading to IgAN. PMID:25782674

  5. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    SciTech Connect

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; Gasparini, L.; Ferrera, D.; Canale, C.; Guipponi, M.; Pennacchio, L. A.; Antonarakis, S. E.; Brussino, A.; Brusco, A.

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.

  6. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    DOE PAGESBeta

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; et al

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in amore » postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.« less

  7. Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II.

    PubMed

    Zhu, Yong Lian; Conway-Campbell, Becky; Waters, Michael J; Dannies, Priscilla S

    2002-11-01

    Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wild-type and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mM BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wild-type hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release. PMID:12399418

  8. Mutational analysis of CHRNB2, CHRNA2 and CHRNA4 genes in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy

    PubMed Central

    Chen, Zhihong; Wang, Lingan; Wang, Chun; Chen, Qian; Zhai, Qiongxiang; Guo, Yuxiong; Zhang, Yuxin

    2015-01-01

    Objective: The present study aims to investigate the gene mutations of CHRNB2, CHRNA2 and CHRNA4 in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Methods: 257 ADNFLE patients (74 sporadic and 32 familial) were collected, including 42 pedigree patients and 215 sporadic cases. Exon mutational screening of CHRNB2, CHRNA2 and CHRNA4 was performed by direct PCR sequencing. Results: No published mutations of CHRNB2, CHRNA4 and CHRNA2 genes were detected in this study. Three kinds of c.SNP (c.66C> T, c.249C> T, c.375A> G) were detected on the 2nd and 5th exons of CHRNA2; six kinds of c.SNP (c.639T> C, c.678T> C, c.1209G> T, c.1227T> C, c.1659G> A, c.1629C> T) were detected on the 5th exon of CHRNA4. Three novel mutations were discovered, respectively locating on the exon 5 of CHRNA4 gene (c.570C> T), 5th and 6th exons of CHRNB2 gene (c.483C> T and c.1407C> G). The three mutations were absent in 200 healthy controls, indicating that the mutations were very rare. Conclusion: CHRNA4, CHRNB2 and CHRNA2 may be not the causative genes of Chinese ADNFLE population. Whether the three novel synonymous mutations were genetic factors of ADNFLE pathogenesis in Chinese Han population needs to be further studied. PMID:26309560

  9. Linkage to D3S47 (C17) in one large autosomal dominant retinitis pigmentosa family and exclusion in another: confirmation of genetic heterogeneity.

    PubMed Central

    Lester, D H; Inglehearn, C F; Bashir, R; Ackford, H; Esakowitz, L; Jay, M; Bird, A C; Wright, A F; Papiha, S S; Bhattacharya, S S

    1990-01-01

    Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome. Images Figure 2 Figure 3 Figure 4 PMID:2393026

  10. Rationale and design of the RESOLVE trial: lanreotide as a volume reducing treatment for polycystic livers in patients with autosomal dominant polycystic kidney disease

    PubMed Central

    2012-01-01

    Background A large proportion of patients with autosomal dominant polycystic kidney disease (ADPKD) suffers from polycystic liver disease. Symptoms arise when liver volume increases. The somatostatin analogue lanreotide has proven to reduce liver volume in patients with polycystic liver disease. However, this study also included patients with isolated polycystic liver disease (PCLD). The RESOLVE trial aims to assess the efficacy of lanreotide treatment in ADPKD patients with symptomatic polycystic livers. In this study we present the design of the RESOLVE trial. Methods/design This open-label clinical trial evaluates the effect of 6 months of lanreotide in ADPKD patients with symptomatic polycystic livers. Primary outcome is change in liver volume determined by computerised tomography-volumetry. Secondary outcomes are changes in total kidney volume, kidney intermediate volume and renal function. Furthermore, urinary (NGAL, α1-microglobulin, KIM-1, H-FABP, MCP-1) and serum (fibroblast growth factor 23) biomarkers associated with ADPKD disease severity are assessed to investigate whether these biomarkers predict treatment responses to lanreotide. Moreover, safety and tolerability of the drug in ADPKD patients will be assessed. Discussion We anticipate that lanreotide is an effective therapeutic option for ADPKD patients with symptomatic polycystic livers and that this trial aids in the identification of patient related factors that predict treatment response. Trial registration number Clinical trials.gov NCT01354405 PMID:22475206

  11. Refining the localization of the PKD2 locus on chromosome 4q by linkage analysis in Spanish families with autosomal dominant polycystic kidney disease type 2

    SciTech Connect

    San Millan, J.L.; Viribay, M.; Peral, B.; Moreno, F.; Martinez, I.; Weissenbach, J.

    1995-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In {approximately}86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of {approximately}1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2. 25 refs., 4 figs., 1 tab.

  12. [AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE: HOW AND WHY SHOULD WE IDENTIFY THE PATIENTS "RAPIDLY PROGRESSING" TO END-STAGE RENAL DISEASE?].

    PubMed

    Bodson, A; Meunier, P; Krzesinski, J-M; Jouret, F

    2016-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disease characterised by the progressive development of multiple and bilateral cysts in kidneys and other organs. Most patients with ADPKD will develop, sooner or later, end-stage renal disease (ESRD). The morbidity and mortality associated with ESRD prompt physicians to identify early ADPKD patients considered as "rapid progressors", who have the greatest risk to rapidly develop ESRD. The rate of progression can be assessed by clinical--especially with the "predicting renal outcome in polycystic kidney disease score" (PROPKD-Score)-, biological (a decline of the glomerular filtration rate (GFR) of 4.4-5.9 ml/min/year and/or the doubling of serum creatinine within a 36-month period), or radiological criteria (total kidney volume (TKV) adjusted for the size > 600 cc/m and/or TKV annual growth rate > 5 %). Nowadays, there is no curative treatment for ADPKD. However, vasopressin-2 receptor antagonists, such as tolvaptan, appear to slow down the growth of renal cysts and the slope of GFR decline. The current management of ADPKD patients is mostly based on correcting the risk factors for progression, i.e. encouraging (over)-hydration, normalizing blood pressure, stimulating smoking cessation. PMID:27295898

  13. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomaslies not linked to the Fibrillin genes

    SciTech Connect

    Boileau, C.; Coulon, M.; Alexandre, J.-A.; Junien, C. ); Jondeau, G.; Delorme, G.; Dubourg, O.; Bourdarias, J.-P. ); Babron, M.-C.; Bonaieti-Pellie, C. ); Sakai, L. ); Melki, J. )

    1993-07-01

    The authors describe a large family with a connective-tissue disorder that exhibits some of the skeletal and cardiovascular features seen in Marfan syndrome. However, none of the 19 affected individuals displayed ocular abnormalities and therefore did not comply with recognized criteria for this disease. These patients could alternatively be diagnosed as MASS (mitral valve, aorta, skeleton, and skin) phenotype patients or represent a distinct clinical entity, i.e., a new autosomal dominant connective-tissue disorder. The fibrillin genes located on chromosomes 15 and 5 are clearly involved in the classic form of Marfan syndrome and a clinically related disorder (congenital contractural arachnodactyly), respectively. To test whether one of these genes was also implicated in this French family, the authors performed genetic analyses. Blood samples were obtained for 56 family members, and four polymorphic fibrillin gene markers, located on chromosomes 15 (Fib15) and 5 (Fib5), respectively, were tested. Linkage between the disease allele and the markers of these two genes was excluded with lod scores of [minus]11.39 (for Fib15) and [minus]13.34 (for Fib5), at 0 = .001, indicating that the mutation is at a different locus. This phenotype thus represents a new connective-tissue disorder, overlapping but different from classic Marfan syndrome. 33 refs., 1 fig. 2 tabs.

  14. A Missense Mutation in the Alpha-Actinin 1 Gene (ACTN1) Is the Cause of Autosomal Dominant Macrothrombocytopenia in a Large French Family

    PubMed Central

    Guéguen, Paul; Rouault, Karen; Chen, Jian-Min; Raguénès, Odile; Fichou, Yann; Hardy, Elisabeth; Gobin, Eric; Pan-petesch, Brigitte; Kerbiriou, Mathieu; Trouvé, Pascal; Marcorelles, Pascale; Abgrall, Jean-francois; Le Maréchal, Cédric; Férec, Claude

    2013-01-01

    Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22) with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln) in the alpha-actinin 1 gene (ACTN1) that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes. PMID:24069336

  15. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi

    2014-01-01

    Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142

  16. Physical and transcript map of the autosomal dominant colobomatous microphthalmia locus on chromosome 15q12-q15 and refinement to a 4.4 Mb region.

    PubMed

    Michon, Laetitia; Morlé, Laurette; Bozon, Muriel; Duret, Laurent; Zech, Jean-Christophe; Godet, Jacqueline; Plauchu, Henry; Edery, Patrick

    2004-07-01

    Congenital microphthalmia is a developmental disorder characterized by shortened axial length of the eye. We have previously mapped the gene responsible for autosomal dominant colobomatous microphthalmia in a 5-generation family to chromosome 15q12-q15. Here, we set up a physical and transcript map of the 13.8 cM critical region, flanked by loci D15S1002 and D15S1040. Physical mapping and genetic linkage analysis using 20 novel polymorphic markers allowed the refinement of the disease locus to two intervals in close vicinity, namely a centromeric interval, bounded by microsatellite DNA markers m3-m17, and a telomeric interval, m76-m24, encompassing respectively 1.9 and 2.5 Mb. Moreover, we excluded three candidate genes, CKTSF1B1, KLF13 and CX36. Finally, although a phenomenon of anticipation was suggested by phenotypic and pedigree data, no abnormal expansion of three trinucleotide repeats mapping to the refine interval was found in affected individuals. PMID:15083168

  17. Exome sequencing identifies a novel frameshift mutation of MYO6 as the cause of autosomal dominant nonsyndromic hearing loss in a Chinese family.

    PubMed

    Cheng, Jing; Zhou, Xueya; Lu, Yu; Chen, Jing; Han, Bing; Zhu, Yuhua; Liu, Liyang; Choy, Kwong-Wai; Han, Dongyi; Sham, Pak C; Zhang, Michael Q; Zhang, Xuegong; Yuan, Huijun

    2014-11-01

    Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole-genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co-segregation with phenotype in the pedigree and in light of established genotype-phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype-phenotype correlation for DFNA22. PMID:25227905

  18. A novel mutation (ASn244Lys) in the peripherin/RDS gene causing autosomal dominant retinitis pigmentosa associated with bull's eye maculopathy detected by nonradioisotopic SSCP

    SciTech Connect

    Kikawa, Emi; Nakazawa, Mitsuru; Chida, Yasushi; Shiono, Takashi; Tamai, Makota )

    1994-03-01

    Retinitis pigmentosa (RP) is characterized by night blindness, an eventual loss of visual field, a diminished response on the electroretinogram, and pigmentary retinal degeneration. These features are primarily explained by the degeneration of photoreceptors. The recent development of the molecular genetic approach has enabled the identification of genes responsible for parts of autosomal dominant RP (ADRP). Rhodopsin and peripherin/RDS genes, in particular, have been successfully shown to cosegregate with ADRP. The authors, therefore, screened 42 unrelated Japanese patients with ADRP to search for mutations in the peripherin/RDS gene. The method we employed for screening was a nonradioisotopic modification of single-strand conformation polymorphism. Among 42 unrelated patients with ADRP, the DNA from one patient (SY) showed an abnormal pattern in exon 2 on SSCP. The DNA fragments were then amplified from affected and nonaffected members of the same family as SY. The alteration in the DNA sequence that was commonly found in the affected members of the family was identified as a heterozygous transversional change of C to A at the third nucleotide in codon 244, resulting in the amino acid replacement of asparagine residue with lysine residue. None of unaffected family members or 30 normal control individuals had this alteration.

  19. The nasopalpebral lipoma-coloboma syndrome: a new autosomal dominant dysplasia-malformation syndrome with congenital nasopalpebral lipomas, eyelid colobomas, telecanthus, and maxillary hypoplasia.

    PubMed

    Penchaszadeh, V B; Velasquez, D; Arrivillaga, R

    1982-04-01

    We describe a new autosomal dominant dysplasia-malformation syndrome from eight affected individuals in three generations of a Venezuelan family. It is characterized by congenital symmetrical upper lid and nasopalpebral lipomas, bilateral symmetrical upper and lower palpebral colobomas located at the junction of the inner and middle thirds of the lids, telecanthus, and maxillary hypoplasia. Affected individuals have a broad forehead, window's peak, abnormal pattern of eyebrows and eyelashes, and maldevelopment of the lacrimal punctae. Interorbital distance is normal, but interpupillary distance is increased due to divergent strabismus originating from visual interference from inner canthal masses. Persistent epiphora, conjunctival hyperemia, and corneal (and less frequently lens) opacities are a secondary consequence of the defect of the lacrimal punctae and the inability to close the lids completely. The syndrome has complete penetrance and a rather narrow range of expressivity. The primary defect could involve a dysplasia of adipose tissue leading to nasopalpebral and upper lid lipomas during embryogenesis, with the rest of the malformations being secondary to interference of morphogenesis of the mid-upperface developmental field from the lipomatous hamartomas. Alternatively, a central rather than a peripheral mechanism of malformation might be considered, such as defective migration of neural crest cells. PMID:7091184

  20. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis

    SciTech Connect

    Radhakrishna, U.; Mehenni, H.; Antonarakis, S.E.

    1997-03-01

    Postaxial polydactyly type-A (PAP-A) in humans is an autosomal dominant trait characterized by an extra digit in the ulnar and/or fibular side of the upper and/or lower extremities. The extra digit is well formed and articulates with the fifth, or extra, metacarpal/metatarsal, and thus it is usually functional. In order to map the gene responsible for PAP-A, we studied a five-generation Indian family of 37 individuals (15 of whom were affected). A genomewide search with highly informative polymorphic markers on part of the pedigree showed linkage between the PAP-A phenotype and markers on chromosome 7p15-q11.23 (no crossovers were found with D7S526, D7S795, D7S528, D7S521, D7S691, D7S667, D7S478, D7S1830, D7S803, D7S801, or ELN). The highest LOD score was obtained with marker D7S801 (Z{sub max} = 4.21; {theta} = 0). Haplotype analysis enabled the mapping of the PAP-A phenotype in this family between markers D7S2848 and D7S669. Analysis of additional families with PAP-A will narrow down the critical genomic region, facilitate positional cloning of the PAP-A gene, and/or uncover potential genetic heterogeneity. 42 refs., 4 figs., 1 tab.

  1. Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7, band q21. 3-q. 22. 1

    SciTech Connect

    Scherer, S.W.; Tsui, L.C. ); Allen, T.; Kim, J.; Soder, S. ); Poorkaj, P.; Geshuri, D.; Nunes, M.; Stephens, K.; Pagon, R.A. )

    1994-07-01

    Split hand/split foot (SHFD) is a human developmental defect characterized by missing digits, fusion of remaining digits, and a deep median cleft in the hands and feet. Cytogenetic studies of deletions and translocations associated with this disorder have indicated that an autosomal dominant split hand/split foot locus (gene SHFD1) maps to 7q21-q22. To characterize the SHFD1 locus, somatic cell hybrid lines were constructed from cytogenetically abnormal individuals with SHFD. Molecular analysis resulted in the localization of 93 DNA markers to one of 10 intervals surrounding the SHFD1 locus. The translocation breakpoints in four SHFD patients were encompassed by the smallest region of overlap among the SHFD-associated deletions. The order of DNA markers in the SHFD1 critical region has been defined as PON-D7S812-SHFD1-D7S811-ASNS. One DNA marker, D7S811, detected altered restriction enzyme fragments in three patients with translocations when examined by pulsed-field gel electrophoresis (PFGE). These data map SHFD1, a gene that is crucial for human limb differentiation, to a small interval in the q21.3-q.22.1 region of human chromosome 7. 54 refs., 4 figs., 2 tabs.

  2. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

    PubMed

    Wang, Honghan; Wang, Xinwei; He, Chufeng; Li, Haibo; Qing, Jie; Grati, M'hamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2015-03-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  3. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.

  4. Whole exome sequencing links dental tumor to an autosomal-dominant mutation in ANO5 gene associated with gnathodiaphyseal dysplasia and muscle dystrophies

    PubMed Central

    Andreeva, T. V.; Tyazhelova, T. V.; Rykalina, V. N.; Gusev, F. E.; Goltsov, A. Yu.; Zolotareva, O. I.; Aliseichik, M. P.; Borodina, T. A.; Grigorenko, A. P.; Reshetov, D. A.; Ginter, E. K.; Amelina, S. S.; Zinchenko, R. A.; Rogaev, E. I.

    2016-01-01

    Tumors of the jaws may represent different human disorders and frequently associate with pathologic bone fractures. In this report, we analyzed two affected siblings from a family of Russian origin, with a history of dental tumors of the jaws, in correspondence to original clinical diagnosis of cementoma consistent with gigantiform cementoma (GC, OMIM: 137575). Whole exome sequencing revealed the heterozygous missense mutation c.1067G > A (p.Cys356Tyr) in ANO5 gene in these patients. To date, autosomal-dominant mutations have been described in the ANO5 gene for gnathodiaphyseal dysplasia (GDD, OMIM: 166260), and multiple recessive mutations have been described in the gene for muscle dystrophies (OMIM: 613319, 611307); the same amino acid (Cys) at the position 356 is mutated in GDD. These genetic data and similar clinical phenotypes demonstrate that the GC and GDD likely represent the same type of bone pathology. Our data illustrate the significance of mutations in single amino-acid position for particular bone tissue pathology. Modifying role of genetic variations in another gene on the severity of the monogenic trait pathology is also suggested. Finally, we propose the model explaining the tissue-specific manifestation of clinically distant bone and muscle diseases linked to mutations in one gene. PMID:27216912

  5. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation.

    PubMed

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna; Rehnman, Anna-Carin; Lodahl, Marianne; Wedén, Ulla; Dahl, Niklas; Tranebjærg, Lisbeth; Rendtorff, Nanna D

    2015-05-25

    Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a deletion resulting in a similar truncation in the variable region. A highly variable age of onset was seen in the mutation carriers. For assessment of the aetiology of this variability, clinical and audiometric data analyses were performed. The affected family members all had similar cross-sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10 family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy. PMID:25681523

  6. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract

    PubMed Central

    Arora, A; Minogue, P J; Liu, X; Reddy, M A; Ainsworth, J R; Bhattacharya, S S; Webster, A R; Hunt, D M; Ebihara, L; Moore, A T; Beyer, E C; Berthoud, V M

    2006-01-01

    Purpose To identify the gene responsible for autosomal dominant lamellar pulverulent cataract in a four‐generation British family and characterise the functional and cellular consequences of the mutation. Methods Linkage analysis was used to identify the disease locus. The GJA8 gene was sequenced directly. Functional behaviour and cellular trafficking of connexins were examined by expression in Xenopus oocytes and HeLa cells. Results A 262C>A transition that resulted in the replacement of proline by glutamine (P88Q) in the coding region of connexin50 (Cx50) was identified. hCx50P88Q did not induce intercellular conductance and significantly inhibited gap junctional activity of co‐expressed wild type hCx50 RNA in paired Xenopus oocytes. In transfected cells, immunoreactive hCx50P88Q was confined to the cytoplasm but showed a temperature sensitive localisation at gap junctional plaques. Conclusions The pulverulent cataract described in this family is associated with a novel GJA8 mutation and has a different clinical phenotype from previously described GJA8 mutants. The cataract likely results from lack of gap junction function. The lack of function was associated with improper targeting to the plasma membrane, most probably due to protein misfolding. PMID:16397066

  7. The Impact of the Availability of Prevention Studies on the Desire to Undergo Predictive Testing in Persons at-risk for Autosomal Dominant Alzheimer’s Disease

    PubMed Central

    Hooper, Megan; Grill, Joshua D.; Rodriguez-Agudelo, Yaneth; Medina, Luis D.; Fox, Michelle; Alvarez-Retuerto, Ana Isabel; Wharton, David; Brook, Jenny; Ringman, John M.

    2013-01-01

    Persons at-risk for autosomal dominant neurodegenerative diseases provide the opportunity to efficiently test preventive interventions. Only a minority of such persons, however, choose to undergo revealing genetic testing, presenting a challenge to enrollment. Thirty-four preclinical Latinos (n = 26) and non-Latinos at-risk for familial Alzheimer’s disease (FAD) unaware of their genetic status were administered a questionnaire exploring their interest in undergoing revealing genetic testing at baseline and in the context of eligibility for four prevention trials of increasing invasiveness. Forty-four percent of subjects expressed a baseline interest in undergoing revealing testing which increased to 85% in order to be eligible for a study of an oral drug "felt to be very safe.” If there were a 50% chance of receiving placebo, this number dropped to 62% (p = 0.02). For those not interested in a study involving a 50% chance of receiving placebo, a range of 5% to 40% chance of receiving placebo was given as acceptable. For more invasive studies, living in the U.S. (as opposed to Mexico) positively influenced the likelihood of participating. Our data suggests that clinical trial designs in which persons must confront their genetic status prior to enrollment are feasible. Study designs to minimize the likelihood of being placed on placebo or provide the eventual administration of the drug through open-label extensions should be considered. PMID:23876673

  8. Autosomal Dominant Polycystic Kidney Disease

    MedlinePlus

    ... the U.S. The high cardiovascular death rate in dialysis patients with ADPKD remains a problem. Kidney transplantation ... who develop ESRD receive a transplant before beginning dialysis therapy. Limited organ availability has resulted in longer ...

  9. Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2

    PubMed Central

    Davidson, Alice E.; Liskova, Petra; Evans, Cerys J.; Dudakova, Lubica; Nosková, Lenka; Pontikos, Nikolas; Hartmannová, Hana; Hodaňová, Kateřina; Stránecký, Viktor; Kozmík, Zbyněk; Levis, Hannah J.; Idigo, Nwamaka; Sasai, Noriaki; Maher, Geoffrey J.; Bellingham, James; Veli, Neyme; Ebenezer, Neil D.; Cheetham, Michael E.; Daniels, Julie T.; Thaung, Caroline M.H.; Jirsova, Katerina; Plagnol, Vincent; Filipec, Martin; Kmoch, Stanislav; Tuft, Stephen J.; Hardcastle, Alison J.

    2016-01-01

    Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.−339_361dup for CHED1 and c.−370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.−274T>G and c.−307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies. PMID:26749309

  10. Founder Effect of a c.828+3A>T Splice Site Mutation in Peripherin 2 (PRPH2) Causing Autosomal Dominant Retinal Dystrophies

    PubMed Central

    Shankar, Suma P.; Birch, David G.; Ruiz, Richard S.; Hughbanks-Wheaton, Dianna K.; Sullivan, Lori S.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2015-01-01

    Importance Screening for splice site mutation c.828+3A>T in the peripherin 2 (PRPH2) gene should be a high priority in families with highly variable retinal dystrophies. The correction of missplicing is a potential therapeutic target. Objective To determine the prevalence, genetic origin, and molecular mechanism of a donor c.828+3A>T mutation in the PRPH2 (peripherin 2, retinal degeneration slow) gene in individuals with retinal dystrophies. Design, Setting, and Participants Case-control study that took place at the University of Texas Health Science Center, the University of Iowa, and the Retina Foundation of the Southwest, from January 1, 1987, to August 1, 2014, including affected individuals from 200 families with a diagnosis of autosomal dominant retinitis pigmentosa, 35 families with unspecified macular dystrophies, and 116 families with pattern dystrophy. Participants were screened for the c.828+3A>T mutation by restriction-enzyme digest, single-strand conformational polymorphism screening, or bidirectional sequencing. Haplotypes of polymorphic markers flanking the PRPH2 locus and sequence variants within the gene were determined by denaturing gel electrophoresis or automated capillary-based cycle sequencing. The effect of the splice site mutation on the PRPH2 transcript was analyzed using NetGene2, a splice prediction program and by the reverse transcription polymerase chain reaction of illegitimate transcripts from peripheral white blood cells. Main Outcomes and Measures Results of testing for splice site mutation, haplotypes, and alternate transcripts. Results The PRPH2 mutation was found in 97 individuals of 19 independently ascertained families with a clinical diagnosis of retinitis pigmentosa, macular dystrophy, and/or pattern dystrophy. All affected individuals also shared a rare haplotype of approximately 644 kilobase pairs containing the c.828+3A>T mutation, which extends from the short tandem repeat polymorphism D6S282 to c.1013G>A (rs434102, a

  11. Identification of Two Disease-causing Genes TJP2 and GJB2 in a Chinese Family with Unconditional Autosomal Dominant Nonsyndromic Hereditary Hearing Impairment

    PubMed Central

    Wang, Hong-Yang; Zhao, Ya-Li; Liu, Qiong; Yuan, Hu; Gao, Yun; Lan, Lan; Yu, Lan; Wang, Da-Yong; Guan, Jing; Wang, Qiu-Ju

    2015-01-01

    Background: There are more than 300 genetic loci that have been found to be related to hereditary hearing impairment (HHI), including 92 causative genes for nonsyndromic hearing loss, among which 34 genes are related to autosomal dominant nonsyndromic HHI (ADNSHHI). Traditional linkage analysis and candidate gene sequencing are not effective at detecting the ADNSHHI, especially for the unconditional families that may have more than one pathogenic cause. This study identified two disease-causing genes TJP2 and GJB2 in a Chinese family with unconditional ADNSHHI. Methods: To decipher the genetic code of a Chinese family (family 686) with ADNSHHI, different gene screening techniques have been performed, including linkage analysis, candidate genes screening, high-throughput sequencing and Sanger sequencing. These techniques were done on samples obtained from this family over a period of 10 years. Results: We identified a pathogenic missense mutation, c. 2081G>A (p.G694E), in TJP2, a gene that plays a crucial role in apoptosis and age-related hearing loss (ARHL). The mutation was co-segregated in this pedigree in all, but not in the two patients who presented with different phenotypes from the other affected family members. In one of the two patients, we confirmed that the compound heterozygosity for p. Y136* and p.G45E in the GJB2 gene may account for the phenotype shown in this patient. Conclusions: We identified the co-occurrence of two genetic causes in family 686. The possible disease-causing missense mutation of TJP2 in family 686 presents an opportunity for further investigation into ARHL. It is necessary to combine various genes screening methods, especially for some unconventional cases. PMID:26668150

  12. Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene.

    PubMed

    Formichi, Patrizia; Radi, Elena; Giorgi, Eleonora; Gallus, Gian Nicola; Brunetti, Jlenia; Battisti, Carla; Rufa, Alessandra; Dotti, Maria Teresa; Franceschini, Rossella; Bracci, Luisa; Federico, Antonio

    2015-04-15

    Autosomal dominant optic atrophy (ADOA) is a hereditary optic neuropathy characterized by bilateral symmetrical visual loss, decrease in retinal ganglion cells and a loss of myelin within the optic nerve. ADOA is associated to mutations in Optic atrophy 1 gene (OPA1), which encodes a mitochondrial protein involved in cristae remodeling, maintenance of mitochondrial membrane integrity, mitochondrial fusion and apoptosis regulation. We thus evaluated the rate of apoptosis and the expression levels of OPA1 isoforms in ADOA and control cells. Peripheral blood lymphocytes from eight patients with OPA1 mutation and age matched controls were cultivated both in basal conditions or with 2-deoxy-D-ribose, a reducing sugar that induces apoptosis through oxidative stress. Apoptosis was analyzed by flow cytometry, phosphatidylserine translocation, mitochondrial membrane depolarization and caspase 3 activation. We also analyzed the expression levels of OPA1 isoforms in ADOA and control cells cultured with and without 2-deoxy-D-ribose. We showed an increased percentage of apoptotic cells in ADOA patients compared to controls, both in basal culture conditions and after 2-deoxy-D-ribose treatment. This suggested a great susceptibility of ADOA cells to oxidative stress and a strong correlation between OPA1 protein dysfunctions and morphological-functional alterations to mitochondria. Moreover OPA1 protein expression was significantly decreased in lymphocytes from the ADOA patients after 2-deoxy-D-ribose treatment, implying a great sensitivity of the mutated protein to free radical damage. Concluding, we could confirm that oxidative stress-induced apoptosis may play a key role in the pathophysiological process bringing to retinal ganglion cells degeneration in ADOA. PMID:25796301

  13. Structure-Function Modeling of Optical Coherence Tomography and Standard Automated Perimetry in the Retina of Patients with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Smith, Travis B.; Parker, Maria; Steinkamp, Peter N.; Weleber, Richard G.; Smith, Ning; Wilson, David J.

    2016-01-01

    Purpose To assess relationships between structural and functional biomarkers, including new topographic measures of visual field sensitivity, in patients with autosomal dominant retinitis pigmentosa. Methods Spectral domain optical coherence tomography line scans and hill of vision (HOV) sensitivity surfaces from full-field standard automated perimetry were semi-automatically aligned for 60 eyes of 35 patients. Structural biomarkers were extracted from outer retina b-scans along horizontal and vertical midlines. Functional biomarkers were extracted from local sensitivity profiles along the b-scans and from the full visual field. These included topographic measures of functional transition such as the contour of most rapid sensitivity decline around the HOV, herein called HOV slope for convenience. Biomarker relationships were assessed pairwise by coefficients of determination (R2) from mixed-effects analysis with automatic model selection. Results Structure-function relationships were accurately modeled (conditional R2>0.8 in most cases). The best-fit relationship models and correlation patterns for horizontally oriented biomarkers were different than vertically oriented ones. The structural biomarker with the largest number of significant functional correlates was the ellipsoid zone (EZ) width, followed by the total photoreceptor layer thickness. The strongest correlation observed was between EZ width and HOV slope distance (marginal R2 = 0.85, p<10−10). The mean sensitivity defect at the EZ edge was 7.6 dB. Among all functional biomarkers, the HOV slope mean value, HOV slope mean distance, and maximum sensitivity along the b-scan had the largest number of significant structural correlates. Conclusions Topographic slope metrics show promise as functional biomarkers relevant to the transition zone. EZ width is strongly associated with the location of most rapid HOV decline. PMID:26845445

  14. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers

    PubMed Central

    Shankar, Suma P.; Hughbanks-Wheaton, Dianna K.; Birch, David G.; Sullivan, Lori S.; Conneely, Karen N.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2016-01-01

    Purpose We determined the phenotypic variation, disease progression, and potential modifiers of autosomal dominant retinal dystrophies caused by a splice site founder mutation, c.828+3A>T, in the PRPH2 gene. Methods A total of 62 individuals (19 families) harboring the PRPH2 c.828+3A>T mutation, had phenotype analysis by fundus appearance, electrophysiology, and visual fields. The PRPH2 haplotypes in trans were sequenced for potential modifying variants and generalized estimating equations (GEE) used for statistical analysis. Results Several distinct phenotypes caused by the PRPH2 c.828+3A>T mutation were observed and fell into two clinical categories: Group I (N = 44) with mild pattern dystrophies (PD) and Group II (N = 18) with more severe cone-rod dystrophy (CRD), retinitis pigmentosa (RP), and central areolar chorioretinal dystrophy (CACD). The PRPH2 Gln304-Lys310-Asp338 protein haplotype in trans was found in Group I only (29.6% vs. 0%), whereas the Glu304-Lys310-Gly338 haplotype was predominant in Group II (94.4% vs. 70.4%). Generalized estimating equations analysis for PD versus the CRD/CACD/RP phenotypes in individuals over 43 years alone with the PRPH2 haplotypes in trans and age as predictors, adjusted for correlation within families, confirmed a significant effect of haplotype on severity (P = 0.03) with an estimated odds ratio of 7.16 (95% confidence interval [CI] = [2.8, 18.4]). Conclusions The PRPH2 c.828+3A>T mutation results in multiple distinct phenotypes likely modified by protein haplotypes in trans; the odds of having the CACD/RP-like phenotype (versus the PD phenotype) are 7.16 times greater with a Glu304-Lys310-Gly338 haplotype in trans. Further functional studies of the modifying haplotypes in trans and PRPH2 splice variants may offer therapeutic targets. PMID:26842753

  15. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.

    PubMed

    Farrow, Emily G; Yu, Xijie; Summers, Lelia J; Davis, Siobhan I; Fleet, James C; Allen, Matthew R; Robling, Alexander G; Stayrook, Keith R; Jideonwo, Victoria; Magers, Martin J; Garringer, Holly J; Vidal, Ruben; Chan, Rebecca J; Goodwin, Charles B; Hui, Siu L; Peacock, Munro; White, Kenneth E

    2011-11-15

    Autosomal dominant hypophosphatemic rickets (ADHR) is unique among the disorders involving Fibroblast growth factor 23 (FGF23) because individuals with R176Q/W and R179Q/W mutations in the FGF23 (176)RXXR(179)/S(180) proteolytic cleavage motif can cycle from unaffected status to delayed onset of disease. This onset may occur in physiological states associated with iron deficiency, including puberty and pregnancy. To test the role of iron status in development of the ADHR phenotype, WT and R176Q-Fgf23 knock-in (ADHR) mice were placed on control or low-iron diets. Both the WT and ADHR mice receiving low-iron diet had significantly elevated bone Fgf23 mRNA. WT mice on a low-iron diet maintained normal serum intact Fgf23 and phosphate metabolism, with elevated serum C-terminal Fgf23 fragments. In contrast, the ADHR mice on the low-iron diet had elevated intact and C-terminal Fgf23 with hypophosphatemic osteomalacia. We used in vitro iron chelation to isolate the effects of iron deficiency on Fgf23 expression. We found that iron chelation in vitro resulted in a significant increase in Fgf23 mRNA that was dependent upon Mapk. Thus, unlike other syndromes of elevated FGF23, our findings support the concept that late-onset ADHR is the product of gene-environment interactions whereby the combined presence of an Fgf23-stabilizing mutation and iron deficiency can lead to ADHR. PMID:22006328

  16. Comprehensive Genetic Screening of KCNQ4 in a Large Autosomal Dominant Nonsyndromic Hearing Loss Cohort: Genotype-Phenotype Correlations and a Founder Mutation

    PubMed Central

    Naito, Takehiko; Nishio, Shin-ya; Iwasa, Yoh-ichiro; Yano, Takuya; Kumakawa, Kozo; Abe, Satoko; Ishikawa, Kotaro; Kojima, Hiromi; Namba, Atsushi; Oshikawa, Chie; Usami, Shin-ichi

    2013-01-01

    The present study of KCNQ4 mutations was carried out to 1) determine the prevalence by unbiased population-based genetic screening, 2) clarify the mutation spectrum and genotype/phenotype correlations, and 3) summarize clinical characteristics. In addition, a review of the reported mutations was performed for better understanding of this deafness gene. The screening using 287 probands from unbiased Japanese autosomal dominant nonsyndromic hearing loss (ADNSHL) families identified 19 families with 7 different disease causing mutations, indicating that the frequency is 6.62% (19/287). While the majority were private mutations, one particular recurrent mutation, c.211delC, was observed in 13 unrelated families. Haplotype analysis in the vicinity of c.211delC suggests existence of a common ancestor. The majority of the patients showed all frequency, but high-frequency predominant, sensorineural hearing loss. The present study adds a new typical audiogram configuration characterized by mid-frequency predominant hearing loss caused by the p.V230E mutation. A variant at the N-terminal site (c. 211delC) showed typical ski-slope type audiogram configuration. Concerning clinical features, onset age was from 3 to 40 years old, and mostly in the teens, and hearing loss was gradually progressive. Progressive nature is a common feature of patients with KCNQ4 mutations regardless of the mutation type. In conclusion, KCNQ4 mutations are frequent among ADNSHL patients, and therefore screening of the gene and molecular confirmation of these mutations have become important in the diagnosis of these conditions. PMID:23717403

  17. DFNA8/12 Caused by TECTA Mutations is the Most Identified Subtype of Non-syndromic Autosomal Dominant Hearing Loss

    PubMed Central

    Hildebrand, Michael S.; Morín, Matías; Meyer, Nicole C.; Mayo, Fernando; Modamio-Hoybjor, Silvia; Mencía, Angeles; Olavarrieta, Leticia; Morales-Angulo, Carmelo; Nishimura, Carla J.; Workman, Heather; DeLuca, Adam P.; del Castillo, Ignacio; Taylor, Kyle R.; Tompkins, Bruce; Goodman, Corey W.; Schrauwen, Isabelle; Van Wesemael, Maarten; Lachlan, K.; Shearer, A. Eliot; Braun, Terry A.; Huygen, Patrick L.M.; Kremer, Hannie; Van Camp, Guy; Moreno, Felipe; Casavant, Thomas L.; Smith, Richard J.H.; Moreno-Pelayo, Miguel A.

    2012-01-01

    The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant non-syndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, the vWFD1, vWFD2 and vWFD3 repeats, and the D1-D2 and TIL2 connectors. While the majority are private mutations, four of them – p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met and p.Arg1890Cys – were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1 and vWFD2) lead to mid frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL. PMID:21520338

  18. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Bhootada, Yogesh; Kotla, Pravallika; Zolotukhin, Sergei; Gorbatyuk, Oleg; Bebok, Zsuzsanna; Athar, Mohammad; Gorbatyuk, Marina

    2016-01-01

    T17M rhodopsin expression in rod photoreceptors leads to severe retinal degeneration and is associated with the activation of ER stress related Unfolded Protein Response (UPR) signaling. Here, we show a novel role of a UPR transcription factor, ATF4, in photoreceptor cellular pathology. We demonstrated a pro-death role for ATF4 overexpression during autosomal dominant retinitis pigmentosa (ADRP). Based on our results in ATF4 knockout mice and adeno-associated viral (AAV) delivery of ATF4 to the retina, we validated a novel therapeutic approach targeting ATF4 over the course of retinal degeneration. In T17M rhodopsin retinas, we observed ATF4 overexpression concomitantly with reduction of p62 and elevation of p53 levels. These molecular alterations, together with increased CHOP and caspase-3/7 activity, possibly contributed to the mechanism of photoreceptor cell loss. Conversely, ATF4 knockdown retarded retinal degeneration in 1-month-old T17M Rhodopsin mice and promoted photoreceptor survival, as measured by scotopic and photopic ERGs and photoreceptor nuclei row counts. Similarly, ATF4 knockdown also markedly delayed retinal degeneration in 3-month-old ADRP animals. This delay was accompanied by a dramatic decrease in UPR signaling, the launching of anti-oxidant defense, initiation of autophagy, and improvement of rhodopsin biosynthesis which together perhaps combat the cellular stress associated with T17M rhodopsin. Our data indicate that augmented ATF4 signals during retinal degeneration plays a cytotoxic role by triggering photoreceptor cell death. Future ADRP therapy regulating ATF4 expression can be developed to treat retinal degenerative disorders associated with activated UPR. PMID:27144303

  19. Three novel and the common Arg677Ter RP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in a Spanish population

    PubMed Central

    Gamundi, María José; Hernan, Imma; Martínez-Gimeno, María; Maseras, Miquel; García-Sandoval, Blanca; Ayuso, Carmen; Antiñolo, Guillermo; Baiget, Montserrat; Carballo, Miguel

    2006-01-01

    Background Retinitis pigmentosa (RP), a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3–10% of cases of autosomal dominant RP (adRP). Most of these mutations are clustered in a 500 bp region of exon 4 of RP1. Methods Denaturing gradient gel electrophoresis (DGGE) analysis and direct genomic sequencing were used to evaluate the 5' coding region of exon 4 of the RP1 gene for mutations in 150 unrelated index adRP patients. Ophthalmic and electrophysiological examination of RP patients and relatives according to pre-existing protocols were carried out. Results Three novel disease-causing mutations in RP1 were detected: Q686X, K705fsX712 and K722fsX737, predicting truncated proteins. One novel missense mutation, Thr752Met, was detected in one family but the mutation does not co-segregate in the family, thereby excluding this amino acid variation in the protein as a cause of the disease. We found the Arg677Ter mutation, previously reported in other populations, in two independent families, confirming that this mutation is also present in a Spanish population. Conclusion Most of the mutations reported in the RP1 gene associated with adRP are expected to encode mutant truncated proteins that are approximately one third or half of the size of wild type protein. Patients with mutations in RP1 showed mild RP with variability in phenotype severity. We also observed several cases of non-penetrant mutations. PMID:16597330

  20. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia.

    PubMed

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-11-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  1. Erythropoietin production in renal cell carcinoma and renal cysts in autosomal dominant polycystic kidney disease in a chronic dialysis patient with polycythemia: A case report.

    PubMed

    Ito, Keiichi; Asano, Takako; Tominaga, Susumu; Yoshii, Hidehiko; Sawazaki, Harutake; Asano, Tomohiko

    2014-11-01

    In patients undergoing chronic hemodialysis (HD), erythropoietin (EPO) production from the kidney generally decreases and renal anemia develops. Patients without anemia, but with high serum EPO (sEPO) levels are rare among HD patients. The current study presents the case of a 67-year-old female HD patient with autosomal dominant polycystic kidney disease (ADPKD) and renal cell carcinoma (RCC), manifesting polycythemia with elevated sEPO levels. A radical nephrectomy was performed, which diminished the polycythemia, but the sEPO levels remained high. To determine the origin of the EPO production, immunohistochemistry was performed to detect EPO in the RCC and the renal cysts of the surgically resected kidney. In addition, the sEPO and EPO levels in a renal cyst were determined by enzyme immunoassay. EPO expression was demonstrated in RCC and cyst epithelial cells using immunohistochemistry, revealing extremely high EPO levels in the cyst fluid. Due to the remission of polycythemia following the nephrectomy, EPO production from the resected kidney appeared to have been the cause of the polycythemia. Positive EPO staining of the renal cysts in the resected polycystic kidney and sustained sEPO elevation following nephrectomy led to the hypothesis of EPO production in the renal cysts of the contralateral polycystic kidney. Although the postoperative EPO level was higher than the normal range, the hematocrit (Hct) level gradually decreased and recombinant human EPO was required again three months following the nephrectomy. Eight months after the nephrectomy, the Hct level was 30.2% with the use of rHuEPO. In conclusion, EPO production from RCC and renal cysts in ADPKD appeared to cause polycythemia in the HD patient. PMID:25295086

  2. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  3. Cyst Ablation Using a Mixture of N-Butyl Cyanoacrylate and Iodized Oil in Patients with Autosomal Dominant Polycystic Kidney Disease: the Long-Term Results

    PubMed Central

    Kim, See Hyung; Kim, Seung Hyup

    2009-01-01

    Objective We wanted to assess the long-term results of cyst ablation with using N-butyl cyanoacrylate (NBCA) and iodized oil in patients with autosomal dominant polycystic kidney disease (ADPKD) and symptomatic cysts. Materials and Methods Cyst ablation using a mixture of NBCA and iodized oil was performed in 99 cysts from 21 patients who had such symptoms as abdominal distension and pain. The collapse or reaccumulation of the ablated cysts after the procedure was assessed during the follow-up period of 36 to 90 months. The treatment effects, including symptom relief, and the clinical data such as the blood pressure and serum creatinine levels were also assessed, together with the complications. Results The procedure was technically successful in all 99 cysts from the 21 patients. Any procedure-related significant complications were not detected. Seventy-seven of 99 cysts (78%) were successfully collapsed on the follow-up CT. Twenty-two cysts showed reaccumulation during long-term follow-up period. The clinical symptoms were relieved in 17 of the 21 patients (76%). Four of 12 patients (33%) with hypertension and two of six patients (33%) with azotemia were improved. End stage renal disease (ESRD) occurred in six of the 21 patients (28%) during the follow-up period. The mean age of ESRD in our patients was 57 years. The mean time interval for the development of ESRD was 19 months. Conclusion Ablation using a mixture of NBCA and iodized oil may be an effective, safe method for obtaining symptom relief in patients with ADPKD. PMID:19568466

  4. Network Analysis of a Pkd1-Mouse Model of Autosomal Dominant Polycystic Kidney Disease Identifies HNF4α as a Disease Modifier

    PubMed Central

    Menezes, Luis F.; Zhou, Fang; Patterson, Andrew D.; Piontek, Klaus B.; Krausz, Kristopher W.; Gonzalez, Frank J.; Germino, Gregory G.

    2012-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD; MIM ID's 173900, 601313, 613095) leads to end-stage kidney disease, caused by mutations in PKD1 or PKD2. Inactivation of Pkd1 before or after P13 in mice results in distinct early- or late-onset disease. Using a mouse model of ADPKD carrying floxed Pkd1 alleles and an inducible Cre recombinase, we intensively analyzed the relationship between renal maturation and cyst formation by applying transcriptomics and metabolomics to follow disease progression in a large number of animals induced before P10. Weighted gene co-expression network analysis suggests that Pkd1-cystogenesis does not cause developmental arrest and occurs in the context of gene networks similar to those that regulate/maintain normal kidney morphology/function. Knowledge-based Ingenuity Pathway Analysis (IPA) software identifies HNF4α as a likely network node. These results are further supported by a meta-analysis of 1,114 published gene expression arrays in Pkd1 wild-type tissues. These analyses also predict that metabolic pathways are key elements in postnatal kidney maturation and early steps of cyst formation. Consistent with these findings, urinary metabolomic studies show that Pkd1 cystic mutants have a distinct profile of excreted metabolites, with pathway analysis suggesting altered activity in several metabolic pathways. To evaluate their role in disease, metabolic networks were perturbed by inactivating Hnf4α and Pkd1. The Pkd1/Hnf4α double mutants have significantly more cystic kidneys, thus indicating that metabolic pathways could play a role in Pkd1-cystogenesis. PMID:23209428

  5. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    PubMed

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  6. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa.

    PubMed

    Bhootada, Yogesh; Kotla, Pravallika; Zolotukhin, Sergei; Gorbatyuk, Oleg; Bebok, Zsuzsanna; Athar, Mohammad; Gorbatyuk, Marina

    2016-01-01

    T17M rhodopsin expression in rod photoreceptors leads to severe retinal degeneration and is associated with the activation of ER stress related Unfolded Protein Response (UPR) signaling. Here, we show a novel role of a UPR transcription factor, ATF4, in photoreceptor cellular pathology. We demonstrated a pro-death role for ATF4 overexpression during autosomal dominant retinitis pigmentosa (ADRP). Based on our results in ATF4 knockout mice and adeno-associated viral (AAV) delivery of ATF4 to the retina, we validated a novel therapeutic approach targeting ATF4 over the course of retinal degeneration. In T17M rhodopsin retinas, we observed ATF4 overexpression concomitantly with reduction of p62 and elevation of p53 levels. These molecular alterations, together with increased CHOP and caspase-3/7 activity, possibly contributed to the mechanism of photoreceptor cell loss. Conversely, ATF4 knockdown retarded retinal degeneration in 1-month-old T17M Rhodopsin mice and promoted photoreceptor survival, as measured by scotopic and photopic ERGs and photoreceptor nuclei row counts. Similarly, ATF4 knockdown also markedly delayed retinal degeneration in 3-month-old ADRP animals. This delay was accompanied by a dramatic decrease in UPR signaling, the launching of anti-oxidant defense, initiation of autophagy, and improvement of rhodopsin biosynthesis which together perhaps combat the cellular stress associated with T17M rhodopsin. Our data indicate that augmented ATF4 signals during retinal degeneration plays a cytotoxic role by triggering photoreceptor cell death. Future ADRP therapy regulating ATF4 expression can be developed to treat retinal degenerative disorders associated with activated UPR. PMID:27144303

  7. No reason for a reduction in the number of offspring per sperm donor because of possible transmission of autosomal dominant diseases.

    PubMed

    Janssens, Pim M W

    2003-04-01

    A limit of 25 offspring per sperm donor has been imposed in The Netherlands since 1992, in order to prevent children from donors having a greater risk of consanguineous relationships than would occur in random individuals. An incident with a donor who developed a serious hereditary brain disease raised the question whether the limit of 25 should be reduced. Here I consider this suggestion from a genetic, psychological and legal standpoint. There appears to be no valid population genetics argument for limiting the number of donor offspring to below the figure that would prevent an increased chance of inbreeding. Reduction of the number of children per donor theoretically only results in transmission of greater diversity to donor offspring. Moreover, as within the general population, the total number of children conceived from sperm donors is negligible, the impact of donor offspring on the population genetics is anyhow insignificant. From a psychological standpoint, it should be noted that individuals making use of a donor, or their offspring, have no knowledge of other offspring conceived with their particular donor. This implies that the number of offspring per donor is of no relevance to them (provided of course there is an acceptably low chance of inbreeding). The new Dutch law on disclosure of donor identity to donor-insemination children, also produces no compelling reasons for a general reduction in the number of offspring per donor. Reduction desired by individual donors can be obtained by means of mutual agreements between sperm banks and donors. In conclusion neither the possible transmission of late-onset autosomal dominant diseases, nor other considerations necessitate a reduction in the offspring limit calculated to prevent increased risks of inbreeding among donor offspring. PMID:12660255

  8. Mutations in SPECC1L, encoding sperm antigen with calponin homology and coiled-coil domains 1-like, are found in some cases of autosomal dominant Opitz G/BBB syndrome

    PubMed Central

    Kruszka, Paul; Li, Dong; Harr, Margaret H; Wilson, Nathan R; Swarr, Daniel; McCormick, Elizabeth M; Chiavacci, Rosetta M; Li, Mindy; Martinez, Ariel F; Hart, Rachel A; McDonald-McGinn, Donna M; Deardorff, Matthew A; Falk, Marni J; Allanson, Judith E; Hudson, Cindy; Johnson, John P; Saadi, Irfan; Hakonarson, Hakon; Muenke, Maximilian; Zackai, Elaine H

    2015-01-01

    Background Opitz G/BBB syndrome is a heterogeneous disorder characterised by variable expression of midline defects including cleft lip and palate, hypertelorism, laryngealtracheoesophageal anomalies, congenital heart defects, and hypospadias. The X-linked form of the condition has been associated with mutations in the MID1 gene on Xp22. The autosomal dominant form has been linked to chromosome 22q11.2, although the causative gene has yet to be elucidated. Methods and results In this study, we performed whole exome sequencing on DNA samples from a three-generation family with characteristics of Opitz G/BBB syndrome with negative MID1 sequencing. We identified a heterozygous missense mutation c.1189A>C (p.Thr397Pro) in SPECC1L, located at chromosome 22q11.23. Mutation screening of an additional 19 patients with features of autosomal dominant Opitz G/BBB syndrome identified a c.3247G>A ( p.Gly1083Ser) mutation segregating with the phenotype in another three-generation family. Conclusions Previously, SPECC1L was shown to be required for proper facial morphogenesis with disruptions identified in two patients with oblique facial clefts. Collectively, these data demonstrate that SPECC1L mutations can cause syndromic forms of facial clefting including some cases of autosomal dominant Opitz G/BBB syndrome and support the original linkage to chromosome 22q11.2. PMID:25412741

  9. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... type of chromosome that is affected (autosomal or sex chromosome). It also depends on whether the trait ...

  10. Nuclear gene causing multiple mtDNA deletions in autosomal dominant ophthalmoplegia maps to a distinct chromosomal region - involvement of both nuclear and mitochondrial DNA in a single disorder

    SciTech Connect

    Suomalainen, A.; Kaukonen, J.; Timonen, R.

    1994-09-01

    Autosomal dominant progressive external ophthalmoplegia (adPEO) is a mitochondrial disease characterized by muscle weakness, most prominent in ocular muscles. The symptoms are caused by accumulation of multiple large deletions of mitochondrial DNA (mtDNA) in the tissues of the patient, especially in those tissues that are most dependent on oxidative metabolism: brain, skeletal muscle and heart. However, the disorder shows autosomal dominant way of transmission, suggesting a primary defect in a nuclear encoded protein, which only secondarily results in mtDNA deletions. The candidate genes could be those actively participating in the mtDNA replication, or those associated with oxidative metabolism and e.g. via overproduction or inefficient elimination of fire oxygen radicals fragmenting mtDNA. We applied random mapping approach to localize the autosomal adPEO gene locus in a large Finnish family. The affected subjects were identified by detection of multiple mtDNA deletions in the Southern blot analysis of DNA extracted from the muscle biopsy specimens. All the family members underwent muscle biopsy. After analysis of 248 highly polymorphic dinucleotide repeat markets dispersed throughout the genome we were able to assign the adPEO gene locus to a distinct chromosomal region with the maximum pairwise lod score of 4.52, recombination fraction 0.0. This is the first evidence that a mutation in a nuclear gene may interfere mtDNA. The pathogenesis of adPEO involves both the genomes: the primary nuclear gene defect leads to secondary mtDNA mutations that cause the symptoms of the patients.

  11. Oculodentodigital dysplasia: study of ophthalmological and clinical manifestations in three boys with probably autosomal recessive inheritance.

    PubMed

    Frasson, Maria; Calixto, Nassim; Cronemberger, Sebastião; de Aguiar, Regina Amélia Lopes Pessoa; Leão, Letícia Lima; de Aguiar, Marcos José Burle

    2004-09-01

    Oculodentodigital dysplasia (ODDD) is a rare inherited disorder affecting the development of the face, eyes, teeth, and limbs. The majority of cases of ODDD are inherited as an autosomal dominant condition. There are few reports of probable autosomal recessive transmission. Affected patients exhibit a distinctive physiognomy with a narrow nose, hypoplastic alae nasi, and anteverted nostrils, bilateral microphthalmos, and microcornea. Sometimes iris anomalies and secondary glaucoma are present. There are malformations of the distal extremities such as syndactyly. In addition, there are defects in the dental enamel with hypoplasia and yellow discoloration of the teeth. Less common features include hypotrichosis, intracranial calcifications, and conductive deafness secondary to recurrent otitis media. We describe three brothers with ODDD. Their parents are first cousins and present no features of ODDD. These data are in favor of autosomal recessive inheritance and suggest genetic heterogeneity for this entity. PMID:15512999

  12. Novel splice site mutation in the caveolin-3 gene leading to autosomal recessive limb girdle muscular dystrophy.

    PubMed

    Müller, Juliane S; Piko, Henriett; Schoser, Benedikt G H; Schlotter-Weigel, Beate; Reilich, Peter; Gürster, Stefanie; Born, Christine; Karcagi, Veronika; Pongratz, Dieter; Lochmüller, Hanns; Walter, Maggie C

    2006-07-01

    Mutations in CAV3 gene encoding the protein caveolin-3 are associated with autosomal dominant limb girdle muscular dystrophy 1C, rippling muscle disease, hyperCKemia, distal myopathy, hypertrophic cardiomyopathy and rare autosomal recessive limb girdle muscular dystrophy phenotypes. In a 57-year-old patient with asymmetric limb girdle weakness, we detected a novel homozygous intronic mutation (IVS1 + 2T > C) of the CAV3 gene. This is the first splicing mutation reported for CAV3. These findings add to the clinical and genetic variability of CAV3 mutations. PMID:16730439

  13. GABA(A) receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors.

    PubMed

    Ding, Li; Feng, Hua-Jun; Macdonald, Robert L; Botzolakis, Emanuel J; Hu, Ningning; Gallagher, Martin J

    2010-08-20

    A GABA(A) receptor (GABA(A)R) alpha1 subunit mutation, A322D (AD), causes an autosomal dominant form of juvenile myoclonic epilepsy (ADJME). Previous studies demonstrated that the mutation caused alpha1(AD) subunit misfolding and rapid degradation, reducing its total and surface expression substantially. Here, we determined the effects of the residual alpha1(AD) subunit expression on wild type GABA(A)R expression to determine whether the AD mutation conferred a dominant negative effect. We found that although the alpha1(AD) subunit did not substitute for wild type alpha1 subunits on the cell surface, it reduced the surface expression of alpha1beta2gamma2 and alpha3beta2gamma2 receptors by associating with the wild type subunits within the endoplasmic reticulum and preventing them from trafficking to the cell surface. The alpha1(AD) subunit reduced surface expression of alpha3beta2gamma2 receptors by a greater amount than alpha1beta2gamma2 receptors, thus altering cell surface GABA(A)R composition. When transfected into cultured cortical neurons, the alpha1(AD) subunit altered the time course of miniature inhibitory postsynaptic current kinetics and reduced miniature inhibitory postsynaptic current amplitudes. These findings demonstrated that, in addition to causing a heterozygous loss of function of alpha1(AD) subunits, this epilepsy mutation also elicited a modest dominant negative effect that likely shapes the epilepsy phenotype. PMID:20551311

  14. Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the golgi complex.

    PubMed

    Galbiati, F; Volonte, D; Minetti, C; Chu, J B; Lisanti, M P

    1999-09-01

    Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Autosomal dominant limb girdle muscular dystrophy (LGMD-1C) in humans is due to mutations within the caveolin-3 gene: (i) a 9-base pair microdeletion that removes three amino acids within the caveolin scaffolding domain (DeltaTFT) or (ii) a missense mutation within the membrane spanning domain (P --> L). The molecular mechanisms by which these two mutations cause muscular dystrophy remain unknown. Here, we investigate the phenotypic behavior of these caveolin-3 mutations using heterologous expression. Wild type caveolin-3 or caveolin-3 mutants were transiently expressed in NIH 3T3 cells. LGMD-1C mutants of caveolin-3 (DeltaTFT or P --> L) were primarily retained at the level of a perinuclear compartment that we identified as the Golgi complex in double-labeling experiments, while wild type caveolin-3 was efficiently targeted to the plasma membrane. In accordance with these observations, caveolin-3 mutants formed oligomers of a much larger size than wild type caveolin-3 and were excluded from caveolae-enriched membrane fractions as seen by sucrose density gradient centrifugation. In addition, these caveolin-3 mutants were expressed at significantly lower levels and had a dramatically shortened half-life of approximately 45-60 min. However, caveolin-3 mutants were palmitoylated to the same extent as wild type caveolin-3, indicating that targeting to the plasma membrane is not required for palmitoylation of caveolin-3. In conclusion, we show that LGMD-1C mutations lead to formation of unstable high molecular mass aggregates of caveolin-3 that are retained within the Golgi complex and are not targeted to the plasma membrane. Consistent with its autosomal dominant form of genetic transmission, we demonstrate that LGMD-1C mutants of caveolin-3 behave in a dominant-negative fashion, causing the

  15. An autosomal dominant form of hereditary hypotrichosis simplex maps to 18p11.32-p11.23 in an Italian family.

    PubMed

    Baumer, A; Belli, S; Trüeb, R M; Schinzel, A

    2000-06-01

    We report on a three-generation Italian family with dominant transmission of a form of hereditary hypotrichosis simplex (HHS). The nine affected adults presented with sparse, thin and short hair. Somewhat less sparse and longer hair was observed in the two affected young children in the third generation. Reduced hair growth affected the scalp and body, although normal eyelashes, eyebrows and growth of men's beards were observed. No associated abnormality was detected and the overall psychomotor development of the affected individuals was normal. A phenotypic variation was observed amongst the family members and is suggestive of a reduced penetrance of the trait or the effect of a modifying factor. After exclusion, in our family, of linkage to loci previously described in other forms of atrichia or hypotrichosis, we performed a genome-wide linkage analysis, which resulted in a positive lod score at 18p11.32-p11.23. We defined a critical region of about 35 cM flanked by markers D18S853 and D18S40. The highest two-point lod score was obtained with the microsatellite markers D18S1376, D18S53 and D18S453 (lod score of 3.31 at theta = 0.00). The 18p11.32-p11.23 locus represents the first chromosome region shown to be associated with hereditary hypotrichosis simplex. PMID:10878665

  16. Molecular Genetic Diagnosis of a Bethlem Myopathy Family with an Autosomal-Dominant COL6A1 Mutation, as Evidenced by Exome Sequencing

    PubMed Central

    Park, Hyung Jun; Choi, Young-Chul; Kim, Seung Min; Kim, Se Hoon; Hong, Young Bin; Yoon, Bo Ram

    2015-01-01

    Background We describe herein the application of whole exome sequencing (WES) for the molecular genetic diagnosis of a large Korean family with dominantly inherited myopathy. Case Report The affected individuals presented with slowly progressive proximal weakness and ankle contracture. They were initially diagnosed with limb-girdle muscular dystrophy (LGMD) based on clinical and pathologic features. However, WES and subsequent capillary sequencing identified a pathogenic splicing-site mutation (c.1056+1G>A) in COL6A1, which was previously reported to be an underlying cause of Bethlem myopathy. After identification of the genetic cause of the disease, careful neurologic examination revealed subtle contracture of the interphalangeal joint in the affected members, which is a characteristic sign of Bethlem myopathy. Therefore, we revised the original diagnosis from LGMD to Bethlem myopathy. Conclusions This is the first report of identification of COL6A1-mediated Bethlem myopathy in Korea, and indicates the utility of WES for the diagnosis of muscular dystrophy. PMID:25749816

  17. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice.

    PubMed

    Gansevoort, Ron T; Arici, Mustafa; Benzing, Thomas; Birn, Henrik; Capasso, Giovambattista; Covic, Adrian; Devuyst, Olivier; Drechsler, Christiane; Eckardt, Kai-Uwe; Emma, Francesco; Knebelmann, Bertrand; Le Meur, Yannick; Massy, Ziad A; Ong, Albert C M; Ortiz, Alberto; Schaefer, Franz; Torra, Roser; Vanholder, Raymond; Więcek, Andrzej; Zoccali, Carmine; Van Biesen, Wim

    2016-03-01

    Recently, the European Medicines Agency approved the use of the vasopressin V2 receptor antagonist tolvaptan to slow the progression of cyst development and renal insufficiency of autosomal dominant polycystic kidney disease (ADPKD) in adult patients with chronic kidney disease stages 1-3 at initiation of treatment with evidence of rapidly progressing disease. In this paper, on behalf of the ERA-EDTA Working Groups of Inherited Kidney Disorders and European Renal Best Practice, we aim to provide guidance for making the decision as to which ADPKD patients to treat with tolvaptan. The present position statement includes a series of recommendations resulting in a hierarchical decision algorithm that encompasses a sequence of risk-factor assessments in a descending order of reliability. By examining the best-validated markers first, we aim to identify ADPKD patients who have documented rapid disease progression or are likely to have rapid disease progression. We believe that this procedure offers the best opportunity to select patients who are most likely to benefit from tolvaptan, thus improving the benefit-to-risk ratio and cost-effectiveness of this treatment. It is important to emphasize that the decision to initiate treatment requires the consideration of many factors besides eligibility, such as contraindications, potential adverse events, as well as patient motivation and lifestyle factors, and requires shared decision-making with the patient. PMID:26908832

  18. Complete Heart Block with Diastolic Heart Failure and Pulmonary Edema Secondary to Enlarging Previously Diagnosed Thrombosed Aneurysm of Sinus of Valsalva in a Patient with History of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Eltawansy, Sherif Ali; Thomas, Maria Joana; Daniels, Jeffrey

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with vascular aneurysms that can affect any part of the vascular tree, like ascending aorta or coronary arteries. Sinus of Valsalva is known as an anatomical dilation at the root of aorta above the aortic valve and very few cases show aneurysm at that site in patients with ADPKD. Sinus of Valsalva aneurysm (SVA) can present with rupture and acute heart failure and infective endocarditis or could be asymptomatic accidentally discovered during cardiac catheterization. We report a case of a 76-year-old male with a unique constellation of cardiovascular anomalies associated with ADPKD. Patient was previously diagnosed with aneurysms affecting ascending aorta, sinus of Valsalva, and coronary arteries. Several years later, he came with complete heart block which was discovered later to be secondary to enlargement of his previously diagnosed thrombosed SVA. His case was complicated with acute heart failure and pulmonary edema. Conclusion. Patients with ADPKD can present with extrarenal manifestations. In our case, aneurysm at sinus of Valsalva was progressively enlarging and presented with complete heart block. PMID:25861484

  19. Autosomal Dominant Polycystic Kidney Disease (ADPKD) in an Italian family carrying a novel nonsense mutation and two missense changes in exons 44 and 45 of the PKD1 gene

    SciTech Connect

    Rossetti, S.; Bresin, E.; Corra, S.

    1996-10-16

    Sixty-seven Italian patients with autosomal dominant polycystic kidney disease (ADPKD) were screened for mutations in the 3{prime} unique region of the PKD1 gene, using heteroduplex DNA analysis. Novel aberrant bands were detected in 3 patients from the same family. DNA sequencing showed a C to T transition in exon 44 (C12269T), resulting in a premature stop codon (R4020X), predicted to impair the synthesis of the putative intracytoplasmic C-terminus tail of the PKD1 protein, polycystin. The mutation also generates a novel DdeI restriction site, and the abnormal restriction pattern was observed both on genomic DNA and on cDNA from the affected relatives, indicating that this is indeed the pathogenetic molecular lesion. Reverse transcriptase-polymerase chain reaction (RT-PCR) performed on lymphocyte mRNA showed that the mutant transcript is normally present and stable. No aberrantly spliced mRNAs were detected. Interestingly, the mutant PKD1 chromosome in this family also bears two missense mutations downstream (A12341G and C12384T), not found in the other ADPKD families studied. 19 refs., 4 figs.

  20. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice

    PubMed Central

    Gansevoort, Ron T.; Arici, Mustafa; Benzing, Thomas; Birn, Henrik; Capasso, Giovambattista; Covic, Adrian; Devuyst, Olivier; Drechsler, Christiane; Eckardt, Kai-Uwe; Emma, Francesco; Knebelmann, Bertrand; Le Meur, Yannick; Massy, Ziad A.; Ong, Albert C.M.; Ortiz, Alberto; Schaefer, Franz; Torra, Roser; Vanholder, Raymond; Więcek, Andrzej; Zoccali, Carmine; Van Biesen, Wim

    2016-01-01

    Recently, the European Medicines Agency approved the use of the vasopressin V2 receptor antagonist tolvaptan to slow the progression of cyst development and renal insufficiency of autosomal dominant polycystic kidney disease (ADPKD) in adult patients with chronic kidney disease stages 1–3 at initiation of treatment with evidence of rapidly progressing disease. In this paper, on behalf of the ERA-EDTA Working Groups of Inherited Kidney Disorders and European Renal Best Practice, we aim to provide guidance for making the decision as to which ADPKD patients to treat with tolvaptan. The present position statement includes a series of recommendations resulting in a hierarchical decision algorithm that encompasses a sequence of risk-factor assessments in a descending order of reliability. By examining the best-validated markers first, we aim to identify ADPKD patients who have documented rapid disease progression or are likely to have rapid disease progression. We believe that this procedure offers the best opportunity to select patients who are most likely to benefit from tolvaptan, thus improving the benefit-to-risk ratio and cost-effectiveness of this treatment. It is important to emphasize that the decision to initiate treatment requires the consideration of many factors besides eligibility, such as contraindications, potential adverse events, as well as patient motivation and lifestyle factors, and requires shared decision-making with the patient. PMID:26908832

  1. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy with a Novel NOTCH3 Cys323Trp Mutation Presenting Border-Zone Infarcts: A Case Report and Literature Review.

    PubMed

    Tojima, Maya; Saito, Satoshi; Yamamoto, Yumi; Mizuno, Toshiki; Ihara, Masafumi; Fukuda, Hidetoshi

    2016-08-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary and progressive small-vessel disease caused by NOTCH3 mutations, pathologically characterized by the degeneration of vascular mural cells, white matter changes, and ischemic strokes. Recently, dysautoregulation has received increasing attention regarding the pathogenesis of stroke in CADASIL. Here, we report a CADASIL case with a novel Cys323Trp mutation in the NOTCH3 gene, which suggests a close relationship between hemodynamic factors and clustering of cerebral infarctions in CADASIL. A 47-year-old male patient presented with internal border-zone infarcts in the bilateral hemispheres and was diagnosed with CADASIL by the presence of granular osmiophilic material and the accumulation of the Notch3 extracellular domain around small vessels. A literature review revealed 7 reports of similar CADASIL cases with clustering of cerebral infarctions related to blood pressure fluctuations. Not only large-artery stenosis but also small-vessel pathologies potentiate watershed infarctions, which might be triggered by hemodynamic fluctuation due to cerebral dysautoregulation. PMID:27241575

  2. A de Novo mutation in the coding sequence for neurophysin-II (Pro{sup 24} {yields} Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Repaske, D.R.; Browning, J.E.

    1994-08-01

    The molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, a hereditary deficiency of vasopressin, was determined by nucleotide sequence analysis of the arginine vasopressin-neurophysin-II gene. A C{yields}T mutation at nucleotide 1761 was detected in one allele of this gene in each affected individual in three generations of one family. This mutant gene encodes a normal arginine vasopressin peptide, but predicts a substitution of leucine for proline at amino acid 24 of neurophysin-II, the arginine vasopressin carrier protein. This mutation was not detected in 50 control individuals, thus demonstrating that it is not a common silent genetic polymorphism. The disease arose in the second generation of the studied family, and the chromosome 20 carrying this new mutation was identified by polymorphic CA microsatellite haplotype analysis. The first affected individual inherited this chromosome segment from her mother, who had neither the disease nor this mutation in her somatic cell DNA. Third generation individuals who subsequently inherited this mutation were affected. These data demonstrate that this amino acid substitution in neurophysin-II causes this disease. Two possibilities to explain the mechanism by which clinical deficiency of arginine vasopressin develops even in the presence of one normal arginine vasopressin-neurophysin-II allele are discussed. 40 refs., 4 figs., 2 tabs.

  3. A novel point mutation in the translation initiation codon of the pre-pro-vasopressin-neurophysin II gene: Cosegregation with morphological abnormalities and clinical symptoms in autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Rutishauser, J.; Boeni-Schnetzler, M.; Froesch, E.R.; Wichmann, W.; Huisman, T.

    1996-01-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a rare variant of idiopathic central diabetes insipidus. Several different mutations in the human vasopressin-neurophysin II (AVP-NP II) gene have been described. We studied nine family members from three generations of an ADNDI pedigree at the clinical, morphological, and molecular levels. AVP concentrations were measured during diagnostic fluid restriction tests. Coronal and sagittal high resolution T1-weighted images of the pituitary were obtained from affected and healthy family members. PCR was used to amplify the AVP-NP II precursor gene, and PCR products were directly sequenced. Under maximal osmotic stimulation, AVP serum levels were close to or below the detection limit in affected individuals. Magnetic resonance imaging studies revealed the characteristic hyperintense ({open_quotes}bright spot{close_quotes}) appearance of the posterior pituitary in two healthy family members. This signal was absent in all four ADNDI patients examined. The coding sequences of AVP and its carrier protein, neurophysin II, were normal in all family members examined. Affected individuals showed a novel single base deletion (G 227) in the translation initiation codon of the AVP-NP II signal peptide on one allele. The mutation in the AVP-NP II leader sequence appears to be responsible for the disease in this kindred, possibly by interfering with protein translocation. The absence of the hyperintense posterior pituitary signal in affected individuals could reflect deficient posterior pituitary function. 56 refs., 4 figs., 3 tabs.

  4. Genetics Home Reference: autosomal dominant hypocalcemia

    MedlinePlus

    ... hormone (hypoparathyroidism). This hormone is involved in the regulation of calcium levels in the blood. Abnormal levels ... that increase calcium can also disrupt the normal regulation of other molecules, such as phosphate and magnesium, ...

  5. Distal acroosteolysis, poikiloderma and joint stiffness: a novel laminopathy?

    PubMed

    Sewairi, Wafaa; Assiri, Abdulrahman; Patel, Nisha; Alhashem, Amal; Alkuraya, Fowzan S

    2016-08-01

    LMNA encodes lamin A and lamin C, two major components of the nuclear lamina, and its pathogenic variants lead to a dozen distinct clinical entities collectively known as laminopathies. Most LMNA-related laminopathies are autosomal dominant but four are autosomal recessive; furthermore, some of the dominant variants have been associated with distinct phenotypes when inherited recessively, further complicating the ability to correlate genotype with phenotype. We report a consanguineous family in which the index presented with an apparently unique constellation of poikiloderma, joint motion restriction and distal acroosteolysis but lacks features of muscle weakness, lipodystrophy, or cardiac or craniofacial involvement. Molecular analysis revealed the presence of a novel homozygous LMNA missense variant (NM_170707.3:c.1774G>A; p.(Gly592Arg)) within an area of autozygome that is not shared by his unaffected siblings. The proposed causal link is further supported by in silico analysis of this variant. Our case suggests an expansion of LMNA allelic disorders to include distal acroosteolysis, poikiloderma and joint stiffness (DAPJ). PMID:26733286

  6. Autosomal dominant transmission of a Goldenhar-like syndrome: Description of a family and report of a sporadic case with a de novo 4p16;8q24.11 translocation

    SciTech Connect

    Graganm H.N. Jr.; Hixon, H.; Bacino, C.A.

    1994-09-01

    We report vertical transmission of a Goldenhar-like syndrome, including a father and 5 offspring, with male-to-male transmission and variable features that include hearing loss, ear anomalies (microtia, ear tags/pits), branchial cysts, ocular/periocular dermoids, micrognathia and seizures. We also report an individual with an apparently balanced de novo reciprocal translocation with breakpoints at 4p16 and 8q24.11. This individual has unilateral microtia, an epibulbar dermoid cyst, facial asymmetry with a small chin, and seizures. In addition to these features resembling those seen in the family above, she has multiple exostoses, supraventricular tachycardia, hypoglycemia and mild developmental delays. Based on the overlap in physical findings between this family and the individual with the de novo reciprocal translocation, linkage studies on the family were intiated. Preliminary results exclude linkage to HOX 7 at 4p16.1 but not to 8q. The brancho-oto-renal syndrome has previously been localized to 8q11-8q13, but linkage to this region appears unlikely. Although most cases of Goldenhar syndrome appear to be sporadic, there are a few reports of autosomal dominant inheritance (MIM No. 164210). One such family showed vertical transmission of dermoids, ear anomalies, hearing loss, micrognathia and vertebral anomalies, but no branchial cysts. Another family showed sensorineural deafness, preauricular pits, and branchial fistulae, and other families reveal ear anomalies, branchial fistulas, and hearing loss. These latter families appear to lack ocular/periocular dermoids, and appear to be affected by a different disorder (MIM No. 125100). Further clinical delineation of such families, combined with genetic linkage analysis, should help to sort out this heterogeneity.

  7. Amino Alcohol- (NPS-2143) and Quinazolinone-Derived Calcilytics (ATF936 and AXT914) Differentially Mitigate Excessive Signalling of Calcium-Sensing Receptor Mutants Causing Bartter Syndrome Type 5 and Autosomal Dominant Hypocalcemia

    PubMed Central

    Letz, Saskia; Haag, Christine; Schulze, Egbert; Frank-Raue, Karin; Raue, Friedhelm; Hofner, Benjamin; Mayr, Bernhard; Schöfl, Christof

    2014-01-01

    Introduction Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. Methods All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. Results All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. Conclusion The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. PMID:25506941

  8. Congenital insensitivity to pain: Fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9.

    PubMed

    Phatarakijnirund, Voraluck; Mumm, Steven; McAlister, William H; Novack, Deborah V; Wenkert, Deborah; Clements, Karen L; Whyte, Michael P

    2016-03-01

    Congenital insensitivity to pain (CIP) comprises the rare heritable disorders without peripheral neuropathy that feature inability to feel pain. Fracturing and joint destruction are common complications, but lack detailed studies of mineral and skeletal homeostasis and bone histology. In 2013, discovery of a heterozygous gain-of-function mutation in SCN11A encoding voltage-gated sodium channel 1.9 (Nav1.9) established a distinctive CIP in three unrelated patients who suffered multiple painless fractures, self-inflicted mutilation, chronic diarrhea, and hyperhidrosis. Here, we studied a mother and two children with CIP by physical examination, biochemical testing, radiological imaging including DXA, iliac crest histology, and mutation analysis. She suffered fractures primarily of her lower extremities beginning at age two years, and had Charcot deformity of both ankles and joint hypermobility. Nerve conduction velocity together with electromyography were normal. Her children had recurrent major fractures beginning in early childhood, joint hypermobility, and chronic diarrhea. She had an excoriated external nare, and both children had hypertrophic scars from scratching. Skin collagen studies were normal. Radiographs revealed fractures and deformities. However, lumbar spine and total hip BMD Z-scores, biochemical parameters of mineral and skeletal homeostasis, and iliac crest histology of the mother (after in vivo tetracycline labeling) were normal. Genomic DNA from the children revealed a unique heterozygous missense mutation in exon 23 (c.3904C>T, p.Leu1302Phe) of SCN11A that is absent in SNP databases and alters an evolutionarily conserved amino acid. This autosomal dominant CIP reflects the second gain-of-function mutation of SCN11A. Perhaps joint hypermobility is an unreported feature. How mutation of Nav1.9 causes fracturing remains unexplained. Lack of injury awareness is typically offered as the reason, and was supported by our unremarkable biochemical

  9. Identification of a G‐Protein Subunit‐α11 Gain‐of‐Function Mutation, Val340Met, in a Family With Autosomal Dominant Hypocalcemia Type 2 (ADH2)

    PubMed Central

    Piret, Sian E; Gorvin, Caroline M; Pagnamenta, Alistair T; Howles, Sarah A; Cranston, Treena; Rust, Nigel; Nesbit, M Andrew; Glaser, Ben; Taylor, Jenny C; Buchs, Andreas E; Hannan, Fadil M

    2016-01-01

    ABSTRACT Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia, inappropriately low serum parathyroid hormone concentrations and hypercalciuria. ADH is genetically heterogeneous with ADH type 1 (ADH1), the predominant form, being caused by germline gain‐of‐function mutations of the G‐protein coupled calcium‐sensing receptor (CaSR), and ADH2 caused by germline gain‐of‐function mutations of G‐protein subunit α‐11 (Gα11). To date Gα11 mutations causing ADH2 have been reported in only five probands. We investigated a multigenerational nonconsanguineous family, from Iran, with ADH and keratoconus which are not known to be associated, for causative mutations by whole‐exome sequencing in two individuals with hypoparathyroidism, of whom one also had keratoconus, followed by cosegregation analysis of variants. This identified a novel heterozygous germline Val340Met Gα11 mutation in both individuals, and this was also present in the other two relatives with hypocalcemia that were tested. Three‐dimensional modeling revealed the Val340Met mutation to likely alter the conformation of the C‐terminal α5 helix, which may affect G‐protein coupled receptor binding and G‐protein activation. In vitro functional expression of wild‐type (Val340) and mutant (Met340) Gα11 proteins in HEK293 cells stably expressing the CaSR, demonstrated that the intracellular calcium responses following stimulation with extracellular calcium, of the mutant Met340 Gα11 led to a leftward shift of the concentration‐response curve with a significantly (p < 0.0001) reduced mean half‐maximal concentration (EC50) value of 2.44 mM (95% CI, 2.31 to 2.77 mM) when compared to the wild‐type EC50 of 3.14 mM (95% CI, 3.03 to 3.26 mM), consistent with a gain‐of‐function mutation. A novel His403Gln variant in transforming growth factor, beta‐induced (TGFBI), that may be causing keratoconus was also identified, indicating likely digenic

  10. Familial co-segregation of Coffin-Lowry syndrome inherited from the mother and autosomal dominant Waardenburg type IV syndrome due to deletion of EDNRB inherited from the father.

    PubMed

    Loupe, Jacob; Sampath, Srirangan; Lacassie, Yves

    2014-10-01

    We report an African-American family that was identified after the proposita was referred for diagnostic evaluation at 4½ months with a history of Hirschsprung and dysmorphic features typical of Waardenburg syndrome (WS). Family evaluation revealed that the father had heterochromidia irides and hypertelorism supporting the clinical diagnosis of WS; however, examination of the mother revealed characteristic facial and digital features of Coffin-Lowry syndrome (CLS). Molecular testing of the mother identified a novel 2 bp deletion (c.865_866delCA) in codon 289 of RPS6KA3 leading to a frame-shift and premature termination of translation 5 codons downstream (NM_004586.2:p.Gln289ValfsX5). This deletion also was identified in the proposita and her three sisters with a clinical suspicion of CLS, all of whom as carriers for this X-linked disorder had very subtle manifestations. The molecular confirmation of WS type 4 (Shah-Waardenburg; WS4) was not as straightforward. To evaluate WS types 1-4, multiple sequential molecular tests were requested, including Sanger sequencing of all exons, and deletion/duplication analysis using MLPA for PAX3, MITF, SOX10, EDN3 and EDNRB. Although sequencing did not identify any disease causing variants, MLPA identified a heterozygous deletion of the entire EDNRB in the father. This deletion was also found in the proposita and the oldest child. Since the heterozygous deletion was the only change identified in EDNRB, this family represents one of the few cases of an autosomal dominant inheritance of WS4 involving the endothelin pathway. Altogether, clinical evaluation of the family revealed one child to be positive for WS4 and two positive for CLS, while two children were positive for both diseases simultaneously (including the proposita) while another pair test negative for either disease. This kinship is an example of the coincidence of two conditions co-segregating in one family, with variable phenotypes requiring molecular testing to

  11. Identification of a G-Protein Subunit-α11 Gain-of-Function Mutation, Val340Met, in a Family With Autosomal Dominant Hypocalcemia Type 2 (ADH2).

    PubMed

    Piret, Sian E; Gorvin, Caroline M; Pagnamenta, Alistair T; Howles, Sarah A; Cranston, Treena; Rust, Nigel; Nesbit, M Andrew; Glaser, Ben; Taylor, Jenny C; Buchs, Andreas E; Hannan, Fadil M; Thakker, Rajesh V

    2016-06-01

    Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia, inappropriately low serum parathyroid hormone concentrations and hypercalciuria. ADH is genetically heterogeneous with ADH type 1 (ADH1), the predominant form, being caused by germline gain-of-function mutations of the G-protein coupled calcium-sensing receptor (CaSR), and ADH2 caused by germline gain-of-function mutations of G-protein subunit α-11 (Gα11 ). To date Gα11 mutations causing ADH2 have been reported in only five probands. We investigated a multigenerational nonconsanguineous family, from Iran, with ADH and keratoconus which are not known to be associated, for causative mutations by whole-exome sequencing in two individuals with hypoparathyroidism, of whom one also had keratoconus, followed by cosegregation analysis of variants. This identified a novel heterozygous germline Val340Met Gα11 mutation in both individuals, and this was also present in the other two relatives with hypocalcemia that were tested. Three-dimensional modeling revealed the Val340Met mutation to likely alter the conformation of the C-terminal α5 helix, which may affect G-protein coupled receptor binding and G-protein activation. In vitro functional expression of wild-type (Val340) and mutant (Met340) Gα11 proteins in HEK293 cells stably expressing the CaSR, demonstrated that the intracellular calcium responses following stimulation with extracellular calcium, of the mutant Met340 Gα11 led to a leftward shift of the concentration-response curve with a significantly (p < 0.0001) reduced mean half-maximal concentration (EC50 ) value of 2.44 mM (95% CI, 2.31 to 2.77 mM) when compared to the wild-type EC50 of 3.14 mM (95% CI, 3.03 to 3.26 mM), consistent with a gain-of-function mutation. A novel His403Gln variant in transforming growth factor, beta-induced (TGFBI), that may be causing keratoconus was also identified, indicating likely digenic inheritance of keratoconus and ADH2 in this family. In

  12. Late Holocene distal mud deposits off the Nakdong delta, SE Korea: evidence for shore-parallel sediment transport in a current-dominated setting

    NASA Astrophysics Data System (ADS)

    Chun, Jong-Hwa; Kim, Yuri; Bahk, Jang-Jun; Kim, Young Jun; Kang, Dong-Hyo; Kim, Yong Hoon; Kim, Gil Young; Ryu, Byong-Jae

    2015-12-01

    The distal mud deposits (DMDs) off the Nakdong delta represent a subaqueous delta on the inner continental shelf aligned parallel to the southeast coast of Korea and displaying a clinoform geometry. Hydrographically, the coast is characterized by a micro-tidal regime, the strong Korean Coastal Current (KCC) and the East Korean Warm Current (EKWC). Age models and sedimentary facies related to the clinoform geometries are based on high-resolution chirp subbottom profile data and have provided information on shore-parallel sediment transport and accumulation during the late Holocene sea-level highstand. The highest sedimentation rates (6.19-9.17 cm/year) produced steep foresets in the central DMDs at water depths of 35-50 m. Here, vertical burrows are repeatedly truncated by laminated mud packages displaying erosional surfaces. This region represents the main depocenter of the Nakdong subaqueous delta. The topset sediments of the southern DMD at ~40 m water depth closer to the river mouth show relatively low sedimentation rates (0.01-0.12 cm/year). Here, the muds have a predominantly mottled character. Similarly, the foreset sediments of the northern DMD at ~71-80 m water depth with sedimentation rates of 0.10-2.03 cm/year are also predominantly characterized by mottled muds. The spatial dispersal pattern of the DMDs is consistent with the coast-parallel front between the KCC and EKWC along the southeast Korean coast. In addition, the depocenter of the Nakdong subaqueous delta clinoform is affected by the near-bed turbulence generated by episodic storm events.

  13. Distal hereditary motor neuronopathy of the Jerash type.

    PubMed

    Middleton, L T; Christodoulou, K; Mubaidin, A; Zamba, E; Tsingis, M; Kyriacou, K; Abu-Sheikh, S; Kyriakides, T; Neocleous, V; Georgiou, D M; el-Khateeb, M; al-Qudah, A; Horany, K

    1999-09-14

    A novel form of autosomal recessive distal hereditary motor neuronopathy (distal HMN) is reported. The presence of pyramidal signs within the early stages of the disease with persistence of knee hyperreflexia form distinctive clinical features. We have mapped the HMN-J gene to chromosome 9p21.1-p12, within an estimated interval of 1.2-Mb. PMID:10586232

  14. Mutation Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity α4β2, and Increases α5α4β2, Nicotinic Receptor Surface Expression

    PubMed Central

    Nichols, Weston A.; Henderson, Brandon J.; Marotta, Christopher B.; Yu, Caroline Y.; Richards, Chris; Dougherty, Dennis A.; Lester, Henry A.

    2016-01-01

    A number of mutations in α4β2-containing (α4β2*) nicotinic acetylcholine (ACh) receptors (nAChRs) are linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), including one in the β2 subunit called β2V287L. Two α4β2* subtypes with different subunit stoichiometries and ACh sensitivities co-exist in the brain, a high-sensitivity subtype with (α4)2(β2)3 subunit stoichiometry and a low-sensitivity subtype with (α4)3(β2)2 stoichiometry. The α5 nicotinic subunit also co-assembles with α4β2 to form a high-sensitivity α5α4β2 nAChR. Previous studies suggest that the β2V287L mutation suppresses low-sensitivity α4β2* nAChR expression in a knock-in mouse model and also that α5 co-expression improves the surface expression of ADNFLE mutant nAChRs in a cell line. To test these hypotheses further, we expressed mutant and wild-type (WT) nAChRs in oocytes and mammalian cell lines, and measured the effects of the β2V287L mutation on surface receptor expression and the ACh response using electrophysiology, a voltage-sensitive fluorescent dye, and superecliptic pHluorin (SEP). The β2V287L mutation reduced the EC50 values of high- and low-sensitivity α4β2 nAChRs expressed in Xenopus oocytes for ACh by a similar factor and suppressed low-sensitivity α4β2 expression. In contrast, it did not affect the EC50 of α5α4β2 nAChRs for ACh. Measurements of the ACh responses of WT and mutant nAChRs expressed in mammalian cell lines using a voltage-sensitive fluorescent dye and whole-cell patch-clamping confirm the oocyte data. They also show that, despite reducing the maximum response, β2V287L increased the α4β2 response to a sub-saturating ACh concentration (1 μM). Finally, imaging SEP-tagged α5, α4, β2, and β2V287L subunits showed that β2V287L reduced total α4β2 nAChR surface expression, increased the number of β2 subunits per α4β2 receptor, and increased surface α5α4β2 nAChR expression. Thus, the β2V287L mutation alters the subunit

  15. Distal Limb Defects and Aplasia Cutis: Adams-Oliver Syndrome.

    PubMed

    Renfree, Kevin J; Dell, Paul C

    2016-07-01

    Adams-Oliver syndrome is a rare congenital condition that should be considered in persons with terminal transverse limb deficiencies and scalp defects (aplasia cutis congenita). Broad phenotypic variability exists in this condition. In its more severe forms, Adams-Oliver syndrome can involve the cardiovascular system, central nervous system, gastrointestinal tract, and genitourinary system and should require prompt evaluation by appropriate subspecialists. Extremity involvement is typically bilateral and asymmetrical, with lower extremities involved more than upper extremities. Brachydactyly is the most common limb defect, and severity ranges from hypoplastic nails to complete absence of the distal limb. The syndrome has been described as resulting from autosomal dominant and recessive modes of inheritance, but most cases are sporadic. No gene has been identified. Although the exact pathogenic mechanism is unknown, a common hypothesis is that a vascular disturbance occurs in watershed areas, such as cranial vertex and limbs, during fetal development. PMID:27178874

  16. Laing distal myopathy pathologically resembling inclusion body myositis

    PubMed Central

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig; Mammen, Andrew L; Corse, Andrea M; Lloyd, Thomas E

    2014-01-01

    Mutations in MYH7 cause autosomal dominant Laing distal myopathy. We present a family with a previously reported deletion (c.5186_5188delAGA, p.K1729del). Muscle pathology in one family member was characterized by an inflammatory myopathy with rimmed vacuoles, increased MHC Class I expression, and perivascular and endomysial muscle inflammation comprising CD3+, CD4+, CD8+, and CD68+ inflammatory cells. Interestingly, this biopsy specimen contained TDP-43, p62, and SMI-31-positive protein aggregates typical of inclusion body myositis. These findings should alert physicians to the possibility that patients with MYH7 mutations may have muscle biopsies showing pathologic findings similar to inclusion body myositis. PMID:25574480

  17. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  18. Incomplete dominant osteochondrodysplasia in heterozygous Scottish Fold cats.

    PubMed

    Takanosu, M; Takanosu, T; Suzuki, H; Suzuki, K

    2008-04-01

    This report describes an autosomal incomplete dominant pattern of inheritance for osteochondrodysplasia in the Scottish Fold cats. A three-generation pedigree was analysed. Cats with folded ears were mated with cats with normal ears. All cats with folded ears, which were presumably heterozygous for the mutated allele, developed osteochondrodysplasia in distal fore- and hindlimbs but not in other bones, including the tail in which bone deformity had been demonstrated in previous studies. The severity of the skeletal lesions of osteochondrodysplasia was different in each affected cat. Most of the cats with severe osteochondrodysplasia showed some clinical signs, but cats with mild disease were clinically unaffected. All Scottish Fold-related cats with folded-ear phenotype, even if heterozygotes, suffered from some degree of osteochondrodysplasia of the distal limbs. PMID:18339089

  19. Autosomal recessive cerebellar ataxias

    PubMed Central

    Palau, Francesc; Espinós, Carmen

    2006-01-01

    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia. PMID:17112370

  20. Autosomal recessive MFN2-related Charcot-Marie-Tooth disease with diaphragmatic weakness: Case report and literature review.

    PubMed

    Tan, Christopher A; Rabideau, Marina; Blevins, Amy; Westbrook, Marjorie Jody; Ekstein, Tali; Nykamp, Keith; Deucher, Anne; Harper, Amy; Demmer, Laurie

    2016-06-01

    Pathogenic variants in the mitofusin 2 gene (MFN2) are the most common cause of autosomal dominant Charcot-Marie-Tooth (CMT2) disease, which is typically characterized by axonal sensorimotor neuropathy. We report on a 7-month-old white female with hypotonia, motor delay, distal weakness, and motor/sensory axonal neuropathy in which next-generation sequencing analysis identified compound heterozygous pathogenic variants (c.2054_2069_1170del and c.392A>G) in MFN2. A review of the literature reveals that sporadic and familial cases of compound heterozygous or homozygous pathogenic MFN2 variants have been infrequently described, which indicates that MFN2 can also be inherited in a recessive manner. This case highlights several clinical findings not typically associated with MFN2 pathogenic variants, including young age of onset and rapidly progressing diaphragmatic paresis that necessitated tracheostomy and mechanical ventilation, and adds to the growing list of features identified in autosomal recessive MFN2-related CMT2. Our patient with MFN2-related CMT2 expands the clinical and mutational spectrum of individuals with autosomal recessive CMT2 and identifies a new clinical feature that warrants further observation. © 2016 Wiley Periodicals, Inc. PMID:26955893

  1. Localization of the Gene for Distal Hereditary Motor Neuronopathy VII (dHMN-VII) to Chromosome 2q14

    PubMed Central

    McEntagart, Meriel; Norton, Nadine; Williams, Hywel; Teare, M. Dawn; Dunstan, Melanie; Baker, Philip; Houlden, Henry; Reilly, Mary; Wood, Nick; Harper, Peter S.; Futreal, P. Andrew; Williams, Nigel; Rahman, Nazneen

    2001-01-01

    Distal hereditary motor neuronopathy type VII (dHMN-VII) is an autosomal dominant disorder characterized by distal muscular atrophy and vocal cord paralysis. We performed a genomewide linkage search in a large Welsh pedigree with dHMN-VII and established linkage to chromosome 2q14. Analyses of a second family with dHMN-VII confirmed the location of the gene and provided evidence for a founder mutation segregating in both pedigrees. The maximum three-point LOD score in the combined pedigree was 7.49 at D2S274. Expansion of a polyalanine tract in Engrailed-1, a transcription factor strongly expressed in the spinal cord, was excluded as the cause of dHMN-VII. PMID:11294660

  2. Two Novel Mutations in Myosin Binding Protein C Slow Causing Distal Arthrogryposis Type 2 in Two Large Han Chinese Families May Suggest Important Functional Role of Immunoglobulin Domain C2

    PubMed Central

    Li, Xuefu; Zhong, Bomeng; Han, Weitian; Zhao, Ning; Liu, Wei; Sui, Yu; Wang, Yawen; Lu, Yongping; Wang, Hong; Li, Jianxin; Jiang, Miao

    2015-01-01

    Distal arthrogryposes (DAs) are a group of disorders that mainly involve the distal parts of the limbs and at least ten different DAs have been described to date. DAs are mostly described as autosomal dominant disorders with variable expressivity and incomplete penetrance, but recently autosomal recessive pattern was reported in distal arthrogryposis type 5D. Mutations in the contractile genes are found in about 50% of all DA patients. Of these genes, mutations in the gene encoding myosin binding protein C slow MYBPC1 were recently identified in two families with distal arthrogryposis type 1B. Here, we described two large Chinese families with autosomal dominant distal arthrogryposis type 2(DA2) with incomplete penetrance and variable expressivity. Some unique overextension contractures of the lower limbs and some distinctive facial features were present in our DA2 pedigrees. We performed follow-up DNA sequencing after linkage mapping and first identified two novel MYBPC1 mutations (c.1075G>A [p.E359K] and c.956C>T [p.P319L]) responsible for these Chinese DA2 families of which one introduced by germline mosacism. Each mutation was found to cosegregate with the DA2 phenotype in each family but not in population controls. Both substitutions occur within C2 immunoglobulin domain, which together with C1 and the M motif constitute the binding site for the S2 subfragment of myosin. Our results expand the phenotypic spectrum of MYBPC1-related arthrogryposis multiplex congenita (AMC). We also proposed the possible molecular mechanisms that may underlie the pathogenesis of DA2 myopathy associated with these two substitutions in MYBPC1. PMID:25679999

  3. Distal splenorenal shunt

    MedlinePlus

    ... shunt procedure; Renal - splenic venous shunt; Warren shunt; Cirrhosis - distal splenorenal; Liver failure - distal splenorenal ... hepatitis Blood clots Certain congenital disorders Primary biliary cirrhosis When blood cannot flow normally through the portal ...

  4. Distal Convoluted Tubule

    PubMed Central

    Ellison, David H.

    2014-01-01

    The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical practice. PMID:24855283

  5. Molecular bases of autosomal recessive limb-girdle muscular dystrophies.

    PubMed

    Nigro, V

    2003-09-01

    Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is characterized by great variability, ranging from severe forms with rapid onset and progression to very mild forms allowing affected people to have fairly normal life spans and activity levels. Sixteen loci have been so far identified, six autosomal dominant and ten autosomal recessive. Linkage analyses indicate that there is further genetic heterogeneity both for dominant as well as for recessive LGMD. The dominant forms (LGMD1) are generally milder and relatively rare, representing less than 10% of all LGMD. The autosomal recessive forms (LGMD2) are much more common, having a cumulative prevalence of 1:15,000 with a number of geographical differences. The product of ten autosomal recessive LGMD genes has so far been identified. They are: calpain-3 (LGMD2A), dysferlin (LGMD2B), alpha-sarcoglycan (LGMD2D), beta-sarcoglycan (LGMD2E), gamma-sarcoglycan (LGMD2C), delta-sarcoglycan (LGMD2F), telethonin (LGMD2G), TRIM32 (LGMD2H), fukutin-related protein (LGMD2I) and titin (LGMD2J). There are, however, at least 25% of families who can be excluded from any known locus. The present review is devoted to outline the present advancements in the molecular bases of autosomal recessive LGMD. PMID:14959561

  6. Congenital vocal cord paralysis with possible autosomal recessive inheritance: Case report and review of the literature

    SciTech Connect

    Koppel, R.; Friedman, S.; Fallet, S.

    1996-08-23

    We describe an infant with congenital vocal cord paralysis born to consanguineous parents. While autosomal dominant and X-linked inheritance have been previously reported in this condition, we conclude that the degree of parental consanguinity in this case strongly suggests autosomal recessive inheritance. Although we cannot exclude X-linked inheritance, evidence from animal studies demonstrates autosomal recessive inheritance and provides a possible molecular basis for congenital vocal cord paralysis. 14 refs., 1 fig.

  7. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infacts and Leukoencephalopathy (CADASIL)

    MedlinePlus

    ... functions such as sensation, voluntary muscle movement, thought, reasoning, memory, etc. Infarcts : areas of tissue that have ... therapy are instituted for rehabilitation from stroke. Other Clinical Names for CADASIL Hereditary multi-infarct dementia Chronic ...

  8. Genetics Home Reference: autosomal dominant nocturnal frontal lobe epilepsy

    MedlinePlus

    ... brain are involved in many critical functions, including reasoning, planning, judgment, and problem-solving. It is unclear ... E, Montagna P. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain. ...

  9. Thoracic-pelvic dysostosis: a 'new' autosomal dominant form.

    PubMed Central

    Bankier, A; Danks, D M

    1983-01-01

    A form of thoracic and pelvic dysostosis is reported in a mother and her son. The short ribs caused respiratory distress in the baby and raised the possibility of asphyxiating thoracic dystrophy (ATD). The radiological features, however, distinguish this benign condition from ATD and other described skeletal dysplasias. Images PMID:6620328

  10. PDE3A mutations cause autosomal dominant hypertension with brachydactyly.

    PubMed

    Maass, Philipp G; Aydin, Atakan; Luft, Friedrich C; Schächterle, Carolin; Weise, Anja; Stricker, Sigmar; Lindschau, Carsten; Vaegler, Martin; Qadri, Fatimunnisa; Toka, Hakan R; Schulz, Herbert; Krawitz, Peter M; Parkhomchuk, Dmitri; Hecht, Jochen; Hollfinger, Irene; Wefeld-Neuenfeld, Yvette; Bartels-Klein, Eireen; Mühl, Astrid; Kann, Martin; Schuster, Herbert; Chitayat, David; Bialer, Martin G; Wienker, Thomas F; Ott, Jürg; Rittscher, Katharina; Liehr, Thomas; Jordan, Jens; Plessis, Ghislaine; Tank, Jens; Mai, Knut; Naraghi, Ramin; Hodge, Russell; Hopp, Maxwell; Hattenbach, Lars O; Busjahn, Andreas; Rauch, Anita; Vandeput, Fabrice; Gong, Maolian; Rüschendorf, Franz; Hübner, Norbert; Haller, Hermann; Mundlos, Stefan; Bilginturan, Nihat; Movsesian, Matthew A; Klussmann, Enno; Toka, Okan; Bähring, Sylvia

    2015-06-01

    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferat