Science.gov

Sample records for average friction coefficient

  1. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  2. Apparatus for measurement of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  3. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  4. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  5. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  6. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  7. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected. PMID:25273746

  8. High speed friction microscopy and nanoscale friction coefficient mapping

    NASA Astrophysics Data System (ADS)

    Bosse, James L.; Lee, Sungjun; Andersen, Andreas Sø; Sutherland, Duncan S.; Huey, Bryan D.

    2014-11-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s-1 for microfabricated SiO2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ~1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s-1 up to 2 cm s-1. While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems.

  9. Friction coefficient of faults inferred from earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Ranalli, Giorgio; Andreis, Daniele; Martin, Silvana; Rigon, Riccardo

    2013-04-01

    In earthquake mechanics and structural geology the static friction coefficient is usually assumed to have the laboratory value (μ = 0.6-0.8) according to the Coulomb-Byerlee's law. Estimates from deep boreholes and/or natural faults generally confirm this hypothesis but in some cases friction coefficients can be significantly lower, suggesting the existence of weak faults able to be activated by lower effective stress than theoretically expected. We apply a modified version of the method proposed by Yin and Ranalli (1995, Journal of Structural Geology, vol. 17, pp. 1327-1335), where the average friction coefficient of a set of n faults is estimated. This method is based on minimization of the sum of squares of the misfit ratios, where the misfit ratio of each fault is given dividing the misfit stress difference (i.e. the misfit between normalized stress difference and average normalized stress difference) by the average normalized stress difference. The normalized stress difference is defined as the critical stress difference divided by the effective overburden pressure, while the average stress difference is obtained considering the entire fault dataset. Input data are (i) the orientation of faults, (ii) the stress field orientation, and (iii) the stress ratio. The latter two must be independently estimated. A uniform stress field and a similar normalized critical stress difference for the fault dataset are assumed. The procedure has been extended to apply to fault plane solutions by considering both nodal planes of a set of n focal mechanisms and estimating the range of acceptable average friction coefficients from all possible combination of planes (2n number of combinations). The amount of calculation can be considerably reduced if independent information makes it possible to select which one of the nodal planes of each focal mechanism is the true fault plane (for example when aftershocks delineate the fault geometry at depth), resulting in only n combinations

  10. Micro- and macroscale coefficients of friction of cementitious materials

    SciTech Connect

    Lomboy, Gilson; Sundararajan, Sriram; Wang, Kejin

    2013-12-15

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses on bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.

  11. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  12. Friction coefficients of PTFE bearing liner

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1979-01-01

    Data discusses frictional characteristics of PTFE (polytetrafluoroethylene) under temperature extremes and in vacuum environment. Tests were also run on reduced scale hardware to determine effects of vacuum. Data is used as reference by designers of aircraft-control system rod-end bearings and for bearings used in polar regions.

  13. Electrostatic chucking of EUVL masks: coefficients of friction

    NASA Astrophysics Data System (ADS)

    Kalkowski, Gerhard; Semmler, Christian; Risse, Stefan; Peschel, Thomas; Damm, Christoph; Müller, Sandra; Bauer, René

    2010-04-01

    In extreme ultraviolet lithography (EUVL), the mask hangs on an electrostatic chuck and is moved laterally during exposition. For proper control of the chucked mask under corresponding inertial forces, static friction of the mask on the chuck is critical and an important input parameter for reliable theoretical modelling. To determine static and dynamic friction values, measurements were performed in vacuum on a mask blank with a test chuck, smaller than a real EUVL mask chuck, but otherwise nearly identical in its characteristics. Experimental results were obtained at various voltages for a materials combination of Low Thermal Expansion Glass (LTEM) for the pin chuck surface and a mask blank with a chromium metal backside metallisation, respectively. Dynamic friction was found to be only marginally smaller than static friction and values in the range from 0.27 to 0.33 were determined for the static friction coefficient under vacuum conditions.

  14. Determination of the static friction coefficient from circular motion

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-07-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.

  15. Nanotribology fundamentals: Predicting the viscous coefficient of friction

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya S.

    In this work, I have used the Quartz Crystal Microbalance (QCM) to study nanoscale friction of monolayer adsorbates on (111) metals. The friction of these systems is viscous friction, defined as Ff = etanu = ( mt )nu. Here, eta is the viscous coefficient of friction, nu is the velocity of the adsorbate, m is adsorbate mass, and tau is the slip time, which is the time required for the film's speed to fall to 1/e of its original value. The main focus of this dissertation is to determine the factors that control eta, the viscous coefficient of friction. I have examined three different parameters in order to determine their effect on eta. An equation for predicting the viscous coefficient of friction has been proposed: eta = etasubs + aU2o . Here, etasubs is the damping of adsorbate sliding energy within the substrate, a is a constant depending on mainly temperature and adsorbate film coverage, and Uo is the atomic-scale surface corrugation. I have examined the sliding friction of n-octane on Cu(111) vs. Pb(11I) surfaces, which have gamma = 0.45 meV and gamma = 0.26 meV, respectively. I have observed that the slip time for a monolayer of n-octane/Cu(111) is 0.94 ns +/- 0.36 ns, and the slip time of noctane/Pb(111) is 0.59 ns +/- 0.13 ns. I therefore observe no direct evidence of a link between the damping of perpendicular FT modes and sliding friction. It is still possible, however, that the damping of the parallel FT phonon mode affects sliding friction. Finally, I studied the slippage of monolayer methanol films at room temperature on rotating, rigid, and slowly ratcheting C60 substrates, to examine the effect that the molecular rotation of the substrate surface has on the sliding friction of an adsorbate. I found that at all coverages, the slip time for methanol on rigid and slowly ratcheting C60 was longer (hence lower friction) than the slip time for methanol on rotating C 60, defying the ball bearing analogy. (Abstract shortened by UMI.)

  16. Sustained frictional instabilities on nanodomed surfaces: stick-slip amplitude coefficient.

    PubMed

    Quignon, Benoit; Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Ashfold, Michael N R; Mattia, Davide; Leese, Hannah; Davis, Sean A; Briscoe, Wuge H

    2013-12-23

    Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick-slip amplitude coefficient (SSAC). We suggest that such stick-slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., σf and SSAC) are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices. PMID:24219790

  17. Determination of the Static Friction Coefficient from Circular Motion

    ERIC Educational Resources Information Center

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  18. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    NASA Astrophysics Data System (ADS)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  19. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  20. The coefficient of friction of chrysotile gouge at seismogenic depths

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Tanaka, H.; Iwata, K.

    2004-01-01

    We report new strength data for the serpentine mineral chrysotile at effective normal stresses, ??sn between 40 and 200 MPa in the temperature range 25??-280??C. Overall, the coefficient of friction, ?? (= shear stress/effective normal stress) of water-saturated chrysotile gouge increases both with increasing temperature and ??sn, but the rates vary and the temperature-related increases begin at ???100??C. As a result, a frictional strength minimum (?? = 0.1) occurs at low ??sn at about 100??C. Maximum strength (?? = 0.55) results from a combination of high normal stress and high temperature. The low-strength region is characterized by velocity strengthening and the high-strength region by velocity-weakening behavior. Thoroughly dried chrysotile has ?? = 0.7 and is velocity-weakening. The frictional properties of chrysolite can be explained in its tendency to adsorb large amounts of water that acts as a lubricant during shear. The water is progressively driven off the fiber surfaces with increasing temperature and pressure, causing chrysotile to approach its dry strength. Depth profiles for a chrysotile-lined fault constructed from these data would pass through a strength minimum at ???3 km depth, where sliding should be stable. Below that depth, strength increases rapidly as does the tendency for unstable (seismic) slip. Such a trend would not have been predicted from the room-temperature data. These results therefore illustrate the potential hazards of extrapolating room-temperature friction data to predict fault zone behavior at depth. This depth profile for chrysotile is consistent with the pattern of slip on the Hayward fault, which creeps aseismically at shallow depths but which may be locked below 5 km depth. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  1. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds

    PubMed Central

    Fino, Peter; Lockhart, Thurmon

    2014-01-01

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow µ= 0.38, normal µ=0.45, fast µ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of µ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. PMID:24581815

  2. Identification of maximum road friction coefficient and optimal slip ratio based on road type recognition

    NASA Astrophysics Data System (ADS)

    Guan, Hsin; Wang, Bo; Lu, Pingping; Xu, Liang

    2014-09-01

    The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control. However, it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions. The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory. In this paper, an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio. The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model, and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time, which are updated with time progressing. The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road, and the minimum statistical error is used as the recognition principle to improve identification robustness. Once the road type is recognized, the maximum road friction coefficient and optimal slip ratio are determined. The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction) by using CarSim software. The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim. The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations, and the identification results can be used for the adjustment of vehicle active safety control strategies.

  3. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  4. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-01

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction. PMID:26472306

  5. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  6. The effect of chalk on the finger-hold friction coefficient in rock climbing.

    PubMed

    Amca, Arif Mithat; Vigouroux, Laurent; Aritan, Serdar; Berton, Eric

    2012-11-01

    The main purpose of this study was to examine the effect of chalk on the friction coefficient between climber's fingers and two different rock types (sandstone and limestone). The secondary purpose was to investigate the effects of humidity and temperature on the friction coefficient and on the influence of chalk. Eleven experienced climbers took part in this study and 42 test sessions were performed. Participants hung from holds which were fixed on a specially designed hang board. The inclination of the hang board was progressively increased until the climber's hand slipped from the holds. The angle of the hang board was simultaneously recorded by using a gyroscopic sensor and the friction coefficient was calculated at the moment of slip. The results showed that there was a significant positive effect of chalk on the coefficient of friction (+18.7% on limestone and +21.6% on sandstone). Moreover sandstone had a higher coefficient of friction than limestone (+15.6% without chalk, +18.4% with chalk). These results confirmed climbers' belief that chalk enhances friction. However, no correlation with humidity/temperature and friction coefficient was noted which suggested that additional parameters should be considered in order to understand the effects of climate on finger friction in rock climbing. PMID:23259237

  7. Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi

    2013-12-01

    frictional strength of faults is a critical factor that contributes to continuous fault slip and earthquake occurrence. Frictional strength can be reduced by the presence of sheet-structured clay minerals. In this study, two important factors influencing the frictional coefficient of minerals were quantitatively analyzed by a newly developed computational method based on a combination of first-principles study and thermodynamics. One factor that helps reduce the frictional coefficient is the low adhesion energy between the layers under dry conditions. Potassium ions on mica surfaces are easily exchanged with sodium ions when brought into contact with highly concentrated sodium-halide solutions. We found that the surface ion exchange with sodium ions reduces the adhesion energy, indicating that the frictional coefficient can be reduced under dry conditions. Another factor is the lubrication caused by adsorbed water films on mineral surfaces under wet conditions. Potassium and sodium ions on mica surfaces have a strong affinity for water molecules. In order to remove the adsorbed water molecules confined between mica surfaces, a differential compressive stress of the order of tens of gigapascals was necessary at room temperature. These water molecules inhibit direct contact between mineral surfaces and reduce the frictional coefficient. Our results imply that the frictional coefficient can be modified through contact with fluids depending on their salt composition. The low adhesion energy between fault-forming minerals and the presence of an adsorbed water film is a possible reason for the low frictional coefficient observed at continuous fault slip zones.

  8. Effects of slip testing parameters on measured coefficient of friction.

    PubMed

    Beschorner, Kurt E; Redfern, Mark S; Porter, William L; Debski, Richard E

    2007-11-01

    Slips and falls are a major cause of injuries in the workplace. Devices that measure coefficient of friction (COF) of the shoe-floor-contaminant interface are used to evaluate slip resistance in various environments. Testing conditions (e.g. loading rate, timing, normal force, speed, shoe angle) are believed to affect COF measurements; however, the nature of that relationship is not well understood. This study examines the effects of normal force (NF), speed, and shoe angle on COF within physiologically relevant ranges. A polyvinyl chloride shoe was tested using a modified industrial robot that could attain high vertical loads and relatively high speeds. Ground reaction forces were measured with a loadcell to compute COF. Experiment #1 measured COF over a range of NF ( approximately 100-500 N) for two shoe angles (10 degrees and 20 degrees ), four speeds (0.05, 0.20, 0.35, and 0.50 m/s), and two contaminants (diluted detergent and diluted glycerol). Experiment #2 further explored speed effect by testing seven speeds (0.01, 0.05, 0.20, 0.35, 0.50, 0.75, and 1.00 m/s) at a given NF (350 N) and shoe angle (20 degrees ) using the same two contaminants. Experiment #1 showed that faster speeds significantly decreased COF, and that a complex interaction existed between NF and shoe angle. Experiment #2 showed that increasing speed decreased COF asymptotically. The results imply that COF is dependent on film thickness separating the shoe and the heel, which is dependent on speed, shoe angle, and NF, consistent with tribological theory. PMID:17196925

  9. Optimal estimation of the diffusion coefficient from non-averaged and averaged noisy magnitude data

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Anders

    2007-08-01

    The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median (MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high signal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images. The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) estimation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simulations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher computational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and may therefore help solving the problem of crossing fibers encountered in white matter tractography.

  10. Estimation of the friction coefficient between wheel and rail surface using traction motor behaviour

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liang, B.; Iwnicki, S.

    2012-05-01

    The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles thus monitoring this friction coefficient is important. Restricted by the difficulty in directly measuring the friction coefficient, the creep force or creepage, indirect methods using state observers are used more frequently. This paper presents an approach using a Kalman filter to estimate the creep force and creepage between the wheel and rail and then to identify the friction coefficient using the estimated creep force-creepage relationship. A mathematic model including an AC motor, wheel and roller is built to simulate the driving system. The parameters are based on a test rig at Manchester Metropolitan University. The Kalman filter is designed to estimate the friction coefficient based on the measurements of the simulation model. Series of residuals are calculated through the comparison between the estimated creep force and theoretical values of different friction coefficient. Root mean square values of the residuals are used in the friction coefficient identification.

  11. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.

    PubMed

    Li, Kai Way; Wu, Horng Huei; Lin, Yu-Chang

    2006-11-01

    Slipping and falling are common phenomena in both workplaces and our daily activities. The risks associated with slipping and falling are related to the materials of footwear/floor, contamination condition, and geometric design of the sole. Shoe soles of various tread design are very common. Tread pattern of the shoe affects friction especially under liquid-contaminated conditions. Verification of the effects of tread groove depth is significant in assisting designers in designing proper footwear for workers exposed to slippery floor conditions. In this study, we measured the friction coefficients using the Neolite footwear pads on the terrazzo, steel, and vinyl floors under three liquid-contaminated conditions. A Brungraber Mark II slipmeter was used. The footwear pads had tread grooves with a width of either 3 or 9mm. The depth of the tread grooves ranged from 1 to 5mm. The results showed that tread groove depth affected the friction coefficients significantly. Higher friction values were recorded for footwear pads with deeper tread grooves on wet and water-detergent-contaminated floors. The averaged coefficient of friction (COF) gain per tread groove depth increase in millimeter under these two surface conditions ranged from 0.018 to 0.108, depending on the tread groove width, floor, and contaminant. PMID:16427022

  12. Surface roughness and friction coefficient in peened friction stir welded 2195 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Smith, James; Cohen, Donald; Bradley, Robert

    2009-05-01

    The tribological properties of friction stir welded 2195 aluminum alloy joints were investigated for several laser- and shot-peened specimens. The first portion of this study assessed the surface roughness changes at different regions of the weld resulting from the various peening processes and included an atomic force microscopy (AFM) study to reveal fine structures. The second portion investigated the friction characteristics for various conditions when slid against a 440C ball slider. Shot peening resulted in significant surface roughness when compared to the unpeened and laser-peened samples. The initial friction for all types of specimens was highly variable. However, long-term friction was shown to be lowest for samples with no peening treatment. Laser peening caused the friction to increase slightly. The shot peening process on the other hand resulted in an increase of the long-term friction effects on both sides of the weld.

  13. Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca; Macosko, Christopher; Bates, Frank

    According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.

  14. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    NASA Astrophysics Data System (ADS)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  15. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. PMID:26700572

  16. A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling

    SciTech Connect

    Qu, Jun; Blau, Peter Julian

    2008-01-01

    A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally-measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity.

  17. A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults

    NASA Astrophysics Data System (ADS)

    Sato, Katsushi

    2016-08-01

    The friction coefficient controls the brittle strength of the Earth's crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb's failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee's law.

  18. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  19. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction

    PubMed Central

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  20. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction.

    PubMed

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  1. Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient

    NASA Astrophysics Data System (ADS)

    Mezlini, Salah; Zidi, M.; Arfa, H.; Ben Tkaya, Mohamed; Kapsa, Philippe

    2005-11-01

    The transport of granular material often generates severe damage. Understanding the correlation between the friction coefficient, particle geometry and wear mechanisms is of primary importance for materials undergoing abrasive wear. The aim of this study is to investigate the effect of particle geometry on wear mechanisms and the friction coefficient. Numerical and analytical simulations and experimental results have been compared. The process to be studied is the scratch made by a rigid cone with different attack angles on a 5xxx aluminium alloy (Al-Mg) flat surface. A scratch test was used and the wear mechanisms were observed for different attack angles. A numerical study with a finite element code was made in order to understand the effect of attack angle on the friction coefficient. The contact surface and the friction coefficient were also studied, and the results compared to the Bowden and Tabor model. The superposition of the numerical, analytical and experimental results showed a better correlation between the wear mechanisms and the friction coefficient. It also showed the importance of the model hypothesis used to simulate the scratch phenomenon. To cite this article: S. Mezlini et al., C. R. Mecanique 333 (2005).

  2. Friction coefficient of diamond under conditions compatible with microelectromechanical systems applications

    NASA Astrophysics Data System (ADS)

    Gobet, J.; Volpe, P.-N.; Dubois, M.-A.

    2016-03-01

    Because of its good tribological properties, diamond has been suggested to solve the known reliability issues in silicon MEMS components submitted to frictional contacts. An evaluation of self-mating diamond friction under a low load, representative of a number of MEMS applications, was undertaken. Results have shown that initial friction coefficients of 0.02-0.05 can be achieved, as reported in the literature. However, continuation of the test for an extended period of time invariably led to a strong increase of the friction coefficient. This phenomenon has been observed with different types of diamonds (mono-, micro-, or nano-crystalline), suggesting that it is a general behavior for diamond under our experimental conditions. A micro structuration of the surface prevented this phenomenon by limiting the increase of the contact area resulting from wear.

  3. Non-monotonic dependence of the friction coefficient on heterogeneous stiffness

    PubMed Central

    Giacco, F.; Ciamarra, M. Pica; Saggese, L.; de Arcangelis, L.; Lippiello, E.

    2014-01-01

    The complexity of the frictional dynamics at the microscopic scale makes difficult to identify all of its controlling parameters. Indeed, experiments on sheared elastic bodies have shown that the static friction coefficient depends on loading conditions, the real area of contact along the interfaces and the confining pressure. Here we show, by means of numerical simulations of a 2D Burridge-Knopoff model with a simple local friction law, that the macroscopic friction coefficient depends non-monotonically on the bulk elasticity of the system. This occurs because elastic constants control the geometrical features of the rupture fronts during the stick-slip dynamics, leading to four different ordering regimes characterized by different orientations of the rupture fronts with respect to the external shear direction. We rationalize these results by means of an energetic balance argument. PMID:25345800

  4. Interpreting Bivariate Regression Coefficients: Going beyond the Average

    ERIC Educational Resources Information Center

    Halcoussis, Dennis; Phillips, G. Michael

    2010-01-01

    Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…

  5. Low Friction-Coefficient TiBCN Nanocomposite Coatings Prepared by Cathode Arc Plasma Deposition

    NASA Astrophysics Data System (ADS)

    LIN, Baozhu; WANG, Lingling; WAN, Qiang; YAN, Shaojian; WANG, Zesong; YANG, Bing; FU, Dejun

    2015-03-01

    TiBCN nanocomposite coatings were deposited on cemented carbide and Si (100) by a cathode arc plasma system, in which TiB2 cathodes were used in mixture gases of N2 and C2H2. X-ray diffraction shows that TiB2 and Ti2B5 peaks enhance at low flow rates of C2H2, but they shrink when the flow rate is over 200 sccm. An increase of deposition rate was obtained from different TiBCN thicknesses for the same deposition time measured by scanning electron microscopy. Atomic force microscopy shows that the surface roughnesses are ˜10 nm and ˜20 nm at C2H2 flow rates of 0-100 sccm and of 150-300 sccm, respectively. High resolution transmission electron microscopy and X-ray photoelectron spectroscopy show that the coatings consist of nanocrystal phases Ti2BB, TiB2 and TiN, and amorphous phase carbon and BN. The average crystal sizes embedded in the amorphous matrices are 200 nm and 10 nm at C2H2 flow rates of 200 sccm and 300 sccm, respectively. In Raman spectra, the D- and G-bands increase with C2H2 flows at low flow rates, but weaken at high flow rates. The microhardness of the coatings decreases from 28.6 GPa to 20 GPa as the C2H2 increases from 0 sccm to 300 sccm, and the ball-on-disk measurement shows a dramatic decrease of the friction coefficient from 0.84 to 0.13. The reason for the reduced hardness and friction coefficient with the change of C2H2 flow rates is discussed. supported by National Natural Science Foundation of China (Nos. 11350110206, 11375133) and the Fundamental Research Funds for the Central Universities of China (No. 11275141)

  6. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-03-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests.

  7. Interlayer bonding energy of layered minerals: Implication for the relationship with friction coefficient

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi; Suehara, Shigeru

    2015-04-01

    The frictional strength of layered minerals is an important component of fault slip physics. A low-friction coefficient of these minerals has been attributed to the interlayer bonding energy (ILBE) of their weak interlayer bonding. The ILBE used for discussing the friction coefficient is based on a simple electrostatic calculation; however, the values should be revisited by precise calculations based on quantum mechanics. In this study, the ILBEs of layered minerals were calculated by using the density functional theory (DFT) method with van der Waals correction. The ILBEs calculated by the simple electrostatic method for hydrogen-bonding minerals such as kaolinite, lizardite, gibbsite, and brucite strongly overestimated the reliable energies calculated by the DFT method. This result should be ascribed to the inaccurate approximation of the point charges at the basal plane. A linear relationship between the experimentally measured friction coefficients of layered minerals and the ILBEs determined by the simple method was not confirmed by using the reliable ILBEs calculated by our DFT method. The results, however, do not remove the possibility of a relationship between interlayer bonding energy and the friction coefficient because the latter, used for comparing the former, was obtained through experiments conducted under various conditions.

  8. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  9. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  10. Effective assessment of tyre-road friction coefficient using a hybrid estimator

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Shim, Taehyun; Wu, Zhicheng

    2014-08-01

    Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre-road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.

  11. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  12. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2016-06-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  13. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  14. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.

    PubMed

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons' law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models. PMID:23064494

  15. Integral form of the skin friction coefficient suitable for experimental data

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; White, Christopher M.

    2011-01-01

    An integral method to evaluate skin friction coefficient for turbulent boundary layer flow is presented. The method replaces streamwise gradients with total stress gradients in the wall-normal direction and is therefore useful in cases when measurements at multiple streamwise locations are not available or feasible. It is also shown to be especially useful for experimental data with typical noisy shear stress profiles such as rough-wall boundary layer flows for which there are limited ways by which skin friction can be determined.

  16. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  17. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  18. Removal Of The Superficial Zone Of Bovine Articular Cartilage Does Not Increase Its Frictional Coefficient

    PubMed Central

    Krishnan, R; Caligaris, M; Mauck, RL; Hung, CT; Costa, KD; Ateshian, GA

    2010-01-01

    Summary Objective Investigate the role of the superficial zone in regulating the frictional response of articular cartilage. This zone contains the superficial protein (SZP), a proteoglycan synthesized exclusively by superficial zone chondrocytes and implicated in reducing the friction coefficient of cartilage. Design Unconfined compression creep tests with sliding of cartilage against glass in saline were carried out on fresh bovine cylindrical plugs (Ø6mm, n=35) obtained from sixteen bovine shoulder joints (ages 1-3 months). In the first two experiments, friction tests were carried out before and after removal of the superficial zone (∼100 microns), in a control and treatment group, using two different applied load magnitudes (4.4N and 22.2N). In the third experiment, friction tests were conducted on intact surfaces and the corresponding microtomed deep zone of the same specimen. Results In all tests the friction coefficient exhibited a transient response, increasing from a minimum value (μmin) to a near-equilibrium final value (μeq). No statistical change (p>0.5) was found in μmin before and after removal of the superficial zone in both experiments 1 and 2. However, μeq was observed to decrease significantly (p<0.001) after removal of the surface zone. Results from the third experiment confirm that μeq is even lower at the deep zone. Surface roughness measurements with atomic-force microscopy revealed an increase in surface roughness after microtoming. Immunohistochemical staining confirmed the presence of SZP in intact specimens and its removal in microtomed specimens. Conclusions The topmost (∼100 micron) superficial zone of articular cartilage does not have special properties which enhance its frictional response. PMID:15564061

  19. Friction coefficients and wear rates of different orthodontic archwires in artificial saliva.

    PubMed

    Alfonso, M V; Espinar, E; Llamas, J M; Rupérez, E; Manero, J M; Barrera, J M; Solano, E; Gil, F J

    2013-05-01

    The aim of this paper is to analyze the influence of the nature of the orthodontic archwires on the friction coefficient and wear rate against materials used commonly as brackets (Ti-6Al-4V and 316L Stainless Steel). The materials selected as orthodontic archwires were ASI304 stainless steel, NiTi, Ti, TiMo and NiTiCu. The array archwire's materials selected presented very similar roughness but different hardness. Materials were chosen from lower and higher hardness degrees than that of the brackets. Wear tests were carried out at in artificial saliva at 37 °C. Results show a linear relationship between the hardness of the materials and the friction coefficients. The material that showed lower wear rate was the ASI304 stainless steel. To prevent wear, the wire and the brackets have high hardness values and in the same order of magnitude. PMID:23440428

  20. Friction Coefficient and Superficial Zone Protein are Increased in Patients with Advanced Osteoarthritis

    PubMed Central

    Neu, C.P.; Reddi, A.H.; Komvopoulos, K.; Schmid, T.M.; Di Cesare, P.E.

    2010-01-01

    Objective To quantify the concentration of superficial zone protein (SZP) in articular cartilage and synovial fluid of patients with advanced osteoarthritis (OA), and to further correlate the SZP content with the friction coefficient, OA severity, and levels of inflammatory cytokines. Methods Samples of articular cartilage and synovial fluid were obtained from patients undergoing elective total knee replacement surgery. Additional normal samples were obtained from donated body program and tissue bank sources. Regional SZP expression in cartilage obtained from the femoral condyles was quantified by enzyme-linked immunosorbant assay and visualized by immunohistochemistry. Friction coefficient measurements were obtained from cartilage plugs slid in the boundary lubrication regime. OA severity was graded using histochemical analyses. The concentration of SZP and inflammatory cytokines in synovial fluid were determined by enzyme-linked immunosorbant assays. Results A pattern of SZP localization in knee cartilage was identified, with load-bearing regions exhibiting high SZP expression. SZP patterns correlated to friction coefficient and OA severity; however SZP expression was observed in all samples at the articular surface, regardless of OA severity. SZP expression and aspirate volume of synovial fluid were higher in OA patients compared to normal controls. Expressions of cytokines were elevated in the synovial fluid of some patients. Conclusion The results reveal a mechano-chemical coupling in which physical forces regulate OA severity and joint lubrication. The findings of this study also suggest that SZP may be ineffective in reducing joint friction in the boundary lubrication regime at an advanced OA stage where other mechanisms may dominate the observed tribological behavior. PMID:20499384

  1. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins

    NASA Astrophysics Data System (ADS)

    Jiang, Han; Browning, Robert; Fincher, Jason; Gasbarro, Anthony; Jones, Scooter; Sue, Hung-Jue

    2008-05-01

    To study the effects of surface roughness and contact load on the friction behavior and scratch resistance of polymers, a set of model thermoplastic olefins (TPO) systems with various surface roughness ( Ra) levels were prepared and evaluated. It is found that a higher Ra corresponds to a lower surface friction coefficient ( μs). At each level of Ra, μs gets larger as contact load increases, with a greater increase in μs as Ra level increases. It is also observed that with increasing contact load and increasing Ra, the μs tend to level off. In evaluating TPO scratch resistance, a lower μs would delay the onset of ductile drawing-induced fish-scale surface deformation feature, thereby raising the load required to cause scratch visibility. However, as the contact load is further increased, the μs evolves to become scratch coefficient of friction (SCOF) as significant sub-surface deformation and tip penetration occur and material displacement begins, i.e., ploughing. No dependence of Ra and μs on the critical load for the onset of ploughing is observed. In this work, the distinction between μs and SCOF will be illustrated. Approaches for improving scratch resistance of polymers via control of Ra are also discussed.

  2. Required coefficient of friction during level walking is predictive of slipping.

    PubMed

    Beschorner, Kurt E; Albert, Devon L; Redfern, Mark S

    2016-07-01

    The required coefficient of friction (RCOF) is frequently reported in the literature as an indicator of slip propensity. This study aimed to further develop slip prediction models based on RCOF by examining slips under moderately slippery conditions where the RCOF was approximately equal to the available coefficient of friction. Baseline RCOFs were found for normal walking trials and then an unexpected slip was introduced with a moderately slippery boot-floor contaminant combination for thirty-one subjects. Slip outcomes (i.e., whether a subject experienced a slip) were assessed based on the displacement of a marker placed on the heel. A logistic regression analysis was used to model the impact of RCOF on slipping. Results showed that subjects who walked with a greater RCOF were found to have a higher probability of slipping. The predicted probability of a slip across the RCOF ranged from 3% to 95% and an increase of 0.01 in RCOF was associated with a slipping odds ratio of 1.7. Thus, modest differences in RCOF can have a dramatic impact on slip propensity. This study shows that RCOF can be a sensitive and valid predictor of slipping in realistic frictional environments. PMID:27367937

  3. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    PubMed

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively. PMID:26747129

  4. NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2015-01-01

    Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.

  5. Optimization of method a load cell calibration for the measurement of coefficient of friction

    NASA Astrophysics Data System (ADS)

    Castro, R. M.; Pereira, M.; Sousa, A. R.; Curi, E. I. M.; Izidoro, C. L.; Correa, L. C.

    2016-07-01

    The instrumentation of equipment for mechanical testing is used to optimize the time to deliver a result, besides minimizing errors associated with manual measurements. Given this context, this work aims to present a calibration method for a load cell to determine the measurement results of force and friction coefficient, developed from on rotary pin-on-disk tribometer. The results indicate that the procedure provides measurements reliable for the tribological phenomena, resulting in with proximity the values provided by the ASTM G99-04.

  6. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  7. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at

  8. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    PubMed

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. PMID:23086715

  9. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    PubMed

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected. PMID:23898689

  10. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress.

    PubMed

    Whitney, G A; Mansour, J M; Dennis, J E

    2015-09-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  11. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    PubMed Central

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  12. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2014-10-01

    In this work we explore wave-particle interaction in the radiation belt. By applying quasilinear theory, we obtain the particle diffusion coefficients in both pitch angle and energy for different configurations of the Earth's magnetic field. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provide a realistic modeling of the Earth's magnetic field. The bounce averaged electron pitch angle diffusion coefficients are calculated for each magnetic field configuration. The equatorial pitch angle, wave frequency and spectral distribution of whistler waves are shown to affect the bounce averaged diffusion coefficients. In addition, wave-particle resonance is significantly influenced by the magnetic field configuration: in storm conditions, diffusion is strongly reduced for some equatorial pitch angles.

  13. Shear-­induced segregation of granular particles with different friction coefficients

    NASA Astrophysics Data System (ADS)

    Gillemot, Katalin; Somfai, Ellák; Börzsönyi, Tamás

    2016-04-01

    Segregation plays a major role in a large number of geological mechanisms, including sediment transport, bedsurface and bedload dynamics. Segregation induced by size or density difference of the particles was widely studied, but less attention has been given to the effects of surface friction of the particles. In the current study we address both experimentally and numerically the question of shear-induced segregation of a two component granular mixture, when the friction coefficients of the particles differ. For a system under gravity, we found both in the experiments and with the help of discreet element simulations that particles having a smoother surface tend to sink downwards. This is similar to the well described kinetic sieving of smaller or denser particles. In our case the smooth particles are more likely to fall into holes created by the shearing then the rough ones. Removing the gravitational field (simulations only) segregation persists and can be related to the distribution of the granular temperature in the system. Understanding the driving mechanisms may help us to better describe the more complex segregation patterns found in real life.

  14. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  15. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-02-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests.

  16. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures

    NASA Astrophysics Data System (ADS)

    Krantz, Robert W.

    1991-03-01

    Simple laboratory tests have been made on dry quartz sand and on mixtures of sand and clay and sand and cement. Tests were made on both low- and high-density specimens of each mixture, as determined by physical handling techniques. The tests included measurements of density, estimates of the coefficient of internal friction based on fault orientation, and estimates of the friction coefficients and cohesion values for fault initiation and reactivation in a shear frame apparatus, which was also used to test artificial fault zones made from pure clay, glass microspheres, and wheat flour. The results suggest that density is determined more by handling technique than by composition, and that friction coefficients and perhaps cohesion both increase with increasing density. The shear testing revealed a consistent drop in cohesion for fault reactivation in all densely packed mixtures tested. Although small, this drop may be significant for some types of laboratory models.

  17. Velocity dependence of coefficient of friction of diamond like carbon coatings

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Kumar, Niranjan; Dash, S.; Tyagi, A. K.

    2012-06-01

    The velocity dependence of coefficient of friction (CoF) of hydrogen-free and hydrogenated Diamond Like Carbon (DLC) coatings was studied on sliding. In low velocity regime, CoF of hydrogen-free DLC was found to increase which may be linked to a thermally activated pre-mature breaking of the surface asperities. However, CoF of hydrogenated DLC was found to decrease due to formation of graphite like lubricious layer and sustainability of cross-linked network of H-bonded atoms. In high velocity regime, CoF of hydrogen free DLC increases marginally due to an inefficient transfer of thermal energy while that of hydrogenated DLC increases due to rapid formation and rupture of atomic bonds.

  18. Topology of calculating pressure and friction coefficients for time-dependent human hip joint lubrication.

    PubMed

    Wierzcholski, Krzysztof

    2011-01-01

    The paper deals with the calculations of the unsteady, impulsive pressure distributions, carrying capacities and friction forces under unsteady conditions in a super-thin layer of biological synovial fluid inside the slide biobearing gap limited by a spherical bone head. Unsteady and random flow conditions for the biobearing lubrication are given. Moreover, the numerical topology of pressure calculation for a difference method is applied. From a mathematical viewpoint the present method for the solution of the modified Reynolds equation allows this problem to be resolved by the partial recurrence nonhomogeneous equation of the second order with variable coefficients. To the best of the author knowledge, an adaptation of the known numerical difference method to the spherical boundary conditions applied during the pressure calculations for a human hip bonehead seems to be decisive. PMID:21500763

  19. Comparative study of vehicle tyre-road friction coefficient estimation with a novel cost-effective method

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2014-08-01

    This paper qualitatively and quantitatively reviews and compares three typical tyre-road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre-road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre-road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.

  20. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Yu, Y.; Delzanno, G. L.; Jordanova, V.

    2014-12-01

    Local acceleration via whistler wave and particle interaction plays an important role in particle dynamics in the radiation belt. In this work we explore wave-particle interaction in different magnetic field configurations related to the 17 March, 2013 storm. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce-averaged electron pitch angle, energy and mixed term diffusion coefficients are calculated for each magnetic field configuration. It is shown that the magnetic field can have a significant influence on the diffusion coefficients via the wave-particle resonance condition. In addition, the equatorial pitch angle, wave frequency and spectral distribution of whistler waves also affect the bounce-averaged diffusion coefficients in particle energy range from KeV to MeV. Part of the ongoing work will focus on the phase space density evolution based on the Fokker-Planck equation with the bounce-averaged diffusion coefficients previously calculated.

  1. The influence of heel height on utilized coefficient of friction during walking.

    PubMed

    Blanchette, Mark G; Brault, John R; Powers, Christopher M

    2011-05-01

    Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. PMID:21536444

  2. Choosing the best index for the average score intraclass correlation coefficient.

    PubMed

    Shieh, Gwowen

    2016-09-01

    The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease. PMID:26182855

  3. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    PubMed Central

    Labonte, David; Williams, John A.; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580

  4. Choosing the averaging interval when calculating primary reflection coefficients from well logs

    SciTech Connect

    Walden, A.T.; Hosken, J.W.J.

    1988-11-01

    Most seismic data is processed using a sample interval of 4 ms two-way time (twt). The study of the statistical properties of primary reflection coefficients showed that the power spectrum of primaries can change noticeably when the logs are averaged over blocks of 0.5, 1 and 2 ms twt (block-averaging). What is a suitable block-averaging interval for producing broadband synthetics, and in particular how should the power spectrum of primaries be constructed when it is to be used to correct 4 ms sampled deconvolved seismic data for the effects of coloured primary reflectivity. In this paper the authors show that for a typical sonic log, a block-averaging interval of 1 ms twt should satisfy some important requirements. Firstly, it is demonstrated that if the reflection coefficients in an interval are not too large the effect of all the reflection impulses can be represented by another much sparser set at intervals of ..delta..t twt. The coefficient amplitudes are given by the differences in the logarithmic acoustic impedances, thus justifying block-averaging. However, a condition for this to hold up to the aliasing (Nyquist) frequency is that ..delta..t takes a maximum value of about 1 ms twt. Secondly, an event on a log should be represented in the seismic data. For this the acoustic impedance contrast must have sufficient lateral extent or continuity. By making some tentative suggestions on the relation between continuity and bed-thickness, a bed-thickness requirement of 0.15 m or more is obtained. Combining this requirement with the maximum number of beds allowable in an interval in order that multiple reflections do not contribute significantly to the reflections in the interval, again suggests a value of about 1 ms for the block-averaging interval.

  5. Coefficient of Friction Measured from Nano- to Macro-Normal Loads on Plasma Sprayed Nanostructured Cermet Coatings

    NASA Astrophysics Data System (ADS)

    Basak, A. K.; Celis, J.-P.; Vardavoulias, M.; Matteazzi, P.

    2014-02-01

    Alumina dispersed FeCuAl-based nanostructured cermet coatings were deposited from nanostructured powders by atmospheric plasma spraying on low carbon steel substrates. Nanostructuring was retained in the deposited coatings which exhibit up to four distinctive phases as revealed by electron microscopy. In this study, the friction behavior of the distinctive phases at nano-normal load scale was investigated alongside their contribution to the overall friction behavior at macro-normal load scale. Friction behavior at nano-normal load scale was investigated by lateral force microscopy, whereas conventional tribometers were used for investigations at micro and macro-normal loads. It appeared that, the friction measured at nano-normal loads on individual phases is dictated by both composition and hardness of the corresponding phases, and thus influences the overall friction behavior of the coatings at macro-normal loads. Moreover, the coefficient of friction at macro-normal loads differs from the one at nano-normal loads, and deviates from Amonton's friction law.

  6. Estimation of coefficient of friction for a mechanical system with combined rolling-sliding contact using vibration measurements

    NASA Astrophysics Data System (ADS)

    Sundar, Sriram; Dreyer, Jason T.; Singh, Rajendra

    2015-06-01

    A new dynamic experiment is proposed to estimate the coefficient of friction for a mechanical system with a combined rolling-sliding contact under a mixed lubrication regime. The experiment is designed and instrumented based on an analogous contact mechanics model, taking into consideration the constraints to ensure no impact and no sliding velocity reversal. The system consists of a cam (rotating with a constant speed) having a point contact with a follower that oscillates about a frictionless pivot, while maintaining contact with the cam with the help of a well-designed translational spring. The viscous damping elements for contact are identified for two different lubricants from an impulse test using the half-power bandwidth method. Dynamic responses (with the cam providing an input to the system) are measured in terms of the follower acceleration and the reaction forces at the follower pivot. A frequency domain based signal processing technique is proposed to estimate the coefficient of friction using the complex-valued Fourier amplitudes of the measured forces and acceleration. The coefficient of friction is estimated for the mechanical system with different surface roughnesses using two lubricants; these are also compared with similar values for both dry and lubricated cases as reported in the literature. An empirical relationship for the coefficient of friction is suggested based on a prior model under a mixed lubrication regime. Possible sources of errors in the estimation procedure are identified and quantified.

  7. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production Study of the average heat transfer coefficient at different distances between wind tunnel models

    NASA Astrophysics Data System (ADS)

    Gnyrya, A.; Korobkov, S.; Mokshin, D.; Koshin, A.

    2015-01-01

    The paper presents investigations of physical and climatic factors with regard to design and process variables having effect on heat transfer in the building model system at different distances between them in the airflow direction. The aim of this work is to improve energy efficiency of exterior walls of buildings. A method of physical simulation was used in experiments. Experimental results on the average values of the heat transfer coefficient in the building model system are presented herein. A series of experiments was carried out on a specific aerodynamic test bench including a subsonic wind tunnel, heat models and devices for giving thermal boundary conditions, transducers, and the record system equipment. The paper contains diagrams of the average heat transfer distribution at fixed Reynolds number and the airflow angle of attack; the average values of the heat transfer coefficient for each face and wind tunnel models as a whole at maximum, medium, and large distances between them. Intensification of the average heat transfer was observed on the downstream model faces depending on the distance between models.

  8. Using a Geophysical Model to Estimate the Static Coefficient of Friction and Cohesion on a Central Portion of the North Anatolian Fault East of the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Karimi, B.; McQuarrie, N.

    2012-12-01

    On August 17th, 1999, a magnitude 7.4 earthquake shook Kocaeli (Izmit), Turkey killing over 17,000 people. The epicenter was 100-km east of Turkey's largest city, Istanbul, along the North Anatolian Fault (NAF) system. This 1600-km long, strike-slip boundary divides the Anatolian plate and the Eurasian plate. The NAF slips at an average rate of 2-3-cm/y, and has an estimated earthquake recurrence interval of approximately 300 years. To further understand the NAF system and its dynamics, a simplified 2-D mesh model was developed to evaluate the fault friction coefficient for various low cohesion values along an ~85-km stretch of the NAF system east of the Marmara Sea containing the Mudurnu valley between the cities of Izmit and Bolu (where the NAF splits). The NAF, in the region of interest, exhibits shorter recurrence intervals of 100-150 years over the last four centuries. In this region, two sets of faults within the NAF system converge and then diverge; one set diverges to the NW to bound the northern rim of the Marmara Sea, while the second set continues to the SW along the southern rim of the Marmara Sea. A 100 year seismic record of earthquakes between M3.0 and M9.0 supports the claim that the two sets of strike-slip faults near one another in the center of the region of interest, but do not intersect, thus defining three distinct geology provinces. A representational 2-D mesh separates the study area into three geologic provinces separated by these faults. The mesh was processed using PyLith, a finite element code tectonic deformation software. The PyLith software allows us to assign rock physics parameters of the surface geology, and relative plate motions as velocity boundary conditions. Surface geology was simplified into the three rock types, and rock physics parameters were assigned using general physical parameters for each rock type and extrapolating further data from the Canadian Rock Physics Database. An average value for density and P-wave velocity

  9. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  10. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    NASA Technical Reports Server (NTRS)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings

  11. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.

    PubMed

    Bizarro, João P S; Rodrigues, Paulo

    2012-11-01

    For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid. PMID:23214740

  12. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  13. Correlation of subjective slipperiness judgements with quantitative COF (Coefficient Of Friction) measurements for structural steel

    NASA Astrophysics Data System (ADS)

    Purswell, Jerry L.; Schlegel, Robert E.

    1988-06-01

    When there is no simple or accurate procedure for measuring the coefficient of friction (COF) at a job site, workers and/or supervisors involved must make subjective judgments about the slipperiness of the walking and climbing surfaces and in turn decide whether the surface presents a safe or an unsafe condition for work. This project was designed to determine whether these subjective judgment calls did in fact agree with the COF measurements obtained using a mechanical device. It was noted that the coatings chosen for study were subject to a polishing factor by the boot soles during the trials, causing the COF values to become lower as the trials continued. Poor correlation was obtained between subjective ratings of slipperiness and the COF values measured before the trials began. A relatively high correlation was obtained between subjective ratings and the COF values measured after the trials had been completed. A difference was noted in the subjective ratings for the effects of water on a coating for column climbing, but not for walking a beam, suggesting the effects of water on a coating are related to the type of task being performed in steel erection. An increase in the measured COF was noted for all of the coatings when they were wet as compared to the dry condition. The importance of clean shoe soles was clearly demonstrated.

  14. Effect of thread pitch and frictional coefficient on the stress concentration in metric nut-bolt connections

    SciTech Connect

    Dragoni, E. . Dept. of Mechanics)

    1994-02-01

    By means of the finite element method, this paper establishes how much the stress state within standard metric nut-bolt connections is affected by variations of the thread pitch and of the frictional coefficient. Following a validated simplified approach, the actual three-dimensional geometry of each connection is replaced by an axisymmetric model which recreates the outline of the joint on an appropriate meridional section. The numerical data prove that, for prescribed nominal thread diameter and bolt load, The peak stress in the screw monotonically increases as the pitch decreases. Further, as far as complete sticking between nut and bolt is not achieved, the stress level linearly increases with the coefficient of friction, the rate of variations being higher at the lowest pitches.

  15. Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime.

    PubMed

    Kumar, Aditya; Staedler, Thorsten; Jiang, Xin

    2013-01-01

    The influence of applied normal load and roughness on the tribological behavior between the indenter and sample surface during nanoindentation-based scratching has been experimentally investigated by using different surfaces (fused silica and diamond-like carbon) featuring various degrees of roughness. At a sufficiently low applied normal load, wherein the contact is elastic, the friction coefficient is constant. However, at increased normal loads the contact involves plastic deformation and the friction coefficient increases with increasing normal load. The critical load range for a transition from predominantly elastic to plastic contact, between the indenter and sample surface, increases with increasing size of indenter and decreases with roughness. Distinct differences between the present experimental results and the existing theoretical models/predictions are discussed. PMID:23400754

  16. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues. PMID:26024011

  17. In vivo friction properties of human skin.

    PubMed

    Zhang, M; Mak, A F

    1999-08-01

    In vivo frictional properties of human skin and five materials, namely aluminium, nylon, silicone, cotton sock, Pelite, were investigated. Normal and untreated skin over six anatomic regions of ten normal subjects were measured under a controlled environment. The average coefficient of friction for all measurements is 0.46+/-0.15 (p<0.05). Among all measured sites, the palm of the hand has the highest coefficient of friction (0.62+/-0.22). For all the materials tested, silicone has the highest coefficient of friction (0.61+/-0.21), while nylon has the lowest friction (0.37+/-0.09). PMID:10493141

  18. A parameterization of eddy transfer coefficients for two-level seasonal statistical dynamical zonally averaged models

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1989-01-01

    This paper examines a parameterization of a quasi-geostrophic eddy transport that takes into account the time variation of eddy transfer coefficients according to Green's (1970) theory. It was found that, in the original eddy transfer relationship of Green, connecting the integral of the northward eddy entropy flux through midlatitudes with the second power of the difference in 500-mb entropy across the region of baroclinic activity, a value of 4 for the exponent is obtained when the temperature gradients at 500 mb are used. When the gradients at 1000 mb are used, an exponent of 1.5 is obtained. The differences in the powers in the eddy transfer relation were explored in a two-level zonally averaged model. It was found that an appropriate choice of power may be of special importance if the model is devised to simulate the seasonal climate cycle or to test astronomical changes inducing different seasonalities.

  19. Statistics of frictional families.

    PubMed

    Shen, Tianqi; Papanikolaou, Stefanos; O'Hern, Corey S; Shattuck, Mark D

    2014-09-19

    We develop a theoretical description for mechanically stable frictional packings in terms of the difference between the total number of contacts required for isostatic packings of frictionless disks and the number of contacts in frictional packings, m=Nc0 - Nc. The saddle order m represents the number of unconstrained degrees of freedom that a static packing would possess if friction were removed. Using a novel numerical method that allows us to enumerate disk packings for each m, we show that the probability to obtain a packing with saddle order m at a given static friction coefficient μ, Pm(μ), can be expressed as a power series in μ. Using this form for Pm(μ), we quantitatively describe the dependence of the average contact number on the friction coefficient for static disk packings obtained from direct simulations of the Cundall-Strack model for all μ and N. PMID:25279647

  1. Determination of coefficients for the universal laws of friction and heat transfer for CFTL calculations

    SciTech Connect

    Hodge, S.A.

    1980-08-01

    The friction factor and Stanton number for flow past a roughened surface are determined by the parameters A and R(h/sup +/) of the universal law of friction and A/sub H/ and G(h/sup +/) of the universal law of heat transfer. The methods to be used for determination of these parameters for the particular roughness to be used in the Core Flow Test Loop (CFTL) are presented. Examples are given concerning the application of these methods to both transitional and fully rough flow using experimental results taken from the literature.

  2. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  3. Impact of higher-order flows in the moment equations on Pfirsch-Schlüter friction coefficients

    SciTech Connect

    Honda, M.

    2014-09-15

    The impact of the higher-order flows in the moment approach on an estimate of the friction coefficients is numerically examined. The higher-order flows are described by the lower-order hydrodynamic flows using the collisional plasma assumption. Their effects have not been consistently taken into account thus far in the widely used neoclassical transport codes based on the moment equations in terms of the Pfirsch-Schlüter flux. Due to numerically solving the friction-flow matrix without using the small-mass ratio expansion, it is clearly revealed that incorporating the higher-order flow effects is of importance especially for plasmas including multiple hydrogenic ions and other lighter species with similar masses.

  4. Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection

    PubMed Central

    Batorsky, Rebecca; Kearney, Mary F.; Palmer, Sarah E.; Maldarelli, Frank; Rouzine, Igor M.; Coffin, John M.

    2011-01-01

    HIV adaptation to a host in chronic infection is simulated by means of a Monte-Carlo algorithm that includes the evolutionary factors of mutation, positive selection with varying strength among sites, random genetic drift, linkage, and recombination. By comparing two sensitive measures of linkage disequilibrium (LD) and the number of diverse sites measured in simulation to patient data from one-time samples of pol gene obtained by single-genome sequencing from representative untreated patients, we estimate the effective recombination rate and the average selection coefficient to be on the order of 1% per genome per generation (10−5 per base per generation) and 0.5%, respectively. The adaptation rate is twofold higher and fourfold lower than predicted in the absence of recombination and in the limit of very frequent recombination, respectively. The level of LD and the number of diverse sites observed in data also range between the values predicted in simulation for these two limiting cases. These results demonstrate the critical importance of finite population size, linkage, and recombination in HIV evolution. PMID:21436045

  5. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  6. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. PMID:25997114

  7. Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements

    NASA Astrophysics Data System (ADS)

    Frankowski, Piotr; Morgeneyer, Martin

    2013-06-01

    Pile formation and rotating drum experiments followed by DEM simulations using glass beads (1.5 and 3.0 mm diameter) and polyamide spheres (3.0 mm diameter) were conducted. A wide range of rotation velocities was tested (from 1 to 90 rpm), the drum fill degree was set to 50%. The material inclination angles obtained in pile formation experiments were comparable with low speed rotating drum tests. The experimentally obtained results were used to determine DEM friction coefficients. Both, good qualitative and good quantitative agreements between experiments and simulations were found for rotation speeds up to 5 rpm, whereas for higher rotation speeds small discrepancies were observed.

  8. Estimation of the tyre-road maximum friction coefficient and slip slope based on a novel tyre model

    NASA Astrophysics Data System (ADS)

    Qi, Zhiquan; Taheri, Saied; Wang, Baofeng; Yu, Hongxiao

    2015-04-01

    In this article, a new approach to estimate the vehicle tyre forces, tyre-road maximum friction coefficient, and slip slope is presented. Contrary to the majority of the previous work on this subject, a new tyre model for the estimation of the tyre-road interface characterisation is proposed. First, the tyre model is built and compared with those of Pacejka, Dugoff, and one other tyre model. Then, based on a vehicle model that uses four degrees of freedom, an extended Kalman filter (EKF) method is designed to estimate the vehicle motion and tyre forces. The shortcomings of force estimation are discussed in this article. Based on the proposed tyre model and the improved force measurements, another EKF is implemented to estimate the tyre model parameters, including the maximum friction coefficient, slip slope, etc. The tyre forces are accurately obtained simultaneously. Finally, very promising results have been achieved for pure acceleration/braking for varying road conditions, both in pure steering and combined manoeuvre simulations.

  9. The average ion model. Computation of the absorption and emission coefficients in hot plasmas

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Claude; Geindre, Jean-Paul

    1988-06-01

    A program was developed to evaluate the emission and absorption plasma coefficient variations as a function of the density, temperature and the atomic number of the specimen. The treatment is simplified because of the reduced number of characteristic frequencies which are necessary for the hydrodynamic code. The approach is less efficient when applied to high Z atoms.

  10. The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction

    NASA Astrophysics Data System (ADS)

    Herzog, David P.; Hottovy, Scott; Volpe, Giovanni

    2016-05-01

    A class of Langevin stochastic differential equations is shown to converge in the small-mass limit under very weak assumptions on the coefficients defining the equation. The convergence result is applied to three physically realizable examples where the coefficients defining the Langevin equation for these examples grow unboundedly either at a boundary, such as a wall, and/or at the point at infinity. This unboundedness violates the assumptions of previous limit theorems in the literature. The main result of this paper proves convergence for such examples.

  11. Effects of flooring on required coefficient of friction: Elderly adult vs. middle-aged adult barefoot gait.

    PubMed

    Rozin Kleiner, Ana Francisca; Galli, Manuela; Araujo do Carmo, Aline; Barros, Ricardo M L

    2015-09-01

    The aim of this study was to investigate the effect of flooring on barefoot gait according to age and gender. Two groups of healthy subjects were analyzed: the elderly adult group (EA; 10 healthy subjects) and the middle-aged group (MA; 10 healthy subjects). Each participant was asked to walk at his or her preferred speed over two force plates on the following surfaces: 1) homogeneous vinyl (HOV), 2) carpet, 3) heterogeneous vinyl (HTV) and 4) mixed (in which the first half of the pathway was covered by HOV and the second by HTV). Two force plates (Kistler 9286BA) embedded in the data collection room floor measured the ground reaction forces and friction. The required coefficient of friction (RCOF) was analyzed. For the statistical analysis, a linear mixed-effects model for repeated measures was performed. During barefoot gait, there were differences in the RCOF among the flooring types during the heel contact and toe-off phases. Due to better plantar proprioception during barefoot gait, the EA and MA subjects were able to distinguish differences among the flooring types. Moreover, when the EA were compared with the MA subjects, differences could be observed in the RCOF during the toe-off phase, and gender differences in the RCOF could also be observed during the heel contact phase in barefoot gait. PMID:25959329

  12. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    SciTech Connect

    Wahidi, R.; Chakroun, W.; Al-Fahed, S.

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-friction coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.

  13. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  14. Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami

    NASA Astrophysics Data System (ADS)

    Sraj, Ihab; Mandli, Kyle T.; Knio, Omar M.; Dawson, Clint N.; Hoteit, Ibrahim

    2014-11-01

    Tsunami computational models are employed to explore multiple flooding scenarios and to predict water elevations. However, accurate estimation of water elevations requires accurate estimation of many model parameters including the Manning's n friction parameterization. Our objective is to develop an efficient approach for the uncertainty quantification and inference of the Manning's n coefficient which we characterize here by three different parameters set to be constant in the on-shore, near-shore and deep-water regions as defined using iso-baths. We use Polynomial Chaos (PC) to build an inexpensive surrogate for the GEOCLAW model and employ Bayesian inference to estimate and quantify uncertainties related to relevant parameters using the DART buoy data collected during the Tōhoku tsunami. The surrogate model significantly reduces the computational burden of the Markov Chain Monte-Carlo (MCMC) sampling of the Bayesian inference. The PC surrogate is also used to perform a sensitivity analysis.

  15. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  16. Integrated optimal dynamics control of 4WD4WS electric ground vehicle with tire-road frictional coefficient estimation

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Hu, Chuan; Wang, Zejiang; Yan, Fengjun; Chen, Nan

    2015-08-01

    This paper presents an integrated optimal dynamics control of four-wheel driving and four-wheel steering (4WD4WS) electric ground vehicles via hierarchical control methodology. In the higher-level design, an LQR controller is proposed to obtain the integrated lateral force and yaw moment, according to their respective reference values. The lower-level controller is designed to ensure all the tires work in the stable region while realizing the tracking control of the vehicle dynamics. The tire-road friction coefficient is estimated through the integrated longitudinal force and lateral force, respectively, using a brush tire model. To reduce the estimation error, a novel data fusion function is employed to generate the final estimation value. Finally, the effectiveness of the proposed control and estimation strategies is validated via CarSim-Simulink joint simulation.

  17. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    SciTech Connect

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  18. Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels.

    PubMed

    Battisti, L; Baggio, P

    2001-05-01

    In gas turbine cooling design, techniques for heat extraction from the surfaces exposed to the hot stream are based on the increase of the inner heat transfer areas and on the promotion of the turbulence of the cooling flow. This is currently obtained by casting periodic ribs on one or more sides of the serpentine passages into the core of the blade. Fluid dynamic and thermal behaviour of the cooling flow have been extensively investigated by means of experimental facilities and many papers dealing with this subject have appeared in the latest years. The evaluation of the average value of the heat transfer coefficient most of the time is inferred from local measurements obtained by various experimental techniques. Moreover the great majority of these studies are not concerned with the overall average heat transfer coefficient for the combined ribs and region between them, but do focus just on one of them. This paper presents an attempt to collect information about the average Nusselt number inside a straight ribbed duct. Series of measurements have been performed in steady state eliminating the error sources inherently connected with transient methods. A low speed wind tunnel, operating in steady state flow, has been built to simulate the actual flow condition occurring in a rectilinear blade cooling channel. A straight square channel with 20 transverse ribs on two sides has been tested for Re of about 3 x 10(4), 4.5 x 10(4) and 6 x 10(4). The ribbed wall test section is electrically heated and the heat removed by a stationary flow of known thermal and fluid dynamic characteristics. PMID:11460662

  19. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method

    NASA Astrophysics Data System (ADS)

    Bakhshan, Younes; Omidvar, Alireza

    2015-12-01

    Micro scale gas flows have attracted significant research interest in the last two decades. In this research, the fluid flow of gases in a stepped micro-channel has been conducted. Wide range of Knudsen number has been implemented using the Lattice Boltzmann (MRT) method in this study. A modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the velocity slip at the boundaries and to cover the slip and transition regimes of flow to obtain an accurate simulation of rarefied gases. The flow specifications such as pressure loss, velocity profile, stream lines and friction coefficient at different conditions have been presented. The results show, good agreement with available experimental data. The calculation shows, that the friction coefficient decreases with increasing the Knudsen number and stepping the micro-channel has an inverse effect on the friction coefficient value. Furthermore, a new correlation is suggested for calculation of the friction coefficient in the stepped micro-channel flows as below;

  20. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  1. Relationship between the Averaged Deposition Rate Coefficients for Colloids in a Single Pore and Various Pore-scale Parameters

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Mohan Kumar, M.; Hassanizadeh, S. M.; Raoof, A.

    2014-12-01

    The colloid deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, a better understanding of the processes occurring at the Darcy scale can be obtained by studying colloid transport at the pore-scale and then upscaling the results. In this study, we have developed a mathematical model to simulate the transport of colloids in a cylindrical pore by considering various processes such as advection, diffusion, colloid-soil surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, the bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion; whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-solid interaction forces dominate the transport in the potential region where colloid deposition occurs and are calculated using DLVO theory. The expressions for mass transfer rate coefficients between the diffusion and potential regions have been derived for different DLVO energy profiles. These are incorporated in the pore-scale equations in the form of a boundary condition at the diffusion-potential region interface. The model results are used to obtain the colloid breakthrough curve at the end of a long pore, and then it is fitted with 1D advection-dispersion-adsorption model so as to determine the averaged attachment and detachment rate coefficients at the scale of a single pore. A sensitivity analysis of the model to six pore-scale parameters (colloid and wall surface potentials, solution ionic strength, average pore-water velocity, colloid radius, and pore radius) is carried out so as to find the relation between the averaged deposition rate coefficients at pore scale vs the pore-scale parameters. We found an hyper exponential relation between the colloid attachment

  2. Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, single pass regime.

    PubMed

    Kusy, R P; Tobin, E J; Whitley, J Q; Sioshansi, P

    1992-05-01

    The frictional coefficients were measured for four wire alloys against the flats of polycrystalline alumina cylinders using a low load, low velocity, single pass device. Ion-implantations of titanium into polycrystalline alumina flats and nitrogen into beta-titanium wires reduced the static and kinetic coefficients from 0.50 and 0.44 before implantation to 0.20 and 0.25 after implantation, respectively. These results are similar in magnitude to frictional coefficients for unimplanted, control couples of stainless steel, cobalt-chromium, and nickel titanium wires against polycrystalline alumina flats. For orthodontic applications, we conclude that more efficient and reproducible appliances can be engineered for tooth movement if ion-implantation is used to reduce the abrasion of beta-titanium by polycrystalline alumina. PMID:1521704

  3. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  4. Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks.

    PubMed

    Sanders, J E; Greve, J M; Mitchell, S B; Zachariah, S G

    1998-06-01

    Compressive stiffness (CS) of different supporting materials used in prosthetics and orthotics and their static coefficients of friction (COF) with skin and socks were characterized. Materials tested included Spenco, Poron, nylon-reinforced silicone, Soft Pelite, Medium Pelite, Firm Plastazote, Regular Plastazote, and Nickelplast. A displacement-controlled testing device was constructed to assess the CS of 11.1 mm diameter material specimens under cyclic loading (1 Hz) to 220 kPa over 10- and 60-min periods. Results demonstrated local CS ranging from 687 kPa (Poron) to 3,990 kPa (Soft Pelite). To fit the cyclic stress-strain (S-S) data within an error of 4.0 percent full-scale output, the minimum order of fit required for Spenco, Poron, and nylon-reinforced silicone was a third-order polynomial; for Soft Pelite, Medium Pelite, Firm Plastazote, and Regular Plastazote, a second-order polynomial; and for Nickelplast, a linear fit. For all materials, the nonrecovered strains were related to loading time using an exponential fit. A biaxial force-controlled load applicator device was used to assess COF at skin-material, sock-material, and skin-sock interfaces for shear forces of 1 to 4 N applied to a 10.2 x 7.8 mm loading pad. COFs ranged from 0.48 (+/- 0.05) to 0.89 (+/- 0.09). COFs at skin-material interfaces were significantly (p < 0.05) higher than those at skin-sock interfaces. There was a trend of a higher COF at sock-material interfaces than at skin-sock interfaces. These data are of potential utility in finite element modeling sensitivity analysis of residual limb-prosthetic socket systems or body-orthosis systems to characterize effects of material features on interface pressure and shear stress distributions. PMID:9651888

  5. The effect of antagonistic pleiotropy on the estimation of the average coefficient of dominance of deleterious mutations.

    PubMed

    Fernández, B; García-Dorado, A; Caballero, A

    2005-12-01

    We investigate the impact of antagonistic pleiotropy on the most widely used methods of estimation of the average coefficient of dominance of deleterious mutations from segregating populations. A proportion of the deleterious mutations affecting a given studied fitness component are assumed to have an advantageous effect on another one, generating overdominance on global fitness. Using diffusion approximations and transition matrix methods, we obtain the distribution of gene frequencies for nonpleiotropic and pleiotropic mutations in populations at the mutation-selection-drift balance. From these distributions we build homozygous and heterozygous chromosomes and assess the behavior of the estimators of dominance. A very small number of deleterious mutations with antagonistic pleiotropy produces substantial increases on the estimate of the average degree of dominance of mutations affecting the fitness component under study. For example, estimates are increased three- to fivefold when 2% of segregating loci are over-dominant for fitness. In contrast, strengthening pleiotropy, where pleiotropic effects are assumed to be also deleterious, has little effect on the estimates of the average degree of dominance, supporting previous results. The antagonistic pleiotropy model considered, applied under mutational parameters described in the literature, produces patterns for the distribution of chromosomal viabilities, levels of genetic variance, and homozygous mutation load generally consistent with those observed empirically for viability in Drosophila melanogaster. PMID:16118193

  6. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  7. Modelling of ELM-averaged power exhaust on JET using the EDGE2D code with variable transport coefficients

    NASA Astrophysics Data System (ADS)

    Kirnev, G.; Fundamenski, W.; Corrigan, G.

    2007-06-01

    The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).

  8. Effect of spectral time-lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Vanderbeek, Richard G.; Gotoff, Steven W.; D'Amico, Francis M.

    1997-10-01

    The effects of flight geometry, signal averaging and time- lag correlation coefficient on airborne CO2 dial lidar measurements are shown in simulations and field measurements. These factors have implications for multi- vapor measurements and also for measuring a shingle vapor with a wide absorption spectra for which one would like to make DIAL measurements at many wavelengths across the absorption spectra of the gas. Thus it is of interest to know how many wavelengths and how many groups of wavelengths can be used effectively in DIAL measurements. Our data indicate that for our lidar about 80 wavelengths can be used for DIAL measurements of a stationary vapor. The lidar signal is composed of fluctuations with three time scales: a very short time scale due to system noise which is faster than the data acquisition sampling rate of the receiver, a medium time scale due to atmospheric turbulence, and a long time scale due to slow atmospheric transmission drift from aerosol in homogeneities. The decorrelation time scale of fluctuations for airborne lidar measurements depends on the flight geometry.

  9. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  10. An investigation of the dependence of the average value of anisotropy constant of nano-particle systems on packing friction.

    NASA Astrophysics Data System (ADS)

    Fannin, Paul C.; Coffey, William T.

    2000-03-01

    Measurements are presented of the complex magnetic susceptibility,\\chi (ω) = \\chi' (ω )- i\\chi'' (ω ), of a number of colloidal suspensions of nano-particles with different packing fractions, over the frequency range 10kHz to 18kHz. The magnetic field dependence of the average particle anisotropy constant, K, for magnetic fluids samples of magnetite in isopar M for seventeen values of polarising field, H, in the approximate range 0 to 100,000 A/m are presented and examined.

  11. Synthetic modeling of a fluid injection-induced fault rupture with slip-rate dependent friction coefficient

    NASA Astrophysics Data System (ADS)

    Urpi, Luca; Rinaldi, Antonio Pio; Rutqvist, Jonny; Cappa, Frédéric; Spiers, Christopher J.

    2016-04-01

    Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults of the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been aken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, considering injection-induced reservoir inflation and the tectonic scenario. For the stress state here considered, the first triggered rupture always produces the largest rupture length and slip magnitude, correlated with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, while upper sections being velocity-neutral. Nucleation of rupture in a velocity strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity

  12. Friction factors and heat transfer coefficients in turbulated cooling passages of different aspect ratios. I - Experimental results

    NASA Astrophysics Data System (ADS)

    Taslim, M. E.; Spring, S. D.

    1987-06-01

    In advanced turbine airfoil cooling designs where multiple-pass cooling circuits are used, a range of cooling passage aspect ratios (height/width) are encountered. The objective of this experimental investigation was to determine the effect that increasing aspect ratios have on friction factors and Nusselt numbers in internal cooling passages with rib-roughened (turbulated) surfaces. Aspect ratios ranging from 0.5 to 3.5 were tested over a Reynolds number range of 30,000 to 190,000. Each aspect ratio was tested at three different turbulator-height/hydraulic-diameter ratios and at a constant turbulator-height/pitch ratio of 0.10.

  13. Measurements of heat transfer coefficients and friction factors in rib-roughened channels simulating leading-edge cavities of a modern turbine blade

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1997-07-01

    Leading edge cooling cavities in modern gas turbine blades play an important role in maintaining the leading edge temperature at levels consistent with air foil design life. These cavities often have a complex cross-sectional shape to be compatible with the external contour of the blade at the leading edge. A survey of many existing geometries shows that, for analytical as well as experimental analyses, such cavities can be simplified in shape by a four-sided polygon with one curved side similar to the leading edge curvature, a rectangle with one semicircular side (often the smaller side) or a trapezoid, the smaller base of which is replaced by a semicircle. Furthermore, to enhance the heat transfer coefficient in these cavities, they are mostly roughened on three sides with ribs of different geometries. Experimental data on friction factors and heat transfer coefficients in such cavities are rare if not nonexistent. A liquid crystal technique was used in this experimental investigation to measure heat transfer coefficients in six test sections representing the leading-edge cooling cavities. Both straight and tapered ribs were configured on the two opposite sidewalls in a staggered arrangement with angles of attack to the mainstream flow, {alpha}, of 60 and 90 deg. The ribs on the curved surface were of constant cross section with an angle of attack 90 deg to the flow. Heat transfer measurements were performed on the straight sidewalls, as well as on the round surface adjacent to the blade leading edge. Effects such as rib angle of attack to the mainstream flow and constant versus tapered rib cross-sectional areas were also investigated. Nusselt numbers, friction factors, and thermal performances are reported for nine rib geometries in six test sections.

  14. Friction phenomena and their impact on the shear behaviour of granular material

    NASA Astrophysics Data System (ADS)

    Suhr, Bettina; Six, Klaus

    2016-06-01

    In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coulomb's law of friction is state of the art in modelling particle-particle contacts. Usually in Coulomb's law, for all contacts only one constant coefficient of friction is used, which needs to reflect all tribological effects. Thus, whenever one of the influence factors of friction varies over a wide range, it can be expected that the usage of only one constant coefficient of friction in Coulomb's law is an oversimplification of reality. For certain materials, e.g. steel, it is known that a dependency of the coefficient of friction on the contact normal load exists. A more tribological tangential contact law is implemented in DEM, where the interparticle friction coefficient depends on the averaged normal stress in the contact. Simulations of direct shear tests are conducted, using steel spheres of different size distributions. The strong influence of interparticle friction on the bulk friction is shown via a variation of the constant interparticle friction coefficient. Simulations with constant and stress-dependent interparticle friction are compared. For the stress-dependent interparticle friction, a normal stress dependency of the bulk friction is seen. In the literature, measurements of different granular materials and small normal loads also show a stress dependency of the bulk friction coefficient. With increasing applied normal stress, the bulk friction coefficient reduces both in the experiments and in the simulations.

  15. Experimental Validation of Strategy for the Inverse Estimation of Mechanical Properties and Coefficient of Friction in Flat Rolling

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker

    2016-06-01

    Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.

  16. Abrasive wear of nitrogen-implanted boron-coated Ti-6Al-4V and temperature effect on microhardness and sliding friction coefficient

    NASA Astrophysics Data System (ADS)

    Baazi, Tandjaoui; Knystautas, Emile J.; Fiset, Michel

    1993-02-01

    Boron was electron-gun evaporated onto manually polished surfaces of Ti-6Al-4V and bombarded with 100 keV nitrogen ions for different doses. The highest increase in Knoop microhardness was observed for the highest dose considered in this work, i.e., 10 17ions cm -2, which was maintained for subsequent abrasive wear investigation by optical and scanning electron microscopies. Relative changes of Knoop microhardness and sliding friction coefficient as a function of implantation temperature (room temperature, 150, 300, 450 and 600°C) were measured. The optimal improvements obtained for the 450°C implantation correlate with the higher nitrogen retention as evidenced by XPS depth-concentration analysis.

  17. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    SciTech Connect

    Garza, I.A.

    1996-12-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency.

  18. Predictability of tracer dilution in large open channel flows: Analytical solution for the coefficient of variation of the depth-averaged concentration

    NASA Astrophysics Data System (ADS)

    Pannone, Marilena

    2014-03-01

    A large-time analytical solution is proposed for the spatial variance and coefficient of variation of the depth-averaged concentration due to instantaneous, cross sectionally uniform solute sources in pseudorectangular open channel flows. The mathematical approach is based on the use of the Green functions and on the Fourier decomposition of the depth-averaged velocities, coupled with the method of the images. The variance spatial trend is characterized by a minimum at the center of the mass and two mobile, decaying symmetrical peaks which, at very large times, are located at the inflexion points of the average Gaussian distribution. The coefficient of variation, which provides an estimate of the expected percentage deviation of the depth-averaged point concentrations about the section-average, exhibits a minimum at the center which decays like t-1 and only depends on the river diffusive time scale. The defect of cross-sectional mixing quickly increases with the distance from the center, and almost linearly at large times. Accurate numerical Lagrangian simulations were performed to validate the analytical results in preasymptotic and asymptotic conditions, referring to a particularly representative sample case for which cross-sectional depth and velocity measurements were known from a field survey. In addition, in order to discuss the practical usefulness of computing large-time concentration spatial moments in river flows, and resorting to directly measured input data, the order of magnitude of section-averaged concentrations and corresponding coefficients of variation was estimated in field conditions and for hypothetical contamination scenarios, considering a unit normalized mass impulsively injected across the transverse section of 81 U.S. rivers.

  19. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (˜1 MeV) and ring current (˜100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  20. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    SciTech Connect

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  1. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGESBeta

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  2. Age differences in the required coefficient of friction during level walking do not exist when experimentally-controlling speed and step length

    PubMed Central

    Anderson, Dennis E.; Franck, Christopher T.; Madigan, Michael L.

    2015-01-01

    The effects of gait speed and step length on the required coefficient of friction (COF) confounds the investigation of age-related differences in required COF. The goals of this study were to investigate whether age differences in required COF during self-selected gait persist when experimentally-controlling speed and step length, and to determine the independent effects of speed and step length on required COF. Ten young and ten older healthy adults performed gait trials under five gait conditions: self-selected, slow and fast speeds without controlling step length, and slow and fast speeds while controlling step length. During self-selected gait, older adults walked with shorter step lengths and exhibited a lower required COF. Older adults also exhibited a lower required COF when walking at a controlled speed without controlling step length. When both age groups walked with the same speed and step length, no age difference in required COF was found. Thus, speed and step length can have a large influence on studies investigating age-related differences in required COF. It was also found that speed and step length have independent and opposite effects on required COF, with step length having a strong positive effect on required COF, and speed a weaker negative effect. PMID:24979811

  3. Friction Characteristic of Steel Skids Equipped with Skegs on a Lakebed Surface

    NASA Technical Reports Server (NTRS)

    Sefic, W. J.

    1979-01-01

    The coefficient of friction was determined for steel skids with and without skegs. The addition of a 1.27 centimeter deep skeg caused the coefficient of friction to increase from an average value of .36 to .53, a 47 percent increase over the flat skid. The addition of a .64 centimeter deep skeg increased the friction coefficient from .36 to .46, a 16 percent increase over the flat skid. Comparisons are made with data for similar test conditions obtained during the X-15 program.

  4. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  5. Frictional anisotropy under boundary lubrication: effect of surface texture.

    SciTech Connect

    Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems

    2009-06-15

    The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.

  6. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  7. Friction Properties of Bio-mimetic Nano-fibrillar Arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Hua; Mi, Chun-Hui

    2009-10-01

    Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.

  8. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  9. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  10. Friction in a Moving Car

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1975-01-01

    Describes an out-of-doors, partially unstructured experiment to determine the coefficient of friction for a moving car. Presents the equation which relates the coefficient of friction to initial velocity, distance, and time and gives sample computed values as a function of initial speed and tire pressure. (GS)

  11. Influence of snow properties on dense avalanche friction parameters

    NASA Astrophysics Data System (ADS)

    Mohamed, Naaim

    2013-04-01

    The values of the Voellmy friction parameters of 735 historical avalanches that occurred along 26 paths in the Chamonix valley since 1958 are back-analysed with a depth-averaged hydraulic model including sub models for erosion, entrainment and deposition. For each path, the longitudinal and crosswise topographic profiles were derived from a high resolution digital elevation model acquired by laser scanning. The initial snow depth and snow cohesion, as well as various physical properties of snow, were computed from numerical simulations of the detailed snowpack model Crocus fed by the SAFRAN meteorological analysis. For each event, the full ranges of the two friction parameters were scanned and the pairs of friction parameters for which the run-out altitude is found close enough to the observed one (with an uncertainty of 5m), were retained. Statistical class analysis was used to investigate the correlation between the obtained friction coefficients and the snow physical properties. Concerning the inertial friction coefficient, no evident trend with the snow parameters was found. For the static friction coefficient, an increasing trend with the temperature and the density was observed, as well as a decreasing trend with the liquid water content and the initial snow depth.

  12. Friction behavior of a microstructured polymer surface inspired by snake skin

    PubMed Central

    Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    Summary The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair. PMID:24611129

  13. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  14. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  15. Development and Application of Non-linear Friction Models for Metal Forming Simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko

    2011-08-01

    Friction has a significant effect on the formability of stamping parts. A constant friction coefficient between stamping tools and blank is often employed in the metal forming simulating. In this presented work, several non-linear friction models which considers of the change of friction coefficient with contact pressure, sliding velocity, sliding distance, frictional work, plastic strain and temperature were developed using LS-DYNA customized friction subroutine. The validity was verified by numerical friction testing models and deep drawing model.

  16. Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking

    PubMed Central

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  17. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  18. Showing Area Matters: A Work of Friction

    ERIC Educational Resources Information Center

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and doesn't work…

  19. Scale effects in sliding friction: An experimental study

    SciTech Connect

    Blau, P.J.

    1991-07-24

    Solid friction is considered by some to be a fundamental property of two contacting materials, while others consider it to be a property of the larger tribosystem in which the materials are contained. A set of sliding friction experiments were designed to investigate the hypothesis that the unlubricated sliding friction between two materials is indeed a tribosystems-related property and that the relative influence of the materials properties or those of the machine on friction varies from one situation to another. Three tribometers were used: a friction microprobe (FMP), a typical laboratory-scale reciprocating pin-on-flat device, and a heavy-duty commercial wear tester. The slider material was stainless steel (AISI 440C) and the flat specimen material was an ordered alloy of Ni{sub 3}Al (IC-50). Sphere-on-flat geometry was used at ambient conditions and at normal forces ranging from 0.01 N to 100 N and average sliding velocities of 0.01 to 100.0 mm/s. The nominal, steady-state sliding friction coefficient tended to decrease with increases in normal force for each of the three tribometers, and the steady state value of sliding friction tended to increase as the mass of the machine increased. The variation of the friction force during sliding was also a characteristic of the test system. These studies provide further support to the idea that the friction of both laboratory-scale and engineering tribosystems should be treated as a parameter which may take on a range of characteristic values and not conceived as having a single, unique value for each material pair.

  20. Spatial Heterogeneity Induces Scale Dependent Rock Friction

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Fukuyama, E.; Xu, S.; Takizawa, S.; Mizoguchi, K.; Kawakata, H.; Passelègue, F. X.; Schubnel, A.

    2014-12-01

    We carried out large-scale biaxial friction experiments (Fukuyama et al., 2012; 2014) using a pair of meter-sized Indian gabbro as specimens, whose contacting area was 1.5 × 0.1 m2, normal stress was up to 6.7 MPa and loading velocity was up to 3 × 10-2 m/s. After each experiment, we found localized damages (i.e. grooves) were generated on the fault surface and gouges were distributed around them. We confirmed work rate dependency of rock friction as revealed by centimeter-sized rock samples (Di Toro et al., 2011), but further found that the meter-sized rock friction starts to decrease at one order of magnitude smaller work rate than that of the centimeter sized rock (Yamashita et al., 2013, AGU fall meeting). Here, we concluded that this difference is caused by stress localization and associated increase in heterogeneity on the fault as shown by: 1) Total amount of deviations of each local shear stress from the average, which were monitored by strain gauge array, increased with the decrease in friction. 2) Friction coefficients were negatively correlated with degree of spatial heterogeneity evaluated from the distribution of grooves and gouges. 3) Melt textures were found in the collected gouges by microscopic observation using HRSEM. Based on these observations, we propose a stress localization model; the fault surfaces are composed of patched and non-patched areas with high and low normal stress, respectively. The high normal stress patch leads to high shear stress, high mechanical work and thus production of much wear material (gouge), which further causes additional increase in normal stress. Assuming that the local friction follows the results by centimeter-sized gabbro experiments, we numerically simulated a slip-dependent friction for both patched and non-patched areas, and successively reproduced a weakening in macroscopic friction. We confirmed that the work rate dependency of simulated friction was consistent with that of biaxial experiments (Fig. 1

  1. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  2. Granular self-organization by autotuning of friction

    PubMed Central

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S.; Ghosh, Shankar

    2015-01-01

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system. PMID:26324918

  3. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  4. A vacuum (10 exp -9 torr) friction apparatus for determining friction and endurance life of MoS(x) films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1993-01-01

    An ultrahigh-vacuum tribometer for use in a ball-on-disk configuration was specially designed for measuring the friction and endurance life of magnetron-sputtered solid lubricating MoS(x) films deposited on sputter-cleaned 400 C stainless-steel disks, when slid against a 6-mm-diameter 440 C stainless-steel ball. The results of tests showed that the tribometer performs satisfactorily in unidirectional rotation in vacuum at a pressure of 10 exp -7 Pa, 10 exp -9 torr. Similarities are observed in the life cycle friction behavior and the coefficient of friction as a function of the number of disk revolutions, for MoS(x) films at average Hertzian contact from 0.33 to 0.69 GPa.

  5. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  6. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  7. Increasing 'ease of sliding' also increases friction: when is a lubricant effective?

    PubMed

    Annunziata, M A; Baldassarri, A; Dalton, F; Petri, A; Pontuale, G

    2016-04-01

    We investigate experimentally the effective Coulomb friction exerted by a granular medium on a shearing plate, varying the medium depth. The plate is driven by a spring connected to a motor turning at a constant speed and, depending on the system configuration, performs continuous sliding or stick and slip in different proportions. We introduce an order parameter which discriminates between the different regimes expressing the fraction of time spent in slipping. At low driving speed, starting from zero layers of interstitial granular material, the average friction coefficient decreases when a few layers are added, while the order parameter stays close to zero. By further increasing the granular depth, the friction undergoes a sudden increase but the order parameter does not change notably. At an intermediate driving speed, however, both the friction and the order parameter undergo a sudden increase, which for the order parameter amounts to several orders of magnitude, indicating that the plate is more braked but nevertheless keeps sliding more easily. For medium-high driving speeds, full sliding is obtained for only one layer of interstitial matter, where friction has a minimum, and is maintained for all increasing depths while friction increases. These observations show that the ease of slipping is not determined by friction alone, rather by the highly complex interplay between driving velocity, friction, and the depth of the medium. PMID:26931379

  8. Increasing ‘ease of sliding’ also increases friction: when is a lubricant effective?

    NASA Astrophysics Data System (ADS)

    Annunziata, M. A.; Baldassarri, A.; Dalton, F.; Petri, A.; Pontuale, G.

    2016-04-01

    We investigate experimentally the effective Coulomb friction exerted by a granular medium on a shearing plate, varying the medium depth. The plate is driven by a spring connected to a motor turning at a constant speed and, depending on the system configuration, performs continuous sliding or stick and slip in different proportions. We introduce an order parameter which discriminates between the different regimes expressing the fraction of time spent in slipping. At low driving speed, starting from zero layers of interstitial granular material, the average friction coefficient decreases when a few layers are added, while the order parameter stays close to zero. By further increasing the granular depth, the friction undergoes a sudden increase but the order parameter does not change notably. At an intermediate driving speed, however, both the friction and the order parameter undergo a sudden increase, which for the order parameter amounts to several orders of magnitude, indicating that the plate is more braked but nevertheless keeps sliding more easily. For medium-high driving speeds, full sliding is obtained for only one layer of interstitial matter, where friction has a minimum, and is maintained for all increasing depths while friction increases. These observations show that the ease of slipping is not determined by friction alone, rather by the highly complex interplay between driving velocity, friction, and the depth of the medium.

  9. Frictional Strength of Hayward Fault Gouge

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Moore, D.; Lockner, D.

    2007-12-01

    A recent 3-D geologic model of the Hayward fault in the San Francisco Bay Region shows that a number of different rock units are juxtaposed across the fault surface as a result of lateral displacement. The fault gouge formed therein is likely a mixture of these various rock types. To better model the mechanical behavior of the Hayward fault, which is known to both creep and have large earthquakes, frictional properties of mixtures of the principal rock types were determined in the laboratory. Room temperature triaxial shearing tests were conducted on binary and ternary mixtures of Great Valley Sequence graywacke, Franciscan jadeite-bearing metagraywacke, Franciscan pumpellyite-bearing metasandstone, Franciscan melange matrix, serpentinite and two-pyroxene gabbro. The gouge samples were crushed and sieved (<150 μm grains), then applied in a 1-mm layer between saw-cut sliding blocks. Each sample assemblage was saturated and sheared at constant pore water pressure of 1 MPa and normal stress of 51 MPa. Coefficients of friction, μ, ranged from a low of 0.38 for the serpentinite to a maximum of 0.85 for the gabbro. While the serpentinite and the Franciscan melange matrix were relatively weak, all other rock types obeyed Byerlee's Law. The friction coefficient of mixtures could be reliably predicted by a simple average based on dry weight percent of the end member strengths. This behavior is in contrast to some mixtures of common gouge materials such as montmorillonite+quartz, which exhibit non- linear frictional strength trends with varying weight percent of constituents. All materials tested except serpentinite were velocity strengthening, therefore promoting creeping behavior. The addition of serpentinite decreased a-b values of the gouge and increased the characteristic displacement, dc, of strength evolution. Because temperature strongly influences the mechanical properties of fault gouge as well as speeding chemical reactions between the constituents, elevated

  10. Friction and friction-generated temperature at a polymer-metal interface

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1974-01-01

    Results of friction and thermal tests of molded polyimide and pyrrone polymers are presented. The coefficient of sliding friction up to surface velocities of 2 m/sec and the coefficient of thermal expansion from 300 to 500 K were measured. An apparatus was constructed to measure simultaneously the coefficient of sliding friction and the friction-generated temperature. Measurements were made at a nominal pressure-velocity product of 0.25 MN/msec and at temperatures between 300 and 500 K.

  11. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  12. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  13. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.

    PubMed

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N R

    2015-11-01

    In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. PMID:26547177

  14. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.

    2015-11-01

    In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations.

  15. Landslide Basal Friction as Measured by Seismic Waves

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Gordeev, E.

    2004-12-01

    Dynamical predictions of landslide runout require measurements of the basal friction. We present the first seismically determined bounds on the frictional coefficients for three large volcanic landslides. A landslide generates seismic waves by both shearing and loading the surface as the mass moves from a steep to a shallow slope. The effective force system is a horizontal single force. The amplitude of the seismic waves is proportional to the force drop during the landslide, just as during an earthquake the seismic wave amplitude is proportional to the seismic moment, i.e., the force drop multiplied by the source dimension. For landslides we know an additional variable that is unknown for the earthquake case. We know the gravitational driving force of the landslide while the magnitude of the tectonic forces that drive earthquakes are generally unknown. Therefore, we can find the absolute value of the frictional force for landslides whereas we are unable to perform this calculation for earthquakes. We studied three landslides (Bezymianny, Russia 1956, Sheveluch, Russia 1964 and Mount St. Helens, USA 1980) that were all followed immediately by eruptions. The landslide masses vary by a factor of 5. We test the data against the hypothesis of a constant value of apparent friction. The apparent friction μ app is defined as the ratio of the amplitude of the horizontal single force to the weight of the landslide. Since the Mount St. Helens seismic source is very well-constrained, we use the amplitude of this landslide force drop as a starting point. We calculated the value of μ app for Mount St. Helens using previous seismic results and the geological data. We then test whether or not the other two landslides are consistent with the same value of μ app. We use teleseismic and regional seismic data to show that all three landslides are consistent with an apparent coefficient of friction of 0.2 which corresponds to an actual areally-averaged frictional coefficient of 0

  16. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to use particles made of gelatin to reduce the friction coefficient to the order of 0.01. We acknowledge support from NSF Grant DMR1206351, NASA Grant NNX15AD38G and the William M. Keck Foundation.

  17. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  18. Device measures static friction of magnetic tape

    NASA Technical Reports Server (NTRS)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  19. On a model of frictional sliding

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Bréchet, Y.

    1996-10-01

    A model of frictional sliding with an N-shaped curve for the sliding velocity dependence of the coefficient of friction is considered. This type of friction law is shown to be related to dynamic i.e., velocity dependent ‘ageing’ of asperity junctions. Mechanisms of ‘ageing’ for ductile (Bowden-Tabor) and brittle (Byerlee) materials, though different in nature, lead to qualitatively similar N-shaped velocity dependencies of the coefficient of friction. Estimates for the velocities limiting the range of negative velocity sensitivity of the coefficient of friction are obtained for the ductile case and—albeit with a lesser degree of reliability—for the brittle one. It is shown by linear stability analysis that discontinuous sliding (stick-slip) is associated with the descending portion of the N-shaped curve. An instability criterion is obtained. An expression for the period of the attendant relaxation oscillations of the sliding velocity is given in terms of the calculated velocity dependence of the coefficient of friction. It is suggested that the micromechanically motivated friction law proposed should be used in models of earthquakes due to discontinuous frictional sliding on a crustal fault.

  20. Direct Measurements of Skin Friction

    NASA Technical Reports Server (NTRS)

    Dhawan, Satish

    1953-01-01

    A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.

  1. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  2. Friction Tests in Magnesium Tube Hydroforming at Elevated Temperatures

    SciTech Connect

    Hwang, Yeong-Maw; Wang, Kuo-Hsing; Kuo, Tsung-Yu

    2011-05-04

    In metal forming, lubricants have a variety of functions. The top priority is usually reduction of friction in order to increase the formability of the materials and reduce tool wear. Because magnesium alloys have very poor formability at room temperature, it is essential to manufacture a part from Magnesium alloys at elevated temperatures. The aim of this paper is to present a friction test method to evaluate the performance of different kinds of lubricants and determine their coefficients of friction at elevated temperatures in tube hydroforming of magnesium alloys. A self-designed experimental apparatus is used to carry out the experiments of friction tests. The coefficient of friction between the tube and die at guiding zone is determined. The effects of the internal pressure, the axial feeding velocity and temperatures on the friction forces and coefficients of friction for different lubricants are discussed.

  3. A Method to Apply Friction Modifier in Railway System

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kosuke; Suda, Yoshihiro; Iwasa, Takashi; Fujii, Takeshi; Tomeoka, Masao; Tanimoto, Masuhisa; Kishimoto, Yasushi; Nakai, Takuji

    Controlling the friction between wheel and rail is direct and very effective measures to improve the curving performances of bogie trucks, because the curving performances of bogie truck depend much on friction characteristics. Authors have proposed a method, “friction control”, which utilizes friction modifier (KELTRACKTM HPF) with onboard spraying system. With the method, not only friction coefficient, but also friction characteristics are able to be controlled as expected. In this paper, results of fundamental experiments are reported which play an important role to realize the new method.

  4. Mechanism of fault friction variations associated with rolling of non-spherical particles

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady; Pasternak, Elena

    2013-04-01

    Friction resisting the fault sliding is known to be rate and path-dependent, which is often related to the movement of the gouge particles. This movement includes particle rotation which can be modelled either using the Cosserat-type models or by direct computer simulation using a discrete element method. These models are however based on the notion that the gouge particles are spherical (circular in 2D) tacitly assuming that the real non-spherical shapes of the particles create quantities effects, which can be accounted for by introducing proper correction factors. We show that non-spherical particles behave qualitatively different. This is a result of the fact that the normal force applied to the non-spherical particle can create a moment whose resistance to the particle rolling changes with the angle - a phenomenon not possible in a spherical (circular) particle due to symmetry. If rolling of a particle is caused by macroscopic shear stress, the normal stress will resist or assist the rolling depending on the angle. As a result the effective friction coefficient associated with a single particle can be reduced to zero in the process of its rolling and then restore its initial value. This leads to the oscillatory behaviour of the friction coefficient as a function of displacement. When sliding involves the rolling of (very) many particles the random variations in their sizes and initial positions cause the friction coefficient to oscillate with decreasing amplitude; the characteristic displacement of this decrease can be an order of magnitude greater than the average particle size. If the gouge layer is sufficiently thick, the friction variations can be associated with rotating clusters of particles. The size of the clusters exceeds the particle size by a factor of the order of the ratio of the effective modulus of the particulate material to the acting shear stress. Thus the clusters may be significantly larger than the original particles and hence the

  5. Sea Ice Friction: The Effect of Ice Rubble

    NASA Astrophysics Data System (ADS)

    Scourfield, S.; Sammonds, P. R.; Lishman, B.; Riska, K.; Marchenko, A. V.

    2015-12-01

    Ice deformation processes in the Arctic often generate ice rubble, and situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on fjord ice in Svea, Svalbard, which investigated the velocity and hold time dependence of sea ice friction involving ice gouge. Average air temperature for the duration of time in which experiments were run was -12.4°C, and the thickness of the level fjord ice was 70 cm. A double-direct-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by moving a floating ice block through a channel of open water whilst subjected to normal loading, which was transferred through regions of ice rubble on both sides of the mobile block. The ice rubble regions were 30 cm deep and 50 cm wide. The displacement of the block and the force needed to move the block were measured. The rate dependence of friction was investigated for speeds of 10-3 to 10-2 ms-1. To investigate the state dependence of friction, slide-hold-slide (SHS) tests were conducted for hold times ranging from 1 second to 18 hours. When comparing the results from these experiments with a model for ice friction presented by Schulson and Fortt (2013), similar behaviour is seen at low hold times, where the peak coefficient of friction has a linear relationship with the logarithm of hold time. This is not the case for long hold times, however, and we attribute this to thermal consolidation of the ice rubble region.

  6. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    PubMed Central

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control. PMID:25205283

  7. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    2015-11-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6. Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to characterize response from different friction systems under shear with information at local scale. We acknowledge support from NSF-DMR1206351, NASA NNX15AD38G and W.M. Keck Foundation.

  8. Sliding friction on wet and dry sand.

    PubMed

    Fall, A; Weber, B; Pakpour, M; Lenoir, N; Shahidzadeh, N; Fiscina, J; Wagner, C; Bonn, D

    2014-05-01

    We show experimentally that the sliding friction on sand is greatly reduced by the addition of some-but not too much-water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding. Too much water, on the other hand, makes the capillary bridges coalesce, resulting in a decrease of the modulus; in this case, we observe that the friction coefficient increases again. Our results, therefore, show that the friction coefficient is directly related to the shear modulus; this has important repercussions for the transport of granular materials. In addition, the polydispersity of the sand is shown to also have a large effect on the friction coefficient. PMID:24836256

  9. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  10. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  11. Structure and friction-reducing property of the sulfide layer produced by ion sulfuration

    SciTech Connect

    Ning, Z.; Da-Ming, Z.; Yan-Hua, W.; Jia-Jun, L.; Xiao-Dong, F.; Ming-Xi, G.

    2000-04-01

    Sulfide layers with a certain thickness were made on the surface of 1045 and 52100 steels by means of the low-temperature ion sulfuration technique. Metallography, scanning electron microscope (SEM) + energy-dispersive x-ray analysis (EDX), and x-ray diffraction (XRD) were adopted to analyze the structure of sulfide layers; the tribological properties of the layers lubricated by paraffin oil were also investigated on a reciprocating tester. The results showed that sulfide layer is porous, and its structure is mainly composed of FeS, FeS{sub 2}, and substrate phases. The sulfide layer possessed a remarkable friction-reducing effect; its friction coefficient was lower on average, by about 50%, than that of the surface without layer. With the increase of layer thickness, its friction coefficient was unchanged, and under low load conditions, its operational period was prolonged. Under the same experimental conditions, the operational period of sulfide layer on 52100 steel was longer than that on 1045 steel, and its friction coefficient was lower as well.

  12. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  13. Theoretical studies on the role of transition in determining friction and heat transfer in smooth and rough passages

    SciTech Connect

    Obot, N.T.; Esen, E.B. . Fluid Mechanics, Heat and Mass Transfer Lab.); Rabas, T.J. )

    1990-04-01

    It has been established that transition determines the attainable friction and heat transfer in smooth and rough passages. According to the proposed law of corresponding states for friction, different types of roughness exhibit the same general behavior for friction at the same reduced conditions. This is also true of different types of smooth passages. It has been fully demonstrated that, in rough passages, the marked increases in friction factor are intimately associated with early transition and that, under reduced similarity conditions, the friction factors are considerably lower than those deduced from the familiar f vs. Re plots. For all smooth or rough passages, the simple rule for heat transfer amounts to this: the lower the critical Reynolds number for transition, the greater the value for the average heat transfer coefficient. Consequently, for a given Reynolds number based on the hydraulic diameter, triangular passages can be expected to give heat transfer coefficients that are significantly higher than for circular, rectangular or annular tubes. For smooth and enhanced passages of complex shapes, it appears that heat transfer coefficients can be calculated accurately from the smooth circular tube relations, provided the critical Reynolds number is known. 61 refs., 25 figs., 1 tab.

  14. On the dependency of friction on load: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Steenwyk, B.; Warhadpande, A.; Persson, B. N. J.

    2016-03-01

    In rubber friction studies it is often observed that the kinetic friction coefficient depends on the nominal contact pressure. This is usually due to frictional heating, which softens the rubber, increases the area of contact, and (in most cases) reduces the viscoelastic contribution to the friction. In this paper we present experimental results showing that the rubber friction also depends on the nominal contact pressure at such low sliding speed that frictional heating is negligible. This effect has important implications for rubber sliding dynamics, e.g., in the context of the tire-road grip. We attribute this effect to the viscoelastic coupling between the macroasperity contact regions, and present a simple earthquakelike model and numerical simulations supporting this picture. The mechanism for the dependency of the friction coefficient on the load considered is very general, and is relevant for non-rubber materials as well.

  15. Penetration into dry porous rock: A numerical study on sliding friction simulation

    SciTech Connect

    Chen, E.P.

    1988-10-01

    Penetration of Antelope tuff targets by steel penetrators is the subject of discussion in the present investigation. Specifically, the effect of sliding friction between projectile and target on penetration is examined. The finite element code PRONTO 2D is used to perform a parametric study of the coefficient of friction. Both constant and velocity dependent coefficient of friction representation have been included in the current investigation. Results indicate that increases in the coefficient of friction increase the penetration resistance although the relationship is nonlinear in nature. In terms of peak deceleration and depth of penetration, both the constant and velocity dependent coefficient of friction representation provide almost identical results. However, only the velocity dependent cases show the characteristic of increasing deceleration prior to the conclusion of the penetration event. For this reason, the velocity dependent representation of the coefficient of friction is preferred over the constant friction coefficient representation. 8 refs., 13 figs., 1 tab.

  16. Mesh Size Control of Friction

    NASA Astrophysics Data System (ADS)

    Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory

    Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.

  17. Status of Stellite 6 friction testing

    SciTech Connect

    Watkins, J.C.; DeWall, K.G.; Weidenhamer, G.H.

    1998-06-01

    For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, have been investigating the performance of motor-operated valves subjected to design basis flow and pressure loads. Part of this research addresses the friction that occurs at the interface between the valve disc and the valve body seats during operation of a gate valve. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. Analytical methods exist for predicting the thrust needed to operate these valves at specific pressure conditions. To produce accurate valve thrust predictions, the analyst must have a reasonably accurate, though conservative, estimate of the coefficient of friction at the disc-to-seat interface. One of the questions that remains to be answered is whether, and to what extent, aging of the disc and seat surfaces effects the disc-to-seat coefficient of friction. Specifically, does the environment in a nuclear plants piping system cause the accumulation of an oxide film on these surfaces that increases the coefficient of friction; and if so, how great is the increase? This paper presents results of specimen tests addressing this issue, with emphasis on the following: (1) the characteristics and thickness of the oxide film that develops on Stellite 6 as it ages; (2) the change in the friction coefficient of Stellite 6 as it ages, including the question of whether the friction coefficient eventually reaches a plateau; and (3) the effect in-service cycling has on the characteristics and thickness of the oxide film and on the friction coefficient.

  18. Evolutions of friction properties and acoustic emission source parameters associated with large sliding

    NASA Astrophysics Data System (ADS)

    Yabe, Y.; Tsuda, H.; Iida, T.

    2015-12-01

    It was demonstrated by Yabe (2002) that friction properties and AE (acoustic emission) activities evolve with accumulation of sliding. However, large sliding distances of ~65 mm in his experiments were achieved by recurring ~10 mm sliding on the same fault. The evolution of friction coefficient was discontinuous, when rock samples were reset. Further, normal stress was not kept constant. To overcome these problems and to reexamine the evolutions of friction properties and AE activities with continuous large sliding under a constant normal stress, we developed a rotary shear apparatus. The evolutions of friction and AE up to ~80 mm sliding under a normal stress of 5 MPa were investigated. Rate dependence of friction was the velocity strengthening (a-b>0 in rate and state friction law) at the beginning. The value of a-b gradually decreased with sliding to negative (velocity weakening). Then, it took a constant negative value, when the sliding reached a critical distance. The m-value of Ishimoto-Iida's relation of AE activity increased with sliding at the beginning and converged to a constant value at the critical sliding distance. The m-value showed a negative rate dependence at the beginning, but became neutral after sliding of the critical distance. The sliding distances required to converge the a-b value, the m-value and the rate dependence of the m-value are almost identical to one another. These results are the same as those by Yabe (2002), suggesting the intermission of sliding little affected the evolutions. We, then, examined evolutions of AE source parameters such as source radii and stress drops. The average source radius was constant over the whole sliding distance, while the average stress drop decreased at the beginning of sliding, and converged to a constant value. The sliding distance required to the conversion was the same as that for the above mentioned evolutions of friction property or AE activity.

  19. Friction forces on phase transition fronts

    SciTech Connect

    Mégevand, Ariel

    2013-07-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

  20. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  1. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  2. The Friction Factor in the Forchheimer Equation for Rock Fractures

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Qing; Hu, Shao-Hua; Chen, Yi-Feng; Wang, Min; Zhou, Chuang-Bing

    2016-08-01

    The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

  3. Friction and Surface Damage of Several Corrosion-resistant Materials

    NASA Technical Reports Server (NTRS)

    Peterson, Marshall B; Johnson, Robert L

    1952-01-01

    Friction and surface damage of several materials that are resistant to corrosion due to liquid metals was studied in air. The values of kinetic friction coefficient at low sliding velocities and photomicrographs of surface damage were obtained. Appreciable surface damage was evident for all materials tested. The friction coefficients for the combinations of steel, stainless steel, and monel sliding against steel, stainless steel, nickel, Iconel, and Nichrome ranged from 0.55 for the monel-Inconel combination to 0.97 for the stainless-steel-nickel combination; for steel, stainless steel, monel, and tungsten carbide against zirconium, the friction coefficient was approximately 0.47. Lower coefficients of friction (0.20 to 0.60) and negligible surface failure at light loads were obtained with tungsten carbide when used in combination with various plate materials.

  4. Friction analysis between tool and chip

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xu, Binshi; Zhang, Jiaying; Dong, Shiyun

    2010-12-01

    The elastic-plasticity mechanics are applied to analyze the friction between tool and chip. According to the slip-line field theory, a series of theoretical formula and the friction coefficient is derived between the tool and chip. So the cutting process can be investigated. Based on the Orthogonal Cutting Model and the Mohr's circle stress, the cutting mechanism of the cladding and the surface integrity of machining can be studied.

  5. Friction analysis between tool and chip

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xu, Binshi; Zhang, Jiaying; Dong, Shiyun

    2011-05-01

    The elastic-plasticity mechanics are applied to analyze the friction between tool and chip. According to the slip-line field theory, a series of theoretical formula and the friction coefficient is derived between the tool and chip. So the cutting process can be investigated. Based on the Orthogonal Cutting Model and the Mohr's circle stress, the cutting mechanism of the cladding and the surface integrity of machining can be studied.

  6. The Pv product required for the frictional ignition of alloys

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.; Homa, John

    1989-01-01

    NASA-White Sands has developed a frictional heating tester capable of evaluating the ignition properties of alloys in oxygen under friction conditions which involve rubbing. Sixteen alloys have been thus evaluated, yielding determinations of the product of the contact pressure and surface speed required for ignition in oxygen at 6.9 MPa; those which contained large Ni fractions manifested the greatest resistance to rubbing-induced ignition. The effect of the coefficient of friction is noted to be a major influence on ignition, and the results obtained indicate the value of frictional heating tests for environments involving frictional heating.

  7. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. PMID:25884490

  8. Effect of time derivative of contact area on dynamic friction

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2014-06-01

    This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.

  9. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-01

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

  10. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  11. Coordinated Water Under Confinement Eases Sliding Friction

    NASA Astrophysics Data System (ADS)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  12. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity

  13. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  14. Internally architectured materials with directionally asymmetric friction.

    PubMed

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  15. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  16. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  17. Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction

    NASA Astrophysics Data System (ADS)

    Matsukawa, Hiroshi; Otsuki, Michio

    2012-02-01

    It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.

  18. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  19. Gas desorption during friction of amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Rusanov, A.; Fontaine, J.; Martin, J.-M.; Mogne, T. L.; Nevshupa, R.

    2008-03-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H2 and CH4. During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it was

  20. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013

  1. Frictional Heating Recoded in Vitrinite Reflectance Within Coal Material Concentrated Layer: the Cretaceous Shimanto Belt

    NASA Astrophysics Data System (ADS)

    Kiyohiko, M.; Hashimoto, Y.; Hirose, T.; Kitamura, M.

    2013-12-01

    Frictional heating by faulting is related to effective friction coefficient, displacement, and thickness of fault. Geological records of frictional heating have been measured from some faults by various methods and applied to reconstructions of the fault slip behaviors (i.e., Fulton et al., 2012). Vitrinite reflectance (Ro) is one of the methods to detect the geological records of frictional heating. Vitrinite is a kind of coal maceral. Degree of coalification is related to Ro. In the previous studies, using Ro, frictional heating was identified along some faults including shallow deocollement and mega-splay fault in Nankai trough (Sakaguchi et al., 2011). The similar geological evidence can be observed in exhumed accretionary complexes. In this study, we tried to detect the evidence of frictional heating along minor faults developed in an exhumed accretionary complex using Ro. A coal concentrated layer was found in an exhumed accretionary complex, Shimanto Belt, SW Japan. The thickness of the coal concentrated layer is about 80 cm. Some faults are developed within the coal concentrated layer. Thickness of the faults is about a few mm to 1 cm. The coal concentrated layer is appropriate to examine the distribution of Ro. I measured Ro from samples collected around and outside of the layer. Ro of the sample more than 3cm away from the fault was about 1.0% in average. This value is corresponds the background value in this area. On the other hand, Ro of the samples within 3 cm from the fault shows bimodal distribution in histogram representing 1.0% and 1.2% at the peaks. This higher peak can indicate the frictional heating by faulting. Temperature by frictional heating was estimated from Ro following methods of O'Hara (2004), Fulton et al (2012) and Kitamura et al (2013). O'Hara (2004) set cooling rates as 100c/Ma and 0.035, 1.0c/s. Fulton et al. (2012) calculated temperature evolution at and around a fault on the basis of frictional heating and heat diffusion. Both

  2. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction.

    PubMed

    Bhadauria, Ravi; Aluru, N R

    2016-08-21

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width. PMID:27544095

  3. Frictionless bead packs have macroscopic friction, but no dilatancy.

    PubMed

    Peyneau, Pierre-Emmanuel; Roux, Jean-Noël

    2008-07-01

    The statement of the title is shown by numerical simulation of homogeneously sheared assemblies of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant shear rate gamma[over ] in the limit of small gamma[over ] and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle phi , equal to 5.76 degrees +/-0.22 degrees in simple shear, is independent of average pressure P in the rigid limit and stems from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, similar to the effective friction of a frictionless slider on a bumpy surface. Solid fraction Phi remains equal to the random close packing value approximately 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit. Defining the inertial number as I=gamma radical m/(aP), with m the grain mass and a its diameter, both internal friction coefficient mu*=tan phi and volume 1/Phi increase as powers of I in the quasistatic limit of vanishing I , in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of coordination numbers. PMID:18763948

  4. Comments on Static vs Kinetic Friction

    NASA Astrophysics Data System (ADS)

    Kessler, Gabriel

    2009-09-01

    I'm writing to comment on the article published in the March edition of The Physics Teacher titled "Choose Wisely: Static or Kinetic Friction—The Power of Dimensionless Plots." As I was reading the article, something caught my eye that I couldn't reconcile with. It was the phrase on page 160 in the first column near the bottom. The statement was that the experimental value for the coefficient of kinetic friction was "unexpectedly greater than the coefficient of static friction!"

  5. Evaluating the Dynamic Character of Friction During Metal Forming

    SciTech Connect

    Stoudt, M.R.; Mates, S.P.; Hubbard, J.B.; Pitchure, D.J.

    2005-08-05

    The inhomogeneous distribution of surface asperities generated by deformation induces variability in the friction and initiates strain localizations during metal forming. The friction literature generally does not account for the strong influence localized variations in material properties have on the friction behavior. A prototype apparatus was developed that measures the friction behavior under simulated forming conditions and enables detailed characterization of the influences of the microstructure and the topographical conditions that occur under those conditions. The results demonstrate that the measurement system can resolve subtle real-time changes in the dynamic friction coefficient, and that a correlation could exist between the largest surface asperities and the largest variations in the measured friction coefficient.

  6. Evaluation of Wear Resistance of Friction Materials Prepared by Granulation.

    PubMed

    Ma, Yunhai; Liu, Yucheng; Menon, Carlo; Tong, Jin

    2015-10-21

    The tribological properties of friction materials prepared by hot-pressing pellets of different sizes were experimentally investigated. Friction and wear tests of the specimens were performed and morphological analysis was carried out by investigating images acquired with both scanning electron and confocal laser microscopes. The highest friction coefficient of friction materials was obtained with pellets having 1-5 mm size. The lowest wear rate was obtained with pellets having 8-10 mm size. Specimens processed by mixing pellets of different sizes had the highest density and the lowest roughness and were the least expensive to fabricate. The results show that granulation generally enabled increasing the friction coefficient, decreasing the wear rate, and reducing the number of defects on the surface of friction materials. PMID:26335031

  7. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  8. Prediction of Very High Reynolds Number Compressible Skin Friction

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1998-01-01

    Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.

  9. A vacuum (10(exp -9) Torr) friction apparatus for determining friction and endurance life of MoSx films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1992-01-01

    The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact

  10. Frictional processes in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Kendrick, J. E.; Petrakova, L.; Mitchell, T. M.; Heap, M. J.; Hirose, T.; Di Toro, G.; Hess, K.; Dingwell, D. B.

    2012-12-01

    The ascent of high-viscosity magma in upper conduits proceeds via the development of shear zones, which commonly fracture, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. Frictional slip in conduits may occur along magma-rock, rock-rock and magma-magma interfaces, with or without the presence of gouge material. During slip, frictional work is converted to heat, which may result in strong geochemical disequilibria as well as rheological variations, with important consequences on the dynamics of magma ascent. Here, we present a thermo-mechanical study on the ability of volcanic rocks (with different proportions of interstitial glass, crystals and vesicles) to sustain friction, and in some cases to melt, using a high-velocity rotary apparatus. The friction experiments were conducted at a range of slip velocities (1.3 mm/s to 1.3 m/s) along a (fault) plane subjected to different normal stresses (0.5-10 MPa). We observe that the behaviour of volcanic rocks during slip events varies remarkably. Frictional slip along dense crystal-rich rocks is characterized by the occurrence of comminution, commonly followed by melting. In contrast, slip along dense glass rocks rarely proceeds along a discrete plane - a glass subjected to slip tends to shatter as temperature enters the glass transition interval. Alternatively, glass can be slipped against a crystalline material. In the case of porous material, slip generally results in rapid abrasion of the porous material, producing a high amount of ash particles. The inability of the material to preserve its slip surface inhibits the generation of significant heat. Finally, during experiments in which ash gouge occupies the slip zone, friction generates a modest amount of heat and does not induce significant comminution along the slip plane. Mechanically, the frictional coefficients of the tested volcanic material vary significantly, depending whether the material may sustain slip (and

  11. Measuring anisotropic friction on WTe2 using atomic force microscopy in the force-distance and friction modes.

    PubMed

    Watson, Gregory S; Myhra, Sverre; Watson, Jolanta A

    2010-04-01

    Layered materials which can be easily cleaved have proved to be excellent samples for the study of atomic scale friction. The layered transition metal dichalcogenides have been particularly popular. These materials exhibit a number of interesting properties ranging from superconductivity to low frictional coefficients. In this paper we have investigated the tribology of the dichalcogenide-WTe2. The coefficient of friction is less than 0.040 along the Te rows and increases to over 0.045 across the rows. The frictional forces almost doubled at normal loads of 5000 nN when scanning in the [010] direction in comparison to the [100] direction. The frictional responses of the AFM probe have been monitored in the frictional force and force-versus-distance (f-d) mode. A comparison between the outcomes using the two different modes demonstrates the factors which need to be considered for accurate measurements. PMID:20355449

  12. Friction measurement in MEMS using a new test structure

    SciTech Connect

    Crozier, B.T.; De Boer, M.P.; Redmond, J.M.; Bahr, D.F.; Michalske, T.A.

    1999-12-09

    A MEMS test structure capable of measuring friction between polysilicon surfaces under a variety of test conditions has been refined from previous designs. The device is applied here to measuring friction coefficients of polysilicon surfaces under different environmental, loading, and surface conditions. Two methods for qualitatively comparing friction coefficients ({mu}) using the device are presented. Samples that have been coated with a self-assembled monolayer of the lubricating film perfluorinated-decyltrichorosilane (PFTS) have a coefficient of friction that is approximately one-half that of samples dried using super-critical CO{sub 2} (SCCO{sub 2}) drying. Qualitative results indicate that {mu} is independent of normal pressure. Wear is shown to increase {mu} for both supercritically dried samples and PFTS coated samples, though the mechanisms appear to be different. Super critically dried surfaces appear to degrade continuously with increased wear cycles, while PFTS coated samples reach a steady state friction value after about 10{sup 4} cycles.

  13. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    SciTech Connect

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  14. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  15. On surface structure and friction regulation in reptilian limbless locomotion.

    PubMed

    Abdel-Aal, Hisham A

    2013-06-01

    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role that surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakeskin. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the converse direction. Detailed analysis of the surface metrological feature reveals that tuning frictional response in snakes originates from the hierarchical nature of surface topology combined to the profile asymmetry of the surface micro-features, and the variation of the curvature of the contacting scales at different body regions. Such a combination affords the reptile the ability to optimize the frictional response. PMID:23582565

  16. The Static Ladder Problem with Two Sources of Friction

    ERIC Educational Resources Information Center

    Bennett, Jonathan; Mauney, Alex

    2011-01-01

    The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…

  17. A molecular dynamics study of dielectric friction

    SciTech Connect

    Kurnikova, M.G.; Waldeck, D.H.; Coalson, R.D.

    1996-07-01

    A molecular dynamics study of the friction experienced by the dye molecule resorufamine rotating in a polar solvent is performed. The validity of simple continuum theories of dielectric friction is tested. It is found that the Alavi{endash}Waldeck theory gives reasonable results for the zero frequency dielectric friction coefficient while the Nee{endash}Zwanzig theory requires an unphysically small cavity radius. A procedure for evaluating the time dependent friction kernel from torques and angular velocities, which enables the contributions to the friction from the van der Waals and Coulomb forces to be evaluated separately, is suggested. This study of a realistic system shows that electrostatic interactions can enhance friction by at least two physical mechanisms. First is a contribution to the friction which arises solely from retardation of the solvent reaction field. Second is a contribution arising from local structural changes of the solvent which are driven by the electrostatic field, i.e., a change in the local viscosity. {copyright} {ital 1996 American Institute of Physics.}

  18. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  19. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  20. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  1. Ice friction: Role of non-uniform frictional heating and ice premelting

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2015-12-01

    The low friction of ice is usually attributed to the formation of a thin water film due to melting of ice by frictional heating. Melting of ice is a first order phase transition where physical quantities like mass density, the elastic modulus or the shear strength changes abruptly at the transition temperature. Thus, one may expect the friction coefficient to change abruptly at some characteristic sliding speed, when the melt water film is produced. We show that taking into account that, due to non-uniform frictional heating, melting does not occur simultaneously in all the ice contact regions, the transition is not abrupt but still more rapid (as a function of sliding speed) than observed experimentally. The slower than expected drop in the friction with increasing sliding speed may be a consequence of the following paradoxical phenomena: before the melt-water film is formed, the friction of ice is high and a large frictional heating occur which may result in the melting of the ice. If a thin (nanometer) water film would form, the friction becomes low which results in small frictional heating and the freezing of the water film. This suggests a region in sliding speed where a thin (nanometer) surface layer of the ice may be in a mixed state with small ice-like and water-like domains, which fluctuate rapidly in space and time. Alternatively, and more likely, heat-softening of the ice may occur resulting in a thin, statistically homogeneous (in the lateral direction) layer of disordered ice, with a shear strength which decreases continuously as the ice surface temperature approaches the bulk melting temperature. This layer could be related to surface premelting of ice. Using a phenomenological expression for the frictional shear stress, I show that the calculated ice friction is in good agreement with experimental observations.

  2. Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Patnaik, Amar; Satapathy, Bhabani K.; Kumar, Mukesh; Tomar, Bharat S.

    2013-03-01

    Friction composite formulation consisting of decreasing nanoclay/lapinus fibres content, increasing graphite/aramid fibres content, and master batch of phenolic/barite is designed, fabricated, and characterized for their mechanical, thermo-mechanical, and tribological studies in braking situations. A standard test protocol is adopted for evaluating braking performance. The nanoclay content (≤2.25 wt.%) enhances hardness, impact strength, storage, and loss modulus characteristics of the friction composites. Such composites exhibit higher friction stability as well as variability coefficient. However, composites with higher content of nanoclay (~2.75 wt.%) exhibit moderate level of stability coefficient and minimum variability coefficient. Fade performance improves with nanoclay content whereas friction fluctuations increase continuously with increasing nanoclay content. The disc temperature continuously rises with nanoclay contents, it becomes maximum for nanoclay content 2.75 wt.%. The same composition found to be effective in arresting temperature rise, arrests fading, improves recovery, moderate stability with minimum variability coefficient, and higher level of μ-performance hence recommended. The wear performance deteriorates with lapinus/nanoclay content and improves with the amount of aramid/graphite in the friction composites. Worn surface morphology study (using SEM) reveals the associated wear mechanisms responsible for wear of investigated composites. XRD study confirms the presence and dispersion of nanoclay with other composite ingredients.

  3. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  4. Temperature dependence of nanoscale friction for Fe on YBCO

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Krim, Jacqueline

    2012-05-01

    A magnetic probe microscopy study of levitation and atomic-scale friction is reported for Fe on YBCO (Tc = 92.5 K) in the temperature range 65-293 K. Below Tc, the friction coefficient is constant and exhibits no correlation with the strength of superconducting levitation forces. Above Tc, the friction coefficient increases progressively, and nearly doubles between Tc and room temperature. The results are discussed within the context of the underlying atomic-scale electronic and phononic mechanisms that give rise to friction, and it is concluded that contact electrification and static electricity may play a significant role in the non-superconducting phase. Given that the properties of YBCO can be finely tuned, the results point the way to a variety of interesting studies of friction and superconductors.

  5. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  6. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  7. The diversity of friction behavior between bi-layer graphenes.

    PubMed

    Liu, Ze

    2014-02-21

    For relative sliding between two rigid graphene sheets that are interacted on by a van der Waals force, we show that the friction behavior is significantly dependent on the interlayer separation distance h. Around the equilibrium interlayer distance he, the friction behavior exactly obeys a linear law. When h is far smaller than he, the linear friction behavior transforms to overlinear behavior. On the other hand, when h is larger than he, there is another critical value of the interlayer distance, hc; when h is larger than he and smaller than hc, the friction behavior transforms from linear to sublinear behavior; however, when h is larger than hc, the coefficient of friction becomes negative. Further, the different friction behaviors are found to be well described by a universal power law, τ = μ*(σ + σ0)(n). PMID:24457559

  8. Friction Laws Based on Monotonic and Cyclic Rotary Shear Tests

    NASA Astrophysics Data System (ADS)

    Lai, C. J.; Dong, J. J.; Togo, T.; Yang, C. M.; Lee, C. T.; Shimamoto, T.

    2014-12-01

    Rotary-shear friction experiments have been successfully used to study the earthquake dynamics and catastrophic landslides in the past two decades. Recent studies indicated that the friction behaviors of fault gouge materials under oscillatory shear are different from those under monotonic shear. Experimental results revealed that the accelerating and decelerating motion caused weakening and strengthening, while undergoing overall slip weakening. In this study, we try to approximate the temporal variation of friction coefficient during accelerating/decelerating slip based on a velocity-displacement dependent friction law derived from monotonic rotary shear tests. The approximated results show a full strength recovery behavior when the slip velocity equals to zero, which cannot depict the experimental results. A frequency dependent factor was introduced into the friction law to improve the approximation. The mechanisms behind the differences of friction behaviors between the oscillatory and monotonic rotary shear tests will be explored.

  9. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.

    2015-05-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  10. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.