Science.gov

Sample records for average burned area

  1. Is proportion burned severely related to daily area burned?

    NASA Astrophysics Data System (ADS)

    Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

    2014-05-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

  2. Global Burned Area and Biomass Burning Emissions from Small Fires

    NASA Technical Reports Server (NTRS)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  3. Global burned area and biomass burning emissions from small fires

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; van der Werf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-12-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia—regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

  4. Burned area, active fires and biomass burning - approaches to account for emissions from fires in Tanzania

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Hoffmann, Anja; Leimbach, David; Tiemann, Joachim; Ng'atigwa, Charles

    2013-04-01

    Eleven years of data from the globally available MODIS burned area and the MODS Active Fire Product have been analysed for Tanzania in conjunction with GIS data on land use and cover to provide a baseline for fire activity in this East African country. The total radiated energy (FRE) emitted by fires that were picked up by the burned area and active fire product is estimated based on a spatio-temporal clustering algorithm over the burned areas, and integration of the fire radiative power from the MODIS Active Fires product over the time of burning and the area of each burned area cluster. Resulting biomass combusted by unit area based on Woosteŕs scaling factor for FRE to biomass combusted is compared to values found in the literature, and to values found in the Global Fire Emissions Database (GFED). Pyrogenic emissions are then estimated using emission factors. According to our analysis, an average of 11 million ha burn annually (ranging between 8.5 and 12.9 million ha) in Tanzania corresponding to between 10 and 14 % of Tanzaniás land area. Most burned area is recorded in the months from May to October. The land cover types most affected are woodland and shrubland cover types: they comprise almost 70 % of Tanzania's average annual burned area or 6.8 million ha. Most burning occurs in gazetted land, with an annual average of 3.7 million ha in forest reserves, 3.3 million ha in game reserves and 1.46 million ha in national parks, totalling close to 8.5 million ha or 77 % of the annual average burned area of Tanzania. Annual variability of burned area is moderate for most of the analysed classes, and in most cases there is no clear trend to be detected in burned area, except for the Lindi region were annual burned area appears to be increasing. Preliminary results regarding emissions from fires show that for larger fires that burn over a longer time, biomass burned derived through the FRP method compares well to literature values, while the integration over smaller fires with fewer observations yields unstable results due to undersampling issues and uncertainty in the start and end time of the fire events. Options for mitigating these issues using ancillary data such as fire weather information are discussed.

  5. Beaver Creek Burn Area Precipitation Gage

    During August 2013, the Beaver Creek wildfire burned more than 114,000 acres near the south-central Idaho communities of Sun Valley, Ketchum, and Hailey. Partnering with Blaine County, the USGS installed a network of real-time precipitation gages in the burn area. Real-time information from the gage...

  6. Burns.

    PubMed

    Ellison, Deborah L

    2013-06-01

    Burns are a leading cause of accidental injury and death. The American Burn Association statistics from 2001 to 2010 show that 68% of burns happen at home, 44% are from fires/flames, and 60% to 70% happen to white men. Smoke inhalation is the leading cause of adult death caused by fires. A patient with a 78% total body surface area burn has a 50% chance of survival. Burn injuries are described in terms of causative agents, depth, and severity. Crucial treatments for people with burns include assessment, stabilization, transfer to a burn unit, and fluid resuscitation. PMID:23692944

  7. Burns

    MedlinePlus

    ... sure the person is up to date on tetanus immunization. MAJOR BURNS If someone is on fire, ... Ointments or creams applied to the burned areas Tetanus immunization, if not up to date The outcome ...

  8. An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions

    NASA Astrophysics Data System (ADS)

    Barbosa, Paulo Marinho; Stroppiana, Daniela; GréGoire, Jean-Marie; Cardoso Pereira, José Miguel

    1999-12-01

    This paper presents the first published time series of burned area maps of Africa, covering an 8 year period, 1981-1983 and 1985-1991. These maps were derived from the analysis of the advanced very high resolution radiometer (AVHRR) global area coverage (GAC) images at 5 km resolution. The burned area maps for the period 1985-1991 were used with biomass density and burning efficiency figures, to estimate the quantity of burned biomass during this 6 year period. Emission factors were further used to estimate the trace gas and aerosol emissions produced by vegetation fires. Biomass density was estimated based on values found in the literature and on the accumulated normalized difference vegetation index (NDVI) as derived from the remote sensing images. Burning efficiency was assessed with a dryness index that was based on the relative greenness index (RGI), also derived from the NDVI. Average emission factors were retrieved from the literature. The uncertainties in the burned area, biomass density, combustion efficiency, and emission factors were considered, with a total error of 51% for the burned biomass and 58% for the emission estimates. The results obtained for the burned biomass in Africa were compared with other values found in the literature and showed values lower by a factor of 1.1-3.3. The annual burned biomass from vegetation fires in Africa on average was estimated between 704 and 2168 Tg . In the same way, the atmospheric emissions on average ranges are as follows: CO2 (990-3726 Tg), CO (40-151 Tg), CH4 (1.2-4.4 Tg), NOx (2.8-10.6 Tg), and PM (< 2.5 μm) (3.3-12.4Tg).

  9. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our analysis we quantified how including sub-500m burned area influenced global burned area, carbon emissions, and net ecosystem exchange (NEE) in different continental regions using the Global Fire Emissions Database (GFED) biogeochemical model. We conclude by discussing validation needs using higher resolution visible and thermal imagery.

  10. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].

    PubMed

    Ma, Jian-hang; Song, Kai-shar; Wen, Zhi-dan; Shao, Tian-tian; Li, Bo-nan; Qi, Cai

    2015-11-01

    Crop residue burning leads to atmospheric pollution and is an enormous waste of crop residue resource. Crop residue burning can be monitored timely in large regions as the fire points can be recognized through remotely sensed image via thermal infrared bands. However, the area, the detailed distribution pattern and especially the severity of the burning areas cannot be derived only by the thermal remote sensing approach. The burning index, which was calculated with two or more spectral bands at where the burned and unburned areas have distinct spectral characteristics, is widely used in the forest fire investigation. However its potential application for crop residue burning evaluation has not been explored. With two Landsat 8 images that cover a part of the Songnen Plain, three burning indices, i.e., the normalized burned ratio (NBR), the normalized burned ratio incorporating the thermal band (NBRT), and the burned area index (BAI), were used to classify the crop residue burned and unburned areas. The overall classification accuracies were 91.9%, 92.3%, and 87.8%, respectively. The correlation analysis between the indices and the crop residue coverage indicated that the NBR and NBRT were positively correlated with the crop residue coverage (R2 = 0.73 and 0.64, respectively) with linear regression models, while the BAI was exponentially correlated with the crop residue coverage (R2 = 0.68). The results indicated that the use of burning indices in crop residue burning monitoring could quantify crop residue burning severity and provide valuable data for evaluating atmospheric pollution. PMID:26915202

  11. Mapping burned areas and burn severity patterns across the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

    2010-05-01

    The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.

  12. Timing constraints on remote sensing of wildland fire burned area in the southeastern US

    USGS Publications Warehouse

    Picotte, J.J.; Robertson, K.

    2011-01-01

    Remote sensing using Landsat Thematic Mapper (TM) satellite imagery is increasingly used for mapping wildland fire burned area and burn severity, owing to its frequency of collection, relatively high resolution, and availability free of charge. However, rapid response of vegetation following fire and frequent cloud cover pose challenges to this approach in the southeastern US. We assessed these timing constraints by using a series of Landsat TM images to determine how rapidly the remotely sensed burn scar signature fades following prescribed burns in wet flatwoods and depression swamp community types in the Apalachicola National Forest, Florida, USA during 2006. We used both the Normalized Burn Ratio (NBR) of reflectance bands sensitive to vegetation and exposed soil cover, as well as the change in NBR from before to after fire (dNBR), to estimate burned area. We also determined the average and maximum amount of time following fire required to obtain a cloud-free image for burns in each month of the year, as well as the predicted effect of this time lag on percent accuracy of burn scar estimates. Using both NBR and dNBR, the detectable area decreased linearly 9% per month on average over the first four months following fire. Our findings suggest that the NBR and dNBR methods for monitoring burned area in common southeastern US vegetation community types are limited to an average of 78-90% accuracy among months of the year, with individual burns having values as low as 38%, if restricted to use of Landsat 5 TM imagery. However, the majority of burns can still be mapped at accuracies similar to those in other regions of the US, and access to additional sources of satellite imagery would improve overall accuracy. ?? 2011 by the authors.

  13. Timing constraints on remote sensing of wildland fire burned area in the southeastern US

    USGS Publications Warehouse

    Picotte, Joshua J.; Robertson, Kevin

    2011-01-01

    Remote sensing using Landsat Thematic Mapper (TM) satellite imagery is increasingly used for mapping wildland fire burned area and burn severity, owing to its frequency of collection, relatively high resolution, and availability free of charge. However, rapid response of vegetation following fire and frequent cloud cover pose challenges to this approach in the southeastern US. We assessed these timing constraints by using a series of Landsat TM images to determine how rapidly the remotely sensed burn scar signature fades following prescribed burns in wet flatwoods and depression swamp community types in the Apalachicola National Forest, Florida, USA during 2006. We used both the Normalized Burn Ratio (NBR) of reflectance bands sensitive to vegetation and exposed soil cover, as well as the change in NBR from before to after fire (dNBR), to estimate burned area. We also determined the average and maximum amount of time following fire required to obtain a cloud-free image for burns in each month of the year, as well as the predicted effect of this time lag on percent accuracy of burn scar estimates. Using both NBR and dNBR, the detectable area decreased linearly 9% per month on average over the first four months following fire. Our findings suggest that the NBR and dNBR methods for monitoring burned area in common southeastern US vegetation community types are limited to an average of 78–90% accuracy among months of the year, with individual burns having values as low as 38%, if restricted to use of Landsat 5 TM imagery. However, the majority of burns can still be mapped at accuracies similar to those in other regions of the US, and access to additional sources of satellite imagery would improve overall accuracy.

  14. Sources of debris flow material in burned areas

    USGS Publications Warehouse

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable. ?? 2007 Elsevier B.V. All rights reserved.

  15. Future burned area projections in Iberia

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro; Trigo, Ricardo; Pereira, Mário; Camara, Carlos; Gouveia, Célia; Bedia, Joaquín; Gutiérrez, Jose Manuel

    2014-05-01

    The spatial and temporal variability of burned area (BA) in the Iberian Peninsula (IP) was assessed and modeled through the merging of BA records from Portugal and Spain, a new dataset which allowed the construction of projections for future BA in different Iberian sectors. For this purpose, statistical models which reproduce the inter-annual BA variability were calibrated using the 1981-2005 period as a reference and then applied to Regional Climate Models (RCM) outputs for the 21st century. The relationship between BA and meteorological forcing was assessed using correlation and regression analysis, using the ERA-Interim reanalysis as a benchmark for the reference period. Then a stepwise regression procedure based on the best meteorology-based predictors was applied in order to develop simple BA statistical models for each cluster (models were cross-validated to avoid the danger of over fitting). We concluded that the use of predictors based on both long-term and short-term conditions provide the best results, particularly for western sectors (Pearson correlation coefficients higher than 0.7). We also showed that the daily scale is vital on the short-term, since predictors based on monthly frequencies of extremely hot days (surpassing high percentiles of noon temperature) are the most effective ones. The reference period bias of four RCM from the ENSEMBLES project was estimated in order to construct future BA scenarios using two different techniques: traditional bias correction and the delta change approach. Multiple scenarios where also developed by using either fixed or moving reference periods, thus highlighting the danger of not considering external variables (e.g. vegetation or land-use changes) when developing such models. Amongst all considered scenarios, our current ensemble projections show the potential for having 2-3 times more BA in the IP by the end of the 21st century.

  16. Determination of burning area and port volume in complex burning regions of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Kingsbury, J. A.

    1977-01-01

    An analysis of the geometry of the burning in both star-cylindrical port interface regions and regions of partially inhibited slots is presented. Some characteristics parameters are defined and illustrated. Methods are proposed for calculating burning areas which functionally depend only on the total distance burned. According to this method, several points are defined where abrupt changes in geometry occur, and these are tracked throughout the burn. Equations are developed for computing port perimeter and port area at pre-established longitudinal positions. Some common formulas and some newly developed formulas are then used to compute burning surface area and port volume. Some specific results are presented for the solid rocket motor committed to the space shuttle project.

  17. Relation between wind speed and burned area on global scale

    NASA Astrophysics Data System (ADS)

    Lasslop, G.; Kloster, S.

    2013-12-01

    Global datasets of burned area have been analyzed with respect to different fire drivers. Various studies find, that climatic variables as well as the vegetation composition or the human influence shape the global distribution of burned area. Wind speed datasets have not been included so far in such analysis. Local studies show that wind speed influences the rate of spread and also that the rate of spread can decrease for high wind speeds. The commonly used Rothermel equations suggest a rate of spread which does not further increase when reaching a certain wind limit. Including fire in global models is a relatively new field and analysis of recent global datasets an important source of information for improvement of global scale fire models. Fire is a climate driven and climate relevant process, therefore a realistic response of the modeled fire occurrence with respect to climate variables is crucial. We analyze the correlation between remotely sensed burned area and three global wind speed datasets on different spatial and temporal scales, as well as different land cover types. We find that the burned area peaks for mean wind speeds of about 2 ms-1. Using generalized additive models (GAMs) we analyze the response functions including other important drivers of burned area, e.g. temperature, net primary productivity, precipitation, tree cover and population density. Accounting for these other drivers the response functions confirm increasing burned area with increasing wind speed up to a certain threshold and decreasing burned area thereafter. We used this information in the global land surface model JSBACH that includes a prognostic fire model (SPITFIRE) which is based on the Rothermel fire spread equations. The SPITFIRE model did not include the wind limitation before and model residuals for the burned area compared to present day observations showed a correlation with wind speed. Including the relationship between wind speed and burned area as derived from the observations improved the spatial patterns of modeled burned fraction on global scale.

  18. [Burns].

    PubMed

    Arai, Takao

    2016-02-01

    Burns extending deep into the skin and those affecting a wide surface area trigger various responses in the body and pose a serious threat to life. Therefore, the degree of severity needs to be determined accurately, and appropriate transfusion and local management should be provided accordingly. Systematic and meticulous management that considers not just the risk of death but also functional prognosis is essential from the early stage of burn injuries. Such management requires comprehensive care by a medical team concerning infections, nutrition and rehabilitation. This article outlines the current status of intensive care for severe burns. PMID:26915244

  19. Spectral Characterization of Agricultural Burned Areas for Satellite Mapping

    NASA Astrophysics Data System (ADS)

    Boren, Erik J.

    Burned area detection with remotely sensed satellite data in agricultural landscapes is not only necessary for the estimation of global biomass burning emissions, but also has gained attention from managers interested in improved methods for the quantification of local scale emissions which affect air quality and human health. Mapping agricultural burned areas accurately, precisely and reliably, with methods that can be applied globally, is difficult because of the spectral and temporal characteristics of agricultural regions and prescribed cropland fires. These challenges have not been fully addressed by the scientific literature. Chapter 1 of this thesis presents an extensive literature review on the methods currently used for agricultural burned area mapping. Chapter 2 presents original research on the spectral characterization of agricultural burned areas, using field data and mixture models to analyze the response of spectral indices to the changes induced by fire and agricultural practices. The conclusions summarize the significance of the presented research for understanding the potential and limits of satellite data for agricultural burned area monitoring, and outline the directions for future work.

  20. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  1. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    SciTech Connect

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

  2. Preliminary assessment of the Monitoring Trends in Burn Severity burned area accuracy for shrub-steppe wildfires

    NASA Astrophysics Data System (ADS)

    Argona, A. K.; Sparks, A. M.; Tinkham, W.; Smith, A. M.; Boschetti, L.; Newingham, B. A.; Lannom, K. O.

    2013-12-01

    Fire is a common disturbance in shrub-steppe, but unlike other ecosystems, few studies have specifically tested burned area mapping methods in these semi-arid to arid environments. The Monitoring Trends in Burn Severity (MTBS) project is an initiative by the United States Forest Service (USFS) and United States Geological Survey (USGS) aimed at mapping burned area perimeters and burn severity for the entire territory of the United States. We conducted a preliminary assessment of the accuracy of the MTBS burned area perimeters on wildfires that exhibited varying degrees of within-fire patch heterogeneity. We cross-compared the MTBS perimeters with a classification produced using both the Relativised differenced Normalized Burn Index (RdNBR) and the mid-infrared burn index (MIRBI). Overall, MIRBI provided the most consistent accuracies, with only small commission errors. The MTBS-based fire perimeters had high burned area commission errors, primarily due to inclusion of unburned islands and fingers within the fire perimeter. The RdNBR burned area maps exhibited very high commission errors, however, when constrained by the MTBS perimeter provided accuracies comparable to MIRBI. Studies seeking to use MTBS data for assessing trends in burned area should use spectral indices able to discriminate burned versus unburned pixels and constrain them by the MTBS perimeters.

  3. 78 FR 34031 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Response activities on National Forest System lands. Agency regulations at 36 CFR 220.6(d)(2) (73 FR 43093... rapidly assess burned areas to identify post-wildfire threats to human safety, property and critical...-wildfire threats to human life and safety, property and critical natural or cultural resources on...

  4. 78 FR 44523 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ..., (78 FR 34031). This correction adds the Web site that was inadvertently omitted from the interim... Federal Register of June 6, 2013, in FR Doc. 2013-13459, on page 34031, column 3, after the first... Forest Service RIN 0596-AC73 Burned Area Emergency Response, Forest Service AGENCY: Forest Service,...

  5. Modeling the Spatial Pattern of Wildfire Ignition and Burned Area in Southern Californian Mediterranean Ecosystems

    NASA Astrophysics Data System (ADS)

    Faivre, N.; Jin, Y.; Goulden, M.; Randerson, J. T.

    2013-12-01

    Wildfire ignition requires a combination of an ignition source and suitable weather and fuel conditions. Models of fire occurrence and burned area provide a good understanding of the physical and climatic factors that constrain and promote fire spread and recurrence, but information on how humans influence ignition patterns and burned area is still lacking at a scale compatible with integrated fire management. We first investigated the relative importance of the physical, climatic, and human factors regulating ignition probability across Southern California. A 30-year exploratory analysis of one-way relationships indicated that distance to roads, distance to housing, and topographic slope were the major determinants of ignition occurrence and frequency. A logistic regression model explained 70% of spatial variability in ignition occurrence (presence or absence of an ignition in each 3 km grid cell) whereas a Poisson-type regression model explained 45% of the spatial variability in ignition frequency in national forests across Southern California. Predicted ignition probability was a key indicator of the spatial variability of burned area, explaining approximately 9% of the variance for Santa Ana fires and 21% of the variance for non-Santa Ana fires across Southern California. In a second step we combined the previous ignition modeling framework with other data sources to model the spatial distribution of burned area. Preliminary results showed that average wind speed alone explained approximately 30% of the spatial variation in burned area from Santa Ana fires. Further integration of the effects of fuel continuity, moisture, and accumulation and their interaction with wind speed and direction improved our spatial assessment of burned area risk in Southern California. Our results may have implications for strategic fire management in the region.

  6. Data Summary Report D-Area Burning/Rubble Pits

    SciTech Connect

    Palmer, E.R.

    1994-10-01

    The purpose of this report is to verify that all analytical data collected at the D-Area Burning/Rubble Pits at the Savannah River Site for use in developing risk assessment and potential remediation procedures have been validated at the appropriate level. Any discrepancies or reasons why the data should be rejected for this purpose will be addressed. This report documents the data validation procedures used by Environmental Monitoring Section, Exploration Resources, and RUST Environment {ampersand} Infrastructure for Assigning qualifiers.

  7. Total body surface area overestimation at referring institutions in children transferred to a burn center.

    PubMed

    Swords, Douglas S; Hadley, Edmund D; Swett, Katrina R; Pranikoff, Thomas

    2015-01-01

    Total body surface area (TBSA) burned is a powerful descriptor of burn severity and influences the volume of resuscitation required in burn patients. The incidence and severity of TBSA overestimation by referring institutions (RIs) in children transferred to a burn center (BC) are unclear. The association between TBSA overestimation and overresuscitation is unknown as is that between TBSA overestimation and outcome. The trauma registry at a BC was queried over 7.25 years for children presenting with burns. TBSA estimate at RIs and BC, total fluid volume given before arrival at a BC, demographic variables, and clinical variables were reviewed. Nearly 20 per cent of children arrived from RIs without TBSA estimation. Nearly 50 per cent were overestimated by 5 per cent or greater TBSA and burn sizes were overestimated by up to 44 per cent TBSA. Average TBSA measured at BC was 9.5 ± 8.3 per cent compared with 15.5 ± 11.8 per cent as measured at RIs (P < 0.0001). Burns between 10 and 19.9 per cent TBSA were overestimated most often and by the greatest amounts. There was a statistically significant relationship between overestimation of TBSA by 5 per cent or greater and overresuscitation by 10 mL/kg or greater (P = 0.02). No patient demographic or clinical factors were associated with TBSA overestimation. Education efforts aimed at emergency department physicians regarding the importance of always calculating TBSA as well as the mechanics of TBSA estimation and calculating resuscitation volume are needed. Further studies should evaluate the association of TBSA overestimation by RIs with adverse outcomes and complications in the burned child. PMID:25569067

  8. Burns

    MedlinePlus

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  9. Evaluating the accuracy of a MODIS direct broadcast algorithm for mapping burned areas over Russia

    NASA Astrophysics Data System (ADS)

    Petkov, A.; Hao, W. M.; Nordgren, B.; Corley, R.; Urbanski, S. P.; Ponomarev, E. I.

    2012-12-01

    Emission inventories for open area biomass burning rely on burned area estimates as a key component. We have developed an automated algorithm based on MODerate resolution Imaging Spectroradiometer (MODIS) satellite instrument data for estimating burned area from biomass fires. The algorithm is based on active fire detections, burn scars from MODIS calibrated radiances (MOD02HKM), and MODIS land cover classification (MOD12Q1). Our burned area product combines active fires and burn scar detections using spatio-temporal criteria, and has a resolution of 500 x 500 meters. The algorithm has been used for smoke emission estimates over the western United States. We will present the assessed accuracy of our algorithm in different regions of Russia with intense wildfire activity by comparing our results with the burned area product from the Sukachev Institute of Forest (SIF) of the Russian Academy of Sciences in Krasnoyarsk, Russia, as well as burn scars extracted from Landsat imagery. Landsat burned area extraction was based on threshold classification using the Jenks Natural Breaks algorithm to the histogram for each singe scene Normalized Burn Ratio (NBR) image. The final evaluation consisted of a grid-based approach, where the burned area in each 3 km x 3 km grid cell was calculated and compared with the other two sources. A comparison between our burned area estimates and those from SIF showed strong correlation (R2=0.978), although our estimate is approximately 40% lower than the SIF burned areas. The linear fit between the burned area from Landsat scenes and our MODIS algorithm over 18,754 grid cells resulted with a slope of 0.998 and R2=0.7, indicating that our algorithm is suitable for mapping burned areas for fires in boreal forests and other ecosystems. The results of our burned area algorithm will be used for estimating emissions of trace gasses and aerosol particles (including black carbon) from biomass burning in Northern Eurasia for the period of 2002-2011.

  10. Burns

    MedlinePlus

    ... support. What is on the horizon for burn research? Improving methods for wound healing and tissue repair offer tremendous opportunities to enhance the quality of life for burn patients and may also help ... of burn research does the National Institute of General Medical Sciences ( ...

  11. Methodology for estimating burned area from AVHRR reflectance data

    SciTech Connect

    Razafimpanilo, H.; Frouin, R.; Iacobellis, S.F.; Somerville, R.C.J.

    1995-12-01

    It is well recognized that global fire activity needs to be monitored closely, because of its potential impact on climate and the environment. Two methods are described to determined burned area from Advanced Very High Resolution Radiometer (AVHRR) data. The first method, or the linear method, employs Channel 2 reflectance, R{sub 2}, and is based on the nearly linear relationship between the fraction of pixel burned, P, and R{sub 2}. The second method, or the nonlinear method, employs the Normalized Difference Vegetation Index (NDVI) derived from Channels 1 and 2 reflectances, and is based on the nonlinear relationship P = f(NDVI), a polynomial of order 2 in NDVI. The coefficients of the polynomial are parameterized as a function of the NDVI of the background before the fire event. Radiative transfer simulations indicate that the linear method, unlike the nonlinear method, must be applied to top-of-atmosphere reflectances that have been corrected for atmospheric influence. Sensitivity studies suggest that the methods are subject to some limitations. To avoid discontinuity problems, the original background (just before the fire) must be characterized by a Channel 2 reflectance above 0.07 and by a positive NDVI. To separate the useful signal from atmospheric effects, the fire scar must occupy at least 20% and 12% of the pixel area in the case of savanna and green vegetation (e.g., forest), respectively. When applied to uniform pixels, the mean relative error on the fraction of area burned is about 20% for the linear method and 10% for the nonlinear method. The linear method gives better results for nonuniform pixels, but neither method can be used when the pixel contains low reflectance backgrounds (e.g., water).

  12. A fire burns in a wooded area on KSC property

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A wooded section of the southeast corner of Kennedy Space Center burns on Monday, June 22, after lightning touched off three different fires Sunday evening in and around Tel IV, Ransom Road and Pine Island Road. This area is part of the Merritt Island National Wildlife Refuge operated by the U.S. Fish and Wildlife Service. The fires were a short distance from operational facilities at the space center and forced the closing of Florida State Route 3. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service.

  13. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

    2015-02-01

    This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests the cooling and drying of atmosphere induced by burned areas caused the strengthening of subsidence during pre-onset and weakening of upward atmospheric motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly mid-tropospheric vertical wind showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, which supports the hypothesis of reduced convective instability due to wildfires.

  14. A fire burns in a wooded area on KSC property

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A fire burns in the background as members of the U.S Fish and Wildlife Service operate firefighting equipment soaking the grass and underbrush in an attempt to keep the fire away from Kennedy Parkway and the wooded area on the other side of the road. Lightning touched off three different fires Sunday evening in and around Kennedy Space Center at Tel IV, Ransom Road and Pine Island Road. This area is part of the Merritt Island National Wildlife Refuge operated by the service. The fires were a short distance from operational facilities at the space center and forced the closing of Florida State Route 3. The fires are being contained by firefighters from Kennedy Space Center and the U.S. Fish and Wildlife Service.

  15. Predicting annual average particulate concentration in urban areas.

    PubMed

    Progiou, Athena G; Ziomas, Ioannis C

    2015-11-01

    Particulate matter concentrations are in most cities a major environmental problem. This is also the case in Greece where, despite the various measures taken in the past, the problem still persists. In this aspect, a cost efficient, comprehensive method was developed in order to help decision makers to take the most appropriate measures towards particulates pollution abatement. The method is based on the source apportionment estimation from the application of 3D meteorological and dispersion modeling and is validated with the use of 10 years (2002-2012) PM10 monitoring data, in Athens, Greece, as well as using PM10 emission data for the same area and time period. It appears that the methodology can be used for estimating yearly average PM10 concentrations in a quite realistic manner, giving thus the decision makers the possibility to evaluate ex ante the effectiveness of specific abatement measures. PMID:26081738

  16. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].

    PubMed

    Yu, Chao; Chen, Liang-fu; Li, Shen-shen; Tao, Jin-hua; Su, Lin

    2015-03-01

    Biomass burning makes up an important part of both trace gases and particulate matter emissions, which can efficiently degrade air quality and reduce visibility, destabilize the global climate system at regional to global scales. Burned area is one of the primary parameters necessary to estimate emissions, and considered to be the largest source of error in the emission inventory. Satellite-based fire observations can offer a reliable source of fire occurrence data on regional and global scales, a variety of sensors have been used to detect and map fires in two general approaches: burn scar mapping and active fire detection. However, both of the two approaches have limitations. In this article, we explore the relationship between hotspot data and burned area for the Southeastern United States, where a significant amount of biomass burnings from both prescribed and wild fire took place. MODIS (Moderate resolution imaging spectrometer) data, which has high temporal-resolution, can be used to monitor ground biomass. burning in time and provided hot spot data in this study. However, pixel size of MODIS hot spot can't stand for the real ground burned area. Through analysis of the variation of vegetation band reflectance between pre- and post-burn, we extracted the burned area from Landsat-5 TM (Thematic Mapper) images by using the differential normalized burn ratio (dNBR) which is based on TM band4 (0.84 μm) and TM band 7(2.22 μm) data. We combined MODIS fire hot spot data and Landsat-5 TM burned scars data to build the burned area estimation model, results showed that the linear correlation coefficient is 0.63 and the relationships vary as a function of vegetation cover. Based on the National Land Cover Database (NLCD), we built burned area estimation model over different vegetation cover, and got effective burned area per fire pixel, values for forest, grassland, shrub, cropland and wetland are 0.69, 1.27, 0.86, 0.72 and 0.94 km2 respectively. We validated the burned area estimates by using the ground survey data from National interagency Fire Center (NIFC), our results are more close to the ground survey data than burned area from Global Fire Emissions Database (GFED) and MODIS burned area product (MCD45), which omitted many small prescribed fires. We concluded that our model can provide more accurate burned area parameters for developing fire emission inventory, and be better for estimating emissions from biomass burning. PMID:26117890

  17. The impact of antecedent fire area on burned area in southern California coastal ecosystems.

    PubMed

    Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

    2012-12-30

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). PMID:23064248

  18. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  19. Burns

    MedlinePlus

    ... Do not use butter, ointments or any other home remedy. Do not break the blisters or remove burned ... spread the fire. READ IN EMERGENCIES A-Z Stroke Head Injury Heart Attack Resources Home Safety Checklist ACEP Coloring Book Download the Coloring ...

  20. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.

    2016-04-01

    Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48% of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Niño-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI—burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.

  1. Relationships between Human Population Density and Burned Area at Continental and Global Scales

    PubMed Central

    Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.

    2013-01-01

    We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108

  2. Hydrology of, and water quality in, the open burning area and vicinity, Picatinny Arsenal, New Jersey, 1989-90

    USGS Publications Warehouse

    Storck, D.A.

    1994-01-01

    This report presents the results of a study to determine whether shallow ground water at Picatinny Arsenal Morris County, New Jersey, has been con- taminated as a result of operations at the open burning area, which is used for burning of waste explosives and materials contaminated with explosives. Results of previous investigations indicate that the soil in this area is contaminated with metals and organic compounds. Twenty-seven wells were sampled for analysis for inorganic constituents, nutrients, and explosive compounds. Selected wells also were sampled for analysis for base/neutral- and acid-extractable compounds, pesticides, volatile organic compounds, and dioxin and furan compounds. Surface-water and streambed- material samples were collected at three sites in Green Pond Brook. Water-level measurements indicate that ground-water flow generally is nearly horizontal and toward Green Pond Brook. The average velocity of the ground water is estimated to be 0.03 to 1.8 feet per day. Concentrations of iron and manganese in ground-water samples from the unconfined aquifer were consistently greater than U.S. Environmental Protection Agency secondary drinking-water regulations. Because similarly high concentrations of these constituents have been found in ground-water samples at the arsenal, they are not considered to be a consequence of activities at the open burning area. Contaminants from the open burning area appear to be contributing to elevated concentratons of lead, zinc, and explosive com- pounds found in the streambed material. Other trace element and polynuclear aromatic hydrocarbons probably are derived from both the open burning area and upstream sources. Volatile organic compounds were detected in surface-water samples at low concentrations, although most were found upstream from the open burning area. No inorganic or organic constituents were detected in ground-water or surface-water samples in concentrations that exceeded U.S. Environmental Protection Agency primary drinking-water regulations.

  3. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  4. A comparative analysis of potential impact area of common sugar cane burning methods

    NASA Astrophysics Data System (ADS)

    Hiscox, A. L.; Flecher, S.; Wang, J. J.; Viator, H. P.

    2015-04-01

    The negative effects of agricultural burning are well-known, although the actual impact area of different activities has not previously been quantified. An elastic backscatter lidar system was used to examine the impact-area size and dispersion of smoke generated from different types of sugarcane burning activities; pre-harvest (standing) burning and post-harvest (ground) burning. Experiments were conducted in the sugarcane harvest season of 2010 and 2011 at two locations in Louisiana, USA. Current dispersion theory would suggest that the primary difference between burn types would be primarily in the initial plume rise, but that the overall plume shape would remain the same. However, remotely sensed lidar data with the capability to measure plume dispersion and the short time dynamics of plume location showed pre-harvest (standing) burning produced a larger plume with greater rise and more spread within the 300 m of the plume, but a decrease in dispersion, but not concentration further downwind. Post-harvest (ground) burning produced a more traditional plume shape, but still exceeded impact area predictions near the source. Moreover, large changes in plume size can occur with small increases in wind speed. These are the first instrumented measurements of the meteorological effects of the different types of sugarcane burning. These results indicate that ground burning is preferable, but should be avoided in lower wind speed conditions.

  5. Burn severity and areas of daily fire growth for 42 forest fires in Idaho and Montana, 2005 - 2011

    NASA Astrophysics Data System (ADS)

    Birch, Donovan Shayne

    This work consisted of two studies of burn severity using infrared perimeter maps and satellite-inferred burn severity data, differenced Normalized Burn Ratio, from 42 wildland fires from central Idaho and western Montana from 2005 to 2007, and 2011. Study 1 examined the proportion of burn severity categories for individual daily areas burned. We defined 2,697 areas, from which we calculated the proportion of three burn severity classes. The proportion of high severity was weakly correlated with size of area burned. Large areas burned do not consistently produced larger proportions of high severity. Study 2 analyzed burn severity relative to 20 environmental variables using the Random Forest machine learning algorithm. We used ten daily weather observations, eight 34-yr climate percentiles, seven topographical index measurements, and four vegetation characteristics from 10,819 randomly located points. We found that higher percentage existing vegetation cover had larger influences on changes in burn severity.

  6. Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

  7. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks.

    PubMed

    Hart, Sarah J; Schoennagel, Tania; Veblen, Thomas T; Chapman, Teresa B

    2015-04-01

    In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km(2) of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002-2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity. PMID:25831541

  8. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks

    PubMed Central

    Hart, Sarah J.; Schoennagel, Tania; Veblen, Thomas T.; Chapman, Teresa B.

    2015-01-01

    In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km2 of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002–2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity. PMID:25831541

  9. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, F.; Xue, Y.; Okin, G. S.

    2014-12-01

    This study presents an investigation of the impact of burned areas on the surface energy balance and monthly precipitation in the northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS approximate date of burning product were implemented in a set of 1-year long WRF/NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was temporarily imposed through lower ground albedo for a period of 10 days after burning. In general, wildfire-induced vegetation and ground degradation increased surface albedo by exposing the brighter bare ground of the region, which in turn caused a decrease in surface net radiation and evapotranspiration in northern sub-saharan Africa. A decrease in atmospheric moisture flux convergence was simulated in the burned area experiments, which plays a dominant role in reducing precipitation over the area, especially in the months preceding the West African monsoon onset. The areas with largest impacts were those covered by forests and savanna, where annual precipitation decreased by 4.2% and 3.6%, respectively. This study suggests the cooling and drying of atmosphere induced by burned areas led to strengthening of subsidence during pre-onset and weakening of upward motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly vertical wind over the area showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, especially for those with daily precipitation rates above 2.0 mm day-1, which substantiates the hypothesis of convective instability decreasing resultant from burned-area-induced land degradation.

  10. Accuracy of fuzzy burned area mapping as a function of the aerosol parameterization of atmospheric correction

    NASA Astrophysics Data System (ADS)

    Azar, Ramin; Stroppiana, Daniela; Bresciani, Mariano; Giardino, Claudia; Boschetti, Mirco; Brivio, Pietro A.

    2013-10-01

    Mediterranean forests are every year affected by wildfires which have a significant effect on the ecosystem. Mapping burned areas is an important field of application for optical remote sensing techniques and several methodologies have been developed in order to improve mapping accuracy. We developed an automated procedure based on spectral indices and fuzzy theory for mapping burned areas from atmospherically corrected Landsat TM images. The algorithm proved to provide consistent accuracy over Mediterranean areas. We further tested algorithm's performance to assess the influence of the atmospheric correction on the accuracy of burned areas. In particular, we ran the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) code with different Atmospheric Optical Thickness (AOT) levels and two aerosol models (continental and maritime) on one TM image acquired over Portugal (12/08/2003). Burned area maps derived from atmospherically corrected images and from the non corrected image (Top Of Atmosphere, TOA) have been analyzed. In the output burned areas maps the omission error varies in the range 4.6-6.5% and the commission error fluctuates between 11.9 and 22.2%; the highest omission (commission) errors occur with the continental (maritime) model. The accuracy of burned area maps derived from non corrected image is very low, with omission error greater than 90%. These results show that, although atmospheric correction is needed for the application of the algorithm, the AOT value does not significantly affect the performance.

  11. Detection of Burn Area and Severity with MODIS Satellite Images and Spatial Autocorrelation Techniques

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Kavzoglu, T.; Tonbul, H.

    2014-12-01

    Effects of forest fires and implications are one of the most important natural disasters all over the world. Statistical data observed that forest fires had a variable structure in the last century in Turkey, but correspondingly the population growth amount of forest fires and burn area increase widely in recent years. Depending on this, erosion, landslides, desertification and mass loss come into existence. In addition; after forest fires, renewal of forests and vegetation are very important for land management. Classic methods used for detection of burn area and severity requires a long and challenging process due to time and cost factors. Thanks to advanced techniques used in the field of Remote Sensing, burn area and severity can be determined with high detail and precision. The purpose of this study based on blending MODIS (Moderate Resolution Imaging Spectradiometer) satellite images and spatial autocorrelation techniques together, thus detect burn area and severity absolutely. In this context, spatial autocorrelation statistics like Moran's I and Get is-Ord Local Gi indexes were used to measure and analyze to burned area characteristics. Prefire and postfire satellite images were used to determine fire severity depending on spectral indexes corresponding to biomass loss and carbon emissivity intensities. Satellite images have used for identification of fire damages and risks in terms of fire management for a long time. This study was performed using prefire and postfire satellite images and spatial autocorrelation techniques to determining and analyzing forest fires in Antalya, Turkey region which serious fires occurred. In this context, this approach enables the characterization of distinctive texture of burned area and helps forecasting more precisely. Finally, it is observed that mapping of burned area and severity could be performed from local scale to national scale. Key Words: Spatial autocorrelation, MODIS, Fire, Burn Severity

  12. Mineral Resources of the Black Mountains North and Burns Spring Wilderness Study Areas, Mohave County, Arizona

    USGS Publications Warehouse

    Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.

    1990-01-01

    At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.

  13. A Comparative Analysis of Burned Area Datasets in Canadian Boreal Forest in 2000

    PubMed Central

    Núñez-Casillas, Laia; Moreno-Ruiz, José Andrés

    2013-01-01

    The turn of the new millennium was accompanied by a particularly diverse group of burned area datasets from different sensors in the Canadian boreal forests, brought together in a year of low global fire activity. This paper provides an assessment of spatial and temporal accuracy, by means of a fire-by-fire comparison of the following: two burned area datasets obtained from SPOT-VEGETATION (VGT) imagery, a MODIS Collection 5 burned area dataset, and three different datasets obtained from NOAA-AVHRR. Results showed that burned area data from MODIS provided accurate dates of burn but great omission error, partially caused by calibration problems. One of the VGT-derived datasets (L3JRC) represented the largest number of fire sites in spite of its great overall underestimation, whereas the GBA2000 dataset achieved the best burned area quantification, both showing delayed and very variable fire timing. Spatial accuracy was comparable between the 5 km and the 1 km AVHRR-derived datasets but was remarkably lower in the 8 km dataset leading, us to conclude that at higher spatial resolutions, temporal accuracy was lower. The probable methodological and contextual causes of these differences were analyzed in detail. PMID:23818817

  14. A comparative analysis of burned area datasets in Canadian boreal forest in 2000.

    PubMed

    Núñez-Casillas, Laia; García Lázaro, José Rafael; Moreno-Ruiz, José Andrés; Arbelo, Manuel

    2013-01-01

    The turn of the new millennium was accompanied by a particularly diverse group of burned area datasets from different sensors in the Canadian boreal forests, brought together in a year of low global fire activity. This paper provides an assessment of spatial and temporal accuracy, by means of a fire-by-fire comparison of the following: two burned area datasets obtained from SPOT-VEGETATION (VGT) imagery, a MODIS Collection 5 burned area dataset, and three different datasets obtained from NOAA-AVHRR. Results showed that burned area data from MODIS provided accurate dates of burn but great omission error, partially caused by calibration problems. One of the VGT-derived datasets (L3JRC) represented the largest number of fire sites in spite of its great overall underestimation, whereas the GBA2000 dataset achieved the best burned area quantification, both showing delayed and very variable fire timing. Spatial accuracy was comparable between the 5 km and the 1 km AVHRR-derived datasets but was remarkably lower in the 8 km dataset leading, us to conclude that at higher spatial resolutions, temporal accuracy was lower. The probable methodological and contextual causes of these differences were analyzed in detail. PMID:23818817

  15. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  16. Clinical forensic evidence in burns: rescuer burns.

    PubMed

    Kumar, Pramod; Gopal, Kirun; Ramnani, Sunil

    2006-12-01

    In the literature no systematic study is available on rescuer burn for victims of burn injury. This is a retrospective study of nine patients (five admitted and four outpatients) were treated in this hospital as rescuer burns in 3.5 years. All nine patients were males. Average age of the patient treated on outpatient basis was 47 years (ranging between 44 and 52) and total burn area ranged for 1-4%. Average age of the five patients treated on inpatient basis was 32.6 years (ranging between 30 and 34). The total burn area ranged from 14.5 to 38%. During the period of study, in addition to nine rescuer burns, one patient sustained burn before the rescue attempt due to the victim hugging the rescuer. Based on the study of patterns of burn, these patients were found to have three grades of burn injury: Grade 1--upper extremity involvement only. (A) only one upper extremity involvement, (B) both upper extremities involvement, Grade 2--upper extremity/extremities and face involvement, Grade 3--upper extremity/extremities, face-neck, adjacent chest and lower extremity involvement. PMID:17011132

  17. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area

    NASA Astrophysics Data System (ADS)

    Poulter, Benjamin; Cadule, Patricia; Cheiney, Audrey; Ciais, Philippe; Hodson, Elke; Peylin, Philippe; Plummer, Stephen; Spessa, Allan; Saatchi, Sassan; Yue, Chao; Zimmermann, Niklaus E.

    2015-02-01

    Fire plays an important role in terrestrial ecosystems by regulating biogeochemistry, biogeography, and energy budgets, yet despite the importance of fire as an integral ecosystem process, significant advances remain to improve its prognostic representation in carbon cycle models. To recommend and to help prioritize model improvements, this study investigates the sensitivity of a coupled global biogeography and biogeochemistry model, LPJ, to observed burned area measured by three independent satellite-derived products, GFED v3.1, L3JRC, and GlobCarbon. Model variables are compared with benchmarks that include pantropical aboveground biomass, global tree cover, and CO2 and CO trace gas concentrations. Depending on prescribed burned area product, global aboveground carbon stocks varied by 300 Pg C, and woody cover ranged from 50 to 73 Mkm2. Tree cover and biomass were both reduced linearly with increasing burned area, i.e., at regional scales, a 10% reduction in tree cover per 1000 km2, and 0.04-to-0.40 Mg C reduction per 1000 km2. In boreal regions, satellite burned area improved simulated tree cover and biomass distributions, but in savanna regions, model-data correlations decreased. Global net biome production was relatively insensitive to burned area, and the long-term land carbon sink was robust, ~2.5 Pg C yr-1, suggesting that feedbacks from ecosystem respiration compensated for reductions in fuel consumption via fire. CO2 transport provided further evidence that heterotrophic respiration compensated any emission reductions in the absence of fire, with minor differences in modeled CO2 fluxes among burned area products. CO was a more sensitive indicator for evaluating fire emissions, with MODIS-GFED burned area producing CO concentrations largely in agreement with independent observations in high latitudes. This study illustrates how ensembles of burned area data sets can be used to diagnose model structures and parameters for further improvement and also highlights the importance in considering uncertainties and variability in observed burned area data products for model applications.

  18. MODIS-Landsat data fusion for automated continental 30 m burned area mapping

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Roy, D. P.; Baraldi, A.; Humber, M.

    2013-12-01

    Satellite data have been used to monitor fire for more than three decades using computer algorithms that detect the location of active fires at the time of satellite overpass and the spatial extent of the areas affected by fire. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have dedicated fire monitoring capabilities and their data are used to systematically generate daily global 1km active fire and monthly 500m burned area products. Neither MODIS product can detect the incidence or extent of fire reliably at the scale of 10's of meters. The free Landsat data policy now provides the opportunity for continental to global scale Landsat 30m resolution processing. We present a multi-temporal methodology to fuse the MODIS active fire and burned area products with Landsat data to map burned areas at 30m on a temporally rolling basis. To demonstrate the methodology, 30m burned area maps of the Western United States are generated using the freely available Web Enabled Landsat (WELD) mosaics (http://landsat.usgs.gov/WELD.php). Validation is conducted by systematic comparison with fire perimeter vectors provided by the USGS Monitoring Trends in Burn Severity project. Prospects for future development and continental application are discussed. The methodology demonstrates the potential use of the Landsat archive to generate a long term 30m fire data record.

  19. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  20. Assessment of PROBA-V Data for Discriminating Burned Areas in Minas Gerais State, Brazil

    NASA Astrophysics Data System (ADS)

    Arantes Pereira, Allan; Pereira, J. M. C.; Oom, Duarte; Tavares de Carvalho, Luis Marcelo

    2015-12-01

    High spatio-temporal resolution optical remote sensing data provides opportunities to monitor and discriminate burned area in a accurate way. This study has the purpose to assess the discriminatory performance of multi-spectral reflectance values of PROBA-V sensor and on normalized difference spectral indices (NDSIs), such as the Normalized Difference Vegetation Index (NDVI) in burned land discrimination a in different land-cover types across Minas Gerais state, Brazil. The M separability index was calculated in each land-cover type including Cerrado (Tropical Savanna), Atlantic Forest, agricultural crops, and pastures, to determine the most powerful band(s) combinations among the PROBA-V reflective bands for discrimination between burnt and unburnt areas The results showed that the BLUE channel is potentially effective for burntarea discrimination in the majority of all land cover types ,. Moreover results showed that spectral indexes used for discriminating burned areas are vegetation type dependant.

  1. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  2. MODIS-Landsat data fusion for continental scale burned area mapping

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Roy, D. P.

    2011-12-01

    Satellite data have been used to monitor fire for more than two decades using computer algorithms that detect the location of active fires at the time of satellite overpass, and in the last decade using burned area mapping algorithms that map the spatial extent of the areas affected by fires. Until the successful launch of the polar-orbiting NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensors there were no environmental satellite systems with dedicated fire monitoring capabilities. The MODIS design includes bands specifically selected for fire detection and MODIS data are being used to systematically generate the daily global 1km active fire and the monthly 500m burned area products. However, neither MODIS product can detect fires reliably at the scale of 10's of meters. The recent U.S. free Landsat data policy now provides the opportunity for continental to global scale Landsat 30m resolution processing. This paper presents a multi-temporal methodology to fuse the MODIS active fire and burned area products with Landsat data to map burned areas at 30m on a temporally rolling basis. To demonstrate the fusion methodology, 30m burned area maps of the conterminous United States (CONUS) are generated using the freely available Web Enabled Landsat (WELD) ETM+ mosaics (http://landsat.usgs.gov/WELD.php). Validation is conducted by systematic comparison with the fire perimeter vectors provided by the USGS Monitoring Trends in Burn Severity project. Prospects for future developments and continental application are discussed. The presented methodology demonstrates the potential for the fusion of the planned NPP/NPOESS VIIRS active fire product with reflectance data sensed by the planned Landsat Data Continuity missions.

  3. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Harris, T. R.; Lapitan, R. L.; Cooper, D. I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. The objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions.

  4. Accuracy assessment of photogrammetric digital elevation models generated for the Schultz Fire burn area

    NASA Astrophysics Data System (ADS)

    Muise, Danna K.

    This paper evaluates the accuracy of two digital photogrammetric software programs (ERDAS Imagine LPS and PCI Geomatica OrthoEngine) with respect to high-resolution terrain modeling in a complex topographic setting affected by fire and flooding. The site investigated is the 2010 Schultz Fire burn area, situated on the eastern edge of the San Francisco Peaks approximately 10 km northeast of Flagstaff, Arizona. Here, the fire coupled with monsoon rains typical of northern Arizona drastically altered the terrain of the steep mountainous slopes and residential areas below the burn area. To quantify these changes, high resolution (1 m and 3 m) digital elevation models (DEMs) were generated of the burn area using color stereoscopic aerial photographs taken at a scale of approximately 1:12000. Using a combination of pre-marked and post-marked ground control points (GCPs), I first used ERDAS Imagine LPS to generate a 3 m DEM covering 8365 ha of the affected area. This data was then compared to a reference DEM (USGS 10 m) to evaluate the accuracy of the resultant DEM. Findings were then divided into blunders (errors) and bias (slight differences) and further analyzed to determine if different factors (elevation, slope, aspect and burn severity) affected the accuracy of the DEM. Results indicated that both blunders and bias increased with an increase in slope, elevation and burn severity. It was also found that southern facing slopes contained the highest amount of bias while northern facing slopes contained the highest proportion of blunders. Further investigations compared a 1 m DEM generated using ERDAS Imagine LPS with a 1 m DEM generated using PCI Geomatica OrthoEngine for a specific region of the burn area. This area was limited to the overlap of two images due to OrthoEngine requiring at least three GCPs to be located in the overlap of the imagery. Results indicated that although LPS produced a less accurate DEM, it was much more flexible than OrthoEngine. It was also determined that the most amount of difference between the DEMs occurred in unburned areas of the fire while the least amount of difference occurred in areas that were highly burned.

  5. A system for 3D representation of burns and calculation of burnt skin area.

    PubMed

    Prieto, María Felicidad; Acha, Begoña; Gómez-Cía, Tomás; Fondón, Irene; Serrano, Carmen

    2011-11-01

    In this paper a computer-based system for burnt surface area estimation (BAI), is presented. First, a 3D model of a patient, adapted to age, weight, gender and constitution is created. On this 3D model, physicians represent both burns as well as burn depth allowing the burnt surface area to be automatically calculated by the system. Each patient models as well as photographs and burn area estimation can be stored. Therefore, these data can be included in the patient's clinical records for further review. Validation of this system was performed. In a first experiment, artificial known sized paper patches were attached to different parts of the body in 37 volunteers. A panel of 5 experts diagnosed the extent of the patches using the Rule of Nines. Besides, our system estimated the area of the "artificial burn". In order to validate the null hypothesis, Student's t-test was applied to collected data. In addition, intraclass correlation coefficient (ICC) was calculated and a value of 0.9918 was obtained, demonstrating that the reliability of the program in calculating the area is of 99%. In a second experiment, the burnt skin areas of 80 patients were calculated using BAI system and the Rule of Nines. A comparison between these two measuring methods was performed via t-Student test and ICC. The hypothesis of null difference between both measures is only true for deep dermal burns and the ICC is significantly different, indicating that the area estimation calculated by applying classical techniques can result in a wrong diagnose of the burnt surface. PMID:21703768

  6. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.

  7. Validation of the 2008 Landsat Burned Area Ecv Product for North America Using Stratified Random Sampling

    NASA Astrophysics Data System (ADS)

    Brunner, N. M.; Mladinich, C. S.; Caldwell, M. K.; Beal, Y. J. G.

    2014-12-01

    The U.S. Geological Survey is generating a suite of Essential Climate Variables (ECVs) products, as defined by the Global Climate Observing System, from the Landsat data archive. Validation protocols for these products are being established, incorporating the Committee on Earth Observing Satellites Land Product Validation Subgroup's best practice guidelines and validation hierarchy stages. The sampling design and accuracy measures follow the methodology developed by the European Space Agency's Climate Change Initiative Fire Disturbance (fire_cci) project (Padilla and others, 2014). A rigorous validation was performed on the 2008 Burned Area ECV (BAECV) prototype product, using a stratified random sample of 48 Thiessen scene areas overlaying Landsat path/rows distributed across several terrestrial biomes throughout North America. The validation reference data consisted of fourteen sample sites acquired from the fire_cci project and the remaining new samples sites generated from a densification of the stratified sampling for North America. The reference burned area polygons were generated using the ABAMS (Automatic Burned Area Mapping) software (Bastarrika and others, 2011; Izagirre, 2014). Accuracy results will be presented indicating strengths and weaknesses of the BAECV algorithm.Bastarrika, A., Chuvieco, E., and Martín, M.P., 2011, Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors: Remote Sensing of Environment, v. 115, no. 4, p. 1003-1012.Izagirre, A.B., 2014, Automatic Burned Area Mapping Software (ABAMS), Preliminary Documentation, Version 10 v4,: Vitoria-Gasteiz, Spain, University of Basque Country, p. 27.Padilla, M., Chuvieco, E., Hantson, S., Theis, R., and Sandow, C., 2014, D2.1 - Product Validation Plan: UAH - University of Alcalá de Henares (Spain), 37 p.

  8. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    SciTech Connect

    Palmer, E.

    1996-03-01

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  9. Long lead statistical forecasts of area burned in western U.S. wildfires by ecosystem province

    USGS Publications Warehouse

    Westerling, A.L.; Gershunov, A.; Cayan, D.R.; Barnett, T.P.

    2002-01-01

    A statistical forecast methodology exploits large-scale patterns in monthly U.S. Climatological Division Palmer Drought Severity Index (PDSI) values over a wide region and several seasons to predict area burned in western U.S. wildfires by ecosystem province a season in advance. The forecast model, which is based on canonical correlations, indicates that a few characteristic patterns determine predicted wildfire season area burned. Strong negative associations between anomalous soil moisture (inferred from PDSI) immediately prior to the fire season and area burned dominate in most higher elevation forested provinces, while strong positive associations between anomalous soil moisture a year prior to the fire season and area burned dominate in desert and shrub and grassland provinces. In much of the western U.S., above- and below-normal fire season forecasts were successful 57% of the time or better, as compared with a 33% skill for a random guess, and with a low probability of being surprised by a fire season at the opposite extreme of that forecast.

  10. BIG SAGEBRUSH LEAF AREA DYNAMICS ON A BURNED, GRAZED AND CONTROL SITE IN THE SAGEBRUSH STEPPE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia tridentata Nutt.) is an important shrub for wildlife habitat and carbon sequestration in the western U.S. The effects of fire and grazing on leaf area development of big sagebrush were investigated in plots established on a 16-ha burned site, a 12-ha grazed site and 16-ha c...

  11. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J.

    2009-01-01

    Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5?? (latitude ?? longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960-2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991-2000, the results suggest that average area burned per decade will double by 2041-2050 and will increase on the order of 3.5-5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long-term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing Ltd.

  12. Fibrin glue: its use for skin grafting of contaminated burn wounds in areas difficult to immobilize.

    PubMed

    Vedung, S; Hedlung, A

    1993-01-01

    A human fibrin glue was used in patients with burns for fixation of skin grafts on slightly infected wounds in the axillas, perineum, and the gluteal folds. These areas had been left open after previous skin transplantations. There was stable and safe adhesion and little inflammatory reaction between the graft and the recipient area, resulting in favorable conditions for graft incorporation. By using the glue the last wounds in our patients healed earlier, and the patients' general condition improved. PMID:8360243

  13. Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Mayor, Á. G.; Goirán, S.; Bautista, S.

    2009-04-01

    Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, β-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of β-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased linearly with the total cover of vegetation patches, which is consistent with the strong effect of plant patches on the activity of this enzyme. According to our results, variations in the cover and composition of vegetation patches may have profound impacts on the soil enzyme activity and associated nutrient cycling processes in burned Mediterranean areas, particularly in the case of phosphorus. Keywords: wildfires, landscape metrics, Mediterranean shrublands, soil enzyme activity, resprouter species.

  14. Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Soja, A. J.; Ivanova, G. A.; Petkov, A.; Ponomarev, E. I.; Conard, S. G.

    2012-12-01

    Wildfire is one of the main disturbance factors in the boreal zone of Russia. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russia vary substantially due to differences in ecosystem classification and mapping, burned area calculations, and estimates of fuel consumption. We examined uncertainties in different parameters used to estimate biomass burning emissions. Several fire datasets (Institute of Forest burned area product, MCD45, MCD64, MOD14/MYD14, official data) were compared to estimate uncertainties in area burned in Siberia. Area burned was found to differ significantly by data source, with satellite data being by an order of magnitude greater than ground-based data. Differences between mapped ecosystems were also compared and contrasted on the basis of five land cover maps (GLC-2000, Globcover-2009, MODIS Collection 4 and 5 Global Land Cover, and the Digitized Ecosystem map of the Former Soviet Union) to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. The examination of land cover maps showed that estimates of relative proportion of fire by ecosystem type varied substantially for the same year from map to map. Fuel consumption remains one of the main uncertainties in estimates of biomass burning emissions in Siberia. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Global climate change is expected to result in increase of fire hazard and area burned, leading to impacts on global air quality and human health. Accurate emission estimates are required by air quality agencies to calculate local emissions and to develop strategies to mitigate negative smoke impacts. This research was supported by NASA LCLUC Program, Fulbright Program, and Russian Academy of Sciences.

  15. 47 CFR 36.622 - National and study area average unseparated loop costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false National and study area average unseparated... Universal Service Fund Calculation of Loop Costs for Expense Adjustment § 36.622 National and study area... provided in paragraph (c) of this section, this is equal to the sum of the Loop Costs for each study...

  16. 47 CFR 36.622 - National and study area average unseparated loop costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false National and study area average unseparated... Universal Service Fund Calculation of Loop Costs for Expense Adjustment § 36.622 National and study area... provided in paragraph (c) of this section, this is equal to the sum of the Loop Costs for each study...

  17. The Effect of Area Averaging on the Approximated Profile of the H α Spectral Line

    NASA Astrophysics Data System (ADS)

    Bodnárová, M.; Utz, D.; Rybák, J.

    2016-04-01

    The Hα line is massively used as a diagnostics of the chromosphere. Often one needs to average the line profile over some area to increase the signal to noise ratio. Thus it is important to understand how derived parameters vary with changing approximations. In this study we investigate the effect of spatial averaging of a selected area on the temporal variations of the width, the intensity and the Dopplershift of the Hα spectral line profile. The approximated profile was deduced from co-temporal observations in five points throughout the Hα line profile obtained by the tunable Lyot filter installed on the Dutch Open Telescope. We found variations of the intensity and the Doppler velocities, which were independent of the size of the area used for the computation of the area averaged Hα spectral line profile.

  18. [Difference between carbon storage of burned area under different restorations in Greater Xing' an Mountains, Northeast China].

    PubMed

    Xin, Ying; Zou, Meng-ling; Zhao, Yu-sen

    2015-11-01

    In order to explore forest restoration approach effect on carbon storage of severely burned area in Greater Xing'an Mountains, the carbon contents of tree, shrub, herb and litter from two plantations (Larix gmelinii and Pinus sylvestris var. mongolica) and natural secondary forest were determined, respectively, by using dry combustion method. The biomass of each component was obtained to estimate the distribution characterization of forest vegetation carbon storage by combing whole harvest method with average standard wood method. The results showed that, for both plantations and secondary forest, the average carbon content of shrub was higher than that of arbor and herb. In the L. gmelinii plantation, the average carbon contents of shrub, litter, arbor and herb were 45.8%, 45.3%, 44.4% and 33.6%, respectively. The average carbon content of shrub and arbor was more than 50% in P. sylvestris var. mongolica plantation, while that of arbor, shrub and litter was about 42% for the secondary forest. The biomass of arbor was higher than shrub and herb. In L. gmelinii plantation, the total biomass of vegetation and litter was 123.90 t · hm(-2), which was significantly higher than that of P. sylvestris var. mongolica plantation and secondary forest. The carbon storage of vegetation in L. gmelinii plantation was 50.97 t · hm(-2), among which the arbor was 49.87 t · hm(-2), accounting for 97.8% of the total carbon storage in forest vegetation, while the proportion of herb carbon storage only occupied 0.02%. The total carbon storage of plantations was higher than that of the secondary forest, suggesting a stronger capacity of carbon sink through artificial restoration on severely burned area in Greater Xing' an Mountains during this period. PMID:26915201

  19. Probability and volume of potential postwildfire debris flows in the 2011 Wallow burn area, eastern Arizona

    USGS Publications Warehouse

    Ruddy, Barbara C.

    2011-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned in 2011 by the Wallow wildfire in eastern Arizona. Empirical models derived from statistical evaluation of data collected from recently burned drainage basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and debris-flow volumes for selected drainage basins. Input for the models include measures of burn severity, topographic characteristics, soil properties, and rainfall total and intensity for a (1) 10-year-recurrence, 1-hour-duration rainfall and (2) 25-year-recurrence, 1-hour-duration rainfall. Estimated debris-flow probabilities in the drainage basins of interest ranged from less than 1 percent in response to both the 10-year-recurrence, 1-hour-duration rainfall and the 25-year-recurrence, 1-hour-duration rainfall to a high of 41 percent in response to the 25-year-recurrence, 1-hour-duration rainfall. The low probabilities in all modeled drainage basins are likely due to extensive low-gradient hillslopes, burned at low severities, and large drainage-basin areas (greater than 25 square kilometers). Estimated debris-flow volumes ranged from a low of 24 cubic meters to a high of greater than 100,000 cubic meters, indicating a considerable hazard should debris flows occur

  20. Probability and volume of potential postwildfire debris flows in the 2011 Monument burn area, southeastern Arizona

    USGS Publications Warehouse

    Ruddy, Barbara C.; Verdin, Kristine L.

    2011-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Monument wildfire in southeastern Arizona, in 2011. Empirical models derived from statistical evaluation of data collected from recently burned drainage basins throughout the intermountain Western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Input for the models include measures of burn severity, topographic characteristics, soil properties, and rainfall total and intensity for a (1) 2-year-recurrence, 30-minute-duration rainfall, (2) 5-year-recurrence, 30-minute-duration rainfall, and (3) 10-year-recurrence, 30-minute-duration rainfall. Estimated debris-flow probabilities in the drainage basins of interest ranged from a low of 26 percent in response to the 2-year-recurrence, 30-minute-duration rainfall to 100 percent in response to the 10-year-recurrence, 30-minute-duration rainfall. The high probabilities in all modeled drainage basins are likely due to the abundance of steep hillslopes and the extensive areas burned at moderately to high severities. The estimated volumes ranged from a low of about 2,000 cubic meters to a high of greater than 200,000 cubic meters.

  1. An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data

    NASA Astrophysics Data System (ADS)

    Silva, JoãO. M. N.; Pereira, José M. C.; Cabral, Ana I.; Sá, Ana C. L.; Vasconcelos, Maria J. P.; Mota, Bernardo; GréGoire, Jean-Marie

    2003-07-01

    The area burned in southern Africa during the 2000 dry season was mapped on a monthly basis from May to November using SPOT-VEGETATION (VGT) satellite imagery at 1 km spatial resolution. Burned areas were identified with a classification tree that relied only on the near-infrared channel of VGT. The classification tree algorithm yielded very accurate results (Kappa = 0.93). However, when compared with burned area maps derived from 30 m resolution Landsat Enhanced Thematic Mapper (ETM+) imagery, the VGT 1 km burned area maps reveal variable accuracy, dependent on vegetation type and on the spatial pattern of the burned areas. Fire incidence was higher in the northern part of the study area, especially in Wetter Zambezian Miombo Woodland, Mosaic of Guineo-Congolian Lowland Forest and Secondary Grassland, Edaphic and Secondary Grassland on Kalahari Sand, Drier Zambezian Miombo Woodland, and Undifferentiated North-Zambezian Miombo Woodland. Fire incidence was lower in the eastern part of the study area and almost absent from the western and southern semiarid and desert regions. The most extensively burned countries were, in decreasing order, the Democratic Republic of Congo, Angola, Mozambique and Zambia. The total area burned was estimated at 959480 km2.

  2. Biomass burning plume modeling with WRF-Chem in tropical forest regions to evaluate the added benefit of active fire detections over burned area datasets

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G.; Randerson, J. T.; Chen, Y.

    2012-12-01

    Fires are routinely monitored from space, either by detecting fires that burn at the time of overpass or by investigating satellite time series to map burned area. While burned area datasets have largely replaced active fires as the preferential product to use when mapping the spatial extent of fires, they have limited success in detecting small fires, such as agricultural burns. In addition, late season fires may be more easily detected using active fires. Here we investigated whether including active fires that are not associated with burned area improved the match between bottom-up fire emissions modeling and top-down constraints. We used the WRF-Chem model to transport several modified versions of the Global Fire Emissions Database (GFED) into the atmosphere and used observation of MOPITT carbon monoxide as a top-down constraint. We focus on emissions over Indonesia and the Amazon, and show that including active fires leads to a longer modeled fire season, which is in better correspondence with top-down constraints. In the future, merging both datasets may lead to a better representation of fire emissions.

  3. Dominating soil typologies in burned areas of Dz¯u kija National Park (Lithuania)

    NASA Astrophysics Data System (ADS)

    Martin-Gallego, David; Lapele, Mindaugas; Pereira, Paulo

    2013-04-01

    A big part of the scientific community consider fire disturbance as an ecological factor which becomes an integral part of the structure and dynamics of the biotic components of forests. In Dzūkija National Park, likewise occurs in other boreal forests, fire perturbation has become over time one of the main natural components which models and structures the landscape. It is indeed know that park's forest territory presents a high sensitivity to wildfire and soil typologies could have certain implications when evaluating vulnerability to fire. To carry out this study, a total of 28 burned-stands were explored. Information collected in the forest related to fire concurrence as well as current dominating overgrowing were registered. In this way, interpretation of field work results was aimed to elucidate dominating soils in burned areas which potentially are more prone to wildfire. The majority of fire-affected stands were found on soils of type "Na" -78% of total sites-, a few ones of "Nb" -18% of burned plots- and, eventually, fire was also evidenced in "Lb" soils -4%. "Na" typology belongs to very dry and unfertilized soils and, thus, very sensitive to fire, with dominating community of Cladonio-pinetum sylvestris. In "Nb" stands there are more fertilized soils with Vaccinium vitis-idaea in some cases with transitional associations of Vaccinium myrtillus. "Lb" typology refers to wetter soils with undergrown of Vaccinium myrtillus. Overall, fire has regularly been occurring in dried and non-fertilized soils, were preconditions for burning increase; whereas burned stands within more humid environments were rarely found.

  4. Standardised mortality ratio based on the sum of age and percentage total body surface area burned is an adequate quality indicator in burn care: An exploratory review.

    PubMed

    Steinvall, Ingrid; Elmasry, Moustafa; Fredrikson, Mats; Sjoberg, Folke

    2016-02-01

    Standardised Mortality Ratio (SMR) based on generic mortality predicting models is an established quality indicator in critical care. Burn-specific mortality models are preferred for the comparison among patients with burns as their predictive value is better. The aim was to assess whether the sum of age (years) and percentage total body surface area burned (which constitutes the Baux score) is acceptable in comparison to other more complex models, and to find out if data collected from a separate burn centre are sufficient for SMR based quality assessment. The predictive value of nine burn-specific models was tested by comparing values from the area under the receiver-operating characteristic curve (AUC) and a non-inferiority analysis using 1% as the limit (delta). SMR was analysed by comparing data from seven reference sources, including the North American National Burn Repository (NBR), with the observed mortality (years 1993-2012, n=1613, 80 deaths). The AUC values ranged between 0.934 and 0.976. The AUC 0.970 (95% CI 0.96-0.98) for the Baux score was non-inferior to the other models. SMR was 0.52 (95% CI 0.28-0.88) for the most recent five-year period compared with NBR based data. The analysis suggests that SMR based on the Baux score is eligible as an indicator of quality for setting standards of mortality in burn care. More advanced modelling only marginally improves the predictive value. The SMR can detect mortality differences in data from a single centre. PMID:26700877

  5. Continental scale 30m burned area mapping: demonstration and validation for the conterminous United States and Alaska

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Roy, D. P.

    2014-12-01

    Fire products derived from coarse (500m to 1km) spatial resolution satellite data have become an important source of information for the fire science and applications communities. There is however a demand for moderate spatial resolution burned area maps that are systematically generated at regional to global scale. This paper presents a multi-temporal methodology to fuse the MODIS 1km active fire product with Landsat data to map burned areas at 30m on a temporally rolling basis. A multistage mapping approach is used, with an initial per-pixel change detection on Landsat 30m time series to identify candidate burned areas. The candidate burned area objects are then either retained or discarded by comparison with contemporaneous MODIS active fire detections. Results are illustrated showing 30m burned area maps of the conterminous United States and Alaska for two years (2002 and 2008) generated from weekly Web Enabled Landsat (WELD) Landsat mosaics and daily Terra and Aqua MODIS active fire detections. Validation is conducted by systematic comparison with all the fire perimeter vectors provided by the USGS Monitoring Trends in Burn Severity project. The presented methodology pathfinds the use of the Landsat archive to contribute to a long term burned area data record. Prospects for future developments and global application are discussed.

  6. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2014-12-01

    Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time. This data on daily burned area and emissions may be useful for in understanding controls and limits on fire growth, and predicting potential feedbacks of changing fire regimes.

  7. Hydrologic Impact of Straw Mulch On Runoff from a Burned Area for Various Soil Water Content

    NASA Astrophysics Data System (ADS)

    Carnicle, M. M.; Moody, J. A.; Ahlstrom, A. K.

    2011-12-01

    Mountainous watersheds often exhibit increases in runoff and flash floods after wildfires. During 11 days of September 2010, the Fourmile Canyon wildfire burned 2500 hectares of the foothills of the Rocky Mountains near Boulder, Colorado. In an effort to minimize the risk of flash floods after the wildfire, Boulder County aerially applied straw mulch on high-risk areas selected primarily on the basis of their slopes and burn severities. The purpose of this research is to investigate the hydrologic response, specifically runoff, of a burned area where straw mulch is applied. We measured the runoff, at different soil water contents, from 0.8-m diameter plots. Paired plots were installed in June 2011 in a basin burned by the Fourmile Canyon Fire. Two sets of bounded, paired plot (two control and two experimental plots) were calibrated for 35 days without straw on either plot by measuring volumetric soil water content 2-3 times per week and measuring total runoff from each storm. Straw (5 cm thick) was added to the two experimental plots on 19 July 2011 and also to the funnels of two visual rain gages in order to measure the amount of rainfall absorbed by the straw. Initial results during the calibration period showed nearly linear relations between the volumetric soil water content of the control and experimental plots. The regression line for the runoff from the control versus the runoff from the experiment plot did not fit a linear trend; the variability may have been caused by two intense storms, which produced runoff that exceeded the capacity of the runoff gages. Also, during the calibration period, when soil water content was low the runoff coefficients were high. It is anticipated that the final results will show that the total runoff is greater on plots with no straw compared to those with straw, under conditions of various antecedent soil water content. We are continuing to collect data during the summer of 2011 to test this hypothesis.

  8. Selected organic compounds from biomass burning found in the atmospheric particulate matter over sugarcane plantation areas

    NASA Astrophysics Data System (ADS)

    dos Santos, Celeste Yara Moreira; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler

    Atmospheric particulate matter, from three sites in the city of Campos dos Goytacazes, and smoke samples from the burning of sugarcane leaves and bagasse were analyzed for biomass burning emissions. Samples were acquired using a standard high-volume air sampler; extracts were prepared and fractionated into aromatic and polar compounds. These fractions were subjected to gas chromatography and gas chromatography-mass spectrometry analyses. Polar and aromatic fractions were identified and quantified. Compounds such as levoglucosan, galactosan, mannosan were found in the polar fractions, and some polycyclic aromatic hydrocarbons (PAHs) in the aromatic fractions. Concentrations of levoglucosan ranged from 0.15 to 1.65 ng/m 3, 0.36 to 6.83 ng/m 3 and 0.19 to 28.42 ng/m 3 at the downtown Corpo de Bombeiros, suburban (Universidade Estadual do Norte Fluminense) and countryside (Lake de Cima, LC) sites; and from 10.55 to 35.06 ng/m 3 and 2.7 ng/m 3 in the smoke samples from the burnt leaves and bagasse, respectively. The LC site is, at face value, a non-polluted countryside area, surrounded by sugarcane plantations. This fact explains why the highest concentrations of levoglucosan were detected there. Sugarcane burning is not the main source of toxic compounds, such as PAH, e.g. benzo( a)pyrene, in the atmospheric particulate matter. No or small concentrations of PAHs were found in the sugarcane leaves/bagasse burning samples. Their presence in the studied sites can be ascribed to vehicular exhaust. Therefore, these are the two major sources of atmospheric pollution in this area.

  9. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California

    USGS Publications Warehouse

    Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L.

    2008-01-01

    Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity-duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings. Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10??min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3??h, with most of the rain falling in less than 1??h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D-??0.7 and I = 9.5D-??0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours). Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16??h, of low-intensity (2-10??mm/h) rainfall. The storms lasted between 5.5 and 33??h, with average intensities between 1.3 and 20.4??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D-0.4, and I = 7.2D-0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D-0.5 is approximately 25??mm/h higher than that developed for the first year following fires. The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes. Crown Copyright ?? 2007.

  10. Wet deposition of major ions in a rural area impacted by biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Coelho, Cidelmara H.; Allen, Andrew G.; Fornaro, Adalgiza; Orlando, Eduardo A.; Grigoletto, Tahuana L. B.; Campos, M. Lucia A. M.

    2011-09-01

    This work concerns the influence of industrialized agriculture in the tropics on precipitation chemistry. A total of 264 rain events were sampled using a wet-only collector in central São Paulo State, Brazil, between January 2003 and July 2007. Electroneutrality balance calculations (considering H +, K +, Na +, NH4+, Ca 2+, Mg 2+, Cl -, NO3-, SO42-, F -, PO43-, H 3CCOO -, HCOO -, CO42- and HCO3-) showed that there was an excess of cations (˜15%), which was attributed to the presence of unmeasured organic anion species originating from biomass burning and biogenic emissions. On average, the three ions NH4+, NO 3- and H + were responsible for >55% of the total ion concentrations in the rainwater samples. Concentrations (except of H +) were significantly higher ( t-test; P = 0.05), by between two to six-fold depending on species, during the winter sugar cane harvest period, due to the practice of pre-harvest burning of the crop. Principal component analysis showed that three components could explain 88% of the variance for measurements made throughout the year: PC1 (52%, biomass burning and soil dust resuspension); PC2 (26%, secondary aerosols); PC3 (10%, road transport emissions). Differences between harvest and non-harvest periods appeared to be mainly due to an increased relative importance of road transport/industrial emissions during the summer (non-harvest) period. The volume-weighted mean (VWM) concentrations of ammonium (23.4 μmol L -1) and nitrate (17.5 μmol L -1) in rainwater samples collected during the harvest period were similar to those found in rainwater from São Paulo city, which emphasizes the importance of including rural agro-industrial emissions in regional-scale atmospheric chemistry and transport models. Since there was evidence of a biomass burning source throughout the year, it appears that rainwater composition will continue to be affected by vegetation fires, even after sugar cane burning is phased out as envisaged by recent São Paulo State legislation.

  11. Area-Averaged Surface Fluxes Over the Litfass Region Based on Eddy-Covariance Measurements

    NASA Astrophysics Data System (ADS)

    Beyrich, Frank; Leps, Jens-Peter; Mauder, Matthias; Bange, Jens; Foken, Thomas; Huneke, Sven; Lohse, Horst; Lüdi, Andreas; Meijninger, Wouter M. L.; Mironov, Dmitrii; Weisensee, Ulrich; Zittel, Peter

    2006-10-01

    Micrometeorological measurements (including eddy-covariance measurements of the surface fluxes of sensible and latent heat) were performed during the LITFASS-2003 experiment at 13 field sites over different types of land use (forest, lake, grassland, various agricultural crops) in a 20 × 20 km2 area around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service (Deutscher Wetterdienst, DWD). Significant differences in the energy fluxes could be found between the major land surface types (forest, farmland, water), but also between the different agricultural crops (cereals, rape, maize). Flux ratios between the different surfaces changed during the course of the experiment as a result of increased water temperature of the lake, changing soil moisture, and of the vegetation development at the farmland sites. The measurements over grass performed at the boundary-layer field site Falkenberg of the MOL were shown to be quite representative for the farmland part of the area. Measurements from the 13 sites were composed into a time series of the area-averaged surface flux by taking into account the data quality of the single flux values from the different sites and the relative occurrence of each surface type in the area. Such composite fluxes could be determined for about 80% of the whole measurement time during the LITFASS-2003 experiment. Comparison of these aggregated surface fluxes with area-averaged fluxes from long-range scintillometer measurements and from airborne measurements showed good agreement.

  12. MERIS burned area algorithm in the framework of the ESA Fire CCI Project

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Calado, T.; Gonzalez, F.

    2012-04-01

    The Fire-CCI project aims at generating long and reliable time series of burned area (BA) maps based on existing information provided by European satellite sensors. In this context, a BA algorithm is currently being developed using the Medium Resolution Imaging Spectrometer (MERIS) sensor. The algorithm is being tested over a series of ten study sites with a area of 500x500 km2 each, for the period of 2003 to 2009. The study sites are located in Canada, Colombia, Brazil, Portugal, Angola, South Africa, Kazakhstan, Borneo, Russia and Australia and include a variety of vegetation types characterized by different fire regimes. The algorithm has to take into account several limiting aspects that range from the MERIS sensor characteristics (e.g. the lack of SWIR bands) to the noise presented in the data. In addition the lack of data in some areas caused either because of cloud contamination or because the sensor does not acquire full resolution data over the study area, provokes a limitation difficult to overcome. In order to overcome these drawbacks, the design of the BA algorithm is based on the analysis of maximum composites of spectral indices characterized by low values of temporal standard deviation in space and associated to MODIS hot spots. Accordingly, for each study site and year, composites of maximum values of BAI are computed and the corresponding Julian day of the maximum value and number of observations in the period are registered by pixel . Then we computed the temporal standard deviation for pixels with a number of observations greater than 10 using spatial matrices of 3x3 pixels. To classify the BAI values as burned or non-burned we extract statistics using the MODIS hot spots. A pixel is finally classified as burned if it satisfies the following conditions: i) it is associated to hot spots; ii) BAI maximum is higher than a certain threshold and iii) the standard deviation of the Julian day is less than a given number of days.

  13. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.

  14. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  15. Dominating fire direction in burned areas of Dz¯ u kija National Park (Lithuania)

    NASA Astrophysics Data System (ADS)

    Martin-Gallego, David; Lapele, Mindaugas; Pereira, Paulo

    2013-04-01

    Fire perturbation has been often breaking out in Dzukija's National Park landscapes over the last 150 years -coinciding with the age of oldest forests in the park's territory. Valuable information was obtained by carrying out a retrospective analysis which helped to reveal ancient presence of fire in the park. The study was developed on previously stipulated old forest stands around the area of Marcinkonys village. Of a total of 28 burned-stands, direction of fire spread was noted down from all standing trees presenting fire traces within two plot areas of 20 meters x 10 meters. It should be stated, however, that for half of the plots fire direction was uncertain and, hence, not taken into account. South-west direction was evidenced in half of the plots, being indeed the one with most presence in the burned stands; west and south direction were dominating in 28.5% and 25% of the plots respectively; in 10.7% of plots north-west was dominating direction; whereas fire traces were rarely observed facing north -only in 3.7% of plots-. Regarding the rest of directions, they were absent in all sampling sites. The direction of fire spread is largely determined by wind flow patterns: specifically wind and relative humidity could significantly change burning conditions. Despite that wind in the region blows predominantly from west and south-west, when analyzing our findings, it appears that dry continental air masses, and in general wind events associated with passing of dry cold fronts, produce more favorable conditions for the occurrence of fire. Wind-driven fires are mostly spreading to south-west as dry wind coming from north-west and west might generate the principle source of ignition and make vegetation more flammable.

  16. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  17. Cultured composite autografts as coverage for an extensive body surface area burn: case report and review of the technology.

    PubMed

    Caruso, D M; Schuh, W H; Al-Kasspooles, M F; Chen, M C; Schiller, W R

    1999-12-01

    Cultured epithelial autografts (CEA) have been used as an adjunct in the surgical management of extensive thermal burns. Unfortunately, the lack of a dermal matrix makes CEA susceptible to infection, shearing forces and limits their incorporation into the burn wound. A cultured composite autograft (CCA) has been developed in which autologous keratinocytes and fibroblasts are surgically harvested from the burn patient's normal skin. These components are proliferated and then combined to form an epidermal and dermal matrix, grown to confluence then applied. Standard wound coverage techniques as well as CCA technology were utilized for successful wound closure in a 12 yr-old female with an 81% third degree burn. After fascial excision and allograft coverage, autografts were placed on her posterior burns and then 7500 cm2 of CCA was placed onto her anterior thorax, abdomen and lower extremities. Sixty percent of the burn was covered with CCA resulting in a success rate of 40%. No evidence of infection was noted, even in areas where CCA failed, although in those areas random epithelialization appeared to occur which then seemed to facilitate autograft placement. Early debridement and allografting followed by conventional autografts and CCA placement may provide an effective skin coverage strategy in patients with extensive deep burns. PMID:10630865

  18. Estimation of the Area of a Reverberant Plate Using Average Reverberation Properties

    NASA Astrophysics Data System (ADS)

    Achdjian, Hossep; Moulin, Emmanuel; Benmeddour, Farouk; Assaad, Jamal

    This paper aims to present an original method for the estimation of the area of thin plates of arbitrary geometrical shapes. This method relies on the acquisition and ensemble processing of reverberated elastic signals on few sensors. The acoustical Green's function in a reverberant solid medium is modeled by a nonstationary random process based on the image-sources method. In that way, mathematical expectations of the signal envelopes can be analytically related to reverberation properties and structural parameters such as plate area, group velocity, or source-receiver distance. Then, a simple curve fitting applied to an ensemble average over N realizations of the late envelopes allows to estimate a global term involving the values of structural parameters. From simple statistical modal arguments, it is shown that the obtained relation depends on the plate area and not on the plate shape. Finally, by considering an additional relation obtained from the early characteristics (treated in a deterministic way) of the reverberation signals, it is possible to deduce the area value. This estimation is performed without geometrical measurements and requires an access to only a small portion of the plate. Furthermore, this method does not require any time measurement nor trigger synchronization between the input channels of instrumentation (between measured signals), thus implying low hardware constraints. Experimental results obtained on metallic plates with free boundary conditions and embedded window glasses will be presented. Areas of up to several meter-squares are correctly estimated with a relative error of a few percents.

  19. Quantum black hole wave packet: Average area entropy and temperature dependent width

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon; Yellin, Ben

    2014-09-01

    A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the average, leaving the average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards the classical limit. If σ0=0, we recover the Bekenstein-Hawking black hole thermodynamics of Schwarzschild spacetime. If σ0>η, the entropy function develops a local maximum at m=0. This in turn causes the small-m section of S(m) to be negative, and hence must be rejected on entropy positivity grounds. If σ0<η, the entropy S(m) exhibits an absolute minimum at m=0. The minimal entropy is still proportional to SBH=m2/2η2, but is suppressed now by a factor of 1-σ02/η2. If σ0=η (accompanied by cS=-1/2 >), the black hole entropy barely keeps its minimum at m=0, and the internal energy gives up its linear small-m behavior.

  20. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area.

    PubMed

    Menezes, Ana Paula S; da Silva, Juliana; Fisher, Camila; da Silva, Fernanda R; Reyes, Juliana M; Picada, Jaqueline N; Ferraz, Alice G; Corrêa, Dione S; Premoli, Suziane M; Dias, Johnny F; de Souza, Claudia T; Ferraz, Alexandre de B F

    2016-03-01

    The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells. PMID:26741544

  1. Geophysical investigation of burn pit, 128-H-1, 100-H Area

    SciTech Connect

    Szwartz, G.J.

    1994-07-11

    The 128-H-1 burn pit is located in the northeast corner of 100-H Area. The objective of the survey was to delineate subsurface features in the 128-H-1 burn pit that may affect the emplacement of soil-gas probes. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the two techniques used in the investigation. The methods were selected because they are non-intrusive, relatively fast, economical, and have been used successfully in other geophysical investigations on the Hanford Site. The GPR system used for this work utilized a 300-MHz antenna to transmit the Em energy into the ground. The transmitted energy is reflected back to a receiving antenna where variations in the return signal are recorded. Common reflectors include natural geologic conditions such as bedding, cementation, moisture, and clay, or man-made objects such as pipes, barrels, foundations, and buried wires. The studied depth, which varies from site to site, was 0--11 ft for this survey. The method is limited in depth by transmit power, receiver sensitivity, and attenuation of the transmitted energy. Depth of investigation is influenced by highly conductive material, such as metal drums, which reflect all the energy back to the receiver. Therefore, the method cannot ``see`` below such objects.

  2. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    NASA Astrophysics Data System (ADS)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  3. Validation Framework for USGS Landsat-derived Essential Climate Variables: the Burned Area Product Example

    NASA Astrophysics Data System (ADS)

    Mladinich, C. S.; Brunner, N. M.; Beal, Y. G.

    2013-12-01

    The U.S. Geological Survey (USGS) is generating a suite of Essential Climate Variables (ECVs), as defined by the Global Climate Observing System program, from the Landsat data archive. The Landsat archive will provide high spatial resolution (30 m) and long-term (1972 to present) global land products, meeting the needs of climate and ecological studies at global, national, and regional scales. Validation protocols for these products are being established, paralleling the Committee on Earth Observing Satellites (CEOS) Calibration/Validation Working Groups' best practice guidelines, but also being modified to account for the unique characteristics of the Landsat data. The USGS validation plan is unique in that it incorporates protocols that span not only the breadth of ecoregions but the timespan of the ECV products and Landsat satellite sensors (MSS, TM, TM+, and OLI). To achieve these goals, the incorporation of existing data bases is essential. Protocols are being developed to perform a CEOS Working Group on Calibration/Validation Stage 2 validation with plans on performing a full Stage 4 validation ensuring the spatial and temporal consistency of the ECV products. A Stage 2 validation reports product accuracies over a large number of locations and time periods by comparison with in situ or other suitable reference data. The Stage 3 validation reports product uncertainties in a statistically robust way over multiple locations and time periods representing global conditions. Validation at this stage reports on the accuracies and confidence of products for the user communities as well as to the algorithm developers. The Stage 4 validation calls for continual assessments as new product versions of the algorithms are released. This presentation will report on the validation protocols used for the Burned Area ECV product. The burned area ECV product is unique from other ECV products such as land cover or LAI because of the transitory nature of fires. In the United States, the use of existing fire perimeter data bases from various state and federal agencies as reference data is economical and enables the validation of different time periods and locations. Additionally, the incorporation of existing satellite-derived reference data used to validate other coarser resolution global burned area data sets such as the MCD45 (Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, 500 m spatial resolution), GlobCarbon (Along Track Scanning Radiometer (ATSR) sensor, 1 km spatial resolution), and L3JRC (SPOT-VEGETATION sensor, 1 km spatial resolution) is also being pursued. The validation the approach developed for the USGS ECV products and the challenges of using the vector polygons and raster layers from these reference datasets will be reported in the presentation.

  4. Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2014-01-01

    Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990-2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance - excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.

  5. Seasonal and spatial variation of organic tracers for biomass burning in PM1 aerosols from highly insolated urban areas.

    PubMed

    van Drooge, B L; Fontal, M; Bravo, N; Fernández, P; Fernández, M A; Muñoz-Arnanz, J; Jiménez, B; Grimalt, J O

    2014-10-01

    PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N = 90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality. PMID:24477336

  6. Multidecadal trends in burn severity and patch size in the Selway-Bitterroot Wilderness Area, 1900-2007

    NASA Astrophysics Data System (ADS)

    Wells, A.; Morgan, P.; Smith, A. M.; Hudak, A. T.; Hicke, J. A.

    2013-12-01

    How the proportion of area burned severely has changed over time is critical to understanding trends in the ecological effects of fire, but most assessments over large areas are limited to 30 years of satellite data. Little is known about multidecadal trends in burn severity, patch size, and implications for species diversity. Our objective was to analyze the change in proportion of area burned severely and patch size across 346,304 ha in the Selway-Bitterroot Wilderness Area in Idaho and Montana, USA. We used 30-meter fire perimeters and burn severity classes inferred from 1984-2007 satellite imagery from the Monitoring Trends in Burn Severity project and 1900-2000 aerial photography. We also analyzed the effect of patch size on species diversity of understory vegetation from field data collected from 20 sites burned in 2000, a year of widespread fires in the region. Fires occurred in 38 out of the 107 years in the record; 13 of these in the early period (1900-1934), 4 in the middle (1935-1974), and 21 in the late (1975-2007). Although 78% (270,918 ha) burned at least once and 48% (131,198) of the area burned severely with >70% tree mortality, there was no trend in total area burned severely through time (n=38, Spearman's Rank Correlation r = -0.14, p = 0.39), nor in proportion of area burned severely through time (n=38, Spearman's Rank Correlation r = -00.27, p = 0.09). Median patch size decreased through time (n= 38, Spearman's Rank Correlation r = -0.73 and p<0.01) and the number of high severity patches increased (n = 38, Spearman's Rank Correlation r = 0.35 and p = 0.02). Median perimeter-to-area ratio of high severity patches increased (n = 38, Spearman's Rank Sum Test r = 0.79 and p <.01); the greater perimeter-to-area ratio and shorter distance to the unburned edge through time is not an artifact of satellite data as patch size inferred from aerial photography 1900-2000 decreased (n= 31, Spearman's Rank, r = -0.42 and p <0.01), but did not for satellite data 1984-2007(n = 16, Spearman's Rank Correlation r = -0.12 and p = 0.64). Total tree seedling density 12 years post-fire was lower in large patches (Kruskal Wallis ANOVA p = 0.005) with fewer trees at 40 m and 80 m than at 10 m from unburned edges in severely burned patches (respectively, Wilcoxon Rank Sum Test p = 0.03 and 0.01). Understory species richness and diversity did not differ with distance from unburned edge, likely because many species resprout or establish from existing seed banks. Understanding how proportion of area burned severely is changing over multiple decades will help ecologists and land managers better understand where, when, and why fires burn severely and their past, present, and future consequences.

  7. Comparison of Normalized Burn Ratio, Normalized Difference Vegetation Index, and Enhanced Vegetation Index in Areas Burned by the Jasper Wildfire of Black Hills South Dakota

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhu, Z.

    2007-12-01

    The Jasper wildfire of August and September 2000 was the largest fire to occur in the Black Hills in at least a century. The disturbance on ecosystem characteristics will be widespread and long-term. Monitoring postfire vegetation changes using remote sensing data can provide unique and timely information about ecosystem dynamics. In this study, the Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), and Enhanced Vegetation Index (EVI) data were derived from Landsat imagery and compared before and after the Jasper fire. Landsat 5 images acquired on June 2, 2000 (preburn), and June 5, 2001 (10 months postburn), were analyzed. In addition, a Landsat 7 image acquired on May 31, 2002 (22 months postburn), was used in the study. Landsat data were converted to at-sensor reflectance, and NBR, NDVI, and EVI values were calculated for low, moderate, and high burn severity areas defined by using the difference of NBR between 2001 and 2000. NBR values in areas characterized as low burn severity changed very little between 2001 and 2002. Meanwhile, areas characterized as moderate or high severity showed substantial increases in NBR values between 2001 and 2002, implying some ecosystem recovery occurring for these areas over a relatively short time. EVI and NDVI show similar patterns of change, but it was found that EVI and NBR indices are more sensitive than is NDVI for capturing vegetation cover changes during the early postfire years. Further research is planned to use Landsat and MODIS imagery to assess spectral trends as a function of time in areas affected by fire.

  8. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2015-06-01

    Boreal fires burn into carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 450 m and a temporal resolution of 1 day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground carbon consumption occurred later in the season and for mid-elevation forests. Topographic slope and aspect did not improve performance of the belowground carbon consumption model. Aboveground and belowground carbon consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of carbon consumption. Between 2001 and 2012, the median carbon consumption was 2.54 kg C m-2. Burning in land-cover types other than black spruce was considerable and was associated with lower levels of carbon consumption than for pure black spruce stands. Carbon consumption originated primarily from the belowground fraction (median = 2.32 kg C m-2 for all cover types and 2.67 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (69 Tg C), 2005 (46 Tg C), 2009 (26 Tg C), and 2002 (17 Tg C) and a mean of 15 Tg C year-1 between 2001 and 2012. Mean uncertainty of carbon consumption for the domain, expressed as 1 standard deviation (SD), was 0.50 kg C m-2. Uncertainties in the multiplicative regression model used to estimate belowground consumption in black spruce stands and the land-cover classification were primary contributors to uncertainty estimates. Our analysis highlights the importance of accounting for the spatial heterogeneity of fuels and combustion when extrapolating emissions in space and time, and the need for of additional field campaigns to increase the density of observations as a function of tree cover and other environmental variables influencing consumption. The daily emissions time series from the Alaskan Fire Emissions Database (AKFED) presented here creates new opportunities to study environmental controls on daily fire dynamics, optimize boreal fire emissions in biogeochemical models, and quantify potential feedbacks from changing fire regimes.

  9. Hemostasis by means of a cautery knife equipped with an air spray for burns over a large area.

    PubMed

    Mitsukawa, Nobuyuki; Satoh, Kaneshige; Hosaka, Yoshiaki

    2006-09-01

    In operations in which debridement is performed over a large area (e.g., surgery for whole-body burns), it is necessary to keep the length of the operation short and the amount of blood loss as small as possible to minimize stress to the patient's body. In this study, we developed a cautery knife to which an air spray is attached for surgical procedures in which debridement is performed as treatment for burns over a large area. We have demonstrated herein that this device is very effective for reducing both blood loss and the duration of surgery as well as for simplifying the achievement of hemostasis. PMID:16837134

  10. Investigation of soil contamination at the Riot Control Burning Pit area in J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Wang, Ying-Ya; Yuen, C.R.; Martino, L.

    1996-05-01

    A remedial investigation was conducted to identify soil contamination in the Riot Control Burning Pit area in J-field, Aberdeen Proving Ground, Maryland. The investigation included geophysical surveys to delineate the filled section of the pit, soil-gas surveys to locate the organic contamination area, field X-ray fluorescence measurements along the burning pit to identify the major metal contamination, and surface and subsurface soil analyses to investigate the nature and extent of contamination. This paper presents the results of this investigation

  11. Annual burned area across a precipitation gradient in northwestern patagonia steppe

    NASA Astrophysics Data System (ADS)

    Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa

    2013-04-01

    Fire is one of the most important disturbances on the Earth affecting most terrestrial ecosystems. Evidence suggests that since the last glaciations there has been a substantial interaction among climate, vegetation and fire. In fact fire is recognized as an emergent property of climate and vegetation type, which determine that distinct regions are differently affected by wildfires. For instance, it has been suggest that relative roles of weather/climate and fuel on fire activity change along the global productivity/aridity (intermediate fire-productivity hypothesis). At one extreme of the gradient we find dry-unproductive regions (deserts) where fire is absent owing to very low fuel loads, while at the other extreme we have wet-productive environments (rain forest) with fire being unlikely due to high fuel moisture. Environments located around middle of the gradient, such as Mediterranean ecosystems, have a high fire activity but is difficult to predict if the fuel moisture conditions are a stronger constrain on the fire regime or it is constrained by biomass production (i.e. fuel load). The intermediate fire-productivity hypothesis has been tested in recent works at global scale. However, data resolution at global scale is coarse and thus is not possible know the fire variability occurring at scales of more spatial detail. Therefore, it is necessary to complement the information obtained at global scale with studies at finer scales exploring fire-productivity/aridity relationships in particular portions of the gradient. We elaborate fire cartography from Landsat temporal series (1973-2011) for a portion (560250 ha - regional scale) of northwestern Patagonian steppe. The study zone corresponds to a Mediterranean environment and is part of a gradient defined by a sharp drop in the precipitation regime (600mm to 280mm). This environmental gradient predisposes a change in fuel load and fuel moisture and therefore could be affecting the fire regime. We divided the study area in relation to precipitation gradient establishing two zones (wet and xeric). To delimit area of wildfires on Landsat scenes we used the NBR index. Then, we calculated the annual burned area in each zone, compared the annual burned area between zones and also explored relationships between that variable of the fire regime and precipitation/temperature data. We expect to contribute to the discussions about the importance of drought/fuel on the fire activity across the productivity/aridity gradient, specifically on Mediterranean environments. Finally, with this work we expect to improve future management and conservation practices in Northwestern Patagonia grasslands.

  12. Burning Issue: Handling Household Burns

    MedlinePlus

    ... Burns For minor burns: Immerse in fresh, cool water, or apply cool compresses for 10-15 minutes. Dry the area with a clean cloth. Cover with sterile gauze or a non-adhesive bandage. Don’t apply ointments or butter; these ...

  13. Probability and volume of potential postwildfire debris flows in the 2012 Waldo Canyon Burn Area near Colorado Springs, Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located both within and immediately downstream from the burned area. U.S. Highway 24, on the southern edge of the burn area, is also susceptible to impacts from debris flows.

  14. The Development and Application of a Harmonized Burned Area Data Set for North America to Assess the Effects of Fire Disturbance on the Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hayes, D. J.

    2014-12-01

    Fires burn an annual average of about 40,000 km2 in Canada and the U.S., making it an important feature of North American ecosystems through renewing ecosystem conditions and vegetation dynamics. Fire disturbances substantially modify ecosystem carbon dynamics both temporally and spatially. Ecosystems generally lose carbon for several years to decades following fire disturbance, but our understanding of the duration and dynamics of post-disturbance carbon fluxes remains limited. Owing to the prevailing collection of inventory data for fire burn area, intensity, distribution, and associated carbon-related parameters in North America, we are able to more accurately estimate carbon dynamics following fire disturbances. In our study, we integrated four major fire datasets (i.e., U.S. Monitoring Trends in Burn Severity dataset, Bureau of Land Management Alaska Fire Service dataset, and Canadian National Fire Database, and GFEDv3.1 fire dataset) and other auxiliary data to generate a comprehensive and continuous burned area history dataset, which covers the 1920 to 2012 time period and is gridded at quarter-degree resolution for the North American continent. Driven by this new dataset, we used the Terrestrial Ecosystem Model (TEM6.0) to simulate the impacts of fire disturbance on carbon dynamics across North American ecosystems. The results indicate that large amount of carbon was emitted due to fire disturbances during the study period, especially for the boreal ecosystems with slow recovery. The modeling results were also evaluated with the field measurements along a fire chronosequence and compared to estimates from other approaches.

  15. PCDD/Fs in air and soil around an e-waste dismantling area with open burning of insulated wires in south China.

    PubMed

    Ren, M; Tang, Y H; Peng, P A; Cai, Y

    2015-05-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air and farmland soil sampled in 2006 around an e-waste dismantling area with open burning of insulated wires in Longtang in south China were investigated. The total toxic equivalent concentrations of PCDD/Fs were 3.2-31.7 pg/m(3) in air and 5.8 12.4 ng/kg in farmland soil at an e-waste site and 0.063-0.091 pg/m(3) in air at a background site. PCDD/Fs in the air at the e-waste site were characterized with dominant 1,2,3,4,6,7,8-HpCDF and OCDF and higher concentrations of furans than dioxins, suggesting open burning of insulated wires was likely to be the main source of PCDD/Fs. Compared with the results in this study, the level of PCDD/F tended to lessen with the average TEQ concentration decreasing by 41 % and the pattern changed to be dominated by OCDD in the air of Longtang in 2010 when insulated wires were openly burned in only a small scale. Our results indicate that the lower chlorinated congeners with higher vapor pressures have enhanced atmospheric transport tendencies. PMID:25749620

  16. Successful recovery of 14 patients afflicted with full-thickness burns for more than 70 per cent body surface area.

    PubMed

    Zhou, Y P; Zhou, Z H; Zhou, W M; Ren, J L; Wu, Y H; Rong, X Z; Yang, L

    1998-03-01

    Fourteen cases suffering full-thickness burns of more than 70 per cent total body surface area (TBSA) have been successfully treated during the last 8 years (1988-1995). Among these patients, 10 cases suffered from burns of more than 90 per cent TBSA. Five cases had full-thickness burns of 80-90 per cent TBSA. Escharectomy, followed by coverage of wounds with a homograft to the lower surface of which, adjacent to the wound bed, microautoskin grafts had been attached was employed to close wounds in the early stages after burn. The remaining non-surgically treated wound was treated by exposure and topical silver sulfadiazine. The temperature and humidity of the ward was controlled by air conditioning and dehumidification. Aggressive excision of eschar and auto-skingrafting was carried out 3 weeks post-injury. Strictly limiting the uncovered wound to less than 5 per cent appeared to be the major effective measure in preventing burn infection. PMID:9625244

  17. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  18. Satellite-based assessment of climate controls on US burned area

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980's-2000's, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's-2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  19. Satellite-based assessment of climate controls on US burned area

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-06-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE} and fire activity in the Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980s-2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s-2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  20. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    NASA Astrophysics Data System (ADS)

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

  1. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    EPA Science Inventory

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  2. Comparison of systemic inflammation response and vital organ damage induced by severe burns in different area

    PubMed Central

    Liu, Lingying; Li, Xiao; Yang, Jing; Chai, Jiake; Yu, Yonghui; Duan, Hongjie; Song, Huifeng; Feng, Rui; Wang, Tongming; Yin, Huinan; Hu, Quan; Wang, Shaoxia; Du, Jundong

    2015-01-01

    Background: In this study, we will establish a stable and optimized rat model that can meet strictly diagnosed criteria and serve as a tool to investigate the potential of novel therapeutics in this preclinical model through comparative analysis of systemic alterations, levels of pro-inflammatory cytokines in serum and infiltrated numbers of inflammatory cells in distant organ between 30% and 50% TBSA with a full-thickness burn. Materials and methods: The adult male Wistar rats were randomly divided into the following groups: control group, 30% TBSA with a full-thickness burn group, and 50% TBSA with a full-thickness burn group. The blood and serum samples in the 3 groups were collected and detected by blood routine examination and biochemical detection at 6 h, 12 h, 24 h and 48 h post burn. The levels of TNF-α, IL-1β and IL-6 in serum were detected by ELISA. The sections of lung, renal, liver and heart were analyzed by H&E and immunohistochemical staining detection. Results: Our results showed that temperature in 50% TBSA with a full-thickness burn group was always hypothermia, and lower than 36°C at defined timepoints post burn, that was in 30% TBSA with a full-thickness burn group was lower than 36°C only at 48 h post burn. The levels of TNF-α, IL-1β and IL-6 were significantly increased in 30% and 50% groups at 6 h, 12 h, 24 h and 48 h post burn. The apoptosis in distant organs and the biochemical parameters such as ALT, AST, troponin, CK, CK-MB, LDH, urea and creatinine in 30% and 50% groups were also increased at different degrees at defined timepoints after burn, but changes in 50% group were more obvious than that in 30% group. Conclusion: We choose 50% TBSA with a full-thickness burn to establish a stable and optimized rat model that can meet strictly diagnosed criteria and serve as a tool to investigate the potential of novel therapeutics in this preclinical model. PMID:26261512

  3. Relationships between burned area, forest cover loss, and land cover change in the Brazilian Amazon based on satellite data

    NASA Astrophysics Data System (ADS)

    Fanin, T.; van der Werf, G. R.

    2015-10-01

    Fires are used as a tool in the deforestation process. Yet, the relationship between fire and deforestation may vary temporally and spatially depending on the type of deforestation and climatic conditions. This study evaluates spatiotemporal dynamics of deforestation and fire represented by burned area over the 2002-2012 period in the Brazilian Legal Amazon. As a first step, we compared newly available Landsat-based maps of gross forest cover loss from the Global Forest Change (GFC) project with maps of deforestation extent from the Amazon Deforestation Monitoring Project (PRODES) produced by the Brazilian National Institute for Space Research (INPE). As a second step, we rescaled the Landsat-based data to the 500 m resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data (MCD64A1) and stratified this using MODIS land cover data to study the role of burned area in forest cover loss and deforestation. We found that while GFC forest cover loss and PRODES deforestation generally agreed on spatial and temporal dynamics, there were several key differences between the data sets. Both showed a decrease in the extent of forest cover loss or deforestation after 2004, but the drop was larger and more continuous in PRODES than in GFC. The observed decrease in forest cover loss or deforestation rates over our study period was mainly due to lower clearing rates in the evergreen broadleaf forests in the states of Mato Grosso, Pará, and Rondônia. GFC indicated anomalously high forest cover loss in the years 2007 and 2010, which was not reported by PRODES. The burned area data indicated that this was predominantly related to increased burned area occurring outside of the tropical forest area during these dry years, mainly in Pará. This indicated that fire and forest loss dynamics in woodlands or secondary forests may be equally important as deforestation in regulating atmospheric CO2 concentrations. In addition to the decrease in forest cover loss rates, we also found that post-deforestation fire use declined; burned area within 5 years after forest cover loss decreased from 54 to 39 % during our study period.

  4. Probability and volume of potential postwildfire debris flows in the 2012 High Park Burn Area near Fort Collins, Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.

    2012-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and immediately downstream from the burned area. Colorado State Highway 14 is also susceptible to impacts from debris flows.

  5. Reclassified Cropland Active Fire and Burned Area Detections by the MODIS 1 km Sensor in Canadian Provinces by land cover type, 2001 - 2010

    NASA Astrophysics Data System (ADS)

    Kerr, T. F.; Ernst, C. L.; McCarty, J. L.

    2011-12-01

    Fire is a primary disturbance agent in Canadian ecosystems and has significant social, environmental, and economic consequences. Accurate location and identification of biomass burning is critical to understanding the transfer of gases and particles into earth's atmosphere, especially in Northern latitudes. This data is an important aid in producing accurate atmospheric models that estimate black carbon (BC) deposition on arctic snow. Previous research has indicated that cropland burning contributes to BC distribution in the arctic which alters the balance in snow-albedo reflectance and radiation transmission in the atmosphere. The locations and numbers of fires were identified using the 1km MODIS Active Fire Product and the 500m MODIS Burned Area Product. Land cover type was assigned based on the 1 km MODIS Land Cover Product, to the post-processed active fire points. They were then reclassified into seven (7) classes: Croplands, Forest, Grasslands, Urban, Water Bodies, Wetlands, and Barren. The results show that Forest, Cropland, and Grassland land cover types are the main sources of active fire detections in Canada from 2001 to 2010. The peak fire months are April, May, September, and October for Cropland active fire burns in all Canadian Provinces from 2001 to 2010. By province, Saskatchewan and Manitoba are the leading sources of Cropland detected active fires. Cropland burned area estimations were calculated using the burned area pixel count (post-processing of MODIS Burned Area Product) within cropland identified by the 1 km MODIS Land Cover data set (LC-12) for the years 2003-2010. Cropland burned area detection was most significant in 2003 during which 27.3% of all detected hectares burned from 2003 to 2010 occurred. The year with least impact was 2004 in which 3.5% of all detected hectares burned. The peak months for Cropland burned area detections were May, September, and October across all Canadian Provinces from 2003 to 2010. Saskatchewan, Manitoba, and Alberta are the leading sources for Cropland burned area detections. Field research conducted during April of 2011 in the Peace River Agricultural Area in British Columbia and Alberta revealed that cropland identified by the MODIS 1 km Land Cover Product appeared to be undergoing land-use conversion. Scrubland and mixed forest tree lines are being cleared to create more field space during the winter months. However, these woody brush piles are burned in the middle of fallow fields and as such are detected as Cropland burnings. From this analysis of fire activity in Canadian provinces we can identify the major land cover sources of burn and provide an in-depth look at cropland burning's temporal and spatial patterns over the last decade based on data from the MODIS sensor.

  6. The effect of subgrid velocity scale on site-specific/subgrid area and grid-averaged dry deposition velocities

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Brook, Jeffrey R.

    A method for deriving the site-specific and subgrid area wind speed and friction velocity from regional model output and detailed land type information is developed. The "subgrid velocity scale" is introduced to account for generation of turbulent fluxes by subgrid motions. The grid vector averaged wind speed is adjusted by adding the subgrid velocity scale. This is to account for the fact that the spatial average of the local wind speed is usually larger than the absolute value of the vector averaged velocity ( | limitV?| ), especially when there are different land or surface types within the spatial averaging area and when limitV? is small. The assumption of uu*=constant is then applied within a model grid area to obtain wind speed and friction velocity for specific sites and subgrid areas. Using this method, the site-specific and subgrid area wind speed and friction velocity can be estimated from grid-averaged model output. In addition, more realistic air pollutant dry deposition velocities for specific locations and subgrid areas can be calculated. Grid-averaged deposition velocity values calculated using this approach tend to be about 30% different (either larger or smaller) for HNO 3 and sulphate and about 10% different for SO 2 and O 3 compared to values calculated by assuming a constant wind speed over the whole model grid area. These differences are found to be even larger at specific sites or over some subgrid areas. This method can be applied to determine a more realistic wind speed, friction velocity and pollutant dry deposition velocity at specific locations using gridded meteorological data.

  7. Can post-wildfire Burned Area Emergency Response treatments mitigate watershed degradation?

    NASA Astrophysics Data System (ADS)

    Neary, D.; Ffolliott, P.; Bautista, S.; Wittenberg, L.

    2009-04-01

    Wildfire is a natural phenomenon that began with the development of terrestrial vegetation in a lightning-filled atmosphere 350 million years ago. As human populations developed in the Pleistocene and Holocene epochs, mankind transformed fire into one of its oldest tools. A negative impact of prime concern in the 21st Century is desertification. This term refers to land degradation, not the immediate creation of classical deserts. It is about the loss of the land's proper hydrologic function and biological productivity as a result of human activities and climate change. It affects 33% of the earth's surface and over a billion people. Fire-related desertification has a number of environmental, social, and economic consequences. The two key environmental consequences are soil erosion and exotic plant invasions. Wildfires typically have exotic plant species abundances ten times that of undisturbed forests (Neary et al. 2003). Seeding has been used for many years in the USA as a prime Burned Area Emergency Response (BAER) treatment. Until recently, this seeding contributed to exotic plant invasions since fast-growing, but non native plants seeds were used. The use of native plant seeds and sterile hybrids has reduced this problem somewhat. Erosion after wildfires documented in the USA can be in the range of <1 to 370 Mg/ha, depending on fire severity, degree of water repellency, slope, and post-fire rainfall events. Soil losses in the high end of that range definitely exceed soil loss tolerances and contribute to desertification. Soil disturbance and degradation after wildfires is a function of fire severity, and the impacts can range from the minimal to catastrophic and long-lasting. The most obvious impact is the loss of organic matter from combustion of the forest floor. Changes in soil physical and chemical properties with high-severity wildfire can produce water repellency, aggravating rainfall runoff and erosion. Since soils take long times to form (50 to 75,000 years), degradation as a result of wildfire-related erosion or soil property changes can result in severe and rapid desertification. Soil degradation is a "one-way street" not easily reversed. Although trees can be replanted on burned sites, soil lost in erosion is rarely replaced, just rehabilitated. There are techniques to rehabilitate these degraded soils but they are quite expensive. Disruptions to soil micro-fauna and micro-flora can also reduce post-fire site vegetation productivity. An environmental consequence of wildfire related to soil disturbance, is the loss of hydrologic function. Again, the level of hydrologic function loss is related to fire severity. Although this ecosystem function tends to recover within 5 - 10 years after wildfire as vegetation cover returns, the immediate impacts can be considerable. The removal of the protective layer of the forest floor by combustion, and the development of water repellent layers in the soil combine to aggrevate flood potentials. Flood peak flows after wildfires with high percentages of high severity wildfire (>30%) commonly have increases of 10-fold. Higher increases (20 to 2,000 fold) have been measured as the percentage of high-severity soil damage approaches 100%. The other side of high flood runoff is the reduction in baseflow that sustains stream flow due to the reduction in rainfall infiltration. This has water supply implications for forested watersheds that are sources for municipal water supplies. In addition, post-wildfire ash slurry flows can substantially degrade the quality of municipal water sources. Although this phenomenon is relatively short lived (<2 years), it can have serious supply impacts. This paper examines the capabilities of BAER treatments in dealing with this problem.

  8. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  9. Probability and volume of potential postwildfire debris flows in the 2011 Horseshoe II burn area, southeastern Arizona

    USGS Publications Warehouse

    Ruddy, Barbara C.

    2011-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned in 2011 by the Horseshoe II wildfire in southeastern Arizona. Empirical models derived from statistical evaluation of data collected from recently burned drainage basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and debris-flows volumes for selected drainage basins. Input for the models include measures of burn severity, topographic characteristics, soil properties, and rainfall total and intensity for a (1) 2-year-recurrence, 30-minute-duration rainfall, (2) 5-year-recurrence, 30-minute-duration rainfall, and (3) 10-year-recurrence, 30-minute-duration rainfall. Estimated debris-flow probabilities in the drainage basins of interest ranged from less than 1 percent in response to the 2-year-recurrence, 30-minute-duration rainfall to a high of 100 percent in response to the 10-year-recurrence, 30-minute-duration rainfall. The high probabilities in all modeled drainage basins are likely due to the abundance of steep hillslopes and the extensive areas burned at moderate to high severities. The estimated debris-flow volumes ranged from a low of 20 cubic meters to a high of greater than 100,000 cubic meters.

  10. Probability and volume of potential postwildfire debris flows in the 2010 Fourmile burn area, Boulder County, Colorado

    USGS Publications Warehouse

    Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine

    2010-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.

  11. A Study on Forecast of Ensemble Average Insolation in Utility Service Area Considering Diversity of Forecast Error

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouki; Kato, Takeyoshi; Suzuoki, Yasuo

    A photovoltaic power generation system (PVS) is one of the promising measures to develop a low carbon society. Because of the unstable power output characteristics, a robust forecast method must be employed for realizing the high penetration of PVS into an electric power system. Considering the difference in power output patterns among PVSs dispersed in the service area of electric power system, the forecast error would vary among locations, resulting in the reduced forecast error of the ensemble average power output of high penetration PVS. In this paper, by using the multi-point data of insolation observed in Chubu area during four months, we evaluated the forecast error of the ensemble average insolation of 11 districts, and compared it with the forecast error of individual district. As the results, the number of periods with the forecast error larger than the average insolation during four months is reduced by 16 hours for the ensemble average insolation compared with the average value of individual forecast. The largest forecast error during four months is also reduced to 0.45 kWh/m2 for the ensemble average insolation from 0.68 kWh/m2 on average of 11 districts.

  12. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, Magdalini; Koutsias, Nikos

    2013-05-01

    The aim of our study was to explore the spectral properties of fire-scorched (burned) and non fire-scorched (vegetation) areas, as well as areas with different burn/vegetation ratios, using a multisource multiresolution satellite data set. A case study was undertaken following a very destructive wildfire that occurred in Parnitha, Greece, July 2007, for which we acquired satellite images from LANDSAT, ASTER, and IKONOS. Additionally, we created spatially degraded satellite data over a range of coarser resolutions using resampling techniques. The panchromatic (1 m) and multispectral component (4 m) of IKONOS were merged using the Gram-Schmidt spectral sharpening method. This very high-resolution imagery served as the basis to estimate the cover percentage of burned areas, bare land and vegetation at pixel level, by applying the maximum likelihood classification algorithm. Finally, multiple linear regression models were fit to estimate each land-cover fraction as a function of surface reflectance values of the original and the spatially degraded satellite images. The main findings of our research were: (a) the Near Infrared (NIR) and Short-wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas; (b) when the bi-spectral space consists only of NIR and SWIR, then the NIR ground reflectance value plays a more significant role in estimating the percent of burned areas, and the SWIR appears to be more important in estimating the percent of vegetation; and (c) semi-burned areas comprising 45-55% burned area and 45-55% vegetation are spectrally closer to burned areas in the NIR channel, whereas those areas are spectrally closer to vegetation in the SWIR channel. These findings, at least partially, are attributed to the fact that: (i) completely burned pixels present low variance in the NIR and high variance in the SWIR, whereas the opposite is observed in completely vegetated areas where higher variance is observed in the NIR and lower variance in the SWIR, and (ii) bare land modifies the spectral signal of burned areas more than the spectral signal of vegetated areas in the NIR, while the opposite is observed in SWIR region of the spectrum where the bare land modifies the spectral signal of vegetation more than the burned areas because the bare land and the vegetation are spectrally more similar in the NIR, and the bare land and burned areas are spectrally more similar in the SWIR.

  13. Postwildfire debris-flow hazard assessment of the area burned by the 2013 West Fork Fire Complex, southwestern Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.

    2013-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest combined hazard rankings, 7 basins had predicted debris-flow volumes exceeding 100,000 cubic meters, while 3 had predicted probabilities of debris flows exceeding 60 percent. The 10 basins with high combined hazard ranking include 3 tributaries in the headwaters of Trout Creek, four tributaries to the West Fork San Juan River, Hope Creek draining toward a county road on the eastern edge of the burn, Lake Fork draining to U.S. Highway 160, and Leopard Creek on the northern edge of the burn. The probabilities and volumes for the modeled storms indicate a potential for debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located within and immediately downstream from the burned area. U.S. Highway 160, on the eastern edge of the burn area, also is susceptible to impacts from debris flows.

  14. Relationships between burned area, forest cover loss and land use change in the Brazilian Amazon based on satellite data

    NASA Astrophysics Data System (ADS)

    Fanin, T.; van der Werf, G. R.

    2015-06-01

    Fires are used as a tool in the deforestation process. Yet, the relationship between fire and deforestation may vary temporally and spatially depending on the type of deforestation and climatic conditions. This study evaluates spatiotemporal dynamics of deforestation and fire represented by burned area over the 2002-2012 period in the Brazilian Legal Amazon. As a first step, we compared newly available Landsat-based maps of gross forest cover loss from the Global Forest Change (GFC) project with maps of deforestation extent from the Amazon Deforestation Monitoring Project (PRODES) produced by the Brazilian National Institute for Space Research (INPE). As a second step, we rescaled the Landsat-based data to the 500 m resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data (MCD64A1) and stratified this using MODIS land cover data to study the role of burned area in forest cover loss and deforestation. We found that while GFC forest cover loss and PRODES deforestation generally agreed on spatial and temporal dynamics, there were several key differences between the datasets. Both showed a decrease in the extent of forest cover loss or deforestation after 2004, but the drop was larger and more continuous in PRODES than in GFC. The observed decrease in forest cover loss or deforestation rates over our study period was mainly due to lower clearing rates in the evergreen broadleaf forests in the states of Mato Grosso, Pará and Rondônia. GFC indicated anomalous high forest cover loss in the years 2007 and 2010 not reported by PRODES. The burned area data showed that this was predominantly related to increased fire activity occurring outside of the tropical forest area during these dry years, mainly in Pará. This indicates that fire and forest loss dynamics in woodlands or secondary forests may be equally important as deforestation in regulating atmospheric CO2 concentrations. In addition to the decrease in forest cover loss rates, we also found that post-deforestation fire use declined; burned area within 5 years after forest cover loss decreased from 54 to 39% during our study period.

  15. Organic aerosols in a Brazilian agro-industrial area: Speciation and impact of biomass burning

    NASA Astrophysics Data System (ADS)

    Urban, R. C.; Alves, C. A.; Allen, A. G.; Cardoso, A. A.; Campos, M. L. A. M.

    2016-03-01

    This work presents the first comprehensive organic characterization of atmospheric aerosols from an agro-industrial region (São Paulo State, Brazil) highly impacted by biomass burning. The organic speciation was performed using different solvents of increasing polarity, enabling the identification and quantification of 172 different organic species by GC-MS. The mass of organic compounds reached 123 μg m- 3 in an aerosol sample collected during the sugar cane harvest period compared with 0.82 μg m- 3 in the non-harvest period. The samples most impacted by biomass burning were those with the highest percentages of non-polar compounds (n-alkanes; up to 96%). However, in absolute terms, the total mass of polar compounds in such samples was greater than for samples less impacted by this activity. Retene (a marker for biomass combustion) was the most abundant of the 19 polycyclic aromatic hydrocarbons quantified, corresponding to 14%-84%. This work shows that biomass burning was responsible for a benzo(a)pyrene equivalent index value that exceeded the recommendation of the World Health Organization. Principal component analysis indicated that agricultural biomass burning and emissions from crop processing facilities explained 42% of the variance of the data, while 37% was explained by urban emissions, 10% by vehicle emissions, and 10% by biogenic sources. This study provides insights into the emissions of a suite of organic compounds that could participate in anthropic alteration of regional cloud formation and precipitation patterns.

  16. Recovery trajectories after burn injury in young adults: does burn size matter?

    PubMed

    Ryan, Colleen M; Lee, Austin; Kazis, Lewis E; Schneider, Jeffrey C; Shapiro, Gabriel D; Sheridan, Robert L; Meyer, Walter J; Palmieri, Tina; Pidcock, Frank S; Reilly, Debra; Tompkins, Ronald G

    2015-01-01

    The impact of burn size on mortality is well known, but the association of burn size with the trajectories of long-term functional outcomes remains poorly studied. This prospective multi-center study included burned adults ages 19 to 30 years who completed the Young Adult Burn Outcome Questionnaire at initial baseline contact, 2 weeks, and at 6 and 12 months after initial questionnaire administration. Non-burned adults of comparable ages also completed the questionnaire as a reference group. The association between functional recovery and TBSA burned was analyzed longitudinally using generalized linear models with the generalized estimation equation technique. Functional status was characterized in 15 domains: physical function, fine motor function, pain, itch, social function limited by physical function, perceived appearance, social function limited by appearance, sexual function, emotion, family function, family concern, satisfaction with symptom relief, satisfaction with role, work reintegration, and religion. Scores were standardized to a mean of 50 and a SD of 10 based on non-burned controls. There were 153 burned and 112 non-burned subjects with a total of 620 questionnaires. TBSA burned was 11 ± 14% (mean ± SD); 31% had face involvement and 57% had hand involvement. The lag time from burn injury to questionnaire administration was on average 7 ± 7.7 months, with a maximum of 36 months. Lower recovery levels were associated with increasing burn size for physical function, pain, itch, work reintegration, emotion, satisfaction with symptom relief, satisfaction with role, family function, and family concern (P value ranged from .04-<.0001). No significant differences in recovery levels were found with increasing burn size for fine motor function, social function limited by physical function, sexual function, and religion; these areas tracked toward the age-matched non-burned group regardless of burn size. Perceived appearance and social function limited by appearance remained below the non-burn levels throughout the 3-year period regardless of burn size. Three-year recovery trajectories of survivors with larger burn size showed improvements in most areas, but these improvements lagged behind those with smaller burns. Poor perceived appearance was persistent and prevalent regardless of burn size and was found to limit social function in these young adult burn survivors. Expectations for multidimensional recovery from burns in young adults can be benchmarked based on burn size with important implications for patient monitoring and intervening in clinical care. PMID:25501787

  17. Postwildfire debris flows hazard assessment for the area burned by the 2011 Track Fire, northeastern New Mexico and southeastern Colorado

    USGS Publications Warehouse

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.

  18. Fluoride and sulfur dioxide indoor pollution situation and control in coal-burning endemic area in Zhaotong, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Liu, Yonglin; Luo, Kunli; Li, Ling; Shahid, Muhammad Zeeshaan

    2013-10-01

    The presented study aims to investigate the gaseous fluoride and sulfur dioxide (SO2) pollution level in the kitchen, traditional flue-curing barn and outdoor environment and to find economically feasible method to reduce fluorine and sulfur release. The gaseous fluoride and SO2 concentrations in air of outdoor environment, kitchen and traditional flue-curing barn were determined in 56 households in coal-burning endemic fluorosis areas of Zhaotong. Among these, 21 households in Yujiawan Village, Zhenxiong County, Zhaotong City were chosen for this experiment to reduce gaseous fluoride and SO2 concentration in traditional flue-curing barn air by using calcined dolomitic siliceous limestone (CDSL) instead of clay mixed with coal. The result showed that: (1) gaseous fluoride and SO2 concentration in the outdoor air in Mangbu Township area was 0.51 μg dm-2ṡday and <0.05 mg m-3, respectively and in Xiaolongdong Township was 2.7 μg dm-2 day and <0.05 mg m-3, respectively while in Zhaotong City these concentration were lower than the ambient air standard (3 μg dm-2ṡday and 0.5 mg m-3, respectively). (2) The indoor gaseous fluoride concentration (3.7 μg m-3) in air of kitchen with the improved coal stove was within the reference value (10 μg m-3); SO2 concentration (0.94 mg m-3) in kitchen air had decline, but its concentration was still higher than indoor air quality standard (0.5 mg m-3). (3) Average concentration of gaseous fluoride and SO2 in air of traditional flue-curing barn of Xiaolongdong Township was 7.2 μg m-3 and 6.8 mg m-3 respectively, and in Yujiawan village were 10.1 μg m-3 and 14.4 mg m-3, respectively. (4) After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air decreased of 45% and 91%, respectively. The gaseous fluoride and SO2 pollution in the traditional flue-curing barn is very serious. The corn and chili baked by open stoves in traditional flue-curing barn (baking room) was also seriously polluted by fluoride and sulfur. After using the calcined dolomitic siliceous limestone instead of clay mixed with coal, gaseous fluoride and SO2 concentration in the traditional flue-curing barn air have declined markedly. The way of adding calcined dolomitic siliceous limestone instead of clay as a binder for briquette-making is an economically feasible way to control the indoor pollution of fluorine and sulfur in coal-burning endemic in Zhaotong, Yunnan.

  19. EXPERIMENTAL AND MODEL-COMPUTED AREA AVERAGED VERTICAL PROFILES OF WIND SPEED FOR EVALUATION OF MESOSCALE URBAN CANOPY SCHEMES

    EPA Science Inventory

    Numerous urban canopy schemes have recently been developed for mesoscale models in order to approximate the drag and turbulent production effects of a city on the air flow. However, little data exists by which to evaluate the efficacy of the schemes since "area-averaged&quo...

  20. Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.

    2012-01-01

    In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow Creek, Iron Creek, and West Fork Mogollon Creek. Drainage basins with estimated debris-flow volumes greater than 100,000 m3 for the 25-year-recurrence event, 24 percent of the basins modeled, also include tributaries to Deep Creek, Mineral Creek, Gilita Creek, West Fork Gila River, Mogollon Creek, and Turkey Creek, among others. Basins with the highest combined probability and volume relative hazard rankings for the 25-year-recurrence rainfall include tributaries to Whitewater Creek, Mineral Creek, Willow Creek, West Fork Gila River, West Fork Mogollon Creek, and Turkey Creek. Debris flows from Whitewater, Mineral, and Willow Creeks could affect the southwestern New Mexico communities of Glenwood, Alma, and Willow Creek. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be necessary within a 2- to 3-year period of vulnerability following the Whitewater-Baldy Fire. This work is preliminary and is subject to revision. It is being provided because of the need for timely "best science" information. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

  1. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    NASA Astrophysics Data System (ADS)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  2. Responses of a small-mammal community to habitat management through controlled burning in a protected Mediterranean area

    NASA Astrophysics Data System (ADS)

    Moreno, Sacramento; Rouco, Carlos

    2013-05-01

    Fire is widely used as a management tool to achieve conservation goals. However, the consequences of such management on non-target species are frequently neglected and unknown. This study examines the effects of traditional management practices of scrubland clearance by controlled burning to improve menaced carnivores on non-target species: rodent and insectivores in Doñana National Park (SW of Iberian Peninsula). We used capture-recapture methods to examine changes in abundance in areas that were burnt one and three years ago, compared with unburnt areas. Results showed that burnt areas had higher species abundances, but mainly on the ecotonal boundaries. Species abundances showed dramatic seasonal differences with high abundances in autumn and winter, and very low abundance in summer. Our study revealed that scrubland management by controlled fires increases the abundance of small mammal species, mainly Mus spretus and Apodemus sylvaticus. We found only four small mammal species between the different treatments. However, some species that were formerly abundant in Doñana, such as Elyomis quercinus, were found only in burnt areas. Our results suggest that controlled burning is not contributing to the current loss of biotic diversity in this community.

  3. First Aid: Burns

    MedlinePlus

    ... You can get burned by heat, fire, radiation, sunlight, electricity, chemicals or hot or boiling water. There ... skin. The burned area will be sensitive to sunlight for up to one year, so you should ...

  4. Postwildfire preliminary debris flow hazard assessment for the area burned by the 2011 Las Conchas Fire in north-central New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.

    2011-01-01

    The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.

  5. The spatial and temporal distribution of crop residue burning in the contiguous United States.

    PubMed

    McCarty, Jessica L; Korontzi, Stefania; Justice, Christopher O; Loboda, Tatiana

    2009-10-15

    Burning crop residue before and/or after harvest is a common farming practice however; there is no baseline estimate for cropland burned area in the contiguous U.S. (CONUS). We present the results of a study, using five years of remotely sensed satellite data to map the location and areal extent of crop residue burning in the CONUS. Our burned area approach combines 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Burn Ratio (dNBR) data, with 1 km MODIS active fire counts calibrated using coincident high resolution satellite data to generate area estimates. Our results show that cropland burning is an extensive and recurring annual event in several states in the CONUS. On average, 1,239,000 ha of croplands burn annually, which is equivalent to 43% of the annual average area of wildland fires in the U.S., as reported by the United States Forest Service for the same period. Several states experience high levels (>30,000 ha yr(-1)) of crop residue burning, including Arkansas, California, Colorado, Florida, Idaho, Kansas, Louisiana, North Dakota, Oklahoma, Oregon, South Dakota, Texas, and Washington. Validation with high resolution burn scar imagery and GPS data collected during targeted field campaigns showed a moderate to high-level accuracy for our burned area estimates, ranging from 78 to 90%. Our approach provides a more consistent methodology for quantifying cropland burned area at regional scales than the previously available U.S. national and state-level statistics on crop residue burning. PMID:19647857

  6. Epidemiology of major burns at the Lebanese Burn Center in Geitawi, Lebanon

    PubMed Central

    Ghanimé, G.; Rizkallah, N.; Said, J.M.

    2013-01-01

    Summary Burn care is one of the few areas in medicine considered both medically and surgically challenging, with burn injuries affecting people of all ages and both sexes. Between May 1992 and March 2012, 1,524 patients were admitted to the Lebanese Burn Center in Geitawi, with an average length of stay (LOS) of 36.5 days. The most frequently encountered injuries were thermal burns, generally resulting from domestic accidents. Of our patients, 47% were from rural areas and burned body surface (BBS) was the most serious factor, with 36% of all those admitted having suffered burns of 20% to 40% of their total body surface area (TBSA). Our team of experienced physicians, nurses, nutritionists and physical therapists was essential to successful burn care and outcomes were improved with adequate early fluid intake. The main causes of death were multiple organ failure due to hemodynamic instability, followed by respiratory failure from inhalation injury. A week after the injury, risk of infection was the main threat to the burn victims. Although this threat was compounded by malnutrition and immunodeficiency, excessive use of antibiotics was not justified. The fatality rate was about 18% and correlates with higher TBSA burns. PMID:24133397

  7. To Burn or Not to Burn? Effect of Management Strategy on North American Prairie Vegetation for Public Urban Areas in Germany

    PubMed Central

    Schmithals, Anja; Kühn, Norbert

    2014-01-01

    North American prairie vegetation has been a role model for designing highly attractive plantings for German urban green spaces for the past decade. In combination with gravel mulch top layers on planting sites and non-selective maintenance techniques like mowing or burning, prairie plantings are considered to be cost-effective and low-maintenance. This study was undertaken to assess the impact of different maintenance strategies and especially the necessity of fire management on the development success of ornamental prairie plantings in central Europe. A four factorial split-plot-block design was set up for investigation of different mixtures of prairie species under varying management conditions (mow-only, mowing plus selective weeding, mowing plus weeding and burning) on two differing soil types (in-situ topsoil and in-situ topsoil with a graywacke gravel mulch top layer) over three years. Significant effects of maintenance strategy on mortality rates and vitality were documented for a number of target species, which responded species specifically, either being slightly affected by the burning or thriving on it. Those effects were mostly restricted to topsoil sites. A strong impact on weed species presence and abundance and resulting maintenance times was found on both soil types. On topsoil sites, mow-only treatment resulted in a short-term loss of the original planting due to extensive weed growth. Corresponding gravel mulch sites were generally less colonised and visually dominated by weeds. Differences between weeded and weeded plus burned sites were minor. Unexpectedly, weed species populations were mostly unaffected by the additional burning treatment, while maintenance times and costs increased. No overall benefit of fire management for the establishment of prairie plantings was documented. The most effective management combination proved to be mowing plus regular selective weeding measures on gravel mulched planting sites. PMID:25286061

  8. To burn or not to burn? Effect of management strategy on North American prairie vegetation for public urban areas in Germany.

    PubMed

    Schmithals, Anja; Kühn, Norbert

    2014-01-01

    North American prairie vegetation has been a role model for designing highly attractive plantings for German urban green spaces for the past decade. In combination with gravel mulch top layers on planting sites and non-selective maintenance techniques like mowing or burning, prairie plantings are considered to be cost-effective and low-maintenance. This study was undertaken to assess the impact of different maintenance strategies and especially the necessity of fire management on the development success of ornamental prairie plantings in central Europe. A four factorial split-plot-block design was set up for investigation of different mixtures of prairie species under varying management conditions (mow-only, mowing plus selective weeding, mowing plus weeding and burning) on two differing soil types (in-situ topsoil and in-situ topsoil with a graywacke gravel mulch top layer) over three years. Significant effects of maintenance strategy on mortality rates and vitality were documented for a number of target species, which responded species specifically, either being slightly affected by the burning or thriving on it. Those effects were mostly restricted to topsoil sites. A strong impact on weed species presence and abundance and resulting maintenance times was found on both soil types. On topsoil sites, mow-only treatment resulted in a short-term loss of the original planting due to extensive weed growth. Corresponding gravel mulch sites were generally less colonised and visually dominated by weeds. Differences between weeded and weeded plus burned sites were minor. Unexpectedly, weed species populations were mostly unaffected by the additional burning treatment, while maintenance times and costs increased. No overall benefit of fire management for the establishment of prairie plantings was documented. The most effective management combination proved to be mowing plus regular selective weeding measures on gravel mulched planting sites. PMID:25286061

  9. An optimized groundwater extraction system for the toxic burning pits area of J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Quinn, J.J.; Johnson, R.L.; Patton, T.L.; Martino, L.E.

    1996-06-01

    Testing and disposal of chemical warfare agents, munitions, and industrial chemicals at the J-Field area of the Aberdeen Proving Ground (APG) have resulted in contamination of soil and groundwater. The discharge of contaminated groundwater to on-site marshes and adjacent estuaries poses a potential risk to ecological receptors. The Toxic Burning Pits (TBP) area is of special concern because of its disposal history. This report describes a groundwater modeling study conducted at J-Field that focused on the TBP area. The goal of this modeling effort was optimization of the groundwater extraction system at the TBP area by applying linear programming techniques. Initially, the flow field in the J-Field vicinity was characterized with a three-dimensional model that uses existing data and several numerical techniques. A user-specified border was set near the marsh and used as a constraint boundary in two modeled remediation scenarios: containment of the groundwater and containment of groundwater with an impermeable cap installed over the TBP area. In both cases, the objective was to extract the minimum amount of water necessary while satisfying the constraints. The smallest number of wells necessary was then determined for each case. This optimization approach provided two benefits: cost savings, in that the water to be treated and the well installation costs were minimized, and minimization of remediation impacts on the ecology of the marsh.

  10. Early excision and grafting versus delayed excision and grafting of deep thermal burns up to 40% total body surface area: a comparison of outcome

    PubMed Central

    Saaiq, M.; Zaib, S.; Ahmad, S.

    2012-01-01

    Summary This is a study of 120 patients of either sex and all ages who had sustained deep burns of up to 40% of the total body surface area. Half the patients underwent early excision and skin autografting (i.e., within 4-7 days of sustaining burn injury) while the rest underwent delayed excision and skin autografting (i.e., within 1-4 weeks post-burn). Significant differences were found in favour of the early excision and grafting group with regard to the various burn management outcome parameters taken into consideration, i.e. culture positivity of wounds, graft take, duration of post-graft hospitalization, and mortality. PMID:23467391

  11. Application of Maximum Likelihood Bayesian Model Averaging to Groundwater Flow and Transport at the Hanford Site 300 Area

    SciTech Connect

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Rockhold, Mark L.

    2008-06-01

    A methodology to systematically and quantitatively assess model predictive uncertainty was applied to saturated zone uranium transport at the 300 Area of the U.S. Department of Energy Hanford Site in Washington State, USA. The methodology extends Maximum Likelihood Bayesian Model Averaging (MLBMA) to account jointly for uncertainties due to the conceptual-mathematical basis of models, model parameters, and the scenarios to which the models are applied. Conceptual uncertainty was represented by postulating four alternative models of hydrogeology and uranium adsorption. Parameter uncertainties were represented by estimation covariances resulting from the joint calibration of each model to observed heads and uranium concentration. Posterior model probability was dominated by one model. Results demonstrated the role of model complexity and fidelity to observed system behavior in determining model probabilities, as well as the impact of prior information. Two scenarios representing alternative future behavior of the Columbia River adjacent to the site were considered. Predictive simulations carried out with the calibrated models illustrated the computation of model- and scenario-averaged predictions and how results can be displayed to clearly indicate the individual contributions to predictive uncertainty of the model, parameter, and scenario uncertainties. The application demonstrated the practicability of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modelling.

  12. [The role of the phytogenic field of larch of the pre-fire generation in forming edaphic conditions in burned-out forest areas].

    PubMed

    Prokushkin, S G; Bugaenko, T N; Sorokin, N D; Kaverzina, L N; Zyrianova, O A

    2004-01-01

    It is shown that larch of the prefire generation is the main edificator at the early stages of restorative successions in burned-out areas. Its environment-forming effect manifests itself most strongly in the phytogenic field of living trees, where edaphic conditions similar to those in primary larch forests are formed within ten years after the fire. This is accompanied by an increase in the numbers of microorganisms utilizing organic and mineral nitrogen, as well as in the rate of nitrogen mineralization in plant microgroups of this zone. Hence, living trees remaining in a burned-out area promote restoration of the initial edaphic conditions. PMID:15049069

  13. The use of expanded polytetrafluoroethylene gloves for care of upper-extremity burns.

    PubMed

    Schiller, W R; Leukens, C; Neve, D

    1994-01-01

    The combination of a glove made of an expanded polytetrafluoroethylene membrane-based laminate and silver sulfadiazine cream was evaluated as a treatment for burned hands. Eight patients who had burns averaging 25% total body surface area and who had 11 extensive partial thickness hand burns (2% total body surface area) were treated with an average of 17 gloves over 9 days. The burn wounds healed with no unusual or unexpected outcomes. Nurses and therapists agreed that dressing changes were quick and easy and that the gloves provided greater range of motion and function in the hands. Patients also expressed a preference for this method of treatment. PMID:8150840

  14. Mercury emissions from biomass burning in China.

    PubMed

    Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei

    2011-11-01

    Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling. PMID:21950526

  15. Drivers of fire in the boreal forests: Data constrained design of a prognostic model of burned area for use in dynamic global vegetation models

    NASA Astrophysics Data System (ADS)

    Crevoisier, Cyril; Shevliakova, Elena; Gloor, Manuel; Wirth, Christian; Pacala, Steve

    2007-12-01

    Boreal regions are an important component of the global carbon cycle because they host large stocks of aboveground and belowground carbon. Since boreal forest evolution is closely related to fire regimes, shifts in climate are likely to induce changes in ecosystems, potentially leading to a large release of carbon and other trace gases to the atmosphere. Prediction of the effect of this potential climate feedback on the Earth system is therefore important and requires the modeling of fire as a climate driven process in dynamic global vegetation models (DGVMs). Here, we develop a new data-based prognostic model, for use in DGVMs, to estimate monthly burned area from four climate (precipitation, temperature, soil water content and relative humidity) and one human-related (road density) predictors for boreal forest. The burned area model is a function of current climatic conditions and is thus responsive to climate change. Model parameters are estimated using a Markov Chain Monte Carlo method applied to on ground observations from the Canadian Large Fire Database. The model is validated against independent observations from three boreal regions: Canada, Alaska and Siberia. Provided realistic climate predictors, the model is able to reproduce the seasonality, intensity and interannual variability of burned area, as well as the location of fire events. In particular, the model simulates well the timing of burning events, with two thirds of the events predicted for the correct month and almost all the rest being predicted 1 month before or after the observed event. The predicted annual burned area is in the range of various current estimates. The estimated annual relative error (standard deviation) is twelve percent in a grid cell, which makes the model suitable to study quantitatively the evolution of burned area with climate.

  16. Postwildfire debris-flow hazard assessment of the area burned by the 2012 Little Bear Fire, south-central New Mexico

    USGS Publications Warehouse

    Tillery, Anne C.; Matherne, Anne Marie

    2013-01-01

    A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in any given year); (2) a 10-year-recurrence, 30-minute-duration rainfall of 42 mm (a 10 percent chance of occurrence in any given year); and (3) a 25-year-recurrence, 30-minute-duration rainfall of 51 mm (a 4 percent chance of occurrence in any given year). Thirty-nine percent of the 56 drainage basins modeled have a high (greater than 80 percent) probability of debris flows in response to the 2-year design storm; 80 percent of the modeled drainage basins have a high probability of debris flows in response to the 25-year design storm. For debris-flow volume, 7 percent of the modeled drainage basins have an estimated debris-flow volume greater than 100,000 cubic meters (m3) in response to the 2-year design storm; 9 percent of the drainage basins are included in the greater than 100,000 m3 category for both the 10-year and the 25-year design storms. Drainage basins in the greater than 100,000 m3 volume category also received the highest combined hazard ranking. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be needed prior to rainstorms within these drainage basins, their outlets, or areas downstream from these drainage basins within the 2- to 3-year period of vulnerability. This work is preliminary and is subject to revision. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.

  17. Hamiltonian gyro-averaged area preserving map models of finite Larmor radius effects on ExB chaotic transport

    NASA Astrophysics Data System (ADS)

    Fonseca, Julio; Del-Castillo-Negrete, Diego; Caldas, Ibere

    2014-10-01

    Area preserving maps have been extensively used to model 2-dimensional chaotic transport in plasmas and fluids. Here we focus on three types of area preserving maps describing ExB chaotic transport in magnetized plasmas with zonal flows perturbed by electrostatic drift waves. We include finite Larmor radius (FLR) effects by gyro-averaging the corresponding Hamiltonians of the maps. The Hamiltonians have frequencies with monotonic and non-monotonic profiles. In the limit of zero Larmor radius, the monotonic frequency map reduces to the standard Chirikov-Taylor map, and, in the case of non-monotonic frequency, the map reduces to the standard nontwist map. We show that FLR leads to chaos suppression, modifies the stability of fixed points, and changes the robustness of transport barriers. FLR effects also modify the phase space topology and give rise to bifurcations of the zonal flow ExB velocity profile. Dynamical systems methods based on recurrence time statistics are used to quantify the dependence on the Larmor radius of the threshold for the destruction of transport barriers.

  18. Application of Maximum Likelihood Bayesian Model Averaging to Groundwater Flow and Transport at the Hanford Site 300 Area

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Ye, M.; Neuman, S. P.; Rockhold, M. L.

    2006-12-01

    Applications of groundwater flow and transport models to regulatory and design problems have illustrated the potential importance of accounting for uncertainties in model conceptualization and structure as well as model parameters. One approach to this issue is to characterize model uncertainty using a discrete set of alternatives and assess the prediction uncertainty arising from the joint impact of model and parameter uncertainty. We demonstrate the application of this approach to the modeling of groundwater flow and uranium transport at the 300 Area of the Dept. of Energy Hanford Site in Washington State using the recently developed Maximum Likelihood Bayesian Model Averaging (MLBMA) method. Model uncertainty was included using alternative representations of the hydrogeologic units at the 300 Area and alternative representations of uranium adsorption. Parameter uncertainties for each model were based on the estimated parameter covariances resulting from the joint calibration of each model alternative to observations of hydraulic head and uranium concentration. The relative plausibility of each calibrated model was expressed in terms of a posterior model probability computed on the basis of Kashyap's information criterion KIC. Results of the application show that model uncertainty may dominate parameter uncertainty for the set of alternative models considered. We discuss the sensitivity of model probabilities to differences in KIC values and examine the effect of particular calibration data on model probabilities. In addition, we discuss the advantages of KIC over other model discrimination criteria for estimating model probabilities.

  19. Epidemiology of hospitalized burns patients in Taiwan.

    PubMed

    Chien, Wu-Chien; Pai, Lu; Lin, Chao-Cheng; Chen, Heng-Chang

    2003-09-01

    Previous studies based on either single hospital data or sampling of specific groups of hospitalized burns victims in Taiwan have provided only minimal epidemiological information. The study is designed to provide additional data on the epidemiology of hospitalized burns patients in Taiwan. Data were obtained from the Burn Injury Information System (BIIS), which brings together information supplied by 34 contracted hospitals. The study time course spanned a 2-year period from July 1997 to June 1999. Patient characteristics (age, sex, education level, etc.), causes and severity of injuries, and medical care measures were explored. A total of 4741 patients were registered with BIIS over the study period. The majority of hospitalized patients (67%) were male. The age distribution of burns patients showed peaks occurring at the age groups of 0-5 and 35-44 years. Over the time course of a day, burn injuries occurred more frequently from 10:00 to 12:00 h and 16:00 to 18:00 h. Injuries suspected as the result of suicide, homicide or child abuse accounted for 4.8% of hospitalized cases. More than 48% of the burns occurred in the home. The leading type of burn injury was scalding, followed by naked flame, explosion, electrical burns, and chemical burns due to caustic or corrosive substances. The mean percent total body surface area (%TBSA) for adults was 19%, and for young children was 12%. The average length of hospital stay was 18 days. In conclusion, children under 5 years and adults between 35 and 44 years of age are two high-risk groups for burn injuries. Corresponding to meal preparation time, hot substances such as boiling water, hot soup, etc. are the most common agents responsible for scalds. Prevention programs for reducing the risk of burn injuries during cooking and eating are required, especially for parents with young children. PMID:12927984

  20. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten; Schurgers, Guy; Camia, Andrea; Arneth, Almut

    2015-11-01

    Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models differed notably with respect to the dominating drivers and underlying processes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area in some European regions. Burned area of eastern Europe increased in both models, pointing at an emerging new fire-prone region that should gain further attention for future fire management.

  1. Explanation of Significant Difference (ESD) for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)

    SciTech Connect

    Morgan, Randall

    2000-11-17

    The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (ABRP) operable unit (OU) is located in the northwest portion of Savannah River Site (SRS), approximately 2.4 kilometers (1.5 miles) south of the A/M Area operations. Between 1951 and 1973, Pits 731-A and 731-1A were used to burn paper, plastics, wood, rubber, rags, cardboard, oil, degreasers, and solvents. Combustible materials were burned monthly. After burning was discontinued in 1973, Pits 731-A and 731-1A were also converted to rubble pits and used to dispose of concrete rubble, bricks, tile, asphalt, plastics, metal, wood products, and rubber until about 1978. When the pits were filled to capacity, there were covered with compacted clay-rich native soils and vegetation was established. Pit 731-2A was only used as a rubble pit until 1983 after which the area was backfilled and seeded. Two other potential source areas within the OU were investigated and found to be clean. The water table aquifer (M-Area aquifer) was also investigated.

  2. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  3. Work plan for focused feasibility study of the toxic burning pits area at J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Biang, C.; Benioff, P.; Martino, L.; Patton, T.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCIA). J-Field is within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA)(predecessor to the US Army Environmental Center). As part of a subsequent USATHAMA environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-0021355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in which data were collected to model groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today-

  4. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 widlfire in most of the burned area after 22-years. This result was also confirmed by other techniques applied. Finally, the kernel density surface let identify and locate the most recovered areas of pine cover as well as those areas that still remain totally or partially uncovered (bare soil.

  5. Inter-Annual Variability of Burned Area in Brazil Based on a Synergistic use of Information Derived from MODIS and Landsat-TM

    NASA Astrophysics Data System (ADS)

    Libonati, R.; Dacamara, C. C.; Setzer, A. W.; Morelli, F.

    2014-12-01

    A procedure is presented that allows using information from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor to improve the quality of monthly burned area estimates over Brazil. The method integrates MODIS derived information from two sources; the NASA MCD64A1 Direct Broadcast Monthly Burned Area Product and INPE's Monthly Burned Area MODIS product (AQM-MODIS). The latter product relies on an algorithm that was specifically designed for ecosystems in Brazil, taking advantage of the ability of MIR reflectances to discriminate burned areas. Information from both MODIS products is incorporated by means of a linear regression model where an optimal estimate of the burned area is obtained as a linear combination of burned area estimates from MCD64A1 and AQM-MODIS. The linear regression model is calibrated using as optimal estimates values of burned area derived from Landsat TM during 2005 and 2006 over Jalapão, a region of Cerrado covering an area of 187 x 187 km2. Obtained values of coefficients for MCD64A1 and AQM-MODIS were 0.51 and 0.35, respectively and the root mean square error was 7.6 km2. Robustness of the model was checked by calibrating the model separately for 2005 and 2006 and cross-validating with 2006 and 2005; coefficients for 2005 (2006) were 0.46 (0.54) for MCD64A1 and 0.35 (0.35) for AQM-MODIS and the corresponding root mean square errors for 2006 (2005) were 7.8 (7.4) km2. The linear model was then applied to Brazil as well as to the six Brazilian main biomes, namely Cerrado, Amazônia, Caatinga, Pantanal, Mata Atlântica and Pampa. As to be expected the interannual variability based on the proposed synergistic use of MCD64A1, AQM-MODIS and Landsat Tm data for the period 2005-2010 presents marked differences with the corresponding amounts derived from MCD64A1 alone. For instance during the considered period, values (in 103 km2) from the proposed approach (from MCD64A1) are 399 (142), 232 (62), 559 (259), 274 (73), 219 (31) and 415 (251). Values obtained with the proposed approach may be viewed as an improved alternative to the currently available products over Brazil.

  6. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  7. D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1995-09-01

    The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

  8. Analysis of Alaskan burn severity patterns using remotely sensed data

    USGS Publications Warehouse

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  9. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil

    PubMed Central

    Arbex, Marcos Abdo; Martins, Lourdes Conceição; de Oliveira, Regiani Carvalho; Pereira, Luiz Alberto Amador; Arbex, Flávio Ferlin; Cançado, José Eduardo Delfini; Saldiva, Paulo Hilário Nascimento; Braga, Alfésio Luís Ferreira

    2007-01-01

    Objective To evaluate the association between the total suspended particles (TSPs) generated from preharvest sugar cane burning and hospital admission due to asthma (asthma hospital admissions) in the city of Araraquara. Design An ecological time‐series study. Total daily records of asthma hospital admissions (ICD 10th J15) were obtained from one of the main hospitals in Araraquara, São Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (μg/m3) was obtained using Handi‐vol equipment (Energética, Brazil) placed in downtown Araraquara. The local airport provided the daily mean figures of temperature and humidity. The daily number of asthma hospital admissions was considered as the dependent variable in Poisson's regression models and the daily concentration of TSP was considered the independent variable. The generalised linear model with natural cubic spline was adopted to control for long‐time trend. Linear terms were used for weather variables. Results TSP had an acute effect on asthma admissions, starting 1 day after TSP concentrations increased and remaining almost unchanged for the next four days. A 10 μg/m3 increase in the 5‐day moving average (lag1–5) of TSP concentrations was associated with an increase of 11.6% (95% CI 5.4 to 17.7) in asthma hospital admissions. Conclusion Increases in TSP concentrations were definitely associated with asthma hospital admissions in Araraquara and, despite using sugar cane alcohol to reduce air pollution from automotive sources in large Brazilian urban centres, the cities where sugar cane is harvested pay a high toll in terms of public health. PMID:17435205

  10. Satellite-based automated burned area detection: A performance assessment of the MODIS MCD45A1 in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Araújo, Fernando Moreira De; Ferreira, Laerte G.

    2015-04-01

    Burnings, which cause major changes to the environment, can be effectively monitored via satellite data, regarding both the identification of active fires and the estimation of burned areas. Among the many orbital sensors suitable for mapping burned areas on global and regional scales, the moderate resolution imaging spectroradiometer (MODIS), on board the Terra and Aqua platforms, has been the most widely utilized. In this study, the performance of the MODIS MCD45A1 burned area product was thoroughly evaluated in the Brazilian savanna, the second largest biome in South America and a global biodiversity hotspot, characterized by a conspicuous climatic seasonality and the systematic occurrence of natural and anthropogenic fires. Overall, September MCD45A1 polygons (2000-2012) compared well to the Landsat-based reference mapping (r2 = 0.92) and were closely accompanied, on a monthly basis, by MOD14 and MYD14 hotspots (r2 = 0.89), although large omissions errors, linked to landscape patterns, structures, and overall conditions depicted in each reference image, were observed. In spite of its spatial and temporal limitations, the MCD45A1 product proved instrumental for mapping and understanding fire behavior and impacts on the Cerrado landscapes.

  11. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  12. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.

    PubMed

    Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

    2013-10-01

    Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust. PMID:23644947

  13. Burns and Diabetes

    PubMed Central

    Shalom, A.; Friedman, T.; Wong, L.

    2005-01-01

    Summary Diabetes is often considered a risk factor for poor wound healing and increased complication rates for plastic surgery procedures. Burn injury in diabetic patients may have implications for the length of stay and number of operations required. We therefore we examined the characteristics of diabetic patients admitted to our burn unit and the impact of their condition on their hospital course. Charts of all patients with diabetes admitted to the burn unit from 1995 to 2000 were reviewed (n = 73). Demographic data, percent body surface area burned, anatomical location of the burn, number of surgical procedures required, length and cost of stay, and outcome were noted. The control population included 150 consecutive patients without diabetes treated during the same period. Diabetic patients were older and underwent a higher number of surgical procedures, with increased length of stay and increased mortality, despite an equivalent body surface area burned. They had a higher incidence of scald burns in the lower extremities than the non-diabetic population. This work shows that diabetic patients constitute a unique group. They are significantly older, have an increased rate of surgical interventions, increased hospital stay, and significantly increased mortality compared to a control group with similar surface area burns. This group is also more likely to have scald burns in the lower extremities, mostly due to diabetic neuropathy. This work emphasizes the importance of education and prevention programmes directed towards this group of patients, in order to decrease morbidity, mortality, and hospital costs. PMID:21990975

  14. Characteristics of carbonaceous aerosols: Impact of biomass burning and secondary formation in summertime in a rural area of the North China Plain.

    PubMed

    Yao, Lan; Yang, Lingxiao; Chen, Jianmin; Wang, Xinfeng; Xue, Likun; Li, Weijun; Sui, Xiao; Wen, Liang; Chi, Jianwei; Zhu, Yanhong; Zhang, Junmei; Xu, Caihong; Zhu, Tong; Wang, Wenxing

    2016-07-01

    To determine the characteristics of carbonaceous aerosols in rural areas of the North China Plain, field measurements were conducted at Yucheng (YC) in the summers of 2013 and 2014. The concentrations of carbonaceous aerosols at YC exhibited clear diurnal variation, with higher concentrations in the early morning and at night and lower concentrations during the afternoon hours. The mass-balance method designed for particulate matter smaller than 2.5μm (PM2.5) was used to calculate the organic matter (OM)/organic carbon (OC) ratio. The value obtained, 2.07±0.05, was suggested as a reference to estimate organics in PM2.5 in rural areas of the North China Plain. Biomass burning was identified to be a significant source of carbonaceous aerosols; approximately half of the samples obtained at YC were affected by biomass burning during summer 2013. Case studies revealed that biomass burning accounted for up to 52.6% of the OC and 51.1% of the elemental carbon in PM2.5 samples. The organic coatings observed on sulphur-rich and potassium-rich particles indicated the formation of secondary organic aerosols (SOA) from the oxidation of precursor volatile organic compounds (VOCs) during the aging of smoke released from biomass burning. Based on the evolution of the VOCs, the contribution of VOCs oxidation to SOA concentration was 3.21 and 1.07μgm(-3)ppm(-1) CO under conditions of low nitrogen oxide (NOx) and high NOx, respectively. Aromatics (e.g. benzene, toluene, xylene and ethylbenzene) made the greatest contribution to SOA concentration (88.4% in low-NOx conditions and 80.6% in high-NOx conditions). The results of the study offer novel insights into the effects of biomass burning on the carbonaceous aerosols and SOA formation in polluted rural areas. PMID:27031303

  15. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    SciTech Connect

    DOE /NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

  16. Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regime

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N.

    2014-04-01

    Fire is an important global ecological process that determines the distribution of biomes, with consequences for carbon, water, and energy budgets. The modelling of fire is critical for understanding its role in both historical and future changes in terrestrial ecosystems and the climate system. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate the historical burned area and the fire regime for the 20th century. For 2001-2006, the simulated global spatial extent of fire occurrence agrees well with that given by the satellite-derived burned area datasets (L3JRC, GLOBCARBON, GFED3.1) and captures 78-92% of global total burned area depending on which dataset is used for comparison. The simulated global annual burned area is 329 Mha yr-1, which falls within the range of 287-384 Mha yr-1 given by the three global observation datasets and is close to the 344 Mha yr-1 given by GFED3.1 data when crop fires are excluded. The simulated long-term trends of burned area agree best with the observation data in regions where fire is mainly driven by the climate variation, such as boreal Russia (1920-2009), and the US state of Alaska and Canada (1950-2009). At the global scale, the simulated decadal fire trend over the 20th century is in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is systematically underestimated by the model compared with the fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in boreal North America and southern Africa indicate that both the number and the size of big fires are underestimated, which could be related with too low fire spread rate (in the case of static vegetation) and fire duration time. Future efforts should be directed towards building consistent spatial observation datasets for key parameters of the model in order to constrain the model error at each key step of the fire modelling.

  17. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    PubMed

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities. PMID:16824578

  18. Area- and depth- weighted averages of selected SSURGO variables for the conterminous United States and District of Columbia

    USGS Publications Warehouse

    Wieczorek, Michael E.

    2014-01-01

    This digital data release consists of seven data files of soil attributes for the United States and the District of Columbia. The files are derived from National Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are percent sand, silt, and clay (AVG_SAND, AVG_SILT, and AVG_CLAY). The soil characteristics in the WTDEP table are the annual minimum water table depth (WTDEP_MIN), available water storage in the 0-25 cm soil horizon (AWS025), the minimum water table depth for the months April, May and June (WTDEPAMJ), the available water storage in the first 25 centimeters of the soil horizon (AWS25), the dominant drainage class (DRCLSD), the wettest drainage class (DRCLSWET), and the hydric classification (HYDCLASS), which is an indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of a given MUKEY. (See Entity_Description for more detail). The tables were created with a set of arc macro language (aml) and awk (awk was created at Bell Labsin the 1970s and its name is derived from the first letters of the last names of its authors – Alfred Aho, Peter Weinberger, and Brian Kernighan) scripts. Send an email to mewieczo@usgs.gov to obtain copies of the computer code (See Process_Description.) The methods used are outlined in NRCS's "SSURGO Data Packaging and Use" (NRCS, 2011). The tables can be related or joined to the gSSURGO rasters of MUKEYs by the item 'MUKEY.' Joining or relating the tables to a MUKEY grid allows the creation of grids of area- and depth-weighted soil characteristics. A 90-meter raster of MUKEYs is provided which can be used to produce rasters of soil attributes. More detailed resolution rasters are available through NRCS via the link above.

  19. Slash and burn versus "agronegócio". Tales of forest degradation in the maroon area of Vila Bela da SantíssimaTrindade, Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Leite, José C.; Ferreira, António A. J.

    2014-05-01

    Over the last four decades, deforestation in Brazil occurred systematically in the area known as the "arcof deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. The deforestation process replaces the forest and the slash and burn agriculture systems by modern intensive agriculture systems targeted at the production of cash crops like cotton, maize or soybeans, and to graze cattle.The so called "agronegócio" system. The reduction of pristine forest areas where traditional (indigenous, maroons and riverside) population conduct slash and burn agriculture, reduces the recovery time of the abandoned fields after exhaustion by agriculture crops, reason why the return to the same spots for another cycle of slash and burn occurs before the forest recovers completely from the previous cycle. In fact, the frequency of the cycles is increasing with the expansion of farm land and the reduction of available forest. This work encompasses the reasons, causes and/or motivations of the deforestation trends in the Vila Bela da SantíssimaTrindade, near the Bolivian border of Mato Grosso in Brazil, over a time span of four decades. The arc of deforestation has passed the region in the 1980's, leaving yet a large area of pristine forest where the traditional communities kept practicing a slash and burn agriculture system. Nevertheless, due to the reduction of available area, and specially due to the exposure of traditional communities to the "western civilization culture", there is an increasing abandonment of the traditional systems and associated culture and knowledge. In this context, the traditional communities may become a deforestation/degradation factor. To prevent this situation, the GUYAGROFOR project was implemented, to value traditional knowledge, identify bottlenecks in the increase of added value to the local traditional products, and to test methodologies to maintain and if possible improve soil fertility near the small households. The deforestation/degradation processes and the impacts of the proposed mitigation action are discussed.

  20. Emergent burn care.

    PubMed

    Harvey, J S; Watkins, G M; Sherman, R T

    1984-02-01

    The estimated 32,600,000 fires that occur annually in the United States produce over 300,000 injuries and 7,500 deaths. Ten percent of hospitalized burn victims die as a direct result of the burn. Initial evaluation and management of the burn patient are critical. The history should include the burn source, time of injury, burn environment, and combustible products. The burn size is best estimated by the Lund and Browder chart, and the burn depth is determined by clinical criteria. Pulmonary involvement and circumferential thoracic or extremity burns require detection and aggressive treatment to maintain organ viability. Hospitalization is usually necessary for adults with burns larger than 10% of the total body surface area (TBSA) or children with burns larger than 5% of TBSA. Major burns, those of 25% or more of TBSA or of 10% or more of full thickness, should be considered for treatment at a burn center, as well as children or elderly victims with burns of greater than 10% TBSA. Lactated Ringer's solution, infused at 4 ml/kg/% TBSA, is generally advocated for initial fluid restoration. After the acute phase (48 hours), replacement of evaporative and hypermetabolic fluid loss is necessary. These losses may constitute 3 to 5 liters per day for a 40% to 70% TBSA burn. Blood transfusion is often required because of persistent loss of red blood cells (8% per day for about ten days). Many electrolyte abnormalities may occur in the first two weeks. Pulmonary injury commonly is lethal. Circumoral burns, oropharyngeal burns, and carbonaceous sputum are indicative of inhalation injury, but arterial blood gas determinations, fiberoptic bronchoscopy, and xenon lung scans are useful for confirming the diagnosis. Humidified oxygen, intubation, positive-pressure ventilation, and pulmonary toilet are the mainstays of therapy for inhalation injury. Wound care is initially directed at preservation of vital function by escharotomy, if restrictive eschar impairs ventilatory or circulatory function. Antibacterial agents may be applied to the burn, but invasive sepsis, defined as greater than 10(5) organisms per gram of tissue with invasion of subjacent viable tissue, requires systemic antibiotic therapy. Wound debridement is done by daily hydrotherapy, tangential excision, chemicals, primary excision, and grafting, tailoring the technique to the individual burn.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6367073

  1. Data in support of environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China.

    PubMed

    Chang, Yu; Zhu, Zhiliang; Bu, Rencang; Li, Yuehui; Hu, Yuanman

    2015-09-01

    Fire frequency and size are two important parameters describing fire characteristics. Exploring the spatial variation of fire characteristics and understanding the environmental controls are indispensable to fire prediction and sustainable forest landscape management. To illustrate the spatial variation of forest fire characteristics over China and to quantitatively determine the relative contribution of each of the environmental controls to this variation, forest fire characteristic data (mean number of forest fires and mean burned forest area) and environmental data (climate, land use, vegetation type and topography) at provincial level were derived. These data sets can potentially serve as a foundation for future studies relating to fire risk assessment, carbon emission by forest fires, and the impact of climate change on fire characteristics. This data article contains data related to the research article entitled "Environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China" by chang et al. [1]. PMID:26288802

  2. Record of Decision Remedial Alternative Selection for the D-Area Burning/Rubble Pits (431-D and 431-1D)

    SciTech Connect

    Palmer, E.R.; Mason, J.T.

    1997-02-01

    The D-Area Burning/Rubble Pits (DBRP) (431-D and 431-1D) Waste Unit is listed as a Resource Conservation and Recovery Act (RCRA) 3004(U) Solid Waste Management Unit/Comprehensive Environmental Response Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS). This decision document presents the selected remedial alternative for the DBRP located at the SRS in Aiken, South Carolina.

  3. Statement of Basis/Proposed Plan for the F-Area Burning/Rubble Pits (231-F, 231-1F, and 231-2F)

    SciTech Connect

    Palmer, E.

    1996-08-01

    The purpose of this source unit Statement of Basis/Proposed Plan is to describe the preferred alternative for addressing the F-Area Burning/Rubble Pits (231-F and 231-1F) and Rubble Pit (231-2F) (FBRP) source unit located at SRS, in southwestern Aiken County, South Carolina and to provide an opportunity for public input into the remedial action selection process.

  4. Burns following petrol sniffing.

    PubMed

    Janezic, T F

    1997-02-01

    Two patients with burns following petrol sniffing are presented. They sustained an 8 per cent and a 70 per cent total body surface area burn. The majority of the burned areas of both patients were full thickness and were treated by early excision and autografting, and in one patient with cultured epidermal autografts also. Both patients came from disorganized families, had behavioural problems and poor school performance. Clothes soaked with petrol, altered mental state and cigarette smoking are major risk factors for thermal injury while inhaling petrol. In order to recognize acute and chronic intoxication, burns unit staff should be aware of the clinical signs related to inhalation of petrol, especially because some of the burned petrol sniffers might not admit to petrol abuse. The social worker and psychologist are very likely to be vital in the rehabilitation of such patients. PMID:9115618

  5. Controlled Burn

    GULF OF MEXICO — Dark clouds of smoke and fire emerge as oil burns during a controlled burn in the Gulf of Mexico. The U.S. Coast Guard working in partnership with BP PLC, local residents, and other Federal agencies conducted the controlled burn to aid in preventing the spread of oil following...

  6. Estimates of emissions from open biomass burning in Tropical Asia during 2000-2007

    NASA Astrophysics Data System (ADS)

    Chang, D.

    2009-04-01

    Biomass burning in tropical Asia emits large amounts of trace gases and particulate matters to atmosphere, which have significant influence in climate change and atmospheric chemistry. Emissions from open biomass burning in tropical Asia are estimated during seven fire years 2000-2006 (i.e., April 1st 2000-March 31st 2007), using newly released L3JRC burned area product and MODIS burned area product (MCD45A1). Over seven fire years, both burned areas and fire emissions showed clearly spatial and inter-annual variations. The L3JRC burned areas ranged from 31.3×103 km2 for fire year 2005 to 57.5×103 km2 for 2000, while the MODIS burned areas ranged from 64.9×103 km2 for fire year 2002 to 127.0×103 km2 for 2004. We compared the total burned areas and forest burned areas derived from the two separate products with publication data for several typical countries and found that the L3JRC results were comparable to previous studies and the MODIS results showed significant overestimation. The annual average L3JRC-based emissions were 29915, 1948, 90, 30, 12, 105, and 871 Gg yr-1 for CO2, CO, CH4, NOx, BC, OC, and PM2.5 respectively, while MODIS-based emissions were 86740, 5222, 230, 83, 33, 296, and 2188 Gg yr-1, 60.2%-65.5% higher than L3JRC. Forest fires were the largest contributor to fire emissions, though burned area within forest biomes only constituted a minority of total burned area. Fire emissions were mainly concentrated in Myanmar, Cambodia and India. Furthermore, the seasonal distribution of fire emissions was in good agreement with that of total burned areas.

  7. Burns (For Parents)

    MedlinePlus

    ... medical assistance. Do not use wet compresses or ice because they can cause the child's body temperature to drop. Instead, cover the area with a clean, soft cloth or towel. The burn comes from a ...

  8. A Study on Maximum Fluctuation Width within a few Hours regarding Ensemble Average Insolation Observed at Multi-points in Large Area

    NASA Astrophysics Data System (ADS)

    Kumazawa, Shinsuke; Kato, Takeyoshi; Honda, Nobuyuki; Koaizawa, Masakazu; Nishino, Shinichi; Suzuoki, Yasuo

    Based on the past studies regarding the insolation fluctuation, the smoothing effect of insolation among different locations would not be enough for the longer cycle than a few ten minutes. This study evaluated the maximum fluctuation width (MFW) within at most 120 min of ensemble average insolation of 40 points, its clearness index, and ensemble average insolation excluding sun-position dependent component. As the results, when the weather condition became worse after the noon in almost all area, the ensemble average insolation significantly reduced, resulting in MFW of 540W/m2 within 120 min. As other example, when the weather recovered during the morning in many areas, MFW was also large. By using the data observed for 6 months, this study calculated the cumulative frequency distribution of MFW of ensemble average insolation, its clearness index, and ensemble average insolation excluding sun-position dependent component. As the results, the absolute value of MFW of ensemble average insolation calculated with 120 min width window ranges mainly between 200-300W/m2. The absolute value of MWF of insolation excluding sun-position dependent component evaluated with 120 min width window is smaller than 200W/m2 in most days, and is not so different from MWF evaluated with 60 min width window. Finally, this study discussed the practical usability of insolation forecast.

  9. Probability and volume of potential postwildfire debris flows in the 2011 Indian Gulch burn area, near Golden, Colorado

    USGS Publications Warehouse

    Ruddy, Barbara C.

    2011-01-01

    This report presents an assessment of the debris-flow hazards from drainage basins burned in 2011 by the Indian Gulch wildfire near Golden, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned drainage basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and debris-flow volumes for selected drainage basins. Input for the models include measures of burn severity, topographic characteristics, soil properties, and rainfall total and intensity for a (1) 2-year-recurrence, 1-hour-duration rainfall, (2) 10-year-recurrence, 1-hour-duration rainfall, and (3) 25-year-recurrence, 1-hour-duration rainfall. Estimated debris-flow probabilities in the drainage basins of interest ranged from 2 percent in response to the 2-year-recurrence, 1-hour-duration rainfall to a high of 76 percent in response to the 25-year-recurrence, 1-hour-duration rainfall. Estimated debris-flow volumes ranged from a low of 840 cubic meters to a high of 26,000 cubic meters, indicating a considerable hazard should debris flows occur.

  10. Atmospheric Effects of Biomass Burning in Madagascar

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.; Hoegy, Walter R.; Ziemke, Jerry R.; Thorpe, Arthur; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Simultaneous tropospheric ozone and aerosols observed using the TOMS satellite instrument are reported for Madagascar during the 1979 through 1999 time period Ozone observations made using the TOMS tropospheric ozone convective-cloud differential method show that the tropospheric ozone amount associated with Madagascar has an average monthly value of 30 DU (Dobson units). The average value is enhanced by 10 to 15 DU in October This maximum coincides with the time of maximum biomass area burning in Madagascar and parts of southern Africa. The aerosol index derived from TOMS is examined for correlation with biomass burning in Madagascar and southern Africa. There is good correlation between a satellite observation derived fire index for different parts of Madagascar, tropospheric ozone and the TOMS aerosol index in the same geographical area. Aerosols from fires were found to reach their peak in November and to persist over Madagascar until sometime in December.

  11. Estimates of area-averaged turbulent energy fluxes in a convectively driven boundary layer using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Scherf, A.; Roth, R.

    1996-12-01

    During the field campaign of EFEDA II several aircraft measurements were performed in order to evaluate area mean values of turbulent energy fluxes over a relatively flat terrain in a desertification threatened area in Spain. Since earlier field experiments indicated differences between airborne measurements and surface observations, we tried to close the gap by carefully analysing the turbulence measurements. In order to evaluate the influence of the temporal variation of the convective boundary layer, the rise of the inversion, derived from simultaneously performed radiosonde ascents, was taken into account. By estimating the linear approximated fields of the meteorological parameters, it was possible to calculate the mean values of these quantities as well as the temporal and spatial derivatives, which are necessary for the evaluation of the advective terms of the energy budget. In this way is possible to examine the terms of the conservation equations in a supplementary way.

  12. Cost analysis of a major burn.

    PubMed

    Lofts, J A

    1991-11-27

    A retrospective review was undertaken of 26 patients admitted to Middlemore Hospital between January 1986 to July 1989 with burns totalling more than 30% of total body surface area. An attempt was made to estimate the total cost of successful inpatient management of a major burn using known and assumed values. The new schedule of interboard hospital charges was also employed for greater accuracy. The 20 survivors had a mean initial hospital stay of 68.7 days at a cost of between $37,077 and $40,702 (1989 values) and $46,069 (1991 values). This latter figure equates to an average cost of $647 per patient per day or, alternatively, $927 per % burn. Suggestions to reduce costs and improve treatment include: earlier excision and grafting; the establishment of a regional skin bank and keratinocyte culture facility to aid wound closure; and guidelines on antibiotic prescribing. PMID:1745459

  13. An Exploration of Discontinuous Time Synchronous Averaging for Helicopter HUMS Using Cruise and Terminal Area Vibration Data

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Mosher, Marianne; Barszcz, Eric

    2002-01-01

    Recent research using NASA Ames AH-1 and OH-58C helicopters, and NASA Glenn test rigs, has shown that in-flight vibration data are typically non-stationary [l-4]. The nature and extent of this non-stationarity is most likely produced by several factors operating simultaneously. The aerodynamic flight environment and pilot commands provide continuously changing inputs, with a complex dynamic response that includes automatic feedback control from the engine regulator. It would appear that the combined effects operate primarily through an induced torque profile, which causes concomitant stress modulation at the individual internal gear meshes in the transmission. This notion is supported by several analyses, which show that upwards of 93% of the vibration signal s variance can be explained by knowledge of torque alone. That this relationship is stronger in an AH-1 than an OH-58, where measured non-stationarity is greater, suggests that the overall mass of the vehicle is an important consideration. In the lighter aircraft, the unsteady aerodynamic influences transmit relatively greater unsteady dynamic forces on the mechanical components, quite possibly contributing to its greater non-stationarity . In a recent paper using OH-58C pinion data [5], the authors have shown that in computing a time synchronous average (TSA) for various single-value metric computations, an effective trade-off can be obtained between sample size and measured stationarity by using data from only a single mesh cycle. A mesh cycle, which is defined as the number of rotations required for the gear teeth to return to their original mating position, has the property of representing all of the discrete phase angles of the opposing gears exactly once in the average. Measured stationarity is probably maximized because a single mesh cycle of the pinion gear occurs over a very short span of time, during which time-dependent non-stationary effects are kept to a minimum. Clearly, the advantage of local stationarity diminishes as the temporal duration of the cycle increases. This is most evident for a planetary mesh cycle, which can take several minutes to complete.

  14. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay. PMID:11307683

  15. How well can we estimate areal-averaged spectral surface albedo from ground-based transmission in the Atlantic coastal area?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura; Marinovici, Cristina

    2015-10-01

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) whitesky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  16. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Marinovici, Maria C.

    2015-10-15

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  17. Review of Burn Research for Year 2014.

    PubMed

    Sen, Soman; Palmieri, Tina; Greenhalgh, David

    2015-01-01

    Management of burn injuries requires treatments and interventions from many disciplines. Worldwide, burn patients suffer from physical and psychological challenges that impact their lives socially and economically. In this review, we will highlight a handful of the numerous articles published in multiple areas of burn care. The areas of burn care addressed in the article are: epidemiology; burn resuscitation, critical care, and infection; nutrition and metabolism; pain and rehabilitation; prevention and firefighter safety; psychology; and reconstruction and wounds. PMID:26204384

  18. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  19. Sprayed cultured mucosal epithelial cell for deep dermal burns.

    PubMed

    Ueda, Minoru

    2010-11-01

    Mucosal epithelial cells have various advantages compared with epidermal cells, such as their high proliferation ability and long biologic activity. The objective of this study was to assess the clinical results after sprayed application of cultured mucosal epithelial autograft (CMEA) suspensions onto deep dermal burn wounds. Ten patients with deep dermal burns were included in a prospective study. The average total-body-surface-area burn was 17.7% (8%-45%). The average Abbreviated Burn Severity Index was 6.3 points (4-9 points). The application of sprayed CMEA suspension was performed onto an average body surface area of 2.05% (0.5%-5%; median, 2%). Eight patients were recruited for clinical follow-up after an average of 10 months (3-18 months). The average Vancouver Scar Scale score at follow-up was 1.5 points (range, 0-5 points). The average period of epithelialization in wound surface was 12.5 days. Our data show that enzymatic and careful surgical debridement and consecutive application of CMEA suspensions using a spray technique result in excellent cosmetic outcomes compared with any other methods. PMID:21119409

  20. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.

  1. Lightning burns.

    PubMed

    Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

    2014-01-01

    We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury. PMID:23799482

  2. Ball lightning burn.

    PubMed

    Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

    2003-05-01

    Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications. PMID:12792547

  3. Clinical and demographic features of pediatric burns in the eastern provinces of Turkey

    PubMed Central

    2011-01-01

    Background The aim of this study is to perform a retrospective analysis of the causes of burns observed in children in the eastern provinces of Turkey. Method In this study, patients were studied retrospectively with regard to their age, sex, cause of burns, seasonal variations, social and economic factors, length of hospital stay, burned body surface area, medical history, site of injury, and mortality. Results A total of 125 patients undergoing inpatient treatment were male, (53.2%) and 110 were female (46.8%). The most common causes of burns in patients treated on an inpatient basis were scald burns (65.5%) and tandir burns (15.7%). The mean total body surface area of all the patients was 12.17+9.86%. When the patients were grouped according to tandir, cauldron, and others burn causes, a significant difference was seen between the in burn percentages caused by tandir and cauldron burns and other causes (p < 0.001). Higher burn percentages were seen for cauldron burns than for tandir burns (p < 0.05). The average length of hospital stay was 17.67+13.64 days. When the patients were grouped according to burn causes (tandir, cauldron, and others), a significant difference was determined between the hospitalization periods of patients with tandir burns and other burn causes (p = 0.001) The most commonly proliferating microorganism in burned areas was Pseudomonas aeruginosa (20.4%). Of the 235 patients, 61 were treated in operating rooms. During the 24-month period of the study, 2 of the 235 patients died (0.85%). Conclusion Pediatric burns in the eastern part of Turkey are different from those in other parts of Turkey, as well as in other countries. Due to the lifestyle of the region, tandir and cauldron burns, which cause extensive burn areas and high morbidity, are frequently seen in children. Therefore, precautions and educational programs related to the use of tandirs and cauldrons are needed in this region. PMID:21244683

  4. [Fire severity of burnt area in Huzhong forest region of Great Xing' an Mountains, Northeast China based on normalized burn ratio analysis].

    PubMed

    Wang, Xiao-li; Wang, Wen-juan; Chang, Yu; Feng, Yu-ting; Chen, Hong-wei; Hu, Yuan-man; Chi, Jian-guo

    2013-04-01

    Based on the TM images and 3S technology, and by using normalized burn ratio (NBR) , this paper quantitatively evaluated the fire severity of burnt area in Huzhong forest region of the Great Xing' an Mountains from 1986 to 2010, and analyzed the relationships of the fire severity with environmental factors such as vegetation type, elevation, slope, and aspect. In Huzhong forest region, the fire occurrence frequency and total burnt area had an obvious inter-annual change. High incidence of forest fire was from June to August, and heavily burnt area occupied 84. 2% of the total burnt area. In the burnt area, larch forest accounted for 89. 9%. 68. 8% of burnt area located at the elevations from 1000 m to 1500 m, and 62. 5% located in eastern, southern, western, and northern slopes. There was no obvious difference in the burnt area between sunny and shady slopes. The burnt area at the slope degrees 15 degree-25 degrees occupied 38.4% of the total. High severity burnt area was the largest (70% of the total), followed by moderate severity burnt area (about 10%), and low severity burnt area and un-burnt area (<5% ). The majority of the forest fires in Huzhong forest region were of high severity fire, which caused great damages to the forest resources. It was suggested that in the forest fire management in Great Xing' an Mountains forest region, it would be urgent to implement forest fuel treatments to reduce fire severity to guarantee the forest ecosystem security. PMID:23898653

  5. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada

    SciTech Connect

    Bechel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

  6. Intake of ²³⁸U and ²³²Th through the consumption of foodstuffs by tribal populations practicing slash and burn agriculture in an extremely high rainfall area.

    PubMed

    Jha, S K; Gothankar, S; Iongwai, P S; Kharbuli, B; War, S A; Puranik, V D

    2012-01-01

    The concentration of naturally occurring radionuclides ²³²Th, ²³⁸U was determined using Instrumental Neutron Activation Analysis (INAA) in different food groups namely cereals, vegetables, leafy vegetables, roots and tubers cultivated and consumed by tribal population residing around the proposed uranium mine. The study area is a part of rural area K. P. Mawthabah (Domiasiat) in the west Khasi Hills District of Meghalaya, India located in the tropical region of high rainfall that remains steeped in tribal tradition without much outside influence. Agriculture by Jhum (slash and burn) cultivation and animal husbandry are the main occupation of the tribal populations. A total of 89 samples from locally grown food products were analyzed. The concentration of ²³⁸U and ²³²Th in the soil of the study area was found to vary 1.6-15.5 and 2.0-5.0 times respectively to the average mean value observed in India. The estimated daily dietary intake of ²³⁸U and ²³²Th were 2.0 μg d⁻¹ (25 mBq d⁻¹) and 3.4 μg d⁻¹ (14 mBq d⁻¹) is comparable with reported range 0.5-5.0 μg d⁻¹ and 0.15-3.5 μg d⁻¹ respectively for the Asian population. PMID:22036151

  7. CAD tool for burn diagnosis.

    PubMed

    Acha, Begoña; Serrano, Carmen; Acha, José I; Roa, Laura M

    2003-07-01

    In this paper a new system for burn diagnosis is proposed. The aim of the system is to separate burn wounds from healthy skin, and the different types of burns (burn depths) from each other, identifying each one. The system is based on the colour and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. We use a perceptually uniform colour space (L*u*v*), since Euclidean distances calculated in this space correspond to perceptually colour differences. After the burn is segmented, some colour and texture descriptors are calculated and they are the inputs to a Fuzzy-ARTMAP neural network. The neural network classifies them into three types of bums: superficial dermal, deep dermal and full thickness. Clinical effectiveness of the method was demonstrated on 62 clinical burn wound images obtained from digital colour photographs, yielding an average classification success rate of 82% compared to expert classified images. PMID:15344466

  8. Burn Institute

    MedlinePlus

    ... Since... Read More Survivors Archive Our Partners Senior Smoke Alarm Program If you are 62 or older and ... you are qualified for the Burn Institute’s FREE smoke alarms for seniors program. Take the Online Challenge The ...

  9. Scald Burns

    MedlinePlus

    ... the stove. • Avoid wearing loose clothing around open flames and roll up your sleeves. • Never leave cooking ... first, second and third degree burns depending on temperature and length of exposure. • At 155 degrees, a ...

  10. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  11. High-resolution Average Forest Phenology and Annual Residuals for Quantifying the Start of Spring and Summer Leaf-area Dynamics

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Guinn, S. M.

    2009-12-01

    Land surface phenology (LSP) is the seasonal pattern of vegetation dynamics that occur each spring and fall. Multiple drivers of spatial variation in LSP and its variation over time have been analyzed using satellite remote sensing. Until recently, these observations have been restricted to moderate- and low-resolution data, as it is only at these spatial resolutions for which temporally continuous data is available. However, understanding small scale variation in LSP over space and time may be key to linking pattern to process, and in particular, could be used to understand how ecological processes at the stand level scale to landscapes and continents. Through utilization of the large, and now free, Landsat record, recent research has led to the development of robust methods for calculating average phenological patterns at 30-m resolution by stacking two decades worth of data by acquisition day of year (DOY). Here we have extended these techniques to calculate the deviation from the average LSP for any given acquisition DOY-year combination. We model the average LSP as two sigmoid functions, one increasing in spring and a second decreasing in fall, connected by a sloped line representing gradual summer leaf area changes (see Figure). Deviation from the average LSP is considered here to take two forms: (1) residual vegetation cover in mid- to late-summer represent locations in which disturbance, drought, or (alternatively) better than average growing conditions have resulted a separation (either negative or positive) from the average vegetation cover for that DOY, and (2) climate conditions that result in an earlier or later onset of greenness, exhibited as a separation from the average spring onset of greenness curve in the DOY direction (either early or late.) Our study system for this work is the deciduous forests of the mid-Atlantic, USA, where we show that late summer vegetation cover is tied to edaphic properties governing the site specific soil moisture balance. Additionally, we show that climatic factors (mostly related to topography) strongly influence the average start of spring. Annual deviations in the start of spring do not always scale linearly suggesting a spatially complex relationship between climate and the onset of spring. Model fit for a single pixel of mid-Atlantic deciduous forest. Shades of gray represent the weight each datum has on the model fit (increasing, white to black). Data weights account for variable atmospheric conditions between acquisitions.

  12. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. The magnetic mapping with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350 × 300m with 7913 points. The detected anomalies lie in a range between -130 and 176 nT. The maxima are most likely caused by heating of the top sandstones by burning coal, the origin for the high magnetization being the conversion of pyrite and markasit into maghemite, hematite and magnetite. Susceptibility measurements of clinkers in firezone 18 demonstrate this effect. Therefore the identified patches with high magnetic anomalies should have a direct connection to ranges with burning coal within firezone 18. Al the discussed geophysical measurements together allow an integrated interpretation. Each result can be related to the combustion process with a particular likelihood for the vertical projection to the combustion centre. Probability calculations with chosen weight factors for each observation method are discussed. References: Kessels, W., Wuttke, M. W., Wessling, S., and Li, X. Coalfires between self ignition and fire fighting: Numerical modeling and basic geophysical measurements. In ERSEC Ecological Book Series - 4 on Coal Fire Research (2007).

  13. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells

    PubMed Central

    2014-01-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m2/g which was 5.54 m2/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m2/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J-V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments. PMID:25339855

  14. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jadhav, Nitin A.; Singh, Pramod K.; Rhee, Hee Woo; Bhattacharya, Bhaskar

    2014-10-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m2/g which was 5.54 m2/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m2/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J- V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments.

  15. Interim Record of Decision Remedial Alternative Selection for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)

    SciTech Connect

    Morgan, Randall

    2000-11-17

    The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) Operable Unit (OU)(ABRP) is listed as a Resource Conservation and Recovery Act (RCRA) 3004(u) Solid Waste Management Unit/Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) unit in Appendix C of the Federal Facility Agreement (FFA) for the Savannah River Site (SRS) in Aiken County, South Carolina. The following media are associated with this OU: surface soil and groundwater. An SRS RCRA permit modification is not required at this time since this is an interim action. However, the final permit modification will (1) include the final selection of remedial alternatives under RCRA, (2) be sought for the entire ABRP with the final Statement of Basis/Proposed Plan (SB/PP), and (3) will include the necessary public involvement and regulatory approvals. This Interim Record of Decision (IROD) also satisfies the RCRA requirements for an Interim Measures Work Plan.

  16. The daily fluorine and arsenic intake for residents with different dietaries and fluorosis risk in coal-burning fluorosis area, Yunnan, Southwest China.

    PubMed

    Li, Ling; Luo, Kun-Li; Tang, Yue-Gang; Liu, Yong-Lin

    2015-02-01

    The daily fluorine (F)/arsenic (As) intake (DFI/DAsI) for residents at different ages with different dietaries and dietary changes was investigated to analyze the fluorosis risk in coal-burning fluorosis area in Yunnan, Southwest China. The DFI for residents with a dietary of roasted corn and roasted chili was 5.06, 9.60, and 14.38 mg for age groups 3-7, 8-15, and over 15 years, respectively. Over 90 % of DFI was from roasted foodstuffs. The DFI for residents of the same age group living on rice and roasted chili was 1.94, 3.50, and 4.95 mg, respectively, which were less than that for the former dietary type, and 65 % of DFI was from roasted chili. The main sources for their DFI are roasted foodstuffs. Both were higher than the dietaries with non-roasted foodstuffs and the recommended daily allowances (RDAs) for USA and China at different levels. The DAsI for all residents ranged from 25 to 135 μg, and at this level of DAsI, it would not influence human health. However, As pollution of roasted foodstuffs might have an important influence for the fluorosis. Residents are changing their staple food from roasted corn to rice, and especially, younger people are more focused on quality life. However, even if residents change their staple food, the habit of eating chili will not change, which also may cause them getting fluorosis. Developing economy, changing dietary types, and changing the habit of drying and keeping chili will help to reduce the fluorosis risk in coal-burning fluorosis area of Southwest China. PMID:25167821

  17. Scaling effects on area-averaged fraction of vegetation cover derived using a linear mixture model with two-band spectral vegetation index constraints

    NASA Astrophysics Data System (ADS)

    Obata, Kenta; Huete, Alfredo R.

    2014-01-01

    This study investigated the mechanisms underlying the scaling effects that apply to a fraction of vegetation cover (FVC) estimates derived using two-band spectral vegetation index (VI) isoline-based linear mixture models (VI isoline-based LMM). The VIs included the normalized difference vegetation index, a soil-adjusted vegetation index, and a two-band enhanced vegetation index (EVI2). This study focused in part on the monotonicity of an area-averaged FVC estimate as a function of spatial resolution. The proof of monotonicity yielded measures of the intrinsic area-averaged FVC uncertainties due to scaling effects. The derived results demonstrate that a factor ξ, which was defined as a function of "true" and "estimated" endmember spectra of the vegetated and nonvegetated surfaces, was responsible for conveying monotonicity or nonmonotonicity. The monotonic FVC values displayed a uniform increasing or decreasing trend that was independent of the choice of the two-band VI. Conditions under which scaling effects were eliminated from the FVC were identified. Numerical simulations verifying the monotonicity and the practical utility of the scaling theory were evaluated using numerical experiments applied to Landsat7-Enhanced Thematic Mapper Plus (ETM+) data. The findings contribute to developing scale-invariant FVC estimation algorithms for multisensor and data continuity.

  18. Burning rubber

    SciTech Connect

    Not Available

    1987-09-01

    Mario Andretti, look out You are about to be surpassed in the burning rubber category by a joint venture between Oxford Energy Company and General Electric. The two companies are building the first whole tire-to-energy facility in the US in Modesto, California. This $41 million facility does not require tires to be shredded prior to incineration; it has the capacity to burn 700 tires per minute. The electricity generated will be provided to a utility company. Oxford says there are two billion waste tires on the ground and this number is increasing by 220 million a year. Of that amount, only 18 million a year are recycled.

  19. Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care

    PubMed Central

    Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N.

    2009-01-01

    Synopsis Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently through well organized, multifaceted, patient-centered teams in areas of clinical care and research. PMID:19793550

  20. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  1. Prescribed Burn

    Iowa State Grad students Devan McGranahan and Torre Hovick, along with DNR private land specialist Josh Rusk and ISU Research Technician Shannon Rusk ignite a prescribed fire on a patch-burn grazing research pasture in southern Iowa. The goals of the prescribed fire include reducing invasive eastern...

  2. Burning Man

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2006-01-01

    Former Baltimore cop and teacher Ed Burns isn't a masochist. The writer-producer for "The Wire," a critically applauded HBO series about life and death on the streets of Baltimore, is just feverishly trying to save public schools. He thinks American education is hopelessly screwed up, but that it's also the country's only hope. So it makes sense…

  3. Emission ratio of carbonaceous aerosols observed near crop residual burning sources in a rural area of the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Taketani, F.; Tanimoto, H.; Irie, H.; Takashima, H.; Inomata, S.

    2012-11-01

    Intensive open crop residue burning (OCRB) has a great impact on regional air quality and climate. A field observation campaign in a rural area of the Yangtze River Delta Region (YRDR) was performed during the harvest season, and Elemental carbon (ECa), organic carbon (OC), black carbon (BCe), carbon monoxide (CO), carbon dioxide (CO2) and PM2.5mass were concurrently measured. During the observation period, urban pollution and OCRB-impact episodes were classified. The emission ratio of ECa mass (defined as the ΔECa/ΔCO ratio) from OCRB was estimated to be 18.2 ± 4.6 ng/m3/ppbv, much higher than that (3.0 ± 0.3 ng/m3/ppbv) of urban pollution from the YRDR. A significant amount of OC was emitted from OCRB with ΔOC/ΔCO ratio of 101.3 ± 41.6 ng/m3/ppbv. The value found in the present study was near the upper limit of OC emission ratios in the literature, implying great impacts from combustion conditions, types of biomass burned and subsequent evolution. Regarding urban pollution episodes, the ΔOC/ΔCO ratio was found to be 23.7 ± 2.4 ng/m3/ppbv, and secondary organics accounted for the major fraction of OC mass. Combustions phases of OCRB were classified according to a modified combustion efficiency (MCE, defined as ΔCO2/(ΔCO + ΔCO2)). Our results support the view that ECa tend to be produced in flaming combustions (MCE > 0.95) than in smoldering combustions (MCE < 0.95), whereas OC is emitted preferentially from smoldering combustions. Based on our observed carbonaceous aerosol correlations, we estimate that the ECa and OC emissions from OCRB in East Asia might be underestimated by at least 50%.

  4. Prevention of burns: 13 years' experience in Northeastern India.

    PubMed

    Sarma, Bhupendra Prasad

    2011-03-01

    Burns are noteworthy causes of morbidity and mortality in India. Community-based interventions in the forms of multi-strategic and multi-focussed preventive programs are, however, lacking. This study, undertaken in the remote corner of Northeastern India, aims at reducing the incidence of burns through focussed attention towards sensitising the community with well-structured preventive programmes. Participatory community seminars, shop floor visit to industrial locations, use of print and electronic media and lectures and demonstrations in schools were the tools used in the preventive programmes. Analysis of inpatient and outpatient records of burn-injured patients treated in the Burn Unit and a scoring system in the school education programme helped in the assessment of the impact of Burn Preventive Programs (BPPs). For convenience of assessment, a comparative analysis of the results in early (block I) and later part (block II) of the study period was made. Results showed reduction of admission and also reduction in percent total body surface area (%TBSA) burn in the majority of the patients in block II in comparison to block I. Water was used to extinguish fire in 36.1% patients in block I and 73.4% patients in block II. Water was also used to cool burn wounds by 31% patients in Block I, and by 72% patients in block II. While 80% of the patients made inappropriate topical applications on the wounds in block I, only 34.4% did so in block II. Increased awareness amongst the general population was reflected by reduction of average reporting time in hospital after injury and significant reduction of firecracker burns from 21.5% (block I) to 14.6% (block II). Similarly, improved awareness amongst the students was evident from the improved scoring by the majority of the students and reduction in burns amongst them in the later part of block II. The results indicate that BPP has made a positive impact in society. PMID:20947259

  5. Runoff coefficient and average yearly natural aquifer recharge assessment by physiography-based indirect methods for the island of Sardinia (Italy) and its NW area (Nurra)

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Giorgio; Carletti, Alberto; Pittalis, Daniele

    2014-11-01

    Runoff estimation and water budget in ungauged basins is a challenge for hydrological researchers and planners. The principal aim of this study was the application and validation of the Kennessey method, which is a physiography-based indirect process for determining the average annual runoff coefficient and the basin-scale water balance. The coefficient can be calculated using specific physiographic characteristics (slope, permeability and vegetation cover) and a parameter that defines climatic conditions and does not require instrumental data. One of the main purposes of this study was to compare the average annual runoff coefficient obtained using the Kennessey method with the coefficients calculated using data from 30 instrumented drainage basins in Sardinia (Italy) over 71 years (from 1922 to 1992). These measurements represent an important and complete historical dataset from the study area. Using the runoff coefficient map, the method was also applied to assess the effective annual recharge rate of the aquifers of the Calich hydrogeological basin in the Nurra Plain (Alghero, NW Sardinia-Italy). The groundwater recharge rate was compared with rates calculated using the standard water balance method. The implementation of the method at the regional and basin scales was supported by GIS analyses. The results of the method are promising but show some discrepancies with other methodologies due to the higher weights given to the physiographic parameters than to the meteorological parameters. However, even though the weights assigned to the parameters require improvements, the Kennessey method is a useful tool for evaluating hydrologic processes, particularly for water management in areas where instrumental data are not available.

  6. A review of community management of paediatric burns.

    PubMed

    Cox, S G; Martinez, R; Glick, A; Numanoglu, A; Rode, H

    2015-12-01

    This study was a component of a broader review to evaluate burn care in South Africa. A prospective audit of 353 children with thermal injuries admitted to the Red Cross War Memorial Children's Hospital in Cape Town was performed during 2012/2013. The audit was based to assess the adherence of initial burn management to the provincial policy guidelines on the clinical management of the burn wound. The community management of each patient prior to admission to a burns centre was assessed for the following: basic demographics, emergency home management, wound cover, analgesia and transport to medical facilities. Their ages ranged from 1 month to 14 years. The average total body surface area [TBSA] was 15% [1-86%]. Most of the injuries were due to hot water accidents [78.5%] followed by flame burns (9%), direct contact and electricity burns. Two hundred and twenty five children [63%] received first aid measures at home, including cooling with water [166] ice [30] and a cooling agent. No cooling was instituted in 130 and 65% of the patient's wounds were cooled for 10 min or less. Eighty percent proceeded to the referral centre or burns unit without their wounds being covered; with only 19 patients having any medical type of dressing available at home. Two hundred and ninety five children [83.6%] received pain medication prior to admission at the burns unit. Of the 316 patients not directly attending the burns unit, 137 received i.v. fluids of which 95 had burns greater than 10% TBSA. None of the patients were in shock on admission and all i.v. lines were functioning. Forty-four children with burns greater than 10% did not receive i.v. fluids. The audit identified six factors that were inadequately addressed during the pre-admission period: first aid, cooling of the wound, early covering of the wound, resuscitation, pain management and transfer. If these could be readdressed, basic burn care would be substantially improved in the study area. PMID:26188887

  7. Smartphones and burn size estimation: "Rapid Burn Assessor".

    PubMed

    Kamolz, L P; Lumenta, D B; Parvizi, D; Dirnberger, J; Owen, R; Höller, J; Giretzlehner, M

    2014-06-30

    Estimation of the total body surface area burned (%TBSA) following a burn injury is used in determining whether to transfer the patient to a burn center and the required fluid resuscitation volumes. Unfortunately, the commonly applied methods of estimation have revealed inaccuracies, which are mostly related to human error. To calculate the %TBSA (quotient), it is necessary to divide the burned surface area (Burned BSA) (numerator in cm2) by the total body surface area (Total BSA) (denominator in cm2). By using everyday objects (eg. credit cards, smartphones) with well-defined surface areas as reference for estimations of Burned BSA on the one hand and established formulas for Total BSA calculation on the other (eg. Mosteller), we propose an approximation method to assess %TBSA more accurately than the established methods. To facilitate distribution, and respective user feedback, we have developed a smartphone app integrating all of the above parameters, available on popular mobile device platforms. This method represents a simple and ready-to-use clinical decision support system which addresses common errors associated with estimations of Burned BSA (=numerator). Following validation and respective user feedback, it could be deployed for testing in future clinical trials. This study has a level of evidence of IV and is a brief report based on clinical observation, which points to further study. PMID:26170784

  8. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-17

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

  9. Impact of trash burning on air quality in Mexico City.

    PubMed

    Hodzic, A; Wiedinmyer, C; Salcedo, D; Jimenez, J L

    2012-05-01

    Air pollution experienced by expanding urban areas is responsible for serious health effects and death for millions of people every year. Trash burning is a common disposal method in poor areas, yet it is uncontrolled in many countries, and its contribution to air pollution is unclear due to uncertainties in its emissions. Here we develop a new trash burning emission inventory for Mexico City based on inverse socioeconomic levels and recently measured emission factors, and apply a chemistry-transport model to analyze the effects on pollutant concentrations. Trash burning is estimated to emit 25 tons of primary organic aerosols (POA) per day, which is comparable to fossil fuel POA emissions in Mexico City, and causes an increase in average organic aerosol concentrations of ∼0.3 μg m(-3) downtown and up to 2 μg m(-3) in highly populated suburbs near the sources of emission. An evaluation using submicrometer antimony suggests that our emission estimates are reasonable. Mitigation of trash burning could reduce the levels of organic aerosols by 2-40% and those of PM(2.5) by 1-15% over the metropolitan area. The trash burning contributions to carbon monoxide, nitrogen oxides, and volatile organic compounds were found to be very small (<3%), and consequently the contributions to secondary nitrate, sulfate, and secondary organic aerosols are also very small. PMID:22458823

  10. Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan.

    PubMed

    Tsai, Ying I; Sopajaree, Khajornsak; Kuo, Su-Ching; Yu, Sung-Po

    2015-09-15

    The Mid-Autumn Festival (MAF), or Moon Festival, is a harvest festival in Taiwan, celebrated by families across the island with evening barbecues outside. This study investigated the potential impact of these activities on the air quality in Tainan, a city in southern Taiwan. Fine particulate matter (PM2.5) was examined in the period leading up to the MAF (pre-MAF), during the Festival (MAF), after the Festival (post-MAF), and in the period after this (a period of moderate air quality: MAQ). Gaseous pollutants in PM2.5 were, from highest to lowest mean concentration, NH3, SO2, HCl, HNO3, HNO2, and oxalic acid, while inorganic salts were mainly in the form of the photochemical products SO4(2-), NH4(+), and NO3(-). These inorganic salts accounted for 37.6%-44.5% of the PM2.5 mass concentration, while a further 26.3%-42.8% of the PM2.5 mass was total carbon (TC). TC was mostly composed of organic carbon (OC) produced by photochemical reactions. Of this, 9.8%-14.9% was carboxylates, of which oxalate was the most abundant compound, accounting for 22.8%-31.9% of carboxylates. The presence of phthalates in the PM2.5 indicated emissions from the plastics industry. Although a noticeable amount of aerosol was produced by festival activities and burning of softwood and hardwood, onshore air currents during the festival prevented potential high aerosol loading. During the moderate air quality period following post-MAF, the concentration of total carbohydrates was 1.44-2.64 times the amount during the festival. Levoglucosan and myo-inositol accounted for 81.7%-89.6% of the total carbohydrate concentration. The average Levo/Manno ratio was 18.64 ± 5.24. The concentration of levoglucosan was closely related to that of PO4(3-), erythritol, and galactose. Backward trajectories indicated that biomass burning in China affected the air quality of Tainan City. PMID:25958356

  11. 50 CFR 35.10 - Controlled burning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.10 Controlled burning. Controlled burning will be permitted on wilderness units when such burning will contribute to the maintenance of the wilderness resource and values in the unit; however, any fire in a wilderness area...

  12. 50 CFR 35.10 - Controlled burning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.10 Controlled burning. Controlled burning will be permitted on wilderness units when such burning will contribute to the maintenance of the wilderness resource and values in the unit; however, any fire in a wilderness area...

  13. 50 CFR 35.10 - Controlled burning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.10 Controlled burning. Controlled burning will be permitted on wilderness units when such burning will contribute to the maintenance of the wilderness resource and values in the unit; however, any fire in a wilderness area...

  14. 50 CFR 35.10 - Controlled burning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.10 Controlled burning. Controlled burning will be permitted on wilderness units when such burning will contribute to the maintenance of the wilderness resource and values in the unit; however, any fire in a wilderness area...

  15. 50 CFR 35.10 - Controlled burning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.10 Controlled burning. Controlled burning will be permitted on wilderness units when such burning will contribute to the maintenance of the wilderness resource and values in the unit; however, any fire in a wilderness area...

  16. Effects of agricultural burning on nesting waterfowl

    USGS Publications Warehouse

    Fritzell, E.K.

    1975-01-01

    Agricultural burning in an intensively farmed region within Manitoba's pothole district is shown to affect the nesting activities of ground-nesting ducks. All species, except Blue-winged Teal (Anas discors), preferred unburned nest cover, although success was higher in burned areas, where predators may have exerted less influence. Attitudes of farmers, burning chronology, and nest destruction by fires are also reported.

  17. Minor burn - first aid - series (image)

    MedlinePlus

    To treat a minor burn, run cool water over the area of the burn or soak it in a cool water bath (not ice water). ... flushing or soaking for several minutes, cover the burn with a sterile bandage or a clean cloth. ...

  18. Ten years of global burned area products from spaceborne remote sensing-A review: Analysis of user needs and recommendations for future developments

    NASA Astrophysics Data System (ADS)

    Mouillot, Florent; Schultz, Martin G.; Yue, Chao; Cadule, Patricia; Tansey, Kevin; Ciais, Philippe; Chuvieco, Emilio

    2014-02-01

    Early global estimates of carbon emissions from biomass burning were based on empirical assumptions of fire return interval in different biomes in the 1980s. Since then, significant improvements of spaceborne remote sensing sensors have resulted in an increasing number of derived products characterizing the detection of active fire or the subsequent burned area (GFED, MODIS MCD45A1, L3JRC, Globcarbon, GBS, GLOBSCAR, GBA2000). When coupled with global land cover and vegetation models allowing for spatially explicit fuel biomass estimates, the use of these products helps to yield important information about the spatial and the temporal variability of emission estimates. The availability of multi-year products (>10 years) leads to a better understanding of uncertainties in addition to increasing accuracy. We surveyed a wide range of users of global fire data products whilst also undertaking a review of the latest scientific literature. Two user groups were identified, the first being global climate and vegetation modellers and the second being regional land managers. Based on this review, we present here the current needs covering the range of end-users. We identified the increasing use of BA products since the year 2000 with an increasing use of MODIS as a reference dataset. Scientific topics using these BA products have increased in diversity and area of application, from global fire emissions (for which BA products were initially developed) to regional studies with increasing use for ecosystem management planning. There is a significant need from the atmospheric science community for low spatial resolution (gridded, 1/2 degree cell) and long time series data characterized with supplementary information concerning the accuracy in timing of the fire and reductions of omission/commission errors. There is also a strong need for precisely characterizing the perimeter and contour of the fire scar for better assimilation with land cover maps and fire intensity. Computer and earth observation facilities remain a significant gap between ideal accuracies and the realistic ones, which must be fully quantified and comprehensive for an actual use in global fire emissions or regional land management studies.

  19. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    SciTech Connect

    NNSA /NV

    2002-07-18

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  20. Burning vasculitis.

    PubMed

    Chadha, Priyanka; Hobday, Dorian; Fitzgerald O'Connor, Edmund; D'Cruz, David

    2016-01-01

    We present the case of a 69-year-old man who was found collapsed close to a heat source and admitted to hospital for severe sepsis. He was also found to have widespread blistering and ulceration of his right leg; however, a history was unobtainable due to reduced consciousness levels. The leg lesions had the initial appearance of mixed depth burns and a management plan was made to transfer the patient to a burns unit for debridement. It was subsequently noted that the patient had a previous diagnosis of seropositive erosive rheumatoid arthritis. A biopsy of the leg lesion was performed and a diagnosis of rheumatoid vasculitis confirmed. Treatment with systemic steroids, intravenous antibiotics and intravenous immunoglobulin therapy for severe hypogammaglobulinaemia was started, and the patient was not transferred for surgical debridement. Rheumatoid vasculitis is a rare and extremely serious complication of rheumatoid arthritis that can manifest in a number of ways, occasionally mimicking other conditions. This case is essential to raise awareness of rare, severe rheumatoid vasculitis and of the potential for its misdiagnosis as a mixed depth burn. PMID:27118745

  1. Independent Predictive Factors of Hospitalization in a North-West Burn Center of Iran; an Epidemiologic Study

    PubMed Central

    Shams Vahdati, Samad; Hazhir Karzar, Bita; Momen, Negar

    2015-01-01

    Introduction: A high-grade burn is one of the most devastating injuries with several medical, social, economic, and psychological effects. These injuries are the most common cause of accidental deaths after traffic injuries in both the developed and developing countries. Therefore, this research was aimed to determine demographic characteristics of patients with burn injury admitted to the emergency department and identify predictive factors of hospitalization. Methods: This is a cross sectional descriptive study, which is done in 20 March up to 20 September 2011 in emergency department of Sina Hospital, Tabriz, Iran. Patients’ information including demographic characteristic, cause of burn, place of accident, anatomical areas burned, grading and percent of burning and disposition were gathered and analyzed using SPSS version 18.0 statistical software. Stepwise multivariate regression analysis was used for recognition of independent predictive factors of hospitalization in burned patients. Results: One hundred and sixty patients were enrolled (54.4% female). The average age of those was 20.47±13.5 years. The prevalence of burn was significantly higher in ages under 20 years (p<0.001). Lower limb (37.5%), head and neck (21.25%) and upper limb (17.5%) were three frequent site of burn. The most common cause of burns was boiling water scalding (34.4%). Home related burn was significantly higher than other place (p<0.001). The most frequent percent of burn was <5% (46.25%). Finally, 50 (31.25%) cases hospitalized. Univariate analysis demonstrated that age under 20 years old (p=0.02) female gender (p=0.02), burning site (p=0.002), cause (p=0.005), place (p<0.001), grade (p<0.001), and percent (p<0.001) was related to disposition of patients. Stepwise multiple logistic regression showed female gender (OR=3.52; 95% CI: 1.57-7.88; p=0.002), work related burning (OR=1.78; 95% CI: 1.26-2.52; p=0.001), and burning over 5 percent (OR=2.15; 95% CI: 1.35-3.41; p=0.001) as independent predictive factors of hospitalization. Conclusion: The results of present study showed that burns injury are most frequent in age under 20 year old, lower limbs, with boiling water, and at home. In addition, the most frequent type and percentage of burned area were second degree and <5% of total body surface area, respectively. Among age under 20 years old, female gender, burning site, cause, place, grade, and percent only female gender, work related burning, and burning over 5% were detected as independent predictive factors of hospitalization. PMID:26512368

  2. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: simulating historical global burned area and fire regimes

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N.

    2014-11-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001-2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76-92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yr-1, which falls within the range of 287-384 Mha yr-1 as given by the three observation data sets; and is close to the 344 Mha yr-1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930-2009), along with Canada and US Alaska (1950-2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling.

  3. Carbon and Air Quality Emissions from Crop Residue Burning in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Korontzi, S.; Justice, C. O.

    2009-12-01

    Crop residue burning is a global agricultural activity that is a source of carbon and air quality emissions. Carbon and air quality emissions from crop residue burning in the contiguous U.S. (CONUS) were estimated for a five-year period, 2003 through 2007, using multispectral remote sensing-derived products. The atmospheric species that comprise the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) were selected as air quality emissions. CO2 emissions were also calculated due to its importance to global climate change. This analysis utilized multiple remote sensing data sets and products to quantify crop residue burning in CONUS, including multi-year crop type maps, an 8-day difference Normalized Burn Ratio product, and calibrated area estimates of cropland burning from 1 km MODIS Active Fire Points. Remote sensing products were combined in a GIS to quantify the location of cropland burning, burned area size, and associated crop type. A crop-specific emission factor database was compiled from the scientific literature. Fuel loads and combustion efficiency estimates were derived from the literature as well as from in-field collaborators. These data were combined to estimate crop residue burning emissions using the bottom-up methodology developed by Seiler and Crutzen (1980). This analysis found that an average of 1,239,000 ha of croplands burn each year in the CONUS. Florida, Arizona, Idaho, Utah, Washington, Arkansas, Louisiana, Oregon, California, and Colorado accounted for approximately 61% of the total crop residue burning. Crop residue burning is a significant fire activity in the CONUS, averaging 43% of the burned area reported for wildland fires in the U.S. (including Alaska and Hawaii). Crop residue burning was also found to be a significant source of emissions that negatively impacted air quality. Crop residue burning emissions occurred most often in summer and fall, with the exception of winter and early spring emission peaks in sugarcane growing areas. On average, crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 28.5 Gg of PM10, 20.9 Gg of PM2.5, 10.6 Gg of NO2, and 4.4 Gg of SO2 annually. Lead emissions were negligible (< 0.3 Gg), which warrants further investigation due to the lack of emission factors for lead. On average, air quality and carbon emissions from crop residue burning in the CONUS varied less than 10% interannually. The majority of emissions from crop residue burning originated in six states: Arkansas, California, Florida, Idaho, Texas, and Washington. Overlaying population data with average annual emissions by county showed that approximately 13.8%, 17.3%, 17.5%, 17.9%, 25%, and 46.6% of the total population of Texas, California, Washington, Florida, Arkansas, and Idaho, respectively, lives in counties with the highest emissions from crop residue burning. The results of this analysis are important for the refinement of the National Emissions Inventory and the Inventory of Greenhouse Gas Emissions and Sinks as well as for national and state policy makers concerned with rural air quality and agricultural carbon management.

  4. [The Treatment of Major Burn Injuries].

    PubMed

    Lin, Yu-Hsun; Lin, Hsiu-Hua; Shi, Li-Ping; Yeong, Eng-Kean

    2016-02-01

    Major burn injuries constitute a systemic disease. In addition to completely understanding the mechanisms of wound healing, precise burn depth and area assessment is critical to the successful management of burn injuries. The recent advancements in post-burn fluid resuscitation, tangential burn excision and grafting, effective enteral tube feeding, and aggressive sepsis treatment have helped greatly increase the survival rates for major burn injuries. However, the restricted joint motion that results from hypertrophic scar contracture remains the main challenge facing burn survivors. In conclusion, as the course of the treatment and rehabilitation is prolonged and multifaceted, a complete treatment plan is always necessary in addition to teamwork among physicians, nurses, social workers, physical therapists, and psychologists. Finally, social return is the final goal of treatment and may be achieved only through mutual support and understanding among the members of the burn treatment and rehabilitation team. PMID:26813057

  5. Epidemiology of U.K. military burns.

    PubMed

    Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A

    2011-01-01

    The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938

  6. Clinical Experience in Using the Water Jet in Burn Wound Debridement

    PubMed Central

    Yang, J.-Y.; Hwuang, J.-Y.; Chuang, S.-S.

    2007-01-01

    Summary Water jets have been used in many areas of surgery. Recently a new surgical debridement device was launched onto the market - VersajetTM. VersajetTM is a unique hydrosurgical device that uses a precise jet of water to simultaneously hold, cut, and remove devitalized or necrotic tissue. This paper describes our experience with ten patients comparing Weck knives with the newly designed hydrosurgical device when debriding burn wounds. The patients' age ranged from 27 to 60 yr (average, 37.8 yr) and the burn wounds treated were between 3 and 7% total body surface area, involving the face, abdomen, and limbs. The hydrosurgical system is a very useful tool for irregular and complex burn wound debridement. This paper represents the first written clinical experience utilizing hydrosurgery in the burn wound management in an Eastern country. PMID:21991073

  7. An Intercomparison of Techniques to Determine the Area-Averaged Latent Heat Flux from Individual in Situ Observations: A remote Sensing Approach Using the European Field Experiment in a Desertification-Threatened Area Data

    NASA Astrophysics Data System (ADS)

    Pelgrum, H.; Bastiaanssen, W. G. M.

    1996-04-01

    A knowledge of the area-averaged latent heat flux <λE> is necessary to validate large-scale model predictions of heat fluxes over heterogeneous land surfaces. This paper describes different procedures to obtain <λE> as a weighted average of ground-based observations. The weighting coefficients are obtained from remote sensing measurements. The remote sensing data used in this study consist of a Landsat thematic mapper image of the European Field Experiment in a Desertification-Threatened Area (EFEDA) grid box in central Spain, acquired on June 12, 1991. A newly developed remote sensing algorithm, the surface energy balance for land algorithm (SEBAL), solves the energy budget on a pixel-by-pixel basis. From the resulting frequency distribution of the latent heat flux, the area-averaged latent heat flux was calculated as <λE> = 164 W m-2. This method was validated with field measurements of latent heat flux, sensible heat flux, and soil moisture. In general, the SEBAL-derived output compared well with field measurements. Two other methods for retrieval of weighting coefficients were tested against SEBAL. The second method combines satellite images of surface temperature, surface albedo, and normalized difference vegetation index (NDVI) into an index on a pixel-by-pixel basis. After inclusion of ground-based measurements of the latent heat flux, a linear relationship between the index and the latent heat flux was established. This relationship was used to map the latent heat flux on a pixel-by-pixel basis, resulting in <λE> = 194 W m-2. The third method makes use of a supervised classification of the thematic mapper image into eight land use classes. An average latent heat flux was assigned to each class by using field measurements of the latent heat flux. According to the percentage of occurrence of each class in the image, <λE> was calculated as 110 W m-2. A weighting scheme was produced to make an estimation of <λE> possible from in situ observations. The weighting scheme contained a multiplication factor for each measurement site in order to compensate for the relative contribution of that site to <λE>. It was shown that <λE> derived as the arithmetic mean of 13 individual in situ observations leads to a difference of 34% (<λE> = 104 W m-2), which emphasizes the need for improved weighting procedures.

  8. Hair bleaching and skin burning.

    PubMed

    Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M

    2012-12-31

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation. PMID:23766754

  9. Estimating Average Domain Scores.

    ERIC Educational Resources Information Center

    Pommerich, Mary; Nicewander, W. Alan

    A simulation study was performed to determine whether a group's average percent correct in a content domain could be accurately estimated for groups taking a single test form and not the entire domain of items. Six Item Response Theory (IRT) -based domain score estimation methods were evaluated, under conditions of few items per content area per…

  10. Development and evaluation of a novel smart device-based application for burn assessment and management.

    PubMed

    Godwin, Zachary; Tan, James; Bockhold, Jennifer; Ma, Jason; Tran, Nam K

    2015-06-01

    We have developed a novel software application that provides a simple and interactive Lund-Browder diagram for automatic calculation of total body surface area (TBSA) burned, fluid formula recommendations, and serial wound photography on a smart device platform. The software was developed for the iPad (Apple, Cupertino, CA) smart device platforms. Ten burns ranging from 5 to 95% TBSA were computer generated on a patient care simulator using Adobe Photoshop CS6 (Adobe, San Jose, CA). Burn clinicians calculated the TBSA first using a paper-based Lund-Browder diagram. Following a one-week "washout period", the same clinicians calculated TBSA using the smart device application. Simulated burns were presented in a random fashion and clinicians were timed. Percent TBSA burned calculated by Peregrine vs. the paper-based Lund-Browder were similar (29.53 [25.57] vs. 28.99 [25.01], p=0.22, n=7). On average, Peregrine allowed users to calculate burn size significantly faster than the paper form (58.18 [31.46] vs. 90.22 [60.60]s, p<0.001, n=7). The smart device application also provided 5 megapixel photography capabilities, and acute burn resuscitation fluid calculator. We developed an innovative smart device application that enables accurate and rapid burn size assessment to be cost-effective and widely accessible. PMID:25459217

  11. Burn surgery.

    PubMed

    Tenenhaus, Mayer; Rennekampff, Hans Oliver

    2007-10-01

    The challenges posed by thermal injury often are daunting emotionally and physically for the survivor, family, and staff. Morbidity and mortality have improved with advances in emergent and multidisciplinary care; the establishment of dedicated burn centers; and increased education, prevention, and experience. The role of surgery in the treatment of these complex injury patterns continues to evolve, incorporating refined concepts of tissue preservation, wound bed preparation, and early attention to functional and esthetic parameters. Societal reintegration, psychosocial support, and new pain control strategies have dramatically improved the quality of life for our patients during and after the acute course of care. With improved survivability and a changing demographic, fundamental reconstructive surgical principles have found increased applicability and are instituted at the time of admission whenever possible. PMID:17967624

  12. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth through ninth highest pumpage. Geothermal production accounted for most pumpage in the Carson Desert (HA 101). Reinjection of ground water pumped for geothermal energy production accounted for about 64 percent (93,310 acre-feet) of the total artificial recharge. The only artificial recharge by water systems was in Las Vegas Valley, where 29,790 acre-feet of water from the Colorado River was injected into the aquifer system. Artificial recharge by mining totaled 22,870 acre-feet. Net ground-water flow was estimated only for the 143 HAs with available estimates of both natural recharge and interbasin flow. Of the 143 estimates, 58 have negative net ground-water flow, indicating that ground-water storage could be depleted if pumpage continues at the same rate. The State has designated HAs where permitted ground-water rights approach or exceed the estimated average annual recharge. Ten HAs were identified that are not designated and have a net ground-water flow between -1,000 to -35,000 acre-feet. Due to uncertainties in recharge, the water budgets for these HAs may need refining to determine if ground-water storage is being depleted.

  13. Car radiator burns: a prevention issue.

    PubMed

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures. PMID:15353940

  14. Rehabilitation of the burn patient

    PubMed Central

    Procter, Fiona

    2010-01-01

    Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ‘Burns Rehabilitation’ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration PMID:21321643

  15. Alcohol use and burn injury.

    PubMed

    Jones, J D; Barber, B; Engrav, L; Heimbach, D

    1991-01-01

    Charts of 108 consecutive adult patients with flame burns of 20% to 70% total body surface area were reviewed to determine the incidence of acute alcohol intoxication and the likelihood that intoxicated patients were chronic alcohol abusers, to assess morbidity and mortality in the alcoholic patient with burns, and to characterize the intervention used in postdischarge treatment of the alcoholic patient with burns who survives. Twenty-seven percent of patients were acutely intoxicated at the time of injury. Evidence for chronic alcohol abuse was apparent in 90% of intoxicated patients, compared to only 11% of nonintoxicated patients (p = 0.0001). Alcoholic patients with burns not only had an overall mortality rate three times that of nonalcoholics (p = 0.001) but also died of smaller burns (p less than 0.05). Surviving alcoholic patients with burns required significantly more intravenous antibiotics and a longer hospitalization. Social service evaluation of use of alcohol was made in 84% of the cases of surviving intoxicated burn victims. Further intervention was undertaken in two thirds of these cases, usually involving an outpatient treatment program. PMID:2050723

  16. Work-related burns: a 6-year retrospective study.

    PubMed

    Ng, D; Anastakis, D; Douglas, L G; Peters, W J

    1991-04-01

    During the 6 years from July 1984 to May 1990, 193 patients (30.2 per cent of all patients) were admitted to our regional adult burn centre, for treatment of work-related burn injuries. The median age of patients was 32.5 years (range 18-64 per cent), and 94 per cent were males. Fifty-nine per cent of the patients came from metropolitan Toronto, and 40 per cent from rural Ontario. Most of the patients (97.3 per cent) were referred to the burn centre within 24 h of their injury. The most common aetiology was electrical injury (29.5 per cent), followed by flame (24.4 per cent), contact (10.4 per cent), flash (9.8 per cent), tar and asphalt (9.3 per cent), scald (7.8 per cent), chemical (5.1 per cent), steam (4.7 per cent) and grease (1 per cent). Within the electrical burn group, about one-half were flash burns, one-quarter were clothing fire injuries, and one-quarter were contact injuries. These occupational burns tended to be extensive injuries. The median body surface area (BSA) was 16.5 per cent, with a median full thickness (FT) component of 5.0 per cent. The average length of stay was 20.0 days. Inhalation injury requiring intubation occurred in 14.8 per cent of patients. Sepsis--confirmed by positive blood cultures--developed in 14 per cent of the patients, at an average time of 8.8 days postburn. Staphylococcus aureus was the commonest organism isolated from blood cultures. Pneumonia occurred in 6.3 per cent of patients. A total of 207 surgical procedures was performed on 113 of the 193 patients.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2054074

  17. [Scalp burns due to hair bleach].

    PubMed

    Wagenblast, Lene

    2011-02-28

    We present two cases of scalp burn or possible chemical reaction due to use of hair highlight products. One case was treated with serial excision of the scarred bald area after the burn, and the other case was treated with implantation of expanders and subsequent excision of the bald area. PMID:21362396

  18. An assessment of the effect of horizontal soil moisture heterogeneity on the area-average measurement of cosmic-ray neutrons

    NASA Astrophysics Data System (ADS)

    Franz, Trenton E.; Zreda, M.; Ferre, T. P. A.; Rosolem, R.

    2013-10-01

    The cosmic-ray neutron probe measures soil moisture over tens of hectares, thus averaging spatially variable soil moisture fields. A previous paper described how variable soil moisture profiles affect the integrated cosmic-ray neutron signal from which depth-average soil moisture is computed. Here, we investigate the effect of horizontal heterogeneity on the relationship between neutron counts and average soil moisture. Observations from a distributed sensor network at a site in southern Arizona indicate that the horizontal component of the total variance of the soil moisture field is less variably in time than the vertical component. Using results from neutron particle transport simulations we show that 1-D binary distributions of soil moisture may affect both the mean and variance of neutron counts of a cosmic-ray neutron detector placed arbitrarily in a soil moisture field, potentially giving rise to an underestimate of the footprint average soil moisture. Similar simulations that used 1-D and 2-D Gaussian soil moisture fields indicate consistent mean and variances of a randomly placed detector if the correlation length scales are short (less than 30 m) and/or the soil moisture field variance is small (<0.032 m6 m-6). Taken together, these soil moisture observations and neutron transport simulations show that horizontal heterogeneity likely has a small effect on the relationship between mean neutron counts and average soil moisture for soils under natural conditions.

  19. Erosive burning of solid propellants

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1993-01-01

    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  20. Outcomes of outpatient management of pediatric burns.

    PubMed

    Brown, Matthew; Coffee, Tammy; Adenuga, Paul; Yowler, Charles J

    2014-01-01

    The literature surrounding pediatric burns has focused on inpatient management. The goal of this study is to characterize the population of burned children treated as outpatients and assess outcomes validating this method of burn care. A retrospective review of 953 patients treated the burn clinic and burn unit of a tertiary care center. Patient age, burn etiology, burn characteristics, burn mechanism, and referral pattern were recorded. The type of wound care and incidence of outcomes including subsequent hospital admission, infection, scarring, and surgery served as the primary outcome data. Eight hundred and thirty children were treated as outpatients with a mean time of 1.8 days for the evaluation of burn injury in our clinic. Scalds accounted for 53% of the burn mechanism, with burns to the hand/wrist being the most frequent area involved. The mean percentage of TBSA was 1.4% for the outpatient cohort and 8% for the inpatient cohort. Burns in the outpatient cohort healed with a mean time of 13.4 days. In the outpatient cohort, nine (1%) patients had subsequent admissions and three (0.4%) patients had concern for infection. Eight patients from the outpatient cohort were treated with excision and grafting. The vast majority of pediatric burns are small, although they may often involve more critical areas such as the face and hand. Outpatient wound care is an effective treatment strategy which results in low rates of complications and should become the standard of care for children with appropriate burn size and home support. PMID:25055004

  1. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  2. On the Berdichevsky average

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, Tawat; Siripunvaraporn, Weerachai; Utada, Hisashi

    2016-04-01

    Through a large number of magnetotelluric (MT) observations conducted in a study area, one can obtain regional one-dimensional (1-D) features of the subsurface electrical conductivity structure simply by taking the geometric average of determinant invariants of observed impedances. This method was proposed by Berdichevsky and coworkers, which is based on the expectation that distortion effects due to near-surface electrical heterogeneities will be statistically smoothed out. A good estimation of a regional mean 1-D model is useful, especially in recent years, to be used as a priori (or a starting) model in 3-D inversion. However, the original theory was derived before the establishment of the present knowledge on galvanic distortion. This paper, therefore, reexamines the meaning of the Berdichevsky average by using the conventional formulation of galvanic distortion. A simple derivation shows that the determinant invariant of distorted impedance and its Berdichevsky average is always downward biased by the distortion parameters of shear and splitting. This means that the regional mean 1-D model obtained from the Berdichevsky average tends to be more conductive. As an alternative rotational invariant, the sum of the squared elements (ssq) invariant is found to be less affected by bias from distortion parameters; thus, we conclude that its geometric average would be more suitable for estimating the regional structure. We find that the combination of determinant and ssq invariants provides parameters useful in dealing with a set of distorted MT impedances.

  3. Linking runoff response to burn severity after a wildfire

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.; Haire, S.L.; Kinner, D.A.

    2008-01-01

    Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the bum severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity ?? was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the bum severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0.24 to 0.85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire Dear Los Alamos, New Mexico, USA. A rainfall-discharge relation was determined for four of the subwatersheds with nearly the same bum severity. The peak discharge per unit drainage area Qupeak was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8.5 mm h-1 below which no runoff was generated. The runoff coefficient C = Qupeak/I30 was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Published in 2007 by John Wiley & Sons, Ltd.

  4. The status of statewide burn prevention legislation.

    PubMed

    Hammond, J

    1993-01-01

    Successful programs in injury prevention can focus on changing an individual's attitude and behavior or on creating and amending the environment to reduce the likelihood of injury. To investigate the latter approach as it pertains to burn prevention, the American Burn Association Burn Prevention Committee catalogued statewide legislation (as opposted to county or municipal ordinances) in major areas of burn and fire prevention. Burn reporting was generally viewed by state fire marshals as a means to apprehend arsonists or investigate child abuse, as opposed to collect demographic data for injury prevention. Smoke detectors are mandated in new residential construction by the majority of states; however, one in six still leave this to local initiatives. Sprinkler systems have generally not been addressed by state legislation. The committee concludes that pursuing statewide legislative agendas as an area of burn and injury prevention is open to further initiatives. PMID:8408177

  5. MORBIDITY AND SURVIVAL PROBABILITY IN BURN PATIENTS IN MODERN BURN CARE

    PubMed Central

    Jeschke, Marc G.; Pinto, Ruxandra; Kraft, Robert; Nathens, Avery B.; Finnerty, Celeste C.; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.

    2014-01-01

    Objective Characterizing burn sizes that are associated with an increased risk of mortality and morbidity is critical because it would allow identifying patients who might derive the greatest benefit from individualized, experimental, or innovative therapies. Although scores have been established to predict mortality, few data addressing other outcomes exist. The objective of this study was to determine burn sizes that are associated with increased mortality and morbidity after burn. Design and Patients Burn patients were prospectively enrolled as part of the multicenter prospective cohort study, Inflammation and the Host Response to Injury Glue Grant, with the following inclusion criteria: 0–99 years of age, admission within 96 hours after injury, and >20% total body surface area burns requiring at least one surgical intervention. Setting Six major burn centers in North America. Measurements and Main Results Burn size cutoff values were determined for mortality, burn wound infection (at least two infections), sepsis (as defined by ABA sepsis criteria), pneumonia, acute respiratory distress syndrome, and multiple organ failure (DENVER2 score >3) for both children (<16 years) and adults (16–65 years). Five-hundred seventy-three patients were enrolled, of which 226 patients were children. Twenty-three patients were older than 65 years and were excluded from the cutoff analysis. In children, the cutoff burn size for mortality, sepsis, infection, and multiple organ failure was approximately 60% total body surface area burned. In adults, the cutoff for these outcomes was lower, at approximately 40% total body surface area burned. Conclusions In the modern burn care setting, adults with over 40% total body surface area burned and children with over 60% total body surface area burned are at high risk for morbidity and mortality, even in highly specialized centers. PMID:25559438

  6. [Psychosocial follow-up of burn patients].

    PubMed

    Bruck, J C; Bauer, M; Balogh, D

    1985-11-01

    A questionnaire was developed to gain information on the medical, social and psychological rehabilitation of 62 burn patients. The questionnaire was answered by each patient and a close relative of their choice. The patients selected were those with burns involving hands and face, or with burns exceeding 30% of the body surface area. The returned questionnaires were analysed with respect to posttraumatic care, the extent of physical reconstruction, changes in personality and social behaviour, occupation, workman's compensation and cause of accident. PMID:4076855

  7. Floor furnace burns to children.

    PubMed

    Berger, L R; Kalishman, S

    1983-01-01

    Three children with grid-like second-degree burns of their extremities from contact with floor furnace registers prompted an examination of this thermal hazard. Average temperature of the gratings was 294 degrees F (146 degrees C), with a range of 180 degrees to 375 degrees F (82.2 degrees to 191 degrees C). All of the furnaces tested were positioned at the entrance to bedrooms and had so little clearance that it was impossible to walk around them without contact with their surface. Infants and toddlers are at particular risk: 1 or 2 seconds of exposure would be expected to produce a serious burn. Suggestions for preventing burns from floor furnaces include turning them off when young children are at home; installing barrier gates to prevent children from coming in contact with the registers; and developing a surface coating or replacement grate with less hazardous thermal properties. PMID:6848984

  8. Coin and currency burn.

    PubMed

    Bhatti, Asif Zubair; Chapman, William Thomas; Naveed, Masroor; McDiarmid, James R

    2006-01-01

    We describe a case of burns purposefully sustained in a patient performing a bizarre pub game while under the influence of alcohol. Full-thickness burns were sustained through contact with a 50-p UK currency coin essentially heated with burning paper. We discuss the nature and ease by which such burns can be sustained in the community and the increasing awareness of alcohol abuse as a factor in a significant proportion of such self-inflicted burns. PMID:16566547

  9. Epidemiologic Characteristics of Occupational Burns in Yazd, Iran

    PubMed Central

    Mirmohammadi, Seyyed Jalil; Mehrparvar, Amir Houshang; Kazemeini, Kazem; Mostaghaci, Mehrdad

    2013-01-01

    Objective: Occupational burns are among the important causes of work-related fatalities and absenteeism. Epidemiologic assessment of these injuries is important to define high-risk jobs. We designed this study to evaluate the epidemiology of occupational burns in Yazd, an industrial province in Iran. Methods: This is a prospective study on work-related burns in a 1-year period (2008-2009). A questionnaire was completed for them about the characteristics of the burn injury. Results: Three Hundred and Thirty Eight patients with occupational burns were identified. Their mean age was 29.64 years. Most burn victims were male workers in the metal industry. The most common job was smelting. Most burns were happened in the morning. Thermal burns were observed more than chemical and electrical burns. Mean total body surface area burned was 6.5%. The most common cause of burn was hot fluid, followed by hot object and flame. There was no any significant relationship between burn type, and burn degree or burned body surface. Conclusions: The highest incidence of occupational burns was in 21-30 year-old workers. There was a male preponderance in work-related burns. Metal industry had the most injured workers and among them, smelters were more frequently injured. PMID:23930193

  10. Epidemiology of paediatric burns in Iran

    PubMed Central

    Karimi, H.; Montevalian, A.; Motabar, A.R.; Safari, R.; Parvas, M.S.; Vasigh, M.

    2012-01-01

    Summary We surveyed the epidemiology of the patients in a tertiary burn care centre (the Motahari Burn Hospital) in Tehran in the 4-yr period 2005-2009. Scalding was the major cause of burn injury for patients under the age of 6, while there were many more flame and electrical burns in late childhood. Males were mainly affected (male to female ratio, 1.7:1). Most burns occurred in the summer, probably due to older children’s increased outdoor activities during school vacations. Most of the injuries took place in the kitchen. Age was directly related to the higher total body surface area and mortality rate. Explosion of propane gas at home had a high incidence. Length of hospital stay increased in relation to the burn surface area. Infants were found to be at greatest risk for burn injuries, while older children were at higher risk for severe burns. Before arriving at the hospital, 22 patients had received traditional therapy in the home which was not effective and caused some problems. Pre-hospital care by emergency medicine service personnel was complete and effective. 374 patients had positive results for wound culture (42.9%). The most frequent bacteria found in burn wound cultures was coagulase-negative Staphylococcus (66.8%). Blood culture was positive in 12% of the patients with positive burn wound culture and the most frequent bacteria in blood culture was Pseudomonas aeruginosa. The overall mortality rate was 10.6%. Treatment and prevention programmes should target high risk groups. Important criteria include older age, flame burn, presence of inhalation injury, total body surface area burned above 40%, and sepsis. PMID:23466950

  11. Rural and Metropolitan Pediatric Burns in New South Wales and the Australian Capital Territory: Does Distance Make a Difference?

    PubMed

    Hyland, Ela J; Zeni, Geoffrey; Harvey, John G; Holland, Andrew J A

    2015-01-01

    To determine if differences exist between children who sustain burns in rural areas and in metropolitan areas, an analysis of children presenting to the Burns Unit at The Children's Hospital at Westmead, from the January 1, 2008 to December 31, 2012 was performed. In all, 4326 children met the inclusion criteria, of which 21.2% came from rural regions. Just more than a quarter (26.0%) of rural children and 11.6% from metropolitan areas were Indigenous Australian (P < 0.0001). The average age of rural child was 4.5 years; metropolitan child was 3.9 years (P = 0.0001). Boys were more likely to sustain burns in both populations. Of the rural children, 40.8% sustained contact burns, 37.7% scald, and 12.5% flame. In contrast, 58.8% metropolitan children sustained scalds, 27.4% contact, and 4.5% flame. The home was the most common place for all burns to occur, but rural injuries commonly occurred outdoors. Burns were associated with risk-taking behavior in 15.3% rural and 8.7% metropolitan children (P < 0.0001). Nearly two thirds (65.9%) of children in both groups received adequate first aid (20 minutes of cool running water). Major burn injuries (≥10% Total BSA) occurred in 3.4% of rural and 2.1% metropolitan children (P = 0.02). Skin grafting was required in 28.3% rural and 16.3% metropolitan children (P = 0.0001). Nearly 32% of rural children required admission to the Burns Unit for >24 hours (15.9% metropolitan; P = 0.0001). Significant differences exist between burns sustained by rural and metropolitan children. This should be accounted for in burns prevention campaigns and the education of local health practitioners. PMID:26154516

  12. A survey on 30 months electrical burns in Shiraz University of Medical Sciences Burn Hospital.

    PubMed

    Mohammadi, Ali Akbar; Amini, Masoud; Mehrabani, Davood; Kiani, Zohreh; Seddigh, Azam

    2008-02-01

    Electrical burn is less common nowadays but still has complications and requires therapeutic interventions especially in developing countries. It occurs more in males and in industrial sites. The importance of electrical burn led us to study a 30 months history of electrical burn in Shiraz, Southern Iran. In a cross-sectional retrospective study, 1352 patients were surveyed for 30 months in relation to the cause, time, demographic information, therapeutic measures and prognosis of the electrical burn. Among burn patients, 4.73% were due to electrical burns (mean age, 30.5 years) and 95.3% were male. The mean hospitalization period was 11.5 days and the mean burn extent was 27.5%. Half of the victims were employees and 59.3% of the electrical burns occurred at their work site. 67.2% of burns were due to high voltage electrical current (more than 1000 V) and 4.6% of the patients died due to the direct cause of electrical burn. The high prevalence of electrical burn in males and workers emphasizes on the essence of standardization of occupational areas and use of trained workers to prevent electrical burns. PMID:17618054

  13. A comparison of burn season effects on nesting birds in North Dakota mixed-grass prairie

    USGS Publications Warehouse

    Higgins, K.F.

    1986-01-01

    During 1982-1985, the effects of single spring and fall burn treatments on ground nesting birds and residual cover were studied on five paired areas of native mixed-grass prairie in northwestern Stutsman County, ND. Annually, visual obstruction readings to index the height-density of residual cover were taken once and nest searches were made four times on each area. Residual nesting cover on fall burn plots averaged taller and denser than on spring burn plots during post-fire growing years 2-4. A total of 259 duck nests and 63 nests of non-passerine birds were found during the four years. Duck nesting success was significantly greater (P < 0.05) in fall burn plots than in spring burn plots for all species and years combined. Too few nests of other bird species were found for valid comparisons. Results suggest that vegetation structure and duck nesting response to spring and fall burns became similar again by the third post-fire growing season.

  14. Marginally Stable Nuclear Burning

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high- inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi- periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  15. Intracompartmental Sepsis With Burn: A Case Report.

    PubMed

    Chou, Chieh; Lee, Su-Shin; Wang, Hui-Min; Hsieh, Tung-Ying; Lee, Hsiao-Chen; Chang, Chih-Hau; Lai, Chung-Sheng; Chang, Kao-Ping; Lin, Sin-Daw; Huang, Shu-Hung

    2016-03-01

    Intracompartmental sepsis (IS) is a rare complication in patients with burns. Intracompartmental sepsis presents in patients with inadequate perfusion of intracompartmental tissues and subsequent ischemic necrosis and infection. Contributing factors include high-volume resuscitation, delayed escharotomies, and previous bacteremia. We describe a case of massive burns from a gas explosion and the subsequent development of IS in our intensive care burn unit. The patient presented with a 75% total body surface area burn on admission, with 39% superficial, deep partial-thickness and 26% full-thickness burns. Intracompartmental sepsis was diagnosed 45 days after admission. Anterior compartment muscles, including the tibialis anterior, extensor hallucis longus, and extensor digitorum longus, were necrotic with relatively fair nerve and vascular structures. Intracompartmental sepsis is an overwhelming, infectious complication that appears late and can occur easily in patients with major burns. Early diagnosis and management are a must for improving outcomes. PMID:26808770

  16. Training and burn care in rural India

    PubMed Central

    Chamania, Shobha

    2010-01-01

    Burn care is a huge challenge in India, having the highest female mortality globally due to flame burns. Burns can happen anywhere, but are more common in the rural region, affecting the poor. Most common cause is flame burns, the culprit being kerosene and flammable flowing garments worn by the women. The infrastructure of healthcare network is good but there is a severe resource crunch. In order to bring a positive change, there will have to be more trained personnel willing to work in the rural areas. Strategies for prevention and training of burn team are discussed along with suggestions on making the career package attractive and satisfying. This will positively translate into improved outcomes in the burns managed in the rural region and quick transfer to appropriate facility for those requiring specialised attention. PMID:21321647

  17. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-06-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC) rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1), tropical forest (n = 19, FC = 126), temperate forest (n = 11, FC = 93), boreal forest (n = 16, FC = 39), pasture (n = 6, FC = 28), crop residue (n = 4, FC = 6.5), chaparral (n = 2, FC = 32), tropical peatland (n = 4, FC = 314), boreal peatland (n = 2, FC = 42), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  18. Coupling Satellite and Ground-Based Snow Data With Snow Cover Model for Estimating the Area-Averaged Snow Water Equivalent Over Large River Basins

    NASA Astrophysics Data System (ADS)

    Kuchment, L.; Romanov, P.; Gelfan, A.; Demidov, V.; Tarpley, D.

    2007-12-01

    Improvement of long-range forecasts of snowmelt flood volume is one of key hydrological problems in Northern Russia. Accurate quantitative characterization of snow cover properties required in snowmelt runoff models is challenging in this region since the existing network of hydrometeorological stations is sparse. Application of satellite data for snow monitoring is hampered by large areas of coniferous forests masking the snow pack and by persistent cloudiness in the fall and winter season. In order to enhance quantitative characterization of snowpack properties we have developed a new technique where satellite data are coupled with a snow cover model. The physically-based snowpack model uses interpolated data from ground-based meteorological stations and incorporates a number of products derived from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites. The input satellite data include albedo, land surface temperature, leaf area index and the canopy coverage. The outputs of the model are the snow depth, snow density, ice and liquid water content of snow and the snow grain size. The model was tested over a region with a size of ~240 000 km2 (56°N to 60°N, and 48°E to 54°E) located within the NEESPI area. This region includes the Vyatka River basin with the catchment area of about 120 000 km2. Snow pack simulations were conducted for 1 x 1 km grid cells for the spring season of 2002 and 2003. Spatial correlation between the modeled snow extent and the MODIS-derived snow cover distribution over the study area ranged from 0.9-1.0 in the beginning and in the end of the melt season to 0.5-0.6 during the period of intensive snow melt. The analysis of MODIS snow retrievals over the study area demonstrated their good agreement with surface observations. Satellite information on snow cover was not used in the current version of the model, however high accuracy of satellite snow retrievals makes their incorporation in the next version of the model very attractive. In the presentation we will discuss ways to incorporate satellite snow retrievals in the snowpack model and advantages of the use of improved estimates of SWE in runoff hydrograph calculations.

  19. Regional-scale correlation between CO2 fire emissions, burned areas, and mid-tropospheric CO2 diurnal variations retrieved from MetOp-A/ATOVS observations (2007-2011) over southern Africa.

    NASA Astrophysics Data System (ADS)

    Meilhac, Nicolas; Crevoisier, Cyril; Chédin, Alain; Scott, Noëlle A.; Armante, Raymond; Crépeau, Laurent

    2013-04-01

    Inferred from the Advanced TIROS Operational Vertical Sounder (ATOVS) flying onboard the MetOp-A platform, mid-tropospheric CO2 columns are retrieved from evening (21:30 LST) and morning (09:30 LST) observations over the tropic for the period July 2007 - December 2011, using a non linear inference scheme based on neural networks initially designed for TOVS instruments onboard the NOAA platforms (Chédin et al. 2003), We find that the difference between evening and morning CO2 columns, hereafter referred to as Daily Tropospheric Excess (DTE), increases up to several ppm over regions affected by biomass fires, confirming the results obtained from TOVS observations onboard the NOAA10 platform over 1987-1991. The physical mechanism linking DTE with fire emissions comes from the diurnal cycle of fire emissions associated with enhanced convection: hot convective fire plumes injects CO2 into the troposphere during the afternoon peak of fire activity, which is seen by the satellite evening passing; it is then diluted by large scale atmospheric transport, before the next satellite morning passing. The CO2 DTE shows monthly, seasonal and annual spatial patterns similar to fire products, such as CO2 emissions from the Global Fire Emission Database (GFEDv3) and burned areas from the MODIS instrument for ten regions of southern Africa with contrasted vegetation cover. Across these regions, a high positive correlation is found between DTE and CO2 emission (R2 ~ 0.8). There is also a good agreement in terms of seasonal variability north of 14S. South of 14S, the seasonal increase of the CO2 difference during the early fire season starts earlier and rises up more rapidly than in either GFEDv3 or MODIS burned areas. This misfit could come from limitations in current burned area detection algorithms owing in particular to their difficulty in detecting small fires associated with small burnt scars.

  20. Sprayed cultured epithelial autografts for deep dermal burns of the face and neck.

    PubMed

    Hartmann, Bernd; Ekkernkamp, Aline; Johnen, Christa; Gerlach, Jrg C; Belfekroun, Claudia; Kntscher, Markus V

    2007-01-01

    The objective of this study was the assessment of clinical results after sprayed application of cultured epithelial autograft (CEA) suspensions onto deep dermal burn wounds of the face and neck. Nineteen patients with deep dermal burns of the face and neck were included into a prospective study. The average total body surface area burn was 15.1% (7%-46%; median: 13%). The average Abbreviated Burn Severity Index (ABSI) was 6.7 points (4-12 points; median: 7 points). The application of sprayed CEA suspension was performed onto an average body surface area of 2% (0.5-5%; median: 2%). Thirteen patients were recruited for clinical follow-up after an average of 10 months (3-18 months). The average Vancouver Scar Scale score at follow-up was 2.4 +/- 2.2 points (range, 0-8 points), and the average Donnersmarck and Hrbrand score was 9.3 +/- 6.8 points (range, 0-22). Four patients had less than 9 months' follow-up. Excluding these patients from the analysis resulted in an average Vancouver Scar Scale score of 1.3 +/- 0.9 points (range, 0-3 points) and an average Donnersmarck and Hrbrand score of 8.0 +/- 7.4 points (range 0-22) for the remaining 9 patients.Our data show that enzymatic and careful surgical debridement and consecutive application of CEA suspensions using a spray technique results in excellent cosmetic outcomes compared with any other method. PMID:17197946

  1. The epidemiology of fatal burn injuries.

    PubMed

    Parks, J G; Noguchi, T T; Klatt, E C

    1989-03-01

    The paper retrospectively reviews 80 burn fatalities from accidents or attempted suicides with patients admitted to the LAC-USC Medical Center from 1983 to 1987 to determine demographic factors, etiology of the burn injury, and existence of predisposing risk factors. The average age of fatal burn victims was 44 years; 74% were males, 39% were Caucasian, 35% were black, 21% were Hispanic, and 5% were of Asian descent. Blacks and Caucasians were overrepresented and Hispanics underrepresented in relation to all autopsy cases. Major etiologic factors included suicide, falling asleep while smoking, accidents while working with volatile solvents, housefires, scalds, cooking accidents, and accidents involving motor vehicles. Gasoline was the commonest solvent involved with burn fatalities. Significant risk factors for burn fatality were substance abuse (25% of cases) and impaired mental function (19% of cases). PMID:2785156

  2. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea.

    PubMed

    Ryu, Seong Y; Kim, Jeong E; Zhuanshi, H; Kim, Young J; Kang, Gong U

    2004-09-01

    The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate. PMID:15468665

  3. Trends of some high quantiles of average and extremes inter-arrival times and rainfall depths at daily scale for an Italian Sub-Alpine area

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Agnese, Carmelo; Baiamonte, Giorgio; Canone, Davide; Previati, Maurizio; Cat Berro, Daniele; Mercalli, Luca

    2015-04-01

    Modeling of rainfall statistical structure represents an important research area in hydrology, meteorology, atmospheric physics and climatology, because of the several theoretical and practical implications. The statistical inference of the alternation of wet periods (WP) and dry periods (DP) in daily rainfall records can be achieved through the modelling of inter-arrival time-series (IT), defined as the succession of times elapsed from a rainy day and the one immediately preceding it. It has been shown previously that the statistical structure of IT can be well described by the 3-parameter Lerch distribution (Lch). In this work, Lch was successfully applied to IT data belonging to a sub-alpine area (Piemonte and Valle d'Aosta, NW Italy); furthermore the same statistical procedure was applied to daily rainfall records to ITs associated. The analysis has been carried out for 26 daily rainfall long-series (≈ 90 yr of observations). The main objective of this work was to detect temporal trends of some features describing the statistical structure of both inter-arrival time-series (IT) and associated rainfall depth (H). Each time-series was divided on subsets of five years long and for each of them the estimation of the Lch parameter was performed, so to extend the trend analysis to some high quantiles.

  4. Treating and Preventing Burns

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...

  5. Aeromonas infection in critically ill burn patients.

    PubMed

    Chim, Harvey; Song, Colin

    2007-09-01

    Aeromonas infection in burn patients is extremely uncommon. Here we report on four cases of Aeromonas infection in burn patients admitted to the BICU at the Singapore General Hospital burn unit between June 2001 and May 2006. Two patients had positive blood cultures, and the other two had tissue samples with growth. There was no history of exposure to soil or fresh water in all patients. The average age of patients was 35 years (range 24-41) and the average % TBSA was 48% (range 35-80). Cultures were isolated between days 2 and 4 post burn. There was one mortality in the series. Increasing antibiotic resistance was noted among isolates of Aeromonas. Continued vigilance is essential to detect infection early, even in the absence of a suggestive history, with adequate debridement and appropriate antibiotic therapy. PMID:17521817

  6. Pattern of childhood burn injuries and their management outcome at Bugando Medical Centre in Northwestern Tanzania

    PubMed Central

    2011-01-01

    Background Burn injuries constitute a major public health problem and are the leading cause of childhood morbidity and mortality worldwide. There is paucity of published data on childhood burn injuries in Tanzania, particularly the study area. This study was conducted to describe the pattern of childhood burn injuries in our local setting and to evaluate their management outcome. Methods A cross sectional study was conducted at Bugando Medical Centre (in Northwestern Tanzania) over a 3-year period from January 2008 to December 2010. Data was collected using a pre-tested coded questionnaire and statistical analyses performed using SPSS software version 15.0. Results A total of 342 burned children were studied. Males were mainly affected. Children aged = 2 were the majority accounting for 45.9% of cases. Intentional burn injuries due to child abuse were reported in 2.9% of cases. Scald was the most common type of burns (56.1%). The trunk was the most commonly involved body region (57.3%). Majority of patients (48.0%) sustained superficial burns. Eight (2.3%) patients were HIV positive. Most patients (89.8%) presented to the hospital later than 24 h. The rate of burn wound infection on admission and on 10th day were 32.4% and 39.8% respectively.Staphylococcus aureus were more common on admission wound swabs, with Pseudomonas aeruginosa becoming more evident after 10th day. MRSA was detected in 19.2% of Staphylococcus aureus. Conservative treatment was performed in 87.1% of cases. Surgical treatment mainly skin grafting (65.9%) was performed in 44 (12.9%) of patients. The overall average of the length of hospital stay (LOS) was 22.12 ± 16.62 days. Mortality rate was 11.7%. Using multivariate logistic regression analysis; age of the patient, type of burn, delayed presentation, clothing ignition, %TBSA and severity of burn were found to be significantly associated with LOS (P < 0.001), whereas mortality rate was found to be independently and significantly related to the age of the patient, type of burn, HIV positive with stigmata of AIDS, CD4 count, inhalation injury, %TBSA and severity of burn (P < 0.001). Conclusion Childhood burn injuries still remain a menace in our environment with virtually unacceptable high morbidity and mortality. There is need for critical appraisal of the preventive measures and management principles currently being practiced. PMID:22070934

  7. Preventing postoperative burn wound aspergillosis.

    PubMed

    Levenson, C; Wohlford, P; Djou, J; Evans, S; Zawacki, B

    1991-01-01

    Between January 1, 1984, and December 31, 1988, 35 patients at the Los Angeles County + University of Southern California Burn Center had postoperative cultures from their burn wounds that grew Aspergillus species; clinical burn-wound aspergillosis occurred in 66% of these cases and death occurred in 53% of these cases. Beginning in November 1984, several modifications in the air-conditioning system and topical antimicrobial wound therapy were undertaken. Cleaning and 8Cu-quinolinolate treatment of air ducts every 2 months did not reliably clear Aspergillus species from the air in patient care areas. Several changes in topical therapeutic regimen failed to prevent both burn wound culture positivity and clinical aspergillosis. Finally, installation of high-efficiency particulate air filters, installation of new air ducts, and inception of wound irrigation with a solution of mafenide hydrochloride plus nystatin both during and after operation were associated with a reduction in wound culture positivity rate to one occurrence in 1988 (Poisson probability less than 0.01 versus the rate in 1984) and no occurrences during the 18 months after the false ceiling of the burn ward was sealed. PMID:2050719

  8. The endocrine response after burns.

    PubMed

    Matsui, M; Kudo, T; Kudo, M; Ishihara, H; Matsuki, A

    1991-01-01

    To identify the dynamic response of hormones after burns with special reference to ANP during shock and the subsequent period, plasma concentrations of atrial natriuretic peptide (ANP), aldosterone, cortisol, arginine vasopressin (AVP), corticotropin, (ACTH), plasma renin activities (PRA), norepinephrine (NE) and epinephrine (E) were measured from the day of ICU admission and for 7 days following burn injury. Plasma AVP levels were highest on ICU admission and correlated with size of the burn injury ranged from 20-60 percent of the total body surface area. Between the 5th and 6th postburn day plasma ANP levels elevated while plasma AVP levels returned to normal. Urine sodium concentrations decreased from the 3rd day. Plasma aldosterone levels declined after the 2nd day. Mean epinephrine (E) and norepinephrine (NE) levels elevated on admission and remained elevated throughout the study. These results suggest that ANP plays important role for restoring fluid homeostasis by improving edema in burned tissues during refilling periods in burns. PMID:1659790

  9. The rapidly increasing trend of cannabis use in burn injury.

    PubMed

    Jehle, Charles Christopher; Nazir, Niaman; Bhavsar, Dhaval

    2015-01-01

    The use of cannabis is currently increasing according to U.S. Department of Health and Human Services (HHS). Surprisingly, cannabis use among burn patients is poorly reported in literature. In this study, rates of cannabis use in burn patients are compared with general population. Data from the National Burn Repository (NBR) were used to investigate incidence, demographics, and outcomes in relation to use of cannabis as evidenced by urine drug screen (UDS). Thousands of patients from the NBR from 2002 to 2011 were included in this retrospective study. Inclusion criteria were patients older than 12 years of age who received a drug screen. Data points analyzed were patients' age, sex, UDS status, mechanism of burn injury, total body surface area, length of stay, ICU days, and insurance characteristics. Incidence of cannabis use in burn patients from the NBR was compared against national general population rates (gathered by Health and Human Services) using chi-square tests. Additionally, the burn patient population was analyzed using bivariate analysis and t-tests to find differences in the characteristics of these patients as well as differences in outcomes. Seventeen thousand eighty out of over 112,000 patients from NBR had information available for UDS. The incidence of cannabis use is increasing among the general population, but the rate is increasing more quickly among patients in the burn patient population (P = .0022). In 2002, 6.0% of patients in burn units had cannabis+ UDS, which was comparable with national incidence of 6.2%. By 2011, 27.0% of burn patients tested cannabis+ while national incidence of cannabis use was 7.0%. Patients who test cannabis+ are generally men (80.1%, P < .0001) and are younger on average (35 years old vs 42, P < .0001). The most common mechanisms of injury among patients who test cannabis+ or cannabis- are similar. Flame injury makes up >60% of injuries, followed by scalds that are >15%. In comparing cannabis+/- patients, cannabis+ patients are more likely to be uninsured (25.2% vs 17.26%, P < .0001). Finally, patients who test cannabis+ have larger burns (TBSA% of 12.94 vs 10.98, P < .0001), have a longer length of stay (13.31 days vs 12.6, P = .16), spend more days in the ICU (7.84 vs 6.39, P = .0006), and have more operations (2.78 vs 2.05, P < .0001). The rate patients testing positive for cannabis in burn units is growing quickly. These patients are younger and are less likely to be insured. These patients also have larger burns, spend more time in ICUs, and have a greater number of operations. The increasing use of cannabis, as expected from legalization of cannabis in multiple states, among burn patient population may lead to increased burden on already tenuous health care resources. PMID:25412052

  10. [Multiple trauma and burns].

    PubMed

    Carsin, H; Dutertre, G; Le Bever, H; Ainaud, P; Le Rveill, R; Rives, J M

    1995-01-01

    In peace time, burn injury combined with traumatic, chemical or radioactive casualties is rarely encountered and often unrecognized; during disasters, burn injury is unlikely the only trauma. The authors try to bring out the main pathophysiological, diagnostic and therapeutic characteristics of changes induced by combined lesions on burn injury and vice-versa. PMID:7671090

  11. Learn Not To Burn.

    ERIC Educational Resources Information Center

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  12. Pediatric burns in Mosul: an epidemiological study

    PubMed Central

    Al-Zacko, S.M.; Zubeer, H.G.; Mohammad, A.S.

    2014-01-01

    Summary A cross-sectional study was conducted to determine the characteristics and case fatality rate of pediatric burns in Mosul, Iraq. The study group was burn patients aged 14 years and under who were admitted to the Burns Unit in Al-Jamhoori Teaching Hospital from the 1st of March 2011 to the 1st of March 2012. Of the 459 emergency burn admissions, 209 (45.53%) were pediatric patients up to 14 years of age, with a mean age of 4.73±3.61 years. Scald was the most common type of burn and occurred mainly in domestic settings. The mean total body surface area (TBSA) burned was 19.73±17.15%. Thirty-five patients died during the study period, giving a case fatality rate of 16.75%. The maximum number of deaths occurred in the 2-4 years age group. The case fatality rate was high in patients having more than 40% TBSA involvement. Flame burns were significantly more fatal than scalds, with a fatality rate of 35.35% and 12.05% respectively; (p=0.0001). In conclusion, given that most pediatric burn accidents occur at home, burn prevention should be focused on improving living conditions and on providing an educational program for parents. PMID:26170779

  13. To burn or not to burn

    SciTech Connect

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose.

  14. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.

    PubMed

    Peng, Xiang; Mielke, Michael; Booth, Timothy

    2011-01-17

    We demonstrate high average power, high energy 1.55 μm ultra-short pulse (<1 ps) laser delivery using helium-filled and argon-filled large mode area hollow core photonic band-gap fibers and compare relevant performance parameters. The ultra-short pulse laser beam-with pulse energy higher than 7 μJ and pulse train average power larger than 0.7 W-is output from a 2 m long hollow core fiber with diffraction limited beam quality. We introduce a pulse tuning mechanism of argon-filled hollow core photonic band-gap fiber. We assess the damage threshold of the hollow core photonic band-gap fiber and propose methods to further increase pulse energy and average power handling. PMID:21263632

  15. The Burn Wound Exudate – an under-utilized resource

    PubMed Central

    Widgerow, Alan D; King, Kassandra; Tussardi, Ilaria Tocco; Banyard, Derek A.; Chiang, Ryan; Awad, Antony; Afzel, Hassan; Bhatnager, Shweta; Melkumyan, Satenik; Wirth, Garrett; Evans, Gregory R.D

    2014-01-01

    Introduction The burn wound exudate represents the burn tissue microenvironment. Extracting information from the exudate relating to cellular components, signaling mediators and protein content can provide much needed data relating to the local tissue damage, depth of the wound and probable systemic complications. This review examines the scientific data extracted from burn wound exudates over the years and proposes new investigations that will provide useful information from this underutilized resource. Method A literature review was conducted using the electronic database PubMed to search for literature pertaining to burn wound or blister fluid analysis. Key words included burn exudate, blister fluid, wound exudate, cytokine burn fluid, subeschar fluid, cytokine burns, serum cytokines. 32 relevant article were examined and 29 selected as relevant to the review. 3 papers were discarded due to questionable methodology or conclusions. The reports were assessed for their affect on management decisions and diagnostics. Furthermore, traditional blood level analysis of these mediators was made to compare the accuracy of blood versus exudate in burn wound management. Extrapolations are made for new possibilities of burn wound exudate analysis. Results Studies pertaining to burn wound exudate, subeschar fluid and blister fluid analyses may have contributed to burn wound management decisions particularly related to escharectomies and early burn wound excision. In addition, information from these studies have the potential to impact on areas such as healing, scarring, burn wound conversion and burn wound depth analysis. Conclusion Burn wound exudate analysis has proven useful in burn wound management decisions. It appears to offer a far more accurate reflection of the burn wound pathophysiology than the traditional blood/serum investigations undertaken in the past. New approaches to diagnostics and treatment efficacy assessment are possible utilizing data from this fluid. Burn wound exudate is a useful, currently under-utilized resource that is likely to take a more prominent role in burn wound management. PMID:24986597

  16. Chemical burns from assault: a review of seven cases seen in a Nigerian tertiary institution

    PubMed Central

    Tahir, C.; Ibrahim, B.M.; Terna-Yawe, E.H.

    2012-01-01

    Summary Chemical burns represent a major challenge for reconstructive surgeons. They are caused by exposure to acids, alkalis or other corrosive substances which result in various degrees of injury. This report highlights the challenges faced in managing such patients in a Nigerian teaching hospital. The medical records of seven patients (four females and three males) treated for chemical burns injury from January 2001 to December 2010 were retrospectively reviewed. All patients were younger than 30, with a mean age of 23.3. Most of them (85.7%) had sustained full thickness burns ranging from 8% to 33% of their body surface area. All cases were result of assaults. The male to female ratio was 1:1.3, and the average duration of hospital stay was 7.5 months. The face was affected in all patients. Patients presented with multiple deformities, like ectropion of eyelids, keratopathies, blindness, nasal deformities, microstomia, loss or deformities of the pinna, mentosternal contractures, and severe scarring of the face. Twenty-nine surgical procedures were performed, which included nasal and lip reconstruction, ectropion release, commissuroplasty, contracture release, and wound resurfacing. Management of chemical burns, especially in a developing country lacking specialised burn centres with appropriate facilities, is challenging. Prevention through public awareness campaigns, legislation for control of corrosive substances, and severe punishment for perpetrators of assaults using these substances will go a long way in reducing the incidence of chemical burns. PMID:23467188

  17. Topical Antimicrobials for Burn Wound Infections

    PubMed Central

    Dai, Tianhong; Huang, Ying-Ying; Sharma, Sulbha K.; Hashmi, Javad T.; Kurup, Divya B.; Hamblin, Michael R.

    2010-01-01

    Throughout most of history, serious burns occupying a large percentage of body surface area were an almost certain death sentence because of subsequent infection. A number of factors such as disruption of the skin barrier, ready availability of bacterial nutrients in the burn milieu, destruction of the vascular supply to the burned skin, and systemic disturbances lead to immunosuppression combined together to make burns particularly susceptible to infection. In the 20th century the introduction of antibiotic and antifungal drugs, the use of topical antimicrobials that could be applied to burns, and widespread adoption of early excision and grafting all helped to dramatically increase survival. However the relentless increase in microbial resistance to antibiotics and other antimicrobials has led to a renewed search for alternative approaches to prevent and combat burn infections. This review will cover patented strategies that have been issued or filed with regard to new topical agents, preparations, and methods of combating burn infections. Animal models that are used in preclinical studies are discussed. Various silver preparations (nanocrystalline and slow release) are the mainstay of many approaches but antimicrobial peptides, topical photodynamic therapy, chitosan preparations, new iodine delivery formulations, phage therapy and natural products such as honey and essential oils have all been tested. This active area of research will continue to provide new topical antimicrobials for burns that will battle against growing multi-drug resistance. PMID:20429870

  18. Shivlilik burns: injuries resulting from traditional celebrations

    PubMed Central

    Gündüz, Metin; Çiftçi, İlhan; Sekmenli, Tamer

    2015-01-01

    Introduction: In Konya, Turkey, the community celebrates the traditional ceremony of Shivlilik, which occurs on the first day of the seventh month in the lunar-based Hijri calendar. In the evening, people light bonfires of tires in the streets, and children and young people attempt to jump over the flames. Flame burns regularly occur due to falling. Attention should be given to preventing injuries such as these that are caused by social and regional customs. Methods: This retrospective study was carried out using data from the Konya Education and Research Hospital Burn Unit. Patients admitted to our hospital between June, 2009, and May, 2012, was evaluated. Results: Eleven patients were admitted to hospital with flame burns caused by jumping over fires on the days when the traditional Shivlilik ceremony was celebrated. The clinical data evaluated included the patient’s age and sex, the depth of the burn injury, the total burned surface area (TBSA), and the distribution of the burn areas. Conclusions: Serious flame burns occur because of the traditional Shivlilik ceremony. We must promote some changes in this ceremony in order to prevent these burns. PMID:26550532

  19. Threshold age and burn size associated with poor outcomes in the elderly after burn injury.

    PubMed

    Jeschke, Marc G; Pinto, Ruxandra; Costford, Sheila R; Amini-Nik, Saeid

    2016-03-01

    Elderly burn care represents a vast challenge. The elderly are one of the most susceptible populations to burn injuries, but also one of the fastest growing demographics, indicating a substantial increase in patient numbers in the near future. Despite the need and importance of elderly burn care, survival of elderly burn patients is poor. Additionally, little is known about the responses of elderly patients after burn. One central question that has not been answered is what age defines an elderly patient. The current study was conducted to determine whether there is a cut-off age for elderly burn patients that is correlated with an increased risk for mortality and to determine the burn size in modern burn care that is associated with increased mortality. To answer these questions, we applied appropriate statistical analyses to the Ross Tilley Burn Centre and the Inflammatory and Host Response to Injury databases. We could not find a clear cut-off age that differentiates or predicts between survival and death. Risk of death increased linearly with increasing age. Additionally, we found that the LD50 decreases from 45% total body surface area (TBSA) to 25% TBSA from the age of 55 years to the age of 70 years, indicating that even small burns lead to poor outcome in the elderly. We therefore concluded that age is not an ideal to predictor of burn outcome, but we strongly suggest that burn care providers be aware that if an elderly patient sustains even a 25% TBSA burn, the risk of mortality is 50% despite the implementation of modern protocolized burn care. PMID:26803373

  20. Spatial estimation of PM2.5 emissions from straw open burning in Tianjin from 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Chen, Guanyi; Guan, Yanan; Tong, Ling; Yan, Beibei; Hou, Li'an

    2015-12-01

    Straw open burning in suburban areas contributes to an important proportion of air pollution threatening air quality of neighbouring highways and airports. This paper presents the characteristics of straw open burning-derived air pollution to understand its impact mechanism and take effective control measurements. In this study, PM2.5 emissions inventory from straw open burning was established at a high spatial resolution of 0.1° × 0.1° in Tianjin using geographic information systems (GIS) for the period of 2001-2012. PM2.5 emissions increased by 209.15% in the past nine years at an annual average rate of 23.24% from 2.95 Gg in 2002 to 6.17 Gg in 2010. WuQing District covering 13.17% of Tianjin land contributed to PM2.5 emission of 28.21% of total PM2.5 emissions from straw open burning.

  1. Facial Burns - Our Experience

    PubMed Central

    Zatriqi, Violeta; Arifi, Hysni; Zatriqi, Skender; Duci, Shkelzen; Rrecaj, Sh.; Martinaj, M.

    2013-01-01

    Facial burns are generally considered severe. This is due to the possibility of respiratory complications. First responders check the nostrils for singed hairs. In severe cases there may be soot around the nose and mouth and coughing may produce phlegm that includes ash. Facial and inhalational burns compromise airways. They pose difficulties in pre-hospital resuscitation and are challenge to clinicians managing surviving burn victims in the intensive care setting. Management problems – resuscitation, airway maintenance and clinical treatment of facial injuries are compounded if the victim is child. Inhalational burns reduce survivability, certainly in adult victim. In our retrospective study we found that facial burns dominated in male gender, liquids and scalds are the most common causes of facial burns in children whereas the flame and electricity were the most common causes of facial burns in adults. We came to the conclusion in our study that surgical treatment minimizes complications and duration of recovery. PMID:23687458

  2. High burn rate solid composite propellants

    NASA Astrophysics Data System (ADS)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000 psia. In addition, DCPD propellant was shown to burn at twice the rate of HTPB propellant, most likely a result of its lower decomposition temperature. A high burn rate DCPD propellant was developed, but due to poor wetting, the resulting propellant was brittle and fragmented during strand burn testing. Lastly, GAP-plasticized DCPD gumstocks were not able to be produced most likely due to an interaction between GAP and the cure catalyst for DCPD.

  3. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    NASA Astrophysics Data System (ADS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open vegetation burning is the largest contributor to the total amount of emissions, followed by biofuel and human waste burnings. Spatial distribution of open vegetation burning showed extensive emissions in Southern and Central Africa, Amazon of South America, and Southeast Asia with high probability of fire occurrences. Human waste burning presented high emissions in India, Central Africa, and Mexico. Biofuel burning emissions also recorded that large amounts were released from India, Central Africa and Mexico. Our estimates for all trace gases and aerosols emissions from open biomass burning combined with estimates of those from biofuel burning are in the range of the estimates constrained by chemical transport models andand other bottom-up methods. Our high resolution CO2 emission estimates will contribute to regional top-down CO2 flux estimates using data from current satellites such as GOSAT and OCO-2 and future satellites such as TanSat, GOSAT-2, and Carbonsat.

  4. A noninvasive computational method for fluid resuscitation monitoring in pediatric burns: a preliminary report.

    PubMed

    Stewart, Camille L; Mulligan, Jane; Grudic, Greg Z; Pyle, Laura; Moulton, Steven L

    2015-01-01

    The fluid resuscitation needs of children with small area burns are difficult to predict. The authors hypothesized that a novel computational algorithm called the compensatory reserve index (CRI), calculated from the photoplethysmogram waveform, would correlate with percent total body surface area (%TBSA) and fluid administration in children presenting with ?20% TBSA burns. The authors recorded photoplethysmogram waveforms from burn-injured children that were later processed by the CRI algorithm. A CRI of 1 represents supine normovolemia; a CRI of 0 represents the point at which a subject is predicted to experience hemodynamic decompensation. CRI values from the first 10 minutes of monitoring were compared to clinical data. Waveform data were available for 27 children with small to moderate sized burns (4-20 %TBSA). The average age was 6.3 1.1 years, the average %TBSA was 10.4 0.8%, and the average CRI was 0.36 0.03. CRI inversely correlated with the %TBSA (P < .001). Twenty children were transferred with an average reported %TBSA of 16.5 1.4%, which was significantly higher than the actual %TBSA (P < .001). CRI correlated better with actual %TBSA compared to reported %TBSA (P = .02). CRI correlated with the amount of fluid resuscitation given at the time of CRI measurement (P = .02) and was inversely related to total fluids given per 24 hours for children with adequate urine output (>0.5 ml/kg/hr) (P < .001). The CRI is decreased in children with small to moderate size burns, and correlates with %TBSA and fluid administration. This suggests that the CRI may be useful for fluid resuscitation guidance, warranting further study. PMID:25383980

  5. [Management of severe burns during the 1st 72 hours].

    PubMed

    Gueugniaud, P Y

    1997-01-01

    Early and efficient management of severely burned patients facilitates outcome improvement. Pre-hospital care includes fluid loading with 2 mL.kg-1/% burn over the first six hours, sedation and analgesia, prevention of hypothermia and ventilatory support for either critically burned patients or facial, cervical or pulmonary burn injury. The transient stay in a general hospital before transfer to a burn centre allows extension of initial care, the critical investigation for associated injuries (intoxication, multiple trauma) and to perform initial local treatment with sterile coverage or vaseline gauze after a revised assessment of the burned skin area, and possibly escharotomies. The main aim of care in the burn centre is to control hypovolaemia and to obtain maximal tissue perfusion and oxygen delivery to burned tissues, as well as to healthy organs. To manage the burn shock (initially hypovolemic and later on hyperdynamic) catecholamines are often indicated when appropriate fluid loading remains insufficient. Mechanical ventilation is indicated in case of either a deep extensive burn over 60% of total body surface area, or facial and cervical burns or severe pulmonary burn injury from smoke inhalation, carbon monoxide intoxication, tracheobronchial thermal injury and blast injury. Because of the severity of burn-related pain, and the stimulus linked to intensive care, continuous sedation is usually required. Early surgical treatment such as escharotomies, excision and grafting, which cause significant pain as well as blood loss, and hydrotherapy, often require general anaesthesia. Burn injury can modify the volume of distribution and the pharmacokinetics of anaesthetic agents. Finally, chemical or electrical burn, radiation, associated CO intoxication or multiple trauma, as well as burn injury in infants, raise specific problems. With improvement in early intensive care, the survival rate of the most severely burned patients is obviously improving. New techniques in skin substitution will probably further improve the final outcome. PMID:9750581

  6. Project Burn Prevention: outcome and implications.

    PubMed Central

    McLoughlin, E; Vince, C J; Lee, A M; Crawford, J D

    1982-01-01

    Project Burn Prevention was designed and implemented to determine the ability of a public education program to increase awareness about burn hazards and reduce the incidence and severity of burn injuries. Media messages were transmitted to residents of a large metropolitan area; separate school and community interventions were implemented in two demographically similar communities within the Standard Metropolitan Statistical Area (SMSA). A second metropolitan area and two of its communities served as control sites. Messages for specific, high-risk age groups emphasized flame burns because of their severity and scalds because of their frequency. Knowledge gains were demonstrable only as a result of the school program. Neither the school program nor the media campaign reduced burn incidence or severity; the community intervention may have brought about a moderate, temporary reduction in injuries. Multiplicity of messages, brevity of the campaign, and separation of the interventions are among possible reasons for the program's failure to significantly reduce burn injuries. Education for personal responsibility is not sufficient. Product modification and environmental redesign must be instituted through education and legislation for successful control of burn injuries. PMID:7058963

  7. Delayed primary closure of the burn wounds.

    PubMed

    Prasanna, Mita; Mishra, Prabodh; Thomas, C

    2004-03-01

    'Early closure' of burn wounds by excising the burned tissues and promptly covering it with skin-grafts or its substitutes within first 'five' post-burns day is a standard technique of burn-wound-management in the burn-units of the "developed" world. But lack of education in general, and health-education in particular amongst the common people in the "developing" countries could hinder acceptance of this procedure. Lack of well-trained and motivated burns-surgeons could worsen the situation. The Sultanate of Oman is one of the developing gulf-countries in the middle-east, where at Khoula hospital, the National Burns-Center in the capital city of Muscat, 'early' surgery was introduced in November 1997 to soon become a routine protocol for burn-wound-management. But delay in getting consent for surgery from unwilling patients or in transferring them from the peripheral hospitals were often the reasons for delaying the burn-wound excision and closure 'beyond 6 days to 11th or 12th' day post-burn. Hence, instead of the term "early", the authors prefer to call it "delayed primary" burn-wound closure because, it still offers "primary intention healing" of the burn-wounds. The aim of this article is to analyze retrospectively the results of the "delayed primary" closure of the burn-wounds done in the Khoula Hospital Burns-Unit of the Sultanate of Oman. During a period of 50 months from November 1997 to December 2001, carefully selected 143 patients out of a total of 592 admissions in burns-unit were subjected to burn-wound excision and auto-skin-grafting (STSG), of whom about 87% patients had "delayed primary" and 13% had "early" surgery. There was no mortality or post-operative morbidity in these operated patients. However, due to the non-availability of skin substitutes the excision and auto-grafting could not be done in extensive burns with inadequate skin-donor-area. The maximum percentage of burns treated by delayed primary surgery (DPS) was 50% in children and 55% in adults. Follow-up results were good functionally as well as cosmetically. The authors conclude that "delayed primary" is the second best alternative to the "early" burn-wound excision and closure with similar advantages of reducing risk of septicemia, mortality, and morbidity, hospital stay and cost of treatment. It should be preferred over "secondary" skin-grafting of granulating wounds. Thus, in the developing countries, the indications of delayed primary burn surgery could be (1) patients unstable or unfit for surgery during the first post-burn week; (2) delay in transferring in the patients; (3) delay in getting patient's consent for surgery; (4) very major burns without availability of skin substitutes; and (5) lack of operating time in a busy burns-unit. The contraindications for delayed primary surgery are any sign of invasive sepsis or organ failure. PMID:15019128

  8. Transport of Biomass Burning Emissions from Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Jaegle,Lyatt; Hobbs, Peter V.; Liang, Qing

    2004-01-01

    The transport of biomass burning emissions from southern Africa to the neighboring Atlantic and Indian Oceans during the dry season (May-October) of 2000 is characterized using ground, ozonesonde, and aircraft measurements of carbon monoxide (CO) and ozone (O3) in and around southern Africa, together with the GEOS-CHEM global model of tropospheric chemistry. The model shows a positive bias of approximately 20% for CO and a negative bias of approximately 10-25% for O3 at oceanic sites downwind of fire emissions. Near areas of active fire emissions the model shows a negative bias of approximately 60% and approximately 30% for CO and O3, respectively, likely due to the coarse spatial (2 deg. x 2.5 deg.) and temporal (monthly) resolution of the model compared to that of active fires. On average, from 1994 to 2000, approximately 60 Tg of carbon monoxide (CO) from biomass burning in southern Africa was transported eastward to the Indian Ocean across the latitude band 0 deg. -60 S during the 6 months of the dry season. Over the same time period, approximately 40 Tg of CO from southern African biomass burning was transported westward to the Atlantic Ocean over the latitudes 0 deg. -20 S during the 6-month dry season, but most of that amount was transported back eastward over higher latitudes to the south (21 deg. -60 S). Eastward transport of biomass burning emissions from southern Africa enhances CO concentrations by approximately 4- 13 ppbv per month over the southern subtropical Indian Ocean during the dry season, with peak enhancements in September. Carbon monoxide from southern African and South American biomass burning is seen in the model simulations as far away as Australia, contributing approximately 8 ppbv and approximately 12-15 ppbv CO, respectively, and thus explaining the approximately 20- 25 ppbv observed enhancement of CO over Melbourne in mid-September 2000.

  9. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City metropolitan area.

  10. Reduction of burn-induced gastric mucosal injury by an endothelin receptor antagonist in rats.

    PubMed

    Battal, N M; Hata, Y; Ito, O; Matsuda, H; Yoshida, Y; Kawazoe, T; Nagao, M

    1997-06-01

    Burn-induced stress ulcers may be a major complication in critically burned patients. The pathophysiology of gastric mucosal ulceration is relatively unknown, however reduced gastric mucosal blood flow is one contributing factor. Endothelin (ET) is a well known vasoconstrictor peptide produced by vascular endothelial cells. Endothelin has been reported to have a fundamental role in the regulation of the systemic circulation. The plasma ET level is increased by burn injury, which also causes thrombosis and vessel occlusion. Endothelin has potent ulcerogenic and vasoconstrictor actions in the stomach where it induces gastric mucosal damage and increases gastric vascular tone. In the present study, we examined the effects of a new non-selective ET receptor antagonist, TAK-044, on burn-induced gastric mucosal injury in rats. Twenty male Sprague-Dawley rats weighting an average of 400 g were burned with hot water (90 degrees C) and then divided into two equal groups. The treatment group received 1 mg/kg of TAK-044 via the dorsal vein of the penis immediately after burn trauma, while the control group received the same volume of saline. Gastric mucosal blood flow was measured with a laser Doppler flowmeter and the area of mucosal necrosis was also determined macroscopically and histologically. Inhibition of ET activity by TAK-044 after burn injury significantly improved microvascular perfusion in the gastric mucosa and prevented the progression of mucosal damage in the stomach (P < 0.05). The present study supports the role of ET in burn-induced gastric ulceration (Curling's ulcer). PMID:9248637

  11. Abundance and reproduction of songbirds in burned and unburned pine forests of the Georgia Piedmont

    USGS Publications Warehouse

    White, D.H.; Chapman, B.R.; Brunjes, J.H., IV; Raftovich, R.V., Jr.; Seginak, J.T.

    1999-01-01

    We studied the abundance and productivity of songbirds in prescribed burned and unburned mature (>60 yr) pine forests at Piedmont National Wildlife Refuge, Georgia, during 1993-1995. We estimated species abundance, richness, and evenness using data from 312 point counts in 18 burned sites and six unburned sites. We measured gross habitat features in 0.04-ha circles centered on each point count station. We calculated productivity estimates at nests of seven of the most common nesting species. Habitat components we measured in 1-, 2-, and 3-yr post-burn sites were similar, but most components differed between burned and unburned sites. Although 98 species were detected during point counts, we report only on the 46 species that nested in the area and were detected >10% of the counts in either habitat class. Twenty-one species preferred burned sites and six preferred unburned sites. Avian species richness and evenness were similar for burned and unburned sites. Burned sites were preferred for nesting over unburned sites. Only nine nests of six species were found in unburned sites. Productivity estimates were low in burned sites. One or more eggs hatched in only 59 of 187 nests monitored, and an average of only 0.82 chicks per nest were estimated to have fledged. Predation was the most common probable cause for nest failure, ranging from 45% in the Northern Cardinal (Cardinalis cardinalis) to 64% in the Summer Tanager (Piranga rubra). Because the sources of predation at the refuge are unknown, future research should address this issue.

  12. Skin resurfacing for the burned patient.

    PubMed

    Stanton, Ryan A; Billmire, David A

    2002-01-01

    It has been estimated that 2 million people per year have burns requiring medical attention in the United States. The available and expert clinicians in dedicated burn centers around the country have cared successfully for these patients and given them a second chance at a functional life. It still behooves current-day plastic surgeons to be knowledgeable and adept in their care, not only because they may be called upon at times to manage some of the smaller acute burns, but also because many of the general principles of burn reconstruction and wound management are relevant to other areas of general plastic surgery. Acute burns should be dealt with like any other major trauma with the ABCs of aggressive resuscitation and airway management. Like any other wound, debridement and nutrition are important (i.e., early escharectomy of the burn wound and enteral nutrition during the hypermetabolic state). Early coverage of the open wound is essential to limit bacterial colonization and prevent infection and to reduce fluid and electrolyte and heat loss. If autografts are not available immediately, temporary coverage with one of the above-mentioned barrier materials should be used. Still, autografts, when available, should be the burn surgeon's first choice. Donor sites may be reharvested to provide more autograft than was anticipated with large-percentage TBSA burns. Physicians should keep in mind the advantages (and disadvantages) of using the scalp and back. As far as research and technological advances in the area of plastic surgery, burn surgery may be the most progressive, with the evolution of biologic tissue-engineered skin substitutes and the research of growth factors in healing. Further improvements in tissue engineering and technology should result in even more effective skin substitutes and hence better functional and aesthetic outcomes with economic efficiency in large burns. PMID:11827368

  13. Burns: an update on current pharmacotherapy

    PubMed Central

    Rojas, Yesinia; Finnerty, Celeste C.; Radhakrishnan, Ravi S.; Herndon, David N.

    2013-01-01

    Introduction The world-wide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision, and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response, and insulin resistance. Here we review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded our understanding of the pathophysiology of severe burns. Expert opinion Existing drugs offer promising advances in the care of burn injuries. Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response. PMID:23121414

  14. Prevention-oriented epidemiology of burns in Ardabil provincial burn centre, Iran.

    PubMed

    Sadeghi Bazargani, H; Arshi, S; Ekman, R; Mohammadi, R

    2011-05-01

    In preventing burns, it is essential to know how they occur and which population groups, environments and heating appliances can be targeted for prevention work. The aim of this study was to determine the epidemiological characteristics of burns leading to hospitalisation in the northwest of Iran with a focus on the pre-event phase of injury. Between 2007 and 2008, 237 burn victims hospitalised in Ardabil provincial burn centre were enrolled into a descriptive study. A questionnaire was filled in during hospital stay for all patients, with a focus on obtaining information necessary for prevention purposes. Males constituted 56% of victims. Mean age was 22 years. The most severe burns occurred between the ages of 18 and 32 years, and were mainly flame related. Both in case of flame and non-flame burns, women suffered more severe burns and mortality than men. However, with respect to non-flame burns of which most were scalds, the majority of the severe cases involved children under the age of 5 years. More than 80% of burns occurred at home. The kitchen was the main place of injury in 47% of cases, followed by living rooms in 28%. Nearly 45% of burns were scalds and 47% were flame burns. The main container was the samovar in 37%, followed by kettles in 32% and pots in 22%. The overturning of a container was the major mechanism of contact with hot liquids in 86%. Bumping into a container was the main scenario of a scald injury, constituting nearly 70% of the cases. The difference between flame and non-flame burns in the distribution of burns in extremities was not statistically significant, but head and neck burns were 3.7 times more likely to be caused by flame. The two most important injury patterns, more common among women, were getting burned while using a camping gas stove or while refilling the chamber of kerosene-burning appliances without first extinguishing them. Domestic burns among children and young women are a priority in injury-prevention programmes. Camping gas stoves, valors (traditional dual-purpose heating and cooking appliances) and samovars can be considered as target appliances for burn-specific home-safety-promotion efforts in this area or in similar settings. PMID:21131133

  15. Burns associated with fondues.

    PubMed Central

    Laliberté, D; Beaucage, C; Watts, N

    1992-01-01

    OBJECTIVE: To describe the causes of burns associated with fondues. DESIGN: Descriptive case series. PATIENTS: All 17 patients admitted to a burn centre between Apr. 1, 1985, and Mar. 31, 1990, whose burns were associated with fondue. Eleven agreed to complete a telephone interview. RESULTS: The age of the 17 patients varied from 2 to 56 (mean 27) years. Two causes were identified: spilling of the contents of the fondue pot and explosion of the fondue fuel when added to the burner during a meal. The telephone interview revealed that eight people other than the respondents were burned during the same accidents. CONCLUSION: Although we identified only badly burned patients the problem may be more extensive. The knowledge of specific causes of burns from handling fondue equipment indicates that preventive action should be undertaken. More epidemiologic information is needed to obtain a precise estimate of the magnitude of this public health problem. PMID:1393897

  16. Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India

    NASA Astrophysics Data System (ADS)

    Saud, T.; Saxena, M.; Singh, D. P.; Saraswati; Dahiya, Manisha; Sharma, S. K.; Datta, A.; Gadi, Ranu; Mandal, T. K.

    2013-06-01

    In the present paper, we have determined emission factor of chemical composition of the emission from the burning of biomass (e.g. Dung cake, Acacia, Neem, Mulberry, Indian Rosewood, Pigeon pea etc.) commonly used as a residential fuel in the rural sector of Indo-Gangetic Plain (IGP) (Delhi, Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal), India. For comparison, we have selected only those biomass fuels, which are used in at least three of the above mentioned states. Dung cake from all the states reports highest emission of particulate matter (PM) (15.68 g kg-1), Organic Carbon (OC) (4.32 g kg-1) and Elemental Carbon (EC) (0.51 g kg-1). Among all biomass fuels studied, agricultural residue reports substantial amount of emission of Na+ (104 mg kg-1), K+ (331 mg kg-1) and Cl- (447 mg kg-1) particularly in Pigeon pea and Mustard stem. Eucalyptus (fuel wood) emits large amounts of Ca2+ (21.47 mg kg-1) and NO3- (614 mg kg-1). The emission of PM from dung cake is higher in Delhi (19.31 g kg-1) and followed by Uttar Pradesh (17.58 g kg-1) > Haryana (15.46 g kg-1) > Bihar (14.99 g kg-1) > Punjab (12.06 g kg-1) > West Bengal (5.90 g kg-1). Carbonaceous aerosols (OC and EC) and dominant Ionic species (Cl-, K+, SO42-, NO3- and PO43-) are altogether contributing 40-70% of total emissions. Characteristics and ratios of chemical species of emissions may help to develop a methodology of discriminating the sources of ambient particulate matter. Using a laboratory determined emission factor of chemical species, we have determined the emission budget over IGP, India.

  17. Outpatient burn management.

    PubMed

    Warner, Petra M; Coffee, Tammy L; Yowler, Charles J

    2014-08-01

    Most burn patients have injuries that may be treated on an outpatient basis. Newer silver-based dressings and improved medications for the treatment of pain and pruritus have led to further growth of outpatient care. The final barrier of distance from the burn center will decrease with the growth of telemedicine. It is incumbent for burn centers to develop outpatient guidelines to facilitate this growth of outpatient care. PMID:25085094

  18. On burning a lump of coal

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2016-06-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately 3.9 ± 2.5 bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless has an associated entropy/information budget, and the quantitative size of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  19. Burn Wound Infections

    PubMed Central

    Church, Deirdre; Elsayed, Sameer; Reid, Owen; Winston, Brent; Lindsay, Robert

    2006-01-01

    Burns are one of the most common and devastating forms of trauma. Patients with serious thermal injury require immediate specialized care in order to minimize morbidity and mortality. Significant thermal injuries induce a state of immunosuppression that predisposes burn patients to infectious complications. A current summary of the classifications of burn wound infections, including their diagnosis, treatment, and prevention, is given. Early excision of the eschar has substantially decreased the incidence of invasive burn wound infection and secondary sepsis, but most deaths in severely burn-injured patients are still due to burn wound sepsis or complications due to inhalation injury. Burn patients are also at risk for developing sepsis secondary to pneumonia, catheter-related infections, and suppurative thrombophlebitis. The introduction of silver-impregnated devices (e.g., central lines and Foley urinary catheters) may reduce the incidence of nosocomial infections due to prolonged placement of these devices. Improved outcomes for severely burned patients have been attributed to medical advances in fluid resuscitation, nutritional support, pulmonary and burn wound care, and infection control practices. PMID:16614255

  20. RECOVER - An Automated Burned Area Emergency Response Decision Support System for Post-fire Rehabilitation Management of Savanna Ecosystems in the Western US

    NASA Astrophysics Data System (ADS)

    Weber, K.; Schnase, J. L.; Carroll, M.; Brown, M. E.; Gill, R.; Haskett, G.; Gardner, T.

    2013-12-01

    In partnership with the Department of Interior's Bureau of Land Management (BLM) and the Idaho Department of Lands (IDL), we are building and evaluating the RECOVER decision support system. RECOVER - which stands for Rehabilitation Capability Convergence for Ecosystem Recovery - is an automatically deployable, context-aware decision support system for savanna wildfires that brings together in a single application the information necessary for post-fire rehabilitation decision-making and long-term ecosystem monitoring. RECOVER uses state-of-the-art cloud-based data management technologies to improve performance, reduce cost, and provide site-specific flexibility for each fire. The RECOVER Server uses Integrated Rule-Oriented Data System (iRODS) data grid technology deployed in the Amazon Elastic Compute Cloud (EC2). The RECOVER Client is an Adobe Flex web map application that is able to provide a suite of convenient GIS analytical capabilities. In a typical use scenario, the RECOVER Server is provided a wildfire name and geospatial extent. The Server then automatically gathers Earth observational data and other relevant products from various geographically distributed data sources. The Server creates a database in the cloud where all relevant information about the wildfire is stored. This information is made available to the RECOVER Client and ultimately to fire managers through their choice of web browser. The Server refreshes the data throughout the burn and subsequent recovery period (3-5 years) with each refresh requiring two minutes to complete. Since remediation plans must be completed within 14 days of a fire's containment, RECOVER has the potential to significantly improve the decision-making process. RECOVER adds an important new dimension to post-fire decision-making by focusing on ecosystem rehabilitation in semiarid savannas. A novel aspect of RECOVER's approach involves the use of soil moisture estimates, which are an important but difficult-to-obtain element of post-fire rehabilitation planning. We will use downscaled soil moisture data from three primary observational sources to begin evaluation of soil moisture products and build the technology needed for RECOVER to use future SMAP products. As a result, RECOVER, BLM, and the fire applications community will be ready customers for data flowing out of new NASA missions, such as NPP, LDCM, and SMAP.

  1. Getting beyond burning dirt

    SciTech Connect

    Mahoney, R.J. )

    1994-05-01

    To fix and make the nation's Superfund law work, two related questions must be answered. First, where will the innovative technology come from the clean up Superfund and other waste sites Burning dirt--the best technology currently available--is an expensive nonsolution. Second, can man muster the political will to make Superfund a waste cleanup law instead of an expanding welfare program for lawyers Under the sponsorship of EPA, a number of companies and other groups are participating in the Remediation Technology Development Forum, focusing on the areas where the real breakthroughs might occur and the most promising collaborations. Currently, this effort is focused on bioremediation, the lasagna process, soil flushing, and characterization. Another area of investigation is stabilization technology--stabilizing a site to keep contaminants from flowing away. Some scientists, for example, are looking at vitrification technology, which fuses contaminated soil into a glass-like brick. And still other technology efforts include air flushing of contaminated sites and vapor extraction and heating processes. A number of groups and consortia have been working on waste remediation technologies. For the first time since 1980, when Superfund became law, one can give positive answers to the two critical questions. Groups are finding innovative technologies to clean up Superfund and other waste sites. And, as a nation, Americans are exercising the political will to create a Superfund law that will work effectively and fairly.

  2. Zinc burns: a rare burn injury.

    PubMed

    de Juan, A; Ramon, P; Santoyo, F; Alonso, S

    2000-08-01

    A patient was presented with significant burns resulting from a workplace accident in a zinc production unit. This occurred as a result of the spontaneous combustion of zinc bleed under high pressure. The patient sustained burns to the face, body, and hands and suffered significant injury to the left cornea. Computed imaging revealed solid particles in the ethmoid sinus and also in the right nasal fossa, dissecting the right lacrimal duct. Photographic documentation is presented. This injury was potentially preventable and resulted from poor observance of safety procedures. PMID:10812277

  3. The NIDRR burn injury rehabilitation model system program: selected findings.

    PubMed

    Patterson, David R

    2007-12-01

    The NIDRR burn injury rehabilitation model system program: selected findings. The quality of burn care has improved over the past few decades, and consequently many more survivors with large-area burn injuries have long-term rehabilitation needs. The National Institute on Disability Rehabilitation Research recognized that the rehabilitation of people with burn injuries has been underaddressed and established model systems of care for this population in 1994. This special supplement to the Archives of Physical Medicine and Rehabilitation reports on some of the research that has been generated by the Burn Rehabilitation Model Systems over the past 13 years. PMID:18036975

  4. American Burn Association

    MedlinePlus

    ... website MONTHLY HEADLINES from MSKTC (Model Systems Knowledge Translation Center) The American Burn Association Web site contains general information for burn care professionals. The ABA Web site is not intended to respond to requests for medical information, and the ABA is unable to respond ...

  5. Burning Mouth Syndrome

    PubMed Central

    Kamala, KA; Sankethguddad, S; Sujith, SG; Tantradi, Praveena

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS. PMID:26962284

  6. Hand chemical burns.

    PubMed

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes. PMID:25653184

  7. The Healing Effect of Arnebia Euchroma Ointment versus Silver Sulfadiazine on Burn Wounds in Rat

    PubMed Central

    Nasiri, Ebrahim; Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Akbari, Jafar; Enayati-Fard, Reza; Azizi, Sohail; Azadbakht, Masoud

    2015-01-01

    BACKGROUND Burn is still a majordevastating condition in emergency medicine departments among both genders and all age groups in all developed and developing countries, leading to physical, psychological scars and economical burden. The present study aimed to determine the healing effect of topical treatment with Arnebia euchroma on second-degree burn wound in rats. METHODS Fifty rats were divided into 4 equal groups receiving the ointment base, normal saline (NS), standard 1% silver sulfadiazine (SSD), and 5% and 10% Arnebia euchroma ointments (AEO). The mean of burn area, percentage of wound contraction, histopathological and bacteriological assessments in the injured area were dtermined during the study. RESULTS Average area of wound on the 10th day was 10.2±2.3, 8.4±2.6, 12.4±2.5, 5.9±2.2 and 5.7±2 cm2 for ointment base, NS, 1% SSD, and 5% and 10% AEO, respectively. Wound size was significantly lower in 10% AEO than 1% SSD and control groups on the 10th day post-burn injury. On day 11, the percentage of wound contraction in 5% and 10% AEO was 53.9%±14.7% and 55.9±10.5% which was more than 1% SSD (15.3±10.8%). The collagen fibers were well formed and horizontally-oriented in 5% and 10% AEO groups when compared with other groups. CONCLUSION Arnebia euchroma ointment was an effective treatment for healing of burn wounds in comparison with SSD and can be regarded as an alternative topical treatment for burn wounds. PMID:26284182

  8. Multifactorial probit analysis of mortality in burned patients.

    PubMed Central

    Zawacki, B E; Azen, S P; Imbus, S H; Chang, Y T

    1979-01-01

    Burn mortality statistics may be misleading unless they account properly for the many factors which may influence outcome. In reviewing such factors in our patients, we identified age, total burn area, third degree burn area, prior bronchopulmonary disease, abnormal Pao2, and airway edema as the factors present on admission which best distinguished survivors from nonsurvivors. Using multifactorial probit analysis, we then calculated the contribution of each to the probability of fatal outcome. The resultant six-factor model significantly improved estimation of the probability of fatal outcome when compared to probit analysis based only on the traditional factors of age and total burn area. It also revealed a spectrum of mortality probabilities varying with the additional factors present. Although crucial in comparing different approaches to burn care, consideration of such prognostic factors will not eliminate the need for randomized treatment trials, because other factors, some of which are obscure, may also influence mortality rates in burned patients. PMID:758852

  9. Quality burn rehabilitation: cost-effective approach.

    PubMed

    Fletchall, S; Hickerson, W L

    1995-01-01

    As funding for health care becomes a national concern, and workman's compensation and private health insurance companies attempt to limit their expenditures in the treatment of the client with burns, it may become the responsibility of the burn specialists to create a cost-effective approach to quality burn rehabilitation. Our outpatient rehabilitation program has taken a cost-effective approach that limits the use of inpatient rehabilitation, emphasizes the burn team guiding the client to a quick functional return to home and work, and concentrates costs for therapy rather than room and board. This cost-effective rehabilitation approach emphasizes an intensive 6-hours-per day, 5-days-per-week outpatient program that begins immediately after discharge. In a 2 1/2-year follow-up of this cost-effective program, the following were identified. (1) A 40% reduction in costs for third-party payers and (2) clients returning to work an average of 4 months after their injury. In the cost-effective rehabilitation approach, 82% of the health care costs are concentrated for therapy. In the traditional inpatient rehabilitation program, room and board costs comprise 57% of the charges. Because it is the responsibility of the burn specialists to educate the health care payers, a program description to implement the cost-effective approach to burn rehabilitation is provided. PMID:8537428

  10. States' Average College Tuition.

    ERIC Educational Resources Information Center

    Eglin, Joseph J., Jr.; And Others

    This report presents statistical data on trends in tuition costs from 1980-81 through 1995-96. The average tuition for in-state undergraduate students of 4-year public colleges and universities for academic year 1995-96 was approximately 8.9 percent of median household income. This figure was obtained by dividing the students' average annual…

  11. Serious occupational burn injuries treated at a regional burn center.

    PubMed

    Taylor, Allison J; McGwin, Gerald; Cross, James M; Smith, Donald R; Birmingham, Barbara R; Rue, Loring W

    2002-01-01

    This article will present the epidemiology of occupational burn injuries among patients admitted to a regional burn center. Patients admitted to University of Alabama at Birmingham University Hospital Burn Center between November 1994 and December 1999 for occupational burn injuries were studied. Descriptive statistics were generated for demographic, clinical, and outcome characteristics. Approximately one-quarter of all burn center admissions had sustained occupational burn injuries. The most common burns were flame, electrical, and scald burns. The most heavily represented occupations were "manufacturing" (19.1%), "electrician" (16.2%), and "laborer" (16.2%). Burn type varied with occupation. Over $16 million in hospital charges was accrued by patients sustaining occupational burn injuries. Understanding the epidemiology of serious burn injuries in the workplace is crucial to directing prevention efforts toward worker groups at highest risk. PMID:12142576

  12. Cell therapy of burns.

    PubMed

    Leclerc, T; Thepenier, C; Jault, P; Bey, E; Peltzer, J; Trouillas, M; Duhamel, P; Bargues, L; Prat, M; Bonderriter, M; Lataillade, J-J

    2011-04-01

    Severe burns remain a life-threatening local and general inflammatory condition often with serious sequelae, despite remarkable progress in their treatment over the past three decades. Cultured epidermal autografts, the first and still most up-to-date cell therapy for burns, plays a key role in that progress, but drawbacks to this need to be reduced by using cultured dermal-epidermal substitutes. This review focuses on what could be, in our view, the next major breakthrough in cell therapy of burns - use of mesenchymal stromal cells (MSCs). After summarizing current knowledge, including our own clinical experience with MSCs in the pioneering field of cell therapy of radiation-induced burns, we discuss the strong rationale supporting potential interest in MSCs in treatment of thermal burns, including limited but promising pre-clinical and clinical data in wound healing and acute inflammatory conditions other than burns. Practical options for future therapeutic applications of MSCs for burns treatment, are finally considered. PMID:21481044

  13. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    PubMed

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. PMID:27088728

  14. Satellite monitoring of vegetation fires for EXPRESSO: Outline of activity and relative importance of the study area in the global picture of biomass burning

    NASA Astrophysics Data System (ADS)

    GréGoire, J.-M.; Pinnock, S.; Dwyer, E.; Janodet, E.

    1999-12-01

    The satellite monitoring of vegetation fires for the International Global Atmospheric Chemistry (IGAC) Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) was designed to assist the assessment of the fluxes of trace gases and aerosols emitted by savanna fires that occur during the dry season in Central Africa. It is of particular interest that the study area covers the transition zone between the savanna and the forest domains. Satellite remote sensing is the only technology that allows consistent data collection of the spatial and temporal distribution of fires at the scale required by the EXPRESSO experiment. A portable monitoring system was developed and operated in Central Africa for the in situ, real-time acquisition and processing of National Oceanic and Atmospheric Administration-advanced very high resolution radiometer (AVHRR) imagery during the EXPRESSO dry season field campaign, which lasted from October 1, 1996, to December 2, 1996. One AVHRR scene per day was processed to locate active fires and burnt areas. These results are compared with our daily global maps of vegetation fires derived from the International Geosphere-Biosphere Programme-Data and Information System Global AVHRR data set for the period April 1992 to December 1993. This comparison shows the EXPRESSO fires in the context of the African continent and of the total global fire activity. The EXPRESSO study area is part of one of the largest fire belts observed in Africa, and even over the globe, spreading from Senegal to Ethiopia. This study also shows a big increase in the number of fires in 1996 compared to 1993, from a total of 39,500 fire pixels detected in November 1993 to 124,500 in November 1996. We also show that the November period corresponds to a minimum of the global fire activity: only 3% of the fires detected during a complete year were detected during this month. Moreover, the number of fires detected in this particular month was 28% of those detected during the annual peak period observed in July-August. Current activity is focusing on the implementation of the World-Fire-Web network: A system for globally mapping vegetation fires.

  15. Vegetation Cover and Habitat Heterogeneity derived from QuickBird data as proxies of Local Plant Species Richness in recently burned areas

    NASA Astrophysics Data System (ADS)

    Viedma, Olga; Torres, Ivan; Moreno, Jose Manuel

    2010-05-01

    In fire-prone ecosystems, it is very common that, following fire, plant species richness increases very markedly, mainly due to an explosion of annuals, following a rapid change during the first few years after the blaze. Herbs play a major role in the system, among other, by fixing nutrients that might be lost, or by changing competitive interactions with shrubs or tree seedlings. But assessing species richness, particularly, herbaceous one, in space and at large scale is very costly. Furthermore, the scale of measurement is also important. In this work we attempted to asses plant species richness during the first year after fire in an abandoned dehesa (open parkland) at three scales (1 m2, 25 m2 and 100 m2) using QuickBird images. The study area was located in Central Spain (Anchuras, Ciudad Real), and was affected by a large summer fire (ca. 2000 ha). Before the fire the system was composed of a shrubland intermixed with trees and open spaces. Two 90x180 m plots were selected and field species richness measures were made at the three scales, using a nested design. Field-based data were related to remotely sensed data using Regression Trees (RT) and Boosted Regression Trees (BRT) modelling. Explanatory spectral and textural remotely sensed data were ecologically interpreted based on vegetation cover ground-based data. We found that areas with low spectral contrast and high reflectivity were dominated by herbaceous species, and had greater species richness than those characterized by low contrast and medium-low reflectivity, which were dominated by shrubs and trees. The highest species richness was found in the areas characterized by high contrast and medium-high reflectivity, which had a mix of herbs and woody layers. Variance explained varied depending on the modelling approach and the scale, from 21% and 50% for 1 m2 using RT and BRT, respectively; to 65% and 79% for 100 m2. The contribution of different life forms in model fitting was scale-dependent. At smaller scales, herbaceous layer explained the greatest variability of species richness; whereas at higher scales, shrubs and trees increased their contribution in fitting plant species richness. Model's predictions and Moran's Index on residuals indicated that the best sampling scale to predict species richness from QuickBird data was at 100 m2. The high variance explained in most cases indicates that species richness in space can be well predicted by QuickBird derived data. Keywords: plant species richness, local nested scales, vegetation cover, spatial heterogeneity, texture, reflectivity, QuickBird.

  16. Epidemiology and outcome of burns: early experience at the country's first national burns centre.

    PubMed

    Iqbal, Tariq; Saaiq, Muhammad; Ali, Zahid

    2013-03-01

    This study aims to document the epidemiologic pattern and outcome of burn injuries in the country's first national burn centre. This case series study was conducted over a 2-year period at Burns Care Centre (BCC), Pakistan Institute of Medical Sciences (PIMS), Islamabad. The study included all burn injury patients who primarily presented to and were managed at the centre. Those patients who presented more than 24 h after injury or those who were initially managed at some other hospital were excluded from the study. Initial assessment and diagnosis was made by thorough history, physical examination and necessary investigations. Patients with major burns, high voltage electric burns and those needing any surgical interventions were admitted for indoor management. Patients with minor burns were discharged home after necessary emergency management, home medication and follow-up advice. The sociodemographic profile of the patients, site of sustaining burn injury, type and extent (total body surface area (TBSA), skin thickness involved and associated inhalational injury) of burn and outcome in terms of survival or mortality, etc., were all recorded on a proforma. The data were subjected to statistical analysis. Out of a total of 13,295 patients, there were 7503 (56.43%) males and 5792 (43.56%) females. The mean age for adults was 33.6310.76 years and for children it was 6.713.47 years. The household environment constituted the commonest site of burns (68%). Among all age groups and both genders, scalds were the commonest burns (42.48%), followed by flame burns (39%) and electrical burns (9.96%). The affected mean TBSA was 10.6411.45% overall, while for the hospitalised subset of patients the mean TBSA was 38.0415.18%. Most of the burns were partial thickness (67%). Inhalation injury was found among 149 (1.12%) patients. Most of the burns were non-intentional and only 96 (0.72%) were intentional. A total of 1405 patients (10.58%) were admitted while the remainder 11890 patients (89.43%) were managed on an outdoor basis. The mean hospital stay was 12.166.07 days (range 2-73 days). There were 197 deaths among the hospitalised patients constituting a 14% mortality rate for the hospitalised subset of patients, while there was an overall mortality rate of 1.48% for the entire study population. PMID:22867734

  17. 'Burns Cliff' Beckons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity highlights a feature called 'Burns Cliff' within the impact crater known as 'Endurance.' Scientists are eager to explore this layered ridge for clues to the red planet's past. The only problem is its location: Burns Cliff is a vertical drop, which poses an interesting challenge for rover planners. Burns Cliff was named after the late scientist Roger Burns, who was one of the first to correctly propose the importance of sulfate and jarosite to the study of Mars' geologic history.

    This image is a portion of a larger mosaic taken with the panoramic camera's 480-, 530- and 750-nanometer filters on sols 97 and 98.

  18. Biomass burning fuel consumption rates: a field measurement database

    NASA Astrophysics Data System (ADS)

    van Leeuwen, T. T.; van der Werf, G. R.; Hoffmann, A. A.; Detmers, R. G.; Rücker, G.; French, N. H. F.; Archibald, S.; Carvalho, J. A., Jr.; Cook, G. D.; de Groot, W. J.; Hély, C.; Kasischke, E. S.; Kloster, S.; McCarty, J. L.; Pettinari, M. L.; Savadogo, P.; Alvarado, E. C.; Boschetti, L.; Manuri, S.; Meyer, C. P.; Siegert, F.; Trollope, L. A.; Trollope, W. S. W.

    2014-12-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha-1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0-43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42-43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the compiled FC values with co-located Global Fire Emissions Database version 3 (GFED3) FC indicates that modeling studies that aim to represent variability in FC also within biomes, still require improvements as they have difficulty in representing the dynamics governing FC.

  19. Effect of Malva sylvestris cream on burn injury and wounds in rats

    PubMed Central

    Nasiri, Ebrahim; Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Akbari, Jafar; Enayati-fard, Reza; Azizi, Sohail

    2015-01-01

    Objectives: Burn injury is one of the most health-threatening problems in the world. Malva sylvestris (M. sylvestris) flowers have a high mucilage content and are used as a remedy for cut wound and dermal infected wounds in Iranian folklore Medicine. The purpose of this study was to investigate the effect of M. sylvestris cream on the second degree burn injury in rats. Materials and Methods: Five groups of 10 rats per group were burned with hot metal plate. Animals were administrated divided as control, normal saline, standard silver sulfadiazine 1% (SSD), 5% M. sylvestris, and 10% M. sylvestris into separate groups. Wound area, percentage of wound contraction, and histological and bacteriological assessments were evaluated. Results: Wound sizes were not significantly different among groups on 1st and 3rd days after burn injury, while they were significantly different among groups after 7th day post-burn injury. The average areas of wounds on the 15th day were 7.5±2.9, 6.7±2, 10.5±1.6, 4.7±2, and 4.5±2 cm2 for base cream, normal saline, SSD, 5% M. sylvestris, and 10% M. sylvestris, respectively. The results of histology exhibited well-formed horizontally-oriented collagen fibers in MS topical treatment groups. Microorganisms existed in the SSD group were most probably Staphilococcus epidermitis and for NS group were staphylococcus saprophiteccus. Conclusion: M. sylvestris cream improved histological changes of tissue components in the process of healing when compared with SSD cream. Therefore, it can be used as a topical treatment agent for burn wound. PMID:26909337

  20. Self-inflicted burns.

    PubMed

    Hammond, J S; Ward, C G; Pereira, E

    1988-01-01

    Suicide by self-inflicted burns is uncommon in Western cultures. The majority of patients who attempt suicide in this manner have preexisting psychiatric illness, including a history of prior suicide attempts. A history of previous self-inflicted burn is rare, however, as are further suicide attempts in survivors. In this series of 33 patients, a cultural trend can be identified, with an increased incidence among Latin women. PMID:3360822

  1. Burning Mouth Syndrome

    PubMed Central

    Mock, David; Chugh, Deepika

    2010-01-01

    Most clinicians dread seeing the patient presenting with a primary complaint of a burning pain on one or more oral mucosal surfaces. Unlike most other clinical conditions presenting in a dental office, burning mouth syndrome is poorly understood with few evidence based remedies. More recently, advances have been made towards clarifying the possible etiology of the disorder and testing the possible therapeutic modalities available. This article attempts to summarize the “state of the art” today. PMID:20690412

  2. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  3. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  4. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  5. Increased expression of atrogenes and TWEAK family members after severe burn injury in non-burned human skeletal muscle

    PubMed Central

    Merritt, Edward K.; Thalacker-Mercer, Anna; Cross, James M.; Windham, Samuel T.; Thomas, Steven J.; Bamman, Marcas M.

    2012-01-01

    Severe burn induces rapid skeletal muscle proteolysis after the injury that persists for up to one year and results in skeletal muscle atrophy despite dietary and rehabilitative interventions. The purpose of this research was to determine acute changes in gene expression of skeletal muscle mass regulators post-burn injury. Biopsies were obtained from the vastus lateralis of a non-burned leg of eight burned subjects (6M, 2F: 34.8 ± 2.7 years: 29.9 ± 3.1% total body surface area burn) at 5.1 ± 1.1 days post-burn injury and from matched controls. mRNA expression of cytokines and receptors in the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) families, and the ubiquitin proteasome E3 ligases, atrogin-1 and MuRF1, was determined. TNF receptor 1A was over 3.5 fold higher in burn. Expression of TNF-like weak inducer of apoptosis and its receptor were over 1.6 and 6.0-fold higher in burn. IL-6, IL-6 receptor, and glycoprotein 130, were elevated in burned subjects with IL-6 receptor over 13-fold higher. Suppressor of cytokine signaling-3 was also elevated in burn nearly 6-fold. Atrogin-1 and MuRF1, were more than 4- and 3-fold higher in burn. These results demonstrate for the first time that severe burn in humans has a remarkable impact on gene expression in skeletal muscle of a non-burned limb of genes that promote inflammation and proteolysis. Because these changes likely contribute to the acute skeletal muscle atrophy in areas not directly affected by the burn, in the future it will be important to determine the responsible systemic cues. PMID:23816995

  6. Contribution of garbage burning to chloride and PM2.5 in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Lei, W.; Bei, N.; Molina, L. T.

    2012-06-01

    The contribution of garbage burning (GB) emissions to chloride and PM2.5 in the Mexico City Metropolitan Area (MCMA) is investigated for the period of 24 to 29 March during the MILAGRO-2006 campaign using the WRF-CHEM model. When the MCMA-2006 official emission inventory without biomass burning is used in the simulations, the WRF-CHEM model significantly underestimates the observed particulate chloride in the urban and the suburban areas. The inclusion of GB emissions substantially improves the simulations of particulate chloride; GB contributes more than 60 % of the observation, indicating it is a major source of particulate chloride in Mexico City. GB yields up to 3 pbb HCl at the ground level in the city, which is mainly caused by the burning of polyvinyl chloride (PVC) in the garbage. GB is also an important source of PM2.5, contributing about 3-30 % simulated PM2.5 mass on average. More modeling work is needed to evaluate the GB contribution to hazardous air toxics, such as dioxin, which is found to be released at high level from PVC burning in laboratory experiments.

  7. Contribution of garbage burning to chloride and PM2.5 in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Lei, W.; Bei, N.; Molina, L. T.

    2012-09-01

    The contribution of garbage burning (GB) emissions to chloride and PM2.5 in the Mexico City Metropolitan Area (MCMA) has been investigated for the period of 24 to 29 March during the MILAGRO-2006 campaign using the WRF-CHEM model. When the MCMA 2006 official emission inventory without biomass burning is used in the simulations, the WRF-CHEM model significantly underestimates the observed particulate chloride in the urban and the suburban areas. The inclusion of GB emissions substantially improves the simulations of particulate chloride; GB contributes more than 60% of the observation, indicating that it is a major source of particulate chloride in Mexico City. GB yields up to 3 pbb HCl at the ground level in the city, which is mainly caused by the burning of polyvinyl chloride (PVC) in the garbage. GB is also an important source of PM2.5, contributing about 3-30% simulated PM2.5 mass on average. More modeling work is needed to evaluate the GB contribution to hazardous air toxics, such as dioxin, which is found to be released at high level from PVC burning in laboratory experiments.

  8. PBXN-110 Burn Rate Estimate

    SciTech Connect

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  9. Burns in Nigeria: a Review

    PubMed Central

    Oladele, A.O.; Olabanji, J.K.

    2010-01-01

    Summary Burn injuries continue to be a major source of mortality and morbidity in low- and middle-income countries of the world, of which Nigeria is a part. Overview data on burn care in Nigeria are sparse but the available literature on burns and burn care in Nigeria was retrieved through Internet-based search engines, collated, and reviewed. Peculiarities of epidemiology, types of burn, pattern of injuries, complications, and outcome of burn care were reviewed. There were no broad-based overview statistical data on burns in Nigeria in all the articles reviewed. There was no documentation on the regionalization of care and there were no national databases. All reports on epidemiology were hospital-based. Flame is emerging as the predominant cause of burns, and burn injury is occurring increasingly away from the domestic setting. The severity of the injuries is also increasing. Deliberate burn injury remains a practice and a wide range of complications occur as burns sequelae in Nigeria. Several challenges militate against optimal care for burn victims. Burn injuries continue to contribute significantly to the burden of disease in Nigeria. There is a need for broad-based data collection systems. Avoidable complications are common and mortality remains high. Pooling of resources by regionalization of care could increase focus on burn prevention and improve the care of burn victims. Nongovernmental and governmental support to reduce the burden of burns is advocated. PMID:21991210

  10. The media glorifying burns: a hindrance to burn prevention.

    PubMed

    Greenhalgh, David G; Palmieri, Tina L

    2003-01-01

    The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns. PMID:12792237

  11. Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Slott, R. S.; Dunlea, E. J.; Marr, L. C.; Shorter, J. H.; Zahniser, M.; Knighton, W. B.; Rogers, T. M.; Kolb, C. E.; Molina, L. T.; Molina, M. J.

    2006-06-01

    A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles and fleet averaged emissions. Results indicate that colectivos, particularly CNG-powered colectivos, are potentially significant contributors of NOx and aldehydes in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in US cities. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.

  12. Epilepsy and Full-Thickness Burns

    PubMed Central

    Botan, A.

    2010-01-01

    Summary This paper presents various aspects of severe burns involving epileptic patients, who may suffer dramatic accidents during seizure attacks. Epileptics may fall onto an open fire or hot surface (e.g. a kitchen range) and they may upset containers full of boiling liquids, suffering deep burns and scalds. In our experience in this field, the most commonly affected body areas are the face and hands, the trunk, and the lower limbs. All such injuries are full-thickness burns, owing to the very long contact of the skin surface with the lesional agent. Three cases are presented of epileptics with severe burns who were admitted to the Burn Unit of Targu Mures Teaching Hospital, Romania, where they were hospitalized; conservative debridement using polyurethanefoam (PUR-foam) dressings was the standard procedure, which all the patients received. Split-thickness skin grafting was the final method for closing the granulating bed resulting from the conservative debridement. We have found that conservative debridement using PUR-foam dressings is a cheaper and more reliable alternative than sharp debridement (which may remove healthy tissue at the same time as burn eschars). PMID:21991200

  13. Management of the Acutely Burned Hand.

    PubMed

    Pan, Brian S; Vu, Anthony T; Yakuboff, Kevin P

    2015-07-01

    Despite contributing a small percentage to the total body surface area, hands are the most commonly burned body part and are involved in over 90% of severe burns. Although the mortality of isolated hand burns is negligible, morbidity can be substantial given our need for functioning hands when performing activities of daily living. The greatest challenges of treating hand burns are 2-fold. First, determining the depth of injury can be difficult even for the most experienced surgeon, but despite many diagnostic options, clinical examination remains the gold standard. Second, appropriate postoperative hand therapy is crucial and requires a multidisciplinary approach with an experienced burn surgeon, hand surgeon, and hand therapist. Ultimately, the goals of treatment should include preservation of function and aesthetics. In this review, we present an approach to the management of the acutely burned hand with discussion of both conservative and surgical options. Regardless of the initial treatment decision, subsequent care for this subset of patients should be aimed at preventing debilitating postburn scar contractures that can severely limit hand function and ultimately require reconstructive surgery. PMID:26043803

  14. An expanded delivery model for outpatient burn rehabilitation.

    PubMed

    Wiechman, Shelley A; Carrougher, Gretchen J; Esselman, Peter C; Klein, Matthew B; Martinez, Erin M; Engrav, Loren H; Gibran, Nicole S

    2015-01-01

    Despite the numerous multidisciplinary services burn centers provide, a number of challenges to obtaining optimal outcomes exist. The goal of this study was to overcome the barriers to effective burn rehabilitation by utilizing an expanded care coordinator (ECC) to supplement the existing outpatient services. In this between-group, single-blind, randomized, controlled trial, the control group (n = 41) received standard outpatient care and the experimental group (n = 40) received additional services provided by the ECC, including telephone calls at set intervals (24 hours postdischarge, 2, 4, 8, 12 weeks postdischarge and 5, 7, 9 months postdischarge). The ECC was trained in motivational interviewing, crisis intervention, and solution-focused counseling. He assisted patients before and after each clinic visit, coordinated outpatient services in their geographic area (physical and occupational therapy, counseling, primary care provider referrals, etc.), and helped develop problem-solving approaches to accomplish individualized goals. Outcome measures included patient identified goals utilizing the goal attainment scale, the urn-specific health scale-brief, the Short Form 12, a patient satisfaction survey, and a return to work survey. The average subject age was 43 years (SD = 16.9) with a mean TBSA of 19% (SD = 18.8). The average length of hospitalization was 36 days (SD = 42.9). The patient and injury characteristics were similar between the study groups. For the experimental group, 33% completed seven calls, with 23% completing all the eight calls. All were assessed using general linear models and were adjusted for sex, age, length of hospitalization, urban vs rural area of residence, %TBSA burn, and ethnicity. There was no difference between the control and experimental groups for any of the outcome measures at either 6 or 12 months postburn. No differences in outcomes between the groups were found. All participants appreciated the individualized goal setting process that was used as an outcome measure and this may have accounted for the similar outcomes in both the groups. (The measure may have been more of an intervention, thus contributing to the strength of the control group.) Although most patients with burn injuries may not need an intervention that is this intensive, a subset of patients at higher risk or with more severe injuries may benefit from more intensive and personalized services. Future research should examine the benefits of individual goal setting processes for all the patients and also attempt to identify those patients most at risk for poorer outcomes and therefore, likely to benefit of more intensive personalized services. PMID:25198101

  15. RECENT ADVANCES IN BIOMARKERS IN SEVERE BURNS.

    PubMed

    Ruiz-Castilla, Mireia; Roca, Oriol; Masclans, Joan R; Barret, Joan P

    2016-02-01

    The pathophysiology of burn injuries is tremendously complex. A thorough understanding is essential for correct treatment of the burned area and also to limit the appearance of organ dysfunction, which, in fact, is a key determinant of morbidity and mortality. In this context, research into biomarkers may play a major role. Biomarkers have traditionally been considered an important area of medical research: the measurement of certain biomarkers has led to a better understanding of pathophysiology, while others have been used either to assess the effectiveness of specific treatments or for prognostic purposes. Research into biomarkers may help to improve the prognosis of patients with severe burn injury. The aim of the present clinical review is to discuss new evidence of the value of biomarkers in this setting. PMID:26771933

  16. Saturday night burns: an increasing problem?

    PubMed Central

    Bollero, D.; Malvasio, V.; Gangemi, E.N.; Giunta, G.; Collard, B.; Stella, M.

    2015-01-01

    Summary In Italy the economic crisis has caused changes in behavior in daily as well as leisure activities. For instance, night clubs have changed both their scenography and what they can offer. From simply providing a place to dance, they can now offer more complex scenography with spectacular fireworks and lit cocktails. While this can be amazing for all of us it can also be another cause of burn injuries. We conducted a retrospective study of all burns patients admitted to the Accident and Emergency Department at CTO Hospital in Turin from 2009 to 2013, after a night clubbing. A total of five patients were identified with an average age of 20 years old: four were burned by flaming cocktails and one was burned by a firework. Two received outpatient treatment, while orotracheal intubation and admission were needed for three, and two required surgical debridement and resurfacing with split skin graft. All patients had permanent sequelae caused by pathologic scarring and/or dyschromia. Our findings show that the risk of burn injuries is higher at weekends, mainly in summer, if all correct safety procedures are not followed. Meanwhile it is important to highlight that the promotion of inappropriate behavior at night clubs during firework displays and the passing of flaming cocktails should be avoided. PMID:26668565

  17. Saturday night burns: an increasing problem?

    PubMed

    Bollero, D; Malvasio, V; Gangemi, E N; Giunta, G; Collard, B; Stella, M

    2015-03-31

    In Italy the economic crisis has caused changes in behavior in daily as well as leisure activities. For instance, night clubs have changed both their scenography and what they can offer. From simply providing a place to dance, they can now offer more complex scenography with spectacular fireworks and lit cocktails. While this can be amazing for all of us it can also be another cause of burn injuries. We conducted a retrospective study of all burns patients admitted to the Accident and Emergency Department at CTO Hospital in Turin from 2009 to 2013, after a night clubbing. A total of five patients were identified with an average age of 20 years old: four were burned by flaming cocktails and one was burned by a firework. Two received outpatient treatment, while orotracheal intubation and admission were needed for three, and two required surgical debridement and resurfacing with split skin graft. All patients had permanent sequelae caused by pathologic scarring and/or dyschromia. Our findings show that the risk of burn injuries is higher at weekends, mainly in summer, if all correct safety procedures are not followed. Meanwhile it is important to highlight that the promotion of inappropriate behavior at night clubs during firework displays and the passing of flaming cocktails should be avoided. PMID:26668565

  18. Self-inflicted burns in Mosul: a cross-sectional study

    PubMed Central

    Al-Zacko, S.M.

    2012-01-01

    Summary A cross-sectional study was conducted to investigate the different characteristics of attempted suicide by self-inflicted burn cases compared with other accidental burn cases admitted to the Burns Unit in Al-Jumhoori Teaching Hospital in Mosul over a one-year period from March 1, 2011 to March 1, 2012. Of 459 burn cases, 103 (22.44%) had self-inflicted burns. The mean total body surface area of suicide attempters was 61%, markedly higher than in other cases (20%) (P= 0.0001). Among all self-inflicted burn cases, burns were caused by flame, while scald was the commonest cause (56.5%) in accidental burns. There was a significant difference in the sex ratio between self-inflicted burn cases (1:11.9) and accidental burn cases (1:1) (P = 0.0001). Case fatality rates for self-inflicted burn and accidental burn cases were 80.6% and 14.9%, respectively. The overall mean ages for self-inflicted burn and accidental burn cases were 24.3 and 15.6 years, respectively. Compared to all other burn cases, self-inflicted burn cases had a significantly larger mean percentage of surface body area burned (61.0±28.2 versus 20.7±15.8; P = 0.0001). In conclusion, self-inflicted burns remain a common cause of admission to our burn unit. The extent of burns is often large, since most suicide attempters use an accelerant that accounts for the high mortality in this group. PMID:23467337

  19. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 891% and 672% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.420.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  20. Do standard burn mortality formulae work on a population of severely burned children and adults?

    PubMed

    Tsurumi, Amy; Que, Yok-Ai; Yan, Shuangchun; Tompkins, Ronald G; Rahme, Laurence G; Ryan, Colleen M

    2015-08-01

    Accurate prediction of mortality following burns is useful as an audit tool, and for providing treatment plan and resource allocation criteria. Common burn formulae (Ryan Score, Abbreviated Burn Severity Index (ABSI), classic and revised Baux) have not been compared with the standard Acute Physiology and Chronic Health Evaluation II (APACHEII) or re-validated in a severely (≥20% total burn surface area) burned population. Furthermore, the revised Baux (R-Baux) has been externally validated thoroughly only once and the pediatric Baux (P-Baux) has yet to be. Using 522 severely burned patients, we show that burn formulae (ABSI, Baux, revised Baux) outperform APACHEII among adults (AUROC increase p<0.001 adults; p>0.5 children). The Ryan Score performs well especially among the most at-risk populations (estimated mortality [90% CI] original versus current study: 33% [26-41%] versus 30.18% [24.25-36.86%] for Ryan Score 2; 87% [78-93%] versus 66.48% [51.31-78.87%] for Ryan Score 3). The R-Baux shows accurate discrimination (AUROC 0.908 [0.869-0.947]) and is well-calibrated. However, the ABSI and P-Baux, although showing high measures of discrimination (AUROC 0.826 [0.737-0.916] and 0.848 [0.758-0.938]) in children), exceedingly overestimates mortality, indicating poor calibration. We highlight challenges in designing and employing scores that are applicable to a wide range of populations. PMID:25922299

  1. Burning trees and bridges

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

  2. 'Special effects' burn injuries.

    PubMed

    Peters, W

    1991-02-01

    Three patients are presented with significant flame burns, resulting from accidents occurring during 'special effects' situations in the entertainment industry. These occurred as a result of the spontaneous combustion of various materials, during events in live theatre (gun powder), a television commercial (artificial 'rocket fuel'), and a video presentation (magnesium oxide). All three patients sustained flash burns to the face and hands. One patient sustained a significant bilateral corneal injury, a gamekeeper's thumb, and a permanent continuous right-sided high frequency tinnitus, in addition to his burn injury. Photographic documentation of all three patients is presented. The total loss of time from work for all patients was 6 months. All these injuries were potentially preventable. PMID:2031675

  3. Multi-year black carbon emissions from cropland burning in the Russian Federation

    NASA Astrophysics Data System (ADS)

    McCarty, Jessica L.; Ellicott, Evan A.; Romanenkov, Vladimir; Rukhovitch, Dmitry; Koroleva, Polina

    2012-12-01

    Cropland fires are an important source of black carbon (BC) emissions. Previous research has suggested that springtime cropland burning in Eastern Europe, more specifically Russia, is a main contributor of BC in the Arctic atmosphere, acting as a short-lived climate forcer strongly influencing snow-ice albedo and radiation transmission. BC emissions from cropland burning were estimated for the Russian Federation for years 2003 through 2009 using three satellite fire products, the 1 km MODIS Active Fire Product, 0.5° MODIS Fire Radiative Power monthly climate modeling grid product, and the 500 m MODIS Burned Area Product, and a agricultural statistics approach based on a modified method developed and published by the All-Russian Institute of Organic Peat and Fertilizers to estimate farm- and regional-level residue loading from straw surplus left after grain harvesting, while accounting for agricultural management and agrometeorological inputs. The satellite-based emission calculations utilized several different land cover classification schemas for defining croplands in Russia for both the 1 km MODIS Land Cover Product and the 300 m MERIS GlobCover v2.2 data sets. In general, the peaks of BC emissions from cropland burning occurred during the spring (April-May), summer (July-August), and the fall (October). 2008 had the highest annual BC emissions. The range of average annual BC emissions from cropland burning calculated from the different satellite fire products was 2.49 Gg-22.2 Gg, with the agricultural statistics approach annual average equal to 8.90 Gg. The Global Fire Emissions Database (GFED) version 3 reported an annual average of 11.9 Gg of BC from agricultural burning. The results from this analysis showed that the majority of BC emissions originated in European Russia, followed by smaller contributions from West Siberia, Far East Russia, and East Siberia macro-regions. An uncertainty assessment on data used to calculate the BC emissions found moderate uncertainty in some of the input data used in this first attempt to produce spatially and temporally explicit BC emission estimates from cropland burning in the Russian Federation.

  4. Pre-harvest sugarcane burning emission inventories based on remote sensing data in the state of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    França, Daniela; Longo, Karla; Rudorff, Bernardo; Aguiar, Daniel; Freitas, Saulo; Stockler, Rafael; Pereira, Gabriel

    2014-12-01

    The state of São Paulo is the largest sugarcane producer in Brazil, with a cultivated area of about 5.4 Mha in 2011. Approximately 2 Mha were harvested annually from 2006 to 2011 with the pre-harvest straw burning practice, which emits trace gases and particulate material to the atmosphere. The development of emission inventories for sugarcane straw burning is crucial in order to assess its environmental impacts. This study aimed to estimate annual emissions associated with the pre-harvest sugarcane burning practice in the state of São Paulo based on remote sensing maps and emission and combustion factors for sugarcane straw burning. Average estimated emissions (Gg/year) were 1130 ± 152 for CO, 26 ± 4 for NOx, 16 ± 2 for CH4, 45 ± 6 for PM2.5, 120 ± 16 for PM10 and 154 ± 21 for NMHC (non-methane hydrocarbons). An intercomparison among annual emissions from this study and annual emissions from four other different approaches indicated that the estimates obtained by satellite fire detection or low spatial resolution approaches tend to underestimate sugarcane burned area, due to unique characteristics of this type of biomass fire. Overall, our results also indicated that government actions to reduce sugarcane straw burning emissions are becoming effective.

  5. Instrument to average 100 data sets

    NASA Technical Reports Server (NTRS)

    Tuma, G. B.; Birchenough, A. G.; Rice, W. J.

    1977-01-01

    An instrumentation system is currently under development which will measure many of the important parameters associated with the operation of an internal combustion engine. Some of these parameters include mass-fraction burn rate, ignition energy, and the indicated mean effective pressure. One of the characteristics of an internal combustion engine is the cycle-to-cycle variation of these parameters. A curve-averaging instrument has been produced which will generate the average curve, over 100 cycles, of any engine parameter. the average curve is described by 2048 discrete points which are displayed on an oscilloscope screen to facilitate recording and is available in real time. Input can be any parameter which is expressed as a + or - 10-volt signal. Operation of the curve-averaging instrument is defined between 100 and 6000 rpm. Provisions have also been made for averaging as many as four parameters simultaneously, with a subsequent decrease in resolution. This provides the means to correlate and perhaps interrelate the phenomena occurring in an internal combustion engine. This instrument has been used successfully on a 1975 Chevrolet V8 engine, and on a Continental 6-cylinder aircraft engine. While this instrument was designed for use on an internal combustion engine, with some modification it can be used to average any cyclically varying waveform.

  6. Synchronous Boxcar Averager

    NASA Technical Reports Server (NTRS)

    Rogers, Thomas W.

    1988-01-01

    Digital electronic filtering system produces series of moving-average samples of fluctuating signal in manner resulting in removal of undesired periodic signal component of known frequency. Filter designed to pass steady or slowly varying components of fluctuating pressure, flow, pump speed, and pump torque in slurry-pumping system. Concept useful for monitoring or control in variety of applications including machinery, power supplies, and scientific instrumentation.

  7. Electrical burns of the abdomen

    PubMed Central

    Srivastava, Rakesh Kumar; Kumar, Ritesh

    2013-01-01

    A 35-year-old male farmer came in contact with 11,000 volts high tension electric wire and sustained full thickness burn wounds over scapula, upper limb and anterior abdominal wall along with perforation of the intestine. Patient was initially managed conservatively in general surgery ward and was referred to us after 3 days with necrosis of the burned skin and muscles over the shoulder and abdomen. Patient was initially managed conservatively and then thorough debridement of the necrotic skin over the left shoulder and upper arm was done and the area was split skin grafted. Patient developed enterocutaneous fistula, which healed over a period of 8 weeks. The granulating wound over the abdomen was also skin grafted and patient was discharged after 18 days. About 4 months, after the discharge patient presented with ventral hernia. Repair of ventral hernia by synthetic mesh application and reconstruction of the abdominal wall with a free tensor fascia lata flap was done over the mesh, but the flap failed. Then after debridement two random pattern transposition skin flaps, one from the right upper and another from the left lower abdomen were transposed over the abdominal wound and donor area was skin grafted. Patient was discharged after 17 days. PMID:24459356

  8. The Effect of Burn Center Volume on Mortality in a Pediatric Population: An Analysis of the National Burn Repository

    PubMed Central

    Hodgman, Erica I.; Saeman, Melody R.; Subramanian, Madhu

    2016-01-01

    The effect of burn center volume on mortality has been demonstrated in adults. The authors sought to evaluate whether such a relationship existed in burned children. The National Burn Repository, a voluntary registry sponsored by the American Burn Association, was queried for all data points on patients aged 18 years or less and treated from 2002 to 2011. Facilities were divided into quartiles based on average annual burn volume. Demographics and clinical characteristics were compared across groups, and univariate and multivariate logistic regressions were performed to evaluate relationships between facility volume, patient characteristics, and mortality. The authors analyzed 38,234 patients admitted to 88 unique facilities. Children under age 4 years or with larger burns were more likely to be managed at high-volume and very high–volume centers (57.12 and 53.41%, respectively). Overall mortality was low (0.85%). Comparing mortality across quartiles demonstrated improved unadjusted mortality rates at the low- and high-volume centers compared with the medium-volume and very high–volume centers although univariate logistic regression did not find a significant relationship. However, multivariate analysis identified burn center volume as a significant predictor of decreased mortality after controlling for patient characteristics including age, mechanism of injury, burn size, and presence of inhalation injury. Mortality among pediatric burn patients is low and was primarily related to patient and injury characteristics, such as burn size, inhalation injury, and burn cause. Average annual admission rate had a significant but small effect on mortality when injury characteristics were considered. PMID:26146907

  9. Fast burning propellants

    SciTech Connect

    Colgate, S.A.; Roos, G.E.

    1987-07-21

    A solid or semisolid propellant is described comprising grains of propellant or propellant components bonded together to create voids within the propellant volume. The grains are of near-uniform size and have less than about a 20% size variation between the largest and smallest grains, the voids comprising from about 10% to about 50% of the propellant volume. The grains are bonded together with sufficient strength to substantially delay the fluidization of the propellant by the onset of Taylor unstable burning. The propellant has a rapid burn rate of from about 10 cm sec/sup -1/ to about 10/sup 4/cm sec/sup -1/.

  10. Return to work after burn injury: burn-injured individuals' perception of barriers and facilitators.

    PubMed

    Oster, Caisa; Kildal, Morten; Ekselius, Lisa

    2010-01-01

    The aim of this study was to explore burn-injured individuals' perception of factors seen as facilitators or barriers in the process of returning to work after a severe burn injury. Semistructured interviews were prospectively conducted with 39 former burn injury patients, admitted to the Uppsala Burn Center between March 2000 and March 2007. The participants were employed or studying at the time of injury and were interviewed on average 4.6 years after the burn. The interview data were analyzed with qualitative content analysis. Factors acknowledged by the participants as facilitators and barriers to return to work (RTW) were identified and sorted into five categories: the Individual, Social Life, Health Care and Rehabilitation, the Workplace, and Social Welfare Agencies. Facilitators were perceived to a great extent as individual characteristics, such as own ability to take action, setting up goals in rehabilitation, having willpower, being persistent, and learning to live with impairments. The possibility of getting modified work tasks or a change of workplace, when having physical or psychological impairments, was also seen as facilitating factors. Some barriers experienced as delaying RTW were difficulties when ceasing pain medication, limited knowledge of wound care at primary health care facilities, lack of individualized rehabilitation plans, and lack of psychological support during rehabilitation. Former burn injury patients emphasized psychological resources and capabilities as facilitators in the RTW process. The need in rehabilitation for a coordinator and for assessment of work capacity, and not solely a focus on impairments, is discussed. PMID:20616648

  11. Multi-year black carbon emissions from cropland burning in the Russian Federation

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Ellicott, E. A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.

    2011-12-01

    Cropland fires are an important source of black carbon (BC) emissions. Previous research has suggested that springtime cropland burning in Eastern Europe, and more specifically Russia, is a main source of BC in the Arctic atmosphere, acting as a short-lived climate forcer strongly influencing snow-ice albedo and radiation transmission in the atmosphere above the Arctic. BC emissions from cropland burning were estimated for the Russian Federation for years 2003 through 2009 using three satellite fire products, the 1 km MODIS Active Fire Product, 0.5° MODIS Fire Radiative Power monthly climate modeling grid product, and the 500 m MODIS Burned Area Product. Official statistics were also used to estimate BC emissions based on a modified approach developed and published by the All-Russian Institute of Organic Peat and Fertilizers to estimate farm- and regional-level residue loading based on straw surplus left after grain harvesting, while accounting for agricultural management and agrometeorological inputs. The satellite-based emission calculations utilized several different land cover classification schemas for defining croplands in Russia for both the 1 km MODIS Land Cover Product and the 300m MERIS GlobCover v2.2 data sets. In general, the peaks of BC emissions from cropland burning occurred during the spring (April - May), summer (July - August), and the fall (October). 2008 had the highest annual BC emissions. The range of average annual BC emissions from cropland burning calculated from the different satellite products was 2.49 Gg to 22.2 Gg, with the official statistics approach annual average equal to 7.34 Gg. The majority of BC emissions from the Fire Radiative Power and Burned Area satellite analyses originated in European Russia, followed by smaller contributions from West Siberia, Far East Russia, and East Siberia macro-regions, respectively. This presentation will further explore the uncertainties in the calculations of BC emissions from satellite and official statistics approaches, including input variables such as emission factors, fuel loads, and combustion efficiency. For example, a comparison of GIS field masks of three oblasts in European Russia with different levels of agricultural intensification revealed that between 22 to 42% of cropland fires detected by the MODIS 1 km Active Fire Product were incorrectly classified using the 1 km MODIS Land Cover data set's land cover classes of croplands and croplands/natural vegetation mosaic. Finally, we will show results from a comparison of our BC emission estimates with estimated emissions from agricultural burning from the Global Fire Emissions Database (GFED) version 3.

  12. Colonic fistula complicating electric burns--a case report.

    PubMed

    Rijhwani, Ashok; Sunil, Indira

    2003-08-01

    Intestinal fistula is an uncommon complication of electric burns. The authors report the case of an 11-year-old child who sustained accidental burns from a high-voltage electric current and was admitted to their hospital with full-thickness burns of both the upper limbs and deep burns of the anterior abdominal wall. Staged surgery was required, and the authors were involved in the management of the burn of the anterior abdominal wall. Laparotomy was done because omentum was found prolapsing out of the abdominal wound. Three scattered areas of subserosal burn of the small bowel were noticed, which required no intervention. The rest of the viscera all were normal. During the course of his stay, he had a fecal fistula on the 19th postburn day, which was found to be from the transverse colon. Conservative management of the fistula with total parenteral nutrition for 23 days resulted in complete healing. PMID:12891499

  13. Characterization of burns using hyperspectral imaging technique - a preliminary study.

    PubMed

    Calin, Mihaela Antonina; Parasca, Sorin Viorel; Savastru, Roxana; Manea, Dragos

    2015-02-01

    Surgical burn treatment depends on accurate estimation of burn depth. Many methods have been used to asses burns, but none has gained wide acceptance. Hyperspectral imaging technique has recently entered the medical research field with encouraging results. In this paper we present a preliminary study (case presentation) that aims to point out the value of this optical method in burn wound characterization and to set up future lines of investigation. A hyperspectral image of a leg and foot with partial thickness burns was obtained in the fifth postburn day. The image was analyzed using linear spectral unmixing model as a tool for mapping the investigated areas. The article gives details on the mathematical bases of the interpretation model and correlations with clinical examination pointing out the advantages of hyperspectral imaging technique. While the results were encouraging, further more extended and better founded studies are being prepared before recognizing hyperspectral imaging technique as an applicable method of burn wound assessment. PMID:24997530

  14. Pre-Harvest Sugarcane Burning: Determination of emission factors through laboratory measurements and quantification of emissions

    NASA Astrophysics Data System (ADS)

    de Azeredo Franca, D.; Maria Longo, K.; Gomes Soares Neto, T.; Carlos dos Santos, J.; Rudorf, B. F.; Alves de Aguiar, D.; Freitas, S.; Vieira Cortez, E.; Stockler S. Lima, R.; S. Gacita, M.; Anselmo, E.; A. Carvalho, J., Jr.

    2011-12-01

    Sugarcane is a relevant crop to Brazilian economy and roughly 50% of its production is used to produce ethanol. São Paulo state is the largest producer of sugarcane in Brazil being responsible for almost 60% of its production in a cultivated area of 4.5 Mha in 2010. Sugarcane harvest practice can be performed either with green harvest or with pre-harvest burning. A "Green Ethanol" Protocol is underway to eliminate the pre-harvest burning practice by 2014 in most of the sugarcane cultivated land in São Paulo state. During the last five years close to 2 Mha were annually harvested with the pre-harvest burning practice. This practice emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the burning practice in the near future there is still a significant environmental damage due to the pre-harvest burning practice of sugarcane. Thus the generation of reliable inventories of emissions due to this activity is crucial in order to assess the environmental impact. Presently the official Brazilian emissions inventories do not include the sugarcane pre-harvest burning contribution. Therefore, this work aims to estimate the annual emissions (from 2006 to 2010) associated with pre-harvest sugarcane burning practice in São Paulo state, including the determination of emission factors for some trace gases and particulate material smaller than 2.5 μm. Annual remote sensing based mappings of burned sugarcane fields throughout the harvest season in each crop year made in the context of Canasat Project (http://www.dsr.inpe.br/laf/canasat/en/) were added to the Brazilian Biomass Burning Emission Model (3BEM) in order to estimate trace gases and aerosols emissions. Two laboratory combustion experiments were carried out to determine the emission factors estimation. Samples of different varieties of sugarcane were harvested in dry weather conditions and in distinct sites in the state of São Paulo to assure a good representativeness. In each experiment a fraction of a specific sample was put on a burning tray with area equal to 1 m2 inside a combustion chamber and burned under controlled conditions. The bottom's tray was covered with a layer of soil with some branches aiming to reproduce the burning condition in the field. The smoke emitted was conducted to trace gas and aerosol particles analyzers measuring the excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons) and PM2.5, allowing the estimation of their respective emission factors. Average values for emission factors estimated (g kg -1 of burned dry biomass) were 1303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.5 ± 1.7 for PM2.5. These emission factors can be used to generate more realistic emission inventories and, therefore, to improve the results of quality air models. Currently, enhanced emission inventories of São Paulo state are obtained with the emission model 3BEM, available at CPTEC-INPE, by the inclusion of these improvements.

  15. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States.

    PubMed

    McCarty, Jessica L

    2011-01-01

    Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation. PMID:21305885

  16. Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Herndon, S. C.; Slott, R. S.; Dunlea, E. J.; Marr, L. C.; Shorter, J. H.; Zahniser, M.; Knighton, W. B.; Rogers, T. M.; Kolb, C. E.; Molina, L. T.; Molina, M. J.

    2006-11-01

    A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered "colectivos" (public transportation buses that are intensively used in the MCMA) indicate that - in a mole per mole basis - have significantly larger NOx and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S. cities. We estimate NOx emissions as 100 600±29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NOx emissions estimated in the emissions inventory for this category are within the range of our estimated NOx annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.

  17. Predictors of Muscle Protein Synthesis after Severe Pediatric Burns

    PubMed Central

    Diaz, Eva C.; Herndon, David N.; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E.; Sidossis, Labros S.; Børsheim, Elisabet

    2015-01-01

    Background Following a major burn, skeletal muscle protein synthesis rate increases, but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months post-injury, and identify predictors that influence this response. Study design 87 children with ≥40% total body surface area (TBSA) burn were included. Patients participated in stable isotope infusion studies at 1, 2 and ~ 4 weeks post-burn, and at 6, 12 and 24 months post-injury to determine skeletal muscle fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Results Patients (8±6 years) had large (62, 51–72% TBSA) and deep (47±21% TBSA third degree) burns. Muscle fractional synthesis rate was elevated throughout the first 12 months post-burn compared to established values from healthy young adults. Muscle fractional synthesis rate was lower in boys, children >3 years old, and when burns were >80% TBSA. Conclusions Muscle protein synthesis is elevated for at least one year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiological response to burn trauma. Muscle protein synthesis is highly affected by gender, age and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn victims. PMID:25807408

  18. Decadorial of a burn center in Central India

    PubMed Central

    Bain, Jayanta; Lal, Shyam; Baghel, Vijay Singh; Yedalwar, Vinod; Gupta, Rachna; Singh, Anil Kumar

    2014-01-01

    Introduction: Burn injuries are a serious public health problem. In our study we have identified different epidemiological factors based on 10 years of our experience at a burn unit in central India and recommend some strategies to prevent burn injuries. Materials and Methods: This is a retrospective analysis (2001-2010) of database from burn unit of S.S. Medical College, Rewa, India. Results: 2499 patients with burn injury were analysed. 66.8% and 38.2% patients were females and males respectively, with a median age of 25 years. Flame (80.1%) was most common cause, home (96%) was most common place, traditional Indian stove (28.8%), kerosene lamp (26.7%), hot liquid (12.2%) and kerosene stove (10.4%) were common causes. Median Total Body Surface Area (TBSA) burn was 40.0%; females had significantly greater (P < 0.001) burn than males (median 50% vs 26.0%). High mortality (40.3%) seen; female sex (OR 3.22, 95% CI 2.65-3.92); young age (15-29 year) (OR 3.48, 95% CI 2.45-4.94); flame burn (OR 12.9, 95% CI 1.69-98.32); suicidal burn OR 6.82 95%CI 4.44-10.48) and TBSA > 76% (OR 3099, 95%CI 1302-7380) were significant risk factors for death. Median hospital stays was 8 days; shorter hospital stays seen among TBSA burn > 76% (2 days), suicidal intent (4 days), and those who expired (4 days). Septicemia (45.8%) and burn shock (41%) were the major cause for death. Conclusions: Cooking and lighting equipments are major cause of burn injury among females and young age group. Equipment modification to improve safety features and public awareness programs are necessary to reduce burn incidents. PMID:24678209

  19. Pediatric burns mortality risk factors in a developing country’s tertiary burns intensive care unit

    PubMed Central

    Agbenorku, Pius; Agbenorku, Manolo; Fiifi-Yankson, Papa Kwesi

    2013-01-01

    Aim: This study aimed at identifying risk factors related to pediatric burns mortality in a middle income country such as Ghana. Methods: The data for the three years retrospective study (May 2009 – April 2012) was obtained from the pediatric burn admissions records and patients’ folders of the Reconstructive Plastic Surgery & Burns Unit (RPSBU), Komfo Anokye Teaching Hospital (KATH), Ghana. Data retrieved included: Demographic features, Total Burned Surface Area (TBSA) incurred; Aetiology of burns; Duration of the admission; Outcome of admission; Part of the body affected and Cost incurred. Ethical approval for this study was obtained from the KNUST-SMS/KATH Committee on Human Research, Publications and Ethics. Data analyses were performed with SPSS 17.0 version. Results: Information on 197 patients was completely retrieved for the study. Burns mortality rate for the study was identified to be 21.3% (N=42). The mean age of the 42 dead patients was 3.7±0.3 years, ranging from 0-13 years, while, males (54.8%, N= 23) outnumbered females (45.2%, N=19). The TBSA burned interquartile range was 48%. In terms of etiology of burns Scald (73.8%, N=31) was the commonest cause of injury. Mortality risk factors identified were Age <6 years (P=0.028); Scald especially hot water and soup (P=0.016); TBSA >36% (P=0.028) and Inhalation injury (P=0.040). Conclusion: Age, scald, TBSA and Inhalation Injury were identified as pediatric burns mortality risk factors in a developing country such as Ghana’s RPSBU. These identified factors will serve as a guideline for plastic surgeons and other health professionals practicing in countries such as Ghana. PMID:23875121

  20. Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment

    MedlinePlus

    ... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

  1. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.

    PubMed

    van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p < 0.001) improvement in scar quality at 12 months compared with the 3- and 6-month data. Predictors for severe scarring are depth of the wound (p < 0.001) and total body surface area burned (p < 0.001). Etiology (p = 0.753) and age (p > 0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. PMID:22985039

  2. Fat burn X: burning more than fat.

    PubMed

    Hannabass, Kyle; Olsen, Kevin Robert

    2016-01-01

    A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up. PMID:26811412

  3. Interannual and Seasonal Variability of Biomass Burning Emissions Constrained by Satellite Observations

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Martin, Randall V.; Staudt, Amanda C.; Yevich, Rosemarie; Logan, Jennifer A.

    2003-01-01

    We present a methodology for estimating the seasonal and interannual variation of biomass burning designed for use in global chemical transport models. The average seasonal variation is estimated from 4 years of fire-count data from the Along Track Scanning Radiometer (ATSR) and 1-2 years of similar data from the Advanced Very High Resolution Radiometer (AVHRR) World Fire Atlases. We use the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data product as a surrogate to estimate interannual variability in biomass burning for six regions: Southeast Asia, Indonesia and Malaysia, Brazil, Central America and Mexico, Canada and Alaska, and Asiatic Russia. The AI data set is available from 1979 to the present with an interruption in satellite observations from mid-1993 to mid-1996; this data gap is filled where possible with estimates of area burned from the literature for different regions. Between August 1996 and July 2000, the ATSR fire-counts are used to provide specific locations of emissions and a record of interannual variability throughout the world. We use our methodology to estimate mean seasonal and interannual variations for emissions of carbon monoxide from biomass burning, and we find that no trend is apparent in these emissions over the last two decades, but that there is significant interannual variability.

  4. Interannual and seasonal variability of biomass burning emissions constrained by satellite observations

    NASA Astrophysics Data System (ADS)

    Duncan, Bryan N.; Martin, Randall V.; Staudt, Amanda C.; Yevich, Rosemarie; Logan, Jennifer A.

    2003-01-01

    We present a methodology for estimating the seasonal and interannual variation of biomass burning designed for use in global chemical transport models. The average seasonal variation is estimated from 4 years of fire-count data from the Along Track Scanning Radiometer (ATSR) and 1-2 years of similar data from the Advanced Very High Resolution Radiometer (AVHRR) World Fire Atlases. We use the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data product as a surrogate to estimate interannual variability in biomass burning for six regions: Southeast Asia, Indonesia and Malaysia, Brazil, Central America and Mexico, Canada and Alaska, and Asiatic Russia. The AI data set is available from 1979 to the present with an interruption in satellite observations from mid-1993 to mid-1996; this data gap is filled where possible with estimates of area burned from the literature for different regions. Between August 1996 and July 2000, the ATSR fire-counts are used to provide specific locations of emissions and a record of interannual variability throughout the world. We use our methodology to estimate mean seasonal and interannual variations for emissions of carbon monoxide from biomass burning, and we find that no trend is apparent in these emissions over the last two decades, but that there is significant interannual variability.

  5. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  6. Burn Scar Neoplasm

    PubMed Central

    Kadir, A.R.

    2007-01-01

    Summary Marjolin's ulcer is a rare and aggressive cutaneous malignancy that occurs in previously traumatized and chronically inflamed skin, especially after burns. The majority of burn scar carcinomas are seen after a lag period in burns that were not grafted following injury. Between 2000 and 2006, 48 patients with Marjolin's ulcer were treated in our centre (Sulaimani Teaching Hospital and Emergency Hospital). All the lesions were secondary to burns from various causes. The medical records of these 48 patients were reviewed prospectively. The mean age at tumour diagnosis was 40 yr and the ratio of male to female was 2:1 (67% males and 33% female). Upon histological examination, all the cases were diagnosed as well-differentiated squamous cell carcinoma. The scalp was most frequently affected (16 patients = 33.3%), followed by the lower limb (14 patients = 29.1%). Treatment of the neoplasm consisted of excision and grafting in 36 patients (75.0%), excision and reconstruction with flaps in eight patients (16.6%), and amputation in three patients (6.2%). A chemotherapy combination of the above treatments was used in two patients (4.1%). Local recurrence was noted in 16 patients (33.3%) out of the 48, and all died from these recurrences. PMID:21991095

  7. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and

  8. Burning Your Own CDs.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    2001-01-01

    Discusses the use of CDs (Compact Disks) for backing up data as an alternative to using floppy disks and explains how to burn, or record, a CD. Topics include differences between CD-R (CD-Recordable) and CD-RW (CD-Rewritable); advantages of CD-R and CD-RW; selecting a CD burner; technology trends; and care of CDs. (LRW)

  9. TRIAL BURNS: METHODS PERSPECTIVE

    EPA Science Inventory

    When conducting a trial burn, it is necessary to make a number of measurements in order to adequately define the performance of the incinerator. n addition to flue gas emissions for particulate matter, HCl, and selected organics, it is also necessary to measure selected organics ...

  10. [Burns with lighter gas].

    PubMed

    Davidsen, M T

    1993-06-28

    Attention is drawn to a particularly dangerous party activity. Balloons filled with lighter gas so as to float are used for party decorations. A case of hand burn caused by accidentally lighting such a balloon with a cigarette is reported. The method is strongly advised against, it is a much better idea to use helium for such purposes. PMID:7734004

  11. The Burn Wound Microenvironment

    PubMed Central

    Rose, Lloyd F.; Chan, Rodney K.

    2016-01-01

    Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice. PMID:26989577

  12. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring ice-like combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the worlds oceans and polar regions....

  13. Gas Hydrates Burning

    An image of gas hydrates burning. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions....

  14. The Earth Could Burn.

    ERIC Educational Resources Information Center

    Yarrow, Ruth

    1982-01-01

    Environmental educators are worried about the ultimate ecological threat--nuclear war, which could burn thousands of square miles, sterilize the soil, destroy 70 percent of the ozone layer letting in lethal ultraviolet rays, and cause severe radiation sickness. Educators must inform themselves, teach others, contact government representatives, and…

  15. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  16. Hot bitumen burns: 92 hospitalized patients.

    PubMed

    Baruchin, A M; Schraf, S; Rosenberg, L; Sagi, A A

    1997-08-01

    Bitumen burns while comprising a small percentage of all types of burns are troublesome. They affect persons engaged in gainful employment which the burns then curtail, as well as requiring special attention because the substance adheres to the skin and is therefore difficult to remove. Ninety-two consecutive patients with such burns who were admitted as in-patients over a 10-year period (1985-1995) have been reviewed. Most of the burns occurred on a worksite and involved active young persons (mean age 29.6 years) the mean size of the burn was 3.87 per cent TBSA, mainly affecting the upper extremities and hands. Mean hospitalization time was 10.6 days. Bitumen burns are fully predictable and can easily be prevented by avoiding unsafe practice and/or equipment. Bitumen is a general term for petroleum-derived substances ranging from true petroleum through so-called mineral tars, to asphalt. Asphalt (Asphaltum) is a semi-solid mixture of several hydrocarbons probably formed by the evaporation of the lighter or more volatile constituents. It is amorphous of low specific gravity, 1-2, with a black or brownish black colour and pitchy lustre. At room temperature it is solid becoming molten and spreadable when heated to 93 degrees C and over. Roofing tars and asphalts are usually heated to temperatures of 232 degrees C to achieve desirable viscosities (e.g. for spraying), whereas lower temperatures are required for the manageable form to pave roads. Notable localities for asphaltum are the island of Trinidad and the Dead Sea region where lake asphaltums were long known to the ancient. Ironically, none of the 92 patients who were treated for bitumen injuries in the 'Soroka' (Beer-Sheba, Israel) and 'Barzilai' (Ashkelon, Israel) Medical Centres (80 and 150 km from the lake respectively) had anything to do with the Dead Sea area. PMID:9426915

  17. Perceiving the average color.

    PubMed

    Srivatsav, Siddhart; Webster, Jacquelyn; Webster, Michael

    2015-01-01

    The average color in a scene is a potentially important cue to the illuminant and thus for color constancy, but it remains unknown how well and in what ways observers can estimate the mean chromaticity. We examined this by measuring the variability in "achromatic" settings for stimuli composed of different distributions of colors. The displays consisted of a 15 by 15 palette of colors shown on a gray background on a monitor, with each chip subtending 0.5 deg. Individual colors were randomly sampled from varying contrast ranges along the luminance, S and LM cardinal axes. Observers were instructed to adjust the chromaticity of the palette so that the mean was gray, with variability estimated from 20 or more repeated settings. This variability increased progressively with increasing contrast in the distributions, with large increases for chromatic contrast but also weak effects for added luminance contrast. Signals along the cardinal axes are relatively independent in many detection and discrimination tasks, but showed strong interference in the white estimates. Specifically, adding S contrast increased variability in the white settings along both the S and LM axes, and vice versa. This "cross-masking" and the effects of chromatic variance in general may occur because observers cannot explicitly perceive or represent the mean of a set of qualitatively different hues (e.g. that red and green hues average to gray), and thus may infer the mean only indirectly (e.g. from the relative saturation of different hues). Meeting abstract presented at VSS 2015. PMID:26326088

  18. Preliminary study to examine the utility of using foot burn or hock burn to assess aspects of housing conditions for broiler chicken.

    PubMed

    Haslam, S M; Brown, S N; Wilkins, L J; Kestin, S C; Warriss, P D; Nicol, C J

    2006-02-01

    1. Eleven broiler chicken farms, representing 4 production system types, were visited during the last 5 d of the flock cycle: bird and flock details were recorded. Litter friability was assessed at 9 sites within the house, atmospheric ammonia was measured at three sites and bird cleanliness was assessed on a numerical rating scale. 2. For these flocks, hock burn, foot burn and breast burn were measured at the processing plant by standardised assessors. 3. Significant correlations were identified between the percentage of birds with foot burn and average litter score, average house ammonia concentrations and feather score. 4. No correlation was found between the percentage of birds with hock burn or breast burn and average litter scores, average ammonia concentrations or feather score. 5. No correlation was found between stocking density and foot burn, hock burn or breast burn.6. If confirmed, these findings may have implications for the draft EU Broiler Directive, for which it is proposed that permitted stocking density on farm may be determined by the incidence and severity of contact dermatitis measured on plant. PMID:16546791

  19. [Treatment of hydrofluoric acid burns].

    PubMed

    Thiele, B; Winter, U J; Mahrle, G; Steigleder, G K

    1986-01-31

    A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers. PMID:3943470

  20. Skin Burns (Beyond the Basics)

    MedlinePlus

    ... better describes which burns require surgical treatment. The classification of a burn can change over the first ... only by loading the software on a single computer (i.e., within a single CPU) at a ...

  1. [Burn injuries and mental health].

    PubMed

    Palmu, Raimo; Vuola, Jyrki

    2016-01-01

    Currently a large proportion of patients with severe burn injuries survive. This gives increasing challenges also for psychological recovery after the trauma. More than half of burn patients have mental disorders already before the burn injury but also patients who previously had no mental disorders may suffer from them. Some of the hospitalize burn patients have injuries due to suicidal attempts. Only a small proportion of burn patients receive appropriate psychiatric care although psychosocial interventions specifically planned for burn victims exist. More frequent screening of symtoms of mental disorders and psychiatric consultation, also after acute care in hospital, could lead to better management of post-burn psychiatric care as well as better management of the burn treatment and rehabilitation itself. PMID:27089616

  2. Severe metabolic acidosis following assault chemical burn

    PubMed Central

    Roock, Sophie D; Deleuze, Jean-Paul; Rose, Thomas; Jennes, Serge; Hantson, Philippe

    2012-01-01

    Assault chemical burns are uncommon in northern Europe. Besides local toxicity, systemic manifestations are possible after strong acid exposure. A 40-year-old woman was admitted 1 h after a criminal assault with sulfuric acid. The total burned surface area was 35%, third degree. Injury was due to sulfuric acid (measured pH 0.9) obtained from a car battery. Immediate complications were obstructive dyspnea and metabolic acidosis. The admission arterial pH was 6.92, with total bicarbonate 8.6 mEq/l and base deficit 23.4 mEq/l. The correction of metabolic acidosis was achieved after several hours by the administration of bicarbonate and lactate buffers. The patient developed several burns-related complications (sepsis and acute renal failure). Cutaneous projections of strong acids may cause severe metabolic acidosis, particularly when copious irrigation and clothes removal cannot be immediately performed at the scene. PMID:22787349

  3. Severe metabolic acidosis following assault chemical burn.

    PubMed

    Roock, Sophie D; Deleuze, Jean-Paul; Rose, Thomas; Jennes, Serge; Hantson, Philippe

    2012-04-01

    Assault chemical burns are uncommon in northern Europe. Besides local toxicity, systemic manifestations are possible after strong acid exposure. A 40-year-old woman was admitted 1 h after a criminal assault with sulfuric acid. The total burned surface area was 35%, third degree. Injury was due to sulfuric acid (measured pH 0.9) obtained from a car battery. Immediate complications were obstructive dyspnea and metabolic acidosis. The admission arterial pH was 6.92, with total bicarbonate 8.6 mEq/l and base deficit 23.4 mEq/l. The correction of metabolic acidosis was achieved after several hours by the administration of bicarbonate and lactate buffers. The patient developed several burns-related complications (sepsis and acute renal failure). Cutaneous projections of strong acids may cause severe metabolic acidosis, particularly when copious irrigation and clothes removal cannot be immediately performed at the scene. PMID:22787349

  4. Mapping and monitoring cropland burning in European Russia: a multi-sensor approach

    NASA Astrophysics Data System (ADS)

    Hall, J.; Loboda, T. V.; Mccarty, G.; McConnell, L.; Woldemariam, T.

    2013-12-01

    Short lived aerosols and pollutants transported from high northern latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon (BC) is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Early studies have suggested that cropland burning may be a high contributor to the BC emissions which are directly deposited above the Arctic Circle. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited. Most existing algorithms are focused on mapping hotter and larger wildfire events. The timing of cropland burning differs from wildfire events and their transient nature adds a further challenge to the product development. In addition, the analysis of multi-year cloud cover over Russian croplands, using the Moderate Resolution Imaging Spectroradiometer (MODIS) daily surface reflectance data showed that on average early afternoon observations from MODIS/ Aqua provided 68 clear views per growing period (defined 1st March 2003 - 30th November 2012) with a range from 30 to 101 clear views; whereas MODIS/Terra provided 75 clear views per growing period (defined 1st March 2001 - 30th November 2012) with a range from 37 to 113 clear views. Here we present a new approach to burned area mapping in croplands from satellite imagery. Our algorithm is designed to detect burned area only within croplands and does not have the requirements to perform well outside those. The algorithm focuses on tracking the natural intra-annual development curve specific for crops rather than natural vegetation and works by identifying the subtle spectral nuances between varieties of cropland field categories. Using a combination of the high visual accuracy from very high resolution (VHR, defined as spatial resolution < 5m) imagery and the temporal trend of MODIS data, we are able to differentiate between burned and plowed cropland fields in European Russia. The VHR imagery allows for more accurate identification of field condition (burned, bare, residue) through visual interpretation and by the incorporation of the 1km MODIS Active Fire (MCD14) dataset as a means of independent validation for the selection of burned training and validation samples. Confirmed by active fire and visual assessment, these fields then serve as a subset of training data to extract a larger sample set of burned fields from VHR imagery, using the Near Infrared (NIR) band (760-900 nm). NIR showed the largest statistical differences between the burned and unburned field samples using ANOVA and post-hoc statistics with an f value (625.8) far exceeding the critical F-value of 2.665 at p < 0.05. Early-stage validation of the algorithm has shown notable improvement in accuracy over the existing MODIS-based global (MCD64 and MCD45) and regional approaches. Large confusion is found over the mollisol (dark-soil) regions compared to the lighter soil areas of the north. Further algorithm improvements, which rely on in situ observations and other auxiliary sources of information, are underway. In the future, we plan to expand applications of this algorithm to cover all Russian croplands between 2001 and 2013.

  5. Anti-HLA sensitization in extensively burned patients: extent, associated factors, and reduction in potential access to vascularized composite allotransplantation.

    PubMed

    Duhamel, Patrick; Suberbielle, Caroline; Grimbert, Philippe; Leclerc, Thomas; Jacquelinet, Christian; Audry, Benoit; Bargues, Laurent; Charron, Dominique; Bey, Eric; Lantieri, Laurent; Hivelin, Mikael

    2015-05-01

    Extensively burned patients receive iterative blood transfusions and skin allografts that often lead to HLA sensitization, and potentially impede access to vascularized composite allotransplantation (VCA). In this retrospective, single-center study, anti-HLA sensitization was measured by single-antigen-flow bead analysis in patients with deep, second- and third-degree burns over ≥40% total body surface area (TBSA). Association of HLA sensitization with blood transfusions, skin allografts, and pregnancies was analyzed by bivariate analysis. The eligibility for transplantation was assessed using calculated panel reactive antibodies (cPRA). Twenty-nine patients aged 32 ± 14 years, including 11 women, presented with a mean burned TBSA of 54 ± 11%. Fifteen patients received skin allografts, comprising those who received cryopreserved (n = 3) or glycerol-preserved (n = 7) allografts, or both (n = 5). An average 36 ± 13 packed red blood cell (PRBC) units were transfused per patient. In sera samples collected 38 ± 13 months after the burns, all patients except one presented with anti-HLA antibodies, of which 13 patients (45%) had complement-fixing antibodies. Eighteen patients (62%) were considered highly sensitized (cPRA≥85%). Cryopreserved, but not glycerol-preserved skin allografts, history of pregnancy, and number of PRBC units were associated with HLA sensitization. Extensively burned patients may become highly HLA sensitized during acute care and hence not qualify for VCA. Alternatives to skin allografts might help preserve their later access to VCA. PMID:25683513

  6. [Objectives, results and future prospects of burn treatment in 1997].

    PubMed

    Carsin, H; Ainaud, P; Le Bever, H; Rives, J M; Le Coadou, A; Stephanazzi, J

    1997-10-01

    When burn injuries to the skin are extensive, delays in wound closure contribute to multiple organ failure because the availability of donor sites does not allow early and permanent coverage of excised wounds. From 1991 to 1996, 30 patients with a mean burn size of 78% total body surface area (65% full-thickness) underwent skin grafting with autologous cultured epidermis (AEC) performed in the labs of Genzyme Tissue Repair Company. Twenty three were adults and seven children under 15 (mean age 29, range 2.5 to 70); 27 suffered inhalation injury; 3 presented with multiple trauma and 2 with blast injury. As soon as possible wound beds were excised and temporarily covered with allografts or with sandwich or meshed autografts; the mean surface covered with autografts was 28 +/- 12%. Keratinocytes grafts were applied to a mean of 37 +/- 16.5%, an average of 210 grafts of 25 to 30 cm2. Three patients died respectively at day 67, 81 and 90. At time of gaze backing removal, the mean percentage of culture engraftment was 69% (range 25 to 95); this engraftment was higher for children (74%) and very bad above 60 (25%). The mean length of hospitalisation was 114 +/- 30 days. The definitive coverage by AEC was evaluated through the percentage of secondary autografted area: 10 +/- 9.5% (range 0 to 46). The average cost by patient was 98,500$ or 16$ by cm2 of culture. The weakness of epithelialisation makes essential a dermal support to the keratinocytes cultures, allodermis is now currently used, perhaps the new skin substitutes will give the ideal missing piece. PMID:9528178

  7. Treatment of a severe alkali burn.

    PubMed

    Erdmann, D; Hussmann, J; Kucan, J O

    1996-03-01

    The case history of a 20-year-old male patient who sustained an 85 per cent total body surface area alkali burn to his skin, after falling into a caustic lime pit, is reported. Considerable problems regarding the correct estimate of burn wound depth, predominant location of the deepest burn on the posterior half of the body, appropriate wound coverage, and lack of sufficient skin graft donor sites required a complex treatment plan. Excisions to fascia and intradermal debridement were required to achieve an appropriate bed for wound closure. Five per cent mafenide acetate solution (Sulfamylon) was applied to prevent burn wound sepsis. Human allografts and Biobrane were used extensively to achieve temporary wound closure, to provide mechanical protection of freshly autografted wounds, and to prevent desiccation following application of cultured epidermal autografts on to debrided wounds and split thickness skin grafted donor sites. The case illustrates a number of problems associated with the evaluation and treatment of patients suffering severe alkali burns, and demonstrates the implementation of both established and evolving technologies in the management of these injuries. PMID:8634123

  8. Burn resuscitation on the African continent.

    PubMed

    Rode, H; Rogers, A D; Cox, S G; Allorto, N L; Stefani, F; Bosco, A; Greenhalgh, D G

    2014-11-01

    A survey of members of the International Society of Burn Injuries (ISBI) and the American Burn Association (ABA) indicated that although there was difference in burn resuscitation protocols, they all fulfilled their functions. This study presents the findings of the same survey replicated in Africa, the only continent not included in the original survey. One hundred and eight responses were received. The mean annual number of admissions per unit was ninety-eight. Fluid resuscitation was usually initiated with total body surface area burns of either more than ten or more than fifteen percent. Twenty-six respondents made use of enteral resuscitation. The preferred resuscitation formula was the Parkland formula, and Ringer's Lactate was the favoured intravenous fluid. Despite satisfaction with the formula, many respondents believed that patients received volumes that differed from that predicted. Urine output was the principle guide to adequate resuscitation, with only twenty-one using the evolving clinical picture and thirty using invasive monitoring methods. Only fifty-one respondents replied to the question relating to the method of adjusting resuscitation. While colloids are not available in many parts of the African continent on account of cost, one might infer than African burn surgeons make better use of enteral resuscitation. PMID:24560434

  9. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  10. Temperature averaging thermal probe

    NASA Technical Reports Server (NTRS)

    Kalil, L. F.; Reinhardt, V. (Inventor)

    1985-01-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  11. Segmentation and classification of burn images by color and texture information.

    PubMed

    Acha, Begoña; Serrano, Carmen; Acha, José I; Roa, Laura M

    2005-01-01

    In this paper, a burn color image segmentation and classification system is proposed. The aim of the system is to separate burn wounds from healthy skin, and to distinguish among the different types of burns (burn depths). Digital color photographs are used as inputs to the system. The system is based on color and texture information, since these are the characteristics observed by physicians in order to form a diagnosis. A perceptually uniform color space (L*u*v*) was used, since Euclidean distances calculated in this space correspond to perceptual color differences. After the burn is segmented, a set of color and texture features is calculated that serves as the input to a Fuzzy-ARTMAP neural network. The neural network classifies burns into three types of burn depths: superficial dermal, deep dermal, and full thickness. Clinical effectiveness of the method was demonstrated on 62 clinical burn wound images, yielding an average classification success rate of 82%. PMID:16229658

  12. Healthcare costs of burn patients from homes without fire sprinklers

    PubMed Central

    Banfield, Joanne; Rehou, Sarah; Gomez, Manuel; Redelmeier, Donald A.; Jeschke, Marc G.

    2014-01-01

    The treatment of burn injuries requires high-cost services for healthcare and society. Automatic fire sprinklers are a preventive measure that can decrease fire injuries, deaths, property damage and environmental toxins. This study’s aim was to conduct a cost-analysis of patients with burn or inhalation injuries due to residential fires, and to compare this to the cost of implementing residential automatic fire sprinklers. We conducted a cohort analysis of adult burn patients admitted to our provincial burn center (1995–2012). Patient demographics and injury characteristics were collected from medical records, and clinical and coroner databases. Resource costs included average cost per day at our intensive care and rehabilitation program, transportation, and property loss. During the study period there were 1,557 residential fire-related deaths province-wide and 1,139 patients were admitted to our provincial burn center due to a flame injury occurring at home. At our burn center, the average cost was CAN$84,678 per patient with a total cost of CAN$96,448,194. All resources totaled CAN$3,605,775,200. This study shows the considerable healthcare costs of burn patients from homes without fire sprinklers. PMID:25412056

  13. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Chemistry ...

  14. PGN Prescribed Burn Research Summary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1997, we have been studying the effects of prescribed burns conducted during late winter on shortgrass steppe on the Pawnee National Grassland. During 1997 – 2002, we studied burns on the western (Crow Valley) portion of the Pawnee by comparing plant growth on burns conducted by the Forest Ser...

  15. BURN DATA COORDINATING CENTER (BDCC)

    EPA Science Inventory

    The Burn Data Coordinating Center (BDCC) began collecting data in 1994 and is currently the largest burn database in the country. Pediatric burn data was added in 1998. The BMS database contains over 2,800 cases supporting clinical research and research on outcomes including empl...

  16. Chemical Debridement of Burns

    PubMed Central

    Levenson, Stanley M.; Kan, Dorinne; Gruber, Charles; Crowley, Leo V.; Lent, Richard; Watford, Alvin; Seifter, Eli

    1974-01-01

    The development of effective, non-toxic (local and systemic) methods for the rapid chemical (enzymatic and non-enzymatic) debridement of third degree burns would dramatically reduce the morbidity and mortality of severely burned patients. Sepsis is still the major cause of death of patients with extensive deep burns. The removal of the devitalized tissue, without damage to unburned skin or skin only partially injured by burning, and in ways which would permit immediate (or very prompt) skin grafting, would lessen substantially the problems of sepsis, speed convalescence and the return of these individuals to society as effective human beings, and would decrease deaths. The usefulness and limitations of surgical excision for patients with extensive third degree burns are discussed. Chemical debridement lends itself to complementary use with surgical excision and has the potential advantage over surgical excision in not requiring anesthesia or a formal surgical operation. The authors' work with the chemical debridement of burns, in particular the use of Bromelain, indicates that this approach will likely achieve clinical usefulness. The experimental studies indicate that rapid controlled debridement, with minimal local and systemic toxicity, is possible, and that effective chemotherapeutic agents may be combined with the Bromelain without either interfering with the actions of the other. The authors believe that rapid (hours) debridement accomplished by the combined use of chemical debriding and chemotherapeutic agents will obviate the possibility of any increase in infection, caused by the use of chemical agents for debridement, as reported for Paraenzyme21 and Travase.39,48 It is possible that the short term use of systemic antibiotics begun just before and continued during, and for a short time after, the rapid chemical debridement may prove useful for the prevention of infection, as appears to be the case for abdominal operations of the clean-contaminated and contaminated types. ImagesFigs. 1a-c.Fig. 1b.Fig. 1c.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8.Fig. 9a.Fig. 9B.Fig. 10.Fig. 11.Figs. 12a-c.Fig. 12b.Fig. 12c.Figs. 14a-c.Fig. 14b.Fig. 14c.Figs. 15a-c.Fig. 15b.Fig. 15c. PMID:4606330

  17. Algorithm for Primary Full-thickness Skin Grafting in Pediatric Hand Burns

    PubMed Central

    Park, Yang Seo; Huh, Gi Yeun; Koh, Jang Hyu; Seo, Dong Kook; Choi, Jai Koo; Jang, Young Chul

    2012-01-01

    Background Pediatric hand burns are a difficult problem because they lead to serious hand deformities with functional impairment due to rapid growth during childhood. Therefore, adequate management is required beginning in the acute stage. Our study aims to establish surgical guidelines for a primary full-thickness skin graft (FTSG) in pediatric hand burns, based on long-term observation periods and existing studies. Methods From January 2000 to May 2011, 210 patients underwent primary FTSG. We retrospectively studied the clinical course and treatment outcomes based on the patients' medical records. The patients' demographics, age, sex, injury site of the fingers, presence of web space involvement, the incidence of postoperative late deformities, and the duration of revision were critically analyzed. Results The mean age of the patients was 24.4 months (range, 8 to 94 months), consisting of 141 males and 69 females. The overall observation period was 6.9 years (range, 1 to 11 years) on average. At the time of the burn, 56 cases were to a single finger, 73 to two fingers, 45 to three fingers, and 22 to more than three. Among these cases, 70 were burns that included a web space (33.3%). During the observation, 25 cases underwent corrective operations with an average period of 40.6 months. Conclusions In the volar area, primary full-thickness skin grafting can be a good indication for an isolated injured finger, excluding the web spaces, and injuries of less than three fingers including the web spaces. Also, in the dorsal area, full-thickness skin grafting can be a good indication. However, if the donor site is insufficient and the wound is large, split-thickness skin grafting can be considered. PMID:23094243

  18. Are visceral proteins valid markers for nutritional status in the burn intensive care unit?

    PubMed

    Shields, Beth A; Pidcoke, Heather F; Chung, Kevin K; Wade, Charles E; Martini, Wenjun Z; Renz, Evan M; Wolf, Steven E

    2015-01-01

    The aim of this study was to determine whether visceral protein levels increase under positive nitrogen balance during times of decrease in acute-phase reactant levels in patients with burn injury. This was a post hoc analysis of a prospective, interventional study approved by the local institutional review board. A total of 10 subjects between the ages of 18 and 72 with ≥ 20% total body surface area burn were enrolled over a 14-month period. Data were collected for five subjects (average age of 28 ± 8 years and total body surface area burn of 69 ± 15%) who met the inclusion criteria. Changes in visceral protein levels were examined along with nitrogen balance and acute-phase reactants when the subjects were on enteral nutrition, and the proteins were not examined during times of acute kidney injury. Descriptive statistics were performed, and linear regression was used to analyze the association of visceral proteins and nitrogen balance during times that acute-phase reactant levels were decreasing. The subjects received an average of 3044 ± 1613 kcal/day (39 ± 20 kcal/kg), meeting 72% of caloric goals and achieving positive nitrogen balance during 68% of the 40 weekly measurements, with 174 ± 85 g of protein intake per day (2.2 ± 1.1 g/kg). There was a weak relationship between nitrogen balance and changes in visceral protein levels during times that the acute-phase reactant levels were decreasing (P > .05). Visceral proteins were found to be poor markers of nutritional status. This study is unique because the subjects were able to achieve positive nitrogen balance despite severe burns. PMID:25055006

  19. Amputation Following Hand Escharotomy in Patients with Burn Injury

    PubMed Central

    Schulze, Scott M.; Choo, Joshua; Cooney, Damon; Moore, Alyssa L.; Sebens, Matt; Neumeister, Michael W.; Wilhelmi, Bradon J.

    2016-01-01

    Objective: Hand burns are commonly seen in patients with burn injury. In the past, focus was on lifesaving measures, but with advances in burn care during the last century, the paradigm shifted to digital salvage and eventually to functional digital salvage. Good outcomes are heavily dependent on the care that is rendered during the initial management of the burn. Methods: A retrospective medical record review was conducted through the Central Illinois Regional Burn Center Patient Registry. Patients with burn injury treated with upper extremity and hand escharotomy between January 1, 2000, and December 31, 2005, were included in the study. Results: We identified a total of 34 patients with 57 burned hands. Six hands required delayed amputation of digits despite recognition of neurovascular compromise and escharotomy, yielding a 10% amputation rate. No correlation could be drawn with regard to total body surface area, age, or sex. Conclusion: Important principles in the acute phase include early splinting, recognition of the need for escharotomy and complete escharotomy when necessary, early excision and grafting, and involvement of occupational therapy for splinting and to guide both active and passive exercises. Although uncommon, some extremity burns may require subsequent amputation despite prompt attention and optimal treatment. In our case series, the need for amputation after successful escharotomies of salvageable digits was associated with full-thickness and electrical burns. PMID:26977219

  20. Burn propagation rates of metals and alloys in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Shaw, R. C.; Homa, J. M.

    1986-01-01

    The average burn rates of several metals and alloys were determined at oxygen pressures between 3.45 and 68.91 MPa (500 and 10,000 psig) and ambient temperature. Several materials were tested at elevated sample temperatures. The test materials were fabricated into solid cylindrical rods and mounted vertically in the test chamber. A magnesium igniter was positioned at the bottom end of each test specimen to promote upward burn propagations. Nickel 200 and copper 102 could not be ignited at all oxygen pressures tested whereas Monel 400 appeared to ignite but quickly self-extinguished. The other materials tested burned the entire length of the test sample. Aluminum 6061 exhibited the fastest burn propagation rate. Inconel 718 burned slower than aluminum but faster than the stainless steels (types 304 and 316). Increasing oxygen pressure generally increased the burn propagation rate of the materials. Increasing the ambient temperature of the test specimens for several materials to approximately 850 K (1070 F) had little effect upon the ignition or burn properties of nickel 200 or Monel 400. Type 316 stainless steel exhibited an increase in its burn propagation rate at this higher temperature.

  1. The nitric acid burn trauma of the skin.

    PubMed

    Kolios, L; Striepling, E; Kolios, G; Rudolf, K-D; Dresing, K; Dörges, J; Stürmer, K M; Stürmer, E K

    2010-04-01

    Nitric acid burn traumata often occur in the chemical industry. A few publications addressing this topic can be found in the medical database, and there are no reports about these traumata in children. A total of 24 patients, average 16.6 years of age, suffering from nitric acid traumata were treated. Wound with I degrees burns received open therapy with panthenol-containing creams. Wound of II degrees and higher were initially treated by irrigation with sterile isotonic saline solution and then by covering with silver-sulphadiazine dressing. Treatment was changed on the second day to fluid-absorbent foam bandages for superficial wounds (up to IIa degrees depth) and occlusive, antiseptic moist bandages in combination with enzymatic substances for IIb degrees -III degrees burns. After the delayed demarcation, necrectomy and mesh-graft transplantation were performed. All wounds healed adequately. Chemical burn traumata with nitric acid lead to specific yellow- to brown-stained wounds with slower accumulation of eschar and slower demarcation compared with thermal burns. Remaining wound eschar induced no systemic inflammation reaction. After demarcation, skin transplantation can be performed on the wounds, as is commonly done. The distinguishing feature of nitric-acid-induced chemical burns is the difficulty in differentiation and classification of burn depth. An immediate lavage should be followed by silver sulphadiazine treatment. Thereafter, fluid-absorbent foam bandages or occlusive, antiseptic moist bandages should be used according to the burn depth. Slow demarcation caused a delay in performing surgical treatments. PMID:19875347

  2. Epidemiology and outcome of burns at the Saud Al Babtain Burns, Plastic Surgery and Reconstructive Center, Kuwait: our experience over five years (from 2006 to 2010)

    PubMed Central

    Khashaba, H.A.; Al-Fadhli, A.N.; Al-Tarrah, K.S.; Wilson, Y.T.; Moiemen, N.

    2012-01-01

    Summary Aim To determine the epidemiology and clinical presentation, and any contributing factors responsible for burns and outcome of care in Kuwait over the 5-yr period January 2006 to December 2010. Patients and methods. The study reviewed 1702 burn patients admitted over the study period to the Saud Al Babtain Burns, Plastic and Reconstructive Surgery Center, Kuwait. Patient characteristics, including age, sex, type of burn, nationality, total body surface area (TBSA) burn, hospital stay in days, and mortality were recorded. Results. Seventy-one per cent of the 1702 burn patients admitted were males; 540 were children. The majority of patients (64%) had less than 15% TBSA burns and only 14% had more than 50% TBSA burns. Flame burns were the most common cause of burn injuries (60%), followed by scalds (29%). Scalds were most common in children. The mortality rate was 5.75%. Flame burn was the leading cause of mortality. Lethal dose 50 (% TBSA at which a certain group has a 50% chance of survival) for adults (16-40 yr) and for the elderly (>65 yr) was 76.5% and 41.8% TBSA respectively. Conclusion. Burn injury is an important public health concern and is associated with high morbidity and mortality. Flame and scald burns are commonly a result of domestic and occupational accidents and they are preventable. Effective initial resuscitation, infection control, and adequate surgical treatment improve outcomes. PMID:23766750

  3. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    PubMed Central

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. Conclusions: To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale. PMID:22174972

  4. Amish Culture and Their Utilization of Burns and Wounds Ointment for the Treatment of Burns.

    PubMed

    Trinkle, Krystal Melich

    2016-01-01

    As indicated in the 2010 United States Religion Census, there are approximately 251 000 Amish people in the United States and Ontario. This census also demonstrated that a new Amish community is founded on average about every three-and-a-half weeks, suggesting that this religious culture is the fastest-growing religion throughout the United States. Because of the rapid growth of the Amish population, it is essential for health care workers to understand their background, cultural, and health care beliefs, especially in the treatment of burns. The purpose of this article is to examine the Amish background, cultural, and health care beliefs, specifically the utilization of burns and wounds ointment and burdock leaves in the treatment of burns. PMID:26871246

  5. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning... obtain approval of a permit under § 49.134 Rule for forestry and silvicultural burning permits....

  6. Using satellite image-based maps to improve sugarcane straw burning emission estimates in the state of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    França, D.; Longo, K.; Rudorff, B.; Aguiar, D.; Freitas, S. R.; Stockler, R.; Pereira, G.

    2014-12-01

    Since the last decade, the global demand for biofuel production has been increasing every year due to the growing need for energy supply security and mitigation of greenhouse gases (GHG). Currently, sugarcane ethanol is one of the most widely used biofuels and Brazil is already the world's largest sugarcane producer, devoting almost 50% of it to ethanol production. The state of São Paulo is the major sugarcane producer in this country, with a cultivated area of about 5.4 Mha in 2011. Approximately 2 million hectares were harvested annually from 2006 to 2011 with the pre-harvest straw burning practice, which emits trace gases and particulate material to the atmosphere. The assessment and monitoring of sugarcane burning impacts are fundamental in order to mitigate the negative impacts of pre-harvest burning and consolidate the environmental benefits of sugarcane ethanol. Although some official inventories created by the Brazilian government have indicated the prevalence of emissions from sugarcane straw burning in total agricultural residue emissions, specific information about emissions of gases and aerosols during pre-harvest burning of sugarcane is still scarce in Brazil. This study aimed to contribute to the improvement of estimates of emissions from sugarcane burning through the use of specific parameters for sugarcane straw burning and a method which has avoided underestimations resulting from the unique characteristics of this type of biomass fire. In this investigation, emissions of several air pollutants released by sugarcane burning during the harvest season were estimated through the integrated use of remote sensing based maps of sugarcane burned area and a numerical tool for the state of São Paulo from 2006 to 2011. Average estimated emissions (Gg/year) were 1,130 ± 152 for CO, 26 ± 4 for NOX, 16 ± 2 for CH4, 45 ± 6 for PM2.5, 120 ± 16 for PM10 and 154 ± 21 for NMHC (non-methane hydrocarbons). An intercomparison among annual emissions from this study and annual emissions from four other different approaches indicated that the estimates obtained by satellite fire detection or low spatial resolution approaches tend to underestimate sugarcane burned area. Overall, our results also indicated that government actions to reduce sugarcane straw burning emissions are becoming effective.

  7. 13. Southwest corner of burning hood and incinerator. North wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Southwest corner of burning hood and incinerator. North wall of scrubber cell room. Looking southwest. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  8. Global biomass burning - Atmospheric, climatic and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1990-01-01

    Changes in the trace gas composition of the atmosphere due to global biomass burning are examined. The environmental consequences of those changes which have become areas of international concern are discussed.

  9. Burns and beauty nails

    PubMed Central

    Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671

  10. 'Burns Cliff' Color Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Burns Cliff' Color Panorama (QTVR)

    NASA's Mars Exploration Rover Opportunity captured this view of 'Burns Cliff' after driving right to the base of this southeastern portion of the inner wall of 'Endurance Crater.' The view combines frames taken by Opportunity's panoramic camera between the rover's 287th and 294th martian days (Nov. 13 to 20, 2004).

    This is a composite of 46 different images, each acquired in seven different Pancam filters. It is an approximately true-color rendering generated from the panoramic camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The mosaic spans more than 180 degrees side to side. Because of this wide-angle view, the cliff walls appear to bulge out toward the camera. In reality the walls form a gently curving, continuous surface.

  11. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions.

    PubMed

    Sillapapiromsuk, Sopittaporn; Chantara, Somporn; Tengjaroenkul, Urai; Prasitwattanaseree, Sukon; Prapamontol, Tippawan

    2013-11-01

    Biomass samples including agricultural waste (rice straw and maize residue) and forest leaf litter were collected from Chiang Mai Province, Thailand for the burning experiment in the self-designed stainless steel chamber to simulate the emissions of PM10. The burning of leaf litter emitted the highest PM10 (1.52±0.65 g kg(-1)). The PM10-bound ions emitted from the burning of rice straw and maize residue showed the same trend, which was K(+)>Cl(-)>SO4(2-)>NH4(+)>NO3(-). However, the emissions from maize residue burning were ~1.5-2.0 times higher than those from the rice straw burning. The ion content emitted from leaf litter burning was almost the same for all ion species. Noticeably, K(+) and Cl(-) concentrations were ~2-4 times lower than those emitted from agricultural waste burning. It can be deduced that K(+) and Cl(-) were highly emitted from agricultural waste burning due to the use of fertilizer and herbicides in the field, respectively. Based on emission values obtained from the chamber, the pollutant emission rate from open burning was calculated. Burned areas in Chiang Mai Province were 3510 and 866 km(2) in 2010 and 2011, respectively. Forest burning was 71-88%, while agricultural land burning accounted for 12-29% (rice field: crop field=1:3) of total burned area. Therefore, emissions of PM10 from open burning in Chiang Mai were 3051 ton (2010) and 705 ton (2011). Major ions emitted from agricultural waste burning were found to be K(+) and Cl(-), while those from forest burning were SO4(2-) and K(+). PMID:23891258

  12. Wood burning stove

    SciTech Connect

    Allaire, R.A.; Vandewoestine, R.V.

    1982-08-24

    Disclosed herein is an improved wood burning stove employing a combustion chamber and a flue in communication therewith for removal of exhaust from the chamber with a catalytic converter means being movably mounted in the flue whereby the impedance presented to the exhaust by the converter may be selectively varied so as to minimize the impedance presented by the converter means when additional fuel is added to the stove.

  13. Epidemiology of minor and moderate burns in rural Ardabil, Iran.

    PubMed

    Sadeghi-Bazargani, Homayoun; Mohammadi, Reza; Svanstrom, Leif; Ekman, Robert; Arshi, Shahnam; Hekmat, Sharareh; Malekpour, Niloufar; Mashoufi, Mehrnaz

    2010-09-01

    Epidemiology of minor burns is not well defined worldwide. The aim of this study was to examine epidemiological features of minor and moderate burn events that could be beneficial for prevention purposes. The study was conducted in Ardabil province in north-west Iran in 2005-2006. A total of 1700 minor and moderate burns were studied using a pretested questionnaire. Using the SAS 9.1 statistical program analyses were made. Females comprised the majority of cases (n=1000, 58.8%) and children, aged six and younger, made up 36.4% of burn victims. The majority of burns were caused by hot water and tea with the primary containers being kettles in 37.8%, cups or glasses in 24.2%, pots in 13.6% and samovars in 7.9%. Samovars, gas stoves, valors and picnic gas stoves were the primary heating devices involved in burns. In 56% of the cases, overturning of liquid containers was the primary injury mechanism of scalds. 43% had a second-degree burn with a mean total body surface area of 1.3%. This study provides possible beneficial information for burn prevention in the Ardabil area and other similar settings. PMID:20171014

  14. Inflammatory pain in experimental burns in man.

    PubMed

    Pedersen, J L

    2000-06-01

    Human experimental pain models are important tools in pain research. The primary aims of pain research in normal man is 1) to provide insight in pain mechanisms, 2) to provide a rational basis for clinical trials of pain relieving interventions, and 3) to confirm the anti-nociceptive effects demonstrated in animal models. Most often clinical pain is due to tissue damage leading to acute inflammation and hyperalgesia, but only few human pain models have examined pain responses in injured tissues. Therefore, models with controlled and reversible tissue trauma are needed. The human burn model is an example of such a model, and several groups have performed studies of analgesics and pain mechanisms based on the model. The thesis aims to provide a critical review of the human burn model as a tool in pain research, and to give suggestions for development of the model and future research. The pain and inflammatory responses to superficial thermal burns in skin have been studied in healthy volunteers. Burns have the potential for releasing most of the inflammatory and chemical mediators that produce sensitisation and excitation of nociceptors, and the intense nociceptive input during injury produces sensitisation of central neurones in the nociceptive pathway. Pain and hyperalgesia have been evaluated in the model by thermal, various mechanical, and electrical stimuli. The different methods of pain assessments are discussed to clarify the underlying neural mechanisms, the questions that can be addressed by the measurements, and the discrepancies in results between studies. Inflammation has been evaluated in the model by skin erythema intensity, area of flare, and blister formation. The major determinant of skin erythema intensity is the amount of blood in the most superficial part of the dermis, and burn-induced erythema may be primarily due to congestion of capillary loops and postcapillary venules. The area of flare may be used to evaluate the efferent function of heat-sensitive A delta- and C-fibre nociceptors, whereas blisters may be used to assess edema formation and the degree of injury. Hyperalgesia is induced immediately by the burns and lasts about 24 h dependent on the intensity of the heat stimulus. The burns heal without sequela. A study of the reproducibility of pain assessments in the burn model has shown that measures based on repeated measurements were significantly more reproducible than measures based on single time points. Further, within-day reproducibility was better than between-day reproducibility. Within-day variations of heat pain responses to 45 degrees C and 47 degrees C were smaller than that of pain responses to 43 degrees C, suggesting that assessments using clearly painful stimuli may be more reproducible. A methodological study also demonstrated that habituation to experimental pain developed as the study proceeded. Habituation is common in experimental pain models, and dividing analgesics and placebo evenly between the study days is one way of eliminating the effects of habituation. The use of simultaneous right-left comparisons represents the ideal design when possible. The burn model has been a valuable tool in the study of pain mechanisms. Hyperalgesia to heat in the burned area (primary hyperalgesia) is mediated by sensitisation of C-fibre mechano-heat-sensitive (CMH) nociceptors and A delta-fibre mechano-heat-sensitive (AMH) nociceptors of type I in hairy skin. A contribution from sensitised CNS neurones is likely, and the sensitisation of nociceptors is confined to the injured area. The presence of hyperalgesia to heat in normal skin surrounding a burn (secondary hyperalgesia) has been demonstrated in several studies, but the pain threshold may be unaltered. The mechanisms for primary hyperalgesia to mechanical stimuli may be both peripheral and central, but the importance of peripheral mechanisms is unclear and central mechanisms may account for mechanical hyperalgesia in both the primary and th PMID:10913984

  15. Coal burning arrangement

    SciTech Connect

    Wormser, A.F.

    1981-03-03

    Pyrolyzing pulverized coal to form char and volatiles, separating the char from the volatiles, burning the char in heattransfer relationship with a stoichiometric excess of air, forming thereby ash and a mixture of gases, the excess of air being chosen to produce in the ash a temperature below the fusion temperature thereof, separating the mixture of gases from the ash , and thereafter burning the volatiles in the mixture of gases. Also, coal burning apparatus which comprises, in combination a spouted bed pyrolyzer, a fluidized bed combustor, a first cyclone , a second cyclone, and an afterburner, the pyrolyzer being connected to accept pulverized coal and to discharge char to the combustor and gaseous materials with entrained particulate material to the first cyclone, the first cyclone being connected to deliver gases to the afterburner, the combustor being connected to accept also a combustion supporting gas and to deliver to the second cyclone gaseous materials with entrained particulate material, and the second cyclone being connected to deliver gaseous material to the afterburner.

  16. Burn Scar Near the Hanford Nuclear Reservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multi-angle Imaging Spectroradiometer (MISR) image pair shows 'before and after' views of the area around the Hanford Nuclear Reservation near Richland, Washington. On June 27, 2000, a fire in the dry sagebrush was sparked by an automobile crash. The flames were fanned by hot summer winds. By the day after the accident, about 100,000 acres had burned, and the fire's spread forced the closure of highways and loss of homes. These images were obtained by MISR's vertical-viewing (nadir) camera. Compare the area just above and to the right of the line of cumulus clouds in the May 15 image with the same area imaged on August 3. The darkened burn scar measures approximately 35 kilometers across. The Columbia River is seen wending its way around Hanford. Image courtesy NASA/GSFC/JPL, MISR Science Team

  17. Outpatient burns: prevention and care.

    PubMed

    Lloyd, Emillia C O; Rodgers, Blake C; Michener, Michael; Williams, Michael S

    2012-01-01

    Most burn injuries can be managed on an outpatient basis by primary care physicians. Prevention efforts can significantly lower the incidence of burns, especially in children. Burns should be managed in the same manner as any other trauma, including a primary and secondary survey. Superficial burns can be treated with topical application of lotions, honey, aloe vera, or antibiotic ointment. Partial-thickness burns should be treated with a topical antimicrobial agent or an absorptive occlusive dressing to help reduce pain, promote healing, and prevent wound desiccation. Topical silver sulfadiazine is the standard treatment; however, newer occlusive dressings can provide faster healing and are often more cost-effective. Physicians must reevaluate patients frequently after a burn injury and be aware of the indications for referral to a burn specialist. PMID:22230304

  18. Have we really decreased mortality due to severe burn injury in children?

    PubMed Central

    Holland, Andrew J. A.

    2015-01-01

    In developed countries, in the twenty-first century, severe, large total body surface area (TBSA) burn injuries in children are rare. Prevention campaigns, education and public health interventions have significantly decreased the number of children sustaining burn injuries as well as the severity of such injuries. Many technological medical and surgical advances have been developed in burn care over the past several decades, increasing survival. Despite these interventions, long-term survival post burn injury may still be significantly reduced. PMID:26835374

  19. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  20. Assessment of vitamin and trace element supplementation in severely burned patients undergoing long-term parenteral and enteral nutrition.

    PubMed

    Perro, G; Bourdarias, B; Cutillas, M; Higueret, D; Sanchez, R; Iron, A

    1995-10-01

    The efficacy of an oral supplement of vitamins and trace elements during a longterm artificial parenteral and enteral nutrition was investigated for 3 months in patients with extensive burns. Thirty severely burned patients (22 male, 8 female, age 41 +/- 18 years, range 23-59 years, 33 +/- 12% total body surface area burn, 22% +/- 8 full thickness burn surface area) were included. Every 10 days, from day 10 until day 90, we determined serum levels of: *vitamins B1, B12, A, E, *folic acid, *copper, zinc, iron, *transferrin, albumin, prealbumin, total proteins, *fibronectin, retinol binding protein (RBP), *calcium, *phosphorus, *triglycerides, *total cholesterol, *C reactive protein (CRP), *erythrocyte folic acid. The mean daily nutritional support was 60 Kcals and 0.4 g N per kg of body weight, 70% enterally and 30% parenterally administered, with enteral vitamin and trace element supplementation. On day 10, there was a decrease of the serum level of 19/20 parameters. For 8 parameters (vitamin A, total cholesterol, iron, transferrin, fibronectin, phosphorus, RBP, total proteins), the level was lower than usual. Between day 10 and day 20, a significant normalization of 6 of them was noted, the average levels of transferrin and iron remaining below normal values until day 50. There was a significant decrease in C-reactive protein levels, however above normal limits. No deficiency in vitamins or trace elements was found. Cyclic variations of serum levels occurred which may be more related to volemic, hydroelectrolytic, endocrine and inflammatory disorders than to nutritional problems. PMID:16843945

  1. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  2. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  3. Predictive Value of IL-8 for Sepsis and Severe Infections After Burn Injury: A Clinical Study.

    PubMed

    Kraft, Robert; Herndon, David N; Finnerty, Celeste C; Cox, Robert A; Song, Juquan; Jeschke, Marc G

    2015-03-01

    The inflammatory response induced by burn injury contributes to increased incidence of infections, sepsis, organ failure, and mortality. Thus, monitoring postburn inflammation is of paramount importance but, so far, there are no reliable biomarkers available to monitor and/or predict infectious complications after burn. As interleukin 8 (IL-8) is a major mediator for inflammatory responses, the aim of our study was to determine whether IL-8 expression can be used to predict postburn sepsis, infections, and mortality. Plasma cytokines, acute-phase proteins, constitutive proteins, and hormones were analyzed during the first 60 days after injury from 468 pediatric burn patients. Demographics and clinical outcome variables (length of stay, infection, sepsis, multiorgan failure [MOF], and mortality) were recorded. A cutoff level for IL-8 was determined using receiver operating characteristic analysis. Statistical significance is set at P < 0.05. Receiver operating characteristic analysis identified a cutoff level of 234 pg/mL for IL-8 for survival. Patients were grouped according to their average IL-8 levels relative to this cutoff and stratified into high (H) (n = 133) and low (L) (n = 335) groups. In the L group, regression analysis revealed a significant predictive value of IL-8 to percent of total body surface area burned and incidence of MOF (P < 0.001). In the H group, IL-8 levels were able to predict sepsis (P < 0.002). In the H group, elevated IL-8 was associated with increased inflammatory and acute-phase responses compared with the L group (P < 0.05). High levels of IL-8 correlated with increased MOF, sepsis, and mortality. These data suggest that serum levels of IL-8 may be a valid biomarker for monitoring sepsis, infections, and mortality in burn patients. PMID:25514427

  4. Biomass burning in Amazonia: Seasonal effects on atmospheric O sub 3 and CO

    SciTech Connect

    Kirchhoff, V.W.J.H.; Setzer, A.W.; Pereira, M.C. )

    1989-05-01

    The practice of shifting agricultural and the need for the colonization of new land areas determine each year considerable amounts of biomass burnings in the Brazilian Amazon region. This paper describes new results on the effects of these burnings on the composition of the lower atmosphere. Simultaneous measurements of O{sub 3} and CO are described at two sites: one within the burning region of central Brazil, Cuiaba (16{degree}S, 56{degree}W), and another one away from it, Natal (6{degree}S, 35{degree}W). The data obtained so far covers the 1987, 1988 dry season periods, when the burning intensity is maximum (July, August, September), and the wet season period of 1988, when practically no burnings occur. Both sites show minimum concentrations of O{sub 3} and CO in the wet season, with monthly averages in March of about 12 and 140 ppbv (parts per billion by volume) for Cuiaba, and about 10 and 80 ppbv, for Natal. While the seasonal increase at Natal is of the order of a factor of 2, the seasonal increase at Cuiaba for 1987 was about a factor of 4, and a factor of 6 for 1988. For the month of September 1987, O{sub 3} and CO had concentrations of 23 and 110 ppbv for Natal, whereas at Cubiabae these concentrations were 41 and 470 ppbv. The larger concentrations observed in September correlate well with the larger number of fires detected by the infrared radiometer on the NOAA-9 satellite.

  5. Household oven doors: a burn hazard in children.

    PubMed

    Yen, K L; Bank, D E; O'Neill, A M; Yurt, R W

    2001-01-01

    Contact with hot oven doors is an important cause of burns in pediatric patients. These burns are of particular concern because of their frequent localization to the hands, with the resulting negative implications for financial cost, long-term cosmesis, and hand function. A 5-year review of pediatric oven door burn cases admitted to a burn referral center was conducted. Of the 14 cases identified, the median age was 12 months. The median total body surface area (TBSA) was 1.75% (range, 0.5%-4.5%). Twelve of 14 cases involved 1 or both hands. The median length of hospital stay was 10 days. In 7 cases, burns were sustained from contact to an external surface of the oven. Based on the results obtained, we propose several prevention strategies. PMID:11177068

  6. Runoff Response at Three Spatial Scale from a Burned Watershed

    NASA Astrophysics Data System (ADS)

    Moody, J. A.; Kinner, D. A.

    2007-12-01

    The hypothesis that the magnitude and timing of runoff from burned watersheds are functions of the properties of flow paths at multiple scales was investigated at three nested spatial scales within an area burned by the 2005 Harvard Fire near Burbank, California. Water depths were measured using pressure sensors: at the outlet of a subwatershed (10000 m2); in 3-inch Parshall flumes near the outlets of three mini-watersheds (820-1780 m2) within the subwatershed; and by 12 overland-flow detectors in 6 micro-watersheds (~11-15 m2) within one of the mini-watersheds. Rainfall intensities were measured using recording raingages deployed around the perimeter of the mini-watersheds and at the subwatershed outlet. Time-to-concentration, TC, and lag time, TL, were computed for the 15 largest of 30 rainstorms (maximum 30- minute intensities were 3.3-13.0 mm/h) between December 2005 and April 2006. TC , elapsed time from the beginning of the rain until the first increase in water depth, averaged 1.0 hours at the micro-scale, 1.7 hours at the mini-scale, and 1.5 hours at the subwatershed scale. TL is the lag time that produced the maximum cross- correlation coefficient between the time series of rainfall intensities and the series of water depths. TL averaged 0.15 hours at the micro-scale, 0.35 hours at the mini-scale, and 0.39 hours at the subwatershed scale. The coefficient was >0.50 for 43% (N=168) of the measurements at the micro-scale, for 61% (N=54) at the mini- scale, and for 67% (N=6) at the subwatershed scale indicating the runoff response lagged but was often well correlated with the time-varying rainfall intensity.

  7. Deliberate self-burning in Mazandaran, Iran.

    PubMed

    Zarghami, Mehran; Khalilian, Alireza

    2002-03-01

    The authors in a prospective descriptive study, via a demographic questionnaire, semi-structured interview and/or psychological autopsy examined 318 cases of self-burning in Mazandaran, Iran during 3 years. The average age was 27 years and 83% of them were female. Most of them were married, home makers and with high school education. Sixty-two percent had an impulsive suicidal intention. The major motive was marital conflict. Ninety-five percent had a psychiatric diagnosis-mostly adjustment disorder and 30% had a chronic physical illness. Mortality rate was 79%. High prevalence of self-burning in the young population, the pattern of demographic factors, their motivations and high prevalence of adjustment disorders highlights the need for making preventive measures, which should be focused on family structure, particularly in relation to marriage. PMID:11900933

  8. Smoke impacts from agricultural burning in a rural Brazilian town.

    PubMed

    Reinhardt, T E; Ottmar, R D; Castilla, C

    2001-03-01

    Agricultural and silvicultural biomass burning is practiced in many undeveloped portions of the Amazon basin. In Rond nia, Brazil, such burning is restricted to a brief period in the dry season of August and September to minimize the duration of air quality impacts and to attempt to control escaped fires. During this period, much of the region and the communities within it experience significant exposure to smoke from agricultural and forest fires. In cooperation with Brazilian scientists of the University of Brasilia, the Brazilian Organization for Agricultural Research (EMBRAPA), and the Alternative to Slash and Burn Program coordinated by the International Center for Research in Agroforestry (ICRAF), ambient air quality was measured in Theobroma, a small town in Rond nia, during one week of the open burning period of 1995 to supplement available air quality data and to foster public awareness of the impacts of widespread fires. Personal sampling equipment was used to measure ambient levels of formaldehyde (HCHO), acrolein, CO, benzene, and respirable PM in outdoor air. The data obtained were compared with established Brazilian and U.S. ambient air quality guidelines. Ambient levels of respirable PM averaged 191 microg/m3, HCHO averaged 12.8 ppb, CO averaged 4.2 ppm, and benzene averaged 3.2 ppb. Almost all acrolein samples were less than the detection limit of 1 ppb. The results showed that the public can be exposed to relatively high levels of pollutants under the prescribed burning smoke management strategy of a two- to three-week prescription