Science.gov

Sample records for average power laser

  1. High Average Power Yb:YAG Laser

    SciTech Connect

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  2. Average power laser experiment (APLE) design

    NASA Astrophysics Data System (ADS)

    Parazzoli, C. G.; Rodenburg, R. E.; Dowell, D. H.; Greegor, R. B.; Kennedy, R. C.; Romero, J. B.; Siciliano, J. A.; Tong, K.-O.; Vetter, A. M.; Adamski, J. L.; Pistoresi, D. J.; Shoffstall, D. R.; Quimby, D. C.

    1992-07-01

    We describe the details and the design requirements for the 100 kW CW radio frequency free electron laser at 10 μm to be built at Boeing Aerospace and Electronics Division in Seattle with the collaboration of Los Alamos National Laboratory. APLE is a single-accelerator master-oscillator and power-amplifier (SAMOPA) device. The goal of this experiment is to demonstrate a fully operational RF-FEL at 10 μm with an average power of 100 kW. The approach and wavelength were chosen on the basis of maximum cost effectiveness, including utilization of existing hardware and reasonable risk, and potential for future applications. Current plans call for an initial oscillator power demonstration in the fall of 1994 and full SAMOPA operation by December 1995.

  3. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  4. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  5. Average refractive powers of an alexandrite laser rod

    NASA Astrophysics Data System (ADS)

    Driedger, K. P.; Krause, W.; Weber, H.

    1986-04-01

    The average refractive powers (average inverse focal lengths) of the thermal lens produced by an alexandrite laser rod optically pumped at repetition rates between 0.4 and 10 Hz and with electrical flashlamp input pulse energies up to 500 J have been measured. The measuring setup is described and the measurement results are discussed.

  6. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  7. 100 W average power femtosecond laser at 343 nm.

    PubMed

    Rothhardt, Jan; Rothhardt, Carolin; Müller, Michael; Klenke, Arno; Kienel, Marco; Demmler, Stefan; Elsmann, Tino; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2016-04-15

    We present a femtosecond laser system delivering up to 100 W of average power at 343 nm. The laser system employs a Yb-based femtosecond fiber laser and subsequent second- and third-harmonic generation in beta barium borate (BBO) crystals. Thermal gradients within these BBO crystals are mitigated by sapphire heat spreaders directly bonded to the front and back surface of the crystals. Thus, a nearly diffraction-limited beam quality (M2 < 1.4) is achieved, despite the high thermal load to the nonlinear crystals. This laser source is expected to push many industrial and scientific applications in the future. PMID:27082370

  8. Kilowatt average-power laser for subpicosecond materials processing

    NASA Astrophysics Data System (ADS)

    Benson, Stephen V.; Neil, George R.; Bohn, Courtlandt L.; Biallas, George; Douglas, David; Dylla, H. Frederick; Fugitt, Jock; Jordan, Kevin; Krafft, Geoffrey; Merminga, Lia; Preble, Joe; Shinn, Michelle D.; Siggins, Tim; Walker, Richard; Yunn, Byung

    2000-04-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. We present operation results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce approximately 0.7 ps pulses in a continuous train at approximately 75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  9. High-average-power diode-pumped Yb: YAG lasers

    SciTech Connect

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  10. Potential of high-average-power solid state lasers

    SciTech Connect

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  11. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  12. The development of a high average power glass laser source

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    1984-05-01

    The subject contract has as its objective the development of a high average power glass laser by systematically improving the factors which influence the ability of a laser glass to handle large power levels. Based upon the availability of the thermal laser glass composition Q-100, the rationale used was toward the improvement of the efficiency of a glass laser by developing methods to increase the pumping efficiency and toward the improvement of the power handling capability of the glass laser rod itself. These incremental developments were broken down as follows: (1) Characterization of Q-100 Laser Glass: The measurement of its thermo-physical and thermo-optical properties to better define its engineering design parameters. (2) Improve Pumping Efficiency or Q-100: Primarily by cladding Q-100 with a matching cladding glass which would act as a lens and improve the transfer of pumping energy from the flashlamp. (3) Reduce thermal loading of Q-100 by Selective filtering of the flashlamp radiation and/or use energy transfer schemes to increase that portion of the flashlamp radiation corresponding to the neodymium pump bands. (4) Increase the rupture strength of Q-100 to directly increase its power-handling capability. (5) Investigate alternate pump sources to improve efficiency.

  13. High Average Power Nd:YAG Slab Laser

    NASA Astrophysics Data System (ADS)

    Kasai, Takeshi; Sindo, Yoshihiko; Haga, Keiji

    1989-07-01

    A slab geometry Nd:YAG laser with a zigzag optical path is described. The dimensions of the Nd:YAG slab are 5.6 x 18.4 x 153.9 mm, and Nei' ion concentration is 1.1 at.%. Two krypton flashlamps, one located on each side of the YAG slab, are used for pumping. The conditions for normal pulsed operation were as follows: the repetition rate was from 5 to 27 pps, and the pulse durations were 4 and 9.9 ms. With the above conditions, a maximum average output power of 500 W was obtained with an efficiency of 2 %, the slope efficiency being 2.4 %. The beam divergence was estimated to be 10x25 mrad. The stability of the laser output power was about +/-1.5 %. Another oscillator that includes intra-cavity cylindrical lenses, was also designed. Using this resonator configuration reduced the beam divergence to about 7.6 x8.2 mrad. The preliminary laser processing experiment was attemped using this laser oscillator.

  14. Highly flexible ultrafast laser system with 260W average power

    NASA Astrophysics Data System (ADS)

    Mans, Tl; Dolkemeyer, Jan; Russbüldt, P.; Schnitzler, Claus

    2011-02-01

    A flexible ultrafast laser amplifier system based on Ytterbium Innoslab technology with an average power exceeding 200W is presented. The pulse duration of the system can be continuously tuned between 500fs and 6ps, limited only by the amplification bandwidth of Yb:YAG and the stretcher of the seed source. The repetition rate can be varied from 26.6MHz down to 1MHz. For the ps-regime more than 200μJ and for the fs-regime more than 50μJ are demonstrated without the need of temporal compression of the high power beam after the amplifier. Spectral bandwidth is close to the transform limit of the shortest measured pulses. Beam quality is measured to be near the diffraction limit (M2<1.3).

  15. Ultrafast green laser exceeding 400 W of average power

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Russbueldt, Peter; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2014-05-01

    We present the world's first laser at 515 nm with sub-picosecond pulses and an average power of 445 W. To realize this beam source we utilize an Yb:YAG-based infrared laser consisting of a fiber MOPA system as a seed source, a rod-type pre-amplifier and two Innoslab power amplifier stages. The infrared system delivers up to 930 W of average power at repetition rates between 10 and 50 MHz and with pulse durations around 800 fs. The beam quality in the infrared is M2 = 1.1 and 1.5 in fast and slow axis. As a frequency doubler we chose a Type-I critically phase-matched Lithium Triborate (LBO) crystal in a single-pass configuration. To preserve the infrared beam quality and pulse duration, the conversion was carefully modeled using numerical calculations. These take dispersion-related and thermal effects into account, thus enabling us to provide precise predictions of the properties of the frequency-doubled beam. To be able to model the influence of thermal dephasing correctly and to choose appropriate crystals accordingly, we performed extensive absorption measurements of all crystals used for conversion experiments. These measurements provide the input data for the thermal FEM analysis and calculation. We used a Photothermal Commonpath Interferometer (PCI) to obtain space-resolved absorption data in the bulk and at the surfaces of the LBO crystals. The absorption was measured at 1030 nm as well as at 515 nm in order to take into account the different absorption behavior at both occurring wavelengths.

  16. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, Jeff; Stuart, Brent; Seryi, Andrei; /SLAC

    2012-07-05

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system.

  17. High Average Power Lasers for the Photon Collider

    SciTech Connect

    Stuart, B; Gronberg, J; Seryi, A

    2009-04-29

    The idea to convert an electron collider into a high energy photon collider has existed for several decades. A key technological limitation to realizing this idea is the need to create a large amount of laser power to drive the Compton back-scattering. A concept to reduce the required laser power using a recirculating cavity has been proposed. We describe a concept for a laser architecture that could drive such a cavity.

  18. Metal deep engraving with high average power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Faucon, M.; Mincuzzi, G.; Morin, F.; Hönninger, C.; Mottay, E.; Kling, R.

    2015-03-01

    Deep engraving of 3D textures is a very demanding process for the creation of master tool e. g molds, forming tools or coining dies. As these masters are uses for reproduction of 3D patterns the materials for the tools are typically hard and brittle and thus difficult to machine. The new generation of industrial femtosecond lasers provides both high accuracy engraving results and high ablation rates at the same time. Operation at pulse energies of typically 40 μJ and repetition rates in the Mhz range the detrimental effect of heat accumulation has to be avoided. Therefore high scanning speeds are required to reduce the pulse overlap below 90%. As a consequence scan speeds in the range of 25-50 m/s a needed, which is beyond the capability of galvo scanners. In this paper we present results using a combination of a polygon scanner with a high average power femtosecond laser and compare this to results with conventional scanners. The effects of pulse energy and scan speed of the head on geometrical accuracy are discussed. The quality of the obtained structures is analyzed by means of 3D surface metrology microscope as well as SEM images.

  19. High average power lasers for future particle accelerators

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Crane, John K.; Messerly, Michael J.; Prantil, Matthew A.; Pax, Paul H.; Sridharan, Arun K.; Allen, Graham S.; Drachenberg, Derrek R.; Phan, Henry H.; Heebner, John E.; Ebbers, Christopher A.; Beach, Raymond J.; Hartouni, Edward P.; Siders, Craig W.; Spinka, Thomas M.; Barty, C. P. J.; Bayramian, Andrew J.; Haefner, Leon C.; Albert, Felicie; Lowdermilk, W. Howard; Rubenchik, Alexander M.; Bonanno, Regina E.

    2012-12-01

    Lasers are of increasing interest to the accelerator community and include applications as diverse as stripping electrons from hydrogen atoms, sources for Compton scattering, efficient high repetition rate lasers for dielectric laser acceleration, peta-watt peak power lasers for laser wake field and high energy, short pulse lasers for proton and ion beam therapy. The laser requirements for these applications are briefly surveyed. State of the art of laser technologies with the potential to eventually meet those requirements are reviewed. These technologies include diode pumped solid state lasers (including cryogenic), fiber lasers, OPCPA based lasers and Ti:Sapphire lasers. Strengths and weakness of the various technologies are discussed along with the most important issues to address to get from the current state of the art to the performance needed for the accelerator applications. Efficiency issues are considered in detail as in most cases the system efficiency is a valuable indicator of the actual ability of a given technology to deliver the application requirements.

  20. Optimizing average power in low quantum defect lasers.

    PubMed

    Bowman, S R

    2015-11-01

    Waste heat generation is a generic problem in high-power solid-state laser systems. One way to reduce heat loading while improving efficiency is to reduce the laser's quantum defect. This paper presents a simple analysis of low quantum defect laser materials. In these laser materials, the effects of fluorescent cooling and weak loss processes should not be ignored. Simple expressions are developed for efficiency and heating in a steady-state purely radiative material. These expressions are then extended to include weak losses and fluorescence reabsorption. Evaluation of these relations using ytterbium-doped YAG is used to illustrate several optimization schemes and the impact of realistic losses. PMID:26560625

  1. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser. PMID:21197032

  2. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  3. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  4. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  5. Scalability of components for kW-level average power few-cycle lasers.

    PubMed

    Hädrich, Steffen; Rothhardt, Jan; Demmler, Stefan; Tschernajew, Maxim; Hoffmann, Armin; Krebs, Manuel; Liem, Andreas; de Vries, Oliver; Plötner, Marco; Fabian, Simone; Schreiber, Thomas; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented. PMID:26974623

  6. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  7. High average power laser using a transverse flowing liquid host

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  8. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  9. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  10. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    SciTech Connect

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  11. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  12. Laser damage of dichroic coatings in a high average power laser vacuum resonator

    SciTech Connect

    Arnold, P A; Berzins, L V; Chow, R; Erbert, G V

    1999-07-28

    In our application, dichroics in a high average power, near-infrared, laser system have short operating lifetimes. These dichroics were used as the resonator fold mirrors and permitted the transmission of the pumping argon (Ar) ion laser light. Representative samples of two different dichroic optics were taken off-line and the transmission performance monitored in various scenarios. Irradiating these optics under resonator vacuum conditions, ({le}1 mT, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) resulted in a degradation of transmission with time. Irradiating these optics in a rarefied oxygen atmosphere (1 to 10 T of oxygen, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) the transmission remained steady over a period of days. The transmission loss observed in the optic tested in vacuum was somewhat reversible if the optic was subsequently irradiated in a rarefied oxygen atmosphere. This reversibility was only possible if the transmission degradation was not too severe. Further tests demonstrated that an atmosphere of 10 T of air also prevented the transmission degradation. In addition, tests were performed to demonstrate that the optic damage was not caused by the ultra-violet component in the Ar ion laser. Mechanisms that may account for this behavior are proposed.

  13. The LUCIA project: a high average power ytterbium diode pumped solid state laser chain

    NASA Astrophysics Data System (ADS)

    Bourdet, Gilbert L.; Chanteloup, Jean-Christophe; Fulop, A.; Julien, Y.; Migus, Arnold

    2004-04-01

    With the goal to set up a high average power Diode Pumped Solid State Laser (100 Joules/10 Hz/10 ns), the Laboratory for Use of Intense Laser (LULI) is now studying various solutions concerning the amplifier medium, the cooling, the pumping and the extraction architectures. In this paper, we present the last states of these developments and the solutions already chosen.

  14. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  15. High-average-power 100-Hz repetition rate table-top soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Reagan, Brendan A.; Wernsing, Keith; Wang, Yong; Yin, Liang; Wang, Shoujun; Berrill, Mark; Woolston, Mark R.; Curtis, Alden H.; Furch, Federico J. A.; Shlyaptsev, Vyacheslav N.; Luther, Brad M.; Patel, Dinesh; Marconi, Mario C.; Menoni, Carmen S.

    2013-09-01

    The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.

  16. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  17. A high-average-power blue-green laser for underwater communications

    NASA Astrophysics Data System (ADS)

    Pacheco, D. P.; Aldag, H. R.; Klimek, D. E.; Rostler, P. S.; Scheps, R.

    A flashlamp-pumped dye laser designed for high average power at an atomic resonance line and long service life is described. Initial characterization yields broad output in excess of 4 J/pulse and tuned output greater than 1.5 J/pulse at 458 nm and 30 mA bandwidth. The laser design features are described, including the laser head, resonator, lamp driving circuitry, dye replenishment, and system component limiting service life.

  18. High average power quasi-CW single-mode green and UV fiber lasers

    NASA Astrophysics Data System (ADS)

    Avdokhin, Alexey; Gapontsev, Valentin; Kadwani, Pankaj; Vaupel, Andreas; Samartsev, Igor; Platonov, Nicholai; Yusim, Alex; Myasnikov, Daniil

    2015-02-01

    Kilowatt-level narrow-linewidth SM ytterbium fiber laser operating in high-repetition-rate QCW regime was used to obtain 700 W average power at 532 nm with single-mode beam quality and wall-plug efficiency of over 23 %. To the best of our knowledge, this is ~60 % higher power than previously reported for single-mode green lasers based on other platforms, and also is ~30 % increase comparing to the previous result obtained by our group on the base of similar fiber laser platform. We have also experimentally proved that the same type of fiber laser can be used for generating of world-record levels of power at other wavelengths of visible and UV spectral ranges by employing cascaded non-linear frequency conversion. Thus, utilizing frequency tripling in 2 LBO crystals, we achieved over 160 W average power of nearly single-mode UV light at 355 nm with THG efficiency of more than 25 %. As far as we know, this is the highest output power ever reported for UV laser with nearly diffraction limited beam quality. We also conducted some preliminary experiments to demonstrate suitability of our approach for generating longer wavelengths of the visible spectrum. By pre-shifting fundamental emission wavelength in fiber Raman converter, followed by frequency doubling in NCPM LBO, we obtained average powers of 36 W at 589 nm and 27 W at 615 nm. These proof-of-concept experiments were performed with low-power pump laser and were not fully optimized with respect to frequency conversion. Our analysis indicates that employing kW-level QCW ytterbium laser with optimized SRS and SHG converters we can achieve hundreds of Watts of average power in red and orange color with single-mode beam quality.

  19. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  20. New generation of high average power industry grade ultrafast ytterbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Yusim, Alex; Samartsev, Igor; Shkurikhin, Oleg; Myasnikov, Daniil; Bordenyuk, Andrey; Platonov, Nikolai; Kancharla, Vijay; Gapontsev, Valentin

    2016-03-01

    We report an industrial grade picosecond and femtosecond pulse Yb fiber lasers with >100 μJ pulse energy and hundreds of Watts of average power for improved laser machining speed of sapphire and glass. This highly efficient laser offers >25% wall plug efficiency within a compact 3U rack-mountable configuration plus a long >2m fiber delivery cable. Reconfigurable features such as controllable repetition rate, fine pulse duration control, burst mode operation and adjustable pulse energy permit the customer to tailor the laser to their application.

  1. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  2. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  3. High average power of Q-switched Tm:YAG slab laser

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Liu, Pian; Liu, Xuan; Huang, Haitao; Yao, Weichao; Shen, Deyuan

    2016-08-01

    A laser-diode end-pumped Tm:YAG single crystal slab laser in acousto-optic Q-switched operation was demonstrated. For Q-switched operation, the average output power of 20.7 W at 1 kHz was achieved under the absorbed pump power of 83.6 W, corresponding to the slope efficiency of 36.1%, the shortest pulse width of 84 ns and the maximum pulse energy of 20.7 mJ with peak power of 250 kW were obtained.

  4. A kilowatt average power laser for sub-picosecond materials processing

    SciTech Connect

    Stephen V. Benson; George R. Neil; C. Bohn; , G. Biallas; D. Douglas; F. Dylla; J. Fugitt; K. Jordan; G. Krafft; , L. Merminga; , J. Preble; , Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-11-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. The authors present operational results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce {approximately}0.7 ps pulses in a continuous train at {approximately}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  5. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  6. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.

    PubMed

    Alexander, Nathan S; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S; Palczewski, Krzysztof

    2016-07-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)]. PMID:27446697

  7. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S.; Palczewski, Krzysztof

    2016-01-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [PalczewskaG., Nat Med. 20, 785 (2014)24952647 SharmaR., Biomed. Opt. Express 4, 1285 (2013)24009992]. PMID:27446697

  8. 100 Hz repetition rate, high average power, plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Berrill, Mark; Durivage, Leon; Furch, Federico; Curtis, Alden; Luther, Bradley; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2013-10-01

    Numerous applications demand high average power / high repetition rate compact sources of coherent soft x-ray radiation. We report the demonstration table-top soft x-ray lasers at wavelengths ranging from 10.9 nm to 18.9 nm from plasmas created at 100 Hz repetition rate. Results includes a record average power of 0.15 mW at λ = 18.9 nm from a laser-produced Mo plasma and 0.1 mW average power at λ = 13.9 nm from a Ag plasma. These soft x-ray lasers are driven by collisional electron impact excitation in elongated line focus plasmas a few mm in length heated by a compact, directly diode-pumped, chirped pulse amplification Yb:YAG laser that produces 1 J pulses of ps duration at 100 Hz repetition rate. Pulses from this laser irradiate the surface of polished metal targets producing transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Tailoring of the temporal profile of the driver laser pulse is observed to significantly increase soft x-ray laser output power as well as allow the generation of shorter wavelength lasers with reduced pump energy. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  9. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Brocklesby, W. S.; Nilsson, J.; Schreiber, T.; Limpert, J.; Brignon, A.; Bourderionnet, J.; Lombard, L.; Michau, V.; Hanna, M.; Zaouter, Y.; Tajima, T.; Mourou, Gérard

    2014-05-01

    The application of petawatt lasers to scientific and technological problems is advancing rapidly. The usefulness of these applications will depend on being able to produce petawatt pulses at much higher repetition rates than is presently possible. The International Coherent Amplification Network (ICAN) consortium seeks to design high repetition rate petawatt lasers using large scale coherent beam combination of femtosecond pulse amplifiers built from optical fibres. This combination of technologies has the potential to overcome many of the hurdles to high energy, high average power pulsed lasers, opening up applications and meeting societal challenges.

  10. Optical design and performance of the amplifier stage for the average power laser experiment

    NASA Astrophysics Data System (ADS)

    Quimby, D. C.; Parazzoli, C. G.; Pistoresi, D. J.

    1992-07-01

    Boeing, in collaboration with Los Alamos and STI Optronics, is embarking on a program to build and operate the Average Power Laser Experiment (APLE) to demonstrate the high power capability of free-electron lasers at a wavelength of 10 μm. The experiment utilizes the single-accelerator, master-oscillator, power-amplifier (SAMOPA) approach. The performance of the power amplifier stage, as calculated by the time-dependent 3D FELEX code, is presented. The SAMOPA concept has important advantages in terms of excellent electron trapping fraction and remarkable insensitivity to slippage, input optical power, and detuning from resonance, but key requirements are placed on the e-beam peak current and emittance and on the allowable induced energy spread in the oscillator stage. Optical design tradeoffs between strong guiding and power extraction are described and a complete evaluation of the performance sensitivity to various error sources and misalignments is presented.

  11. Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Kowalewski, K.; Envid, V.; Zembek, J.; Canale, B.; Kolis, J. W.; McMillen, C. D.; Geisber, H.

    2012-06-01

    Cryogenic Yb:YAG lasers operating at 1029 nm have been demonstrated at Snake Creek Lasers with high average power CW and ultrafast output powers, and provide near diffraction-limited output beams that are ideal for applications in harmonic generation. We describe experiments that have produced high average power green output power at 515 nm as well as preliminary experiments producing UV output power at 257.25 nm. Frequency doubling experiments used a 20 mm long non-critically phase-matched LBO crystal mounted in a constant temperature oven. A mode-locked Yb fiber laser operating at 50 MHz was used to drive a two Yb:YAG cryogenic amplifier system, producing hundreds of watts of average power output with a FWHM pulsewidth of 12 ps. Doubling efficiencies of > 50 % have been observed. For frequency quadrupling, we have used hydrothermally grown KTTP crystals grown at Clemson University and Advanced Photonic Crystals. KBBF offers unprecedented UV transmission down to 155 nm, and was used in a Type I phasematching configuration. The properties of KBBF will be discussed, as well as the experimental results observed and conversion efficiency.

  12. Electron-beam and high speed optical diagnostics for the Average Power Laser Experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; McVey, B. D.; Greegor, R. B.; Dowell, D. H.

    The Average Power Laser Experiment (APLE) program is a collaboration of Boeing and Los Alamos to build a free-electron laser (FEL) operating at a wavelength of 10 microns and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to the simulations of the expected electron beam properties, diagnostic plans have been developed for the low-duty and the 25 percent-duty operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near infrared light (optical transition radiation, Cerenkov radiation, synchrotron radiation, and spontaneous emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  13. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  14. Thermally induced distortion of high average power laser system by an optical transport system

    SciTech Connect

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.

  15. High average power pulsed phase conjugate laser with birefringence correction. Revision 1

    SciTech Connect

    Bowers, M.W.; Hankla, A.K.; Jacobson, G.F.

    1994-05-01

    Nd:YAG rod lasers have been plagued with the inability to go to high average powers because of thermally induced birefringence and focusing. Several methods have been employed to correct for the birefringence and the thermal aberrations of such systems, but place stringent constraints on the laser heads and/or the system alignment. They have developed a scalable Nd: YAG master oscillator/power amplifier (MOPA) laser system which employs a novel phase conjugation scheme to correct both for the material and thermal distortions as well as the thermal birefringence in double pass amplifier systems. This method reduces the double pass depolarization from 42% to less than 2% and is easy to align.

  16. Laser properties of an improved average-power Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Marshall, Christopher D.; Bayramian, Andy J.; Wilke, Gary D.; Hayden, Joseph S.

    1994-10-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% gain cross section and a 25% longer low-concentration emission lifetime.

  17. Specification of optical components for a high average-power laser environment

    SciTech Connect

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  18. 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser.

    PubMed

    Aus der Au, J; Spühler, G J; Südmeyer, T; Paschotta, R; Hövel, R; Moser, M; Erhard, S; Karszewski, M; Giesen, A; Keller, U

    2000-06-01

    We demonstrate a power-scalable concept for high-power all-solid-state femtosecond lasers, based on passive mode locking of Yb:YAG thin disk lasers with semiconductor saturable-absorber mirrors. We obtained 16.2 W of average output power in pulses with 730-fs duration, 0.47-muJ pulse energy, and 560-kW peak power. This is to our knowledge the highest average power reported for a laser oscillator in the subpicosecond regime. Single-pass frequency doubling through a 5-mm-long lithium triborate crystal (LBO) yields 8-W average output power of 515-nm radiation. PMID:18064208

  19. Average power constraints in AlGaAs semiconductor lasers under pulse-position-modulation conditions

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    In some optical communications systems there are advantages to using low duty-cycle pulsed modulation formats such as pulse-position-modulation. However, because of intrinsic limitations of AlGaAs semiconductor lasers, the average power that they can deliver in a pulsed mode of operation is lower than in a CW mode. The magnitude of this problem and its implications are analyzed in this letter, and one possible solution is mentioned.

  20. Wavefront control in high average-power multi-slab laser system

    NASA Astrophysics Data System (ADS)

    Pilar, Jan; Bonora, Stefano; Divoky, Martin; Phillips, Jonathan; Smith, Jodie; Ertel, Klaus; Collier, John; Jelinkova, Helena; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-03-01

    A high average power cryogenically-cooled diode-pumped solid-state laser system for Hilase centre in Czech Republic is being developed by Central Laser Facility at Rutherford Appleton Laboratory, England in collaboration with Hilase team. The system will deliver pulses with energy of 100 J at 10 Hz repetition rate and will find applications in research and industry. The laser medium and other elements of the system are subject to heavy thermal loading which causes serious optical aberrations and degrade the output beam quality. To meet the stringent laser requirements of this kWclass laser, it is necessary to implement adaptive optics system, which will correct for these aberrations. During our research the sources of aberrations have been identified and analyzed. Based on this analysis, a suitable adaptive optics system was proposed. After finalizing numerical models, simulations and optimizations, the adaptive optics system was developed, characterized and installed in a cryogenically-cooled multi-slab laser system running up to 6 J and 10 Hz. The adaptive optics system consists of 6x6 actuator bimorph deformable mirror and wavefront sensor based on quadriwave lateral shearing interferometry operated in closed loop. The functionality of the system was demonstrated at full power.

  1. High-average-power actively-mode-locked Tm3+ fiber lasers

    NASA Astrophysics Data System (ADS)

    Eckerle, Michael; Kieleck, Christelle; Hübner, Philipp; Świderski, Jacek; Jackson, Stuart D.; Mazé, Gwenael; Eichhorn, Marc

    2012-02-01

    Fiber lasers emitting in the 2 μm wavelength range doped with thulium ions can be used as highly efficient pump sources for nonlinear converters to generate mid-infrared radiation. For spectroscopic purposes, illumination and countermeasures, a broad mid-infrared emission spectrum is advantageous. This can be reached by supercontinuum generation in fibers, e.g. fluoride fibers, which up to now has, however, only been presented with either low average power, complex Raman-shifted 1.55 μm pump sources or multi-stage amplifier pump schemes. Here we present recent results of a new actively-mode-locked single-oscillator scheme that can provide the high-repetition rate sub-ns pump pulses needed for pumping supercontinuum generators. A thulium-doped silica fiber laser is presented that provides > 11 W of average power CW-mode-locked pulses at 38 MHz repetition rate at ~ 38 ps pulse width. Upgrading the setup to allow Q-switched mode-locked operation yields mode-locked 40 MHz pulses arranged in 60 kHz bunched Q-switch envelopes and thus increases further the available peak power. In this Q-switched mode-locked regime over 5 W of average power has been achieved.

  2. Experimental studies of high average power CO2-laser-induced thermomechanical processes

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1990-04-01

    Pulsed high average power CO2 lasers allow for a most efficient conversion of coherence IR laser radiation into thermal and mechanical energies. Investigations using a specially developed repetitively pulsed high energy CO2 laser are presented. This powerful device provides mean powers of several kW and peak powers of the individual pulses in the multi-MW range. Studies were performed to obtain information on the transient behavior of the fast energy transfer mechanisms that occur at peak power densities near or above the surface plasma ignition thresholds. As shown, these plasma waves are periodically building up, expanding and recombining during the short time intervals between subsequent pulses, even in the case of the highest repetition rates that are presently limited to 100 Hz. Besides the efficient thermal energy transfer through plasma enhanced thermal coupling mechanisms, the simultaneously induced mechanical pressure waves are providing an additional impulsive loading of the targets. These pressures were investigated by using PVDF gauges. The experiments reveal that these effects are also responsible for improvements, concerning the energy balance, in most manufacturing processes such as in cutting or in drilling, where these fast thermomechanically coupled processes, for example, contribute to increase the mass removal rates.

  3. Experimental studies of high-average-power pulsed CO2-laser-induced thermomechanical processes

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1990-10-01

    Pulsed high average power C02-lasers allow for a most efficient conversion of coherent IR-laser radiation into thermal and mechanical energies. This paper is concerned with investigations using a specially developed repetitively pulsed high energy C02-laser. This powerful device provides mean powers of several kW and peak powers of the individual pulses in the multi-MW range. Studies were performed to obtain information on the transient behaviour of the fast energy transfer mechanisms that occur at peak power densities near or above the surface plasma ignition thresholds. As shown, these plasma waves are periodically building up, expanding and recombining during the short time intervals between subsequent pulses, even in case of the highest repetition rates that are presently limited to 100 Hz. Besides the efficient thermal energy transfer through plasma-enhanced thermal coupling mechanisms, the simultaneously induced mechanical pressure waves are providing an additional impulsive loading of the targets. These pressures were investigated by using PVDF gauges. The experiments reveal that these effects too are responsible for improvements, concerning the energy balance, in most manufacturing processes such as in cutting or in drilling, where these fast thermo-mechanically coupled processes, for example, contribute to increase the mass removal rates.

  4. Industrial applications of a fiber-based high-average-power picosecond laser

    NASA Astrophysics Data System (ADS)

    Moorhouse, Colin

    2009-02-01

    Presently lasers are well established tools for materials processing due to advantages such as (i) the non-contact nature of the laser-material interaction, (ii) the high precision achievable and (iii) no requirement for high vacuum equipment or costly chemicals. Now, industrial laser users demand improvements in order to achieve higher quality features with reduced heat affected zones and so it is increasingly necessary to use shorter pulse durations. To satisfy these needs, there has been significant research into ultrafast laser technology for decades, however at this time, these lasers have yet to be adopted by industry for mass production. Recent developments have shown that the combination of a fibre seed oscillator and Diode Pumped Solid State (DPSS) amplifying technology can offer high average power, picosecond pulses (~10ps) in an industrially-rugged package. The significant laser design aspects are outlined here, along with the advantages this technology offers for applications such as silicon via drilling, thin film patterning and the machining of wide bandgap materials.

  5. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; Liu, H.; Merminga, L.; Neil, G. R.; Neuffer, D.; Shinn, M.; Sinclair, C.; Wiseman, M.; Brillson, L. J.; Henkel, D. P.; Helvajian, H.; Kelley, M. J.; Nair, Shanti

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  6. A picosecond thin-rod Yb:YAG regenerative laser amplifier with the high average power of 20 W

    NASA Astrophysics Data System (ADS)

    Matsubara, S.; Tanaka, M.; Takama, M.; Hitotsuya, H.; Kobayashi, T.; Kawato, S.

    2013-05-01

    A high-average-power, laser-diode-pumped, picosecond-pulse regenerative amplifier was developed using the thin-rod Yb:YAG (yttrium aluminum garnet) laser architecture. This architecture has a complete set of favorable properties for the cost-effective, high-average-power, and high-peak-power lasers. These include low amplified spontaneous emission with high gain and high repetition rate. For the amplifier system, an average output power of 20 W was achieved at a pulse repetition rate of 100 kHz, which corresponds to an output pulse energy of 200 μJ with an output pulse width of 2 ps.

  7. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  8. 1KHz high average power single-frequency Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Ma, Xiuhua; Li, Shiguang; Chen, Weibiao

    2015-02-01

    A laser-diode-pumped master oscillator and power amplifier was developed with high efficiency, high average power and high beam quality. The oscillator is an injection-seeding, fiber coupled diode-end-pumped E-O Q-switched Nd:YAG laser, producing single frequency pulse laser output with pulse energy of 8mJ and pulse width of 11ns at a pulse repetition rate of 1KHz,The 1KHz was divided into four chains with frequency of 250Hz, through E-O modulation technology, The power amplifier utilizes conductively-cooling Nd:YAG zigzag slab with two sides' pump architecture at bounce point. Pulse energy of more than 800mJ with pulse widths of 12.6ns was obtained at repetition rate of 250Hz in every amplifier chain, the frequency-doubled pulse energy of 360mJ when KTP crystal was used was obtained at a repetition of 250Hz.

  9. The Mercury Laser System-A scaleable average-power laser for fusion and beyond

    SciTech Connect

    Ebbers, C A; Moses, E I

    2008-03-26

    Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser! NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

  10. Temperature-insensitive frequency tripling for generating high-average power UV lasers.

    PubMed

    Zhong, Haizhe; Yuan, Peng; Wen, Shuangchun; Qian, Liejia

    2014-02-24

    Aimed for generating high-average power ultraviolet (UV) lasers via third-harmonic generation (THG) consisting of frequency doubling and tripling stages, we numerically and experimentally demonstrate a novel frequency tripling scheme capable of supporting temperature-insensitive phase-matching (PM). Two cascaded tripling crystals, with opposite signs of the temperature derivation of phase-mismatch, are proposed and theoretically studied for improving the temperature-acceptance of PM. The proof-of-principle tripling experiment using two crystals of LBO and BBO shows that the temperature acceptance can be ~1.5 times larger than that of using a single tripling crystal. In addition, the phase shift caused by air dispersion, along with its influence on the temperature-insensitive PM, are also discussed. To illustrate the potential applications of proposed two-crystal tripling design in the high-average-power regime, full numerical simulations for the tripling process, are implemented based on the realistic crystals. The demonstrated two-crystal tripling scheme may provide a promising route to high-average-power THG in the UV region. PMID:24663750

  11. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  12. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Loeschner, Udo

    2015-09-01

    In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

  13. Green sub-ps laser exceeding 400 W of average power

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Russbueldt, Peter; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2014-02-01

    We present the world's first laser at 515 nm with sub-picosecond pulses and an average power of 445 W. To realize this beam source we utilize an Yb:YAG-based infrared laser consisting of a fiber MOPA system as a seed source, a rod-type pre-amplifier and two Innoslab power amplifier stages. The infrared system delivers up to 930 W of average power at repetition rates between 10 and 50 MHz and with pulse durations around 800 fs. The beam quality in the infrared is M² = 1.1 and 1.5 in fast and slow axis. As a frequency doubler we chose a Type-I critically phase-matched Lithium Triborate (LBO) crystal in a single-pass configuration. To preserve the infrared beam quality and pulse duration, the conversion was carefully modeled using numerical calculations. These take dispersion-related and thermal effects into account, thus enabling us to provide precise predictions of the properties of the frequency-doubled beam. To be able to model the influence of thermal dephasing correctly and to choose appropriate crystals accordingly, we performed extensive absorption measurements of all crystals used for conversion experiments. These measurements provide the input data for the thermal FEM analysis and calculation. We used a Photothermal Commonpath Interferometer (PCI) to obtain space-resolved absorption data in the bulk and at the surfaces of the LBO crystals. The absorption was measured at 1030 nm as well as at 515 nm in order to take into account the different absorption behavior at both occurring wavelengths.

  14. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  15. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  16. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  17. Laser properties of a new average-power Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Payne, S. A.; Marshall, C. D.; Bayramian, A.; Wilke, G. D.; Hayden, J. S.

    1995-09-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially available Average-Power Glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime. Other measurements pertaining to the concentration quenching, thermal lensing, and saturation of the extraction are also described in this article. It is note-worthy that APG-t offers increased bandwidth near the peak of the 1054 nm gain spectrum, suggesting that this material may have special utility as a means of generating and amplifying ultrashort pulses of light.

  18. Yb3+ doped ribbon fiber for high-average power lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Drachenberg, Derrek R.; Messerly, Michael J.; Pax, Paul H.; Sridharan, Arun K.; Tassano, John B.; Dawson, Jay W.

    2014-03-01

    Diffraction-limited high power lasers in the region of 10s of kW to greater than 100 kW are needed for defense, manufacturing and future science applications. A balance of thermal lensing and Stimulated Brillouin Scattering (SBS) for narrowband amplifiers and Stimulated Raman Scattering (SRS) for broadband amplifiers is likely to limit the average power of circular core fiber amplifiers to 2 kW (narrowband) or 36 kW (broadband). A ribbon fiber, which has a rectangular core, operating in a high order mode can overcome these obstacles by increasing mode area without becoming thermal lens limited and without the on-axis intensity peak associated with circular high order modes. High order ribbon fiber modes can also be converted to a fundamental Gaussian mode with high efficiency for applications in which this is necessary. We present an Yb-doped, air clad, optical fiber having an elongated, ribbon-like core having an effective mode area of area of 600 μm² and an aspect ratio of 13:1. As an amplifier, the fiber produced 50% slope efficiency and a seed-limited power of 10.5 W, a gain of 24 dB. As an oscillator, the fiber produced multimode power above 40 W with 71% slope efficiency and single mode power above 5 W with 44% slope efficiency. The multimode M2 beam quality factor of the fiber was 1.6 in the narrow dimension and 15 in the wide dimension.

  19. Brightness and average power as driver for advancements in diode lasers and their applications

    NASA Astrophysics Data System (ADS)

    Hengesbach, Stefan; Poprawe, Reinhart; Hoffmann, Dieter; Traub, Martin; Schwarz, Thomas; Holly, Carlo; Eibl, Florian; Weisheit, Andreas; Vogt, Sabrina; Britten, Simon; Ungers, Michael; Thombansen, Ulrich; Engelmann, Christoph; Mamuschkin, Viktor; Lott, Philipp

    2015-03-01

    Spatial and spectral emission characteristics and efficiency of high-power diode laser (HPDL) based pump sources enable and define the performance of the fundamental solid state laser concepts like disk, fiber and slab lasers. HPDL are also established as a versatile tool for direct materials processing substituting other laser types like CO2 lasers and lamp pumped solid state lasers and are starting to substitute even some of the diode pumped solid state lasers. Both, pumping and direct applications will benefit from the further improvement of the brightness and control of the output spectrum of HPDL. While edge emitting diodes are already established, a new generation of vertical emitting diode lasers (VCSELs) made significant progress and provides easy scalable output power in the kW range. Beneficial properties are simplified beam shaping, flexible control of the temporal and spatial emission, compact design and low current operation. Other characteristics like efficiency and brightness of VCSELs are still lagging behind the edge emitter performance. Examples of direct applications like surface treatment, soldering, welding, additive manufacturing, cutting and their requirements on the HPDL performance are presented. Furthermore, an overview on process requirements and available as well as perspective performance of laser sources is derived.

  20. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  1. Multipulse operation of a high average power, good beam quality zig-zag dye laser

    SciTech Connect

    Mandl, A.; Klimek, D.E.

    1996-03-01

    A laser pumped zig-zag dye laser operating at 568 nm with a pulse length {approximately} 2 {micro}s has been scaled to high power using a MOPA configuration. Pulse energies in excess of 7 J with beam quality < 2 XDL have been achieved under repetitively pulsed, 10 Hz operation. RMS jitter was measured as 0.12 of a 1 XDL spot. The device has operated with over 70 W output for runs up to 5 s. Substantially longer run times and output powers are possible. This device represents an advance in dye laser capabilities. Improvement in pointing accuracy of better than an order of magnitude have been demonstrated. In addition, an improvement in beam quality by about an order of magnitude has been achieved compared to other dye lasers operating in this power range.

  2. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  3. High average power harmonic mode-locking of a Raman fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhao, C. J.; Gao, Y. X.; Fan, D. Y.

    2016-03-01

    We experimentally demonstrate the operation of a stable harmonically mode-locked Raman fiber laser based on the nonlinear polarization rotation technique. A maximum average output power of up to 235 mW is achieved at the repetition rate of 466.2 MHz, corresponding to the 1665th order harmonic mode-locking. The temporal width of the mode-locked pulse train is 450 ps. The experimental results should shed some light on the design of wavelength versatile ultrashort lasers with high repetition rate and average output power.

  4. Efficient processing of CFRP with a picosecond laser with up to 1.4 kW average power

    NASA Astrophysics Data System (ADS)

    Onuseit, V.; Freitag, C.; Wiedenmann, M.; Weber, R.; Negel, J.-P.; Löscher, A.; Abdou Ahmed, M.; Graf, T.

    2015-03-01

    Laser processing of carbon fiber reinforce plastic (CFRP) is a very promising method to solve a lot of the challenges for large-volume production of lightweight constructions in automotive and airplane industries. However, the laser process is actual limited by two main issues. First the quality might be reduced due to thermal damage and second the high process energy needed for sublimation of the carbon fibers requires laser sources with high average power for productive processing. To achieve thermal damage of the CFRP of less than 10μm intensities above 108 W/cm² are needed. To reach these high intensities in the processing area ultra-short pulse laser systems are favored. Unfortunately the average power of commercially available laser systems is up to now in the range of several tens to a few hundred Watt. To sublimate the carbon fibers a large volume specific enthalpy of 85 J/mm³ is necessary. This means for example that cutting of 2 mm thick material with a kerf width of 0.2 mm with industry-typical 100 mm/sec requires several kilowatts of average power. At the IFSW a thin-disk multipass amplifier yielding a maximum average output power of 1100 W (300 kHz, 8 ps, 3.7 mJ) allowed for the first time to process CFRP at this average power and pulse energy level with picosecond pulse duration. With this unique laser system cutting of CFRP with a thickness of 2 mm an effective average cutting speed of 150 mm/sec with a thermal damage below 10μm was demonstrated.

  5. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power

    NASA Astrophysics Data System (ADS)

    Gapontsev, Valentin; Avdokhin, Alexey; Kadwani, Pankaj; Samartsev, Igor; Platonov, Nikolai; Yagodkin, Roman

    2014-02-01

    We report a single-mode (SM) green laser based on single-pass frequency doubling of a linearly-polarized narrowlinewidth Yb fiber laser in LBO crystal, and configured to operate in a range of regimes from continuous-wave (CW) to high-repetition-rate quasi-continuous-wave (QCW). Adjusting the duty cycle, we maintained high second harmonic generation (SHG) efficiency for various output powers. Average powers of over 550W in QCW and over 350W in CW regimes were obtained with the wall-plug efficiency up to 15%, opening the possibility to creating new class of simple, compact and efficient single-mode green lasers with output power up to 1kW and above. The same approach could also be used to create high-power lasers operating at other wavelengths in ultraviolet and visible spectral ranges.

  6. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems.

    PubMed

    Fourmaux, S; Serbanescu, C; Lecherbourg, L; Payeur, S; Martin, F; Kieffer, J C

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  7. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

    PubMed Central

    Fourmaux, S.; Serbanescu, C.; Lecherbourg, L.; Payeur, S.; Martin, F.; Kieffer, J. C.

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  8. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  9. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods. PMID:21164825

  10. High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars.

    PubMed

    Lee, J R; Baker, H J; Friel, G J; Hilton, G J; Hall, D R

    2002-04-01

    A planar waveguide Nd:YAG laser is pumped with 430 W of power from 10 laser diode bars to produce a multimode output power of 150 W at an optical efficiency of 35%. Use of a hybrid resonator of the positive-branch confocal unstable type for the lateral axis and of one of the near-case I waveguide type for the transverse axis increased the laser brightness by a factor of ~26 with only 12% less power than in the multimode case. PMID:18007853

  11. Simulations of the high average power selene free electron laser prototype. Master's thesis

    SciTech Connect

    Quick, D.D.

    1994-06-01

    Free electron laser (FEL) technology continues to advance, providing alternative solutions to existing and potential problems. The capabilities of an FEL with respect to tunability, power and efficiency make it an attractive choice when moving into new laser utilization fields. The initial design parameters, for any new system, offer a good base to begin system simulation tests in an effort to determine the best possible design. This is a study of the Novosibirsk design which is a prototype for the proposed SELENE FEL. The design uses a three-section, low-power optical klystron followed by a single-pass, high-power radiator. This system is inherently sensitive to electron beam quality, but affords flexibility in achieving the final design. The performance of the system is studied using the initial parameters. An FEL, configured as a simple, two section optical klystron is studied to determine the basic operating characteristics of a high current FEL klystron.

  12. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Berrill, Mark; Wernsing, Keith A.; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge J.

    2014-05-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at λ = 13.9 nm and 20 μW at λ = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  13. High-Efficiency 800 nm Multi-Layer Dielectric Gratings for High Average Power Laser Systems

    SciTech Connect

    Nguyen, H T; Britten, J A; Patel, D; Brizuela, F; Rocca, J J; Menoni, C S

    2006-06-15

    We report on the design, fabrication, and performance of a 1740 l/mm multilayer dielectric diffraction grating for use with 800 nm light. At an input angle of 8{sup o} from Littrow and a wavelength from 770 to 830 nm, >90% diffraction efficiency is achieved, with peak diffraction efficiency of >97% at 800nm. We will also comment on laser damage threshold and power-handling properties.

  14. Electron-beam and high-speed optical diagnostics for the average power laser experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.; McVey, Brian D.; Greegor, Robert B.; Dowell, David H.

    1992-07-01

    The average power laser experiment (APLE) program is a collaboration between Boeing Aerospace and Electronics Company and Los Alamos National Laboratory to build a free-electron laser (FEL) operating at a wavelength of 10 μm and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to simulations of the expected electron beam properties, diagnostic plans have been developed for the low duty factor and the 25% duty factor operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near-infrared light (optical-transition radiation, Cherenkov radiation, synchrotron radiation, and spontaneous-emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  15. A high-average power femtosecond laser for synchrotron light source applications

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Schoenlein, R. W.

    2007-02-01

    We describe a 60W, 70fs, 20kHz Ti:sapphire CPA laser system using cryogenically-cooled amplifiers, currently operating at the Advanced Light Source at LBNL. The system consists of an oscillator, a 20 kHz regenerative preamplifier, and two power amplifiers to produce two output beams, each at 30W. Each power amp can be pumped by two 90 Watt, 10 kHz, diode-pumped, doubled YLF lasers simultaneously (for 10 kHz) or interleaved in time (for 20 kHz). The regen is pumped at 20 kHz and 60W, producing 8W output which is split between the power amps. To maintain the crystals near the thermal conductivity peak at ~50°K, we used 300 Watt cryorefrigerators mechanically decoupled from the optical table. Pulses are compressed in a quartz transmission grating compressor, to minimize thermal distortions of the phase front typical of gold coated gratings at high power density. Transmission through the compressor is >80%, using a single 100 x 100mm grating. One of the 30W output beams is used to produce 70fs electron bunches in the synchrotron light source. The other is delayed by 300ns in a 12-pass Herriot cell before amplification, to be synchronized with the short light pulse from the synchrotron.

  16. Scaling-up a liquid water jet laser plasma source to high average power for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Vogt, Ulrich; Stiel, Holger; Will, Ingo; Wieland, Marek; Wilhein, Thomas; Nickles, Peter V.; Sandner, Wolfgang

    2001-08-01

    In this article we describe a laser plasma source for Extreme Ultraviolet Lithography (EUVL) based on a liquid water jet target. Although jet targets are known for some time now, no attempts have been made to prove the functionality of the target under conditions similar to an EUVL production-line facility, that means illumination with high average power laser systems (in the multi-kW regime) at repetition rates in the kHz region. Such systems are currently under development. We used the MBI-burst laser to simulate these extreme illumination conditions. We examined the hydrodynamic stability of the target as a function of the laser repetition rate at different average laser powers (0.6kW and 5kW per burst). Additionally, the dependence of the conversion efficiency on pulse duration in the range from 30ps to 3ns was investigated. From our results one can conclude parameters for future design of driver lasers for EUVL systems.

  17. High energy, high average power solid state green or UV laser

    DOEpatents

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  18. High-average-power diode-end-pumped intracavity-doubled Nd:YAG laser

    SciTech Connect

    Honea, E.C.; Ebbers, C.A.; Beach, R.J.; Speth, J.A.; Emanuel, M.S>; Skidmore, J.A.; Payne, S.A.

    1998-02-12

    A compact diode-pumped ND:YAG laser was frequency-doubled to 0.532 {mu}m with an intracavity KTP or LBO crystal using a `V` cavity configuration. Two acousto-optic Q-switches were employed at repetition rates of 10-30 kHz. Dichroic fold and end mirrors were used to output two beams with up to 140 W of 0.532 {mu}m power using KTP and 116 W using LBO as the frequency doubling crystal. This corresponds to 66% of the maximum output power at 1.064 {mu}m obtained with an optimized output coupler reflectivity. The minimum output pulse duration varied with repetition rate from 90 to 130 ns. The multimode output beam had a smooth profile and a beam quality of M{sup 2} = 5 1.

  19. A Large-Bandwidth, Cylindrical Offner Pulse Stretcher for a High-Average-Power, 15 Femtosecond Laser

    SciTech Connect

    Molander, W A; Bayramian, A J; Campbell, R; Cross, R R; Huete, G; Schenkel, N; Ebbers, C; Caird, J; Barty, C J; Siders, C W

    2008-09-24

    We have designed and built an all-reflective pulse stretcher based on an Offner telescope. It uses cylindrical optics to simplify alignment and reduce aberrations. The stretch is {approx}1x10{sup 5} with a bandwidth of 200 nm. The stretcher is to be part of a 10 Hz repetition rate, high-average-power, femtosecond laser. This new design compensates for dispersion in the laser by using gratings of different groove spacing in the stretcher and compressor and a spectral phase corrector plate, made by magneto-rheological finishing, within the stretcher.

  20. High average power, high repetition rate table-top soft x-ray lasers for applications in nanoscience and nanotechnology

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Durivage, Leon; Berrill, Mark; Curtis, Alden; Furch, Federico; Luther, Brad; Woolston, Mark; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2014-03-01

    There is great interest in table-top sources of bright coherent soft x-ray radiation for nanoscale applications. We report the demonstration of a compact, high repetition rate soft x-ray laser operating at wavelengths between 10.9nm to 18.9nm, including the generation of 0.15mW average power at λ = 18.9nm and 0.1mW average power at λ = 13.9nm. These short wavelength lasers were driven by an all diode pumped, chirped pulse amplification laser based on cryogenically-cooled Yb:YAG amplifiers that produces 1 Joule, picosecond duration pulses at 100 Hz repetition rate. Irradiation of solid targets results in the production of plasmas with large transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Optimization of this high repetition rate laser combined with the development of high shot capacity, rotating targets has allowed the uninterrupted operation of this soft x-ray laser for hundreds of thousands of consecutive shots, making it suitable for a number of applications requiring high photon flux at short wavelengths. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  1. Microdrilling of metals using femtosecond laser pulses and high average powers at 515 nm and 1030 nm

    NASA Astrophysics Data System (ADS)

    Döring, S.; Ancona, A.; Hädrich, S.; Limpert, J.; Nolte, S.; Tünnermann, A.

    2010-07-01

    We investigate the microdrilling of metals (stainless steel, copper and tungsten) for two different wavelengths, 1030 nm and 515 nm, in the regime of femtosecond laser pulses. An ytterbium-doped fibre CPA system provides high pulse energies (up to 70 μJ) and high repetition rates (up to 800 kHz), corresponding to high average powers of about 50 W, for this experimental study.

  2. Thin-disk multipass amplifier for ultrashort laser pulses with kilowatt average output power and mJ pulse energies

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Voss, Andreas; Abdou Ahmed, Marwan; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Graf, Thomas

    2014-05-01

    We report on a Yb:YAG thin-disk multipass amplifier for ultrashort laser pulses delivering an average output power of 1.1 kW which to the best of our knowledge is the highest output power reported from such a system so far. A modified commercial TruMicro5050 laser delivers the seed pulses with an average power of 80 W at a wavelength of 1030 nm, a pulse duration of 6.5 ps and a repetition rate of 800 kHz. These pulses are amplified to 1.38 mJ of pulse energy with a duration of 7.3 ps. To achieve this, we developed a scheme in which an array of 40 plane mirrors is used to geometrically fold the seed beam over the pumped thin-disk crystal. Exploiting the incoming linear polarization, an overall number of 40 double-passes through the disk was realized by using the backpath through the amplifier with the orthogonal linear polarization state. Thermal issues on the disk were mitigated by zero-phonon line pumping at a wavelength of 969 nm directly into the upper laser level and by employing a retroreflective mirror pair. The amplifier exhibits an optical efficiency of 44 % and a slope efficiency of 46 %. The beam quality was measured to be better than M2=1.25 at all power levels. As this system can deliver high pulse energies and high average output powers at the same time without the need of a CPA technique, it can be very suitable for high productivity material processing with ultrashort laser pulses.

  3. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser.

    PubMed

    Innerhofer, E; Südmeyer, T; Brunner, F; Häring, R; Aschwanden, A; Paschotta, R; Hönninger, C; Kumkar, M; Keller, U

    2003-03-01

    We demonstrate a passively mode-locked diode-pumped thin-disk Yb:YAG laser generating 810-fs pulses at 1030 nm with as much as 60 W of average output power (without using an amplifier). At a pulse repetition rate of 34.3 MHz, the pulse energy is 1.75 microJ and the peak power is as high as 1.9 MW. The beam quality is close to the diffraction limit, with M2 < 1.1. PMID:12659446

  4. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  5. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E.; Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  6. Actively mode-locked Tm(3+)-doped silica fiber laser with wavelength-tunable, high average output power.

    PubMed

    Kneis, Christian; Donelan, Brenda; Berrou, Antoine; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2015-04-01

    A diode-pumped, actively mode-locked high-power thulium (Tm3+)-doped double-clad silica fiber laser is demonstrated, providing an average output power in mode-locked (continuous wave) operation of 53 W (72 W) with a slope efficiency of 34% (38%). Mode-locking in the 6th-harmonic order was obtained by an acousto-optic modulator driven at 66 MHz without dispersion compensation. The shortest measured output pulse width was 200 ps. Owing to a diffraction grating as cavity end mirror, the central wavelength could be tuned from 1.95 to 2.13 μm. The measured beam quality in mode-locked and continuous wave operation has been close to the diffraction limit. PMID:25831360

  7. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Kanngießer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  8. Optical coatings for high average power XeF lasers: Final report

    SciTech Connect

    Milam, D.; Thomas, I.; Wilder, J.; George, D.

    1988-03-16

    Porous silica, calcium and magnesium fluorides were investigated for potential use as antireflective coatings for XeF lasers. Excellent optical properties were obtained for all types, and laser damage thresholds were in the range 18-25 Jcm/sup 2/ at 350 nm for 25 ns pulses at 25 Hz pulse repetition frequency. Studies of the effects of the XeF laser environment on these coatings were incomplete. Three oxides, ZrO/sub 2/, HfO/sub 2/, and Ta/sub 2/O/sub 5/ were investigated as the high index components to be paired with low index porous SiO/sub 2/ for highly reflective dielectric coatings. Single oxide layers had indices in the 1.7-1.8 range and HfO/sub 2/ coatings had the highest damage threshold at about 5 Jcm/sup 2/. An unexpected problem arose on attempts to prepare multilayer coatings. Stress in the coating after 6-8 layers had been put down, gave rise to crazing and peeling. This could not be avoided even on extending the curing process between coats.

  9. Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm.

    PubMed

    Chaitanya Kumar, S; Canals Casals, J; Sanchez Bautista, E; Devi, K; Ebrahim-Zadeh, M

    2015-05-15

    We report a compact, stable, high-power, picosecond ultraviolet (UV) source at 266 nm based on simple single-pass two-step fourth-harmonic generation (FHG) of a mode-locked Yb-fiber laser at 79.5 MHz in LiB3O5 (LBO) and β-BaB2O4. Using a 30-mm-long LBO crystal for single-pass second-harmonic generation, we achieve up to 9.1 W of average green power at 532 nm for 16.8 W of Yb-fiber power at a conversion efficiency of 54% in 16.2 ps pulses with a TEM00 spatial profile and passive power stability better than 0.5% rms over 16 h. The generated green radiation is then used for single-pass FHG into the UV, providing as much as 1.8 W of average power at 266 nm under the optimum focusing condition in the presence of spatial walk-off, at an overall FHG conversion efficiency of ∼11%. The generated UV output exhibits passive power stability better than 4.6% rms over 1.5 h and beam pointing stability better than 84 μrad over 1 h. The UV output beam has a circularity of >80% in high beam quality with the TEM00 mode profile. To the best of our knowledge, this is the first report of picosecond UV generation at 266 nm at megahertz repetition rates. PMID:26393749

  10. Simulation of a high-average power free-electron laser oscillator

    SciTech Connect

    H.P. Freund; M. Shinn; S.V. Benson

    2007-03-01

    In this paper, we compare the 10 kW-Upgrade experiment at the Thomas Jefferson National Accelerator Facility in Newport News, VA, with numerical simulations using the medusa code. medusa is a three-dimensional FEL simulation code that is capable of treating both amplifiers and oscillators in both the steady-state and time-dependent regimes. medusa employs a Gaussian modal expansion, and treats oscillators by decomposing the modal representation at the exit of the wiggler into the vacuum Gaussian modes of the resonator and then analytically determining the propagation of these vacuum resonator modes through the resonator back to the entrance of the wiggler in synchronism with the next electron bunch. The bunch length in the experiment is of the order of 380–420 fsec FWHM. The experiment operates at a wavelength of about 1.6 microns and the wiggler is 30 periods in length; hence, the slippage time is about 160 fsec. Because of this, slippage is important, and must be included in the simulation. The observed single pass gain is 65%–75% and, given the experimental uncertainties, this is in good agreement with the simulation. Multipass simulations including the cavity detuning yield an output power of 12.4 kW, which is also in good agreement with the experiment.

  11. Reliable pulsed-operation of 1064-nm wavelength-stabilized diode lasers at high-average-power: boosting fiber lasers from the seed

    NASA Astrophysics Data System (ADS)

    Bettiati, M.; Beuchet, G.; Pagnod-Rossiaux, P.; Garabedian, P.; Perinet, J.; Fromy, S.; Bertreux, J.; Hirtz, J.; Laruelle, F.

    2010-02-01

    Most Pulsed Fiber Lasers (FLs) are built on a Master Oscillator - Power Amplifier (MOPA) architecture, as this configuration has the advantage, among others, of exploiting direct modulation of the diode laser seed (the MO) to reach high repetition rates and high peak-power pulsed operation. To enhance the FL global performance and reliability, high power single-lateral-mode 1064 nm diodes with outstanding long-term behavior are needed. The reliability of these devices at high power has been a challenge for years, due to the high built-in strain in the Quantum Well (QW). In this paper, we present excellent reliability results obtained, in both cw and pulsed conditions, on the latest generation of 1064 nm single-lateral-mode diodes developed at 3S PHOTONICS. Aging tests in cw conditions prove the intrinsic robustness of the diode even at very high junction temperatures, while specific tests in pulsed operation at 45 °C heat-sink temperature, and high repetition rates of several hundred kHz, confirm the stability of the devices in accelerated conditions directly derived from real applications. Both free-running and wavelength stabilized (by means of a Fiber Bragg Grating (FBG)) packaged devices show very stable performances under pulsed conditions. Reliable operation at higher average power than currently commercially available diode lasers seeds is demonstrated.

  12. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  13. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  14. High-Throughput Laser Peening of Metals Using a High-Average-Power Nd: Glass Laser System

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Halpin, J.; Daly, J.; Harrisson, J.; Harris, J.

    1999-11-01

    Laser shot peening, a surface treatment for metals, is known to induce residual compressive stresses to depths of over 1 mm providing improved component resistance to various forms of failure. Recent information also suggests that thermal relaxation of the laser induced stress is significantly less than that experienced by other forms of surface stressing that involve significantly higher levels of cold work. We have developed a unique solid state laser technology employing Nd:glass amplifier slabs and SBS phase conjugation that enables this process to move into high throughput production processing.

  15. High peak- and average-power pulse shaped fiber laser in the ns-regime applying step-index XLMA gain fibers

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Grundmann, F.-P.; Hapke, C.; Ruppik, S.

    2014-03-01

    Pulsed fiber lasers and continuous-wave (cw) fiber lasers have become the tool of choice in more and more laser based industrial applications like metal cutting and welding mainly because of their robustness, compactness, high brightness, high efficiency and reasonable costs. However, to further increase the productivity with those laser types there is a great demand for even higher laser power specifications. In this context we demonstrate a pulsed high peak- and averagepower fiber laser in a Master Oscillator Power Amplifier (MOPA) configuration with selectable pulse durations between 1 ns and several hundred nanoseconds. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase-modulation (SPM) flexible Ytterbium doped extra-large mode area (XLMA) step index fibers, prepared by novel powder-sinter technology, have been used as gain fibers. As an example, for 12 ns pulses with a repetition rate of 10 kHz, a pump power limited average laser output power of more than 400 W in combination with peak powers of more than 3.5 MW (close to self-focusing-threshold) has been achieved in stable operation. The potentials of this laser system have been further explored towards longer pulse durations in order to achieve even higher pulse energies by means of pulse shaping techniques. In addition, investigations have been conducted with reduced pulse energies and repetition rates up to 500 kHz and average powers of more than 500 W at nearly diffraction limited beam quality.

  16. 180W at 1kHz, 532nm SHG from LBO crystals using high average power Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Tamaoki, Yoshinori; Kato, Yoshinori; Iyama, Koichi; Kawashima, Toshiyuki; Miyanaga, Noriaki

    2014-02-01

    We have developed high average power MOPA laser system with SHG unit on the table top size (3 × 1.5m). At the wavelength 1064nm has been obtained the max average output power of 715W. We have achieved the average power 180W at the wavelength 532nm, the pulse width of about 100ns, the frequency of 1kHz. And the power efficiency of the SHG from the wavelength of 1064nm to 532nm was obtained about 25.6%.

  17. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Hardening of aluminium by YAG : Nd laser radiation with an average power of 0.8 kW

    NASA Astrophysics Data System (ADS)

    Kovsh, Ivan B.; Strekalova, M. S.

    1994-02-01

    An investigation is reported of the effects of a surface heat treatment of aluminium by a YAG : Nd laser beam with a power up to 0.8 kW. In particular, a study was made of the influence of the treatment conditions on the microhardness, as well as on the residual stresses and their sign in hardened surface layers of aluminium. The efficiency of aluminium hardening by radiation from a cw YAG : Nd laser was found to be considerably higher than in the case of a cw CO2 laser.

  18. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    PubMed

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-01

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms. PMID:18545607

  19. Ultrashort pulse laser drilling of metals using a high-repetition rate high average power fiber CPA system

    NASA Astrophysics Data System (ADS)

    Ancona, A.; Jauregui, C.; Döring, S.; Röser, F.; Limpert, J.; Nolte, S.; Tünnermann, A.

    2009-02-01

    We present an experimental study of the drilling of metal targets with ultrashort laser pulses with pulse durations from 800 fs to 19 ps at repetition rates up to 1 MHz, average powers up to 70 Watts, using an Ytterbium-doped fiber CPA system. Particle shielding and heat accumulation have been found to influence the drilling efficiency at high repetition rates. Particle shielding causes an increase in the number of pulses for breakthrough. It occurs at a few hundred kHz, depending on the pulse energy and duration. The heat accumulation effect is noticed at higher repetition rates. Although it overbalances the particle shielding thus making the drilling process faster, heat accumulation is responsible for the formation of a large amount of molten material that limits the hole quality. The variations of the pulse duration reveal that heat accumulation starts at higher repetition rates for shorter pulse lengths. This is in agreement with the observed higher ablation efficiency with shorter pulse duration. Thus, the shorter pulses might be advantageous if highest precision and processing speed is required.

  20. Generation of 25 ps pulses by self induced mode locking of a single broad area diode laser with 300 mW average output power

    NASA Astrophysics Data System (ADS)

    Skoczowsky, D.; Heuer, A.; Jechow, A.; Menzel, R.

    2007-11-01

    Detailed investigations of the spatiotemporal and spectral emission properties of a high power diode laser are presented. The AR coated laser diode with design wavelength of 940 nm is driven in an external resonator. The laser generates up to 340 mW average output power in a train of picosecond pulses with durations of 25 ps and repetition rates of 2.6 GHz. The mechanism of mode locking is discussed as self pulsation because of the strong correlation between round trip time and repetition rate. The double-sided exponential pulses suggest saturable absorber action.

  1. Estimation of the path-averaged wind velocity by cross-correlation of the received power and the shift of laser beam centroid

    NASA Astrophysics Data System (ADS)

    Marakasov, Dmitri A.; Tsvyk, Ruvim S.

    2015-11-01

    We consider the problem of estimation of the average wind speed on atmospheric path from measurements of time series of average power of the laser radiation detected through the receiving aperture and the position of the centroid of the image of the laser beam. It is shown that the mutual correlation function of these series has a maximum, whose position characterizes the average speed of the cross wind on the path. The dependence of the coordinates and magnitude of the maximum of the correlation function from the size of the receiving aperture and the distribution of turbulence along the atmospheric path.

  2. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power

    SciTech Connect

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Alexey; Palashov, Oleg

    2014-12-15

    A scalable aperture Faraday isolator for high-energy pulsed lasers with kW-level average power was demonstrated using terbium gallium garnet ceramics with water cooling and compensation of thermally induced depolarization in a magnetic field. An isolation ratio of 35 dB (depolarization ratio γ of 3.4 × 10{sup −4}) was experimentally observed at a maximum laser power of 740 W. By using this result, we estimated that this isolator maintains an isolation ratio of 30 dB for laser powers of up to 2.7 kW. Our results provide the solution for achieving optical isolation in high-energy (100 J to kJ) laser systems with a repetition rate greater than 10 Hz.

  3. Overview of the Lucia laser program: toward 100-Joules, nanosecond-pulse, kW averaged power based on ytterbium diode-pumped solid state laser

    NASA Astrophysics Data System (ADS)

    Chanteloup, J.-C.; Yu, H.; Bourdet, G.; Dambrine, C.; Ferre, S.; Fulop, A.; Le Moal, S.; Pichot, A.; Le Touze, G.; Zhao, Z.

    2005-04-01

    We present the current status of the Lucia laser being built at the LULI laboratory, the national civil facility for intense laser matter interaction in France. This diode pumped laser will deliver a 100 Joules, 10 ns, 10 Hz pulse train from Yb:YAG using 4400 power diode laser bars. We first focus on the amplifier stage by describing the reasons for selecting our extraction architecture. Thermal issues and solutions for both laser and pumping heads are then described. Finally, we emphasize more specifically the need for long-lifetime high-laser-damage-threshold coatings and optics.

  4. Scaling c-w electron-beam-pumped rare gas lasers to ultrahigh average power. Final report, 16 May-15 Nov 90

    SciTech Connect

    Not Available

    1991-04-11

    The overall objective of this program is to demonstrate the feasibility of efficiently scaling Ar:Xe lasers to ultra-high average power levels for strategic defense applications. The contractor has experimentally verified that the Ar:Xe laser system, which operates at near-IR wavelengths (1.73 micrometers), can achieve laser efficiencies of 4% with electron beam pumping at pump power densities as low as 10 watts/cc. This new efficient electron beam pumping regime promises cost-effective scaling of Ar:Xe laser systems to multi-megawatt average power levels while maintaining high electrical efficiency (4-6%) and near-diffraction-limited beam quality. In the Phase II effort, detailed experiments will be performed on an electron beam pumped Ar:Xe laser with a closed cycle flow loop at pump power densities of 10-20 W/cc. The objective of these experiments is to validate methods for correction and control of the optical distortions resulting from experiments is to validate methods for correction and control of the optical distortions resulting from CW pumping. Control of thermal distortions will be achieved by optimally contouring the spatial profile of electron beam power deposition in the active volume. With the optimal deposition profile, higher order optical distortions will be negligible and a diffraction limited beam will be obtained after tilt and focus corrections are made. These corrections can be made by a simple local loop by an adaptive optics system in the beam train.

  5. Development of a kilowatt-class, joule-level ultrafast laser for driving compact high average power coherent EUV/soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Baumgarten, Cory M.; Pedicone, Michael A.; Bravo, Herman; Yin, Liang; Woolston, Mark; Wang, Hanchen; Menoni, Carmen S.; Rocca, Jorge J.

    2016-03-01

    Our recent progress in the development of high energy / high average power, chirped pulse amplification laser systems based on diode-pumped, cryogenically-cooled Yb:YAG amplifiers is discussed, including the demonstration of a laser that produces 1 Joule, sub-10 picosecond duration, λ = 1.03μm pulses at 500 Hz repetition rate. This compact, all-diodepumped laser combines a mode-locked Yb:KYW oscillator and a water-cooled Yb:YAG preamplifer with two cryogenic power amplification stages to produce 1.5 Joule pulses with high beam quality which are subsequently compressed. This laser system occupies an optical table area of less than 1.5x3m2. This laser was employed to pump plasma-based soft x-ray lasers at λ = 10-20nm at repetition rates >=100 Hz. To accomplish this, temporally-shaped pulses were focused at grazing incidence into a high aspect ratio line focus using cylindrical optics on a high shot capacity rotating metal target. This results in an elongated plasma amplifier that produces microjoule pulses at several narrow-linewidth EUV wavelengths between λ = 109Å and 189Å. The resulting fraction of a milliwatt average powers are the highest reported to date for a compact, coherent source operating at these wavelengths, to the best of our knowledge.

  6. Generation of more than 40  W of average output power from a passively Q-switched Yb-doped fiber laser.

    PubMed

    Chakravarty, Usha; Kuruvilla, Antony; Singh, Ravindra; Upadhyaya, B N; Bindra, K S; Oak, S M

    2016-01-10

    We report on the generation of 41.6 W of average output power from a passively Q-switched ytterbium-doped fiber laser using Cr4+:YAG crystal as a saturable absorber (SA). This is the highest average power from passively Q-switched fiber lasers reported so far in the literature, to our knowledge, and it has been achieved by using a specially designed T-type double-end pumping configuration. Variation in average output power, pulse energy, pulse duration, pulse frequency, and pulse-to-pulse stability has also been studied using SAs of different linear transmissions. The effect of an intracavity SA on self-pulsing dynamics was also investigated and it was observed that, at lower input pump power near threshold, the presence of an SA enhances the peak power of relaxation oscillations to trigger the generation of stimulated Raman scattering in the gain fiber. With an increase in pump power, when the passive Q-switching threshold is reached, high peak power random self-pulses regenerate into low amplitude regular Q-switched pulses. The effect of the length of the gain medium on dual-wavelength generation at very low input pump power and broadband generation at sufficiently higher pump power has also been explored. PMID:26835764

  7. 200W average power 1mJ pulse energy from spectrally combined pulsed sub-5 ns fiber laser source

    NASA Astrophysics Data System (ADS)

    Schmidt, O.; Ortac, B.; Limpert, J.; Tünnermann, A.; Andersen, Thomas V.

    2009-02-01

    In this contribution, we report on spectral combination of four sub-5ns pulsed fiber amplifier systems with an average output power of 200W at 200kHz repetition rate resulting in 1mJ of pulse energy. A dielectric reflection grating is used to combine four individual beams to one output possessing a measured M2 value of 1.3 and 1.8, respectively, independent of power level. Extraction of higher pulse energies and peak powers will be discussed.

  8. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  9. High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror.

    PubMed

    Tsubakimoto, Koji; Yoshida, Hidetsugu; Miyanaga, Noriaki

    2016-06-13

    We present a high-average-power green laser based on second harmonic conversion of a laser diode-pumped master oscillator Nd:YAG power amplifier system. The power amplifier chain includes a stimulated Brillouin scattering (SBS) cell that was used a phase-conjugate mirror to double-pass scheme. That suppresses the thermal phase distortion and compresses the pulse duration. The fundamental beam output power was 670 W with a pulse width of 7.9 ns. A second harmonic power of 335 W with a 4.8-ns pulse width and 80-mJ pulse energy was produced using a LiB3O5 (LBO) crystal. PMID:27410277

  10. Present Status and Future of EUV (Extreme Ultra Violet) Light Source Research 4.Laser Produced Plasma Light Sources 4.2High Average Power Laser Produced Plasma EUV Light Sources

    NASA Astrophysics Data System (ADS)

    Endo, Akira

    This paper reviews the research and development of the high average power, extreme ultraviolet light source based on laser produced plasma by EUVA. The technology is based on a liquid Xe micro jet, high repetition rate short pulse Nd:YAG laser, and various diagnostics for plasma optimization are described.

  11. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-01

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated. PMID:25968727

  12. Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Burton, John; Darab, Ibraheem; Kimpel, Frank; Gupta, Shantanu

    2015-05-01

    A Yb LMA fiber amplifier based 1030nm laser transmitter capable of operating with high average power and peak power (~500W, 9kW) is presented. The prototype, all-fiber, high TRL level laser transmitter is designed to meet all the single aperture requirements of a multi aperture deep space laser beacon system including operation with Nested pulse position modulation (PPM) format. Nested PPM format consist of an inner modulation PPM- (8,4) with 128nsec slot size and an outer modulation PPM-(2, 2) 65.5usec slot size. Here, nested PPM operation is presented for the first time. In implementing inner modulation strong pre-pulse shaping is required where PPM pattern dependent pulse energy variation (PEV) is minimized. Outer modulation is implemented by directly modulating VBG locked pump lasers for the final two gain. A sophisticated multi-stage, ultra-fast loss of signal (LOS) and backward Raman/lasing monitoring algorithm is implemented for ensuring reliable operation. Mechanical and electrical design of the delivered laser is scalable to multiple apertures.

  13. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  14. High-average-power (15-W) 255-nm source based on second-harmonic generation of a copper laser master oscillator power amplifier system in cesium lithium borate

    NASA Astrophysics Data System (ADS)

    Brown, Daniel J. W.; Withford, Michael J.

    2001-12-01

    We have generated 15 W of UV (255-nm) radiation with an optical conversion efficiency of 28% by frequency doubling the 510.6-nm output of a high-beam-quality, high-power copper laser system in cesium borate lithium (CLBO). We found that the superior performance of CLBO relative to β-barium borate is attributable largely to the small UV absorption and wide temperature acceptance bandwidth of CLBO, which reduces thermal dephasing during high-power UV generation.

  15. Tunable mid-IR parametric conversion system pumped by a high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Miura, Taisuke; Smrž, Martin; Huynh, Jaroslav; Severová, Patricie; Endo, Akira; Mocek, TomáÅ.¡

    2014-05-01

    The mid-IR wavelength range has gained increased interest due to its applications in gas sensing, medicine, defense, and others. Optical parametric devices play an important role in the generation of radiation in the mid-IR. Low thermal load of nonlinear crystals promises high average power outputs if powerful pump laser is available. We have developed 75-W average power pump laser operating at 100 kHz repetition rate. The pulses of Yb-fiber laser oscillator at 1030-nm wavelength are stretched by a chirped volume Bragg grating from 5 ps to 180 ps and inserted into a cavity of regenerative amplifier with an Yb:YAG thin-disk. The amplified pulses are compressed by a chirped volume Bragg grating with an 88% efficiency. We have proposed a wavelength conversion system generating picosecond pulses tunable between 2 and 3 μm. The seed signal radiation is acquired by the optical parametric generation in the first nonlinear crystal. Signal pulse energy is increased in the subsequent optical parametric amplifiers. Each amplification stage consists of a crystal pair in the walkoff compensating arrangement. The wavelength of the signal beam is tunable between 1.6 and 2.1 μm. The 2.1 - 3 μm tunable source will be the idler beam taken from the last amplification stage. Calculations show the output power of ten watt can be achieved for 100 W pump. The results of preliminary experiments with seeded optical parametric generation and subsequent amplification are presented and discussed.

  16. Continuous-wave seeded mid-IR parametric system pumped by the high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Smrž, Martin; Miura, Taisuke; Turčičová, Hana; Endo, Akira; Mocek, Tomáś

    2015-05-01

    Mid-IR wavelength range offers variety of interesting applications. Down-conversion in the optical parametric devices is promising to generate high average power mid-IR beam due to inherently low thermal load of the nonlinear crystals if a powerful and high quality pump beam is available. We developed 100 kHz pump laser of 100-W level average power. The stretched pulses of Yb-fiber laser oscillator at 1030 nm wavelength are injected into the regenerative amplifier with an Yb:YAG thin-disk. Diode pumping at zero phonon line at wavelength of 969 nm significantly reduces its thermal load and increases conversion efficiency and stability. We obtained the beam with power of 80 W and 2 ps compressed pulsewidth. We are developing a watt level mid-IR picosecond light source pumped by a beam of the thin disk regenerative amplifier. Part of the beam pumps PPLN, which is seeded by a continuous wave laser diode at 1.94 μm to decrease the generation threshold and determine the amplified spectrum. The 3 W pumping gave output of 30 mW, which is by up to two orders higher compared to unseeded operation. The gain of about 107 was achieved in the PPLN in the temporal window of the pump pulse. The spectrum and beam of the generated idler pulses in the mid-IR was measured. We obtained an amplified signal from the second stage with the KTP crystal. We expect watt level mid-IR output for initial 50-W pumping. The generation of longer wavelengths is discussed.

  17. High-average-power (15-W) 255-nm source based on second-harmonic generation of a copper laser master oscillator power amplifier system in cesium lithium borate.

    PubMed

    Brown, D J; Withford, M J

    2001-12-01

    We have generated 15 W of UV (255-nm) radiation with an optical conversion efficiency of 28% by frequency doubling the 510.6-nm output of a high-beam-quality, high-power copper laser system in cesium borate lithium (CLBO). We found that the superior performance of CLBO relative to beta-barium borate is attributable largely to the small UV absorption and wide temperature acceptance bandwidth of CLBO, which reduces thermal dephasing during high-power UV generation. PMID:18059726

  18. Ultrafast laser with an average power of 120 W at 515 nm and a highly dynamic repetition rate in the MHz range for novel applications in micromachining

    NASA Astrophysics Data System (ADS)

    Harth, F.; Piontek, M. C.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    A new generation of resonant scanners in the kHz-range shows ultra-high deflection speeds of more than 1000m/s but suffer from an inherent nonlinear mirror oscillation. If this oscillation is not compensated, a typical bitmap, written point by point, would be strongly distorted because of the decreasing spot distance at the turning point of the scanning mirror. However, this can be avoided by a dynamic adaption of the repetition rate (RR) of the ultrafast laser. Since resonant scanners are operated in the 10 kHz-range, this means that the RR has to be continuously swept up to several 10 000 times per second between e.g. 5MHz and 10 MHz. High-speed continuous adaption of the RR could also optimize laser micromachining of narrow curved geometries, where nowadays a time consuming approximation with numerous vectors is required. We present a laser system, which is capable of sweeping the RR more than 32 000 times per second between 5MHz and 10MHz at an average output power of more than 120W at 515nm with a pulse duration of about 40 ps. The laser consists of a semiconductor oscillator, a 3-stage fiber pre-amplifier, a solid state InnoSlab power amplifier and a SHG stage. We systematically analyzed the dynamic of the laser system as well as the spectral and temporal behavior of the optical pulses. Switching the repetition rate typically causes a varying pulse energy, which could affect the machining quality over one scanning line. This effect will be analyzed and discussed. Possible techniques to compensate or avoid this effect will be considered.

  19. The Mercury Laser System: An Average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

    SciTech Connect

    Bibeau, C; Bayramian, A; Armstrong, P; Ault, E; Beach, R; Benapfl, M; Campbell, R; Dawson, J; Ebbers, C; Freitas, B; Kent, R; Liao, Z; Ladran, T; Menapace, J; Molander, B; Moses, E; Oberhelman, S; Payne, S; Peterson, N; Schaffers, K; Stolz, C; Sutton, S; Tassano, J; Telford, S; Utterback, E; Randles, M

    2005-08-31

    We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.

  20. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  1. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    SciTech Connect

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.

  2. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  3. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  4. High average power induction accelerators

    SciTech Connect

    Swingle, J.C.

    1985-10-01

    The induction accelerator is discussed with respect to general background and concept, beam transport, scaling, pulse power technology, and the electron beam injector. A discussion of the factors which affect the scaling of the intensity of the beam is given. Limiting factors include collective forces in the beam, virtual cathode formation, surroundings, and beam breakup instability. 24 refs., 11 figs. (WRF)

  5. Optimization of high average power FEL beam for EUV lithography

    NASA Astrophysics Data System (ADS)

    Endo, Akira

    2015-05-01

    Extreme Ultraviolet Lithography (EUVL) is entering into high volume manufacturing (HVM) stage, with high average power (250W) EUV source from laser produced plasma at 13.5nm. Semiconductor industry road map indicates a scaling of the source technology more than 1kW average power by high repetition rate FEL. This paper discusses on the lowest risk approach to construct a prototype based on superconducting linac and normal conducting undulator, to demonstrate a high average power 13.5nm FEL equipped with optimized optical components and solid state lasers, to study FEL application in EUV lithography.

  6. High Power Pulsed Gas Lasers

    NASA Astrophysics Data System (ADS)

    Witteman, W. J.

    1987-09-01

    Gas lasers have shown to be capable of delivering tens of terrawatt aspeak power or tens of kilowatt as average power. The efficiencies of most high power gas lasers are relatively high compared with other types of lasers. For instance molecular lasers, oscillating on low lying vibrational levels, and excimer lasers may have intrinsic efficiencies above 10%.The wavelengths of these gas lasers cover the range from the far infrared to the ultra-violet region, say from 12000 to 193 nm. The most important properties are the scalability, optical homogeneity of the excited medium, and the relatively low price per watt of output power. The disadvantages may be the large size of the systems and the relatively narrow line width with limited tunability compared with solid state systems producing the same peak power. High power gas lasers group into three main categories depending on the waste-heat handling capacity.

  7. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.

    PubMed

    Peng, Xiang; Mielke, Michael; Booth, Timothy

    2011-01-17

    We demonstrate high average power, high energy 1.55 μm ultra-short pulse (<1 ps) laser delivery using helium-filled and argon-filled large mode area hollow core photonic band-gap fibers and compare relevant performance parameters. The ultra-short pulse laser beam-with pulse energy higher than 7 μJ and pulse train average power larger than 0.7 W-is output from a 2 m long hollow core fiber with diffraction limited beam quality. We introduce a pulse tuning mechanism of argon-filled hollow core photonic band-gap fiber. We assess the damage threshold of the hollow core photonic band-gap fiber and propose methods to further increase pulse energy and average power handling. PMID:21263632

  8. FY2002 Progress Summary Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Bayramian, A; Bibeau, C; Beach, R; Behrendt, B; Ebbers, C; Latkowski, J; Meier, W; Payne, S; Perkins, J; Schaffers, K; Skulina, K; Ditmire, T; Kelly, J; Waxer, L; Rudi, P; Randles, M; Witter, D; Meissner, H; Merissner, O

    2001-12-13

    The High Average Power Laser Program (HAPL) is a multi-institutional, coordinated effort to develop a high-energy, repetitively pulsed laser system for Inertial Fusion Energy and other DOE and DOD applications. This program is building a laser-fusion energy base to complement the laser-fusion science developed by DOE Defense programs over the past 25 years. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and LLNL. The current LLNL proposal is a companion proposal to that submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. Aside from the driver development aspect, the NRL and LLNL companion proposals pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, materials and power plant economics. This report requests continued funding in FY02 to support LLNL in its program to build a 1kW, 100J, diode-pumped, crystalline laser. In addition, research in high gain laser target design, fusion chamber issues and survivability of the final optic element will be pursued. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments.

  9. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser.

    PubMed

    Puppin, Michele; Deng, Yunpei; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2015-01-26

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 µJ pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation. PMID:25835905

  10. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Meier, W; Bibeau, C

    2005-10-25

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of {approx}2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies.

  11. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  12. Design of a tunable parametric wavelength conversion system between 2 and 3 μm pumped by a high-average-power Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Miura, Taisuke; Severová, Patricie; Endo, Akira; Mocek, Tomáš

    2013-05-01

    With increasing energy densities of laser pulses the laser induced damage threshold (LIDT) testing becomes an important characterization of optical components. The emission wavelength of several laser materials is in the 2 - 3 μm wavelength-range. We propose a wavelength conversion system generating tunable sub-ns pulses for LIDT measurements in this IR spectral range. The pump beam of the conversion system will be based on the thin-disk laser technology. The Yb-fiber-laser seeded CPA system with high-energy Yb:YAG thin-disk regenerative amplifier will produce uncompressed pulses of 0.5 ns width, 130 mJ energy, at wavelength of 1030 nm with 1 kHz repetition rate giving 130 W of average power. Output of the thin-disk regenerative amplifier will pump an optical parametric generator (OPG) and subsequent optical parametric amplifiers (OPA). The tunable output wavelength of the OPG will be between 1.5 μm - 2.1 μm for the signal beam and between 2.1 μm - 3 μm for the idler beam. The signal will be amplified in the OPAs because the optics and diagnostics is more easily available below 2 μm wavelength. The tunable multi-millijoule source above 2.1 μm will be the idler beam taken from the last amplification stage. High-average output power of 10 W at 1 kHz repetition rate will be unique among 2 - 3 μm tunable systems. Operation of the amplifiers at high-intensities and high-average powers limits the system performance. The thermal load of crystals caused by the partial beam absorption will be studied. Further, the damage threshold of optical components, transmission range of nonlinear crystals, and amplifiers bandwidths will be addressed.

  13. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  14. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor.

    PubMed

    Tamura, Kohichi R; Sato, Kenji

    2002-07-15

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering. PMID:18026424

  15. High-power fibre lasers

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2013-11-01

    Fibre lasers are now associated with high average powers and very high beam qualities. Both these characteristics are required by many industrial, defence and scientific applications, which explains why fibre lasers have become one of the most popular laser technologies. However, this success, which is largely founded on the outstanding characteristics of fibres as an active medium, has only been achieved through researchers around the world striving to overcome many of the limitations imposed by the fibre architecture. This Review focuses on these limitations, both past and current, and the creative solutions that have been proposed for overcoming them. These solutions have enabled fibre lasers to generate the highest diffraction-limited average power achieved to date by solid-state lasers.

  16. High average power supercontinuum generation in a fluoroindate fiber

    NASA Astrophysics Data System (ADS)

    Swiderski, J.; Théberge, F.; Michalska, M.; Mathieu, P.; Vincent, D.

    2014-01-01

    We report the first demonstration of Watt-level supercontinuum (SC) generation in a step-index fluoroindate (InF3) fiber pumped by a 1.55 μm fiber master-oscillator power amplifier (MOPA) system. The SC is generated in two steps: first ˜1 ns amplified laser diode pulses are broken up into soliton-like sub-pulses leading to initial spectrum extension and then launched into a fluoride fiber to obtain further spectral broadening. The pump MOPA system can operate at a changeable repetition frequency delivering up to 19.2 W of average power at 2 MHz. When the 8-m long InF3 fiber was pumped with 7.54 W at 420 kHz, output average SC power as high as 2.09 W with 27.8% of slope efficiency was recorded. The achieved SC spectrum spread from 1 to 3.05 μm.

  17. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  18. A high-average-power FEL for industrial applications

    SciTech Connect

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  19. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm.

    PubMed

    Negel, Jan-Philipp; Loescher, André; Voss, Andreas; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Ahmed, Marwan Abdou; Graf, Thomas

    2015-08-10

    We report on an Yb:YAG thin-disk multipass laser amplifier delivering sub-8 ps pulses at a wavelength of 1030 nm with 1420 W of average output power and 4.7 mJ of pulse energy. The amplifier is seeded by a regenerative amplifier delivering 6.5 ps pulses with 300 kHz of repetition rate and an average power of 115 W. The optical efficiency of the multipass amplifier was measured to be 48% and the beam quality factor was better than M2 = 1.4. Furthermore we report on the external second harmonic generation from 1030 nm to 515 nm using an LBO crystal leading to an output power of 820 W with 2.7 mJ of energy per pulse. This corresponds to a conversion efficiency of 70%. Additionally, 234 W of average power were obtained at the third harmonic with a wavelength of 343 nm. PMID:26367957

  20. Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror.

    PubMed

    Bourdet, Gilbert L

    2005-02-20

    A numerical technique with which to compute the output characteristics of a solid-state laser with an unstable cavity and a super-Gaussian coupling mirror is proposed. This technique is applied to an Yb:YAG actively Q-switched laser. With this formalism, the mode formation for the fundamental mode is analyzed and the performance achievable by such a laser for various cavity parameters is determined. Then the results obtained with such a cavity are compared with those given for a stable cavity with graded phase output mirror that is also used for obtaining super-Gaussian mode. PMID:15751693

  1. High average power switching in diamond

    SciTech Connect

    Hofer, W.W.; Schoenbach, K.H.

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300{degree}K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm{sup 2}/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/{degree}K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (laser control. We obtained experimental results with electron beam activated diamond films which were CVD grown on an n-type silicon substrate. With the substrate biased positive, the switch current was found to follow the electron beam pulse up to fields of about 0.9 MV/cm where ``lock-on`` occurred, i.e., the switch current continued to flow even after the electron beam was turned off. This effect, most likely due to double charge injection, was suppressed by biasing the n-silicon substrate negatively. The switch current then followed the electron beam pulse up to electric fields of 1.8 MV/cm, limited by our electrical circuit, with no evidence of ``lock-on.`` The predictable response of the switch current to the electron beam pulse at extreme,applied fields make electron beam controlled diamond switch a promising candidate for a high power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  2. High average power switching in diamond

    SciTech Connect

    Hofer, W.W. ); Schoenbach, K.H. )

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300[degree]K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm[sup 2]/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/[degree]K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (laser control. We obtained experimental results with electron beam activated diamond films which were CVD grown on an n-type silicon substrate. With the substrate biased positive, the switch current was found to follow the electron beam pulse up to fields of about 0.9 MV/cm where lock-on'' occurred, i.e., the switch current continued to flow even after the electron beam was turned off. This effect, most likely due to double charge injection, was suppressed by biasing the n-silicon substrate negatively. The switch current then followed the electron beam pulse up to electric fields of 1.8 MV/cm, limited by our electrical circuit, with no evidence of lock-on.'' The predictable response of the switch current to the electron beam pulse at extreme,applied fields make electron beam controlled diamond switch a promising candidate for a high power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  3. Industry-grade high average power femtosecond light source

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Weiler, S.; Fleischhaker, R.; Gebs, R.; Budnicki, A.; Wolf, M.; Kleinbauer, J.; Russ, S.; Kumkar, M.; Sutter, D. H.

    2014-03-01

    Ultrashort pulses are capable of processing practically any material with negligible heat affected zone. Typical pulse durations for industrial applications are situated in the low picosecond-regime. Pulse durations of 5 ps or below are a well established compromise between the electron-phonon interaction time of most materials and the need for pulses long enough to suppress detrimental effects such as nonlinear interaction with the ablated plasma plume. However, sub-picosecond pulses can further increase the ablation efficiency for certain materials, depending on the available average power, pulse energy and peak fluence. Based on the well established TruMicro 5000 platform (first release in 2007, third generation in 2011) an Yb:YAG disk amplifier in combination with a broadband seed laser was used to scale the output power for industrial femtosecond-light sources: We report on a subpicosecond amplifier that delivers a maximum of 160 W of average output power at pulse durations of 750 fs. Optimizing the system for maximum peak power allowed for pulse energies of 850 μJ at pulse durations of 650 fs. Based on this study and the approved design of the TruMicro 5000 product-series, industrygrade, high average power femtosecond-light sources are now available for 24/7 operation. Since their release in May 2013 we were able to increase the average output power of the TruMicro 5000 FemtoEdition from 40 W to 80 W while maintaining pulse durations around 800 fs. First studies on metals reveal a drastic increase of processing speed for some micro processing applications.

  4. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  5. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  6. FY2005 Progress Summary and FY2006 Program Plan Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Ebbers, C

    2006-03-24

    The primary focus this year was to operate the system with two amplifiers populated with and pumped by eight high power diode arrays. The system was operated for extended run periods which enabled average power testing of components, diagnostics, and controls. These tests were highly successful, with a demonstrated energy level of over 55 joules for 4 cumulative hours at a repetition rate of 10 Hz (average power 0.55 kW). In addition, high average power second harmonic generation was demonstrated, achieving 227 W of 523.5 nm light (22.7 J, 10 Hz, 15 ns, 30 minutes) Plans to achieve higher energy levels and average powers are in progress. The dual amplifier system utilizes a 4-pass optical arrangement. The Yb:S-FAP slabs were mounted in aerodynamic aluminum vane structures to allow turbulent helium gas flow across the faces. Diagnostic packages that monitored beam performance were deployed during operation. The laser experiments involved injecting a seed beam from the front end into the system and making four passes through both amplifiers. Beam performance diagnostics monitored the beam on each pass to assess system parameters such as gain and nearfield intensity profiles. This year, an active mirror and wavefront sensor were procured and demonstrated in an off-line facility. The active mirror technology can correct for low order phase distortions at user specified operating conditions (such as repetition rates different than 10 Hz) and is a complementary technology to the static phase plates used in the system for higher order distortions. A picture of the laser system with amplifier No.2 (foreground) and amplifier No.1 (background) is shown in Fig. 1.0.1.1. The control system and diagnostics were recently enhanced for faster processing and allow remote operation of the system. The growth and fabrication of the Yb:S-FAP slabs constituted another major element of our program objectives. Our goal was to produce at least fourteen 4x6 cm2 crystalline slabs. These

  7. High average power Yb:CaF2 femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing

    PubMed Central

    Squier, J.; Thomas, J.; Block, E.; Durfee, C.; Backus, S.

    2014-01-01

    A watt level, 10-kilohertz repetition rate chirped pulse amplification system that has an integrated simultaneous spatial and temporal focusing (SSTF) processing system is demonstrated for the first time. SSTF significantly reduces nonlinear effects normally detrimental to beam control enabling the use of a low numerical aperture focus to quickly treat optically transparent materials over a large area. The integrated SSTF system has improved efficiency compared to previously reported SSTF designs, which combined with the high repetition rate of the laser, further optimizes its capability to provide rapid, large volume processing. PMID:24465093

  8. High average power Yb:CaF2 femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing.

    PubMed

    Squier, J; Thomas, J; Block, E; Durfee, C; Backus, S

    2014-01-01

    A watt level, 10-kilohertz repetition rate chirped pulse amplification system that has an integrated simultaneous spatial and temporal focusing (SSTF) processing system is demonstrated for the first time. SSTF significantly reduces nonlinear effects normally detrimental to beam control enabling the use of a low numerical aperture focus to quickly treat optically transparent materials over a large area. The integrated SSTF system has improved efficiency compared to previously reported SSTF designs, which combined with the high repetition rate of the laser, further optimizes its capability to provide rapid, large volume processing. PMID:24465093

  9. High average power Yb:CaF2 femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing

    NASA Astrophysics Data System (ADS)

    Squier, J.; Thomas, J.; Block, E.; Durfee, C.; Backus, S.

    2014-01-01

    A watt level, 10-kz repetition rate chirped pulse amplification system that has an integrated simultaneous spatial and temporal focusing (SSTF) processing system is demonstrated for the first time. SSTF significantly reduces nonlinear effects normally detrimental to beam control enabling the use of a low numerical aperture focus to quickly treat optically transparent materials over a large area. The integrated SSTF system has improved efficiency compared to previously reported SSTF designs, which combined with the high-repetition rate of the laser, further optimizes its capability to provide rapid, large volume processing.

  10. High power excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer

    2006-02-01

    Today's excimer lasers are well-established UV laser sources for a wide variety of micromachining applications. The excimer's high pulse energy and average power at short UV wavelengths make them ideal for ablation of various materials, e. g., polyimide, PMMA, copper, and diamond. Excimer micromachining technology, driven by the ever-shrinking feature sizes of micro-mechanical and micro-electronic devices, is used for making semiconductor packaging microvias, ink jet nozzle arrays, and medical devices. High-power excimer laser systems are capable of processing large areas with resolution down to several microns without using wet chemical processes. For instance, drilling precise tapered holes and reel-to-reel manufacturing of disposable sensors have proven to be very cost-effective manufacturing techniques for volume production. Specifically, the new industrial excimer laser-the LAMBDA SX 315C-easily meets the high demands of cost-effective production. The stabilized output power of 315 watts at 300 Hz (308 nm) and its outstanding long-term stability make this laser ideal for high-duty-cycle, high-throughput micromachining. In this paper, high-power excimer laser technology, products, applications, and beam delivery systems will be discussed.

  11. High average power parametric frequency conversion-new concepts and new pump sources

    SciTech Connect

    Velsko, S.P.; Webb, M.S.

    1994-03-01

    A number of applications, including long range remote sensing and antisensor technology, require high average power tunable radiation in several distinct spectral regions. Of the many issues which determine the deployability of optical parametric oscillators (OPOS) and related systems, efficiency and simplicity are among the most important. It is only recently that the advent of compact diode laser pumped solid state lasers has produced pump sources for parametric oscillators which can make compact, efficient, high average power tunable sources possible. In this paper we outline several different issues in parametric oscillator and pump laser development which are currently under study at Lawrence Livermore National Laboratory.

  12. Spatial filters for high average power lasers

    SciTech Connect

    Erlandson, Alvin C

    2012-11-27

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.

  13. Laser power transmission.

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Christiansen, W. H.; Hertzberg, A.

    1971-01-01

    Description of studies which have led to the design of a conceptual device in which the limitation of transforming heat into coherent radiation can be examined. By exploring the basic thermodynamic relationships controlling the operation of this device, it is concluded that a closed-cycle gasdynamic laser is possible in which all of the shaft energy supplied can be turned into laser radiation. Hence, it is possible in principle to convert heat into coherent radiation with approximately the same efficiency with which heat may be converted into electricity. By modifying the closed-cycle-gasdynamic-laser system, this system can be operated in reverse and the incoming radiation may be used to pump the gas in the loop so that shaft power can be extracted. By carefully controlling the temperature distribution in this machine, laser energy can be converted into useful shaft energy with an efficiency approaching 1 .

  14. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  15. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  16. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. Average patterns and coherent phenomena in wide aperture lasers

    NASA Astrophysics Data System (ADS)

    D'Alessandro, G.; Papoff, F.; Louvergneaux, E.; Glorieux, P.

    2004-06-01

    Using a realistic model of wide aperture, weakly astigmatic lasers we develop a framework to analyze experimental average intensity patterns. We use the model to explain the appearance of patterns in terms of the modes of the cavity and to show that the breaking of the symmetry of the average intensity patterns is caused by overlaps in the frequency spectra of nonvanishing of modes with different parity. This result can be used even in systems with very fast dynamics to detect experimentally overlaps of frequency spectra of modes.

  18. Power Play, Laser Style

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  19. 152 W average power Tm-doped fiber CPA system.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2014-08-15

    A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%. PMID:25121845

  20. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  1. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm.

    PubMed

    Yao, Weichao; Chen, Bihui; Zhang, Jianing; Zhao, Yongguang; Chen, Hao; Shen, Deyuan

    2015-05-01

    We report on high-average-power operation of a pulsed Raman fiber amplifier at ~1686 nm which cannot be covered by rare-earth-doped fiber lasers. The Raman fiber amplifier was pumped by a home-made 1565.2 nm Q-switched Er,Yb fiber laser and worked at a repetition frequency of 184 kHz. With 0.8 km Raman fiber, 4.4 W of average output power at the 1st order Stokes wavelength of 1686.5 nm was obtained for launched pump power of 16.2 W, corresponding to an optical-to-optical conversion efficiency of 27.2%. Further increasing the pump power, high-order Stokes waves grew gradually, resulting in a total output power of 6.7 W at the 19.2 W launched pump power. PMID:25969195

  2. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  3. Development of high coherence high power 193nm laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  6. Laser powered interorbital vehicle

    NASA Technical Reports Server (NTRS)

    Clarke, M. T.; Cooper, J. J.; Eggleston, G. P.; Farkas, M. A.; Hunt, D. C.; King, J.; Nguyen, H.; Rahal, G.; Saw, K.; Tipton, R.

    1989-01-01

    A preliminary design of a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an Earth space station and a lunar base is presented. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring eight days for a lunar rendezvous and an additional nine days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box-beam truss, a payload module, and propellant tanks. The total mass of the vehicle, fully loaded, is 63,300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables that allow the vehicle to thrust tangential to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of a 23-m-diameter primary mirror, a convex parabolic secondary mirror, a beam splitter, and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18,000 kg of cargo and is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35,000 kg of liquid hydrogen are fastened to tracks that allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing, and tracking system that can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. In addition, an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.

  7. Measurement of the absorption of nonlinear crystals used for high-average-power frequency doubling

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Seidel, Stefan

    1997-07-01

    The absorption coefficients of nonlinear crystals for fundamental and second harmonic wave are of great importance for high average power second harmonic generation. A practical method to measure low absorption coefficients for high average power second harmonic generation. A practical method to measure low absorption coefficients is to use an interferometric laser calorimeter with high power lasers. Therefore Q-switched Nd:YAG laser systems with intracavity second harmonic generation are used. The measurements are made with optical powers up to 300 W and 45 W, respectively. Because of the high power, the resolution limit for the absorption coefficients is 0.001 percent/cm. The absorption coefficients of KTP and LBO crystals of different manufacturers are determined. The results are used for a numerical model which takes into account the decrease of conversion efficiency due to thermal effects caused by the absorption of laser power in the nonlinear crystal. This model describes saturation effects which appear in the range of 100 W in the green using a KTP crystal. A new idea for compensation of thermal effects will be presented.

  8. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-w average output power.

    PubMed

    Graf, T; McConnell, G; Ferguson, A I; Bente, E; Burns, D; Dawson, M D

    1999-05-20

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461-1601 nm based on a high-power Nd:YVO(4) laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically poled lithium niobate crystal. The system produces 34-ps pulses with a high repetition rate of 235 MHz and an average output power of 1 W. The relatively long pulses lead to wide cavity detuning tolerances. The comparatively narrow spectral bandwidth of <15 GHz is suitable for applications such as pollutant detection. PMID:18319928

  9. A Multichannel Averaging Phasemeter for Picometer Precision Laser Metrology

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Johnson, Donald R.; Kuhnert, Andreas; Shaklan, Stuart B.; Sero, Robert

    1999-01-01

    The Micro-Arcsecond Metrology (MAM) team at the Jet Propulsion Laboratory has developed a precision phasemeter for the Space Interferometry Mission (SIM). The current version of the phasemeter is well-suited for picometer accuracy distance measurements and tracks at speeds up to 50 cm/sec, when coupled to SIM's 1.3 micron wavelength heterodyne laser metrology gauges. Since the phasemeter is implemented with industry standard FPGA chips, other accuracy/speed trade-off points can be programmed for applications such as metrology for earth-based long-baseline astronomical interferometry (planet finding), and industrial applications such as translation stage and machine tool positioning. The phasemeter is a standard VME module, supports 6 metrology gauges, a 128 MHz clock, has programmable hardware averaging, and a maximum range of 232 cycles (2000 meters at 1.3 microns).

  10. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  11. Laser power conversion system analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Orbit to orbit and orbit to ground laser power conversion systems and power transfer are discussed. A system overview is presented. Pilot program parameters are considered: SLPS assumptions are listed, a laser SPS overview is presented, specifications are listed, and SLPS coats are considered.

  12. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  13. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  14. Borogermanate glasses for Faraday isolators at high average power

    NASA Astrophysics Data System (ADS)

    Starobor, A. V.; Zheleznov, D. S.; Palashov, O. V.; Savinkov, V. I.; Sigaev, V. N.

    2016-01-01

    The temperature dependence of Verdet constant and thermo-optical characteristics of a new magneto-optical borogermanate glass has been investigated. The performed analysis confirmed a possibility of developing a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, providing a 25 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the power of 0.4 kW and 1.3 kW, respectively, which is a leading-edge result for magneto-optical glasses.

  15. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhou, G. Tong; Qian, Hua

    2007-12-01

    Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  16. The Mercury Laser Advances Laser Technology for Power Generation

    SciTech Connect

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  17. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth. PMID:26030570

  18. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  19. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    PubMed

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system. PMID:23037392

  20. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  1. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-08-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  2. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-01-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  3. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

  4. Femtosecond Innoslab amplifier with 300W average power and pulse energies in the mJ-regime

    NASA Astrophysics Data System (ADS)

    Mans, T.; Graf, R.; Dolkemeyer, J.; Schnitzler, C.

    2014-02-01

    We demonstrate a femtosecond Yb:YAG InnoSlab laser amplifier producing <3mJ pulse energy at 100kHz pulse repetition rate. The minimal pulse duration is <1ps resulting in pulse powers <3GW. High energy and high average power could be obtained with the use of chirped pulse amplification on the power amplifier end. The laser setup consists of a seed laser with 10mW average power at pulse repetition rates of 100kHz to 1MHz, a pre-amplifier stage, a highpower InnoSlab-amplifier stage and a grating based pulse compressor. This laser source is suited for pumping of OPCPA setups und parallelisation of applications in materials processing.

  5. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment.

    PubMed

    Saraceno, Clara J; Emaury, Florian; Heckl, Oliver H; Baer, Cyrill R E; Hoffmann, Martin; Schriber, Cinia; Golling, Matthias; Südmeyer, Thomas; Keller, Ursula

    2012-10-01

    We present an ultrafast thin disk laser that generates an average output power of 275 W, which is higher than any other modelocked laser oscillator. It is based on the gain material Yb:YAG and operates at a pulse duration of 583 fs and a repetition rate of 16.3 MHz resulting in a pulse energy of 16.9 μJ and a peak power of 25.6 MW. A SESAM designed for high damage threshold initiated and stabilized soliton modelocking. We reduced the nonlinearity of the atmosphere inside the cavity by several orders of magnitude by operating the oscillator in a vacuum environment. Thus soliton modelocking was achieved at moderate amounts of self-phase modulation and negative group delay dispersion. Our approach opens a new avenue for power scaling femtosecond oscillators to the kW level. PMID:23188316

  6. Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Düsterer, S; Prandolini, M J; Feldhaus, J; Faatz, B; Rossbach, J; Drescher, M; Tavella, F

    2012-02-27

    An Yb:YAG thin-disk multipass laser amplifier system was developed operating in a 10 Hz burst operation mode with 800 µs burst duration and 100 kHz intra-burst repetition rate. Methods for the suppression of parasitic amplified spontaneous emission are presented. The average output pulse energy is up to 44.5 mJ and 820 fs compressed pulse duration. The average power of 4.45 kW during the burst is the highest reported for this type of amplifier. PMID:22418308

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  8. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    SciTech Connect

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-22

    Gamma-({gamma}{sup -}) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A {gamma}-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition {gamma}-source assumes placing the Compton interaction point inside a CO{sub 2} laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of {gamma}-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO{sub 2}-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO{sub 2} laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO{sub 2} laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  9. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  10. A high average power electro-optic switch using KTP

    SciTech Connect

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  11. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-12-31

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modem, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  12. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  13. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  14. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  15. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  16. Laser Powered Aircraft Takes Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  17. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  18. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  19. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  20. Absolute measurement of F2-laser power at 157 nm

    SciTech Connect

    Kueck, Stefan; Brandt, Friedhelm; Kremling, Hans-Albert; Gottwald, Alexander; Hoehl, Arne; Richter, Mathias

    2006-05-10

    We report a comparison of laser power measurements at the F2-laser wavelength oaf nm made at two facilities of the Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute. At the PTB laboratory at the electron storage ring BESSY II in Berlin, the scale for laser power was directly traced to a cryogenic radiometer operating at 157 nm, whereas at the PTB laser radiometry facility in Braunschweig the calibration of transfer detectors was performed with a newly developed standard for laser power at 157 nm, which is traceable in several steps to a cryogenic radiometer operating at 633 nm. The comparison was performed under vacuum conditions with laser pulse energies of?10 {mu}J, however with different average powers because different primary standard radiometers were used. The relative deviation for the responsivity of the transfer detector was 4.8% and thus within the combined standard uncertainty.

  1. Compact architecture for power scaling bounce geometry lasers.

    PubMed

    Chard, S P; Damzen, M J

    2009-02-16

    We demonstrate the compact high-power scaling of bounce geometry lasers with a new dual-pumped folded amplifier design. A Q-switched laser oscillator built with this amplifier is shown to produce over 30 W of average power from 80 W of pump power at up to 600 kHz repetition rate. In a master-oscillator power-amplifier (MOPA) configuration using the dual-pumped amplifier, we demonstrate over 100 W of output power from 250 W of pump power. We also demonstrate very high repetition rate Q-switching (1.7 MHz) of the master oscillator. PMID:19219125

  2. Sub-700fs pulses at 152 W average power from a Tm-doped fiber CPA system

    NASA Astrophysics Data System (ADS)

    Gaida, Christian; Stutzki, Fabian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe D.; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2015-03-01

    Thulium-based fiber lasers potentially provide for the demand of high average-power ultrafast laser systems operating at an emission wavelength around 2 μm. In this work we use a Tm-doped photonic-crystal fiber (PCF) with a mode field diameter of 36 μm enabling high peak powers without the onset of detrimental nonlinear effects. For the first time a Tmdoped PCF amplifier allows for a pump-power limited average output power of 241 W with a slope efficiency above 50%, good beam quality and linear polarization. A record compressed average power of 152 W and a pulse peak power of more than 4 MW at sub-700 fs pulse duration are enabled by dielectric gratings with diffraction efficiencies higher than 98% leading to a total compression efficiency of more than 70%. A further increase of pulse peak power towards the GW-level is planned by employing Tm-doped large-pitch fibers with mode field diameters well above 50 μm. The coherent combination of ultrafast pulses might eventually lead to kW-level average power and multi-GW peak power.

  3. Laser satellite power systems - Concepts and issues

    NASA Astrophysics Data System (ADS)

    Walbridge, E. W.

    A laser satellite power system (SPS) converts solar power captured by Earth-orbiting satellites into electrical power on the Earth's surface, the satellite-to-ground transmission of power being effected by a laser beam. The laser SPS is an alternative to the microwave SPS. Lasers and how they work are described, as are the types of lasers - electric discharge, direct and indirect solar pumped, free electron, and closed-cycle chemical - that are candidates for application in a laser SPS. The advantages of a laser SPS over the microwave alternative are pointed out. One such advantage is that, for the same power delivered to the utility busbar, land requirements for a laser system are much smaller (by a factor of 21) than those for a microwave system. The four laser SPS concepts that have been presented in the literature are described and commented on. Finally key issues for further laser SPS research are discussed.

  4. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  5. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  6. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  7. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber.

    PubMed

    Südmeyer, T; Brunner, F; Innerhofer, E; Paschotta, R; Furusawa, K; Baggett, J C; Monro, T M; Richardson, D J; Keller, U

    2003-10-15

    We demonstrate that nonlinear fiber compression is possible at unprecedented average power levels by use of a large-mode-area holey (microstructured) fiber and a passively mode-locked thin disk Yb:YAG laser operating at 1030 nm. We broaden the optical spectrum of the 810-fs pump pulses by nonlinear propagation in the fiber and remove the resultant chirp with a dispersive prism pair to achieve 18 W of average power in 33-fs pulses with a peak power of 12 MW and a repetition rate of 34 MHz. The output beam is nearly diffraction limited and is linearly polarized. PMID:14587786

  8. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  9. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.

    PubMed

    Lindballe, Thue B; Kristensen, Martin V G; Berg-Sørensen, Kirstine; Keiding, Søren R; Stapelfeldt, Henrik

    2013-01-28

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 μm polystyrene bead, the laser pulse-bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our experimental method may have implications for microrheology. PMID:23389179

  10. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm. PMID:27244410

  11. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.; Albrecht, G.; Beach, R.

    1994-12-31

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  12. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  13. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  14. High-average-power 266 nm generation with a KBe₂BO₃F₂ prism-coupled device.

    PubMed

    Wang, Lirong; Zhai, Naixia; Liu, Lijuan; Wang, Xiaoyang; Wang, Guiling; Zhu, Yong; Chen, Chuangtian

    2014-11-01

    High-average-power fourth harmonic generation (4thHG) of an Nd:YAG laser has been achieved by using a KBe₂BO₃F₂-prism-coupled device (KBBF-PCD) . The highest output power of 7.86 W at 266 nm was obtained with a conversion efficiency of 10%. To our knowledge, this is the highest power ever obtained by a KBBF-PCD. The stability of the 266 nm output power at 3.26 W was measured over a period of 60 minutes, and the standard deviation jitter of the average power was 1.4%. Moreover, the temperature bandwidth for KBBF was also measured at 266nm for the first time,which shows that KBBF has significant advantages in high power 4thHG compared to other major nonlinear optical crystals and is potential for UV applications. PMID:25401859

  15. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  16. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  17. Numerical simulation studies of the design and performance of the AFEL for high average power operation

    SciTech Connect

    Goldstein, J.C.; Takeda, H.; Nguyen, D.C.

    1994-10-01

    AFEL (Advanced Free-Electron Laser) at Los Alamos is a compact free-electron laser oscillator which utilizes a very high-brightness electron beam generated by a high gradient linac whose source of electrons is a photocathode injector. This device has been operating, with 15--17 MeV electrons, at optical wavelengths in the 4.5--6.0 {mu}m range, since April of 1993 with a one-centimeter-period, permanent-magnet wiggler which is 24 periods long. The linac produces about 12 {mu}s macropulses at a normal repetition rate of one Hz, while the micropulse repetition rate within a macropulse is 108.33 Mhz which is consistent with the optical cavity length of about 138.5 cm. A program is now underway to upgrade the subsystems of this laser in order to allow it to produce long-time-average optical output powers in the range of 0.1 to 1.0 kW. In this communication, we briefly indicate the details of the equipment upgrades, describe a new high-extraction-efficiency wiggler, and present the results of numerical simulation studies of the design.

  18. Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1982-01-01

    Laser remote sensing involves the measurement of laser-beam transmission through the atmosphere and is subject to uncertainties caused by strong fluctuations due primarily to speckle, glint, and atmospheric-turbulence effects. These uncertainties are generally reduced by taking average values of increasing numbers of measurements. An experiment was carried out to directly measure the effect of signal averaging on back-scattered laser return signals from a diffusely reflecting target using a direct-detection differential-absorption lidar (DIAL) system. The improvement in accuracy obtained by averaging over increasing numbers of data points was found to be smaller than that predicted for independent measurements. The experimental results are shown to be in excellent agreement with a theoretical analysis which considers the effect of temporal correlation. The analysis indicates that small but long-term temporal correlation severely limits the improvement available through signal averaging.

  19. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  20. System evaluations of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    1992-01-01

    The major technology options for high-energy FELs and adaptive optics available to the Space Laser Energy (SELENE) program are reviewed. Initial system evaluations of these options are described. A feasibility assessment of laser power beaming is given.

  1. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  2. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  3. Status of HiLASE project: High average power pulsed DPSSL systems for research and industry

    NASA Astrophysics Data System (ADS)

    Mocek, T.; Divoky, M.; Smrz, M.; Sawicka, M.; Chyla, M.; Sikocinski, P.; Vohnikova, H.; Severova, P.; Lucianetti, A.; Novak, J.; Rus, B.

    2013-11-01

    We introduce the Czech national R&D project HiLASE which focuses on strategic development of advanced high-repetition rate, diode pumped solid state laser (DPSSL) systems that may find use in research, high-tech industry and in the future European large-scale facilities such as HiPER and ELI. Within HiLASE we explore two major concepts: thin-disk and cryogenically cooled multislab amplifiers capable of delivering average output powers above 1 kW level in picosecond-to-nanosecond pulsed regime. In particular, we have started a programme of technology development to demonstrate the scalability of multislab concept up to the kJ level at repetition rate of 1-10 Hz.

  4. Studies of a repetitively-pulsed laser powered thruster

    NASA Astrophysics Data System (ADS)

    Rosen, D. I.; Kemp, N. H.; Miller, M.

    1982-01-01

    In this report we present results of continuing analytical and experimental investigations carried out to evaluate the concept of pulsed laser propulsion. This advanced propulsion scheme, which has been the subject of several previous studies, involves supplying propellant energy by beaming short, repetitive laser pulses to a thruster from a remote laser power station. The concept offers the advantages of a remote power source, high specific impulse, high payload to total mass ratio (a consequence of the first two features) and moderate to high thrust (limited primarily by the average laser power available). The present research addresses questions related to thruster performance and optical design. In the thruster scheme under consideration, parabolic nozzle walls focus the incoming laser beam to yield breakdown in a propellant at the focal point of the parabola. The resulting high pressure plasma is characteristic of a detonation wave initiation by high power laser-induced breakdown. With a short laser pulse, the detonation wave quickly becomes a blast wave which propagates to the nozzle exit plane converting the high pressure of the gas behind it to a force on the nozzle wall. Propellant is fed to the focal region from a plenum chamber. The laser-induced blast wave stops the propellant flow through the throat until the pressure at the throat decays to the sonic pressure; then the propellant flow restarts. The process is repeated with each successive laser pulse.

  5. Enhanced peak power CO2 laser processing of PCB materials

    NASA Astrophysics Data System (ADS)

    Moorhouse, C. J.; Villarreal, F.; Wendland, J. J.; Baker, H. J.; Hall, D. R.; Hand, D. P.

    2005-06-01

    Laser drilling has become a common processing step in the fabrication of printed circuit boards (PCB's). For this work, a recently developed enhanced peak power CO2 laser (~2.5 kW peak power, 200W average) or ultra-super pulse (USP) laser is used to drill alumina and copper coated dielectric laminate materials. The higher peak power and faster response times (than conventional CO2 lasers) produced by the USP laser are used to produce high speed alumina laser scribing and copper coated laminate microvia drilling processes. Alumina is a common PCB material used for applications, where its resistance to mechanical and thermal stresses is required. Here we present a comprehensive study of the melt eject mechanisms and recast formation to optimise the speed and quality of alumina laser scribing. Scribe speeds of up to 320 mms-1 (1.8 times current scribe rate) have been achieved using novel temporal pulse shapes unique to the USP laser. Also presented is the microvia drilling process of copper dielectric laminates, where the multi-level configuration presents different optical and thermal properties complicating their simultaneous laser ablation. In our experiments the USP laser has been used to drill standard thickness copper films (up to 50 μm thick) in a single shot. This investigation concentrates on understanding the mechanisms that determine the dielectric undercut dimensions.

  6. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  7. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  8. Wavelength and average power density dependency of the recrystallization of tooth dentin using a MIR-FEL

    NASA Astrophysics Data System (ADS)

    Heya, Manabu; Awazu, Kunio

    2002-04-01

    Recrystallization of tooth dentin by the application of mid- infrared (MIR) pulsed-laser irradiation is one candidate for a novel, non-invasive treatment for the prevention of tooth decay. Recrystallized dentin functions in a similar way to dental enamel. To recrystallize the dentin effectively and non-invasively it is essential to estimate quantitatively and qualitatively the laser parameters, such as the wavelength and the average power density, required for recrystallization. The laser-tissue interaction is initiated effectively by selective excitation of phosphate acid ions (PO4) in the dentin. Using a tunable, MIR Free Electron Laser (FEL) in the wavelength region of 8.8- 10.6micrometers , corresponding to intense absorption bands due to PO4 vibration modes, we have investigated macroscopically extent of surface modification of dentin, and we have obtained experimental results related to the ablation depth, the MIR absorption spectrum, and the elemental chemical composition. From these results, it was found that (1) the laser parameters at which efficient surface modification, without enhanced ablation effects, occurred were estimated to be approximately in the wavelength and average power density regions of ~9.4- 10.3micrometers and ~10-20 W/cm2, and that (2) in this region PO4 vibration modes with lower binding energy were preferentially excluded from the dentin.

  9. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Williams, Joel; Biedron, Sandra; Harris, John; Martinez, Jorge; Milton, Stephen; Benson, S.; Evtushenko, P.; Neil, G.; Zhang, S.

    2014-03-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system in an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance, one needs to investigate the longitudinal emittance during operation, preferably in a non-invasive manner. Using electro-optical (EO) methods, we plan to measure the bunch longitudinal profile of an energy (~120-MeV), high-power (~10 kW or more average FEL output power) beam. Such a diagnostic could be critical in efforts to diagnose and help mitigate deleterious beam effects for high output power FELs.

  10. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. PMID:22535061

  11. High power laser beam delivery monitoring for laser safety

    NASA Astrophysics Data System (ADS)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.; Freeland, C. M.; Myler, J. K.

    1997-07-01

    The output of high power lasers used for material processing presents extreme radiation hazards. In normal operation this hazard is removed by the use of local shielding to prevent accidental exposure and system design to ensure efficient coupling of radiation into the workpiece. Faults in laser beam delivery or utilization can give rise to hazardous levels of laser radiation. A passive hazard control strategy requires that the laser system be enclosed such that the full laser power cannot burn through the housing under fault conditions. Usually this approach is too restrictive. Instead, active control strategies can be used in which a fault condition is detected and the laser cut off. This reduces the requirements for protective housing. In this work a distinction is drawn between reactive and proactive strategies. Reactive strategies rely on detecting the effects of an errant laser beam, whereas proactive strategies can anticipate as well as detect fault conditions. This can avoid the need for a hazardous situation to exist. A proactive strategy in which the laser beam is sampled at the final turning mirror is described in this work. Two control systems have been demonstrated; the first checks that beam power is within preset limits, the second monitors incoming beam power and position, and the radiation reflected back from the cutting head. In addition to their safety functions the accurate monitoring of power provides an additional benefit to the laser user.

  12. Laser Powered Launch Vehicle Performance Analyses

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)

    2001-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.

  13. Potential of laser for SPS power transmission

    NASA Technical Reports Server (NTRS)

    Bain, C. N.

    1978-01-01

    Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.

  14. Piezoelectric measurement of laser power

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method for measuring the energy of individual laser pulses or a series of laser pulses by reading the output of a piezoelectric (PZ) transducer which has received a known fraction of the total laser pulse beam. An apparatus is disclosed that reduces the incident energy on the PZ transducer by means of a beam splitter placed in the beam of the laser pulses.

  15. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  16. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  17. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. The results of modeling studies for a silicon vertical junction converter used with a Nd laser are given. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  18. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  19. The high-power iodine laser

    NASA Astrophysics Data System (ADS)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  20. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  1. Solar powered blackbody-pumped lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, Walter H.; Sirota, J. M.

    1991-02-01

    A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.

  2. An Integrated High Efficiency Switched Mode Laser Power Supply

    NASA Astrophysics Data System (ADS)

    Merz, S. Spencer

    1987-05-01

    An ideal laser power supply should bring a capacitive storage medium to a programmable voltage level at a constant rate. This voltage level must be maintained until the laser is fired, at which time the charging source must be immune to severe transients. Considerations include efficiency, size, cost, and reliability. A switched mode charging source is described which has been in commercial production for several years, and which will transfer 5KW of average power to a value of capacitance ranging from 20 to 100nF at approximately 32KV with repetition rates to 500Hz.

  3. Advances in tunable powerful lasers: The advanced free-electron laser

    SciTech Connect

    Singer, S.; Sheffield, R.

    1993-12-31

    In the past several decades, remarkable progress in laser science and technology has made it possible to obtain laser light from the ultra-violet to the far infra-red from a variety of laser types, and at power levels from milliwatts to kilowatts (and, some day, megawatts). However, the availability of tunable lasers at ``high`` power (above a few tens of watts) is more limited. Figure 1, an assessment of the availability of tunable lasers, shows the covered range to be about 400 to 2000 nanometers. A variety of dye lasers cover the visible and near infra red, each one of which is tunable over approximately a 10% range. In the same region, the TI:saphire laser is adjustable over a 20 to 25% range. And finally, optical parametric oscillators can cover the range from about 400 nanometers out to about 2000 nm (even farther at reduced energy output). The typical output energy per pulse may vary from a few to one hundred millijoules, and since repetition rates of 10 to 100 Hertz are generally attainable, average output powers of tens of watts are possible. In recent years, a new approach to powerful tunable lasers -- the Free-Electron Laser (FEL) -- has emerged. In this paper we will discuss advances in FEL technology which not only enable tunability at high average power over a very broad range of wavelengths, but also make this device more usable. At present, that range is about one micron to the far infra red; with extensions of existing technology, it should be extendable to the vacuum ultra violet region.

  4. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  5. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  6. Demonstration of a 10 kW average power 94 GHz gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Blank, M.; Danly, B. G.; Levush, B.; Calame, J. P.; Nguyen, K.; Pershing, D.; Petillo, J.; Hargreaves, T. A.; True, R. B.; Theiss, A. J.; Good, G. R.; Felch, K.; James, B. G.; Borchard, P.; Cahalan, P.; Chu, T. S.; Jory, H.; Lawson, W. G.; Antonsen, T. M.

    1999-12-01

    The experimental demonstration of a high average power W-band (75-110 GHz) gyroklystron amplifier is reported. The gyroklystron has produced 118 AW peak output power and 29.5% electronic efficiency in the TE011 mode using a 66.7 kV, 6 A electron beam at 0.2% rf duty factor. At this operating point, the instantaneous full width at half-maximum (FWHM) bandwidth is 600 MHz. At 11% rf duty factor, the gyroklystron has produced up to 10.1 kW average power at 33% electronic efficiency with a 66 kV, 4.15 A electron beam. This represents world record performance for an amplifier at this frequency. At the 10.1 kW average power operating point, the FWHM bandwidth is 420 MHz. At higher magnetic fields and lower beam voltages, larger bandwidths can be achieved at the expense of peak and average output power.

  7. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  8. Solar-pumped laser for free space power transmission

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1989-01-01

    Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.

  9. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  10. Early history of high-power lasers

    NASA Astrophysics Data System (ADS)

    Sutton, George W.

    2002-02-01

    This paper gives the history of the invention and development of early high power lasers, to which the author contributed and had personal knowledge. The earliest hint that a high power laser could be built came from the electric CO2-N2-He laser of Javan. It happened that the director of the Avco-Everett Research Laboratory had written his Ph.D. dissertation on the deactivation of the vibrational excitation of N2 in an expanding flow under Edward Teller, then at Columbia Univ. The director then started an in-house project to determine if gain could be achieved in a mixture similar to Javan's by means of a shock tunnel where a shock heated mixture of N2, CO2, and He gas was expanded through a supersonic nozzle into a cavity. This concept was named by the author as the gasdynamic laser (GDL). The paper traces the history of the initial gain measurements, the Mark II laser, the RASTA laser, the Tri-Service laser, its troubles and solutions, the United Technology's XLD gasdynamic laser, and their ALL laser. The history of the coastal Crusader will also be mentioned. Also discussed are the early experiments on a combustion-driven chemical laser, and its subsequent rejection by the director.

  11. Developments in laser joining and welding of plastics using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Hoult, Tony; Ong, Raymond

    2002-02-01

    Diode lasers are now being employed in industry for a range of applications, in particular they are starting to be used as alternatives to conventional techniques for thermal joining of plastics. This is being assisted by the use of improved reliability aluminum-free diodes and diode laser systems, partly due to a better understanding of failure mechanisms. The laser welding and related techniques are dependent on transmission of part of an infra-red beam through the upper layer of a joint and semi-quantitative assessment of this is required for specific applications. The technique is applicable not only to high average powers, but also to very low average power, in this regime delicate thin-walled components may be joined. Recent developments using derivatives of this technique have shown that a wide range of similar and dissimilar material combinations may be joined.

  12. Satellites Would Transmit Power By Laser Beams

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Walker, Gilbert H.; HUMES D. H.; Kwon, J. H.

    1995-01-01

    Arrays of diode lasers concentrate power into narrow beams. Baseline design of system formulated with regard to two particular missions that differ greatly in power requirements, thus showing scalability and attributes of basic system. Satellite system features large-scale array amplifier of high efficiency, injection-locked amplifiers, coherent combination of beams, and use of advanced lithographic technology to fabricate diode lasers in array. Extremely rapid development of applicable technologies make features realizable within decade.

  13. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    SciTech Connect

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from the EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.

  14. Power scaling of semiconductor laser pumped Praseodymium-lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Heumann, E.; Huber, G.; Ostroumov, V.; Seelert, W.

    2007-04-01

    We report on efficient lasing of Pr-doped fluoride materials with cw output powers up to 600 mW in the visible spectral range. Praseodymium doped LiYF4 and LiLuF4 crystals were pumped either by an intracavity frequency doubled optically pumped semiconductor laser with output powers up to 1.6 W and nearly diffraction limited beam quality or by a multimode GaN-laser diode with an output power of about 370 mW. Furthermore, intracavity frequency doubling of the red Pr-laser radiation to 320 nm reaching output powers of more than 360 mW with a conversion efficiency of 61% and an optical-to-optical efficiency of 22% are presented.

  15. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  16. Grating rhomb diode laser power combiner

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Abshire, James B.

    1987-01-01

    A compact device for spectrally combining many laser-diode beams into a single multi-wavelength beam has been developed for use in NASA's intersatellite communications programs. The prototype device combines seven 30 milliwatt beams into a single beam with 70 percent efficiency producing an output of approximately 150 milliwatts. All beams are coaxial and can be collimated with a single transmitter optical system. The combining technique is relatively insensitive to drifts in the laser-diode wavelength and provides both increased power output and laser-diode source redundancy. Combination of more than 100 laser-diodes producing an output greater than 5 watts appears feasible with this technique.

  17. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  18. Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power.

    PubMed

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Pung, Aaron; Poutous, Menelaos K; Johnson, Eric G; Richardson, Martin

    2012-08-27

    We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode field adapter, and a fiber-coupled isolator. The laser components ultimately determine the system architecture and the limits of laser performance, particularly considering the immature and rapidly developing state of fiber components in the 2 μm wavelength regime. PMID:23037103

  19. Moderate-power cw fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Dianov, Evgenii M

    2004-10-31

    A review of the development and investigation of moderate-power (10{sup -1}-10{sup 2} W) cw fibre lasers is presented. The properties of optical fibres doped with rare-earth ions and methods for fabricating double-clad fibres are considered. The methods for fabrication of fibre Bragg gratings used as selective reflectors are discussed and the grating properties are analysed. The main pump schemes for double-clad fibre lasers are described. The properties of fibre lasers doped with neodymium, ytterbium, erbium, thulium, and holmium ions are also considered. The principles of fabrication of Raman converters of laser radiation based on optical fibres of different compositions are discussed and the main results of their studies are presented. It is concluded that fibre lasers described in the review can produce moderate-power radiation at any wavelength in the spectral range from 0.9 to 2 {mu}m. (review)

  20. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1986-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. This paper presents the results of modeling studies for a silicon vertical junction converter used with a Nd laser. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  1. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  2. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  3. New powerful metal vapor lasers oscillating in deep ultraviolet and middle infrared spectral ranges

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.

    2010-09-01

    Middle infrared and deep ultraviolet laser systems, which are based on high-power high-beam-quality stable-operating He-SrBr2 and Cu+ Ne-CuBr lasers excited in nanosecond pulsed longitudinal discharge, are developed, patented and studied. Optimal discharge conditions, such as active zone diameter, vapor pressure, buffer-gas pressure, electrical excitation scheme parameters, average input power, pulse repetition frequency, are found. The highest output laser parameters are obtained for the Sr atom and Cu+ lasers, respectively. These lasers equipped with optical systems for control of laser radiation parameters, such as laser beam divergence, laser intensity distribution, etc. are used in a large variety of applications, such as precise material microprocessing, including biological tissues, determination of linear optical properties of different materials newly developed, laser-induced modification of conductive polymers, laserinduced fluorescence in wide-gap semiconductors, instead of free electron and excimer lasers, respectively.

  4. Dual Laser Beam Attenuation Processing: A Method for Line-averaging of Air Temperature

    NASA Astrophysics Data System (ADS)

    Afsharnaderi, H. R.; Pishvaei, M. R.

    2009-04-01

    In local scale there is a demand to measure horizontal air temperature averaged over farming and horticulture plots for frost point monitoring and evapotranspiration calculations. Using several dry bulb thermometers is problematic. This work then attends to laser instrumentation of air thermometry. The attenuation of laser beams from Rayleigh scattering has been applied for this purpose. The ratio of attenuation quantity for two isosceles parallel laser beams (850nm and 1064nm with 5W output) led to independent line-averaging of air temperature from transmission path-lengths. Typical measurements have been executed over 400x200 m2 garden. Digital resolution is 0.1°C but spatial resolution is quite fine. One of the advantages of dual signal processing is the filtration of ambiguities caused by beam scintillations. Usage of this instrument is recommended over plane area or in green-houses and limited by topography. Applicability may be extended to other studies such as micrometeorology and propagation experiments.

  5. The future of high power laser techniques

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Loosen, Peter; Hoffmann, Hans-Dieter

    2007-05-01

    High Power Lasers have been used for years in corresponding applications. Constantly new areas and new processes have been demonstrated, developed and transferred to fruitful use in industry. With the advent of diode pumped solid state lasers in the multi-kW-power regime at beam qualities not far away from the diffraction limit, a new area of applicability has opened. In welding applications speeds could be increased and systems could be developed with higher efficiently leading also to new perspectives for increased productivity, e.g. in combined processing. Quality control is increasingly demanded by the applying industries, however applications still are rare. Higher resolution of coaxial process control systems in time and space combined with new strategies in signal processing could give rise to new applications. The general approach described in this paper emphasizes the fact, that laser applications can be developed more efficiently, more precisely and with higher quality, if the laser radiation is tailored properly to the corresponding application. In applying laser sources, the parameter ranges applicable are by far wider and more flexible compared to heat, mechanical or even electrical energy. The time frame ranges from several fs to continuous wave and this spans approximately 15 orders of magnitude. Spacewise, the foci range from several µm to cm and the resulting intensities suitable for materials processing span eight orders of magnitude from 10 3 to 10 11 W/cm2. In addition to space (power, intensity) and time (pulse) the wavelength can be chosen as a further parameter of optimization. As a consequence, the resulting new applications are vast and can be utilized in almost every market segment of our global economy (Fig. 1). In the past and only partly today, however, this flexibility of laser technology is not exploited in full in materials processing, basically because in the high power regime the lasers with tailored beam properties are not

  6. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  7. 900-mW average power and tunability from a diode-pumped 2.94-{mu}m Er:YAG oscillator

    SciTech Connect

    Hamilton, C.E.; Beach, R.J.; Sutton, S.B.; Furu, L.; Krupke, W.F.

    1994-01-01

    In this paper, the authors report on a diode-side-pumped Er:YAG laser that generates over 500 mW of average power at 2.94 {mu}m, and tunes over a 6 nm range centered about the 2.94-{mu}m transition. Prior to the development of the laser, diode-pumped Er:YAG lasers have been end-pumped monolithic devices that deliver {approximately}200 mW of output at 2.94 {mu}m. Much of the difficulty in obtaining higher average power from Er:YAG stems from the unfavorable lifetimes of the upper and lower laser levels, the complex state dynamics, and a low stimulated emission cross section ({sigma} {approx} 3 {times} 10{sup {minus}20} cm{sup 2}). One of the most important dynamical processes in Er:YAG is cross relaxation between neighboring Er{sup 3+} ions in the {sup 4}I{sub 13/2} level. By recycling much of the {sup 4}I{sub 13/2} population (lower laser level) into {sup 4}I{sub 11/2} (upper laser level), the cross relaxation overcomes the unfavorable lifetimes of the two levels, allowing the population inversion to be sustained. It is this cross relaxation along with thermalization of the two laser levels that allows cw oscillation on the 2.94 {mu}m line to take place. The laser that they describe here is a quasi-cw device as the approach to obtaining higher average power and limited tunability relies on side pumping with a quasi-cw InGaAs laser diode array. In this way, a higher gain-length product is generated, which is necessary for extending the tuning range of the laser, and for overcoming the higher losses associated with a discreet-element resonator.

  8. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  9. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2002-06-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore, this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented result concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the sue laser system the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  10. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  11. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  12. Electron temperature and average density in spherical laser-produced plasmas - Ultraviolet plasma spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Seely, J. F.; Feldman, U.; Behring, W. E.; Cohen, L.

    1985-01-01

    The average values of the electron temperature Te and the electron density Ne in the corona plasmas of spherically irradiated high-Z targets have been estimated. Targets composed of the elements Cu through Br, Rb, and Mo were irradiated using the fundamental (1.06 microns) and the frequency-tripled (351 nm) output of the Omega laser system. Spectra were recorded in the wavelength region 15-200 A. Using various extreme ultraviolet spectroscopic techniques, it is found that for the case of a Mo plasma produced by frequency-tripled laser irradiation, Te = 2600 + or - 600 eV and Ne is greater than 6 x 10 to the 20th/cu cm. This is consistent with a 'flux limit' smaller than 0.1. The estimated values of Te and Ne are lower in the corona plasmas produced using the fundamental (1.06 micron) irradiation.

  13. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression.

    PubMed

    Emaury, Florian; Saraceno, Clara J; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gèrôme, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-12-15

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100  W of average power and >100  MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100  MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance. PMID:25503011

  14. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  15. Powerful laser pulse absorption in partly homogenized foam plasma

    NASA Astrophysics Data System (ADS)

    Cipriani, M.; Gus'kov, S. Yu.; De Angelis, R.; Andreoli, P.; Consoli, F.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Rupasov, A. A.

    2016-03-01

    The internal volume structure of a porous medium of light elements determines unique features of the absorption mechanism of laser radiation; the characteristics of relaxation and transport processes in the produced plasma are affected as well. Porous materials with an average density larger than the critical density have a central role in enhancing the pressure produced during the ablation by the laser pulse; this pressure can exceed the one produced by target direct irradiation. The problem of the absorption of powerful laser radiation in a porous material is examined both analytically and numerically. The behavior of the medium during the process of pore filling in the heated region is described by a model of viscous homogenization. An expression describing the time and space dependence of the absorption coefficient of laser radiation is therefore obtained from the model. A numerical investigation of the absorption of a nanosecond laser pulse is performed within the present model. In the context of numerical calculations, porous media with an average density larger than the critical density of the laser-produced plasma are considered. Preliminary results about the inclusion of the developed absorption model into an hydrodynamic code are presented.

  16. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  17. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  18. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-05-01

    We report on an OPCPA system delivering CEP-stable pulses with a pulse duration of only 1.7 optical cycles at 880 nm wavelength. This pulse duration is achieved by the generation, optical parametric amplification and compression of a full optical octave of bandwidth. The system is pumped by a high average power Yb-fiber laser system, which allows for operation of the OPCPA at up to 1 MHz repetition rate and 22 W of average output power. Further scaling towards single-cycle pulses, higher energy and output power is discussed. PMID:22565712

  19. High-power diode-pumped mode-locked Yb:YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Nakamura, Shinki; Hikita, Yuto; Sone, Hiroyasu; Ogawa, Takayo; Wada, Satoshi

    2014-05-01

    A high-power diode-pumped passively mode-locked Yb:YAG ceramic laser was demonstrated. An average output power of 3.80W with a pulse duration of 433 fs at a repetition rate of 90.9MHz was obtained at a wavelength of 1050 nm using a 2% output coupler. A peak power of 96.5kW was also obtained. To the best of our knowledge, these are the highest reported average power and peak power for a diode-pumped mode-locked Yb:YAG ceramic laser.

  20. Non-wiggler-averaged theory of short wavelength free-electron lasers

    SciTech Connect

    Freund, H.P.

    1995-12-31

    A three-dimensional nonlinear analysis of the interaction in short wavelength free-electron lasers is presented using a non-wiggler-averaged formulation for the electron trajectories. The analysis and simulation code is based upon a slow-time-scale amplifier model in which it is assumed that the interaction is with a single frequency wave, and Maxwell`s equations are averaged over a wave period. This eliminates the fast time scale from the analysis. Note that although Maxwell`s equations are averaged over the wave period, no average is imposed on the Lorentz force equations. The electromagnetic field is represented as a superposition of Gaussian optical modes. The wiggler model used is that of a three-dimensional planar wiggler which dictates the choice of a Gauss-Hermite mode decomposition. These fields are substituted into Maxwell`s equations and, after averaging over the wave period and integration over the transverse coordinates, yields nonlinear differential equations for the evolution of the amplitude and phase of each mode. These equations are integrated simultaneously with the three-dimensional Lorentz force equations for an ensemble of electrons. Advantages which are derived from the non-wiggler-averaged orbit treatment are: the adiabatic injection of the beam into the wiggler can be modeled; effects due to the transverse wiggler inhomogeniety such as betatron oscillations and synchrotron-betatron coupling are implicitly included in the treatment; wiggler imperfections can be included in the analysis by the relatively simple expedient of allowing the wiggler amplitude to vary with axial position; and harmonic interactions are implicitly included. The first two advantages relate to the self-consistent treatment of emittance growth due to the injection process and the transverse wiggler inhomogenieties. It should be noted that MEDUSA is also capable of analyzing the effect of the measured imperfections of a specific wiggler magnet to be used in an experiment.

  1. High Power Laser Cutting of Fiber Reinforced Thermoplastic Polymers with cw- and Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Wolf, N.; Petring, D.

    Glass fiber and carbon fiber reinforced polymers with thermoplastic matrix enable high volume production with short cycle times. Cutting and trimming operations in these production chains require the use of high average laser power for an efficient cutting speed, but employment of high laser power runs the risk to induce a wide heat affected zone (HAZ). This paper deals with investigations with cw and ns-pulsed CO2-laser radiation in the kilowatt range in single-pass and multiple-pass processes. Using multi-pass processing at high processing speeds of 100 m/min and above a reduced heat affected zone in the range of 100 μm to 200 μm could be achieved by the ns-pulsed radiation. With cw radiation at the same average power of 1 kW however, the HAZ was 300-400 μm. Also employing ns-pulses in the kW-range average power leads to heat accumulation in the material. Small HAZ were obtained with sufficient break times between subsequent passes.

  2. Analytical Applications Of Laser Powered Pyrolysis

    NASA Astrophysics Data System (ADS)

    Woodin, R. L.; Kajkowski, K. A.

    1984-05-01

    The ability to rapidly heat samples using infrared laser radiation without the complicating effects of hot surfaces offers new opportunities for pyrolysis techniques in materials characterization and process control. By using pulsed radiation, timescales on the order of microseconds are achieved, restricting the chemistry primarily to initial reactions. The homogeneous nature of laser powered heating minimizes wall reactions and improves reproducibility by eliminating effects of surface contamination in the pyrolysis reactor. In Laser Powered Homogeneous Pyrolysis (LPHP), a pulsed CO2 laser (10μm) is used to rapidly heat a gas mixture to be pyrolyzed. If the mixture does not absorb 10um radiation, a chemically inert sensitizer such as SF6 or SiF4 must be added to couple energy into the mixture. Temperatures up to 1200K can be reached, with reaction times ranging from lOpsec to lOmsec. Product analysis is by gas chromatography after a sufficient number of laser pulses to generate detectable amounts of products. Applications of LPHP to hydrocarbon mixture analysis will be presented, as well as potential applications to process control. The short reaction times in LPHP will be illustrated by methane and ethane pyrolysis, which also provide information on the details of the temperature profile during laser powered pyrolysis.

  3. Power analysis of light source in laser projector

    NASA Astrophysics Data System (ADS)

    Duan, Jingyuan; Shi, Ancun; Zhang, Yunfang; Fang, Qing; Liu, Yuliang

    2012-01-01

    In this paper, we design a high power and small volume laser projector using the red laser diode, green laser diode, blue laser diode and green fluorescence as light source, which could improve the performance of the projector significantly with longer lifetime than lamps, higher reliability, and larger color gamut. According to the requirement of CIE Standard Illuminant D65 and light output, the power of red laser diode, green laser diode, blue laser diode and green fluorescence were calculated. The energy efficiency of four base-color optical path was also analyzed. It could be concluded that the blue laser and red laser have higher power requirements.

  4. Power scaling of high-power fiber lasers for micromachining and materials processing applications

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail; Appleyard, Andrew; Skull, Paul; Walker, Duncan; Turner, Paul; Crowe, Ian

    2006-02-01

    Fiber-integrated high power fiber lasers (HPFLs) have demonstrated remarkable levels of parametric performance, efficiency, operational stability and reliability, and are consequently becoming the technology of choice for a diverse range of materials processing applications in the "micro-machining" domain. The design and functional flexibility of such HPFLs enables a broad operational window from continuous wave in the 100W+ power range, to modulated CW (to 50kHz prf and above), and to quasi-pulsed operation (kW/μs/mJ regime) from a single design of laser system. A long-term qualification program has been successfully completed to demonstrate the robustness and longevity of this family of fiber lasers. In this paper we report for the first time on the power-scaling extension of SPI's proprietary side-coupled cladding-pumped GTWave TM technology platform to output power levels in the multi-hundred watt domain. Fiber and system design aspects are discussed for increasing both average power and peak power for CW and quasi-pulsed operation respectively whilst maintaining near-diffraction limited beam quality and mitigating non-linear effects such as Stimulated Raman Scattering. Performance data are presented for the new family of laser products with >200W CW output power, M2 ~ 1.1 and modulation performance to 50kHz: Furthermore, the modular, flexible approach provided by GTWave TM side-pumped technology has been extended to demonstrate a two-stage MOPA operating at >400W.

  5. Prototype of a high-power, high-energy industrial XeCl laser

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Demin, A. I.; Khristoforov, O. B.

    2015-03-01

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al2O3. High laser output energy (1.5 - 2.5 J pulse-1) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ~57 × 106 pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ~1 kW.

  6. Use of powerful infrared pulsed Nd-YAG laser for treating osteogenic sarcoma

    NASA Astrophysics Data System (ADS)

    Biser, Vladimir A.; Kaplan, Michael A.; Kursova, Larisa V.; Neborak, Yuri T.

    1996-01-01

    Powerful infra-red laser radiation may induce necrosis of a malignant tumor located in a human bone without destructing skin cover. A superficial irradiation of the osteogenic sarcoma with an Nd-YAG laser (pulse power no less than 10 MW, average power 100 - 300 mW, time of exposure 10 - 90 min) has resulted in a severe damage of the tumor (more than 90% of the tumor mass) in 57% of cases. A combined laser/gamma irradiation showed a severe damage in 83% of cases. The results obtained suggest that laser radiation with the above parameters combined with gamma radiation may be used in treatment of osteogenic sarcoma.

  7. Materials working with low power CO2 lasers

    NASA Astrophysics Data System (ADS)

    Fry, S. M.

    1980-01-01

    While the application of high power (50-5000 W) lasers to materials working is well known, the use of low power (1-5w) CO2 lasers has received little attention. This paper presents methods of utilizing low power CO2 lasers in materials processing, such as cutting, drilling, and welding of small organic (e.g., plastic) parts. Laser hardware is discussed and the waveguide laser is presented as an example of low-power materials working hardware. This paper also reports some of the applications which are ideally-handled by low power CO2 lasers, and reviews the factors which contribute to the successful use of these lasers.

  8. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses.

    PubMed

    Seidel, Marcus; Arisholm, Gunnar; Brons, Jonathan; Pervak, Vladimir; Pronin, Oleg

    2016-05-01

    Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies. PMID:27137557

  9. Dynamic Power Management for Sensor Node in WSN Using Average Reward MDP

    NASA Astrophysics Data System (ADS)

    Kianpisheh, Somayeh; Charkari, Nasrolah Moghadam

    Reducing energy consumption is one of the key challenges in sensor networks. One technique to reduce energy consumption is dynamic power management. In this paper we model power management problem in a sensor node as an average reward Markov Decision Process and solve it using dynamic programming. We achieve an optimal policy that maximizes long-term average of utility per energy consumption. Simulation results show our approach has the ability of reaching to the same amount of utility as always on policy while consuming less energy than always on policy.

  10. Design of a thin disk amplifier with extraction during pumping for high peak and average power Ti:Sa systems (EDP-TD).

    PubMed

    Chvykov, Vladimir; Nagymihaly, Roland S; Cao, Huabao; Kalashnikov, Mikhail; Osvay, Karoly

    2016-02-22

    Combination of the scheme of extraction during pumping (EDP) and the Thin Disk (TD) technology is presented to overcome the limitations associated with thermal cooling of crystal and transverse amplified spontaneous emission in high average power laser systems based on Ti:Sa amplifiers. The optimized design of high repetition rate 1-10 PW Ti:Sapphire EDP-TD power amplifiers are discussed, including their thermal dynamic behavior. PMID:26907029

  11. Megawatt-scale average-power ultrashort pulses in an enhancement cavity.

    PubMed

    Carstens, H; Lilienfein, N; Holzberger, S; Jocher, C; Eidam, T; Limpert, J; Tünnermann, A; Weitenberg, J; Yost, D C; Alghamdi, A; Alahmed, Z; Azzeer, A; Apolonski, A; Fill, E; Krausz, F; Pupeza, I

    2014-05-01

    We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation). PMID:24784054

  12. AOM optimization with ultra stable high power CO2 lasers for fast laser engraving

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus

    2015-05-01

    A new ultra stable CO2 laser in carbon fibre resonator technology with an average power of more than 600W has been developed especially as basis for the use with AOMs. Stability of linear polarisation and beam pointing stability are important issues as well as appropriate shaping of the incident beam. AOMs are tested close to the laser-induced damage threshold with pulses on demand close to one megahertz. Transversal and rotational optimization of the AOMs benefits from the parallel-kinematic principle of a hexapod used for this research.

  13. Femtosecond pulses at 50-W average power from an Yb:YAG planar waveguide amplifier seeded by an Yb:KYW oscillator.

    PubMed

    Leburn, Christopher G; Ramírez-Corral, Cristtel Y; Thomson, Ian J; Hall, Denis R; Baker, Howard J; Reid, Derryck T

    2012-07-30

    We report the demonstration of a high-power single-side-pumped Yb:YAG planar waveguide amplifier seeded by an Yb:KYW femtosecond laser. Five passes through the amplifier yielded 700-fs pulses with average powers of 50 W at 1030 nm. A numerical simulation of the amplifier implied values for the laser transition saturation intensity, the small-signal intensity gain coefficient and the gain bandwidth of 10.0 kW cm(-2), 1.6 cm(-1), and 3.7 nm respectively, and identified gain-narrowing as the dominant pulse-shaping mechanism. PMID:23038288

  14. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  15. Bidirectional pumped high power Raman fiber laser.

    PubMed

    Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M

    2016-03-21

    This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862

  16. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output. PMID:24150378

  17. GENERATION OF HIGH-AVERAGE-POWER ULTRABROAD-BAND INFRARED PULSES

    EPA Science Inventory

    This paper summarizes the results of analytical and numerical studies on a novel technique that is capable of providing high average power ultra broadband radiation that extends from approximately 2 to 16 m. Such a spectrum has several potential applications, including telecommu...

  18. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  19. Bessel integrals in epsilon expansion: Squared spherical Bessel functions averaged with Gaussian power-law distributions

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-12-01

    Bessel integrals of type {int_0^infty {k^{μ+2}{e}^{-ak2-(b+{i} ω)k}j_l^{2} (pk)dk}} are studied, where the squared spherical Bessel function j {/l 2} is averaged with a modulated Gaussian power-law density. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. The averages can be calculated in closed form as finite Hankel series, which allow high-precision evaluation. In the case of integer power-law exponents μ, singularities emerge in the series coefficients, which requires ɛ expansion. The pole extraction and regularization of singular Hankel series is performed, for integer Gaussian power-law densities as well as for the special case of Kummer averages (a = 0 in the exponential of the integrand). The singular ɛ residuals are used to derive combinatorial identities (sum rules) for the rational Hankel coefficients, which serve as consistency checks in precision calculations of the integrals. Numerical examples are given, and the Hankel evaluation of Gaussian and Kummer averages is compared with their high-index Airy approximation over a wide range of integer Bessel indices l.

  20. Gain measurements and average power capabilities of Cr(3+): LiSrAlF6

    NASA Astrophysics Data System (ADS)

    Hanson, F.; Bendall, C.; Poirier, P.

    1993-09-01

    Long wavelength operation of Cr:LiSrAlF6 is reported. The problem of thermal fracture effectively limits flash-lamp-pumped rod geometries to lower repetition rates. Thin face-pumped slabs allow higher average power capability, but peak gain could be limited by upconversion losses.

  1. Estimating ensemble average power delivered by a piezoelectric patch actuator to a non-deterministic subsystem

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Wahid, Azni N.; Nor, Khairul A. M.

    2014-02-01

    Engineering systems such as aircraft, ships and automotive are considered built-up structures. Dynamically they are taught of as being fabricated from many components that are classified as 'deterministic subsystems' (DS) and 'non-deterministic subsystems' (Non-DS). Structures' response of the DS is deterministic in nature and analysed using deterministic modelling methods such as finite element (FE) method. The response of Non-DS is statistical in nature and estimated using statistical modelling technique such as statistical energy analysis (SEA). SEA method uses power balance equation, in which any external input to the subsystem must be represented in terms of power. Often, input force is taken as point force and ensemble average power delivered by point force is already well-established. However, the external input can also be applied in the form of moments exerted by a piezoelectric (PZT) patch actuator. In order to be able to apply SEA method for input moments, a mathematical representation for moment generated by PZT patch in the form of average power is needed, which is attempted in this paper. A simply-supported plate with attached PZT patch is taken as a benchmark model. Analytical solution to estimate average power is derived using mobility approach. Ensemble average of power given by the PZT patch actuator to the benchmark model when subjected to structural uncertainties is also simulated using Lagrangian method and FEA software. The analytical estimation is compared with the Lagrangian model and FE method for validation. The effects of size and location of the PZT actuators on the power delivered to the plate are later investigated.

  2. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  3. Developing high-power hybrid resonant gain-switched thulium fiber lasers.

    PubMed

    Yan, Shuo; Wang, Yao; Zhou, Yan; Yang, Nan; Li, Yue; Tang, Yulong; Xu, Jianqiu

    2015-10-01

    In this paper, we propose hybrid-pumped resonant gain-switched thulium fiber lasers to realize high-average-power and high-pulse-energy 2-μm laser emissions. Based on numerical simulation, laser dynamics (pulse peak power, pulse energy, pulse duration, etc.) of this kind of laser system are investigated in detail. By taking advantages of the 793 nm continuous wave pump and the 1900 nm pulsed pump, performance of the laser emission can be significantly improved, with the highest average power of 28 W, peak power of 3.5 kW, pulse energy of 281 μJ, and narrowest pulse duration of 92 ns, all of which can be further optimized through designing the cavity parameters and the pumping circumstance. Compared with the pump pulses, two times improvement in pulse energy and average power has been achieved. This hybrid resonant gain-switched system has an all-fiber configuration and high efficiency (low heat load), and can be steadily extended into the cladding pump scheme, thus paving a new way to realize high power (>100 W average power) and high pulse energy (>1 mJ) 2 μm thulium fiber lasers. PMID:26480083

  4. High power VCSEL array pumped Q-switched Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Yihan; Van Leeuwen, Robert; Watkins, Laurence S.; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2012-03-01

    Solid-state lasers pumped by high-power two-dimensional arrays of vertical-cavity surface-emitting lasers (VCSELs) were investigated. Both end-pumping and side-pumping schemes of Nd:YAG lasers with high power kW-class 808 nm VCSEL pump modules were implemented. For one application 10 mJ blue laser pulses were obtained from a frequencydoubled actively Q-switched VCSEL-array dual side-pumped Nd:YAG laser operating at 946 nm. For another application 10 mJ green laser pulses were obtained from a frequency-doubled passively Q-switched VCSEL-array endpumped Nd:YAG laser operating at 1064 nm. Both QCW and CW pumping schemes were investigated to achieve high average Q-switched power.

  5. Vibration characteristic of high power CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Kuo

    2015-02-01

    High power CO2 laser is widely used in various scientific, industrial and military applications. Vibration is a common phenomenon during laser working process, it will affect the working performance of high power CO2 laser, vibration must be strictly controlled in the condition where the laser pointing is required. This paper proposed a method to investigate the vibration characteristic of high power CO2 laser. An experiment device with vibration acceleration sensor was established to measure vibration signal of CO2 laser, the measured vibration signal was mathematically treated using space-frequency conversion, and then the vibration characteristic of high power CO2 laser can be obtained.

  6. Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1983-01-01

    The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.

  7. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, E.L.

    1994-09-01

    Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

  8. High-power diode-pumped passively mode-locked Yb:YAG lasers.

    PubMed

    Aus der Au, J; Schaer, S F; Paschotta, R; Hönninger, C; Keller, U; Moser, M

    1999-09-15

    We obtained 74-kW peak power and 3.5-W average output power in 1-ps pulses from a diode-pumped Yb:YAG laser at 1030 nm that was passively mode locked with a semiconductor saturable-absorber mirror. Another laser produced 57-kW peak power and as much as 8.1-W average output power in 2.2-ps pulses, split into two nearly diffraction-limited beams (M(2)<1.2) . To our knowledge, these are by far the highest reported peak and average output powers from a diode-pumped mode-locked laser in this pulse-duration regime. PMID:18079780

  9. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  10. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  11. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  12. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  13. Space power by laser illumination of PV arrays

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. The utility is examined of photovoltaics and problem and research areas are identified for photovoltaics in two beamed-power applications: to convert incident laser radiation to power at a remote receiving station, and as a primary power source on space based power station transmitting power to a remote user. A particular application of recent interest is to use a ground-based free electron laser as a power source for space applications. Specific applications include: night power for a moonbase by laser illumination of the moonbase solar arrays; use of a laser to provide power for satellites in medium and geosynchronous Earth orbit, and a laser powered system for an electrical propulsion orbital transfer vehicle. These and other applications are currently being investigated at NASA Lewis as part of a new program to demonstrate the feasibility of laser transmission of power for space.

  14. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    DOEpatents

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  15. Optimization of gas dynamic and power parameters for continuous nuclear pumped laser

    NASA Astrophysics Data System (ADS)

    Korzenev, A. N.; Sizov, A. N.

    2008-01-01

    Optimization studies of optical and power performances of nuclear pumped lasers are performed. It is shown that the laser mix pump rate speed-up from 7 to 30 m/s and laser channel width reduction from 2 to 1 cm allows increasing the average specific energy input by the factor of 1.6 and narrowing the refraction factor measuring interval for 4 times.

  16. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  17. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  18. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    SciTech Connect

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  19. High power laser and cathode structure thereof

    SciTech Connect

    Nam, K. H.; Seguin, H. J.; Tulip, J.

    1981-09-08

    A cathode structure for gas lasers is disclosed that is comprised of a flat plate of non-conducting material positioned in the laser in spaced relation to the laser anode to define a discharge region therebetween, a two-dimensional array of metal sub-electrode rods passing through the plate and having their upper ends lying flush with the surface of the plate, a block of dielectric material positioned below the plate and containing a series of transverse channels therein, electric current conductors lying in the channels and adapted for connection to a power supply, the lower ends of the said rods passing through openings in the block into the channels to define a predetermined uniform gap between the ends of the rods and the electrical conductor, and a liquid electrolyte solution filling the channels and electrically connecting the sub-electrode rods and the conductors.

  20. Synchronously injected amplifiers, a novel approach to high-average-power FEL

    SciTech Connect

    Nguyen, D.C.; Fortgang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Sheffield, R.L.

    1996-11-01

    Two new FEL ideas based on synchronously injected amplifiers are described. Both of these rely on the synchronous injection of the optical signal into a high-gain, high-efficiency tapered wiggler. The first concept, called Regenerative Amplifier FEL (RAFEL), uses an optical feedback loop to provide a coherent signal at the wiggler entrance so that the optical power can reach saturation rapidly. The second idea requires the use of a uniform wiggler in the feedback loop to generate light that can be synchronously injected back into the first wiggler. The compact Advanced FEL is being modified to implement the RAFEL concept. We describe future operation of the Advanced FEL at high average current and discuss the possibility of generating 1 kW average power.

  1. Design investigation of solar powered lasers for space applications

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Bruzzone, C.; Quimby, D.; Nelson, L.; Christiansen, W.; Neice, S.; Cassady, P.; Pindroh, A.

    1979-01-01

    The feasibility of solar powered lasers for continuous operation in space power transmission was investigated. Laser power transmission in space over distances of 10 to 100 thousand kilometers appears possible. A variety of lasers was considered, including solar-powered GDLs and EDLs, and solar-pumped lasers. An indirect solar-pumped laser was investigated which uses a solar-heated black body cavity to pump the lasant. Efficiencies in the range of 10 to 20 percent are projected for these indirect optically pumped lasers.

  2. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    PubMed

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-01

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser. PMID:26368409

  3. Laser beam application with high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Brenner, Berndt; Morgenthal, Lothar

    2007-05-01

    With the new industrial high power fiber lasers we have already stepped into a new generation of laser applications. These lasers are smaller, better, more cost-effective, and offer a processing "on the fly." Of utmost importance is their excellent beam quality which enables us to reduce the size of the focussing head including the scanning mirrors. With the reduced mass of the mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. Using such mirrors with this high beam quality we can shape the key hole geometry, and thus it is possible to decrease the keyhole spiking, which always occur in the case of deep penetration welding. We can generate very thin and deep welding seams, which we have only experienced with electron beam welding. The excellent beam quality of the fiber lasers offers us a lot of new applications from deep penetration welding to high speed welding. By using beam scanning we are able to easily change the beam and the seam geometry. Furthermore, it is possible to work with this kind of laser from a distance of some meters between focussing/scanning head and the work piece. This technique is called remote processing or processing "on the fly." The excellent beam quality also enables us to cut very precisely, and due to the small cutting widths with a very high speed. In this case the main problem is that the roughness of the cutting edge increases a little bit. One reason for this is that we cannot blow out the mold as easily as we can do it with higher cutting widths. There are also polarized fiber lasers on the market where we can use the Brewster effect for different applications. The presentation will cover some physical basics including different industrial applications.

  4. Physical optics and the direction of maximization of the far-field average power

    NASA Astrophysics Data System (ADS)

    Asvestas, John S.

    1986-12-01

    For the problem of physical optics scattering by a perfectly conducting plate of finite dimensions and arbitrary shape, attention is drawn to the fact that the directions in which the far-field average power is maximized can be easily determined for H-polarization, while the same is not true for E-polarization. Moreover, it is shown by means of an example that the directions of maximization for E-polarization are not necessarily those for H-polarization.

  5. Use of induction linacs with nonlinear magnetic drive as high average power accelerators

    SciTech Connect

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1984-08-20

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 Mev/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.

  6. Modeling of nanosecond-laser ablation: calculations based on a nonstationary averaging technique (spatial moments)

    NASA Astrophysics Data System (ADS)

    Arnold, N. D.; Luk'yanchuk, Boris S.; Bityurin, Nikita M.; Baeuerle, D.

    1998-09-01

    Semi-analytical approach to a quantitative analysis of thermal ns laser ablation is presented. It permits one to take into account: (1) Arbitrary temperature dependences of material parameters, such as the specific heat, thermal conductivity, absorptivity, absorption coefficient, etc. (2) Arbitrary temporal profiles of the laser pulse. (3) Strong (Arrhenius- type) dependence of the ablation velocity on the temperature of the ablation front, which leads to a non-steady movement of the ablation boundary during the (single) pulse. (4) Screening of the incoming radiation by the ablated products. (5) Influence of the ablation (vaporization) enthalpy on the heating process. (6) Influence of melting and/or other phase transformations. The nonlinear heat conduction equation is reduced to three ordinary differential equations which describe the evolution of the surface temperature, spatial width of the enthalpy distribution, and the ablated depth. Due to its speed and flexibility, the method provides powerful tool for the fast analysis of the experimental data. The influence of different factors onto ablation curves (ablated depth h vs. fluence (phi) ) is studied. Analytical formulas for (phi) th and h((phi) ) dependences are derived and discussed. The ablation curves reveal three regions of fluence: Arrhenius region, linear region, and screening region. Threshold fluence (phi) th and Arrhenius tails at (phi) less than (phi) th, are affected heavily by the temperature dependences in material parameters, surface evaporation rate, and pulse duration and shape. In contrast, the slope of the ablation curves at (phi) greater than (phi) th, is determined almost exclusively by the latent heat of vaporization, high temperature dependence of absorptivity, and, in the case of screening, by the absorption coefficient of the plume (alpha) g. In the screening region ablated depth increases logarithmically with fluence and its qualitative behavior is weakly affected by the temperature

  7. SBS of repetitively pulsed radiation and possibility of increasing of the pump average power

    SciTech Connect

    Andreev, N.; Kulagin, O.; Palashov, O.; Pasmanik, G.; Rodchenkov, V.

    1995-12-31

    The features of liquid purification from molecular and dispersive admixtures are studied. The analysis has revealed the processes (thermal effects, microparticles heating with a subsequent optical breakdown, Stimulated Raman Scattering) limiting pumping pulse energy. These effects complicate also a realization of a high quality phase conjugation at SBS. The data concerning physical properties of liquid tetrachlorides and freons are presented. The picture of a behavior of liquid under conditions of an optical breakdown is described. Some recommendations regarding a choice of nonlinear media are formulated. The two-cell scheme providing a phase conjugation of powerful short laser pulses is proposed. This is important in the field of inertial confinement fusion.

  8. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser.

    PubMed

    Kisel, V E; Rudenkov, A S; Pavlyuk, A A; Kovalyov, A A; Preobrazhenskii, V V; Putyato, M A; Rubtsova, N N; Semyagin, B R; Kuleshov, N V

    2015-06-15

    A high-power, diode-pumped, semiconductor saturable absorber mode-locked Yb(5%):KGW bulk laser was demonstrated with high optical-to-optical efficiency. Average output power as high as 8.8 W with optical-to-optical efficiency of 37.5% was obtained for Nm-polarized laser output with 162 fs pulse duration and 142 nJ pulse energy at a pulse repetition frequency of 62 MHz. For Np polarization, 143 fs pulses with pulse energy of 139 nJ and average output power of up to 8.6 W with optical-to-optical efficiency of 31% were generated. PMID:26076242

  9. High-power gain-switched Tm(3+)-doped fiber laser.

    PubMed

    Tang, Yulong; Xu, Lin; Yang, Yi; Xu, Jianqiu

    2010-10-25

    Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm(3+) fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed. PMID:21164635

  10. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    SciTech Connect

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  11. Low Power Laser Stimulation Of Biochemical Processes

    NASA Astrophysics Data System (ADS)

    Labbe, Robert F.; Rettmer, Rebecca L.; Davis, Holly

    1988-06-01

    Scattered clinical reports suggest that low power (LP) laser irradiation may induce a biostimulation of cell growth and/or metabolism, especially relating to healing processes. On the other hand, few basic science, in-depth reports relating to such effects have appeared. Hence, a mechanism of action of LP laser irradiation on cells is unknown. A systematic evaluation has been undertaken in order to define more clearly the experimental conditions for producing biostimulation and to provide some basis for action of LP laser irradiation. A Ga-Al-As diode laser emitting in the near infrared (904 nm) was used to effectively penetrate cells at energy levels that are in the mW range. The LP laser was pulsed at 50 ns and 200 hz. Human fibroblasts growing in culture served as the experimental model. Since LP laser irradiation has been reported to stimulate collagen synthesis, we first investigated the induction of hydroxyproline formation, a collagen precursor. This biosynthetic process could be increased two-fold at a twice daily energy input of 4.5 mJ. With proline supplementation, hydroxylation increased eight-fold. At approximately the same energy level and irradiation conditions, cells also had a three-fold increased uptake of ascorbic acid, a required cofactor for hydroxylation of proline. These findings considered together with published biochemical studies of collagen suggest that higher levels of intracellular ascorbate catalyze hydroxylation of proline and, concomitantly, induce collagen formation. Other data relevant to cell morphology and viability suggest that the LP laser irradiation had no effect on cell proliferation but rather was a transient effect on intermediary metabolism manifested as changes that may be unique to collagen.

  12. Innovations in high power fiber laser applications

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank

    2012-02-01

    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  13. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  14. Moonbase night power by laser illumination

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1992-01-01

    Moonbase solar-power concepts must somehow address the energy storage problem posed by the 354-hour lunar night. Attention is presently given to the feasibility of laser-array illumination of a lunar base, using technology that is projected to be available in the near term. Beam-spreading due to atmospheric distortions could be reduced through the use of adaptive optics to compensate for atmospheric turbulence.

  15. Adaptive optics for laser power beaming

    NASA Technical Reports Server (NTRS)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  16. Damage-controlled high power lasers and plasma mirror application

    NASA Astrophysics Data System (ADS)

    Kiriyama, Hiromitsu; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kawachi, Tetsuya; Itakura, Ryoji; Sugiyama, Akira; Kando, Masaki; Pirozhkov, A. S.; Nishiuchi, Mamiko; Bulanov, Sergei V.; Kondo, Kimonori; Kato, Yoshiaki

    2015-07-01

    Following three different types of high power lasers at Kansai Photon Science Institute are overviewed and controlling the laser damages in these laser systems are described: (1) PW-class Ti:sapphire laser for high field science, (2) zig-zag slab Nd:glass laser for x-ray laser pumping, and (3) high-repetition Yb:YAG thin-slab laser for THz generation. Also reported is the use of plasma mirror for characterization of short-wavelength ultrashort laser pulses. This new method will be useful to study evolution of plasma formation which leads to laser damages.

  17. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  18. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  19. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    SciTech Connect

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%.

  20. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  1. High-power 660.5 nm red laser from diode-side-pumped intracavity frequency-doubled Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhichao; Wang, Baoshan; Chen, Ming; Yang, Feng; Zhang, Shenjin; Zhang, Xiaowen; Bo, Yong; Xu, Yiting; Zong, Nan; Xu, Jialin; Peng, Qinjun; Cui, Dafu; Xu, Zuyan

    2015-12-01

    We demonstrate a high-power red laser at 660.5 nm from intracavity frequency doubling of a diode-side-pumped 1321 nm Nd:LiYF4 (Nd:YLF) ring laser in a LiB3O5 (LBO) crystal. The maximum average output power of the red laser is obtained to be 23 W with beam quality factor M 2  =  1.3.

  2. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  3. Solar pumped laser technology options for space power transmission

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  4. A cesium plasma TELEC device for conversion of laser radiation to electric power

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Rasor, N. S.; Lee, G.; Billman, K. W.

    1978-01-01

    Tests of the thermoelectronic laser energy converter (TELEC) concept are reported. This device has been devised as a means to convert high-average-power laser radiation into electrical energy, a crucial element in any space laser power transmission scheme using the available high-power/efficiency infrared lasers. Theoretical calculations, based upon inverse bremsstrahlung absorption in a cesium plasma, indicate internal conversion efficiency up to 50% with an overall system efficiency of 42%. The experiments reported were made with a test cell designed to confirm the theoretical model rather than demonstrate efficiency; 10.6-micron laser-beam absorption was limited to about 0.001 of the incident beam by the short absorption region. Nevertheless, confirmatory results were obtained, and the conversion of absorbed radiation to electric power is estimated to be near 10%.

  5. Diamond optical components for high-power and high-energy laser applications

    NASA Astrophysics Data System (ADS)

    Anoikin, Eugene; Muhr, Alexander; Bennett, Andrew; Twitchen, Daniel; de Wit, Henk

    2015-02-01

    High-power and high-energy laser systems have firmly established their industrial presence with applications that span materials processing; high - precision and high - throughput manufacturing; semiconductors, and defense. Along with high average power CO2 lasers operating at wavelengths of ~ 10 microns, solid state lasers and fiber lasers operating at ~ 1 micron wavelength are now increasingly being used, both in the high average power and high energy pulse regimes. In recent years, polycrystalline diamond has become the material of choice when it comes to making optical components for multi-kilowatt CO2 lasers at 10 micron, outperforming ZnSe due to its superior thermo-mechanical characteristics. For 1 micron laser systems, fused silica has to date been the most popular optical material owing to its outstanding optical properties. This paper characterizes high - power / high - energy performance of anti-reflection coated optical windows made of different grades of diamond (single crystal, polycrystalline) and of fused silica. Thermo-optical modeling results are also presented for water cooled mounted optical windows. Laser - induced damage threshold tests are performed and analyzed. It is concluded that diamond is a superior optical material for working with extremely high-power and high-energy laser beams at 1 micron wavelength.

  6. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2010-05-15

    We demonstrate 1W average-power ultraviolet (UV) femtosecond (fs) ultrashort pulse generation at a wavelength of 259 nm and a repetition rate as high as 100 MHz by quadrupling a fs ytterbium-fiber laser. A cavity-enhanced design is employed for efficient frequency doubling to the UV region. The optical-to-optical efficiency of UV output to the pump diode is 2.6%. PMID:20479859

  7. Duration-tunable picosecond source at 560  nm with watt-level average power.

    PubMed

    Runcorn, T H; Murray, R T; Kelleher, E J R; Popov, S V; Taylor, J R

    2015-07-01

    A pulse source at 560 nm that is tunable in duration between 50 ps and 2.7 ns with >1  W of average power and near diffraction-limited beam quality is demonstrated. The source is based on efficient (up to 50%) second-harmonic generation in a periodically poled lithium tantalate crystal of a linearly polarized fiber-integrated Raman amplifier operating at 1120 nm. A duration-tunable ytterbium master-oscillator power-fiber amplifier is used to pulse-pump the Raman amplifier, which is seeded by a continuous-wave distributed-feedback laser diode at 1120 nm. The performance of the system using two different master oscillator schemes is compared. A pulse energy of up to 765 nJ is achieved with a conversion efficiency of 25% from the ytterbium fiber pump, demonstrating a compact and turn-key architecture for obtaining high peak-power radiation at 560 nm. PMID:26125373

  8. Progress of Power Laser and its Application to Space

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao

    2004-03-01

    The progress of power laser is now opening new applications in science and industry. The laser for the inertial fusion requires the most advanced and heavy specifications, typically a few MJ in 10 ns pulse with 10Hz repetitive operation with the efficiency higher than 10%. The challenge to develop such a laser include basic and generic laser and photonics technologies as power diode laser, solid state laser material, nonlinear optical material, high efficiency energy conversion between the light and electricity, high power optical beam propagation and control, heat treatment of optical components. The power laser application to space is supported by these common technologies and gives us new dreams such as laser propulsion, laser energy network in space, energy supply to the ground energy system such as electricity and/or hydrogen fuel. The technical perspectives are reviewed.

  9. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  10. Application of Bayesian model averaging to measurements of the primordial power spectrum

    SciTech Connect

    Parkinson, David; Liddle, Andrew R.

    2010-11-15

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940averaging can tighten the credible upper limit, depending on prior assumptions.

  11. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  12. High-power fiber laser studies at the Polaroid Corporation

    NASA Astrophysics Data System (ADS)

    Muendel, Martin H.

    1998-06-01

    Current work on the Polaroid double-clad fiber laser is discussed. Experiments towards testing the upper power limits of fiber lasers are described. Models for the laser output in the rate-equation approximation, for the laser polarization state, and for the axial-mode-beating noise are presented and compared to experiment.

  13. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  14. The influence of seat configuration on maximal average crank power during pedaling: a simulation study.

    PubMed

    Rankin, Jeffery W; Neptune, Richard R

    2010-11-01

    Manipulating seat configuration (i.e., seat tube angle, seat height and pelvic orientation) alters the bicycle-rider geometry, which influences lower extremity muscle kinematics and ultimately muscle force and power generation during pedaling. Previous studies have sought to identify the optimal configuration, but isolating the effects of specific variables on rider performance from the confounding effect of rider adaptation makes such studies challenging. Of particular interest is the influence of seat tube angle on rider performance, as seat tube angle varies across riding disciplines (e.g., road racers vs. triathletes). The goals of the current study were to use muscle-actuated forward dynamics simulations of pedaling to 1) identify the overall optimal seat configuration that produces maximum crank power and 2) systematically vary seat tube angle to assess how it influences maximum crank power. The simulations showed that a seat height of 0.76 m (or 102% greater than trochanter height), seat tube angle of 85.1 deg, and pelvic orientation of 20.5 deg placed the major power-producing muscles on more favorable regions of the intrinsic force-length-velocity relationships to generate a maximum average crank power of 981 W. However, seat tube angle had little influence on crank power, with maximal values varying at most by 1% across a wide range of seat tube angles (65 to 110 deg). The similar power values across the wide range of seat tube angles were the result of nearly identical joint kinematics, which occurred using a similar optimal seat height and pelvic orientation while systematically shifting the pedal angle with increasing seat tube angles. PMID:21245509

  15. Yttrium Calcium Oxyborate for high average power frequency doubling and OPCPA

    SciTech Connect

    Liao, Z M; Jovanovic, I; Ebbers, C A; Bayramian, A; Schaffers, K; Caird, J; Bibeau, C; Barty, C J; Fei, Y; Chai, B

    2006-06-20

    Significant progress has been achieved recently in the growth of Yttrium Calcium Oxyborate (YCOB) crystals. Boules have been grown capable of producing large aperture nonlinear crystal plates suitable for high average power frequency conversion or optical parametric chirped pulse amplification (OPCPA). With a large aperture (5.5 cm x 8.5 cm) YCOB crystal we have demonstrated a record 227 W of 523.5nm light (22.7 J/pulse, 10 Hz, 14 ns). We have also demonstrated the applicability of YCOB for 1053 nm OPCPA.

  16. Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint

    NASA Astrophysics Data System (ADS)

    Fakoorian, S. Ali. A.; Swindlehurst, A. Lee

    2013-05-01

    This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel model, where there exists a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. In this paper, we first revisit the rank property of the optimal input covariance matrix that achieves the secrecy capacity of the multiple antenna MIMO Gaussian wiretap channel under the average power constraint. Next, we obtain necessary and sufficient conditions on the MIMO wiretap channel parameters such that the optimal input covariance matrix is full-rank, and we fully characterize the resulting covariance matrix as well. Numerical results are presented to illustrate the proposed theoretical findings.

  17. High power, picosecond green laser based on a frequency-doubled, all-fiber, narrow-bandwidth, linearly polarized, Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenyan; Isyanova, Yelena; Stegeman, Robert; Huang, Ye; Chieffo, Logan R.; Moulton, Peter F.

    2016-03-01

    We report on the development of an all-fiber, 68-kW-peak-power, 16-ps-pulse-width, narrow-bandwidth, linearly polarized, 1064-nm fiber laser suitable for high-power, picosecond-pulse-width, green-light generation. Our 1064-nm fiber laser delivered an average power of up to 110 W at a repetition of 100- MHz in a narrow bandwidth, with minimal nonlinear distortion. We developed a high-power, picosecond green source at 532 nm through use of single-pass frequency-doubling of our 1064-nm fiber laser in lithium triborate (LBO). Using a 15-mm long LBO crystal, we have generated 30 W of average power in the second harmonic with 73-W of fundamental average power, for a conversion efficiency of 41%.

  18. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  19. Low peak-power laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Pierce, S. G.; Cleary, A.; Veres, I. A.; Culshaw, B.; Thursby, G.; McKee, C.; Swift, C.; Armstrong, I.

    2011-09-01

    Techniques for the successful excitation of guided ultrasonic waves using a low peak-power laser ultrasonic source are discussed and compared with more conventional Q-switched laser sources. The paper considers acoustic propagation in thin plates, in which the frequencies used, typically only the fundamental guided wave modes, are considered. Aspects of excitation and detection geometry are considered along with the physical mechanisms of photo-acoustic generation and the practical issues surrounding available source wavelengths and power outputs. Understanding of the effects of these constraints is critical for the successful application of the technique. Continuous wave excitation and fully arbitrary modulation schemes are compared, and a technique to control the bandwidth of Golay code modulation is introduced. It is shown that earlier work by the authors was capable of guided wave detection at peak-power densities of 104 W cm- 2. Later work has focussed on the use of erbium-doped fibre amplifiers combined with Golay code modulation to improve the recovered signal-to-noise ratio. Two key applications of the techniques are considered: material properties measurements (using inversion of dispersion curve data) and acoustic emission system calibration.

  20. ["Power bleaching" with the KTP laser].

    PubMed

    Vanderstricht, K; Nammour, S; De Moor, R

    2009-01-01

    The most important constituent of the bleaching process is the hydrogen peroxyde. The bleaching effect is the result of a change in the chemical structure of organic molecules in the teeth. Different bleaching techniques are described on the basis of the concentration of the hydrogen peroxyde used and on the basis of the different methods of application. It has been demonstrated that a faster change in colour can be obtained when bleaching is performed in combination with a light source i.e. power bleaching aiming for a more in depth change of colour. Different investigations have demonstrated that negative effects associated with bleaching agents are seen earlier when light sources have been used as accelerators. So, light activation may not lead to 'heating of the pulp'. Different types of laser bleaching have been described, though, not all of them will lead to the desired result. There is only one exception at present and this is the KTP-laser bleaching with the Smart Bleach gel. The specific laser-tissue interaction is the result of different activation processes of the hydrogen peroxyde in the gel: as a result of the interaction with the laser a photocatalytic effect is induced (i.e. the activation of the gel by means of light--this is also referred to as a photochemical reaction), a limited photothermal effect (light absorption may result in a certain heating of the gel). The light activated gel also has an alkaline pH, which favours the ionisation of the hydrogen peroxyde into perhydroxyl ions (these are the most reactive free radicals). It is also possible to directly cut the tetracycline molecules (a good absorption of light by the tetracycline molecules at 532 nm). This will result in better decolouration of tetracycline stained teeth. This last process is described as direct photobleaching. It also needs to be emphasized that bleaching with a laser can only be performed by a dentist who has acquired a substantial knowledge on laser-tissue interaction

  1. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  2. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  3. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  4. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  5. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation.

    PubMed

    Zhao, Jian; Li, Wenxue; Wang, Chao; Liu, Yang; Zeng, Heping

    2014-12-29

    We report on the generation of 80-W average power 38-fs laser pulse from a 2-m polarization-maintaining large-mode-area photonic crystal fiber amplifier with high pump absorption coefficient. The pre-chirping management was demonstrated to play a key role on the self-similar amplification. The achieved spectral bandwidth and compressed pulse duration were determined by the interplay between self-phase modulation and finite gain bandwidth. The power scaling in the self-similar fiber amplifier system was eventually limited by the onset of stimulated Raman scattering. PMID:25607187

  6. High-power mode-locked hybrid pulse source using two-section laser diodes.

    PubMed

    Morton, P A; Mizrahi, V; Tanbun-Ek, T; Logan, R A; Lemaire, P; Erdogan, T; Sciortino, P F; Sergent, A M; Wecht, K W

    1994-05-15

    We describe a mode-locked hybrid pulse source with a two-section laser diode to obtain short mode-locked pulses (23 ps) with an average power of 7.8 mW, a high peak power of 137 mW, and a repetition rate of 2.51 GHz. The hybrid laser incorporates a two-section laser and an optical fiber cavity with an integrated Bragg reflector. The Bragg reflector controls the operating wavelength to subnanometer precision and also confines the bandwidth of the pulses so as to keep the time-bandwidth product below 1. PMID:19844425

  7. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  8. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power.

    PubMed

    Heckl, O H; Saraceno, C J; Baer, C R E; Südmeyer, T; Wang, Y Y; Cheng, Y; Benabid, F; Keller, U

    2011-09-26

    In this study we demonstrate the suitability of Hollow-Core Photonic Crystal Fibers (HC-PCF) for multiwatt average power pulse compression. We spectrally broadened picosecond pulses from a SESAM mode-locked thin disk laser in a xenon gas filled Kagome-type HC-PCF and compressed these pulses to below 250 fs with a hypocycloid-core fiber and 470 fs with a single cell core defect fiber. The compressed average output power of 7.2 W and 10.2 W at a pulse repetition rate of approximately 10 MHz corresponds to pulse energies of 0.7 µJ and 1 µJ and to peak powers of 1.6 MW and 1.7 MW, respectively. Further optimization of the fiber parameters should enable pulse compression to below 50 fs duration at substantially higher pulse energies. PMID:21996856

  9. Benefits of low-power lasers on oral soft tissue

    NASA Astrophysics Data System (ADS)

    de Paula Eduardo, Carlos; Cecchini, Silvia C.; Cecchini, Renata C.

    1996-04-01

    The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.

  10. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  11. High power gain-switched diode laser master oscillator and amplifier

    SciTech Connect

    Poelker, M.

    1995-11-06

    A tapered-stripe, traveling-wave semiconductor optical amplifier was seeded with 3.3 mW of gain-switched diode laser light to obtain over 200 mW average power with pulse widths{approx}105 ps full width at half-maximum (FWHM) and a pulse repetition rate of 499 MHz corresponding to a peak power of 3.8 W. Shorter pulse widths were obtained when the amplifier was driven with less current at the expense of reduced output power. Pulse widths as short as 31 ps FWHM and an average power of 98 mW corresponding to a peak power of 6.3 W were obtained when a different, lower power seed laser was used. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect

    Williams, J.; Biedron, S.; Harris, J.; Martinez, J.; Milton, S. V.; Van Keuren, J.; Benson, Steve V.; Evtushenko, Pavel; Neil, George R.; Zhang, Shukui

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  13. Actuator requirements for laser power beaming

    SciTech Connect

    Zeiders, G.W.

    1994-12-31

    Design considerations and working formulas and graphs are presented for estimating the actuator requirements for adaptive optics correction of global tilt and residual piston error arising from atmospheric turbulence along a ground-to-space path. Frequency characteristics are calculated for several important crosswind conditions for the case where the active segments are very small compared to the full aperture; it is shown that the velocity profile has a strong effect on the power spectra and that high slew rates significantly increase the required high-frequency response and accentuate the effects of high-attitude turbulence. Predictions are given for the SELENE laser power beaming system which uses active control of a segmented primary telescope mirror.

  14. Reaction bonded silicon carbide material characteristics as related to its use in high power laser systems

    NASA Astrophysics Data System (ADS)

    Pitschman, Matthew; Miller, Travis; Hedges, Alan R.; Rummel, Steve

    2014-09-01

    Reaction bonded silicon carbide (RB SiC) is a durable material that is well-suited for use as a high power laser mirror substrate. The reaction bonded material has a low mass density, a high Young's Modulus, good thermal conductivity, and a very low coefficient of thermal expansion. All of these properties are beneficial in mirror substrates used in multikilowatt lasers. In conjunction with the development of RB SiC, special polishing processes, fabrication processes, and coatings have also been developed. In this paper we will present a comparison of the material properties of RB SiC and other mirror materials currently used in high power lasers. A brief overview of the critical fabrication and coating processes will also be reviewed. Finally, we will present thermal heat load test data showing the surface deformation of various high power mirrors used under heat loads typically found in laser systems operating at average powers greater than 10 kilowatts.

  15. High power continuous wave injection-locked solid state laser

    SciTech Connect

    Nabors, C.D.; Byer, R.L.

    1991-06-25

    This patent describes an injection locked laser system. It comprises a master laser, the master laser including a solid state gain medium and having a continuous wave, single frequency output; a slave laser including a solid state gain medium located in a resonant cavity and having a continuous wave output at a power at least ten times greater than the master laser, with the output of the master laser being injected into the slave laser in order to cause the slave laser to oscillate at the same frequency as the output of the master laser; and means for actively stabilizing the slave laser so that its output frequency remains locked with the output frequency of the master laser.

  16. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    PubMed Central

    Chen, Yan; Zhao, Cheng-qiang; Ye, Gang; Liu, Can-dong; Xu, Wen-dong

    2016-01-01

    Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  17. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  18. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  19. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  20. Application of reactor-pumped lasers to power beaming

    NASA Astrophysics Data System (ADS)

    Repetti, T. E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technically or economically competitive with more mature solid-state technologies for application to power beaming.

  1. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  2. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  3. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  4. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission

    SciTech Connect

    Wang, Huolei; Yu, Hongyan; Zhou, Xuliang; Kan, Qiang; Yuan, Lijun; Wang, Wei; Pan, Jiaoqing; Chen, Weixi; Ding, Ying

    2014-10-06

    We report the demonstration of an InGaAs/GaAs quantum well (QW) broadband stimulated emission laser with a structure that integrated a GaAs tunnel junction with two QW active regions. The laser exhibits ultrabroad lasing spectral coverage of ∼51 nm at a center wavelength of 1060 nm with a total emission power of 790 mW, corresponding to a high average spectral power density of 15.5 mW/nm, under pulsed current conditions. Compared to traditional lasers, this laser with an asymmetric separate-confinement heterostructure shows broader lasing bandwidth and higher spectral power density.

  5. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  6. Modification and simulation of the power supply of a metal vapor laser

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, D. N.; Trigub, M. V.; Torgaev, S. N.; Vasnev, N. A.; Evtushenko, T. G.

    2016-04-01

    The modification of a power supply circuit used for pumping metal vapor lasers is analyzed. The results of OrCAD simulation of the processes that occur in the power supply are presented. The effect of the capacitance ratio on the charging process of a storage capacitor is described. The mode which provides more time for the recovery of the thyratron is discussed. The results of the development of the small-size high pulse repetition frequency laser with up to 3 W average output power are presented.

  7. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  8. 800-keV Electron Induction Injector with High Average Power

    NASA Astrophysics Data System (ADS)

    Mamaev, G. L.; Glazov, A. I.; Krasnopolsky, V. A.; Latypov, T. A.; Mamaev, S. L.; Puchkov, S. N.; Shcherbakov, A. M.; Tenyakov, I. E.; Terechkin, Y. M.; Vlasenko, S. I.

    1997-05-01

    Design parameters of the induction injector are 800 keV beam energy, 2...5 kA current, 80 ns pulse flat top and 100 Hz repetition rate. The average beam power of the series of pulses is 40 kW. The injector modules use metglass cores. The electron source mounted on the stem consists of a 80 mm diameter velvet cathode placed on a field forming electrode. The tapered insulator assembly separates the oil-filled induction modules from the vacuum diode. The magnetic field necessary for beam extraction is generated by two magntic cores. 150 kV, 40 kA, 100 ns, 100 Hz pulse generator has been designed in Radiotechnical institute. The generator is a two-stage magnetic power compressor with a thyratron switch. The voltage pulse is produced by the water-filled pulse forming line (PFL) with the impedance of 3.3 ohm. The calculated parameters of the injector, the design features of its modules and the experimental results of their testing are presented.

  9. New multiplexed all solid state pulser for high power wide aperture kinetically enhanced copper vapor laser.

    PubMed

    Ghodke, D V; Muralikrishnan, K; Singh, Bijendra

    2013-11-01

    A novel multiplexed scheme is demonstrated to combine two or more pulsed solid state pulsers of moderate capabilities. Pulse power supply comprising of two solid state pulsers of ~6 kW rating each in multiplexed mode with common magnetic pulse compression stage was demonstrated and optimized for operating with a wide aperture kinetically enhanced copper vapor laser. Using this new configuration, the multiplexed pulsed power supply was capable of operating efficiently at net repetition-rate of ~13 kHz, 12 kW (wall plug average power), 18-20 kV discharge voltage and pulse rise-time of ~80 ns. The laser under multiplexed configuration delivered un-interrupted output power of about ~80 W with scope of further increase in laser output power in excess of 100 W. PMID:24289383

  10. Lagrangian Formulation of Relativistic Particle Average Motion in a Laser Field of Arbitrary Intensity

    SciTech Connect

    I.Y. Dodin; N.J. Fisch; G.M. Fraiman

    2003-02-06

    The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-frequency background fields, such a particle on average drifts with an effective, relativistically invariant mass, which depends on the intensity of the electromagnetic field.

  11. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    SciTech Connect

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  12. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  13. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  14. Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations

    NASA Astrophysics Data System (ADS)

    Aksenov, V. P.; Kolosov, V. V.; Filimonov, G. A.; Pogutsa, C. E.

    2016-05-01

    The process of the propagation of vortex laser beams in a turbulent atmosphere with recording of the total orbital angular momentum (OAM) and determination of the beam’s statistical characteristics, such as the average over realizations of the turbulent medium and the variance of fluctuations, has been simulated numerically. The dependences of OAM fluctuations on the turbulence intensity and the initial topological charge of the beam have been obtained. Numerical results are compared with the earlier asymptotic estimates.

  15. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  16. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  17. Preliminary comparison of laser and solar space power systems

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Tepper, W. D.; Conway, E. J.; Humes, D. H.

    1983-01-01

    Four laser receiver systems are compared to onboard solar photovoltaic power generation for spacecraft electrical requirements. The laser photovoltaic and laser MHD receivers were found to be lighter than a comparable planar solar photovoltaic system. The laser receiver also shows less drag at lower altitudes. Panel area is also reduced for the laser receiver allowing fewer Shuttle trips for construction. Finally, it is shown that a 1 megawatt laser and receiver system might be constructed with less weight than a comparable planar solar photovoltaic system.

  18. Hybrid Laser Would Combine Power With Efficiency

    NASA Technical Reports Server (NTRS)

    Sipes, Donald L., Jr

    1986-01-01

    Efficient laser system constructed by using two semiconductor lasers to pump neodymium yttrium aluminum garnet (Nd:YAG) device. Hybrid concept allows digital transmission at data rates of several megabits per second with reasonably sized optical aperture of 20 cm. Beams from two GaAs lasers efficiently coupled for pumping Nd:YAG crystal. Combination of lasers exploits best features of each.

  19. High power semiconductor lasers for deep space communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1981-01-01

    The parameters of semiconductor lasers pertaining to their application as optical emitters are discussed. Several methods to overcome their basic disadvantage, which is the low level of powers they emit, are reviewed. Most of these methods are based on a coherent power combining of several lasers.

  20. Overview of the NASA high power laser program

    NASA Technical Reports Server (NTRS)

    Lundholm, J. G.

    1976-01-01

    The overall objectives of the NASA High Power Laser Program are reviewed along with their structure and center responsibilities. Present and future funding, laser power transmission in space, selected program highlights, the research and technology schedule, and the expected pace of the program are briefly considered.

  1. High power cooled mini-DIL pump lasers

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Zayer, Nadhum; Chen, Bob; He, Dylan; Pliska, Tomas

    2009-11-01

    The miniature dual-inline (mini-DIL) pump laser becomes more attactive for compact optical amplifiers designs due to the advantage of smaller footprint, lower power consumption and lower cost. In this paper we report the development of a new generation of small form factor, high power "cooled" mini-DIL 980-nm pump lasers module for compact EDFA application.

  2. Propogation of the 1(mu) High-Power Beam from a Solid-State Heat-Capacity Laser

    SciTech Connect

    Dane, C B; Moriss, J R; Rubenchik, A M; Boley, C D

    2002-06-25

    A solid-state laser system, used as a directed energy defensive weapon, possesses many compelling logistical advantages over high-average-power chemical laser systems. As an electrically-powered laser, it uses no chemicals, generates no effluents, and requires no specialized logistics support--the laser is recharged by running the vehicle engine. It provides stealth, having low signature operation without the generation of temperature, smoke, or visible light. It is silent in operation, limited only by the onboard vehicle electrical charging and propulsion system. Using the heat-capacity mode of operation, scaling of average power from a solid-state laser has been demonstrated beyond 10kW and work in progress will result in the demonstration of a 100 kW solid-state heat-capacity laser (SSHCL). The heat-capacity approach provides unprecedented power-to-weight ratios in a compact platform that is readily adapted to mobile operation. A conceptual engineering and packaging study has resulted in a 100kW SSHCL design that we believe can be integrated onto a hybrid-electric HMMWV or onto new vehicle designs emerging from the future combat system (FCS) development. 100 kW has been proposed as a power level that demonstrates a significant scaling beyond what has been demonstrated for a solid-state laser system and which could have a significant lethality against target sets of interest. However, the characteristics of heat-capacity laser scaling are such that designs with output powers in excess of 1 MW can be readily formulated. An important question when addressing the military utility of a high-power solid-state laser system is that of the required average power during engagement with a target. The answer to this question is complex, involving atmospheric propagation, beam interaction with the target, and the damage response of the target. Successful target shoot-downs with the THEL deuterium fluoride (DF) laser system provide what is probably the best understanding of

  3. High power laser downhole cutting tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  4. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  5. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  6. Waveform agile high-power fiber laser illuminators for directed-energy weapon systems

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu

    2012-06-01

    A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.

  7. Power versus stabilization for laser satellite communication.

    PubMed

    Arnon, S

    1999-05-20

    To establish optical communication between any two satellites, the lines of sight of their optics must be aligned for the duration of the communication. The satellite pointing and tracking systems perform the alignment. The satellite pointing systems vibrate because of tracking noise and mechanical impacts (such as thruster operation, the antenna pointing mechanism, the solar array driver, navigation noise, tracking noise). These vibrations increase the bit error rate (BER) of the communication system. An expression is derived for adaptive transmitter power that compensates for vibration effects in heterodyne laser satellite links. This compensation makes it possible to keep the link BER performance constant for changes in vibration amplitudes. The motivation for constant BER is derived from the requirement for future satellite communication networks with high quality of service. A practical situation of a two-low-Earth-orbit satellite communication link is given. From the results of the example it is seen that the required power for a given BER increases almost exponentially for linear increase in vibration amplitude. PMID:18319913

  8. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Carstens, Henning; Herrick, Nicholas; Demmler, Stefan; Limpert, Jens; Tünnermann, Andreas

    2011-12-01

    We report on nonlinear pulse compression at very high average power. A high-power fiber chirped pulse amplification system based on a novel large pitch photonic crystal fiber delivers 700 fs pulses with 200 μJ pulse energy at a 1 MHz repetition rate, resulting in 200 W of average power. Subsequent spectral broadening in a xenon-filled hollow-core fiber and pulse compression with chirped mirrors is employed for pulse shortening and peak power enhancement. For the first time, to our knowledge, more than 100 W of average power are transmitted through a noble-gas-filled hollow fiber. After pulse compression of 81 fs, 93 μJ pulses are obtained at a 1 MHz repetition rate. PMID:22139257

  9. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Willke, B.; Danzmann, K.; Fallnich, C.; Frede, M.; Heurs, M.; King, P.; Kracht, D.; Kwee, P.; Savage, R.; Seifert, F.; Wilhelm, R.

    2006-03-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requiremets and new results (RIN <= 4×10-9/surdHz) will be presented.

  10. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  11. Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm.

    PubMed

    Délen, Xavier; Deyra, Loïc; Benoit, Aurélien; Hanna, Marc; Balembois, François; Cocquelin, Benjamin; Sangla, Damien; Salin, François; Didierjean, Julien; Georges, Patrick

    2013-03-15

    We report on a high-power narrow-linewidth pulsed laser source emitting at a wavelength of 257 nm. The system is based on a master oscillator power amplifier architecture, with Yb-doped fiber preamplifiers, a Yb:YAG single crystal fiber power amplifier used to overcome the Brillouin limitation in glass fiber and nonlinear frequency conversion stages. This particularly versatile architecture allows the generation of Fourier transform-limited 15 ns pulses at 1030 nm with 22 W of average power and a diffraction-limited beam (M(2)<1.1). At a repetition rate of 30 kHz, 106 μJ UV pulses are generated corresponding to an average power of 3.2 W. PMID:23503285

  12. Solar power satellite system definition study. Volume 3: Laser SPS analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential use of lasers for transmitting power to Earth from Solar Power Satellites was examined. Free electron lasers appear most promising and would have some benefits over microwave power transmission. Further research in laser technology is needed.

  13. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  14. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  15. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  16. Space power by ground-based laser transmission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1992-01-01

    A new method for providing power to space vehicles consists of using high-power CW lasers on the ground to beam power to photovoltaic receivers in space. Such large lasers could be located at cloud-free sites at one or more ground locations, and use large mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. This can result in lower requirements for battery storage, due to continuous illumination of arrays even during periods of shadow by the earth, and higher power output, due to the higher efficiency of photovoltaic arrays under laser illumination compared to solar and the ability to achieve higher intensities of illumination. Applications include providing power for satellites during eclipse, providing power to resurrect satellites which are failing due to solar array degradation, powering orbital transfer vehicles or lunar transfer shuttles, and providing night power to a solar array on the moon.

  17. Dependence of terahertz power from laser-produced plasma on laser intensity

    SciTech Connect

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-07-11

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled ({omega}, 2{omega}) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  18. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  19. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  20. Optimal laser wavelength for efficient laser power converter operation over temperature

    NASA Astrophysics Data System (ADS)

    Höhn, O.; Walker, A. W.; Bett, A. W.; Helmers, H.

    2016-06-01

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined to be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.

  1. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed. PMID:21263681

  2. Power-averaging method to characterize and upscale permeability in DFNs

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J. R.; Davy, P.; Pichot, G.; Le Goc, R.; Maillot, J.; Darcel, C.; Meheust, Y.

    2015-12-01

    In a lot of geological environments, permeability is dominated by the existence of fractures and by their degree of interconnections. Flow properties depend mainly on the statistical properties of the fracture population (length, apertures, orientation), on the network topology, as well as on some detailed properties within fracture planes. None of them can be a priori discarded as fracture networks are potentially close to some percolation threshold. Still, most details are strongly homogenized by the inherent diffusive nature of flows. It should thus be possible to upscale permeability on the basis of a limited number of descriptors. Based on an extensive analysis of 2D and 3D DFNs as well as on reference connectivity structures, we investigate the relation between the local fracture structures and the effective permeability. On one hand poor connectivity, small intersections and fracture closures limit permeability. If these patterns control flow, permeability would derive from a suite of fracture in series dominated by its weakest element. Effective permeability could then be approached by the harmonic mean of the local permeabilities. On the other hand, extended fractures and locally higher fracture densities, enhance permeability. If these patterns control flow, all fractures would take equally part to flow and effective permeability would tend to the arithmetic mean of the local permeabilities. Defined as the relative weight between the two extreme harmonic and arithmetic means, the power-law averaging exponent gives a compact way to compare fracture network hydraulics. It may further lead to some comprehensive upscaling rules. Permeability is not only determined by global connectivity but also by more local effects. We measure them by defining a local connectivity index equal to the number of fracture connections at some reference local scale. Knowledge of the relative local to global effects should help optimizing characterization strategies.

  3. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  4. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  5. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions. PMID:26974640

  6. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  7. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  8. High-power Nd:YAP blue laser by intracavity summing frequency

    NASA Astrophysics Data System (ADS)

    Yu, Yong-ji; Jin, Guang-yong; Wang, Chao; Hao, Da-wei; Guo, Jia-xi; Liang, Zhu

    2009-07-01

    Recently, continue-wave blue laser generated by frequency doubling of the diode-end pumped neodymium doped lasers operating at the 4F3/2→4I9/2 transition have been extensively explored. But this way is limited by the considerable re-absorption loss caused by thermal population of the lower laser level for the oscillation of quasi-three-level laser. Another efficient way to obtain blue laser is based on summing frequency of the neodymium doped laser operating at the 4F3/2→4I13/2 transition. Unlike the three-level system of the 4F3/2→4I9/2 transition, stimulated emission at the 4F3/2→4I13/2 transition is a four-level system that can provide a low-threshold and stable laser output due to the lack of sensitive temperature dependence of the transition rate. High power blue laser has been achieved in this way. In this paper, we report a high power blue laser output is obtained by intracavity sum-frequency-mixing of a diode-side-pumped Q-switched Nd:YAP laser operating at 1.3μm with two LBO crystals. An LBO crystal with type-I critical phase matching and the other crystal with type-II critical phase matching were used for the second harmonic generation and the third harmonic generation, respectively. In view of the analysis of the cavity stability, a four-mirror folded cavity was designed and the output characteristics were theoretically analyzed. Experimental characteristics obtained were shown to be in agreement with the theoretical analysis. 3.2W average power at 447nm and 1.3W average power at 446nm blue laser outputs were achieved at 1kHz with pulse width of 10ns from the 1341.4nm laser beam polarized along the c crystalline axis and the 1339.2nm laser beam polarized along the a crystalline axis, respectively. The 447nm blue laser corresponds to a red-to-blue conversion efficiency of 30%.

  9. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  10. Temporal response of laser power standards with natural convective cooling.

    PubMed

    Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun

    2016-01-25

    Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations. PMID:26832477

  11. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy

    PubMed Central

    Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F.

    2016-01-01

    Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR) generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems. PMID:26938064

  12. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy.

    PubMed

    Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F

    2016-01-01

    Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM), the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR) generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems. PMID:26938064

  13. High-power single-frequency fiber lasers

    NASA Astrophysics Data System (ADS)

    Guan, Weihua

    Single frequency laser sources are desired in many applications. Various architectures for achieving high power single frequency fiber laser outputs have been investigated and demonstrated. Axial gain apodization can affect the lasing threshold and spectral modal discrimination of DFB lasers. Modeling results show that if properly tailored, the lasing threshold can be reduced by 21% without sacrificing modal discrimination, while simultaneously increasing the differential output power between both ends of the laser. A dual-frequency 2 cm silica fiber laser with a wavelength spacing of 0.3 nm was demonstrated using a polarization maintaining (PM) fiber Bragg grating (FBG) reflector. The output power reached 43 mW with the optical signal to noise ratio (OSNR) greater than 60 dB. By thermally tuning the overlap between the spectra of PM FBG and SM FBG, a single polarisation, single frequency fibre laser was also demonstrated with an output power of 35 mW. From the dual frequency fiber laser, dual frequency switching was achieved by tuning the pump power of the laser. The dual frequency switching was generated by the thermal effects of the absorbed pump in the ytterbium doped fiber. Suppression and elimination of self pulsing in a watt level, dual clad ytterbium doped fiber laser was demonstrated. Self pulsations are caused by the dynamic interaction between the photon population and the population inversion. The addition of a long section of passive fiber in the laser cavity makes the gain recovery faster than the self pulsation dynamics, allowing only stable continuous wave lasing. A single frequency, hybrid Brillouin/ytterbium fiber laser was demonstrated in a 12 m ring cavity The output power reached 40 mW with an OSNR greater than 50 dB. To scale up the output power, a dual clad hybrid Brillouin/ytterbium fiber laser was studied. A numerical model including third order SBS was used to calculate the laser power performance. Simulation shows that 5 W single

  14. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  15. High-power high-efficiency acousto-optically Q-switched rod Nd:YAG laser with 885 nm diode laser pumping

    NASA Astrophysics Data System (ADS)

    Liu, K.; Li, F. Q.; Xu, H. Y.; Wang, Z. C.; Zong, N.; Du, S. F.; Bo, Y.; Peng, Q. J.; Cui, D. F.; Xu, Z. Y.

    2013-01-01

    We have demonstrated a compact Q-switched Nd:YAG laser at 1064 nm with 885 nm diode-laser (LD) direct pumping. At a repetition rate of 100 kHz, an average output power of 53 W with beam quality factor M2 of 1.6 was achieved under the absorbed pump power of 122 W, corresponding to an optical-optical efficiency of 43.5% and a slope efficiency of 57.6%, respectively. The pulse width and the peak power at this output power were 112 ns and 4.74 kW, respectively.

  16. Space power by ground-based laser illumination

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    Reducing energy storage requirements of space power systems by illuminating the photovoltaic arrays with a remotely located laser system is addressed. It is proposed that large lasers be located on cloud-free sites at one or more ground locations and that large lenses or mirrors with adaptive optical correction be used to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power. Two applications are discussed: illumination of geosynchronous orbit satellites and illumination of a moonbase power system. Issues for photovoltaic receivers for such a system are discussed.

  17. Rock removal using high-power lasers for petroleum exploitation purposes

    NASA Astrophysics Data System (ADS)

    Figueroa, Humberto G.; LaGreca, A.; Gahan, Brian C.; Parker, Richard A.; Graves, Ramona M.; Batarseh, Samih; Skinner, Neal; Reed, Claude B.; Xu, Zach

    2002-09-01

    This paper describes the experimental results of selective rock removal using different types of high power lasers. US military owned continuous wave laser systems such as MIRACL and COIL with maximum powers of 1.2 MW and 10 kW and wavelengths of 3.8 and 1.3 mm respectively, were first used on a series of rock types to demonstrate their capabilities as a drilling tool for petroleum exploitation purposes. It was found that the power deposited by such lasers was enough to drill at speeds much faster than conventional drilling. In order to sample the response of the rocks to the laser action at shorter wavelengths, another set of rock samples was exposed to the interaction of the more commercially available high power pulsed Nd:YAG laser. To isolate the effects of the laser discharge properties on the rock removal efficiency, a versatile 1.6 kW Nd:YAG laser capable of providing pulses between 0.1 millisec and 10 millisec in width, with a maximum peak power of 32 kW and a variable repetition rate between 25 and 800 pulses/sec was chosen. With this choice of parameters, rock vaporization and melting were emphasized while at the same time minimizing the effects of plasma shielding. Measurements were performed on samples of sandstone, shale, and limestone. It was found that each rock type requires a specific set of laser parameters to minimize the average laser energy required to remove a unit volume of rock. It was also found that the melted material is significantly reduced in water saturated rocks while the drilling speed is still kept higher than conventional drilling.

  18. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime.

    PubMed

    McKay, Aaron; Kitzler, Ondrej; Mildren, Richard P

    2014-01-13

    We report an investigation into a double metal tungstate Raman laser when pumped at elevated average powers. Potassium gadolinium tungstate (KGW) was placed in an external cavity configured for second-Stokes output and pumped at pulse repetition rate of 38 kHz with up to 46 W of average power. For output powers above 3 W, we observe preferential excitation of Hermite-Gaussian transverse modes whose order in the X(1)(') principal direction of the thermal expansion tensor scales linearly with Raman power. We deduce that strong astigmatic thermal lensing is induced in the Raman crystal with a negative component in the X(1)(') direction. At maximum pump power, 8.3 W of output power was obtained at a conversion efficiency of 18%. PMID:24515030

  19. High-average-power, intense THz pulses from a LiNbO3 slab with silicon output coupler

    NASA Astrophysics Data System (ADS)

    Tsarev, M. V.; Ehberger, D.; Baum, P.

    2016-02-01

    Many applications of THz radiation require high fields and high repetition rates at the same time, implying substantial average power levels. Here, we report high-power Cherenkov-type THz generation in a LiNbO3 slab covered with a silicon prism outcoupler, a geometry in which the ratio between heat-removing surfaces and pump volume is naturally maximized for facilitating heat removal. At a conversion efficiency of 0.04 %, we achieve ~100 times more output power than before with such geometry. Although about 10 % of the 15 W pump power is converted to heat via multi-photon absorption effects, the peak crystal temperature increases by only 8 K. This result is due to the focus' extreme aspect ratio of ~100, indicating the scalability of the approach to even higher average power levels. A line-shaped focus should be advantageous for removing heat in other optical conversions as well.

  20. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  1. Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation at 271.2 nm.

    PubMed

    Biswal, Ramakanta; Agrawal, Praveen K; Dixit, Sudhir K; Nakhe, Shankar V

    2015-11-10

    This paper presents to our knowledge a first time study on the generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet (UV) radiation at 271.2 nm. The work is based on frequency summing of coherent green (G: 510.6 nm) and yellow (Y: 578.2 nm) radiations of a copper-HBr laser in a β-barium borate crystal. Average and peak sum frequency conversion efficiencies of about 13% and 16%, respectively, are obtained. The sum frequency results are experimentally analyzed in terms of the extent of matching of green and yellow pump radiations in space, time, and frequency domains. The result is of high significance for many applications in photonics components fabrication, semiconductor technology, and spectroscopy. PMID:26560794

  2. Analysis of aperture averaging measurements. [laser scintillation data on the effect of atmospheric turbulence on signal fluctuations

    NASA Technical Reports Server (NTRS)

    Fried, D. L.

    1975-01-01

    Laser scintillation data obtained by the NASA Goddard Space Flight Center balloon flight no. 5 from White Sands Missile Range on 19 October 1973 are analyzed. The measurement data, taken with various size receiver apertures, were related to predictions of aperture averaging theory, and it is concluded that the data are in reasonable agreement with theory. The following parameters are assigned to the vertical distribution of the strength of turbulence during the period of the measurements (daytime), for lambda = 0.633 microns, and the source at the zenith; the aperture averaging length is d sub o = 0.125 m, and the log-amplitude variance is (beta sub l)2 = 0.084 square nepers. This corresponds to a normalized point intensity variance of 0.40.

  3. Comparisons of selected laser beam power missions to conventionally powered missions

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.

    1993-01-01

    Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.

  4. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  5. Solid state laser media driven by remote nuclear powered fluorescence

    SciTech Connect

    Prelas, M.A.

    1991-01-16

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  6. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  7. Ceramic tile grout removal & sealing using high power lasers

    SciTech Connect

    Lawrence, J.; Li, L.; Spencer, J.T.

    1996-12-31

    Work has been conducted using a Nd:YAG laser, a CO{sub 2} laser and a high power diode laser (HPDL) in order to determine the feasibility of removing contaminated tile grout from the void between adjoining vitrified ceramic tiles, and to seal the void permanently with a material having an impermeable surface glaze. Reported on in the paper are; the basic process phenomena, the process effectiveness, suitable vitrifiable material development, a heat affect study and a morphological and compositional analysis.

  8. High power mode-locked rod-type fiber femtosecond laser with micro-joule energy

    NASA Astrophysics Data System (ADS)

    Lv, Zhiguo; Teng, Hao; Wang, Lina; Wang, Rui; Wang, Junli; Wei, Zhiyi

    2016-07-01

    We report a high power all-normal-dispersion (ANDi) mode-locked laser based on nonlinear polarization evolution (NPE) technique using rod-type fiber with polarization maintaining (PM) characteristic. With 85 μm gain core diameter, 31 W of average power at repetition rates of 57.93 MHz, which corresponds to the pulse energy of 0.53 μJ, is demonstrated under a pump power of 93 W. The pulse duration of 124 fs after compressor is obtained at the central wavelength of 1033 nm as well as the measured power jitter of 0.3% over a period of 2 h. To our knowledge, this is the first realization of the highest power of ANDi fiber laser by pure NPE mode-locking technique based on fibers with PM characteristic as gain media.

  9. Turbulence averaging techniques for IC engine unsteady flow using Laser Doppler Velocimetry

    NASA Astrophysics Data System (ADS)

    Schinetsky, Philip; Olcmen, Semih; Drabo, Mebougna; Ashford, Marcus

    2008-11-01

    Turbulence in unsteady flow fields is complex in nature not only because of the cycle-to-cycle variations of the turbulence but also the time dependent mean velocity. Defining and quantifying turbulence in unsteady flow fields is important since the level of turbulence applies directly to processes such as the mixing of gasoline and air in internal combustion engines. This same analysis method can also be used in fields where unsteady time-dependent data is obtained. In this study one component LDV velocity measurements made in an off the shelf IC engine were used to study unsteady turbulence. Phase and cyclic averaging techniques, along with wavelet transform analysis techniques were used to determine the unsteady turbulence levels. In addition, these techniques were applied to a predetermined sinusoidal signal with a known turbulence level to choose the best method to identify turbulence in unsteady flows.

  10. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  11. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  12. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  13. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  14. Thermal Regime of High-power Laser Diodes

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Krokhin, O. N.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu. M.; Cheshev, E. A.

    We discuss the design and application perspectives of different crystal, ceramic and composite-type submounts with thermo-compensating properties as well as submounts from materials with high thermal conductivity for overcoming thermal problem in high-power laser diodes (LD) and improving thermal management of other high-power optoelectronic and electronic semiconductor devices. Thermal fields in high-power laser diodes were calculated in 3 D thermal model at CW operation for some heatsink designs taking into account the experimental dependence of laser total efficiency against pumping current in order to extend the range of reliable operation up to thermal loads 20-30 W and corresponding output optical power up to 15-20 W for 100 μm stripe laser diodes.

  15. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  16. High Power Laser Hybrid Welding - Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Nielsen, Steen Erik

    High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.

  17. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  18. Performance of passive Q-switched solar-pumped high-power Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Noter, Yoram; Naftali, Nir; Pe'er, Idit L.; Yogev, Amnon; Lando, Mordechai; Shimony, Yehoshua

    1997-09-01

    Q-switched, solar-pumped, high power Nd:YAG lasers are attractive for a variety of applications requiring high instantaneous peak power density. The Q-switching can be obtained by an acousto-optic, electro-optic or passive device. Passive Q-switching seems an excellent choice for space as well as for other applications since it neither requires an external driver nor an electrical power supply. In recent years Cr+4:YAG single crystals were extensively used as passive Q-switches for flashlamp-pumped high power Nd:YAG lasers, demonstrating their superior thermal superior thermal characteristics and durability. In this work we report the first operation of passive Q- switched, solar-pumped, high power Nd:YAG lasers. The concentrated solar energy for he optical pumping of the laser was obtained by a 3-stage combination of imaging and non-imaging optics. It included: i) Weizmann Institute solar tower heliostats, ii) 3D compound parabolic concentrator, and iii) 2D compound parabolic concentrator in which the laser rod was placed. 72 mm long laser rods with either 3 mm or 4 mm diameter were used. The passive Q-switch was made from a Cr$=+4):YAG single crystal having a low- intensity transmission of 72 percent at 1.06 (mu) . Its rear surface was coated by a high reflectivity coating, serving as the rear mirror of the cavity. Output coupling mirrors with various reflectivities were used. The passive Q-switch demonstrated excellent durability and reliability during all the experiments. Repetition rates of 6-39 kHz were measured, showing higher repetition rates at higher laser power levels. The pulses demonstrated shorter full width at half maximum (FWHM) time for higher laser power elves, and the FWHM time range was 190-310 nsec. The maximal measured average power was 14 W. Thermal lensing was measured as a function of the absorbed solar power in the laser rod. It is estimated that laser peak power densities of approximately 100 kW/cm2 were achieved in the experiments. It is

  19. Advancements in high-power diode laser stacks for defense applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens

    2012-06-01

    This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.

  20. Beam-path conditioning for high-power laser systems

    SciTech Connect

    Stephens, T.; Johnson, D.; Languirand, M.

    1990-01-01

    Heating of mirrors and windows by high-power radiation from a laser transmitter produces turbulent density gradients in the gas near the optical surfaces. If the gradients are left uncontrolled, the resulting phase errors reduce the intensity on the target and degrade the signal returned to a receiver. Beam path conditioning maximizes the efficiency of the optical system by alleviating thermal turbulence within the beam path. Keywords: High power radiation, Beam path, Optical surface, Laser beams, Reprints. (JHD)

  1. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  2. System requirements for laser power beaming to geosynchronous satellites

    SciTech Connect

    Neal, R.D.; McKechnie, T.S.; Neal, D.R.

    1994-03-01

    Geosynchronous satellites use solar arrays as their primary source of electrical power. During earth eclipse, which occurs 90 times each year, the satellites are powered by batteries, but the heavy charge-discharge cycle decreases their life expectancy. By beaming laser power to satellites during the eclipses, satellite life expectancy can be significantly increased. In this paper, the authors investigate the basic system parameters and trade-offs of using reactor pumped laser technology to beam power from the Nevada Test Site. A first order argument is used to develop a consistent set of requirements for such a system.

  3. Power conversion efficiency of semiconductor injection lasers and laser arrays in CW operation

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    The problem of optimizing power conversion efficiency of semiconductor lasers and laser arrays and minimizing efficiency degradation due to temperature effects is treated. A method for calculating this efficiency is described and some calculated results are presented and discussed. Under some conditions, a small increase in the thermal resistance of the device can result in a large reduction of its efficiency. Temperature effects are important in high-power semiconductor laser, and in particular in laser arrays, where low thermal resistance heat sinking may be crucial to the device operation.

  4. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  5. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  6. Recent advances in high-power tunable lasers (UV, visible, and near IR)

    SciTech Connect

    Smiley, V.N.

    1981-05-01

    A review of the current technology of high-power tunable lasers is presented with the emphasis on dye lasers. Among the topics covered are color center lasers, excimer lasers, picosecond techniques, and nonlinear coherent sources. (AIP)

  7. High Power Lasers And Their Application In Materials Processing

    NASA Astrophysics Data System (ADS)

    Bohn, W. L.

    1985-02-01

    The idea of using a laser for materials processing is more than 20 years old. Although the concept of a non-contact method for processing with a beam of light has been pursued with great interest and enthusiasm, the practical use of laser beam processing was slow to develop. The lasers available in the 1960's were fragile and of relatively low power. In the 1970's lasers in the multi-kilowatt range were developed but the problem of laser acceptance by the customer had to be overcome. Today, reliable Nd-Yag and CO2-lasers are available and laser processing is a fast growing market. An additional boost is expected with the development of the next generation of lasers and with increased knowledge of the physical phenomena that underlie laser material processing. This paper will review latest developments in laser technology and laser-workpiece interaction with special emphasis on the impact of high speed photography on the research work in these areas.

  8. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  9. Integration of high power lasers in bending tools

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Holzinger, B.; Humenberger, G.; Schuöcker, D.; Schumi, T.

    The integration of high power lasers into bending tools creates a possibility to bend brittle materials with conventional presses. A diode laser, which is based on 200W-laser-bars and a solid state laser with 3 kW are used in this work. By heating the material within a narrow zone the ductility is increased and the forming process can be enabled. The assembly of the heat source within the bending tools is a prerequisite in order to feed energy into the workpiece before, during and after the forming process. As a result the heating and forming process can be optimized regarding any material.

  10. Heating power feedback control for CO2 laser fusion splicers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxin; Sugawara, Hiroshi; Mizushima, Toshirou; Klimowych, William

    2013-02-01

    A novel feedback control method has been developed for an automated splicer using a CO2 laser as the heating element. The feedback method employs a sensor for laser beam power and CMOS cameras as sensors for fiber luminescence which is directly related to glass temperature. The CO2 laser splicer with this type of feedback system provides a consistent platform for the fiber laser and bio-medical industry for fabrication of fused glass components such as tapers, couplers, combiners, mode-field adaptors, and fusion splices. With such a closed loop feedback system, both splice loss and peak-to-peak taper ripple are greatly reduced.

  11. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  12. Perspectives of powerful laser technique for medicine

    NASA Astrophysics Data System (ADS)

    Konov, Vitali I.; Prokhorov, Alexander M.; Shcherbakov, Ivan A.

    1991-11-01

    The optimum laser-system parameters are being selected for several types of surgical operations using ablation techniques. The choice is based on the specific demands of the operation performed, knowledge of the ablation laws, limitations on laser-beam intensity which come from the necessity to transport high-intensity light through flexible fiber, and the peculiarities of different laser systems. At present it is more expedient to develop laser medical setups oriented to the solution of one task or a limited number of problems. The choice of a concrete installation should be based on the investigation results of interaction of radiation with biological tissues and its transmission through the fiber, the analysis of the level of development of laser and fiber technique, specificity of the operation, and compatibility of laser facilitates and traditional medical equipment. The paper illustrates such an approach by way of several concrete examples and notes the corresponding laser systems, which were developed or are in the developmental stage in the General Physics Institute of the USSR Academy of Sciences and in organizations connected with the Institute.

  13. High power diode pumped solid state laser development at Lawrence Livermore National Laboratory

    SciTech Connect

    Solarz, R.; Albrecht, G.; Hackel, L.

    1994-03-01

    The authors recent developments in high powered diode pumped solid state lasers at Lawrence Livermore National Laboratory. Over the past year the authors have made continued improvements to semiconductor pump array technology which includes the development of higher average power and lower cost pump modules. They report the performance of high power AlGaAs, InGaAs, and AlGaInP arrays. They also report on improvement to the integrated micro-optics designs in conjunction with lensing duct technology which gives rise to very high performance end pumping designs for solid state lasers which have major advantages which they detail. Substantial progress on beam quality improvements to near the diffraction limit at very high power have also been made and will be reported. They also will discuss recent experiments on high power non-linear materials for q-switches, harmonic converters, and parametric oscillators. Advances in diode pumped devices at LLNL which include tunable Cr:LiSrAlF{sub 6}, mid-IR Er:YAG, holmium based lasers and other developments will also be outlined. Concepts for delivering up to 30 kilowatts of average power from a DPSSL oscillator will be described.

  14. Application of laser bar code technology in power fitting evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Liu, Shuhuab

    2007-12-01

    In this work, an automatic encoding and management system on power fittings (PFEMS) is developed based on laser bar coding technology. The system can encode power fittings according to their types, structure, dimensions, materials, and technical characteristics. Both the character codes and the laser bar codes of power fittings can be produced from the system. The system can evaluate power fittings and search process-paper automatically. The system analyzes the historical values and technical information of congeneric fittings, and forms formulae of evaluation with recursive analytical method. And then stores the formulae and technical documents into the database for index. Scanning the bar code with a laser bar code reader, accurate evaluation and corresponding process-paper of the fittings can be produced. The software has already been applied in some power stations and worked very well.

  15. Solid-state power supply for gas lasers

    NASA Astrophysics Data System (ADS)

    Bertolini, A.; Beverini, N.; Carelli, G.; Francesconi, M.; Nannizzi, M.; Strumia, F.; Ioli, N.; Moretti, A.

    2004-08-01

    A novel pulsed power supply for gas lasers is presented. The device uses only solid state components and is based on a capacitor bank discharge. Fast switching of the discharge is triggered by an insulated gate bipolar transistor. The terminal section of the power supply is a transformer designed to match the reactive capacitance of a gas discharge. Strokes up to 30 kV and 30 mA are achieved across the secondary windings of this transformer. The power supply delivers high voltage pulses with a duration between 0.5 and 50 μs and a repetition rate up to some kHz. The power supply has been tested on a longitudinal discharge quasi-cw regime CO2 laser. Laser pulses were generated with a duration down to the microseconds region, a peak power exceeding some kilowatts, and a repetition rate ranging from 200 Hz to a few kHz.

  16. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible. PMID:27314721

  17. Power supply for negative impedance gas discharge lasers

    SciTech Connect

    Bees, G.L.

    1987-12-29

    An adjustable constant current power supply for a negative impedance gas discharge laser is described comprising: means for providing constant output of current, means connected between the constant current providing means and the gas discharge laser for matching the current output of the constant current providing means with lasing requirements of the gas discharge laser, the constant current providing means providing electrical energy to pump the gas discharge laser; and means electrically connected to the constant current providing means for feeding a variable controlled voltage to the constant current providing means the variable voltage altering the constant output of current over a preselected range feedback circuit means for providing a control signal to the variably controlled voltage feeding means; such that output power of the gas discharge laser varies with the output of current from the current providing means.

  18. Transient Plasma Photonic Crystals for High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  19. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  20. Industrial Applications of High Power CO2 Lasers - System Descriptions

    NASA Astrophysics Data System (ADS)

    Gukelberger, Armin

    1986-10-01

    The laser as a cutting tool for sheet metal cutting has beenl well accepted in industry for many years. Several hundreds of units are used for contour cutting of small and medium-sized series on plane metal sheets up to 6 mm thick. Within the last three years, cutting systems have been expanded in three ways: thicker material up to 12 mm can now be cut by using higher powered lasers (1500 W); with the introduction of flying optic systems which cover sheet dimensions up to 4 m x 3 m, the cutting of larger sized metal sheets is possible. In addition, the use of five or six axis systems allows cutting of three-dimensional plastic and metal material. Besides laser cutting, the acceptance of systems for laser welding applications is increa sing. Several systems have been running in production for a couple of years and laser wel ding will probably become the fastest growing market in laser material processing within the next five years. The laser technology is regarded as a beneficial tool for welding, whenever low heat input and, consequently, low heat distortion is requested. To day's main welding application areas are: components of car engines and transmissions, window spacer and stainless steel tube welding, and also car body welding with laser robots or five axis gantry type systems. The output power of CO2-lasers for welding applications is between 1 and 5 kw in most cases.