Science.gov

Sample records for autotrophic nitrifying granules

  1. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses.

    PubMed

    Matsumoto, Shinya; Katoku, Mayu; Saeki, Goro; Terada, Akihiko; Aoi, Yoshiteru; Tsuneda, Satoshi; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2010-01-01

    This study evaluates the community structure in nitrifying granules (average diameter of 1600 mum) produced in an aerobic reactor fed with ammonia as the sole energy source by a multivalent approach combining molecular techniques, microelectrode measurements and mathematical modelling. Fluorescence in situ hybridization revealed that ammonia-oxidizing bacteria dominated within the first 200 mum below the granule surface, nitrite-oxidizing bacteria a deeper layer between 200 and 300 mum, while heterotrophic bacteria were present in the core of the nitrifying granule. Presence of these groups also became evident from a 16S rRNA clone library. Microprofiles of NH(4)(+), NO(2)(-), NO(3)(-) and O(2) concentrations measured with microelectrodes showed good agreement with the spatial organization of nitrifying bacteria. One- and two-dimensional numerical biofilm models were constructed to explain the observed granule development as a result of the multiple bacteria-substrate interactions. The interaction between nitrifying and heterotrophic bacteria was evaluated by assuming three types of heterotrophic bacterial growth on soluble microbial products from nitrifying bacteria. The models described well the bacterial distribution obtained by fluorescence in situ hybridization analysis, as well as the measured oxygen, nitrite, nitrate and ammonium concentration profiles. Results of this study are important because they show that a combination of simulation and experimental techniques can better explain the interaction between nitrifying bacteria and heterotrophic bacteria in the granules than individual approaches alone. PMID:19799623

  2. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    PubMed Central

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats. PMID:26528282

  3. Autotrophic growth of nitrifying community in an agricultural soil

    PubMed Central

    Xia, Weiwei; Zhang, Caixia; Zeng, Xiaowei; Feng, Youzhi; Weng, Jiahua; Lin, Xiangui; Zhu, Jianguo; Xiong, Zhengqin; Xu, Jian; Cai, Zucong; Jia, Zhongjun

    2011-01-01

    The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. PMID:21326337

  4. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor.

    PubMed

    Chen, Fang-Yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2015-05-01

    Short initial settling time and rapidly increased ammonium nitrogen loading were employed to cultivate nitrifying granular sludge treating inorganic wastewater with 1000 mg/L ammonium nitrogen. It was found that the nitrifying granule-dominant sludge was formed in a sequencing batch reactor (SBR) with influent ammonium concentration increased from 200 to 1000 mg N/L within 55 days. During the following 155-day operation period, nitrifying granules exhibited good performance with an ammonium removal efficiency of 99%. In the meantime, sludge volume index (SVI) decreased from 92 to 15 mL/g and the mean size of the nitrifying granules increased from 106 to 369 μm. Mixed liquor suspended solids (MLSS) decreased from the initial 6.4 to around 3 g/L during the granulation period and increased to over 10 g/L at the end of the operation. The long-term stability of nitrifying granules and the reactor performance were not negatively affected by inhibition from free ammonia (FA) and free nitrous acid (FNA) in this study. This makes the granule sludge technology promising in treating high-strength ammonium wastewater in practice. PMID:25573473

  5. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge.

    PubMed

    Liang, Zhiwei; Li, Wenhong; Yang, Shangyuan; Du, Ping

    2010-10-01

    The composition and the distribution of extracellular polymeric substances (EPS) and pellets of autotrophic nitrifying biofilm and activated sludge were investigated in this work. Fourier-transform Infrared Spectroscopy, fluorescent in situ hybridization and fluorescence staining were used to examine proteins, carbohydrates, humic substances and DNA being present in the biofilms and the sludge samples. To investigate extraction efficiency and its effect on characterization of tightly bounded EPS, four extraction methods (ethylenediamine tetraacetic acid (EDTA), NaOH, cationic exchange resin (CER), ultrasound) were compared. EDTA and ultrasound showed more effective extraction ability than NaOH and CER. NaOH and ultrasound extraction led to high activity of glucose-6-phosphate dehydrogenase from cell lysis, which was confirmed by fluorescence staining analysis. Ultrasound and NaOH extraction yielded 18% and 11% of dead cells in biofilm, respectively, whereas they obtained 11% and 9% of dead cells in activated sludge, respectively. Four layers of extractible products were separated from autotrophic nitrifiering flocs. The extraction results indicated that extraction yield in different layers varied in a wide range: 3-6% of soluble EPS, 5-10% of loosely bound EPS, 34-67% of tightly bound EPS and 30-60% of pellets. PMID:20655088

  6. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules.

    PubMed

    Ishii, Satoshi; Song, Yanjun; Rathnayake, Lashitha; Tumendelger, Azzaya; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2014-10-01

    The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations. PMID:24650173

  7. Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor.

    PubMed

    Volcke, E I P; Picioreanu, C; De Baets, B; van Loosdrecht, M C M

    2010-10-01

    Autotrophic nitrogen removal through sequential partial nitritation and anammox reactions can be achieved in biofilm reactors by controlling the oxygen concentration in the bulk liquid in such a way that nitrite oxidizers are outcompeted by anammox bacteria. In the case of granular sludge reactors, the granule size may influence the optimal range of oxygen concentration, as has been confirmed in the present study by means of numerical simulations. The range of oxygen concentrations for which combined partial nitritation and anammox conversion is established becomes broader for larger particles and with increasing influent ammonium concentrations. At the same time the likelihood of nitrite accumulation in the reactor effluent also increases. PMID:21046957

  8. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. PMID:26318242

  9. The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor.

    PubMed

    Vieira, M J; Pacheco, A P; Pinho, I A; Melo, L F

    2001-02-01

    Clay minerals have some properties, namely a high surface area and the ability of ion exchange that may exert some effects on microbial systems. It is often difficult to know the way the clay is exerting its influence and whether its presence improves a given metabolic process. The present work concerns the study of the effect of the addition of powdered kaolin to autotrophic nitrification systems, and includes the study of the effects of the particles on the activity of a suspended nitrifying bacteria consortium and on the performance of an air-lift biofilm reactor used for tertiary nitrification. Concerning the suspended culture, kaolin particles produced stimulation on the specific endogenous and exogenous respiration rates of the bacteria, probably due to a nutritional effect supplied by the clay. This effect was more pronounced for the ammonia oxidation rates, although nitrite oxidation was also enhanced but to a lesser extent. In respect to the presence of kaolin particles in the air-lift reactor, the results obtained indicate that the clay particles become incorporated in the biofilm pellets, but do not change significantly their thickness or their shape. However, nitrate production decreased when the concentration of particles increased. The low adsorption of ammonia by the kaolin indicated that the clay particles embedded in the biofilm did not probably retain the ions. Although it was not proved, precipitation of salts may have occurred. PMID:11349371

  10. The small-scale production of [U-14C]acetylene from Ba14CO3: application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria.

    PubMed

    Hyman, M R; Arp, D J

    1990-11-01

    A small-scale method has been adapted from an established procedure for the generation of [U-14C]acetylene from inexpensive and commonly available precursors. The method involves the fusing of Ba14CO3 with excess barium metal to produce Ba14C2. The BaC2 is reacted with water to generate acetylene which is then selectively dissolved into dimethyl sulfoxide (DMSO). The results presented demonstrate the effect of Ba:BaCO3 ratio on the concentrations of various gases released during the hydrolysis reaction and quantify the selectivity of the DMSO-trapping process for each gas. [U-14C]Acetylene generated by this method has been used to inactivate ammonia monooxygenase in three species of autotrophic nitrifying bacteria: Nitrosomonas europaea, Nitrosococcus oceanus, and Nitrosolobus multiformis. Our results demonstrate that acetylene inactivation of this enzyme in all three species results in the covalent incorporation of radioactive label into a polypeptide of apparent Mr of 25,000-27,000, as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography. PMID:2291478

  11. Granulation of simultaneous partial nitrification and anammox biomass in one single SBR system.

    PubMed

    Li, Xiaoming; Xiao, Yang; Liao, Dexiang; Zheng, Wei; Yi, Ting; Yang, Qi; Zeng, Guangming

    2011-04-01

    The granulation of simultaneous partial nitrification and anaerobic ammonium oxidation (Anammox) was investigated in a single, oxygen-limited, sequencing batch reactor. In this research, the reactor was started anaerobically and fed using the synthetic medium described by Van de Graaf et al. to cultivate Anammox biomass after inoculation with methanogenic granular sludge. Subsequently, mixture gas (air and nitrogen gas) was supplied to the reactor and a nitrifying population developed. Research results indicated that autotrophic granules was cultivated successfully by controlling the dissolved oxygen in the reactor between 0.3 and 0.5 mg/L, and a total inorganic nitrogen removal efficiency of 63.7% was obtained with a higher nitrogen load increased by reducing HRT to 3 days. It was also seen that the Ca and P concentrations of the feeding medium are important factors that influence the autotrophic granules from process running. When the Ca and P concentrations were exceeded the necessary quantity, salt precipitation was observed, interfered with microbial activity, and caused a decrease of the nitrogen removal rate of the system. After diminishing adequately the Ca and P concentrations, salt precipitation was avoided and the activity of the system restored quickly. Moreover, visual indication and scanning election microscopy observation revealed the process of sludge evolution and inner structure of the granules. PMID:21038088

  12. [Performance of internal-loop air-lift nitrifying bioreactor].

    PubMed

    Lin, Feng-Mei; Zheng, Ping; Zhao, Yang-Yang; Hu, Bao-Lan; Chen, Jian-Song

    2002-07-01

    The performance of internal-loop air-lift nitrifying bioreactor was good with strong tolerance to influent ammonia concentration (78.49 mmol/L), high volume converting rate (163.18 mmol/L.d) and obvious working stability (ammonia removal > 94.42%). During operation of internal-loop air-lift bioreactor, the nitrifying activated sludge was granulated. The nitrifying granular activated sludge began to appear on day 45. Its average diameter was 0.83 mm, settling velocity was 55.53 m/h and specific ammonia removal rate was 0.95 mmol (NH4(+)-N)/g (VS).d. The nitrifying granular activated sludge had the activity for anaerobic ammonia oxidation with ammonia oxidation rate of 0.23 mmol (NH4(+)-N)/g(VS).d and nitrite reduction rate of 0.24 mmol (NO2(-)-N)/g(VS).d. PMID:12385250

  13. Activated sludge filterability improvement by nitrifying bacteria abundance regulation in an adsorption membrane bioreactor (Ad-MBR).

    PubMed

    Sun, Fei-yun; Lv, Xiao-mei; Li, Ji; Peng, Zhong-yi; Li, Pu; Shao, Ming-fei

    2014-10-01

    Autotrophic nitrifying bacteria have its intrinsic properties including low EPS production, dense colonial structure and slow-growth rate, favoring the sludge filterability improvement. An adsorption-MBR (Ad-MBR) was developed to enrich nitrifier abundance in the MBR chamber by inlet C/N regulation, and its possible positive effect on sludge filterability and underlying mechanisms were investigated. By DNA extraction, PCR amplification and Illumina high-throughput pyrosequencing, the abundance of nitrifying bacteria was accurately quantified. More than 8.29% nitrifier abundance was achieved in Ad-MBR sludge, which was above three times of that in conventional MBR. Regulated C/N ratio and thereafter nitrifier abundance enrichment improved sludge filterability by altering sludge mixture and its supernatant properties, reflected by a good sludge settleability, a low supernatant viscosity and turbidity, a low supernatant organic substances concentration, and a small amount of strong hydrophobic fractional components, thus to profoundly improve sludge filterability and decelerate membrane fouling. PMID:25146315

  14. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  15. [Densification of autotrophic bacteria sludge and its characteristics for wastewater treatment].

    PubMed

    Li, Zhi-hua; Guo, Qiang; Wu, Jie; Zhang, Ting; Tan, Zhou-quan; Liu, Fang; Wang, Xiao-chang

    2010-03-01

    Autotrophic granular sludge was developed in an SBR reactor using inorganic carbonal substrate. The variation of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) during the densification process and their effects on granulation have been evaluated. It was found that the autotrophic bacteria granular sludge was compact with the density reached up to 1.06 g/mL, and the rod-like bacteria predominated in granules on the evidence of scanning electron microscopic (SEM) results. Ammonia, nitrite and nitrate in the effluent were 4.5-15.2 mg/L, 10.2-20.3 mg/L and 17.9-30.1 mg/L, respectively, and the ammonia removal efficiency was 78% -92%. By evaluating the profile of various types of nitrogen and their conversion rates, it was found that short settling time was the main factor that enriched the AOB at the beginning of this experiment, and the granulation did not correlate with AOB. On the contrary, nitrification rate well correlated with granulation, and evidence demonstrated that the formation of granulation was in favorate of immoblization of NOB and the metabolite of NOB stabilized granules, therefore granules and NOB mutually enhanced. Additionally, it was found that the autotrophic denitrification was gradually increased with the process of granulation. PMID:20358836

  16. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers.

    PubMed

    Anderson, I C; Levine, J S

    1986-05-01

    Biogenic emissions of nitric and nitrous oxides have important impacts on the photochemistry and chemistry of the atmosphere. Although biogenic production appears to be the overwhelming source of N(2)O, the magnitude of the biogenic emission of NO is very uncertain. In soils, possible sources of NO and N(2)O include nitrification by autotrophic and heterotrophic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. The availability of oxygen determines to a large extent the relative activities of these various groups of organisms. To better understand this influence, we investigated the effect of the partial pressure of oxygen (pO(2)) on the production of NO and N(2)O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO(2) in the range tested (0.5 to 10%), whereas N(2)O production was inversely proportional to pO(2). Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N(2)O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N(2)O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N(2)O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N(2)O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sparged with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N(2)O is produced only when there is sufficient soil moisture to provide the anaerobic microsites

  17. Effects of oxygen concentration on the nitrifying activity of an aerobic hybrid granular sludge reactor.

    PubMed

    Filali, Ahlem; Bessiere, Yolaine; Sperandio, Mathieu

    2012-01-01

    The aim of the work was to quantify the influence of the simultaneous presence of flocs and granules in the nitrifying activity in a sequencing batch airlift reactor (SBAR). The nitrification rate and oxygen limitation of flocs, granules and hybrid sludge was investigated using respirometric assays at different dissolved oxygen concentrations. The spatial distribution of Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) was investigated using fluorescence in situ hybridization (FISH). Results showed that the nitrification rate was much less sensitive to oxygen limitation in systems containing a fraction of flocs than in pure granular sludge. Ammonium Oxidizing Bacteria (AOB) were found to be distributed in similar quantities in flocs and granules whereas the Nitrite Oxidizing Bacteria (NOB) were located preferentially in granules. This study showed that the presence of flocs with granules could increase the robustness of the process to transitory reductions of aeration. PMID:22233907

  18. Nitrifying Bacteria in Wastewater Reservoirs

    PubMed Central

    Abeliovich, Aharon

    1987-01-01

    Deep wastewater reservoirs are used throughout Israel to store domestic wastewater effluents for summer irrigation. These effluents contain high concentrations of ammonia (≤5 mM) that are frequently toxic to photosynthetic microorganisms and that lead to development of anoxic conditions. Population dynamics of nitrifying bacteria and rates of nitrification were studied in two wastewater reservoirs that differed in organic load and degree of oxygenation and in the laboratory under controlled conditions, both by serial dilutions in mineral medium and microscopically with fluorescein isothiocyanate-conjugated antibodies prepared against local isolates. The difference in counts by the two methods was within 1 order of magnitude. In the laboratory, an O2 concentration of 0.2 mg liter−1 was close to optimal with respect to growth of NH3 oxidizers on domestic wastewater, while O2 concentrations of 0.05 mg liter−1 supported significant rates of nitrification. It was found that even hypertrophic anaerobic environments such as the anaerobic hypolimnion of the wastewater reservoir or the anaerobic settling ponds are capable of sustaining a viable, although not actively nitrifying, population of Nitrosomonas spp. and Nitrobacter spp., in contrast to their rapid decline when maintained anaerobically in mineral medium in the laboratory. Nitrification rates of NH3 in effluents during storage in the reservoirs were slower by 1 to 2 orders of magnitude compared with corresponding rates in water samples brought to the laboratory. The factors causing this inhibition were not identified. PMID:16347319

  19. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.

    PubMed

    Yang, Weiming; Zhao, Qing; Lu, Hui; Ding, Zhi; Meng, Liao; Chen, Guang-Hao

    2016-03-01

    The Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process build on anaerobic carbon conversion through biological sulfate reduction and autotrophic denitrification by using the sulfide byproduct from the previous reaction. This study confirmed extra decreases in N2O emissions from the sulfide-driven autotrophic denitrification by investigating N2O reduction, accumulation, and emission in the presence of different sulfide/nitrate (S/N) mass ratios at pH 7 in a long-term laboratory-scale granular sludge autotrophic denitrification reactor. The N2O reduction rate was linearly proportional to the sulfide concentration, which confirmed that no sulfide inhibition of N2O reductase occurred. At S/N = 5.0 g-S/g-N, this rate resulted by sulfide-driven autotrophic denitrifying granular sludge (average granule size = 701 μm) was 27.7 mg-N/g-VSS/h (i.e., 2 and 4 times greater than those at 2.5 and 0.8 g-S/g-N, respectively). Sulfide actually stimulates rather than inhibits N2O reduction no matter what granule size of sulfide-driven autotrophic denitrifying sludge engaged. The accumulations of N2O, nitrite and free nitrous acid (FNA) with average granule size 701 μm of sulfide-driven autotrophic denitrifying granular sludge engaged at S/N = 5.0 g-S/g-N were 4.7%, 11.4% and 4.2% relative to those at 3.0 g-S/g-N, respectively. The accumulation of FNA can inhibit N2O reduction and increase N2O accumulation during sulfide-driven autotrophic denitrification. In addition, the N2O gas emission level from the reactor significantly increased from 14.1 ± 0.5 ppmv (0.002% of the N load) to 3707.4 ± 36.7 ppmv (0.405% of the N load) as the S/N mass ratio in the influent decreased from 2.1 to 1.4 g-S/g-N over the course of the 120-day continuous monitoring period. Sulfide-driven autotrophic denitrification may significantly reduce greenhouse gas emissions from biological nutrient removal when sulfur conversion processes are applied. PMID

  20. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    PubMed

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology. PMID:26894446

  1. Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor.

    PubMed

    Mozumder, M Salatul Islam; Picioreanu, Cristian; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-01-01

    This study deals with the influence of heterotrophic growth on autotrophic nitrogen removal from wastewater in a granular sludge reactor. A mathematical model was set-up including autotrophic and heterotrophic growth and decay in the granules from a partial nitritation-anammox process. A distinction between heterotrophic bacteria was made based on the electron acceptor (dissolved oxygen, nitrite or nitrate) on which they grow, while the nitrogen gas produced was 'labelled' to retrieve its origin, from anammox or heterotrophic bacteria. Taking into account heterotrophic growth resulted in a lower initial nitrogen removal, but in a higher steady state nitrogen removal compared with a model in which heterotrophic growth was neglected. The anammox activity is related with the fact that heterotrophs initially use nitrite as electron acceptor, but when they switch to nitrate the produced nitrite can be used by anammox bacteria. Increased anammox activity in the presence of heterotrophs, therefore, resulted in a marginally increased N2 production at steady state. Heterotrophic denitrification of nitrate to nitrite also explains why small amounts of organic substrate present in the influent positively affect the maximum nitrogen removal capacity. However, the process efficiency deteriorates once the amount of organic substrate in the influent exceeds a certain threshold. The bulk oxygen concentration and the granule size have a dual effect on the autotrophic nitrogen removal efficiency. Besides, the maximum nitrogen removal efficiency decreases and the corresponding optimal bulk oxygen concentration increases with increasing granule size. PMID:24645487

  2. Autotrophic processes in meromictic Big Soda Lake, Nevada.

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Oremland, R.S.

    1983-01-01

    Daily rates of oxygenic photosynthesis (OP) by phytoplankton, anoxygenic photosynthesis (AP) by purple sulfur bacteria, and chemoautotrophic productivity (CP = dark CO2 assimilation) were measured once each season. Total daily productivity and the relative importance of each autotrophic process varied with seasonal changes in vertical mixing, light availability, and the biomass of phototrophs. Daily productivity was highest (2830 mg C.m-2) and was dominated by OP in winter when the mixolimnion was isothermal, the biomass of phytoplankton was high, and the biomass of purple sulfur bacteria was low. During the summer-fall period of thermal stratification, phytoplankton biomass decreased, a plate of purple sulfur bacteria formed below the oxycline, and daily rates of dark CO2 assimilation (CP = 390-680 mg C.m-2) exceeded phototrophic productivity (OP + AP = 200-370 mg C.m-2). Total annual productivity was approx 500 g C.m-2, of which 60% was produced by phytoplankton (mostly in winter), 30% by chemoautotrophs (nitrifying and sulfur-oxidizing bacteria), and only 10% by photosynthetic bacteria. -Authors

  3. Cyanate as an energy source for nitrifiers.

    PubMed

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-08-01

    Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment. PMID:26222031

  4. [Modeling formation of aerobic granule and influence of hydrodynamic shear forces on granule diameter].

    PubMed

    Dong, Feng; Zhang, Han-Min; Yang, Feng-Lin

    2012-01-01

    A one-dimension aerobic granule mathematical model was established, basing on mathematical biofilm model and activated sludge model. The model was used to simulate simple aerobic granule process such as nutrients removal, granule diameter evolution, cycle performance as well as depth profiles of DO and biomass. The effluent NH4(+) -N concentration decreased as the modeling processed. The simulation effluent NO3(-)-N concentration decreased to 3 mg x L(-1) as the granules grew. While the granule diameter increased from 1.1 mm on day 30 to 2.5 mm on day 100, the TN removal efficiency increased from less than 10% to 91%. The denitrification capacity was believed to enhance because the anoxic zone would be enlarged with the increasing granule diameter. The simultaneous nitrification and denitrification occurred inside the big aerobic granules. The oxygen permeating depth increased with the consumption of substrate. It was about 100-200 microm at the beginning of the aeration phase, and it turned to near 800 microm at the end of reaction. The autotrophs (AOB and NOB) were mostly located at the out layer where the DO concentration was high. The heterotrophic bacteria were distributed through the whole granule. As hydrodynamic shear coefficient k(de) increased from 0.25 (m x d)(-1) to 5 (m x d)(-1), the granule diameter under steady state decreased form 3.5 mm to 1.8 mm. The granule size under the dynamic steady-state decreased with the increasing hydrodynamic shear force. The granule size could be controlled by adjusting aeration intensity. PMID:22452208

  5. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  6. Agricultural land usage transforms nitrifier population ecology.

    PubMed

    Bertagnolli, Anthony D; McCalmont, Dylan; Meinhardt, Kelley A; Fransen, Steven C; Strand, Stuart; Brown, Sally; Stahl, David A

    2016-06-01

    Application of nitrogen fertilizer has altered terrestrial ecosystems. Ammonia is nitrified by ammonia and nitrite-oxidizing microorganisms, converting ammonia to highly mobile nitrate, contributing to the loss of nitrogen, soil nutrients and production of detrimental nitrogen oxides. Mitigating these costs is of critical importance to a growing bioenergy industry. To resolve the impact of management on nitrifying populations, amplicon sequencing of markers associated with ammonia and nitrite-oxidizing taxa (ammonia monooxygenase-amoA, nitrite oxidoreductase-nxrB, respectively) was conducted from long-term managed and nearby native soils in Eastern Washington, USA. Native nitrifier population structure was altered profoundly by management. The native ammonia-oxidizing archaeal community (comprised primarily by Nitrososphaera sister subclusters 1.1 and 2) was displaced by populations of Nitrosopumilus, Nitrosotalea and different assemblages of Nitrososphaera (subcluster 1.1, and unassociated lineages of Nitrososphaera). A displacement of ammonia-oxidizing bacterial taxa was associated with management, with native groups of Nitrosospira (cluster 2 related, cluster 3A.2) displaced by Nitrosospira clusters 8B and 3A.1. A shift in nitrite-oxidizing bacteria (NOB) was correlated with management, but distribution patterns could not be linked exclusively to management. Dominant nxrB sequences displayed only distant relationships to other NOB isolates and environmental clones. PMID:26526405

  7. Ammonium Removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification System

    PubMed Central

    Kuai, Linping; Verstraete, Willy

    1998-01-01

    The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2−-N or NO3−-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2− as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2−. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen. PMID:9797314

  8. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    PubMed

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions. PMID:24571180

  9. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  10. Performance of autotrophic nitrogen removal in the granular sludge bed reactor.

    PubMed

    Wang, Lan; Zheng, Ping; Chen, Tingting; Chen, Jianwei; Xing, Yajuan; Ji, Qixing; Zhang, Meng; Zhang, Jiqiang

    2012-11-01

    The autotrophic nitrogen removal process in the granular sludge bed reactor (GSB-ANR process) is a new and promising biotechnology for nitrogen removal from wastewater, which requires single reactor, simple operation and inorganic carbon. The results showed that the GSB-ANR process could be successfully started up with nitrifying granular sludge as inoculum. The volumetric nitrogen loading rate and the volumetric nitrogen removal rate reached 5.44 and 2.57kgNm(-3)day(-1), respectively, which were significantly higher than the level reported for the autotrophic nitrogen removal processes in single reactor. The predominant functional microorganisms were from Planctomycetes and Nitrosomonas. The excellent performance of GSB-ANR process was ascribed to: (a) The high activities of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium oxidation (ANAMMOX) bacteria; (b) the good settlability of the granular sludge; (c) the suitable DO concentration that satisfied the oxygen requirement of AOB and prevented ANAMMOX bacteria from oxygen inhibition. PMID:22940302

  11. Cometabolism of trihalomethanes by mixed culture nitrifiers.

    PubMed

    Wahman, David G; Henry, Andrea E; Katz, Lynn E; Speitel, Gerald E

    2006-10-01

    Three mixed-culture nitrifier sources degraded low concentrations (25-450 microg/L) of four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Individual THM rate constants (k1THM) increased with increasing THM bromine-substitution with TBM>DBCM>BDCM>TCM and were comparable to previous studies with the pure culture nitrifier, Nitrosomonas europaea. A decrease in temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. The significant effect of temperature indicates that seasonal variations in water temperature should be a consideration for technology implementation. Product toxicity, measured by transformation capacity (T(c)), was similar to that observed with N. europaea. Because both rate constants and product toxicities increase with increasing THM bromine-substitution, a water's THM speciation is an important consideration for process implementation during drinking water treatment. Even though a given water is kinetically favored, the resulting THM product toxicity may not allow stable treatment process performance. PMID:16970971

  12. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge.

    PubMed

    Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-01-01

    Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic

  13. Performance and Biofilm Activity of Nitrifying Biofilters Removing Trihalomethanes

    EPA Science Inventory

    Nitrifying biofilters seeded with three different mixed-culture sources degraded trichloromethane (TCM) and dibromochloromethane (DBCM). In addition, resuspended biofilm degraded TCM, bromododichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests,...

  14. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    EPA Science Inventory

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  15. Carbon isotope effects associated with autotrophic acetogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. PMID:11542159

  16. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  17. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  18. Impact of Aquifer Heterogeneities on Autotrophic Denitrification.

    NASA Astrophysics Data System (ADS)

    McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.

    2015-12-01

    Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.

  19. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  20. Modeling of trihalomethane cometabolism in nitrifying biofilters.

    PubMed

    Wahman, David G; Katz, Lynn E; Speitel, Gerald E

    2007-01-01

    The computer program AQUASIM was used to model biofilter experiments seeded with Lake Austin, Texas mixed-culture nitrifiers. These biofilters degraded four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Apparent steady-state data from the biofilter experiments and supporting batch experiments were used to estimate kinetic parameters for TCM, DBCM and ammonia degradation. Subsequently, the model was verified against other experimental biofilter data. To allow for full-scale simulations, BDCM and TBM rate constants were estimated using data from batch kinetic studies. Finally, the model was used to simulate full-scale filter performance under different filter surface loading rates and THM speciation seen in practice. Overall, total THM removals ranged from 16% to 54% in these simulations with influent total THM concentrations of 75-82microg/L, which illustrates the potential of THM cometabolism to have a significant impact on treated water quality. PMID:17129595

  1. Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge.

    PubMed

    Li, Fangjie; Jiang, Bingqi; Nastold, Peter; Kolvenbach, Boris Alexander; Chen, Jianqiu; Wang, Lianhong; Guo, Hongyan; Corvini, Philippe François-Xavier; Ji, Rong

    2015-04-01

    The fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.3 days) was accompanied by mineralization (17% of initial TBBPA). Twelve metabolites, including those with single benzene ring, O-methyl TBBPA ether, and nitro compounds, were identified. When allylthiourea was added to the sludge to completely inhibit nitrification, TBBPA transformation was significantly reduced (half-life 28.9 days), formation of the polar and single-ring metabolites stopped, but O-methylation was not significantly affected. Abiotic experiments confirmed the generation of mono- and dinitro-brominated forms of bisphenol A in NAS by the abiotic nitration of TBBPA by nitrite, a product of ammonia-oxidizing microorganisms (AOMs). Three biotic (type II ipso-substitution, oxidative skeletal cleavage, and O-methylation) and one abiotic (nitro-debromination) pathways were proposed for TBBPA transformation in NAS. Apart from O-methylation, AOMs were involved in three other pathways. Our results are the first to provide information about the complex metabolism of TBBPA in NAS, and they are consistent with a determining role for nitrifiers in TBBPA degradation by initiating its cleavage into single-ring metabolites that are substrates for the growth of heterotrophic bacteria. PMID:25754048

  2. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  3. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h). PMID:24862952

  4. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.

    PubMed

    Zhan, Guoqiang; Zhang, Lixia; Li, Daping; Su, Wentao; Tao, Yong; Qian, Junwei

    2012-07-01

    A new approach was developed to achieve autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment 3-dimensional microbial electrolysis cell (MEC). The MEC consisted of anodic and cathodic electrodes, on which nitrifying and denitrifying biofilms, respectively, were attached. Nitrogen removal can be enhanced at an applied voltage in the MEC. Besides, the nitrogen removal efficiency gradually increased from 70.3% to 92.6% with the increase of applied voltage from 0.2 to 0.4V, as well as the maximum current was varied from 4.4 to 14 mA. The corresponding coulombic efficiency also increased from 82% to 94.4%, indicating that the increasing applied voltage could enhance electron extraction from ammonium during its oxidative removal. The DO was found to be a critical factor which affected the nitrogen removal in this MEC system. These results demonstrated that the MEC process was applicable to achieve autotrophic nitrogen removal from wastewater containing ammonium. PMID:22572551

  5. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter.

    PubMed

    Sánchez Guillén, J A; Jayawardana, L K M C B; Lopez Vazquez, C M; de Oliveira Cruz, L M; Brdjanovic, D; van Lier, J B

    2015-01-01

    Partial nitritation in sponge-bed trickling filters (STF) under natural air circulation was studied in two reactors: STF-1 and STF-2 operated at 30°C with sponge thickness of 0.75 and 1.50cm, respectively. The coexistence of nitrifiers and Anammox bacteria was obtained and attributed to the favorable environment created by the reactors' design and operational regimes. After 114days of operation, the STF-1 had an average NH4(+)-N removal of 69.3% (1.17kgN/m(3)sponged) and a total nitrogen removal of 52.2% (0.88kgN/m(3)sponged) at a Nitrogen Loading Rate (NLR) of 1.68kgN/m(3)sponged and Hydraulic Retention Time (HRT) of 1.71h. The STF-2 showed an average NH4(+)-N removal of 81.6 % (0.77kgN/m(3)sponged) and a total nitrogen removal of 54% (0.51kgN/m(3)sponged), at an NLR of 0.95kgN/m(3)sponged and HRT of 2.96h. The findings suggest that autotrophic nitrogen removal over nitrite in STF systems is a feasible alternative. PMID:25863209

  6. Roles of granule size in over-granulation during high shear wet granulation.

    PubMed

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2010-08-01

    A mechanistic understanding of the over-granulation problem during high shear wet granulation (HSWG) process can guide efficient development of robust formulation and manufacturing process. Using microcrystalline cellulose (MCC) as a model compound, we demonstrate that size enlargement is an important mechanism for over-granulation in HSWG. A higher granulation water level results in larger granules and lower tabletability. With increasing water, granules enlarge sharply when water level is higher than 65%. Granule tabletability deteriorates with increasing granule size and becomes over-granulated when more than 70% water is used. For a batch of over-granulated granule that is ground and sieved, tabletability of the sieved fractions decreases with increasing granule size. The tabletability of the finest fraction (45-90 microm) is nearly four times that of the largest fraction (300-425 microm). These results show that size reduction can be an effective strategy to address the problem of over-granulation. PMID:20232456

  7. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  8. Engineering the Autotroph Methanococcus maripaludis for Geraniol Production.

    PubMed

    Lyu, Zhe; Jain, Rachit; Smith, Peyton; Fetchko, Travis; Yan, Yajun; Whitman, William B

    2016-07-15

    The rapid autotrophic growth of the methanogenic archaeon Methanococcus maripaludis on H2 and CO2 makes it an attractive microbial chassis to inexpensively produce biochemicals. To explore this potential, a synthetic gene encoding geraniol synthase (GES) derived from Ocimum basilicum was cloned into a M. maripaludis expression vector under selection for puromycin resistance. Recombinant expression of GES in M. maripaludis during autotrophic growth on H2/CO2 or formate yielded geraniol at 2.8 and 4.0 mg g(-1) of dry weight, respectively. The yield of geraniol decreased 2-3-fold when organic carbon sources were added to stimulate heterotrophic growth. In the absence of puromycin, geraniol production during autotrophic growth on formate increased to 4.6 mg g(-1) of dry weight. A conceptual model centered on the autotrophic acetyl coenzyme A biosynthetic pathway identified strategies to divert more autotrophic carbon flux to geraniol production. PMID:26886063

  9. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation.

    PubMed

    Patel, Sarsvatkumar; Dahiya, Sandeepkumar; Sun, Changquan Calvin; Bansal, Arvind Kumar

    2011-02-01

    The mechanism of loss of "reworkability" or tabletability of dry granulated microcrystalline cellulose (MCC) was investigated in relation to both granule size enlargement and granule hardness. Slugs of MCC were prepared under three pressures (12.5, 37.5, and 93.8 MPa) and tabletability (tensile strength vs. pressure) of respective granules (three different sizes) was determined. Nominal single granule fracture strength and granule friability were measured. The reduction in tabletability was profound for harder granules, which were obtained from higher slugging pressure. This is consistent with their ability to resist granule fragmentation during tableting. Variation in granule size exhibits negligible effect on tabletability for the lowest slugging pressure and only a small effect for the middle and highest slugging pressure. This observation is again related to different tendency to granule fragmentation during compaction. The results suggest that granule-hardening negatively affects tensile strength more than that of granule size enlargement for MCC. PMID:20803605

  10. Stimulating accumulation of nitrifying bacteria in porous carrier by addition of inorganic carbon in a continuous-flow fluidized bed wastewater treatment reactor.

    PubMed

    Jun, B H; Tanji, Y; Unno, H

    2000-01-01

    Porous polyurethane carrier particles have been successfully applied for microbial immobilization to simultaneously remove carbonaceous and nitrogenous substances from wastewater by a fill-and-draw operation. This reactor system was extended to a continuous-flow operation mode, by which inorganic carbon (IC) was supplemented in order to stimulate the growth of autotrophic nitrifying bacteria. By addition of sodium bicarbonate, the ammonia oxidation reaction proceeded remarkably in the porous particle fluidized bed reactor, while a small increase in the nitrification was observed in a reactor with suspended microbes. Dissolved oxygen profile was obtained using an oxygen microelectrode to measure the microbial consumption of oxygen in the porous carrier. The size of ammonia-oxidizing bacterial populations in the carrier was proportional to the volume of the aerobic region of the carrier. The aerobic region decreased with the increase in sodium bicarbonate concentration, which improved the ammonia-oxidizing activity of retained nitrifiers in the carrier. The maximum ammonia oxidation rate was up to 55.6 gN/m3/h within the aerobic region of the carrier under the following feed conditions: 100 mg/l of total organic compound, 55 mg/l of ammonium concentration and 48 mg/l of inorganic carbon. PMID:16232755

  11. Apparatus and method for controlling autotroph cultivation

    SciTech Connect

    Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey

    2013-07-02

    A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.

  12. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    PubMed

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1). PMID:26264139

  13. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate.

    PubMed

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Yu, Zhenguo; Lee, Duu-Jong

    2008-07-01

    This study studied the cultivation of granules from an expanded granular sludge bed reactor that simultaneously transforms sulfates, nitrates, and oxygen to elementary sulfur, nitrogen gas, and carbon dioxides, respectively. The living cells accumulate at the granule outer layers, as revealed by the multicolor staining and confocal laser scanning microscope technique. The microbial community comprises sulfate-reducing bacteria (SRB, Desulfomicrobium sp.), heterotrophic (Pseudomonas aeruginosa and Sulfurospirillum sp.), and autotrophic denitrifiers (Sulfurovum sp. and Paracoccus denitrificans) whose population dynamics at different sulfate and nitrate loading rates are monitored with the single-strand conformation polymorphism and denaturing gradient gel electrophoresis technique. The Desulfomicrobium sp. presents one of the dominating strains following reactor startup. At high sulfate and nitrate loading rates, the heterotrophic denitrifiers overcompete autotrophic denitrifiers to reduce SRB activities. Conversely, suddenly reducing nitrate loading rates completely removes the heterotrophic denitrifier Sulfurospirillum sp. from the granules and activates the autotrophic denitrifiers. The physical fixation of different groups of functional strains in granules fine-tunes the strains' activities, and hence the reactor performance. PMID:18483736

  14. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  15. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    NASA Astrophysics Data System (ADS)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  16. Role of exopolymeric protein on the settleability of nitrifying sludges.

    PubMed

    Martínez, Felipe; Lema, Juan; Méndez, Ramón; Cuervo-López, Flor; Gómez, Jorge

    2004-08-01

    The relationship of exopolymeric substances and the sludge volume indexes (SVI) of two nitrifying sludge were studied over a period of time (30 d) in two different types of reactors: (1) a stirred tank aerated nitrifying reactor (SANR) and (2) an air-lift nitrifying reactor (ALNR). Concentrations of lipids, carbohydrates and proteins of the EPS were determined in both reactors. The variation in lipids and carbohydrates was low (<10%), while the variation in the exopolymeric protein was higher. The SVI increased in accordance with the increase in the concentration of the exopolymeric protein. The number of bands of the exopolymeric protein was modified as a consequence of the change in the concentration of the exopolymeric protein. The molecular weights of the exopolymeric protein ranged from 31 to 97 in the stirred and 13 to 45 kDa in the air-lift reactor. The variations in the SVI were mainly due to the changes in the molecular weight of the exopolymeric proteins resulting in the modification of the sludge settleability characteristics. PMID:15081485

  17. Resistance of nitrifiers inhabiting activated sludge to ciliate grazing.

    PubMed

    Pajdak-Stós, Agnieszka; Fiałkowska, Edyta; Fyda, Janusz; Babko, Roman

    2010-01-01

    We monitored the succession of nitrifiers in a newly opened wastewater treatment plant for five weeks. After the first distinct decrease in total nitrogen, we began monitoring the appearance, size and number of nitrifying bacteria colonies using the fluorescence in situ hybridization (FISH) method. Ammonia oxidizing bacteria (AOB) colonies were visualized under green excitation as red, and nitrite oxidizing bacteria (NOB) colonies were visualized under blue excitation as green. The changes in protozoan community were monitored simultaneously. Ciliates were divided into four functional groups: predatory, bacterivorous free-swimming, bacterivorous crawling, and sessile. The results showed that at the time of the first distinct total nitrogen decrease, the mean length of both AOB and NOB were relatively low, but the colonies, especially those of nitrite oxidizers, were abundant. In time, the distribution of ammonia oxidizer colonies shifted towards larger sizes, but their quantity decreased. In the case of nitrite oxidizers, a similar trend was noticeable but less pronounced. These changes corresponded with an increasing number of crawling bacterivorous ciliates dominated by the "scavenger" genus Aspidisca. The increasing size of nitrifier colonies may have been due to the growing grazing pressure from crawling bacterivorous ciliates. The strong grazing pressure did not negatively affect N-NH(4)(+) removal effectiveness. PMID:20150692

  18. Mannitol in six autotrophic stramenopiles and Micromonas.

    PubMed

    Dittami, Simon M; Aas, Hoai T N; Paulsen, Berit S; Boyen, Catherine; Edvardsen, Bente; Tonon, Thierry

    2011-08-01

    Mannitol plays a central role in brown algal physiology since it represents an important pathway used to store photoassimilate. Several specific enzymes are directly involved in the synthesis and recycling of mannitol, altogether forming the mannitol cycle. The recent analysis of algal genomes has allowed tracing back the origin of this cycle in brown seaweeds to a horizontal gene transfer from bacteria, and furthermore suggested a subsequent transfer to the green microalga Micromonas. Interestingly, genes of the mannitol cycle were not found in any of the currently sequenced diatoms, but were recently discovered in pelagophytes and dictyochophytes. In this study, we quantified the mannitol content in a number of ochrophytes (autotrophic stramenopiles) from different classes, as well as in Micromonas. Our results show that, in accordance with recent observations from EST libraries and genome analyses, this polyol is produced by most ochrophytes, as well as the green alga tested, although it was found at a wide range of concentrations. Thus, the mannitol cycle was probably acquired by a common ancestor of most ochrophytes, possibly after the separation from diatoms, and may play different physiological roles in different classes. PMID:21720212

  19. Biogas desulfurization using autotrophic denitrification process.

    PubMed

    Bayrakdar, Alper; Tilahun, Ebrahim; Calli, Baris

    2016-01-01

    The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8-9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem. PMID:26428238

  20. Inferred properties of stellar granulation

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1985-06-01

    Apparent characteristics of stellar granulation in F and G main-sequence stars are inferred directly from observed spectral-line asymmetries and from comparisons of numerical simulations with the observations: (1) the apparent granulation velocity increases with effective temperature, (2) the dispersion of granule velocities about their mean velocity of rise increases with the apparent granulation velocity, (3) the mean velocity of rise of granules must be less than the total line broadening, (4) the apparent velocity difference between granules and dark lanes corresponds to the granulation velocity deduced from stellar line bisectors, (5) the dark lanes show velocities of fall approximately twice as large as the granule rise velocities, (6) the light contributed to the stellar flux by the granules is four to ten times more than the light from the dark lanes. Stellar rotation is predicted to produce distortions in the line bisectors which may give information on the absolute velocity displacements of the line bisectors. 37 references.

  1. mRNP granules

    PubMed Central

    Buchan, J Ross

    2014-01-01

    Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states. PMID:25531407

  2. Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota

    PubMed Central

    Leyn, Semen A.; Rodionova, Irina A.; Li, Xiaoqing

    2015-01-01

    ABSTRACT Autotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylum Crenarchaeota. Aerobic members of the order Sulfolobales utilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobic Thermoproteales use the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways in Archaea is limited. We applied a comparative genomics approach to predict novel autotrophic regulons in the Crenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in the Sulfolobales (HHC box) and Thermoproteales (DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in all Sulfolobales genomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed by in vitro binding assays with the recombinant HhcR protein from Metallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the order Thermoproteales. DhcR in Thermoproteus neutrophilus (Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data in Metallosphaera and Thermoproteus spp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in the Crenarchaeota. IMPORTANCE Little is known about transcriptional regulation of carbon dioxide fixation pathways in Archaea. We previously applied the comparative genomics approach for reconstruction of Dtx

  3. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  4. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors.

    PubMed

    Fernandez-Fontaina, E; Carballa, M; Omil, F; Lema, J M

    2014-11-15

    Cometabolism is the ability of microorganisms to degrade non-growth substrates in the presence of primary substrates, being the main removal mechanism behind the biotransformation of organic micropollutants in wastewater treatment plants. In this paper, a cometabolic Monod-type kinetics, linking biotransformation of micropollutants with primary substrate degradation, was applied to a highly enriched nitrifying activated sludge (NAS) reactor operated under different operational conditions (hydraulic retention time (HRT) and nitrifying activity). A dynamic model of the bioreactor was built taking into account biotransformation, sorption and volatilization. The micropollutant transformation capacity (Tc), the half-saturation constant (Ksc) and the solid-liquid partitioning coefficient (Kd) of several organic micropollutants were estimated at 25 °C using an optimization algorithm to fit experimental data to the proposed model with the cometabolic Monod-type biotransformation kinetics. The cometabolic Monod-type kinetic model was validated under different HRTs (1.0-3.7 d) and nitrification rates (0.12-0.45 g N/g VSS d), describing more accurately the fate of those compounds affected by the biological activity of nitrifiers (ibuprofen, naproxen, erythromycin and roxithromycin) compared to the commonly applied pseudo-first order micropollutant biotransformation kinetics, which does not link biotransformation of micropollutants to consumption of primary substrate. Furthermore, in contrast to the pseudo-first order biotransformation constant (k(biol)), the proposed cometabolic kinetic coefficients are independent of operational conditions such as the nitrogen loading rate applied. Also, the influence of the kinetic parameters on the biotransformation efficiency of NAS reactors, defined as the relative amount of the total inlet micropollutant load being biotransformed, was assessed considering different HRTs and nitrification rates. PMID:25150522

  5. Acclimation of nitrifying biomass and its effect on 2-chlorophenol removal.

    PubMed

    Pérez-Alfaro, J E; González-Blanco, G; Sierra-Palacios, E; Marcial-Quino, J; Beristain-Cardoso, R

    2015-01-01

    The metabolic and kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch cultures. Two kinds of nitrifying culture were used; one acclimated to 4-methylphenol (4-mp), and the other unacclimated to 4-mp. The unacclimated culture was affected adversely by the 2-CP's presence, since neither nitrification nor 2-CP oxidation was observed. Nonetheless, the acclimated culture showed metabolic capacity to nitrify and mineralize 2-CP. Ammonium removal was 100%, with a nitrifying yield of 0.92 ± 0.04 mg NO(3)(-)-N/mg NH(4)(+)-N consumed. The consumption efficiency for 2-CP was 100% and the halogenated compound was mineralized to CO2. Denaturing gradient gel electrophoresis (DGGE) patterns showed the shift in microbial community structure, indicating that microbial diversity was due to the acclimation process. This is the first evidence where nitrifying culture acclimated to 4-mp completely removed ammonium and 2-CP. PMID:25633952

  6. The granule size distribution in an anammox-based granular sludge reactor affects the conversion--implications for modeling.

    PubMed

    Volcke, E I P; Picioreanu, C; De Baets, B; van Loosdrecht, M C M

    2012-07-01

    Mathematical models are useful tools to optimize the performance of granular sludge reactors. In these models, typically a uniform granule size is assumed for the whole reactor, even though in reality the granules follow a size distribution and the granule size as such affects the process performance. This study assesses the effect of the granule size distribution on the performance of a granular sludge reactor in which autotrophic nitrogen removal is realized through one-stage partial nitritation-anammox. A comparison is made between different approaches to deal with particle size distributions in one-dimensional biofilm models, from the use of a single characteristic diameter to applying a multiple compartment model. The results show a clear impact on the conversion efficiency of the way in which particle size distribution is modeled, resulting from the effect of the granule size on the competition between nitrite oxidizing and anammox bacteria and from the interaction between granules of different sizes in terms of the exchange of solutes. Whereas the use of a uniform granule size is sufficient in case only the overall reactor behavior needs to be assessed, taking into account the detailed granule size distribution is required to study the solute exchange between particles of different sizes. For the latter purpose, the application of the widespread software package Aquasim is limited and the development of dedicated software applications is required. PMID:22252967

  7. Review: granulation and fluidized beds

    SciTech Connect

    Kono, H.

    1981-01-01

    The history of granulation techniques is very long; however, the systematic study of the granulation phenomenon began only after 1950. The first, distinguished paper treating the fundamental binding mechanism of granules was published by Rumpf in 1958. Although there are several binding forces, the discussion in this paper is confined to granulation involving the capillary energy of a liquid-particle system. This technique has been applied widely and successfully to various fields of powder technology because of its advantages of simplicity and economy (ref. 2). Granules with diameters larger than 5 mm can be prepared efficiently by rotating-type granulators, such as a pan or a trommel (ref. 3, 4, 5). On the other hand, the purpose of fluidized-bed granulators (hereafter abbreviated as FBG) is to produce small granules with diameters from 0.3 to 3 mm (ref. 6). Because it contains a small amount of liquid, a fluidized-bed granulator has a fluidization state differing significantly from that of an ordinary fluidized bed. The dispersion of liquid and powder in the bed plays an important role in the granulation mechanism. This mechanism is compared to that of pan granulators, and the differences in characteristics are discussed.

  8. Microelectrode Measurements of the Activity Distribution in Nitrifying Bacterial Aggregates

    PubMed Central

    de Beer, D.; van den Heuvel, J. C.; Ottengraf, S. P. P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be determined from the microprofiles. The interfacial fluxes of the reactants closely reflected the stoichiometry of bacterial nitrification. Both ammonium consumption and nitrate production were localized in the outer shells, with a thickness of approximately 100 to 120 μm, of the aggregates. Under conditions in which ammonium and oxygen penetrated the whole aggregate, nitrification was restricted to this zone; oxygen was consumed in the central parts of the aggregates as well, probably because of oxidation of dead biomass. A sudden increase of the oxygen concentration to saturation (pure oxygen) was inhibitory to nitrification. The pH profiles showed acidification in the aggregates, but not to an inhibitory level. The distribution of activity was determined by the penetration depth of oxygen during aggregate development in the reactor. Mass transfer was significantly limited by the boundary layer surrounding the aggregates. Microelectrode measurements showed that the thickness of this layer was correlated with the diffusion coefficient of the species. Determination of the distribution of nitrifying activity required the use of ammonium or nitrate microelectrodes, whereas the use of oxygen microelectrodes alone would lead to erroneous results. Images PMID:16348875

  9. A novel titrimetric method for monitoring toxicity on nitrifying biofilms.

    PubMed

    Artiga, P; Oyanedel, V; Garrido, J M; Mendez, R

    2003-01-01

    A titrimetric method for monitoring toxicity in suspended biomass was applied in order to measure the activity of nitrifying biofilms and to determine the effect of several toxic compounds on the biofilm. Three typical tannery compounds, quebracho extract, NaCl and Cr+3 were selected to study their toxicity on the biofilms. The results obtained showed an acceptable repeatability of the method for all the toxicants tested with an average standard deviation of less than 10%. Biofilm systems showed higher resistance to the toxicants, when the results obtained using suspended nitrifying biomass, were compared with those found in the literature. The IC50 obtained with quebracho was 8.8 g/L of quebracho extract, while around 65% of maximum activity was attained with 8.7 g/L of NaCl or 120 mg/L Cr+3. The quebracho extract, NaCl and Cr+3 were 26%, 38% and 18%, respectively, less toxic in the biofilm system than for a suspended biomass culture. PMID:12701930

  10. Isolation of neuromelanin granules.

    PubMed

    Tribl, Florian

    2008-12-01

    Neuromelanin granules are pigmented organelles in the human midbrain that give name to a brain area, substantia nigra pars compacta, which macroscopically appears as a dark brown region in the midbrain due to the insoluble pigment neuromelanin. The substantia nigra pars compacta massively degenerates in Parkinson's disease and gives rise to severely disabling movement symptoms. It has been suggested that neuromelanin granules play an important role in the neurodegenerative events in Parkinson's disease: redox-active iron is bound to neuromelanin and thereby retained within this compartment, but in Parkinson's disease it is thought to be increasingly released into the cytosol, promoting oxidative stress. This unit includes a methodological workflow for the isolation of neuromelanin granules from the human midbrain. This top-down approach (describes an approach that reduces the complexity of the sample stepwise from the level of tissue to cell, and from cell to organelle) encompasses the organelle isolation by sequential density gradient centrifugation and the assessment of the isolation efficacy by western blotting. PMID:19085988

  11. Population Ecology of Nitrifiers in a Stream Receiving Geothermal Inputs of Ammonium

    PubMed Central

    Cooper, A. Bryce

    1983-01-01

    The distribution, activity, and generic diversity of nitrifying bacteria in a stream receiving geothermal inputs of ammonium were studied. The high estimated rates of benthic nitrate flux (33 to 75 mg of N · m−2 · h−1) were a result of the activity of nitrifiers located in the sediment. Nitrifying potentials and ammonium oxidizer most probable numbers in the sediments were at least one order of magnitude higher than those in the waters. Nitrifiers in the oxygenated surface (0 to 2 cm) sediments were limited by suboptimal temperature, pH, and substrate level. Nitrifiers in deep (nonsurface) oxygenated sediments did not contribute significantly to the changes measured in the levels of inorganic nitrogen species in the overlying waters and presumably derived their ammonium supply from ammonification within the sediment. Ammonium-oxidizing isolates obtained by a most-probable number nonenrichment procedure were species of either Nitrosospira or Nitrosomonas, whereas all those obtained by an enrichment procedure (i.e., selective culture) were Nitrosomonas spp. The efficiency of the most-probable-number method for enumerating ammonium oxidizers was calculated to be between 0.05 and 2.0%, suggesting that measurements of nitrifying potentials provide a better estimate of nitrifying populations. PMID:16346261

  12. Estimating autotrophic respiration in streams using daily metabolism data

    EPA Science Inventory

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  13. Granulation of increasingly hydrophobic formulations using a twin screw granulator.

    PubMed

    Yu, Shen; Reynolds, Gavin K; Huang, Zhenyu; de Matas, Marcel; Salman, Agba D

    2014-11-20

    The application of twin screw granulation in the pharmaceutical industry has generated increasing interest due to its suitability for continuous processing. However, an understanding of the impact of formulation properties such as hydrophobicity on intermediate and finished product quality has not yet been established. Hence, the current work investigated the granulation behaviour of three formulations containing increasing amounts of hydrophobic components using a Consigma™-1 twin screw granulator. Process conditions including powder feed rate, liquid to solid ratio, granulation liquid composition and screw configuration were also evaluated. The size of the wet granules was measured in order to enable exploration of granulation behaviour in isolation without confounding effects from downstream processes such as drying. The experimental observations indicated that the granulation process was not sensitive to the powder feed rate. The hydrophobicity led to heterogeneous liquid distribution and hence a relatively large proportion of un-wetted particles. Increasing numbers of kneading elements led to high shear and prolonged residence time, which acted to enhance the distribution of liquid and feeding materials. The bimodal size distributions considered to be characteristic of twin screw granulation were primarily ascribed to the breakage of relatively large granules by the kneading elements. PMID:25124058

  14. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    PubMed Central

    Burnap, Robert L.

    2014-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  15. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor.

    PubMed

    Song, Yanjun; Ishii, Satoshi; Rathnayake, Lashitha; Ito, Tsukasa; Satoh, Hisashi; Okabe, Satoshi

    2013-07-01

    In this study, partial nitrifying (PN) aerobic granules were developed in a sequencing batch airlift reactor by controlling the airflow rate and NH4(+) loading rate. The PN reactor produced an effluent with a NO2(-)/NH4(+) ratio of approximately one and with an NH4(+) conversion rate of 1.22 kg N m(-3)day(-1). More than 95% of the total organic carbon was removed during the process. On the basis of clone library analysis and fluorescence in situ hybridization, ammonia-oxidizing bacteria (AOB) closely related to Nitrosomonas eutropha and putative heterotrophic denitrifiers were mainly present near the surface of the PN aerobic granules. Microelectrode measurements revealed that both NH4(+) and NO2(-) were consumed near the surface (<200 μm), whereas no nitrate (NO3(-)) accumulation was observed throughout the granules. These results indicate that PN by AOB and nitrite denitrification by heterotrophs, but not nitrite oxidation, simultaneously occurred near the surface of the PN aerobic granules. PMID:23665689

  16. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  17. N2O emissions from full-scale nitrifying biofilters.

    PubMed

    Bollon, Julien; Filali, Ahlem; Fayolle, Yannick; Guerin, Sabrina; Rocher, Vincent; Gillot, Sylvie

    2016-10-01

    A full-scale nitrifying biofilter was continuously monitored during two measurement periods (September 2014; February 2015) during which both gaseous and liquid N2O fluxes were monitored on-line. The results showed diurnal and seasonal variations of N2O emissions. A statistical model was run to determine the main operational parameters governing N2O emissions. Modification of the distribution between the gas phase and the liquid phase was observed related to the effects of temperature and aeration flow on the volumetric mass transfer coefficient (kLa). With similar nitrification performance values, the N2O emission factor was twice as high during the winter campaign. The increase in N2O emissions in winter was correlated to higher effluent nitrite concentrations and suspected increased biofilm thickness. PMID:27318446

  18. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively. PMID:16312946

  19. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium.

    PubMed

    Zheng, Hai-Yan; Liu, Ying; Gao, Xi-Yan; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2012-07-01

    The bacterial strain F6 was isolated from a biological aerated filter that is used for purifying recirculating water in a marine aquaculture system and was identified as Marinobacter sp. based on the analysis of its 16S rRNA gene sequence. Strain F6 showed efficient aerobic denitrifying ability. One hundred percent of nitrates and 73.10% of nitrites were removed, and the total nitrogen (TN) removal rates reached 50.08% and 33.03% under a high nitrate and nitrite concentration in the medium, respectively. N(2)O and (15)N(2), as revealed by GC-MS and GC-IRMS, were the products of aerobic denitrification. Factors affecting the growth and aerobic denitrifying performance of strain F6 were investigated. The results showed that the optimum aerobic denitrification conditions for strain F6 were the presence of sodium succinate as a carbon source, a C/N ratio of 15, salinity ranging from 32-35 g/L of NaCl, incubation temperature of 30°C, an initial pH of 7.5, and rotation speed of 150 rpm [dissolved oxygen (DO) 6.75 mg/L]. In addition, strain F6 was confirmed to be a heterotrophic nitrifier through its NO(2)(-) generation and 25.96% TN removal when NH(4)(+) was used as the sole N source. Therefore, strain F6, the first reported member of genus Marinobacter with aerobic heterotrophic nitrifying-denitrifying ability, is an excellent candidate for facilitating simultaneous nitrification and denitrification (SND) in industry and aquaculture wastewater. PMID:22578593

  20. COMETABOLISM OF TRIHALOMETHANES BY NITRIFYING BIOFILTERS UNDER DRINKING WATER TREATMENT PLANT CONDITIONS

    EPA Science Inventory

    EPA Identifier: FP916412
    Title: Cometabolism of Trihalomethanes by Nitrifying Biofilters Under Drinking Water Treatment Plant Conditions
    Fellow (Principal Investigator): David G. Wahman
    Institution: University of Texas at Austin
    EPA ...

  1. Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes

    EPA Science Inventory

    The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...

  2. Granulation techniques and technologies: recent progresses.

    PubMed

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations. PMID:25901297

  3. Granulation techniques and technologies: recent progresses

    PubMed Central

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations. PMID:25901297

  4. Development of maize starch granules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize kernels of self-pollinated inbred line B73 harvested on various days after pollination (DAP) were subjected for starch granule development studies. Starch in endosperms was first observed on 6 DAP. A small amount of starch granules (<2% of dry weight) was found in the endosperm on 12 DAP. S...

  5. [Research of aerobic granule characteristics with different granule age].

    PubMed

    Zhou, Man; Yang, Chang-Zhu; Pu, Wen-Hong; Luo, Ying-Dong; Gong, Jian-Yu

    2012-03-01

    In the SBR reactor, we studied the different style, physicochemical characteristic, pollutants removal and microbial activity between the short age and long age aerobic granule, respectively. The short age aerobic granule was cultivated from activated floccules sludge and the other was gotten from aerobic granular sludge which was operated stably more than one year. The results indicated that the wet density, the specific gravity and integrated coefficient (IC) of the short age aerobic granule were 1.066 g x cm(-1), 1.013 g x cm(-3) and 98.7%, respectively. And that of long age were 1.026 g x cm(-3), 1.010 g x cm(-3) and 98.4%, respectively. All of them were higher than the long age aerobic granule. The mean diameters of them were 1.9 mm and 2.2 mm, respectively. The settling velocity of short age and long age aerobic granule were 0.005-0.032 m x s(-1) and 0.003-0.028 m x s(-1), respectively, and two kinds of aerobic granule settling velocity increased with the diameter increased. SVI of the former was lower. The COD removal rates of two aerobic granules were above 90%, and the NH4(+) -N removal rates of them were about 85%. The results of the COD effluent concentration, NH4(+) -N effluent concentration and the pollutants concentration in a typical cycle indicated that the short age aerobic granule had better pollutants removal efficiency. The TP removal rates of them were between 40% -90% and 32% -85%, respectively. The TN removal rates of them were about 80%. The SOUR(H) SOUR(NH4) and SOUR(NO2) of the short age aerobic granule were 26.4, 14.8 and 11.2 mg x (h x g)(-1), respectively. And that of long age were 25.2, 14.4 and 8.4 mg x (h x g)(-1), respectively. In summary, the aerobic granule had significantly different physical and chemical characteristics because of different granule age, and the short age aerobic granule exhibited better pollutants removal ability, higher microbial activity and more stability than the long age aerobic granule. PMID:22624385

  6. Autotrophic nitrite removal in the cathode of microbial fuel cells.

    PubMed

    Puig, Sebastià; Serra, Marc; Vilar-Sanz, Ariadna; Cabré, Marina; Bañeras, Lluís; Colprim, Jesús; Balaguer, M Dolors

    2011-03-01

    Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC. PMID:21262566

  7. Partitioning Autotrophic and Heterotrophic Respiration at Howland Forest

    NASA Astrophysics Data System (ADS)

    Carbone, M. S.; Hollinger, D. Y.; Davidson, E. A.; Hughes, H.; Savage, K. E.

    2014-12-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach, combined with continuous measurements of d13CO2 as well as targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member isotope mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. Results from these approaches will be compared, and together used in a model-data fusion context to better constrain the partitioning of ecosystem respiration in the ecosystem model, FöBAAR.

  8. Performance and biofilm activity of nitrifying biofilters removing trihalomethanes.

    PubMed

    Wahman, David G; Katz, Lynn E; Speitel, Gerald E

    2011-02-01

    Nitrifying biofilters seeded with three different mixed-culture sources removed trichloromethane (TCM) and dibromochloromethane (DBCM) with removals reaching 18% for TCM and 75% for DBCM. In addition, resuspended biofilm removed TCM, bromodichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests, demonstrating that the biofilters contained organisms capable of biotransforming the four regulated trihalomethanes (THMs) commonly found in treated drinking water. Upon the initial and subsequent increased TCM addition, total ammonia nitrogen (TOTNH(3)) removal decreased and then reestablished, indicating an adjustment by the biofilm bacteria. In addition, changes in DBCM removal indicated a change in activity related to DBCM. The backwash batch kinetic tests provided a useful tool to evaluate the biofilm's bacteria. Based on these experiments, the biofilters contained bacteria with similar THM removal kinetics to those seen in previous batch kinetic experiments. Overall, performance or selection does not seem based specifically on nutrients, source water, or source cultures and most likely results from THM product toxicity, and the use of GAC media appeared to offer benefits over anthracite for biofilter stability and long-term performance, although the reasons for this advantage are not apparent based on research to date. PMID:21195446

  9. Granule consolidation during compaction.

    PubMed

    Rubinstein, M H

    1976-03-01

    The deformation of small cylindrical aggregates of dibasic calcium phosphate was measured during compaction. An analogy between these aggregates and cylindrical granules was proposed. No change in the original shape of the aggregates occurred; the cylindrical shape was maintained even at high compaction pressures. Relaxation of the aggregates occurred at pressures higher than 420 MNm-2 (60.9 x 10(3) lb in.-2) when removed from the compacts, but no relaxation took place at pressures below this value. In addition, the aggregates relaxed by an increase in thickness only; there was no corresponding change in diameter. Up to a pressure of 200 MNm-2 (29.0 x 10(3) lb in.-2), an increase in aggregate diameter occurred, which was accompanied by a reduction in thickness. This change produced only a small reduction in volume, which was attributable to interparticulate slippage resulting in a closer packed arrangement. At a pressure of 200 MNm-2, the aggregate diameter no longer increased because solid bridges were formed between the particles and the die wall, preventing further spreading. From 200 to 420 MNm-2, failure of the material occurred by plastic deformation, which produced only a decrease in aggregate thickness. From 420 to 800 MNm-2 (116.0 x 10(3) lb in.-2), a structure was formed that could support the applied load without further reduction of thickness, and this structure was shown to behave elastically. PMID:1263085

  10. Granulopoiesis and granules of human neutrophils.

    PubMed

    Cowland, Jack B; Borregaard, Niels

    2016-09-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated. PMID:27558325

  11. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  12. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    PubMed

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems. PMID:26518069

  13. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    PubMed

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  14. Implications of CO2 Geological Storage on Aquifers Autotrophic Communities

    NASA Astrophysics Data System (ADS)

    Dupraz, Sébastien; Fabbri, Antonin; Joulian, Catherine; Menez, Bénédicte; Gerard, Emanuelle; Henry, Benoit; Crouzet, Catherine; Guyot, François; Garrido, Francis

    2010-05-01

    In a global strategy of carbon emission reduction, a study about CCS (Carbon Capture and Storage) feasibility in the case of a French beet sugar factory and distillery in the Parisian basin was undertaken by regional and state authorities. Besides, economical, geological and engineering questions, microbial interactions were also studied since the potential contribution of the deep biosphere on the storage zones appears to be an essential factor in terms of injectivity and CO2 mobilization. Biological processes like biofilm formation, biomineralization and carbon assimilation may hinder the injections or, to the contrary, improve the stability of the sequestration by shifting CO2 into more stable forms like carbonates and organic matter. Regarding those possibilities, it is thus mandatory to establish how the subsurface biosphere will react by determining which metabolisms will be able to sustain the stress due to high concentrations of CO2 and the resulting acidification. In that case, the study of autotrophic communities reactivity is essential because they are the only entrance for CO2 assimilation in the SLiMEs (Subsurface Litho autotrophic Microbial Ecosystems) and thus are accountable for the general biomass and biofilm production in the deep subsurface. Nevertheless, a simple assessment of the toxical effect induced on these strains cannot be representative of the possible interactions at the scale of a long term storage where adaptations should play a major role. For that reason, we decided to choose different strains, namely autotrophic methanogens (Methanothermococcus thermolithotrophicus and Archeoglobus fulgidus) and sulfate reducing bacteria strains (Desulfotomaculum geothermicum and Desulfotomaculum kuznetsovii), that best characterize the autotrophic communities of our injection site (aquifer of the Triassic Keuper sandstones) and to make them undergo a test of selection/adaptation toward a sequential increase of CO2 partial pressure from 0.05 to 5

  15. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  16. Autotrophic nitrogen removal in one lab-scale vertical submerged biofilm reactor

    NASA Astrophysics Data System (ADS)

    Liang, Zhiwei; Chen, Yingxu; Li, Wenhong; Yang, Shangyuan; Du, Ping

    In this study, the process performance of a new vertical submerged biofilm reactor for complete autotrophic ammonia removal was investigated using synthetic wastewater. The main objectives of this study were to evaluate the flexibility of the reactor, achieve partial autotrophic nitrification with influent ammonium nitrogen ranging from 40 to 280 mg L -1, and achieve a stable half partial autotrophic nitrification by controlling hydraulic retention time (HRT) and alkalinity. A very low concentration of nitrate was observed in the effluent during nitrification. Then autotrophic denitrification revealed Anammox bacteria were present and active in the central anaerobic parts of the bioreactor which was inoculated with a mixed microbial consortium from activated sludge. The results of this study demonstrated that autotrophic denitrification processes can coexist with heterotrophic denitrifying processes in the same environment even if Anammox bacteria were less competitive than heterotrophic denitrifying bacteria.

  17. EFFECT OF CHEMICALS ON SOIL NITRIFYING POPULATIONS USING A CONTINUOUS-FLOW CULTURE TECHNIQUE

    EPA Science Inventory

    This study examines the effects of Roundup [N-(phosphonomethyl)glycine] and N-Serve[2-chloro-6-(trichloromethyl)pyridine] on nitrifying organisms in static batch, perfusion soil columns, and a new continuous-flow soil column system. he continuous-flow method is new to nitrificati...

  18. 454 pyrosequencing-based characterization of the bacterial consortia in a well established nitrifying reactor.

    PubMed

    Ramirez-Vargas, Rocio; Serrano-Silva, Nancy; Navarro-Noya, Yendi E; Alcántara-Hernández, Rocio J; Luna-Guido, Marco; Thalasso, Frederic; Dendooven, Luc

    2015-01-01

    This present study aimed to characterize the bacterial community in a well-established nitrifying reactor by high-throughput sequencing of 16S rRNA amplicons. The laboratory-scale continuous stirred tank reactor has been supplied with ammonium (NH(4)(+)) as sole energy source for over 5 years, while no organic carbon has been added, assembling thus a unique planktonic community with a mean NH(4)(+) removal rate of 86 ± 1.4 mg NH(4)(+)-N/(L d). Results showed a nitrifying community composed of bacteria belonging to Nitrosomonas (relative abundance 11.0%) as the sole ammonia oxidizers (AOB) and Nitrobacter (9.3%) as the sole nitrite oxidizers (NOB). The Alphaproteobacteria (42.3% including Nitrobacter) were the most abundant class within the Proteobacteria (62.8%) followed by the Gammaproteobacteria (9.4%). However, the Betaproteobacteria (excluding AOB) contributed only 0.08%, confirming that Alpha- and Gammaproteobacteria thrived in low-organic-load environments while heterotrophic Betaproteobacteria are not well adapted to these conditions. Bacteroidetes, known to metabolize extracellular polymeric substances produced by nitrifying bacteria and secondary metabolites of the decayed biomass, was the second most abundant phylum (30.8%). It was found that Nitrosomonas and Nitrobacter sustained a broad population of heterotrophs in the reactor dominated by Alpha- and Gammaproteobacteria and Bacteroidetes, in a 1:4 ratio of total nitrifiers to all heterotrophs. PMID:26360760

  19. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    EPA Science Inventory

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  20. Nitrous oxide production from sequencing batch reactor sludge under nitrifying conditions: effect of nitrite concentrations.

    PubMed

    Gong, Youkui; Wang, Shuying; Wang, Sai; Peng, Yongzhen

    2012-01-01

    Nitrous oxide (N2O), a greenhouse gas which contributes to the destruction of the stratospheric ozone layer, can be emitted from nitrifying processes during wastewater treatment. The pathway of N2O production was studied using a lab-scale nitrifying reactor. Allylthiourea was used to inhibit NH4+ oxidation and provide information on processes that happen under nitrifying condition. Our study confirmed that besides heterotrophic bacteria, ammonium-oxidizing bacteria could perform denitrification processes, during which NO2- was the electron acceptor and NH4+ was the electron donor, with N2 and N2O as final products. The relative contribution of the heterotrophic denitrification process to total N2O emissions varied from 46.1% to 60.4% depending on NO2(-)-N addition. Correspondingly, 21.8% to 51.5% of total N2O emissions can be attributed to nitrifier denitrification. Little N2O is emitted during the NO2- oxidation process. PMID:22629611

  1. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor.

    PubMed

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2010-11-01

    The tolerance, kinetic and oxidizing capability of a nitrifying sludge exposed to different initial concentrations of sulfide (1.7 to 18mg/L) was evaluated in batch experiments. A nitrifying sludge fed with ammonium and thiosulfate and produced in steady state conditions was used as inoculum. Sulfide induced a significant effect either on ammonium consumption rates or nitrite accumulation. In spite of the nitrifying kinetic was affected, the ammonium consumption efficiencies were close to 100%, with nitrate production yields around 1.0. The IC(50) value for ammonium oxidizing-process was 13mg/L of sulfide. Sulfide was oxidized in two steps: first sulfide was oxidized to elemental sulfur and afterward into sulfate. FISH oligonucleotide probes for Thiobacillusdenitrificans, Nitrosomonas spp., and Nitrobacter spp. were used in order to know if these bacteria were part of the microbial ecology. The obtained results showed that under nitrifying conditions are possible to carry out simultaneously two biological processes, nitrification and sulfur oxidation. PMID:20620047

  2. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures.

    PubMed

    Ouyang, Fan; Ji, Min; Zhai, Hongyan; Dong, Zhao; Ye, Lin

    2016-08-01

    Diversity and composition of the microbial community, especially the nitrifiers, are essential to the treatment efficiency of wastewater in activated sludge systems. Heavy metals commonly present in the wastewater influent such as Cu can alter the community structure of nitrifiers and lower their activity. However, the dynamics of microbial community along a gradient of metal exposure have largely been unexplored, partially due to the limitations in traditional molecular methods. This study explored the dynamics regarding the diversity and community structures of overall and nitrifying microbial communities in activated sludge under intermittent Cu gradient loadings using Illumina sequencing. We created a new local nitrifying bacterial database for sequence BLAST searches. High Cu loadings (>10.9 mg/L) impoverished microbial diversity and altered the microbial community. Overall, Proteobacteria was the predominant phylum in the activated sludge system, in which Zoogloea, Thauera, and Dechloromonas (genera within the Rhodocyclaceae family of the Beta-proteobacteria class) were the dominant genera in the presence of Cu. The abundance of unclassified bacteria at the phylum level increased substantially with increasing Cu loadings. Nitrosomonas and Nitrospira were the predominant nitrifiers. The nitrifying bacterial community changed through increasing abundance and shifting to Cu-tolerant species to reduce the toxic effects of Cu. Our local nitrifying bacterial database helped to improve the resolution of bacterial identification. Our results provide insights into the dynamics of microbial community in response to various metal concentrations in activated sludge systems and improve our understanding regarding the effect of metals on wastewater treatment efficiency. PMID:27098258

  3. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion. PMID:23393969

  4. A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus.

    PubMed

    Herter, Sylvia; Fuchs, Georg; Bacher, Adelbert; Eisenreich, Wolfgang

    2002-06-01

    Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions. PMID:11929869

  5. Process optimization for continuous extrusion wet granulation.

    PubMed

    Tan, Li; Carella, Anthony J; Ren, Yukun; Lo, Julian B

    2011-08-01

    Three granulating binders in high drug-load acetaminophen blends were evaluated using high shear granulation and extrusion granulation. A polymethacrylate binder enhanced tablet tensile strength with rapid disintegration in simulated gastric fluid, whereas polyvinylpyrrolidone and hydroxypropyl cellulose binders produced less desirable tablets. Using the polymethacrylate binder, the extrusion granulation process was studied regarding the effects of granulating liquid, injection rate and screw speed on granule properties. A full factorial experimental design was conducted to allow the statistical analysis of interactions between extrusion process parameters. Response variables considered in the study included extruder power consumption (screw loading), granule bulk/tapped density, particle size distribution, tablet hardness, friability, disintegration time and dissolution. PMID:20367553

  6. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  7. Selective sorting of alpha-granule proteins

    PubMed Central

    Italiano, J.E.; Battinelli, E. M.

    2010-01-01

    Summary One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. The majority of this vast array of secreted proteins is stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on the mechanisms of alpha-granule biogenesis and secretion, with a particular emphasis on recent findings that clearly demonstrate that platelets contain distinct subpopulations of alpha-granules that undergo differential release during activation. We consider the implications of this new paradigm of platelet secretion, discuss mechanisms of alpha-granule biogenesis, and review the molecular basis of transport and delivery of alpha-granules to assembling platelets. PMID:19630794

  8. [Hemocompatibility of various synthetic granulates].

    PubMed

    Jung, F; Mrowietz, C; Seyfert, U T; Franke, R P

    1997-06-01

    The adherence of platelets to different polymer granulates was examined in a perfusion chamber filled with platelet-rich plasma. The surface area of each of the granulates was of a standardised size. The results were compared with those found for a non-thrombogenic and a highly thrombogenic foreign-body surface. The three polymers examined-Cryolite, Styrolux and Zylar-must be considered non-thrombogenic. Platelet adherence to these substances is significantly less (3%) than that to a highly thrombogenic surface such as glass (95%). The three materials did not differ in terms of platelet adherence, and would appear to be suitable potential materials for use in cell separators. PMID:9312306

  9. Iron granules in plasma cells.

    PubMed Central

    Cook, M K; Madden, M

    1982-01-01

    The curious and unusual finding of coarse iron granules in marrow plasma cells is reported in 13 patients, in whom the finding was incidental. In 10 of these patients there was known alcohol abuse and serious medical complications of that abuse. Previous reports of the finding are reviewed. Haematological data of the 13 patients are presented. A hypothesis is outlined which may account for the finding. Images PMID:7068907

  10. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  11. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction. PMID:27337901

  12. Protein mobility within secretory granules.

    PubMed

    Weiss, Annita Ngatchou; Bittner, Mary A; Holz, Ronald W; Axelrod, Daniel

    2014-07-01

    We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10(-10) cm(2)/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the

  13. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

    PubMed

    Urschel, Matthew R; Hamilton, Trinity L; Roden, Eric E; Boyd, Eric S

    2016-05-01

    Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments. PMID:27037359

  14. Interactions Between Autotrophic and Heterotrophic Strains Improve CO₂ Fixing Efficiency of Non-photosynthetic Microbial Communities.

    PubMed

    Hu, Jiajun; Wang, Lei; Zhang, Shiping; Xi, Xuefei; Le, Yiquan; Fu, Xiaohua; Tsang, Yiufai; Gao, Mintian

    2015-07-01

    Five autotrophic strains isolated from non-photosynthetic microbial communities (NPMCs), which were screened from oceans with high CO2 fixing capability, were identified as Ochrobactrum sp. WH-2, Stenotrophomonas sp. WH-11, Ochrobactrum sp. WH-13, Castellaniella sp. WH-14, and Sinomicrobium oceani WH-15. The CO2 fixation pathways of all these strains were Calvin-Benson-Bassham pathway. These strains could metabolize multifarious organic compounds, which allowed switching them to autotrophic culture after enrichment in heterotrophic culture. The central composite response surface method indicated that these strains possessed many interactive effects, which increased the CO2 fixing efficiency of a combined community composed of these strains by 56 %, when compared with that of the single strain. Furthermore, another combined community composed of these autotrophic strains and NPMC had richer interactive relationships, with CO2 fixing efficiency being 894 % higher than that of the single strain and 148 % higher than the theoretical sum of the CO2 fixing efficiency of each of its microbial components. The interaction between strictly heterotrophic bacteria in NPMC and isolated autotrophic strains played a crucial role in improving the CO2 fixing efficiency, which not only eliminated self-restraint of organic compounds generated during the growth of autotrophic bacteria but also promoted its autotrophic pathway. PMID:25947620

  15. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth. PMID:25807048

  16. Nitrate removal with sulfur-limestone autotrophic denitrification processes

    SciTech Connect

    Flere, J.M.; Zhang, T.C.

    1999-08-01

    Nitrate removal using sulfur and limestone autotrophic denitrification (SLAD) processes was evaluated with four laboratory-scale fixed-bed column reactors. The research objectives were (1) to determine the optimum design criteria of the fixed-bed SLAD columns; and (2) to evaluate the effects of biofouling on the SLAD column performance. A maximum denitrification rate of 384 g NO{sub 3}{sup {minus}}-N(m{sup 3}{center_dot}day) was achieved at a loading rate between 600 and 700 g NO{sub 3}{sup {minus}}-N(m{sup 3}{center_dot}day). The effluent nitrite concentration started to rise gradually once the loading rate was above 600 g NO{sub 3}{sup {minus}}-N(m{sup 3}{center_dot}day). A loading rate between 175 and 225 g NO{sub 3}{sup {minus}}-N(m{sup 3}{center_dot}day) achieved the maximum nitrate-N removal efficiency ({approximately}95%). Biofouling was evaluated based on tracer studies, the measured biofilm thickness, and modeling. The porosities of the columns fluctuated with time, and the elongation of the filter media was observed. Biofouling caused short-circuiting and decreased nitrate removal efficiency. A SLAD column will require backwashing after 6 months of operation when the influent is synthetic ground water but will foul and require backwashing within 1--2 months when the influent is real ground water.

  17. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.

    PubMed

    Umrania, Valentina V

    2006-07-01

    Investigations were carried out to isolate microbial strains from soil, mud and water samples from metallurgically polluted environment for bioremediation of toxic heavy metals. As a result of primary and secondary screening various 72 acidothermophilic autotrophic microbes were isolated and adapted for metal tolerance and biosorption potentiality. The multi-metal tolerance was developed with higher gradient of concentrations of Ag, As, Bi, Cd, Cr, Co, Cu, Hg, Li, Mo, Pb, Sn and Zn. The isolates were checked for their biosolubilization ability with copper containing metal sulfide ores. In case of chalcopyrite 85.82% and in covellite as high as 97.5% copper solubilization occurred in presence of 10(-3) M multi-heavy metals on fifth day at 55 degrees C and pH 2.5. Chemical analyses were carried out by inductively coupled plasma spectroscopy (ICP) for metal absorption. The selected highly potential isolate (ATh-14) showed maximum adsorption of Ag 73%, followed by Pb 35%, Zn 34%, As 19%, Ni 15% and Cr 9% in chalcopyrite. PMID:16324838

  18. Autotrophic, sulfur-oxidizing actinobacteria in acidic environments.

    PubMed

    Norris, Paul R; Davis-Belmar, Carol S; Brown, Carly F; Calvo-Bado, Leonides A

    2011-03-01

    Some novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation. Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) is active in CO(2) fixation by Acidimicrobium ferrooxidans, which appears to have acquired its RuBisCO-encoding genes from the proteobacterium Acidithiobacillus ferrooxidans or its ancestor. This lateral transfer of RuBisCO genes between a proteobacterium and an actinobacterium would add to those noted previously among proteobacteria, between proteobacteria and cyanobacteria and between proteobacteria and plastids. "Acidithiomicrobium" has RuBisCO-encoding genes which are most closely related to those of Acidimicrobium ferrooxidans and Acidithiobacillus ferrooxidans, and has additional RuBisCO genes of a different lineage. 16S rRNA gene sequences from "Acidithiomicrobium" species dominated clone banks of the genes extracted from mixed cultures of moderate thermophiles growing on copper sulfide and polymetallic sulfide ores in ore leaching columns. PMID:21308384

  19. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    PubMed

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. PMID:25536030

  20. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge.

    PubMed

    Zheng, Ping; Lin, Feng-mei; Hu, Bao-lan; Chen, Jian-song

    2004-01-01

    The anaerobic ammonia oxidation (Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100.83 mmol/(L x d) and 98.95 mmol/(L x d). The performance of Anammox reactor was efficient and stable. PMID:15137666

  1. Nitrate Accumulation in Aerobic Hypolimnia: Relative Importance of Benthic and Planktonic Nitrifiers in an Oligotrophic Lake

    PubMed Central

    Vincent, Warwick F.; Downes, Malcolm T.

    1981-01-01

    Both nitrate and nitrous oxide accumulate in the hypolimnion of the oligotrophic Lake Taupo, New Zealand, throughout stratification. The two forms of oxidized nitrogen increase in concentration with increasing depth toward the sediments, where the dissolved concentrations of reduced nitrogen are two orders of magnitude higher than concentrations in the overlying water. Nitrification rates were measured by dark [14C]CO2 assays with and without the inhibitor nitrapyrin. The fastest rates were recorded for planktonic nitrifiers in the epilimnion and benthic species in the surficial 2.5 mm of the sediments. Nitrifying bacteria were least active in the deep hypolimnion. Deepwater accumulation of NO3− in Lake Taupo must therefore be a product of benthic rather than planktonic nitrification. PMID:16345852

  2. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2015-04-01

    This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S rRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitrifiers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions. PMID:25616640

  3. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    SciTech Connect

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  4. Culture-independent detection of "TM7" bacteria in a streptomycin-resistant acidophilic nitrifying process

    NASA Astrophysics Data System (ADS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum "TM7" as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L-1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  5. Links among nitrification, nitrifier communities, and edaphic properties in contrasting soils receiving dairy slurry.

    PubMed

    Fortuna, Ann-Marie; Honeycutt, C Wayne; Vandemark, George; Griffin, Timothy S; Larkin, Robert P; He, Zhongqi; Wienhold, Brian J; Sistani, Karamat R; Albrecht, Stephan L; Woodbury, Bryan L; Torbert, Henry A; Powell, J Mark; Hubbard, Robert K; Eigenberg, Roger A; Wright, Robert J; Alldredge, J Richard; Harsh, James B

    2012-01-01

    Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties. PMID:22218194

  6. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants.

    PubMed

    Fernandez-Fontaina, E; Omil, F; Lema, J M; Carballa, M

    2012-10-15

    High biodegradation efficiencies of different emerging micropollutants were obtained with nitrifying activated sludge (NAS) working at high nitrogen loading rates (NLR), that boosted the development of biomass with high nitrifying activities (>1 g N-NH(4)(+)/g VSS d). Come-tabolic biodegradation seemed to be responsible for the removal of most compounds due to the action of the ammonium monooxygenase enzyme. NAS showed a different affinity for each compound, probably due to steric hindrance, activation energy limitations or the presence of specific functional groups. Increasing loading rates of micropollutants were removed at shorter hydraulic retention times, although the biodegradation efficiencies of compounds with slow/intermediate kinetics, such as fluoxetine, erythromycin, roxithromycin and trimethoprim, diminished due to kinetic and/or stoichiometric limitations. Solids retention time, always above the minimum to avoid the washout of nitrifiers, did not enhance the biodegradation of any of the selected compounds, with the exception of diclofenac. Regarding sorption, the solid-liquid distribution coefficients (K(d)) obtained in NAS were very similar to those found in conventional activated sludge by other authors. No correlation between K(d) values and any of the operational parameters was found for the selected substances. PMID:22877882

  7. Heterotrophic nitrifying and oxygen tolerant denitrifying bacteria from greenwater system of coastal aquaculture.

    PubMed

    Velusamy, Kathiravan; Krishnani, Kishore Kumar

    2013-03-01

    In this work, herbivorous fish Mugil cephalus has been cultured to secrete protein rich green slime, which helps nitrifying and oxygen tolerant denitrifying bacteria to grow and colonize. Four strains representing Alcaligenaceae family have been isolated from greenwater system and characterized using biochemical test, fatty acid methyl ester (GC-FAME) analysis, 16S rRNA and functional gene approaches. They were tested for an ability to nitrify ammonia and nitrite aerobically. Two strains showed notable nitrification activity, when grown in a mineral salts medium containing ammonium sulfate and potassium nitrite. Functional gene analysis confirmed the presence of nitrous oxide reductase (nosZ) gene showing that they have an oxygen-tolerant denitrification system. It has been proposed that Alcaligenes faecalis strains heterotrophically nitrify ammonia into nitrite via formation of hydroxyl amine, which is oxidized to nitrous oxide using oxygen or nitrite as electron acceptor. These results provide a possible advantage of having nitrification and denitrification capabilities in the same organism, which plays an important role in biological wastewater system. PMID:23354499

  8. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-01

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. PMID:25539140

  9. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  10. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture.

    PubMed

    Kampschreur, Marlies J; Tan, Nico C G; Kleerebezem, Robbert; Picioreanu, Cristian; Jetten, Mike S M; Van Loosdrecht, Mark C M

    2008-01-15

    Nitric oxide (NO) and nitrous oxide (N2O) emissions from nitrifying ecosystems are a serious threat to the environment. The factors influencing the emission and the responsible microorganisms and pathways were studied using a laboratory-scale nitrifying reactor system. The nitrifying culture was established at growth rates relevant to wastewater treatment plants (WWTPs). During stable ammonia oxidation, 0.03% of ammonium was emitted as NO and 2.8% was emitted as N2O. Although mixed cultures were used, clear responses in emission of ammonia oxidizing bacteria (AOB) could be detected and it was concluded that the denitrification pathway of AOB was the main source of the emissions. Emissions of nitrogen oxides in the system were strongly influenced by oxygen, nitrite, and ammonium concentrations. Steady state emission levels greatly underestimate the total emission, because changes in oxygen, nitrite, and ammonium concentrations induced a dramatic rise in NO and N2O emission. The data presented can be used as an indication for NO and N2O emission by AOB in plug-flow activated sludge systems, which is highly relevant because of the atmospheric impact and potential health risk of these compounds. PMID:18284142

  11. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    NASA Technical Reports Server (NTRS)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  12. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity.

    PubMed

    Ren, Ting-Ting; Liu, Li; Sheng, Guo-Ping; Liu, Xian-Wei; Yu, Han-Qing; Zhang, Ming-Chuan; Zhu, Jian-Rong

    2008-07-01

    Calcium-rich aerobic granules were cultivated after 3-month operation. The chemical form and spatial distribution of calcium in the granules and their physicochemical characteristics were explored. Examination with a scanning electron microscope combined energy dispersive X-ray detector (SEM-EDX) shows that Ca was mainly accumulated in the core of the granules. CaCO(3) was found to be the main calcium precipitate in the granules. The fluorescent in situ hybridization (FISH) analysis shows that the cells were crowded in the outer layer and gathered in clusters. Compared with the granules without Ca accumulation, the Ca-rich granules had more rigid structure and a higher strength. However, their specific oxygen uptake rate (SOUR) reduced after the Ca accumulation inside them. Comparison between the SOUR values of the granules with and without Ca accumulation suggests that Ca accumulated in the aerobic granules might have a negative effect on their bioactivity. PMID:18514253

  13. Carbon granule probe microphone for leak detection

    NASA Astrophysics Data System (ADS)

    Parthasarathy, S. P.

    1985-02-01

    A microphone which is not subject to corrosion is provided by employing carbon granules to sense sound waves. The granules are packed into a ceramic tube and no diaphragm is used. A pair of electrodes is located in the tube adjacent the carbon granules and are coupled to a sensing circuit. Sound waves cause pressure changes on the carbon granules which results in a change in resistance in the electrical path between the electrodes. This change in resistance is detected by the sensing circuit. The microphone is suitable for use as a leak detection probe in recovery boilers, where it provides reliable operation without corrosion problems associated with conventional microphones.

  14. Development of Denitrifying and Nitrifying Bacteria and Their Co-occurrence in Newly Created Biofilms in Urban Streams

    NASA Astrophysics Data System (ADS)

    Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.

    2015-12-01

    Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving

  15. Expanding leaves of mature deciduous forest trees rapidly become autotrophic.

    PubMed

    Keel, Sonja G; Schädel, Christina

    2010-10-01

    Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves. PMID:20688879

  16. Partitioning Soil Respiration Between Autotrophic and Heterotrophic Components in a Mature Boreal Black Spruce Stand

    NASA Astrophysics Data System (ADS)

    Gaumont-Guay, D.; Black, T. A.; Barr, A. G.; Jassal, R. S.; Morgenstern, K.; Nesic, Z.

    2005-12-01

    A root-exclusion experiment conducted in mature boreal black spruce stand (125 year-old) in Saskatchewan, Canada, from September 2003 to December 2004 allowed the partitioning of soil respiration between autotrophic (roots, mycorrhizae and decomposers associated with the rhizosphere) and heterotrophic (free-living organisms) components using continuous automated chamber measurements of soil CO2 efflux. The exclusion of live roots caused a 25% reduction in soil respiration three weeks after the application of the treatment in September 2003, which suggested a strong link between tree photosynthesis and belowground respiration processes. Annual estimates of autotrophic and heterotrophic respiration were 324 and 230 g C m-2 y-1 in 2004, accounting for 53 and 38% of soil respiration, respectively, after correcting for the decomposition of roots killed by trenching (78 g C m-2 y-1). The remainder (57 g C m-2 y-1) originated from live-moss respiration. Over the course of the year, there was a gradual transition from heterotrophic to autotrophic-dominated respiration with three distinctive phases: (1) autotrophic respiration was negligible during winter when the trees were dormant; (2) heterotrophic respiration dominated soil respiration during the shoulder periods of April-May and October-November when soil temperature was low; (3) autotrophic respiration exceeded heterotrophic respiration from mid-July to mid-September when soil temperature was high and trees were active. Both components of respiration increased exponentially with soil temperature during the growing season but autotrophic respiration showed greater temperature sensitivity than heterotrophic respiration. The replenishment of soil water following spring snowmelt induced a sustained increase in heterotrophic respiration. Pulses in autotrophic respiration were observed during summer following large rainfalls that were attributed to rhizosphere priming effects. After normalizing autotrophic respiration for

  17. Twin screw wet granulation: Binder delivery.

    PubMed

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. PMID:25869451

  18. Ceramic granule strength variability and compaction behavior

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Readey, M.J.

    1995-08-01

    Diametral compression strength distributions and the compaction behavior and of irregular shape 150--200 {mu}m ceramic granules and uniform-size 210 {mu}m glass spheres were measured to determine how granule strength variability relates to compaction behavior of granular assemblies. High variability in strength, represented by low Weibull modulus values (m<3) was observed for ceramic granules having a distribution of sizes and shapes, and for uniform-size glass spheres. Compaction pressure data were also analyzed using a Weibull distribution function, and the results were very similar to those obtained from the diametral compression strength tests for the same material. This similarity suggests that it may be possible to model granule compaction using a weakest link theory, whereby an assemblage of granules is viewed as the links of a chain, and failure of the weakest granule (i.e., the weakest link) leads to rearrangement and compaction. Additionally, with the use of Weibull statistics, it appears to be possible to infer the variability in strength of individual granules from a simple pressure compaction test, circumventing the tedious task of testing individual granules.

  19. Diversity and succession of autotrophic microbial community in high-elevation soils along deglaciation chronosequence.

    PubMed

    Liu, Jinbo; Kong, Weidong; Zhang, Guoshuai; Khan, Ajmal; Guo, Guangxia; Zhu, Chunmao; Wei, Xiaojie; Kang, Shichang; Morgan-Kiss, Rachael M

    2016-10-01

    Global warming has resulted in substantial glacier retreats in high-elevation areas, exposing deglaciated soils to harsh environmental conditions. Autotrophic microbes are pioneering colonizers in the deglaciated soils and provide nutrients to the extreme ecosystem devoid of vegetation. However, autotrophic communities remain less studied in deglaciated soils. We explored the diversity and succession of the cbbL gene encoding the large subunit of form I RubisCO, a key CO2-fixing enzyme, using molecular methods in deglaciated soils along a 10-year deglaciation chronosequence on the Tibetan Plateau. Our results demonstrated that the abundance of all types of form I cbbL (IA/B, IC and ID) rapidly increased in young soils (0-2.5 years old) and kept stable in old soils. Soil total organic carbon (TOC) and total nitrogen (TN) gradually increased along the chronosequence and both demonstrated positive correlations with the abundance of bacteria and autotrophs, indicating that soil TOC and TN originated from autotrophs. Form IA/B autotrophs, affiliated with cyanobacteria, exhibited a substantially higher abundance than IC and ID. Cyanobacterial diversity and evenness increased in young soils (<6 years old) and then remained stable. Our findings suggest that cyabobacteria play an important role in accumulating TOC and TN in the deglaciated soils. PMID:27465079

  20. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas, Jr.; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  1. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    PubMed

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. PMID:26650451

  2. [Mechanism of ammonium removal in the completely autotrophic nitrogen removal in one reactor process].

    PubMed

    Yang, Guo-hong; Fang, Fang; Guo, Jin-song; Qin, Yu; Wei, Ying

    2009-01-01

    Different synthetic wastewaters were used in the batch tests to analyze the intermediate products and the nitrogen balance, and to study the mechanism of ammonium removal in the completely autotrophic nitrogen removal in one reactor process with the sludge cultured in the SBBR completely autotrophic nitrogen removal system. The results showed that 62% of ammonium was converted to such nitrogen compounds as NO2-, NO3-, NH2 OH, N2H4, NO, NO2, N2O and N2 without addition of organic carbon, and N2 took up 90.07%. The ammonium in the completely autotrophic nitrogen removal in one reactor system was removed in many ways. 4.5% of ammonium was removed in the physical-chemical way. 3.73% of ammonium was converted by the conventional nitrification-denitrification process. The quantity of ammonium removed by the completely autotrophic nitrogen removal in one reactor process was 53.77%, which is the largest, and the completely autotrophic nitrogen removal in one reactor process could be realized in two different metabolic pathways. But the effluent ammonium in the anoxic reactor, where enough NO2 present were present, was equal to the blank system, and no ammonium was converted to such nitrogen compounds as NO2- and N2 by Nitrosomonas eutropha using NO2 as electron acceptor, which maybe caused by lack of the function bacteria. PMID:19353865

  3. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    PubMed Central

    Linchangco, Richard

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed. PMID:25580463

  4. Continuous twin screw granulation: influence of process variables on granule and tablet quality.

    PubMed

    Vercruysse, J; Córdoba Díaz, D; Peeters, E; Fonteyne, M; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2012-09-01

    The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator. PMID:22687571

  5. Mast cell secretory granules: armed for battle.

    PubMed

    Wernersson, Sara; Pejler, Gunnar

    2014-07-01

    Mast cells are important effector cells of the immune system and recent studies show that they have immunomodulatory roles in diverse processes in both health and disease. Mast cells are distinguished by their high content of electron-dense secretory granules, which are filled with large amounts of preformed and pre-activated immunomodulatory compounds. When appropriately activated, mast cells undergo degranulation, a process by which these preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on an immune response are closely associated with the biological actions of the granule compounds that they release, as exemplified by the recent studies showing that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings. In this Review, we discuss the current knowledge of mast cell secretory granules. PMID:24903914

  6. Electrochemical performance of granulated titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilhelm, O.; Pratsinis, S. E.; de Chambrier, E.; Crouzet, M.; Exnar, I.

    The electrochemical performance of Li-ion insertion into electrodes made of various sizes of anatase titania nanoparticles embedded in larger granulated entities (1-10 μm) is investigated. The granules are formed by spray drying of a suspension containing titania nanoparticles made by hydrolyzing titanium tetraisopropoxide (TTIP). Depending on the three process steps, i.e. hydrolysis-condensation, hydrothermal processing and spray drying, different properties for the electrode made from these granules can be achieved in terms of phase composition, specific surface area (SSA) and specific charge capacity. Hydrothermally processed (HP) particles are more resistant to calcination than sol-gel precipitated (SGP) ones and have a higher SSA which leads to a better performance with respect to specific charge capacity. Electrodes made from granulated nanoparticles have superior specific charge capacity than from non-granulated ones as the former have more inter-particle contacts.

  7. [Correlation of dry granulation process parameters and granule quality based on multiple regression analysis].

    PubMed

    Cao, Han-Han; Du, Ruo-Fei; Yang, Jia-Ning; Feng, Yi

    2014-03-01

    In this paper, microcrystalline cellulose WJ101 was used as a model material to investigate the effect of various process parameters on granule yield and friability after dry granulation with a single factor and the effect of comprehensive inspection process parameters on the effect of granule yield and friability, then the correlation between process parameters and granule quality was established. The regress equation was established between process parameters and granule yield and friability by multiple regression analysis, the affecting the order of the size of the order of the process parameters on granule yield and friability was: rollers speed > rollers pressure > speed of horizontal feed. Granule yield was positively correlated with pressure and speed of horizontal feed and negatively correlated rollers speed, while friability was on the contrary. By comparison, fitted value and real value, fitted and real value are basically the same of no significant differences (P > 0.05) and with high precision and reliability. PMID:24961115

  8. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.

    PubMed

    Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine

    2007-02-01

    Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage. PMID:17454043

  9. NEDDylation promotes stress granule assembly

    PubMed Central

    Jayabalan, Aravinth Kumar; Sanchez, Anthony; Park, Ra Young; Yoon, Sang Pil; Kang, Gum-Yong; Baek, Je-Hyun; Anderson, Paul; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly. PMID:27381497

  10. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    PubMed

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions. PMID:26084890

  11. Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets

    SciTech Connect

    Vanotti, M.B.; Hunt, P.G.

    2000-04-01

    Nitrification of ammonia (NH{sub 4}{sup +}) is a critical component for improved systems of animal wastewater treatment. One of the most effective processes uses nitrifying microorganisms encapsulated in polymer resins. It is used in Japan in municipal wastewater treatment plants for higher nitrification rates, shorter hydraulic retention times (HRT), and lower aeration treatment cost. The authors evaluated whether this technology could be adapted for treatment of higher-strength lagoon swine wastewaters containing {approximately}230 mg NH{sub 4}-N/L and 195 mg BOD{sub 5}/L. A culture of acclimated lagoon nitrifying sludge (ALNS) was prepared from a nitrifying biofilm developed in an overland flow soil using fill-and-draw cultivation. The ALNS was successfully immobilized in 3- to 5-mm polyvinyl alcohol (PVA) polymer pellets by a PVA-freezing method. Swine wastewater was treated in aerated, suspended bioreactors with a 15% (w/v) pellet concentration using batch and continuous flow treatment. Alkalinity was supplemented with inorganic carbon to maintain the liquid pH within an optimum range (7.7--8.4). In batch treatment, only 14 h were needed for nitrification of NH{sub 4}{sup +}. Ammonia was nitrified readily, decreasing at a rate of 16.1 mg NH{sub 4}-N/L h. In contrast, it took 10 d for a control (no-pellets) aerated reactor to start nitrification; furthermore, 70% of the N was lost by air stripping. Without alkalinity supplements, the pH of the liquid fell to 6.0--6.2, and NH{sub 4}{sup +} oxidation stopped. In continuous flow treatment, nitrification efficiencies of 95% were obtained with NH{sub 4}{sup +} loading rates of 418 mg-N/L-reactor d (2.73 g-N/g-pellet d) and an HRT of 12 h. The rate of nitrification obtained with HRT of 4 h was 567 mg-N/L d. In all cases, the NH{sub 4}-N removed was entirely recovered in oxidized N forms. Nitrification rates obtained in this work were not greatly affected by high NH{sub 4}{sup +} or BOD concentration of swine

  12. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    SciTech Connect

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  13. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Yan, Laihong; Wang, Aijie; Gu, Yingying; Lee, Duu-Jong

    2015-09-01

    Elemental sulfur (S(0)) formation from and nitrogen removal on sulfide, nitrate and ammonium-laden wastewaters were achieved by denitrifying ammonium oxidation (DEAMOX) reactor with autotrophic denitrifiers and anaerobic ammonium oxidation (anammox) bacteria. The sulfide to nitrate ratio is a key process parameter for excess accumulation of S(0) and a ratio of 1.31:1 is a proposed optimum. The Alishewanella, Thauera and Candidatus Anammoximicrobium present respectively the autotrophic denitrifiers and anammox bacteria for the reactor. DEAMOX is demonstrated promising biological process for treating organics-deficient (S+N) wastewaters with excess S(0) production. PMID:26022701

  14. Interactions of Nitrifying Bacteria and Heterotrophs: Identification of a Micavibrio-Like Putative Predator of Nitrospira spp.

    PubMed Central

    Dolinšek, Jan; Lagkouvardos, Ilias; Wanek, Wolfgang; Wagner, Michael

    2013-01-01

    Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with 13C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the 13C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage. PMID:23335755

  15. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. PMID:25562758

  16. Reduced tabletability of roller compacted granules as a result of granule size enlargement.

    PubMed

    Sun, Changquan Calvin; Himmelspach, Micah W

    2006-01-01

    The mechanism for the frequently observed "loss of reworkability or tabletability" of dry-granulated (DG) powders was investigated in detail using microcrystalline cellulose (MCC). It was hypothesized that granule size enlargement is the primary mechanism to the phenomenon. Detrimental effects of size enlargement on tabletability of plastic materials are predictable based on the physical model of interparticulate bonding within a tablet. In absence of extensive fracture of particles/granules, larger particles/granules exhibit lower surface area available for bonding thus lower tensile strength when compressed under identical conditions. Size effects were first demonstrated using different grades of MCC powders, both whole and sieved, of different particle size distributions. Regardless grade and sieve fraction, larger particles always resulted in lower tabletability, that is, lower tensile strength at the same compaction pressure. It was subsequently shown that enlargement of granules also reduced powder tabletability regardless grade of MCC. Tabletability of sieved granules after roller compacted for one, two, and four times decreased monotonically with increasing granule size but independent of the total number of roller compaction. Moreover, tabletability of fine granules (44-106 microm) was higher than that of coarse MCC powder (Avicel PH-200). These results suggest that the primary mechanism for reduced tabletabilty of DG granules of MCC is granule size enlargement rather than "work-hardening." PMID:16315244

  17. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  18. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.

    PubMed

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  19. Asymmetric distribution in twin screw granulation.

    PubMed

    Chan Seem, Tim; Rowson, Neil A; Gabbott, Ian; de Matas, Marcel; Reynolds, Gavin K; Ingram, Andy

    2016-09-01

    Positron Emission Particle Tracking (PEPT) was successfully employed to validate measured transverse asymmetry in material distribution in the conveying zones of a Twin Screw Granulator (TSG). Flow asymmetry was established to be a property of the granulator geometry and dependent on fill level. The liquid distribution of granules as a function of fill level was determined. High flow asymmetry at low fill level negatively affects granule nucleation leading to high variance in final uniformity. Wetting of material during nucleation was identified as a critical parameter in determining final granule uniformity and fill level is highlighted as a crucial control factor in achieving this. Flow asymmetry of dry material in conveying zones upstream of binder fluid injection leads to poor non-uniform wetting at nucleation and results in heterogeneous final product. The granule formation mechanism of 60°F kneading blocks is suggested to be primarily breakage of agglomerates formed during nucleation. Optimisation of screw configuration would be required to provide secondary growth. This work shows how fill dependent flow regimes affect granulation mechanisms. PMID:26820919

  20. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules. PMID:18379102

  1. [Optimization of dry granulating technique of Qibai Pingfei granule through response surface methodology].

    PubMed

    Li, Xue-feng; Li, Yun-xiao; Xu, Zhen-qiu; Meng, Jin; Yan, Ming; Jin, Rui-ting; Xiao, Wei

    2015-08-01

    To determine the optimum process conditions for dry granulating technique of Qibai Pingfei granule, granule excipient type, rolling wheel speed and pressure and feeding speed were studied. Taking shaping rate at a time, moisture absorption and dissolubility as index, the type and amount of granule excipient were determined. In addition, taking shaping rate at a time as index, parameters of rolling wheel speed and pressure and feeding speed were researched through single factor test and response surface methodology. The optimum parameters were as follows: lactose as excipient, dry extract powder to excipient at 1:2, rolling wheel speed and pressure at 10.9 Hz and 6.4 MPa and feeding speed at 7.2 Hz. After validation of three batches pilot-scale production, the optimum processing parameters for dry granulating technique of Qibai Pingfei granule is reasonable and feasible, which can provide reliable basis for production. PMID:26677695

  2. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  3. Nitrifier distribution in across channel transects of the Cape Fear Estuary

    NASA Astrophysics Data System (ADS)

    Reichert, R.; Lax, S.; Song, B.; O'Mullan, G. D.

    2013-05-01

    Nitrification, a microbially mediated process involving the two-step oxidization of ammonia to nitrite and then nitrate, is important for understanding the fate of nutrient pollution in coastal ecosystems and provides a linkage to microbial pathways resulting in gaseous nitrogen loss to the atmosphere. This study investigated the diversity and species composition of ammonia oxidizing bacteria (AOB), and archaea (AOA) in across channel sampling transects of Cape Fear Estuary of North Carolina. DNA was extracted from sediments and the ammonia monooxygenase (amo) genes were amplified, cloned and sequenced. AOA were found to have higher diversity and more widespread distribution than AOB in the estuary. Across channel sediment transects in high salinity regions of the lower estuary revealed nearly uniform distribution of ammonia oxidizers at the level of genera. AOB were dominated by gene sequences mostly similar to Nitrosospira, while all AOA sequences were most similar to Nitrosopumilus. In contrast, sediment samples from across channel transects in the mid and upper estuary were found to have more complex populations of both AOA and AOB suggesting smaller scale spatial heterogeneity that resulted in more complex nitrifier communities. These patterns of nitrifier diversity may be important to interpreting the rates and stability of ammonia oxidation within in the Cape Fear Estuary.

  4. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats

    PubMed Central

    Verhagen, Frank J. M.; Laanbroek, Hendrikus J.

    1991-01-01

    The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h−1. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h−1, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria. PMID:16348588

  5. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions.

    PubMed

    Maestre, Juan P; Wahman, David G; Speitel, Gerald E

    2016-06-21

    Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand. The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under more relevant drinking water conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Four types of batch kinetic experiments were conducted: (1) positive controls to estimate ammonia kinetic parameters, (2) negative controls to account for biomass reactivity, (3) utilization associated product (UAP) controls to account for UAP reactivity, and (4) cometabolism experiments to estimate cometabolism kinetic parameters. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to the experimental data. Cometabolism kinetics were best described by a first-order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism accounted for 30% of the observed monochloramine loss. These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; therefore, monochloramine cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems. PMID:27196729

  6. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    PubMed

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  7. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea.

    PubMed

    Hugoni, Mylène; Agogué, Hélène; Taib, Najwa; Domaizon, Isabelle; Moné, Anne; Galand, Pierre E; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2015-08-01

    To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies. PMID:25851445

  8. Insulin Granule Biogenesis, Trafficking and Exocytosis

    PubMed Central

    Hou, June Chunqiu; Min, Le; Pessin, Jeffrey E.

    2015-01-01

    It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from

  9. Granulation, control of bacterial contamination, and enhanced lipid accumulation by driving nutrient starvation in coupled wastewater treatment and Chlorella regularis cultivation.

    PubMed

    Zhou, Dandan; Li, Yunbao; Yang, Yang; Wang, Yao; Zhang, Chaofan; Wang, Di

    2015-02-01

    Bacterial contamination and biomass harvesting are still challenges associated with coupling of microalgae and wastewater treatment technology. This study investigated aggregation, bacterial growth, lipid production, and pollutant removal during bacteria contaminated Chlorella regularis cultivation under nutrient starvation stress, by supposing the C/N/P ratios of the medium to 14/1.4/1 (MB₂.₅) and 44/1.4/1 (MB₄.₀), respectively. Granules of 500-650 μm were formed in the bacteria contaminated inoculum; however, purified C. regularis were generally suspended freely in the medium, indicating that bacterial presence was a prerequisite for granulation. Extracellular polymeric substance (EPS) analysis showed that polysaccharides were dominant in granules, while protein mainly distributed in the outer layer. Denaturing gradient gel electrophoresis (DGGE) results revealed Sphingobacteriales bacterium and Sphingobacterium sp. are vital organisms involved in the flocculation of microalgae, and nitrifiers (Stenotrophomonas maltophilia) could co-exist in the granular. Both EPS and DGGE results further supported that bacteria played key roles in granulation. C. regularis was always dominant and determined the total biomass concentration during co-cultivation, but bacterial growth was limited owing to nutrient deficiency. Starvation strategy also contributed to enhancement of lipid accumulation, as lipid content in MB₄.₀ with a greater C/N/P led to the greatest increase in the starvation period, and the maximum lipid productivity reached 0.057 g/(L·day). Chemical oxygen demand and nitrogen removal in MB₄.₀ reached 92 and 96%, respectively, after 3 days of cultivation. Thus, cultivation of microalgae in high C/N/P wastewater enabled simultaneous realization of biomass granulation, bacterial overgrowth limitation, enhanced lipid accumulation, and wastewater purification. PMID:25520170

  10. Estimation of autotrophic soil respiration in a boreal forest using three different approaches

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Pumpanen, Jukka; Heinonsalo, Jussi

    2016-04-01

    It is generally challenging to separate autotrophic and heterotrophic soil respiration. The reason for these difficulties is connected with the intimate interaction of the key processes in soil. Root-associated microbes practically colonize the whole soil volume while decomposition processes occur in the same matrix. Therefore, autotrophic and heterotrophic processes cannot be separated in natural systems. However, there are several methods that can be used to better understand the dynamics of these two. A classical method is called 'trenching' where a trench is dug around a known volume of soil and the roots entering the soil are cut from the living trees thus blocking the C flow from them. The second way to separate autotrophic and heterotrophic respiration relies on the difference in the isotopic signature (13C) of plant-derived or decomposition-derived CO2. The third way to separate the sources is to study the differences in the short- and long-term temperature dependencies in CO2 soil emissions. This is possible especially in boreal forests where the biological activity has a strong seasonal cycle. We compared these three methods in an experiment conducted in a southern boreal middle-aged Scots pine stand in Finland. Our data provides a unique possibility to critically evaluate current methods for estimating autotrophic and heterotrophic soil respiration. The knowledge is needed to study further plant physiology and plant-microbe interactions in soil.

  11. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  12. Identification of Missing Genes and Enzymes for Autotrophic Carbon Fixation in Crenarchaeota▿ †

    PubMed Central

    Ramos-Vera, W. Hugo; Weiss, Michael; Strittmatter, Eric; Kockelkorn, Daniel; Fuchs, Georg

    2011-01-01

    Two autotrophic carbon fixation cycles have been identified in Crenarchaeota. The dicarboxylate/4-hydroxybutyrate cycle functions in anaerobic or microaerobic autotrophic members of the Thermoproteales and Desulfurococcales. The 3-hydroxypropionate/4-hydroxybutyrate cycle occurs in aerobic autotrophic Sulfolobales; a similar cycle may operate in autotrophic aerobic marine Crenarchaeota. Both cycles form succinyl-coenzyme A (CoA) from acetyl-CoA and two molecules of inorganic carbon, but they use different means. Both cycles have in common the (re)generation of acetyl-CoA from succinyl-CoA via identical intermediates. Here, we identified several missing enzymes/genes involved in the seven-step conversion of succinyl-CoA to two molecules of acetyl-CoA in Thermoproteus neutrophilus (Thermoproteales), Ignicoccus hospitalis (Desulfurococcales), and Metallosphaera sedula (Sulfolobales). The identified enzymes/genes include succinyl-CoA reductase, succinic semialdehyde reductase, 4-hydroxybutyrate-CoA ligase, bifunctional crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase, and beta-ketothiolase. 4-Hydroxybutyryl-CoA dehydratase, which catalyzes a mechanistically intriguing elimination of water, is well conserved and rightly can be considered the key enzyme of these two cycles. In contrast, several of the other enzymes evolved from quite different sources, making functional predictions based solely on genome interpretation difficult, if not questionable. PMID:21169482

  13. Autotrophic denitrification and its effect on metal speciation during marine sediment remediation.

    PubMed

    Shao, Mingfei; Zhang, Tong; Fang, Herbert H P

    2009-07-01

    Denitrification-based remediation has been proved as a cost-effective approach for organic removal in sediment. However, little attention has been drawn on the concomitant autotrophic denitrification process and its impacts during such treatment. In this study, a contaminated marine sediment sample was treated with nitrate in a series of experiments to characterize the autotrophic denitrification and its impacts on metal speciation. Through treatment, as the consequence of autotrophic denitrification which accounts for 73.9% of nitrate reduction, approximately 98.8% acid volatile sulfide (AVS) was oxidized to sulfate, causing changes of Zn, Cu and Pb speciation in the sediment. Their oxidizable fractions decreased by 71.7%, 13% and 71% respectively while the bound-to-carbonate fractions increased by 52.0%, >700% and >40%, and the reducible fractions also increased by 276%, >280% and 140%. Thus, the relatively stable oxidizable phase of Zn, Cu and Pb was generally transferred to the more mobile bound-to-carbonate and reducible phases. According to SEM (simultaneously extracted metal) analysis, most of extractable Zn and Pb were no longer present in the form of metal sulfides after denitrification. The (Zn+Pb)/AVS ratio increased from 0.030 to 3.1. Both sequential extraction and AVS-SEM suggested a possible increase of heavy metal mobility and, thus, toxicity. Two major species responsible for autotrophic denitrification were identified to be phylogenetically related with Sulfurimonas paralvinellae and Thiohalophilus thiocyanoxidans. PMID:19476962

  14. Twin screw granulation - review of current progress.

    PubMed

    Thompson, M R

    2015-01-01

    Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique. PMID:25402966

  15. Process analysis of fluidized bed granulation.

    PubMed

    Rantanen, J; Jørgensen, A; Räsänen, E; Luukkonen, P; Airaksinen, S; Raiman, J; Hänninen, K; Antikainen, O; Yliruusi, J

    2001-01-01

    This study assesses the fluidized bed granulation process for the optimization of a model formulation using in-line near-infrared (NIR) spectroscopy for moisture determination. The granulation process was analyzed using an automated granulator and optimization of the verapamil hydrochloride formulation was performed using a mixture design. The NIR setup with a fixed wavelength detector was applied for moisture measurement. Information from other process measurements, temperature difference between process inlet air and granules (T(diff)), and water content of process air (AH), was also analyzed. The application of in-line NIR provided information related to the amount of water throughout the whole granulation process. This information combined with trend charts of T(diff) and AH enabled the analysis of the different process phases. By this means, we can obtain in-line documentation from all the steps of the processing. The choice of the excipient affected the nature of the solid-water interactions; this resulted in varying process times. NIR moisture measurement combined with temperature and humidity measurements provides a tool for the control of water during fluid bed granulation. PMID:14727858

  16. Role of Microtubules in Stress Granule Assembly

    PubMed Central

    Chernov, Konstantin G.; Barbet, Aurélie; Hamon, Loic; Ovchinnikov, Lev P.; Curmi, Patrick A.; Pastré, David

    2009-01-01

    Following exposure to various stresses (arsenite, UV, hyperthermia, and hypoxia), mRNAs are assembled into large cytoplasmic bodies known as “stress granules,” in which mRNAs and associated proteins may be processed by specific enzymes for different purposes like transient storing, sorting, silencing, or other still unknown processes. To limit mRNA damage during stress, the assembly of micrometric granules has to be rapid, and, indeed, it takes only ∼10–20 min in living cells. However, such a rapid assembly breaks the rules of hindered diffusion in the cytoplasm, which states that large cytoplasmic bodies are almost immobile. In the present work, using HeLa cells and YB-1 protein as a stress granule marker, we studied three hypotheses to understand how cells overcome the limitation of hindered diffusion: shuttling of small messenger ribonucleoprotein particles from small to large stress granules, sliding of messenger ribonucleoprotein particles along microtubules, microtubule-mediated stirring of large stress granules. Our data favor the two last hypotheses and underline that microtubule dynamic instability favors the formation of micrometric stress granules. PMID:19843517

  17. Stimulation of Autotrophic Denitrification by Intrusions of the Bosporus Plume into the Anoxic Black Sea

    PubMed Central

    Fuchsman, Clara A.; Murray, James W.; Staley, James T.

    2012-01-01

    Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3−) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx− and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well. PMID:22826706

  18. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing.

    PubMed

    Sharp, Christine E; Stott, Matthew B; Dunfield, Peter F

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, "Methylacidiphilum" fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as (13)CH(4)-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with (13)CO(2) and (13)CH(4), individually and in combination. Testing the protocol in "M. infernorum" strain V4 resulted in assimilation of (13)CO(2) but not (13)CH(4), verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via (13)CO(2)-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with (13)CH(4) + (12)CO(2) caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with (13)CO(2) in combination with (12)CH(4) or (13)CH(4) induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs

  19. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    PubMed Central

    Sharp, Christine E.; Stott, Matthew B.; Dunfield, Peter F.

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium “Methylacidiphilum infernorum” strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), “universal” pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, “Methylacidiphilum” fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in “M. infernorum” strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via 13CO2-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems. PMID

  20. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  1. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.

    PubMed

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2010-05-01

    The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (k(biol)) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their k(biol) into very highly (k(biol)>5Lg(SS)(-1)d(-1)), highly (175%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation. Solids Retention Time (SRT(aerobic) >50d and <50d; SRT(anoxic) >20d and <20d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340d. Temperature (16-26 degrees C) only had a slight effect on the removal of

  2. Dynamics of Autotrophic Marine Planktonic Thaumarchaeota in the East China Sea

    PubMed Central

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the ‘universal’ thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved

  3. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process.

    PubMed

    Wade, J B; Martin, G P; Long, D F

    2015-07-01

    The feasibility of a novel reverse-phase wet granulation process has been established previously and several potential advantages over the conventional process have been highlighted (Wade et al., 2014a,b,b). Due to fundamental differences in the growth mechanism and granule consolidation behaviour between the two processes the reverse-phase approach generally formed granules with a greater mass mean diameter and a lower intragranular porosity than those formed by the conventional granulation process under the same liquid saturation and impeller tip speed conditions. The lower intragranular porosity was hypothesised to result in an increase in the granule strength and subsequent decrease in tablet tensile strength. Consequently, the aim of this study was to compare the effect of impeller tip speed and granule size on the strength and compaction properties of granules prepared using both the reverse-phase and conventional granulation processes. For the conventional granulation process an increase in the impeller tip speed from 1.57 to 4.71 ms(-1) (200-600 RPM) resulted in an increase in the mean granule strength (p<0.05) for all granule size fractions and as the granule size fraction increased from 425-600 to 2000-3350 μm the mean fracture strength decreased (p<0.05). For the reverse-phase process an increase in impeller tip speed had no effect (p>0.05) on mean granule strength whereas, like the conventional process, an increase in granule size fraction from 425-600 to 2000-3350 μm resulted in a decrease (p<0.05) in the mean fracture strength. No correlation was found between mean granule fracture strength and the tablet tensile strength (p>0.05) for either granulation approach. These data support the rejection of the original hypothesis which stated that an increase in granule strength may result in a decrease in the tablet tensile strength. The similar tablet tensile strength observed between the conventional and reverse-phase granulation processes indicated that

  4. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  5. Formation of volutin granules in Corynebacterium glutamicum.

    PubMed

    Pallerla, Srinivas Reddy; Knebel, Sandra; Polen, Tino; Klauth, Peter; Hollender, Juliane; Wendisch, Volker F; Schoberth, Siegfried M

    2005-02-01

    Volutin granules are intracellular storages of complexed inorganic polyphosphate (poly P). Histochemical staining procedures differentiate between pathogenic corynebacteria such as Corynebacterum diphtheriae (containing volutin) and non-pathogenic species, such as C. glutamicum. Here we report that strains ATCC13032 and MH20-22B of the non-pathogenic C. glutamicum also formed subcellular entities (18-37% of the total cell volume) that had the typical characteristics of volutin granules: (i) volutin staining, (ii) green UV fluorescence when stained with 4',6-diamidino-2-phenylindole, (iii) electron-dense and rich in phosphorus when determined with transmission electron microscopy and X-ray microanalysis, and (iv) 31P NMR poly P resonances of isolated granules dissolved in EDTA. MgCl2 addition to the growth medium stimulated granule formation but did not effect expression of genes involved in poly P metabolism. Granular volutin fractions from lysed cells contained polyphosphate glucokinase as detected by SDS-PAGE/MALDI-TOF, indicating that this poly P metabolizing enzyme is present also in intact poly P granules. The results suggest that formation of volutin is a more widespread phenomenon than generally accepted. PMID:15668011

  6. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)). PMID:19716692

  7. Granulation in saturnian rings and atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    The third theorem of the wave planetary tectonics [1-3 & others] states: "Celestial bodies are granular". It means that inertia-gravity waves appearing in bodies due to their movements in non-circular keplerian orbits and propagating in them in four interfering orthogonal and diagonal directions produce tectonic granules. They are of three kinds: uprising (+), subsiding (-) and neutral (0). Their sizes are inversely proportional to bodies orbital frequencies. Higher frequency - smaller granule, lower frequency - larger granule. The inertia-gravity waves warp all spheres of celestial bodies: solid, liquid, gaseous, and act in stars, planets, asteroids, comets and satellites. The Cassini data provide numerous excellent images of saturnian rings and show that wave processes are ordinary also in them - in disperse solid environment. To illustrate dependence between orbital frequencies and granule sizes we provide the following geometrical representation of the planetary row starting from the solar photosphere also having a certain orbital frequency about the center of the Solar system (Fig. 1). This row can be extended in domain of the outer planets by the same algorithm: Jupiter 3πR, Saturn 7.5πR, Uranus 21πR, Neptune 41πR, Pluto 62πR. One cannot directly observe these huge waves in the planets but they are needed for wave modulation procedures very important for satellites and rings having two orbital frequencies: around the star and planets. A recent support for the wave structurization in the Solar system came from Saturn where 22 year long ground-based temperature observations discovered a wave-like oscillation: hotcold pattern switches every Saturn half-year = 15 Earth's years [4]. Like in the radio-wave physics the lower orbiting frequency of the Saturn's system around Sun modulates the higher orbiting frequencies of the system satellites, rings and the planet's upper atmosphere about the Saturn `s system center. . The higher frequency is multiplied and

  8. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL.

    PubMed

    Taylor, Shauna M; He, Yiliang; Zhao, Bin; Huang, Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further understand its removal ability, several experiments were conducted to identify the growth and ammonium removal response at different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30 degrees C, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth, respectively. The nitrification products hydroxylamine (NH2OH), nitrite (NO2(-)) and nitrate (NO3(-)) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions. PMID:19999986

  9. Comparison of the Morphology and Deoxyribonucleic Acid Composition of 27 Strains of Nitrifying Bacteria1

    PubMed Central

    Watson, Stanley W.; Mandel, Manley

    1971-01-01

    The gross morphology, fine structure, and per cent guanine plus cytosine (GC) composition of deoxyribonucleic acid of 27 strains of nitrifying bacteria were compared. Based on morphological differences, the ammonia-oxidizing bacteria were separated into four genera. Nitrosomonas species and Nitrosocystis species formed one homogenous group, and Nitrosolobus species and Nitrosospira species formed a second homogenous group in respect to their deoxyribonucleic acid GC compositions. Similarly, the nitrite-oxidizing bacteria were separated into three genera based on their morphology. The members of two of these nitrite-oxidizing genera, Nitrobacter and Nitrococcus, had similar GC compositions, but Nitrospina gracilis had a significantly lower GC composition than the members of the other two genera. Images PMID:4939767

  10. Soil nitrifying and denitrifying capacities are altered by global change factors in a California annual grassland

    NASA Astrophysics Data System (ADS)

    Niboyet, A.; Le Roux, X.; Barthes, L.; Hungate, B.; Dijkstra, P.; Blankinship, J. C.; Brown, J. R.; Field, C. B.; Leadley, P. W.

    2009-12-01

    Nitrification and denitrification are key mediators of nitrogen (N) cycling, especially N losses, in terrestrial ecosystems, yet little is known about the long-term, in situ responses of these two microbial processes to the simultaneous and interacting global changes likely to occur this century. We investigated the responses of the two steps of nitrification - ammonia oxidation and nitrite oxidation - and of denitrification to the interactive effects of elevated CO2, warming, increased precipitation and N deposition as part of the Jasper Ridge Global Change Experiment. We followed these responses over two growing seasons of the experiment using measures of potential rates of ammonia oxidation, nitrite oxidation, and denitrification, along with key correlates of these activities (gross N mineralization, gross nitrification, soil moisture, soil NH4+ and NO3- concentrations, soil pH, soil temperature, soil CO2 and N2O effluxes, and root and shoot biomass). Across all dates, soil ammonia and nitrite oxidizing capacities responded very differently to global change treatments: soil ammonia oxidizing capacities were increased by 59% in the high N deposition treatment (likely as a result of higher substrate availability for ammonia-oxidizers), while soil nitrite oxidizing capacities did not respond to the N deposition treatment but were reduced by 10% in the increased precipitation treatment. Soil denitrifying capacities were increased by 26% in the high N deposition treatment (likely as a result of higher substrate availability for denitrifiers) and by 15% in the increased precipitation treatment (likely as a result of higher soil water content). Overall, elevated CO2 and warming were found to have little effects on soil nitrifying and denitrifying capacities, and interactive effects between global change components were rare when analyzed across multiple sampling dates. Thus, our results suggest that increased atmospheric N deposition and changes in precipitation

  11. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. PMID:26340062

  12. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    PubMed Central

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  13. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. PMID:27016211

  14. Antimicrobial-Coated Granules for Disinfecting Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  15. COMPLEX INTERACTIONS BETWEEN AUTOTROPHS IN SHALLOW MARINE AND FRESHWATER ECOSYSTEMS: IMPLICATIONS FOR COMMUNITY RESPONSES TO NUTRIENT STRESS. (U915532)

    EPA Science Inventory

    The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...

  16. Chloraminated Drinking Water Distribution System Nitrification: Batch and Biofilm Inactivation Studies, Model Nitrifying Biofilm Investigations, and Evaluation of Operational Responses to Nitrification Episodes

    EPA Science Inventory

    Studies are currently underway to help fill knowledge gaps that exist in the general understanding of nitrification episodes. One of these gaps includes the need for growth and inactivation kinetic parameters for nitrifiers representative of those inhabiting distribution systems ...

  17. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes: batch experiments

    PubMed Central

    2013-01-01

    The effects of various parameters on bromate reduction were tested using lab-scale batch reactors with sulfur based autotrophic and methanol based heterotrophic denitrification processes. The initial bromate (BrO3–) concentration of 100 and 500 μg/L was completely reduced and bromide (Br-) was produced stoichiometrically from bromate in all batch reactors. In all experiments, nitrate was completely reduced to below detection limit. Kinetic studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration. At stoichiometrically sufficient methanol concentration as an external carbon source, nitrate and bromate were reduced to below US EPA drinking water limits in heterotrophic denitrification conditions. The methanol was completely depleted at the end of the heterotrophic operation conditions. PMID:24354945

  18. Lactate dehydrogenase from autotrophic and heterotrophic cells of the marine diatom Cylindrotheca fusiformis Reimann & Lewin.

    PubMed

    Darley, W M; Smiley, R H

    1976-10-01

    Cultures of Cylindrotheca furisormis grown either autotrohpically or heterotrophically on lactate contained significant amounts of NAD-dependent L(+)-lactate dehydrogenase (EC 1.1.1.27). Polyacylamide gel electrophoresis of crude enzyme extracts revealed a single band which was indistinguishable between autotrohpic and heterotrohpic cells. The Km for lactate of partially purified preparations was lower under heterotrophic conditions. The specific activity in crude extracts was higher under autotrophic than heterotrophic conditions; it dropped precipitously when autotrophic cells were transferred to the dark, increasing again only in the presence of lactate. These and related observations suggest that this enzyme has at most only a minor role in the assimilation of lactate during heterotrophic growth on lactate. PMID:184899

  19. Sulfur-based autotrophic denitrification from the micro-polluted water.

    PubMed

    Zhou, Weili; Liu, Xu; Dong, Xiaojing; Wang, Zheng; Yuan, Ying; Wang, Hui; He, Shengbing

    2016-06-01

    Eutrophication caused by high concentrations of nutrients is a huge problem for many natural lakes and reservoirs. Removing the nitrogen contamination from the low C/N water body has become an urgent need. Autotrophic denitrification with the sulfur compound as electron donor was investigated in the biofilter reactors. Through the lab-scale experiment, it was found that different sulfur compounds and different carriers caused very different treatment performances. Thiosulfate was selected to be the best electron donor and ceramsite was chosen as the suitable carrier due to the good denitrification efficiency, low cost and the good resistibility against the high hydraulic loads. Later the optimum running parameters of the process were determined. Then the pilot-scale experiment was carried out with the real micro-polluted water from the West Lake, China. The results indicated that the autotrophic denitrification with thiosulfate as electron donor was feasible and applicable for the micro-polluted lake water. PMID:27266314

  20. Autotrophic Microbe Metagenomes and Metabolic Pathways Differentiate Adjacent Red Sea Brine Pools

    PubMed Central

    Wang, Yong; Cao, Huiluo; Zhang, Guishan; Bougouffa, Salim; Lee, On On; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2013-01-01

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens. PMID:23624511

  1. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  2. Formulation of custom sized LX-15 granules

    SciTech Connect

    Stull, T.W.

    1980-04-01

    LX-15 is a booster explosive formulation consisting of 95% HNS I and 5% Kel F-800 developed by Lawrence Livermore Laboratory. The purpose of this effort was to develop formulation techniques for the production of custom size granules that are amenable for processing in automatic weighing equipment. This report details processes whereby 0.4 and 1.5 kg size batches are produced, meeting those requirements. Efforts to date have found that granule size is dependent on batch/vessel size, water-to-solvent ratio and the degree of vessel agitation.

  3. Process for producing zirconium based granules

    SciTech Connect

    Jade, S.S.

    1990-05-22

    This patent describes a process for the production f amorphous zirconium based granules. It comprises: adding about 2--15 wt % of a suitable phase stabilizer to an aqueous solutio, based upon the total weight of ZrO{sub 2} in solution, to produce an aqueous solution having a pH in the range of about 4 to 7 comprising a zirconium based complex and phase stabilizer and thereafter; drying the aqueous solution comprising the zirconium based complex and the phase stabilizer at a temperature below about 180{degrees} C. for a time sufficient to evaporate the aqueous solution thereby forming amorphous zirconium based granules containing the phase stabilizer.

  4. Toxoplasma secretory granules: one population or more?

    PubMed

    Mercier, Corinne; Cesbron-Delauw, Marie-France

    2015-02-01

    In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma. PMID:25599584

  5. Granule size distributions after twin-screw granulation - Do not forget the feeding systems.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Moll, K-P; Krumme, M; Kleinebudde, P

    2016-09-01

    The aim of this study was to investigate the influence of qualitatively different powder feeder performances on resulting granule size distributions after twin-screw granulation of a highly drug loaded, hydrophobic mixture and a mannitol powder. It was shown that powder feeder related problems usually cannot be identified by trusting in the values given by the feeder. Therefore, a newly developed model for the evaluation of the performance of powder feeders was introduced and it was tried to connect this model to residence time distributions in twin-screw granulation processes. The influence of feeder performances on resulting granule size distributions varied, depending on the applied screw configuration and the used powder. Regarding the hydrophobic and highly drug loaded formulation, which was granulated at an L/S-ratio of 0.5, a pure conveying screw and a medium kneading configuration, consisting of 60° kneading blocks were negatively influenced by poor feeder settings. For optimal settings more narrow distributions could be obtained. For an extensive kneading configuration good and poor settings resulted in mono-modal granule size distributions but were differing in the overall size. Mannitol, a model substance for a liquid sensitive formulation was granulated at an L/S-ratio of 0.075. It was even more important to maintain optimal feeding as mannitol was highly affected by poor feeder performances. Even an extensive kneading configuration could not level the errors in powder feeder performance, resulting in qualitatively different granule size distributions. The results of this study demonstrate the importance of detailed knowledge about applied feeding systems to gain optimal performance in twin-screw granulation. PMID:27224854

  6. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. PMID:27449628

  7. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    PubMed

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become

  8. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    PubMed

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  9. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus.

    PubMed

    Zarzycki, Jan; Fuchs, Georg

    2011-09-01

    Chloroflexus aurantiacus is a facultative autotrophic green nonsulfur bacterium that grows phototrophically in thermal springs and forms microbial mats with cyanobacteria. Cyanobacteria produce glycolate during the day (photorespiration) and excrete fermentation products at night. C. aurantiacus uses the 3-hydroxypropionate bi-cycle for autotrophic carbon fixation. This pathway was thought to be also suited for the coassimilation of various organic substrates such as glycolate, acetate, propionate, 3-hydroxypropionate, lactate, butyrate, or succinate. To test this possibility, we added these compounds at a 5 mM concentration to autotrophically pregrown cells. Although the provided amounts of H(2) and CO(2) allowed continuing photoautotrophic growth, cells immediately consumed most substrates at rates equaling the rate of autotrophic carbon fixation. Using [(14)C]acetate, half of the labeled organic carbon was incorporated into cell mass. Our data suggest that C. aurantiacus uses the 3-hydroxypropionate bi-cycle, together with the glyoxylate cycle, to channel organic substrates into the central carbon metabolism. Enzyme activities of the 3-hydroxypropionate bi-cycle were marginally affected when cells were grown heterotrophically with such organic substrates. The 3-hydroxypropionate bi-cycle in Chloroflexi is unique and was likely fostered in an environment in which traces of organic compounds can be coassimilated. Other bacteria living under oligotrophic conditions acquired genes of a rudimentary 3-hydroxypropionate bi-cycle, possibly for the same purpose. Examples are Chloroherpeton thalassium, Erythrobacter sp. strain NAP-1, Nitrococcus mobilis, and marine gammaproteobacteria of the OM60/NOR5 clade such as Congregibacter litoralis. PMID:21764971

  10. Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii.

    PubMed

    Straub, Melanie; Demler, Martin; Weuster-Botz, Dirk; Dürre, Peter

    2014-05-20

    Great interest has emerged in the recent past towards the potential of autotrophic acetogenic bacteria for the sustainable production of fuels and chemicals. This group of microorganisms possesses an ancient pathway for the fixation of carbon dioxide in the presence of hydrogen, making them highly attractive for the utilization of gas mixtures as a cheap and abundant carbon and energy source. As more and more genome sequence data of acetogens becomes available, the genetic tools are being developed concomitantly. Here, we demonstrate for the first time the genetic modification of the well-characterized acetogen Acetobacterium woodii. This microorganism selectively produces acetate under autotrophic conditions, but seems to be limited at high acetate concentrations. To increase the carbon flow through the Wood-Ljungdahl pathway and therefore increase the efficiency of CO2 fixation, genes of enzyme groups of this pathway were selectively overexpressed (the four THF-dependent enzymes for the processing of formate as well as phosphotransacetylase and acetate kinase to enhance an ATP-generation step). Acetate production with genetically modified strains was increased in a batch process under pH-controlled reaction conditions in a stirred-tank reactor with continuous sparging of H2 and CO2. Final acetate concentrations of more than 50gL(-1) acetate were thus measured with the recombinant strains at low cell concentrations of 1.5-2gL(-1) dry cell mass in less than four days under autotrophic conditions. PMID:24637370

  11. The heterotrophic-combined-with-autotrophic denitrification process: performance and interaction mechanisms.

    PubMed

    Xu, Guihua; Feng, Cuijie; Fang, Fang; Chen, Shaohua; Xu, Yuanjian; Wang, Xingzu

    2015-01-01

    In this work, the interaction mechanisms between an autotrophic denitrification (AD) and heterotrophic denitrification (HD) process in a heterotrophic-autotrophic denitrification (HAD) system were investigated, and the performance of the HAD system under different S/Ac(-) molar ratios was also evaluated. The results demonstrated that the heterotrophic-combined-with-autotrophic denitrification process is a promising technology which can remove chemical oxygen demand (COD), sulfide and nitrate simultaneously. The reduction rate of NO(3)(-) to NO(2)(-) by the HD process was much faster than that of reducing NO(2)(-) to N₂, while the reduction rate of NO(3)(-) to NO(2)(-) by the AD process was slower than that of NO(2)(-) to N₂. Therefore, the AD process could use the surplus NO(2)(-) produced by the HD process. This could alleviate the NO(2)(-)-N accumulation and increase the denitrification rate. In addition, the inhibition effects of acetate on AD bacteria and sulfide on HD were observed, and the inhibition was compensated by the promotion effects on NO(2)(-). Therefore, the processes of AD and HD seem to react in parallel, without disturbing each other, in our HAD system. PMID:25909732

  12. Phosphorus removal in a sulfur-limestone autotrophic denitrification (SLAD) biofilter.

    PubMed

    Li, Ruihua; Yuan, Yulin; Zhan, Xinmin; Liu, Bo

    2014-01-01

    The sulfur-limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3(-)), and influent PO4(3-) concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3(-)-N of 30 mg L(-1) and PO4(3-)-P of 15 mg L(-1), the SLAD biofilter removed phosphorus of 45% when the HRT was 6 h, in addition with TN removal of nearly 100%. The optimal phosphorus removal in the SLAD biofilter was around 60%. For the synthetic wastewater containing a PO4(3-)-P concentration of 15 mg L(-1), the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates. PMID:23846955

  13. Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis.

    PubMed

    Xu, Guihua; Peng, Jingjing; Feng, Cuijie; Fang, Fang; Chen, Shaohua; Xu, Yuanjian; Wang, Xingzu

    2015-08-01

    This study demonstrated that a combined heterotrophic and autotrophic denitrification (HAD) process is highly effective for the simultaneous removal of acetate, nitrate, and sulfide at an efficiency of 100, 80, and 100 %, respectively. In the HAD system, simultaneous sulfide, acetate, and nitrate removals were observed, which indicated that heterotrophic and autotrophic denitrification occurred simultaneously. When the sulfide was existed in HAD reactor, the main product of sulfide biooxidation was S(0). Once the sulfide was exhausted, the sulfate concentration in the HAD reactor increased and became the main end product. These results provided an alternative method to control the end sulfide biooxidation product by online monitoring sulfide concentration. Nearly half (43 %) of the total clones in our mix-trophic reactor were amphitrophy denitrifiers. The autotrophic denitrifiers, heterotrophic denitrifiers, and amphitrophy denitrifiers coexisted in the HAD reactor to complete the denitrification process. Retrieved bacterial 16S rRNA gene clones affiliated with uncultured Xanthomonadaceae, Thauera, Thiobacillus, and Chromatiales were dominant. PMID:25825049

  14. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae).

    PubMed

    Carfagna, Simona; Bottone, Claudia; Cataletto, Pia Rosa; Petriccione, Milena; Pinto, Gabriele; Salbitani, Giovanna; Vona, Vincenza; Pollio, Antonino; Ciniglia, Claudia

    2016-09-01

    In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation. PMID:27388343

  15. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.

    PubMed

    Chung, Jinwook; Amin, Khurram; Kim, Seungjin; Yoon, Seungjoon; Kwon, Kiwook; Bae, Wookeun

    2014-07-01

    This study was carried out to determine the possibility of autotrophic denitritation using thiosulfate as an electron donor, compare the kinetics of autotrophic denitrification and denitritation, and to study the effects of pH and sulfur/nitrogen (S/N) ratio on the denitrification rate of nitrite. Both nitrate and nitrite were removed by autotrophic denitrification using thiosulfate as an electron donor at concentrations up to 800 mg-N/L. Denitrification required a S/N ratio of 5.1 for complete denitrification, but denitritation was complete at a S/N ratio of 2.5, which indicated an electron donor cost savings of 50%. Also, pH during denitrification decreased but increased with nitrite, implying additional alkalinity savings. Finally, the highest specific substrate utilization rate of nitrite was slightly higher than that of nitrate reduction, and biomass yield for denitrification was relatively higher than that of denitritation, showing less sludge production and resulting in lower sludge handling costs. PMID:24755301

  16. The abundance and diversity of ammonia-oxidizing bacteria in activated sludge under autotrophic domestication.

    PubMed

    Li, Qiang; Ma, Chao; Sun, Shifang; Xie, Hui; Zhang, Wei; Feng, Jun; Song, Cunjiang

    2013-04-01

    Ammonia-oxidizing bacteria (AOB) play a key role in nitrogen-removal wastewater treatment plants (WWTPs) as they can transform ammonia into nitrite. AOB can be enriched in activated sludge through autotrophic domestication although they are difficult to be isolated. In this study, autotrophic domestication was carried out in a lab-scale sequencing-batch-reactor (SBR) system with two activated sludge samples. The ammonia removal capacity of the sludge samples increased during the domestication, and pH exhibited a negative correlation with the ammonia removal amount, which indicated that it was one important factor of microbial ammonia oxidation. The count of AOB, measured by the most probable number (MPN) method, increased significantly during autotrophic domestication as ammonia oxidation efficiency was enhanced. We investigated the changes in the community structure of AOB before and after domestication by amoA clone library and T-RFLP profile. It showed that AOB had been successfully enriched and the community structure significantly shifted during the domestication. Two groups of AOB were found in sludge samples: Nitrosomonas-like group remained predominant all the time and Nitrosospira-like group changed obviously. Simultaneously, the total heterotrophic bacteria were investigated by MPN and Biolog assay. The metabolic diversity of heterotrophs had changed minutely, although the count of them decreased significantly and lost superiority of microbial communities in the sludge. PMID:24620598

  17. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus.

    PubMed Central

    Reutz, I; Schobert, P; Bowien, B

    1982-01-01

    Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate. PMID:6282814

  18. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  19. α-granules: a story in the making.

    PubMed

    Flaumenhaft, Robert

    2012-12-13

    α-granules are by far the most abundant platelet granules. Yet little is known about how they are formed. In this issue of Blood, Urban et al now characterize platelets from patients with an inheritable α-granule defect, demonstrating a role for VPS16B in α-granule biogenesis and taking us one step closer to understanding how these elusive organelles are formed. PMID:23243155

  20. Starch Granule Variability in Wild Solanum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  1. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  2. Next generation fluidized bed granulator automation.

    PubMed

    Rantanen, J; Känsäkoski, M; Suhonen, J; Tenhunen, J; Lehtonen, S; Rajalahti, T; Mannermaa, J P; Yliruusi, J

    2000-01-01

    A system for fluidized bed granulator automation with in-line multichannel near infrared (NIR) moisture measurement and a unique air flow rate measurement design was assembled, and the information gained was investigated. The multivariate process data collected was analyzed using principal component analysis (PCA). The test materials (theophylline and microcrystalline cellulose) were granulated and the calibration behavior of the multichannel NIR set-up was evaluated against full Fourier Transform (FT) NIR spectra. Accurate and reliable process air flow rate measurement proved critical in controlling the granulation process. The process data describing the state of the process was projected in two dimensions, and the information from various trend charts was outlined simultaneously. The absorbence of test material at correction wavelengths (NIR region) and the nature of material-water interactions affected the detected in-line NIR water signal. This resulted in different calibration models for the test materials. Development of process analytical methods together with new data visualization algorithms creates new tools for in-process control of the fluidized bed granulation. PMID:14727843

  3. Microbial degradation of polyacrylamide by aerobic granules.

    PubMed

    Liu, Lili; Wang, Zhiping; Lin, Kuangfei; Cai, Weimin

    2012-01-01

    To deal with polyacrylamide (PAM) wastewater, granular sludge formed in glucose-fed sequencing batch reactors (SBR) was employed to cultivate PAM-degrading granules. Three replicated SBRs were operated with increasing PAM concentration in the influent from 67 to 670 mg L(-1), and the hydraulic retention time was increased at the same time from 1 d to 6 d during the six-phase of the 43 d acclimation period. The well-acclimated PAM-degrading granules were different from the seeding granules in colour, mean diameter, biomass density and settle ability, and could use PAM as the sole carbon and nitrogen source. In the batch experiments, PAM degradation rate by granules was determined as 2.23 mg PAM g(-1) MLSS h(-1). According to the analysis of the intermediates of PAM biodegradation, PAM was degraded initially through hydrolysis of the amide group, and no acrylamide monomer was detected. With the help of LC/MS, the main intermediate was identified as polyacrylic acid with a low molecular weight. Therefore, the PAM-degrading granular sludge may be employed for removing PAM in the wastewater produced from tertiary oil recovery that uses polymeric flooding technology. PMID:22720433

  4. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules. PMID:17557275

  5. Proteoglycan modifications by granulation tissue in culture.

    PubMed

    Quintner, M I; Kollar, E J; Rossomando, E F

    1982-01-01

    To study the process of tissue remodeling that occurs during wound healing, radioactive proteoglycan ([35S]-PGS) was used to assay for enzymatic activities present in the extracellular fluid of healing tissue. Mice, wounded by removal of a 2 x 1.5 cm patch of skin from the dorsal surface, were sacrificed after 3 days of healing. Granulation tissue (1 cm2) was removed, spread onto a sterile wire mesh support and placed in the center well of an organ culture dish. To each well was added 1 ml MCDB medium supplemented with 10% fetal calf serum and antibiotics and 5-20 microliters of [35S]-PGS (100,000 cpm/10 microliters). Medium, removed from the well by aspiration after 24 and 48 h of culture, was boiled 5 min at 100 degrees C and stored frozen at -20 degrees C. Alterations of the PGS were assayed with a Sepharose 4B column (1 x 50 cm) which had an excluded and included volume of 17 and 46 ml, respectively. PGS, incubated without cells or with tissues from unwounded animals, eluted at 26 ml. PGS, incubated with granulation tissue and cultured for either 24 or 48 h, eluted from the Sepharose 4B at 29 ml, a 10% increase in elution volume, suggesting that the size or shape of the PGS has been altered by enzymes secreted by the cells of the granulation tissue. In contrast, PGS incubated with tissues from unwounded animals or without granulation tissue showed no changes. These data suggest that enzymatic activities secreted by cells of granulation tissue may be involved in remodeling during healing. PMID:6749574

  6. [Effect of Low-concentration Ciprofloxacin on the Nitrification and Nitrifying Microorganisms of Biofilms in Biological Aerated Filter].

    PubMed

    He, Shi; Gu, Chao-chao; Wei, Xin; Huang, Sheng-lin; Liu, Zhen-hong; Xue, Gang; Gao, Pin

    2016-04-15

    Effect of low-concentration ciprofloxacin (CIP) on nitrification and nitrifying microorganisms of biofilms was studied in biological aerated filters (BAF). Quantitative PCR (qPCR) was used to determine the abundance variance of four ciprofloxacin resistance genes (CIP-ARGs) during nitrification in biofilms. The correlations between the abundances of CIP-ARGs and nitrifying microorganisms were also discussed. The results showed that CIP had little influence on the ammonium oxidation process of biofilm microorganisms, whereas inhibition of the nitrite oxidation process was found. The quantitative results of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) including Nitrobacter and Nitrospira indicated that the inhibition on the transformation of nitrite was resulted from the inhibition on Nitrobacter and Nitrospira. In addition, little influence of CIP on the relative abundance of aac and qepA in biofilms was found, but the influence on parC and oqxB was great. The abundance of Nitrotacter exhibited significant positive correlation with the abundance of parC. Similar significant correlation was also found between the abundances of Nitrospira and oqxB. It could be speculated that the genetic elements of different nitrifying microorganisms in biofilms possibly carried CIP-ARGs. PMID:27548973

  7. Experimental investigation of granule size and shape dynamics in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Bellandi, Giacomo; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas; Nopens, Ingmar

    2014-11-20

    A twin-screw granulator (TSG), a promising equipment for continuous high shear wet granulation (HSWG), achieves the desired level of mixing by a combination of the appropriate screw configuration and a suitable set of process settings (e.g. feed rate, screw speed, etc.), thus producing a certain granule size and shape distribution (GSSD). However, the primary sizing and shaping mechanism behind the resulting distribution is not well understood due to the opacity of the multiphase system in the granulator. This study experimentally characterised the GSSD dynamics along the TSG barrel length in order to understand the function of individual screw modules and process settings, as well as their interaction. Particle size analysis of granules collected at the outlet of the TSG suggested significant interaction between the process and screw configuration parameters influencing the heterogeneity in the GSSD. By characterising the samples collected along the screw length, a variable influence of the screw modules at different process conditions was observed. At low liquid-to-solid ratio (L/S), the first kneading module seemed to play a significant role in mixing, whereas the second kneading module was found to be more involved in reshaping the granules. At high L/S and high throughput, aggregation mainly took place in the second kneading module changing the GSSD. The results obtained from this study will be further used for the calibration and validation of a mechanistic model and, hence, support future development of a more detailed understanding of the HSWG process in a TSG. PMID:25234863

  8. Aerobic granulation of protein-rich granules from nitrogen-lean wastewaters.

    PubMed

    Chen, Yu-You; Ju, Sheau-Pyng; Lee, Duu-Jong

    2016-10-01

    Proteins (PN)-rich granules are stable in structure in long-term reactor operations. This study proposed to cultivate PN-rich granules with PN/polysaccharides (PS) >20 from nitrogen lean wastewater, with ammonia-nitrogen as sole nitrogen source at chemical oxygen demand (COD)/N of 153.8. The yielded granules can sustain their structural stability in sequencing batch reactor mode for sufficient treatment of wastewaters up to 7000mg/L COD and with COD/N<500 and in continuous-flow reactor for successful 216-d treatment of wastewaters up to organic loading rate (OLR) of 39kg/m(3)-d. The produced granules were enriched with Firmicutes and β-proteobacteria as dominating strains. More than 58% of the nitrogen fed in the nitrogen-lean wastewater is converted to the PN in the granules. The replacement of ammonia by nitrate as sole nitrogen source led to granules enriched with γ-proteobacteria which are easily deteriorated at low OLR. PMID:27394992

  9. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    PubMed

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule. PMID:19021791

  10. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  11. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  12. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    PubMed

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells. PMID:25038722

  13. Effect of suspension property on granule morphology and compaction behavior

    SciTech Connect

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  14. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation.

    PubMed

    Vonaesch, Pascale; Campbell-Valois, François-Xavier; Dufour, Alexandre; Sansonetti, Philippe J; Schnupf, Pamela

    2016-07-01

    Invasion and multiplication of the facultative, cytosolic, enteropathogen Shigella flexneri within the colonic epithelial lining leads to an acute inflammatory response, fever and diarrhea. During the inflammatory process, infected cells are subjected to numerous stresses including heat, oxidative stress and genotoxic stress. The evolutionarily conserved pathway of cellular stress management is the formation of stress granules that store translationally inactive cellular mRNAs and interfere with cellular signalling pathways by sequestering signalling components. In this study, we investigated the ability of S. flexneri-infected cells to form stress granules in response to exogenous stresses. We found that S. flexneri infection inhibits movement of the stress granule markers eIF3 and eIF4B into stress granules and prevents the aggregation of G3BP1 and eIF4G-containing stress granules. This inhibition occurred only with invasive, but not with non-invasive bacteria and occurred in response to stresses that induce translational arrest through the phosphorylation of eIF2α and by treating cells with pateamine A, a drug that induces stress granules by inhibiting the eIF4A helicase. The S. flexneri-mediated stress granule inhibition could be largely phenocopied by the microtubule-destabilizing drug nocodazole and while S. flexneri infection did not lead to microtubule depolymerization, infection greatly enhanced acetylation of alpha-tubulin. Our data suggest that qualitative differences in the microtubule network or subversion of the microtubule-transport machinery by S. flexneri may be involved in preventing the full execution of this cellular stress response. PMID:27282465

  15. Profilin 1 Associates with Stress Granules and ALS-Linked Mutations Alter Stress Granule Dynamics

    PubMed Central

    Figley, Matthew D.; Bieri, Gregor; Kolaitis, Regina-Maria; Taylor, J. Paul

    2014-01-01

    Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure to restore growth to profilin mutant cells, without exhibiting gain-of-function toxicity. This model provides for simple and rapid screening of novel ALS-linked PFN1 variants. To gain insight into potential novel roles for profilin 1, we performed an unbiased, genome-wide synthetic lethal screen with yeast cells lacking profilin (pfy1Δ). Unexpectedly, deletion of several stress granule and processing body genes, including pbp1Δ, were found to be synthetic lethal with pfy1Δ. Mutations in ATXN2, the human ortholog of PBP1, are a known ALS genetic risk factor and ataxin 2 is a stress granule component in mammalian cells. Given this genetic interaction and recent evidence linking stress granule dynamics to ALS pathogenesis, we hypothesized that profilin 1 might also associate with stress granules. Here we report that profilin 1 and related protein profilin 2 are novel stress granule-associated proteins in mouse primary cortical neurons and in human cell lines and that ALS-linked mutations in profilin 1 alter stress granule dynamics, providing further evidence for the potential role of stress granules in ALS pathogenesis. PMID:24920614

  16. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp.

    PubMed

    Castignetti, D; Hollocher, T C

    1983-04-01

    A heterotrophic nitrifying Alcaligenes sp. from soil was grown as a denitrifier on nitrate and subjected to oxidant pulse experiments to ascertain the apparent efficiencies of proton translocations during O2 and nitrogen-oxide respirations. With endogenous substrate as the reducing agent the leads to H+/2e- ratios, extrapolated to zero amount of oxidant per pulse, were 9.4, 3.7, 4.3 and 3.5 for O2, nitrate, nitrite and N2O, respectively. The value for O2 and those for the N-oxides are, respectively, somewhat larger and smaller than corresponding values for Paracoccus denitrificans. None of the three permeant ions employed with the Alcaligenes sp. (valinomycin-K+, thiocyanate and triphenylmethylphosphonium) was ideal for all purposes. Thiocyanate provided highest ratios for O2 but abolished the oxidant pulse response for nitrate and N2O. Valinomycin was slow to penetrate to the cytoplasmic membrane and relatively high concentrations were required for optimal performance. Triphenylmethylphosphonium enhanced passive proton permeability and diminished proton translocation at concentrations required to realize the maximal oxidant pulse response. PMID:6311094

  17. Initial and hourly headloss modelling on a tertiary nitrifying wastewater biofiltration plant.

    PubMed

    Bernier, Jean; Rocher, Vincent; Lessard, Paul

    2016-05-01

    The headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009. The calibrated model is then used on two one-month periods in 2012 for which hourly headloss measurements were acquired. The observed trends are correctly predicted for 2009 but the model exhibits some heavy daily variation that is not found in measurements. Hourly predictions stay close to observations, although the model error rises slightly when the headloss does not vary much. The global model shows that both nutrient conversion and headloss build-up can be reasonably well predicted at the same time on a full-scale plant. PMID:26508557

  18. Application of high rate nitrifying trickling filters for potable water treatment.

    PubMed

    van den Akker, Ben; Holmes, Mike; Cromar, Nancy; Fallowfield, Howard

    2008-11-01

    The interference of ammonia with chlorination is a prevalent problem encountered by water treatment plants located throughout South East Asia. The efficacy of high rate, plastic-packed trickling filters as a pre-treatment process to remove low concentrations of ammonia from polluted surface water was investigated. This paper presents the findings from a series of pilot experiments, which were designed to investigate the effect of specific conditions-namely low ammonia feed concentrations (0.5-5.0 mg NH(4)-NL(-1)), variations in hydraulic surface load (72.5-145 m(3)m(-2)d(-1)) and high suspended solid loads (51+/-25 mgL(-1))-on filter nitrifying capacity. The distribution of nitrification activity throughout a trickling filter bed was also characterised. Results confirmed that high hydraulic rate trickling filters were able to operate successfully, under ammonia-N concentrations some 10- to 50-fold lower and at hydraulic loading rates 30-100 times greater than those of conventional wastewater applications. Mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant, where apparent nitrification rates (0.4-1.6 g NH(4)-Nm(-2)d(-1)), equivalent to that of wastewater filters were recorded. High inert suspended solid loadings had no adverse effect on nitrification. Results imply that implementation of high rate trickling filters at the front-end of a water treatment train would reduce the ammonia-related chlorine demand, thereby offering significant cost savings. PMID:18752823

  19. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics. PMID:26645232

  20. N2O production by nitrifier denitrification in the Benguela Upwelling System

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Hou, L.; Lehmann, M. F.

    2014-12-01

    The Benguela upwelling system off the coast of southwestern Africa is an important zone of marine N2O production whose upwelling rates vary seasonally. Here we present N2O stable isotopic and isotopomeric data collected during a period of high upwelling (September 2013) and low upwelling (January 2014). During both periods, 15N-nitrite and 15N-ammonium tracer inucbation experiments were used to investigate N2O production by ammonia oxidizing microorganisms in the top 150m of the water column. N2O production from 15N-ammonium was not measurable during these incubations. However, we detected N2O production from 15N-nitrite, suggesting that nitrifier denitrification is a source of shallow N2O in this region. Furthermore, decreasing the pH of the incubation water enhanced the amount of N2O produced, suggesting that upwelling of CO2-rich/low-pH deep water may enhance N2O production in this region. Finally, we present our incubation data in the larger context of the N2O and nitrite isotopic and concentration profiles, with an eye toward comparing incubation-based N2O production rates with profile-based estimates.

  1. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process.

    PubMed

    Shi, Jing; Lu, Xiwu; Yu, Ran; Zhu, Wentao

    2012-10-01

    An anaerobic-anoxic/nitrifying (A(2)N) two sludge process coupled with induced crystallization (IC) called A(2)N-IC process was developed for wastewater nutrient removal and phosphorus recovery. The performances of A(2)N-IC process in comparison with A(2)N process at different COD to phosphorus (COD/P) feeding ratios were investigated. The results indicated that A(2)N-IC achieved not only high and stable nutrient removal but also phosphorus recovery. Calcium phosphorus crystals were formed in the crystallization reactor in A(2)N-IC. Moreover, the incorporation of chemical induced crystallization improved biological phosphorus removal. In A(2)N-IC process, phosphorus removal efficiency was consistently maintained at 99.2%, whereas in A(2)N it decreased from 93.0% to 65.7% with the decrease of feeding COD/P ratio. The COD and ammonia removal efficiencies were regardless of feeding COD/P ratio in the two processes. PMID:22858484

  2. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2016-09-01

    This study investigated the chronic impact of sulfamethoxazole (SMX) on activated sludge sustaining an enriched nitrifying biomass. For this purpose, a laboratory scale fill and draw reactor was operated with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia at a sludge age of 15 days. Additionally, the biomass was exposed to a daily SMX dose of 50 mg/L once the reactor reached steady-state conditions. The reactor performance and microbial composition were monitored for 37 days with conventional parameters and molecular techniques based on the gene for ammonia monooxygenase subunit A (amoA) and the prokaryotic 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene cloning analyses suggested a microbial community change concurrent with the addition of SMX. Specifically, quantitative polymerase chain reaction analyses (qPCR/RT-qPCR) revealed a significant reduction in the levels and activity of ammonia oxidizing bacteria (AOB). However, the acclimation period ended with high amoA mRNA levels and improved nitrification efficiency. Partial degradation of SMX by heterotrophic bacteria was also observed. PMID:27235775

  3. Effect of application solvents on heterotrophic and nitrifying populations in soil microcosms

    SciTech Connect

    Miller, J.L.; Sardo, M.A.; Thompson, T.L.; Miller, R.M.

    1997-03-01

    Agricultural practices may cause contamination of soil and ground water with a combination of organic compounds (pesticides and fuel) and nitrogen fertilizers. In coupled microcosm studies that monitored the mineralization of naphthalene and the nitrification of ammonia, it was observed that the solvent (dichloromethane) used to apply naphthalene to the soil inhibited nitrification, although there was no effect on naphthalene mineralization. Further studies were performed with a series of application solvents: methanol, acetonitrile, trichloromethane, and dichloromethane. Soil and solvent were allowed to equilibrate with ambient air for various times before capping and incubation of microcosms. Results indicated that dichloromethane equilibrated for 5 mins inhibited nitrification for at least 3 weeks relative to the control (water). Acetonitrile and trichloromethane similarly inhibited nitrification. Methanol and dichloromethane equilibrated for 60 mins also significantly delayed nitrification, although to a lesser extent. Inhibition of nitrification was not permanent, and nitrification activity was eventually restored in all systems tested. None of the solvents inhibited mineralization of the added carbon source. These results indicate that special care must be taken to ensure that applications solvents do not affect the activity of sensitive microbial populations, such as the nitrifiers, that may be part of a study.

  4. Coupling autotrophic sulfide mineral weathering with dolomite dissolution in a subglacial ecosystem

    NASA Astrophysics Data System (ADS)

    Boyd, E. S.; Hamilton, T. L.; Havig, J. R.; Lange, R.; Murter, E.; Skidmore, M. L.; Peters, J.; Shock, E.

    2013-12-01

    Evidence in the rock record suggests that glaciers have been present and covered a significant portion of the Earth's surface since the putative Mozaan Glaciation (circa 2.9 Ga) and were demonstrated recently to host active microbial communities that impact local and global biogeochemical cycles. In the present study, we applied a microcosm-based radioisotopic biocarbonate tracer approach to quantify rates of inorganic carbon assimilation in sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada at 4°C. Rates of inorganic carbon assimilation were stimulated by the addition of ammonium and phosphate, suggesting that these nutrients might be of limited supply in the subglacial environment or, in the case of ammonia, might be serving as a source of reductant fueling inorganic carbon fixation. Geochemical analyses were used to assess the potential redox couples that might be fueling autotrophic activity. The difference in the concentration of sulfate (2.4 mM) in unamended microcosm fluids when compared to fluids sampled from killed controls following 180 days incubation suggests that inorganic carbon assimilation in microcosms is driven by microbial populations involved in the oxidation of mineral sulfides, most likely pyrite. Amendment of microcosms with 1 mM ammonia led to near stoichiometric production of nitrate (~890 μM) and lower production of sulfate (~1.5 mM), indicating that the enhanced activity observed in ammonia treated microcosms is likely due to the stimulation of autotrophic ammonia oxidizing populations. The isotopic composition of dissolved organic carbon in subglacial meltwaters ranged was -24.40 ‰ versus VPDB, which is consistent with a source for this organic carbon via the activity of autotrophs that use the Calvin cycle of inorganic carbon fixation. Quantification and sequencing of transcripts of Calvin cycle biomarker genes (ribulose-1,5 bisphosphate carboxylase/oxygenase, encoded by cbbL) suggest the presence of a ubiquitous

  5. Effects of Forest Age on Soil Autotrophic and Heterotrophic Respiration Differ between Evergreen and Deciduous Forests

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ∼15, ∼25, and ∼35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ∼15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ∼35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required. PMID:24282560

  6. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached. PMID:27059835

  7. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.

    PubMed

    Zaybak, Zehra; Pisciotta, John M; Tokash, Justin C; Logan, Bruce E

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34 ± 4 mA/m(2). Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. PMID:24126154

  8. Autotrophic and heterotrophic denitrification for simultaneous removal of nitrogen, sulfur and organic matter.

    PubMed

    Guerrero, Lorna; Aguirre, Juan P; Muñoz, Maria A; Barahona, Andrea; Huiliñir, Cesar; Montalvo, Silvio; Borja, Rafael

    2016-07-01

    The aim of this investigation was to assess the startup and operation of a laboratory-scale hybrid UASB-Anaerobic Filter Reactor (UASFB) of 1 L volume, kept at 30°C, in order to carry out a simultaneous autotrophic and heterotrophic denitrification process. First, the heterotrophic and autotrophic populations were separately enriched, with specific cultures and subsequently the UASFB was inoculated with 2 g L(-1) of volatile suspended solids (VSS), with a ratio of 1.5:1 (autotrophs: heterotrophs). The influent or synthetic wastewater used was composed of: Na2S2O3·5H2O, CH3COOK, NaNO3, NaHCO3, K2HPO4, NH4Cl and saline solution. The concentrations varied depending on the organic loading rate (OLR), nitrogen loading rate (NLR) and sulfur loading rate (SLR) applied. In the UASFB reactor, two experimental conditions were tested and assessed: (i) COD/N ratio of 3.6 and SLR of 0.75 kg S m(-3) d(-1); and (ii) COD/N ratio of 5.8 and SLR of 0.25 kg S m(-3) d(-1). The results obtained demonstrated that an inoculum coming from an anaerobic reactor was able to carry out the process, obtaining a maximum nitrate removal of 85.3% in the first stage of operation and 99.5% in the second stage. The recovery of sulfur in form of sulfate in the effluent did not present a tendency to stabilize during the measured time, with a maximum thiosulfate removal of 32.5%, when the SLR was lowered to 0.25 kg S m(-3) d(-1). The maximum organic matter elimination, measured as COD, was 75.8%, which indicates the relatively good performance and behavior of the heterotrophic microorganisms. PMID:27093220

  9. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    PubMed

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  10. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    PubMed Central

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351