Science.gov

Sample records for average power semiconductor

  1. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser. PMID:21197032

  2. Average power constraints in AlGaAs semiconductor lasers under pulse-position-modulation conditions

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    In some optical communications systems there are advantages to using low duty-cycle pulsed modulation formats such as pulse-position-modulation. However, because of intrinsic limitations of AlGaAs semiconductor lasers, the average power that they can deliver in a pulsed mode of operation is lower than in a CW mode. The magnitude of this problem and its implications are analyzed in this letter, and one possible solution is mentioned.

  3. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  4. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  5. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  6. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  7. Hybrid power semiconductor

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1985-01-01

    The voltage rating of a bipolar transistor may be greatly extended while at the same time reducing its switching time by operating it in conjunction with FETs in a hybrid circuit. One FET is used to drive the bipolar transistor while the other FET is connected in series with the transistor and an inductive load. Both FETs are turned on or off by a single drive signal of load power, the second FET upon ceasing conductions, rendering one power electrode of the bipolar transistor open. Means are provided to dissipate currents which flow after the bipolar transistor is rendered nonconducting.

  8. Optimization of high average power FEL beam for EUV lithography

    NASA Astrophysics Data System (ADS)

    Endo, Akira

    2015-05-01

    Extreme Ultraviolet Lithography (EUVL) is entering into high volume manufacturing (HVM) stage, with high average power (250W) EUV source from laser produced plasma at 13.5nm. Semiconductor industry road map indicates a scaling of the source technology more than 1kW average power by high repetition rate FEL. This paper discusses on the lowest risk approach to construct a prototype based on superconducting linac and normal conducting undulator, to demonstrate a high average power 13.5nm FEL equipped with optimized optical components and solid state lasers, to study FEL application in EUV lithography.

  9. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  10. High average power induction accelerators

    SciTech Connect

    Swingle, J.C.

    1985-10-01

    The induction accelerator is discussed with respect to general background and concept, beam transport, scaling, pulse power technology, and the electron beam injector. A discussion of the factors which affect the scaling of the intensity of the beam is given. Limiting factors include collective forces in the beam, virtual cathode formation, surroundings, and beam breakup instability. 24 refs., 11 figs. (WRF)

  11. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  12. High Average Power Yb:YAG Laser

    SciTech Connect

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  13. Research coordination for power semiconductor technology

    SciTech Connect

    Hingorani, N.G.; Mehta, H. ); Levy, S. ); Temple, V.A.K.; Glascock, H. )

    1989-09-01

    A National Power Semiconductor Interagency/Utility Consortium has been formed to coordinate U.S. research activities for development of materials and technologies related to high-power semiconductors - a field sometimes called the second electronics revolution. The history, activities, and investment strategy of this Consortium are described briefly. A variety of the most promising power electronics devices considered by the Consortium are discussed, leading to the conclusion that field-effect transistors and Metal-Oxide Semiconductor (MOS) controlled thyristors (MCTs) will eventually dominate power-switching applications. New packaging techniques are also presented, in which silicon is used to replace bulky ceramic insulators and copper contacts - an arrangement that promises to lower costs and weight while improving devices performance and life. Finally, the article reviews policy issues related to power semiconductor research and recommends that R and D in this field be treated as a leading national priority.

  14. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  15. Power semiconductor device with negative thermal feedback

    NASA Technical Reports Server (NTRS)

    Borky, J. M.; Thornton, R. D.

    1970-01-01

    Composite power semiconductor avoids second breakdown and provides stable operation. It consists of an array of parallel-connected integrated circuits fabricated in a single chip. The output power device and associated low-level amplifier are closely coupled thermally, so that they have a predetermined temperature relationship.

  16. Average power laser experiment (APLE) design

    NASA Astrophysics Data System (ADS)

    Parazzoli, C. G.; Rodenburg, R. E.; Dowell, D. H.; Greegor, R. B.; Kennedy, R. C.; Romero, J. B.; Siciliano, J. A.; Tong, K.-O.; Vetter, A. M.; Adamski, J. L.; Pistoresi, D. J.; Shoffstall, D. R.; Quimby, D. C.

    1992-07-01

    We describe the details and the design requirements for the 100 kW CW radio frequency free electron laser at 10 μm to be built at Boeing Aerospace and Electronics Division in Seattle with the collaboration of Los Alamos National Laboratory. APLE is a single-accelerator master-oscillator and power-amplifier (SAMOPA) device. The goal of this experiment is to demonstrate a fully operational RF-FEL at 10 μm with an average power of 100 kW. The approach and wavelength were chosen on the basis of maximum cost effectiveness, including utilization of existing hardware and reasonable risk, and potential for future applications. Current plans call for an initial oscillator power demonstration in the fall of 1994 and full SAMOPA operation by December 1995.

  17. A power semiconductor test circuit with reduced power requirements

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1970-01-01

    Switching circuit utilizing silicon controlled rectifier reduces input power requirements normally associated with testing power semiconductors in an operational type mode. Circuit alleviates problems of inaccessibility, lack of large amounts of power, physical size of power resistors, wiring, and heat generation.

  18. High average power switching in diamond

    SciTech Connect

    Hofer, W.W.; Schoenbach, K.H.

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300{degree}K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm{sup 2}/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/{degree}K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  19. High average power switching in diamond

    SciTech Connect

    Hofer, W.W. ); Schoenbach, K.H. )

    1992-06-01

    Diamond has many properties which make it ideal for a high power solid-state switch. The crystal structure of diamond is relatively well characterized. It is a semiconductor with a band-gap of 5.5 eV at 300[degree]K. The high band-gap of diamond results in a small dark current compared to Si or GaAs. As a result the breakdown field or holding voltage is very high, 1--10 MV/cm. The electron and hole mobility are approximately 2000 cm[sup 2]/v-sec. At room temperature, diamond has the highest thermal conductivity of any solid, 20 W/[degree]K -cm, about five times that of copper. This is ideal for switching because heat dissipation and thermal runaway problems are greatly mitigated. Our switch concept uses a low current (power on-off switch. Steady advancements in CVD polycrystalline and single crystal diamond help make this possible.

  20. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  1. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  2. 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser.

    PubMed

    Aus der Au, J; Spühler, G J; Südmeyer, T; Paschotta, R; Hövel, R; Moser, M; Erhard, S; Karszewski, M; Giesen, A; Keller, U

    2000-06-01

    We demonstrate a power-scalable concept for high-power all-solid-state femtosecond lasers, based on passive mode locking of Yb:YAG thin disk lasers with semiconductor saturable-absorber mirrors. We obtained 16.2 W of average output power in pulses with 730-fs duration, 0.47-muJ pulse energy, and 560-kW peak power. This is to our knowledge the highest average power reported for a laser oscillator in the subpicosecond regime. Single-pass frequency doubling through a 5-mm-long lithium triborate crystal (LBO) yields 8-W average output power of 515-nm radiation. PMID:18064208

  3. 152 W average power Tm-doped fiber CPA system.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2014-08-15

    A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%. PMID:25121845

  4. Average refractive powers of an alexandrite laser rod

    NASA Astrophysics Data System (ADS)

    Driedger, K. P.; Krause, W.; Weber, H.

    1986-04-01

    The average refractive powers (average inverse focal lengths) of the thermal lens produced by an alexandrite laser rod optically pumped at repetition rates between 0.4 and 10 Hz and with electrical flashlamp input pulse energies up to 500 J have been measured. The measuring setup is described and the measurement results are discussed.

  5. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-w average output power.

    PubMed

    Graf, T; McConnell, G; Ferguson, A I; Bente, E; Burns, D; Dawson, M D

    1999-05-20

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461-1601 nm based on a high-power Nd:YVO(4) laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically poled lithium niobate crystal. The system produces 34-ps pulses with a high repetition rate of 235 MHz and an average output power of 1 W. The relatively long pulses lead to wide cavity detuning tolerances. The comparatively narrow spectral bandwidth of <15 GHz is suitable for applications such as pollutant detection. PMID:18319928

  6. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  7. Neutron and gamma irradiation effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  8. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  9. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  10. High power semiconductor lasers for deep space communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1981-01-01

    The parameters of semiconductor lasers pertaining to their application as optical emitters are discussed. Several methods to overcome their basic disadvantage, which is the low level of powers they emit, are reviewed. Most of these methods are based on a coherent power combining of several lasers.

  11. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  12. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser.

    PubMed

    Kisel, V E; Rudenkov, A S; Pavlyuk, A A; Kovalyov, A A; Preobrazhenskii, V V; Putyato, M A; Rubtsova, N N; Semyagin, B R; Kuleshov, N V

    2015-06-15

    A high-power, diode-pumped, semiconductor saturable absorber mode-locked Yb(5%):KGW bulk laser was demonstrated with high optical-to-optical efficiency. Average output power as high as 8.8 W with optical-to-optical efficiency of 37.5% was obtained for Nm-polarized laser output with 162 fs pulse duration and 142 nJ pulse energy at a pulse repetition frequency of 62 MHz. For Np polarization, 143 fs pulses with pulse energy of 139 nJ and average output power of up to 8.6 W with optical-to-optical efficiency of 31% were generated. PMID:26076242

  13. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher; Williams, Gwyn

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  14. High-average-power diode-pumped Yb: YAG lasers

    SciTech Connect

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  15. High average power supercontinuum generation in a fluoroindate fiber

    NASA Astrophysics Data System (ADS)

    Swiderski, J.; Théberge, F.; Michalska, M.; Mathieu, P.; Vincent, D.

    2014-01-01

    We report the first demonstration of Watt-level supercontinuum (SC) generation in a step-index fluoroindate (InF3) fiber pumped by a 1.55 μm fiber master-oscillator power amplifier (MOPA) system. The SC is generated in two steps: first ˜1 ns amplified laser diode pulses are broken up into soliton-like sub-pulses leading to initial spectrum extension and then launched into a fluoride fiber to obtain further spectral broadening. The pump MOPA system can operate at a changeable repetition frequency delivering up to 19.2 W of average power at 2 MHz. When the 8-m long InF3 fiber was pumped with 7.54 W at 420 kHz, output average SC power as high as 2.09 W with 27.8% of slope efficiency was recorded. The achieved SC spectrum spread from 1 to 3.05 μm.

  16. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  17. Industry-grade high average power femtosecond light source

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Weiler, S.; Fleischhaker, R.; Gebs, R.; Budnicki, A.; Wolf, M.; Kleinbauer, J.; Russ, S.; Kumkar, M.; Sutter, D. H.

    2014-03-01

    Ultrashort pulses are capable of processing practically any material with negligible heat affected zone. Typical pulse durations for industrial applications are situated in the low picosecond-regime. Pulse durations of 5 ps or below are a well established compromise between the electron-phonon interaction time of most materials and the need for pulses long enough to suppress detrimental effects such as nonlinear interaction with the ablated plasma plume. However, sub-picosecond pulses can further increase the ablation efficiency for certain materials, depending on the available average power, pulse energy and peak fluence. Based on the well established TruMicro 5000 platform (first release in 2007, third generation in 2011) an Yb:YAG disk amplifier in combination with a broadband seed laser was used to scale the output power for industrial femtosecond-light sources: We report on a subpicosecond amplifier that delivers a maximum of 160 W of average output power at pulse durations of 750 fs. Optimizing the system for maximum peak power allowed for pulse energies of 850 μJ at pulse durations of 650 fs. Based on this study and the approved design of the TruMicro 5000 product-series, industrygrade, high average power femtosecond-light sources are now available for 24/7 operation. Since their release in May 2013 we were able to increase the average output power of the TruMicro 5000 FemtoEdition from 40 W to 80 W while maintaining pulse durations around 800 fs. First studies on metals reveal a drastic increase of processing speed for some micro processing applications.

  18. Power combining of semiconductor lasers: A review

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1982-01-01

    Several methods of coherent power combining are described and compared. A comparison is also made between coherent and incoherent power combining, and important operational characteristics are considered. It is found that in communication links with demanding requirements coherent power combining is necessary.

  19. Kilowatt average-power laser for subpicosecond materials processing

    NASA Astrophysics Data System (ADS)

    Benson, Stephen V.; Neil, George R.; Bohn, Courtlandt L.; Biallas, George; Douglas, David; Dylla, H. Frederick; Fugitt, Jock; Jordan, Kevin; Krafft, Geoffrey; Merminga, Lia; Preble, Joe; Shinn, Michelle D.; Siggins, Tim; Walker, Richard; Yunn, Byung

    2000-04-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. We present operation results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce approximately 0.7 ps pulses in a continuous train at approximately 75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  20. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  1. Skutterudite Compounds For Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander; Vandersande, Jan

    1996-01-01

    New semiconducting materials with p-type carrier mobility values much higher than state-of-art semiconductors discovered. Nine compounds, antimonides CoSb(sub3), RhSb(sub3), IrSb(sub3), arsenides CoAs(sub3), RhAs(sub3), IrAs(sub3), and phosphides CoP(sub3), RhP(sub3) and IrP(sub3), exhibit same skutterudite crystallographic structure and form solid solutions of general composition Co(1-x-y)RH(x)Ir(y)P(1-w-z)As(w)Sb(z). Materials exhibit high hole mobilities, high doping levels, and high electronic figures of merit. Some compositions show great potential for application to thermoelectric devices.

  2. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  3. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  4. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  5. A new FET-bipolar combinational power semiconductor switch

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Chandrasekaran, S.; Chin, S. A.

    1984-01-01

    A novel FET-BJT combinational transistor configuration is proposed and demonstrated using discrete devices. This new transistor features fast switching, very simple drive requirement, elimination of reverse bias second breakdown, and good utilization of semiconductor chip area. Initial results indicate that power hybrid construction of the device is essential to enhance the current rating of the device.

  6. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhou, G. Tong; Qian, Hua

    2007-12-01

    Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  7. Strategies for Radiation Hardness Testing of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Soltis, James V. (Technical Monitor); Patton, Martin O.; Harris, Richard D.; Rohal, Robert G.; Blue, Thomas E.; Kauffman, Andrew C.; Frasca, Albert J.

    2005-01-01

    Plans on the drawing board for future space missions call for much larger power systems than have been flown in the past. These systems would employ much higher voltages and currents to enable more powerful electric propulsion engines and other improvements on what will also be much larger spacecraft. Long term human outposts on the moon and planets would also require high voltage, high current and long life power sources. Only hundreds of watts are produced and controlled on a typical robotic exploration spacecraft today. Megawatt systems are required for tomorrow. Semiconductor devices used to control and convert electrical energy in large space power systems will be exposed to electromagnetic and particle radiation of many types, depending on the trajectory and duration of the mission and on the power source. It is necessary to understand the often very different effects of the radiations on the control and conversion systems. Power semiconductor test strategies that we have developed and employed will be presented, along with selected results. The early results that we have obtained in testing large power semiconductor devices give a good indication of the degradation in electrical performance that can be expected in response to a given dose. We are also able to highlight differences in radiation hardness that may be device or material specific.

  8. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  9. REVIEW High-power semiconductor separate-confinement double heterostructure lasers

    NASA Astrophysics Data System (ADS)

    Tarasov, I. S.

    2010-10-01

    The review is devoted to high-power semiconductor lasers. Historical reference is presented, physical and technological foundations are considered, and the concept of high-power semiconductor lasers is formulated. Fundamental and technological reasons limiting the optical power of a semiconductor laser are determined. The results of investigations of cw and pulsed high-power semiconductor lasers are presented. Main attention is paid to inspection of the results of experimental studies of single high-power semiconductor lasers. The review is mainly based on the data obtained in the laboratory of semiconductor luminescence and injection emitters at the A.F. Ioffe Physicotechnical Institute.

  10. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  11. Using Bayes Model Averaging for Wind Power Forecasts

    NASA Astrophysics Data System (ADS)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  12. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-08-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  13. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-01-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  14. 100 W average power femtosecond laser at 343 nm.

    PubMed

    Rothhardt, Jan; Rothhardt, Carolin; Müller, Michael; Klenke, Arno; Kienel, Marco; Demmler, Stefan; Elsmann, Tino; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2016-04-15

    We present a femtosecond laser system delivering up to 100 W of average power at 343 nm. The laser system employs a Yb-based femtosecond fiber laser and subsequent second- and third-harmonic generation in beta barium borate (BBO) crystals. Thermal gradients within these BBO crystals are mitigated by sapphire heat spreaders directly bonded to the front and back surface of the crystals. Thus, a nearly diffraction-limited beam quality (M2 < 1.4) is achieved, despite the high thermal load to the nonlinear crystals. This laser source is expected to push many industrial and scientific applications in the future. PMID:27082370

  15. Highly flexible ultrafast laser system with 260W average power

    NASA Astrophysics Data System (ADS)

    Mans, Tl; Dolkemeyer, Jan; Russbüldt, P.; Schnitzler, Claus

    2011-02-01

    A flexible ultrafast laser amplifier system based on Ytterbium Innoslab technology with an average power exceeding 200W is presented. The pulse duration of the system can be continuously tuned between 500fs and 6ps, limited only by the amplification bandwidth of Yb:YAG and the stretcher of the seed source. The repetition rate can be varied from 26.6MHz down to 1MHz. For the ps-regime more than 200μJ and for the fs-regime more than 50μJ are demonstrated without the need of temporal compression of the high power beam after the amplifier. Spectral bandwidth is close to the transform limit of the shortest measured pulses. Beam quality is measured to be near the diffraction limit (M2<1.3).

  16. A high-average-power FEL for industrial applications

    SciTech Connect

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  17. Potential of high-average-power solid state lasers

    SciTech Connect

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  18. The development of a high average power glass laser source

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    1984-05-01

    The subject contract has as its objective the development of a high average power glass laser by systematically improving the factors which influence the ability of a laser glass to handle large power levels. Based upon the availability of the thermal laser glass composition Q-100, the rationale used was toward the improvement of the efficiency of a glass laser by developing methods to increase the pumping efficiency and toward the improvement of the power handling capability of the glass laser rod itself. These incremental developments were broken down as follows: (1) Characterization of Q-100 Laser Glass: The measurement of its thermo-physical and thermo-optical properties to better define its engineering design parameters. (2) Improve Pumping Efficiency or Q-100: Primarily by cladding Q-100 with a matching cladding glass which would act as a lens and improve the transfer of pumping energy from the flashlamp. (3) Reduce thermal loading of Q-100 by Selective filtering of the flashlamp radiation and/or use energy transfer schemes to increase that portion of the flashlamp radiation corresponding to the neodymium pump bands. (4) Increase the rupture strength of Q-100 to directly increase its power-handling capability. (5) Investigate alternate pump sources to improve efficiency.

  19. A high average power electro-optic switch using KTP

    SciTech Connect

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  20. Ultrafast green laser exceeding 400 W of average power

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Russbueldt, Peter; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2014-05-01

    We present the world's first laser at 515 nm with sub-picosecond pulses and an average power of 445 W. To realize this beam source we utilize an Yb:YAG-based infrared laser consisting of a fiber MOPA system as a seed source, a rod-type pre-amplifier and two Innoslab power amplifier stages. The infrared system delivers up to 930 W of average power at repetition rates between 10 and 50 MHz and with pulse durations around 800 fs. The beam quality in the infrared is M2 = 1.1 and 1.5 in fast and slow axis. As a frequency doubler we chose a Type-I critically phase-matched Lithium Triborate (LBO) crystal in a single-pass configuration. To preserve the infrared beam quality and pulse duration, the conversion was carefully modeled using numerical calculations. These take dispersion-related and thermal effects into account, thus enabling us to provide precise predictions of the properties of the frequency-doubled beam. To be able to model the influence of thermal dephasing correctly and to choose appropriate crystals accordingly, we performed extensive absorption measurements of all crystals used for conversion experiments. These measurements provide the input data for the thermal FEM analysis and calculation. We used a Photothermal Commonpath Interferometer (PCI) to obtain space-resolved absorption data in the bulk and at the surfaces of the LBO crystals. The absorption was measured at 1030 nm as well as at 515 nm in order to take into account the different absorption behavior at both occurring wavelengths.

  1. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  2. Cosmic Ray Ruggedness of Power Semiconductor Devices for Hybrid Vehicles

    NASA Astrophysics Data System (ADS)

    Nishida, Shuichi; Shoji, Tomoyuki; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Ishiko, Masayasu; Hamada, Kimimori

    Power semiconductors that are used under high voltage conditions in hybrid vehicles (HVs) are required to have a high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, the failure mechanism for single event burnouts (SEB) induced by cosmic rays in insulated gate bipolar transistors (IGBTs) was investigated. Device destruction tolerance can be greatly improved by adopting an optimized device design that greatly suppresses parasitic thyristor action.

  3. A structurally-controllable spin filter in a δ-doped magnetically modulated semiconductor nanostructure with zero average magnetic field

    NASA Astrophysics Data System (ADS)

    Shen, Li-Hua; Ma, Wen-Yue; Zhang, Gui-Lian; Yang, Shi-Peng

    2015-07-01

    We report on a theoretical investigation of spin-polarized transport in a δ-doped magnetically modulated semiconductor nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a semiconductor heterostructure and by using the atomic layer doping technique such as molecular beam epitaxy (MBE). It is shown that although such a nanostructure has a zero average magnetic filed, a sizable spin polarization exists due to the Zeeman splitting mechanism. It is also shown that the degree of spin polarization varies sensitively with the weight and/or position of the δ-doping. Therefore, one can conveniently tailor the behaviour of the spin-polarized electron by tuning the δ -doping, and such a device can be employed as a controllable spin filter for spintronics.

  4. High Average Power Nd:YAG Slab Laser

    NASA Astrophysics Data System (ADS)

    Kasai, Takeshi; Sindo, Yoshihiko; Haga, Keiji

    1989-07-01

    A slab geometry Nd:YAG laser with a zigzag optical path is described. The dimensions of the Nd:YAG slab are 5.6 x 18.4 x 153.9 mm, and Nei' ion concentration is 1.1 at.%. Two krypton flashlamps, one located on each side of the YAG slab, are used for pumping. The conditions for normal pulsed operation were as follows: the repetition rate was from 5 to 27 pps, and the pulse durations were 4 and 9.9 ms. With the above conditions, a maximum average output power of 500 W was obtained with an efficiency of 2 %, the slope efficiency being 2.4 %. The beam divergence was estimated to be 10x25 mrad. The stability of the laser output power was about +/-1.5 %. Another oscillator that includes intra-cavity cylindrical lenses, was also designed. Using this resonator configuration reduced the beam divergence to about 7.6 x8.2 mrad. The preliminary laser processing experiment was attemped using this laser oscillator.

  5. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  6. Power scaling of semiconductor laser pumped Praseodymium-lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Heumann, E.; Huber, G.; Ostroumov, V.; Seelert, W.

    2007-04-01

    We report on efficient lasing of Pr-doped fluoride materials with cw output powers up to 600 mW in the visible spectral range. Praseodymium doped LiYF4 and LiLuF4 crystals were pumped either by an intracavity frequency doubled optically pumped semiconductor laser with output powers up to 1.6 W and nearly diffraction limited beam quality or by a multimode GaN-laser diode with an output power of about 370 mW. Furthermore, intracavity frequency doubling of the red Pr-laser radiation to 320 nm reaching output powers of more than 360 mW with a conversion efficiency of 61% and an optical-to-optical efficiency of 22% are presented.

  7. Metal deep engraving with high average power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Faucon, M.; Mincuzzi, G.; Morin, F.; Hönninger, C.; Mottay, E.; Kling, R.

    2015-03-01

    Deep engraving of 3D textures is a very demanding process for the creation of master tool e. g molds, forming tools or coining dies. As these masters are uses for reproduction of 3D patterns the materials for the tools are typically hard and brittle and thus difficult to machine. The new generation of industrial femtosecond lasers provides both high accuracy engraving results and high ablation rates at the same time. Operation at pulse energies of typically 40 μJ and repetition rates in the Mhz range the detrimental effect of heat accumulation has to be avoided. Therefore high scanning speeds are required to reduce the pulse overlap below 90%. As a consequence scan speeds in the range of 25-50 m/s a needed, which is beyond the capability of galvo scanners. In this paper we present results using a combination of a polygon scanner with a high average power femtosecond laser and compare this to results with conventional scanners. The effects of pulse energy and scan speed of the head on geometrical accuracy are discussed. The quality of the obtained structures is analyzed by means of 3D surface metrology microscope as well as SEM images.

  8. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  9. Thermoelectric Power and ZT in Conducting Organic Semiconductor

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2012-03-01

    A recent report on poly(3,4-ethylenedioxythiophene-tosylate) (PEDOT.Tos) suggested that the thermoelectric figure of merit ( ZT) could be enhanced when the percentage oxidation was chemically altered. This invokes the question of whether the carrier density or the mobility was modified. In this work, we analyzed data reported by Bibnova et al. ( Nat. Mater. 10, 429, 2011) and extracted the transport parameters using three-dimensional (3D) and two-dimensional (2D) models. Our results indicate that the increase in the power factor ( S 2 σ) was due primarily to upward extension in the range of thermoelectric power. A changeover from lattice scattering to ionized impurity scattering in PEDOT.Tos allowed the equation governing the thermoelectric power to be valid at higher carrier densities, resulting in an increase in the power factor. ZT was also enhanced in PEDOT.Tos due to the low intrinsic thermal conductivity (~0.37 W/m K). The peak value of ZT (~0.3) was found close to the regime where the semiconductor turned "metallic," beyond which ZT would decrease. We are of the opinion that charge-to-charge scattering (which normally would lower the power factor in highly doped semiconductors) remain subdued in PEDOT.Tos due potentially to electronic screening and a lack of long-range order. We used the reported data to compute the carrier density and mobility assuming ionized impurity scattering and found the peak power factor to occur for carrier density of ~1 × 1026 m-3 and mobility of ~5 × 10-4 m2/V s.

  10. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  11. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    NASA Technical Reports Server (NTRS)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  12. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen T.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-07-01

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ , bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  13. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    PubMed

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones. PMID:27472126

  14. High power semiconductor disk laser with a semiconductor-dielectric-metal compound mirror

    NASA Astrophysics Data System (ADS)

    Rantamäki, A.; Saarinen, E. J.; Lyytikäinen, J.; Lahtonen, K.; Valden, M.; Okhotnikov, O. G.

    2014-03-01

    We present optically pumped semiconductor disk lasers with a thin dielectric layer placed between the semiconductor distributed Bragg reflector and the metallization interface. The approach is shown to enhance the reflectivity of the semiconductor mirror while introducing a negligible penalty to the thermal resistance of the device. The design has potential for improving the performance of semiconductor disk lasers by avoiding highly pump-absorbing metal layers and allowing thinner mirror structures. The advantages are expected to be especially prominent for material systems that employ thick thermally insulating semiconductor mirrors.

  15. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  16. Power-scalable 1.57 microm mode-locked semiconductor disk laser using wafer fusion.

    PubMed

    Saarinen, Esa J; Puustinen, Janne; Sirbu, Alexei; Mereuta, Alexandru; Caliman, Andrei; Kapon, Eli; Okhotnikov, Oleg G

    2009-10-15

    We report the first (to our knowledge) wafer-fused high-power passively mode-locked semiconductor disk laser operating at 1.57 microm wavelength. An InP-based active medium was fused with GaAs/AlGaAs distributed Bragg reflector on a 2 inch wafer level, resulting in an integrated monolithic gain mirror. An intracavity wedged diamond heat-spreader capillary bonded to the gain chip provides efficient heat removal from the gain structure without disturbing the spectrum of the mode-locked laser. The laser produces over 0.6 W of average output power at 15 degrees C with 16 ps pulse width. The total output power accounting for all output beams emerging from the cavity was 0.86 W. The results reveal an essential advantage of wafer fusion processing of disparate materials over monolithically grown InP-based gain structures and demonstrate the high potential of this technique for power scaling of long-wavelength semiconductor disk lasers. PMID:19838252

  17. High Average Power Lasers for the Photon Collider

    SciTech Connect

    Stuart, B; Gronberg, J; Seryi, A

    2009-04-29

    The idea to convert an electron collider into a high energy photon collider has existed for several decades. A key technological limitation to realizing this idea is the need to create a large amount of laser power to drive the Compton back-scattering. A concept to reduce the required laser power using a recirculating cavity has been proposed. We describe a concept for a laser architecture that could drive such a cavity.

  18. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  19. Modeling and simulation of bulk gallium nitride power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sabui, G.; Parbrook, P. J.; Arredondo-Arechavala, M.; Shen, Z. J.

    2016-05-01

    Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  20. A Methodology for Measuring Strain in Power Semiconductors

    NASA Astrophysics Data System (ADS)

    Avery, Seth M.

    The objective of this work is to develop a strain measurement methodology for use in power electronics during electrical operation; such that strain models can be developed and used as the basis of an active strain controller---improving the reliability of power electronics modules. This research involves developing electronic speckle pattern interferometry (ESPI) into a technology capable of measuring thermal-mechanical strain in electrically active power semiconductors. ESPI is a non-contact optical technique capable of high resolution (approx. 10 nm) surface displacement measurements. This work has developed a 3-D ESPI test stand, where simultaneous in- and out-of-plane measured components are combined to accurately determine full-field surface displacement. Two cameras are used to capture both local (interconnect level) displacements and strains, and global (device level) displacements. Methods have been developed to enable strain measurements of larger loads, while avoiding speckle decorrelation (which limits ESPI measurement of large deformations). A method of extracting strain estimates directly from unfiltered and wrapped phase maps has been developed, simplifying data analysis. Experimental noise measurements are made and used to develop optimal filtering using model-based tracking and determined strain noise characteristics. The experimental results of this work are strain measurements made on the surface of a leadframe of an electrically active IGBT. A model-based tracking technique has been developed to allow for the optimal strain solution to be extracted from noisy displacement results. Also, an experimentally validated thermal-mechanical FE strain model has been developed. The results of this work demonstrate that in situ strain measurements in power devices are feasible. Using the procedures developed in the work, strain measurements at critical locations of strain, which limit device reliability, at relevant power levels can be completed.

  1. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  2. Optimizing average power in low quantum defect lasers.

    PubMed

    Bowman, S R

    2015-11-01

    Waste heat generation is a generic problem in high-power solid-state laser systems. One way to reduce heat loading while improving efficiency is to reduce the laser's quantum defect. This paper presents a simple analysis of low quantum defect laser materials. In these laser materials, the effects of fluorescent cooling and weak loss processes should not be ignored. Simple expressions are developed for efficiency and heating in a steady-state purely radiative material. These expressions are then extended to include weak losses and fluorescence reabsorption. Evaluation of these relations using ytterbium-doped YAG is used to illustrate several optimization schemes and the impact of realistic losses. PMID:26560625

  3. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, Jeff; Stuart, Brent; Seryi, Andrei; /SLAC

    2012-07-05

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system.

  4. Borogermanate glasses for Faraday isolators at high average power

    NASA Astrophysics Data System (ADS)

    Starobor, A. V.; Zheleznov, D. S.; Palashov, O. V.; Savinkov, V. I.; Sigaev, V. N.

    2016-01-01

    The temperature dependence of Verdet constant and thermo-optical characteristics of a new magneto-optical borogermanate glass has been investigated. The performed analysis confirmed a possibility of developing a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, providing a 25 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the power of 0.4 kW and 1.3 kW, respectively, which is a leading-edge result for magneto-optical glasses.

  5. Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser.

    PubMed

    Goldberg, L; Kliner, D A

    1995-05-15

    Tunable UV radiation near 215 nm was produced by frequency quadrupling the 860-nm emission of a mode-locked external-cavity compound semiconductor laser containing a tapered GaAlAs amplifier. A KNbO(3) crystal generated the 430-nm second harmonic, which was doubled by a beta-BaB(2)O(4) crystal, producing tunable UV radiation with as much as 15 microW of average power. PMID:19859453

  6. Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser

    SciTech Connect

    Goldberg, L.; Kliner, D.A.V.

    1995-05-15

    Tunable UV radiation near 215 nm was produced by frequency quadrupling the 860-nm emission of a mode-locked external-cavity compound semiconductor laser containing a tapered GaAlAs amplifier. A KNbO{sub 3} crystal generated the 430-nm second harmonic, which was doubled by a {beta}-BaB{sub 2}O{sub 4} crystal, producing tunable UV radiation with as much as 15 {mu}W of average power.

  7. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  8. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  9. Method and system for powering and cooling semiconductor lasers

    SciTech Connect

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  10. Application of copper-carbon fiber composites to power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Sakaue, Tadashi; Minorikawa, Hitoshi; Akeyama, Kenji; Sakamoto, Tatsuji

    1988-01-01

    Copper-carbon composite electrodes are used in a series of power semiconductor devices, i.e., resin molded diodes, button-type diodes, stud-type diodes, power modules, and integrated circuit igniter modules. The properties of these power semiconductor devices compare favorably with those conventional devices using Mo or W electrodes. In thermal fatigue tests, no degradation in the electrical and mechanical characteristics of these devices are observed. The new composite electrode with carbon fibers satisfies all of the major requirements for the electrodes in power semiconductor devices.

  11. High average power lasers for future particle accelerators

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Crane, John K.; Messerly, Michael J.; Prantil, Matthew A.; Pax, Paul H.; Sridharan, Arun K.; Allen, Graham S.; Drachenberg, Derrek R.; Phan, Henry H.; Heebner, John E.; Ebbers, Christopher A.; Beach, Raymond J.; Hartouni, Edward P.; Siders, Craig W.; Spinka, Thomas M.; Barty, C. P. J.; Bayramian, Andrew J.; Haefner, Leon C.; Albert, Felicie; Lowdermilk, W. Howard; Rubenchik, Alexander M.; Bonanno, Regina E.

    2012-12-01

    Lasers are of increasing interest to the accelerator community and include applications as diverse as stripping electrons from hydrogen atoms, sources for Compton scattering, efficient high repetition rate lasers for dielectric laser acceleration, peta-watt peak power lasers for laser wake field and high energy, short pulse lasers for proton and ion beam therapy. The laser requirements for these applications are briefly surveyed. State of the art of laser technologies with the potential to eventually meet those requirements are reviewed. These technologies include diode pumped solid state lasers (including cryogenic), fiber lasers, OPCPA based lasers and Ti:Sapphire lasers. Strengths and weakness of the various technologies are discussed along with the most important issues to address to get from the current state of the art to the performance needed for the accelerator applications. Efficiency issues are considered in detail as in most cases the system efficiency is a valuable indicator of the actual ability of a given technology to deliver the application requirements.

  12. Scalability of components for kW-level average power few-cycle lasers.

    PubMed

    Hädrich, Steffen; Rothhardt, Jan; Demmler, Stefan; Tschernajew, Maxim; Hoffmann, Armin; Krebs, Manuel; Liem, Andreas; de Vries, Oliver; Plötner, Marco; Fabian, Simone; Schreiber, Thomas; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    In this paper, the average power scalability of components that can be used for intense few-cycle lasers based on nonlinear compression of modern femtosecond solid-state lasers is investigated. The key components of such a setup, namely, the gas-filled waveguides, laser windows, chirped mirrors for pulse compression and low dispersion mirrors for beam collimation, focusing, and beam steering are tested under high-average-power operation using a kilowatt cw laser. We demonstrate the long-term stable transmission of kW-level average power through a hollow capillary and a Kagome-type photonic crystal fiber. In addition, we show that sapphire substrates significantly improve the average power capability of metal-coated mirrors. Ultimately, ultrabroadband dielectric mirrors show negligible heating up to 1 kW of average power. In summary, a technology for scaling of few-cycle lasers up to 1 kW of average power and beyond is presented. PMID:26974623

  13. Improved low-power semiconductor diode lasers for photodynamic therapy in veterinary medicine

    NASA Astrophysics Data System (ADS)

    Lee, Susanne M.; Mueller, Eduard K.; Van de Workeen, Brian C.; Mueller, Otward M.

    2001-05-01

    Cryogenically cooling semiconductor diode lasers provides higher power output, longer device lifetime, and greater monochromaticity. While these effects are well known, such improvements have not been quantified, and thus cryogenically operated semiconductor lasers have not been utilized in photodynamic therapy (PDT). We report quantification of these results from laser power meter and photospectrometer data. The emission wavelengths of these low power multiple quantum well semiconductor lasers were found to decrease and become more monochromatic with decreasing temperature. Significant power output improvements also were obtained at cryogenic temperatures. In addition, the threshold current, i.e. the current at which lasing begins, decreased with decreasing temperature. This lower threshold current combined with the increased power output produced dramatically higher device efficiencies. It is proposed that cryogenic operation of semiconductor diode lasers will reduce the number of devices needed to produce the requisite output for many veterinary and medical applications, permitting significant cost reductions.

  14. Thermoelectric power of small polarons in magnetic semiconductors

    SciTech Connect

    Liu, N.H.; Emin, D.

    1984-09-15

    The thermoelectric power (Seebeck coefficient) ..cap alpha.. of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qT..cap alpha.., where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2.

  15. An optically-triggered semiconductor switch for high power laser beams

    SciTech Connect

    Chow, Weng W.; Warren, M.E.

    1995-04-01

    The work involves research leading to an optically triggered switch for a high power laser pulse. The switch uses a semiconductor heterostructure whose optical properties are modified by a low power laser trigger such as a laser diode. Potential applications include optical control of pulsed power systems, control of medical lasers and implementation of security features in optical warhead architectures.

  16. Demonstration of a 10 kW average power 94 GHz gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Blank, M.; Danly, B. G.; Levush, B.; Calame, J. P.; Nguyen, K.; Pershing, D.; Petillo, J.; Hargreaves, T. A.; True, R. B.; Theiss, A. J.; Good, G. R.; Felch, K.; James, B. G.; Borchard, P.; Cahalan, P.; Chu, T. S.; Jory, H.; Lawson, W. G.; Antonsen, T. M.

    1999-12-01

    The experimental demonstration of a high average power W-band (75-110 GHz) gyroklystron amplifier is reported. The gyroklystron has produced 118 AW peak output power and 29.5% electronic efficiency in the TE011 mode using a 66.7 kV, 6 A electron beam at 0.2% rf duty factor. At this operating point, the instantaneous full width at half-maximum (FWHM) bandwidth is 600 MHz. At 11% rf duty factor, the gyroklystron has produced up to 10.1 kW average power at 33% electronic efficiency with a 66 kV, 4.15 A electron beam. This represents world record performance for an amplifier at this frequency. At the 10.1 kW average power operating point, the FWHM bandwidth is 420 MHz. At higher magnetic fields and lower beam voltages, larger bandwidths can be achieved at the expense of peak and average output power.

  17. Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Bauer, Friedhelm D.

    2009-06-01

    A new, simple and efficient approach is presented to conduct estimations of the cosmic ray induced failure rate for high voltage silicon power devices early in the design phase. This allows combining common design issues such as device losses and safe operating area with the constraints imposed by the reliability to result in a better and overall more efficient design methodology. Starting from an experimental and theoretical background brought forth a few yeas ago [Kabza H et al. Cosmic radiation as a cause for power device failure and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 9-12, Zeller HR. Cosmic ray induced breakdown in high voltage semiconductor devices, microscopic model and possible countermeasures. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 339-40, and Matsuda H et al. Analysis of GTO failure mode during d.c. blocking. In: Proceedings of the sixth international symposium on power semiconductor devices and IC's, Davos, Switzerland; 1994. p. 221-5], an exact solution of the failure rate integral is derived and presented in a form which lends itself to be combined with the results available from commercial semiconductor simulation tools. Hence, failure rate integrals can be obtained with relative ease for realistic two- and even three-dimensional semiconductor geometries. Two case studies relating to IGBT cell design and planar junction termination layout demonstrate the purpose of the method.

  18. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  19. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  20. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    SciTech Connect

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from the EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.

  1. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  2. Technical options for high average power free electron milimeter-wave and laser devices

    NASA Technical Reports Server (NTRS)

    Swingle, James C.

    1989-01-01

    Many of the potential space power beaming applications require the generation of directed energy beams with respectable amounts of average power (MWs). A tutorial summary is provided here on recent advances in the laboratory aimed at producing direct conversion of electrical energy to electromagnetic radiation over a wide spectral regime from microwaves to the ultraviolet.

  3. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    PubMed Central

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-01-01

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor F ≈ 0.32 ± 0.08 for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels. PMID:25105551

  4. High-average-power operation of a pulsed Raman fiber amplifier at 1686 nm.

    PubMed

    Yao, Weichao; Chen, Bihui; Zhang, Jianing; Zhao, Yongguang; Chen, Hao; Shen, Deyuan

    2015-05-01

    We report on high-average-power operation of a pulsed Raman fiber amplifier at ~1686 nm which cannot be covered by rare-earth-doped fiber lasers. The Raman fiber amplifier was pumped by a home-made 1565.2 nm Q-switched Er,Yb fiber laser and worked at a repetition frequency of 184 kHz. With 0.8 km Raman fiber, 4.4 W of average output power at the 1st order Stokes wavelength of 1686.5 nm was obtained for launched pump power of 16.2 W, corresponding to an optical-to-optical conversion efficiency of 27.2%. Further increasing the pump power, high-order Stokes waves grew gradually, resulting in a total output power of 6.7 W at the 19.2 W launched pump power. PMID:25969195

  5. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  6. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  7. Transparent ceramic photo-optical semiconductor high power switches

    DOEpatents

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  8. Power conversion efficiency of semiconductor injection lasers and laser arrays in CW operation

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    The problem of optimizing power conversion efficiency of semiconductor lasers and laser arrays and minimizing efficiency degradation due to temperature effects is treated. A method for calculating this efficiency is described and some calculated results are presented and discussed. Under some conditions, a small increase in the thermal resistance of the device can result in a large reduction of its efficiency. Temperature effects are important in high-power semiconductor laser, and in particular in laser arrays, where low thermal resistance heat sinking may be crucial to the device operation.

  9. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect

    2010-09-01

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  10. Dynamic Power Management for Sensor Node in WSN Using Average Reward MDP

    NASA Astrophysics Data System (ADS)

    Kianpisheh, Somayeh; Charkari, Nasrolah Moghadam

    Reducing energy consumption is one of the key challenges in sensor networks. One technique to reduce energy consumption is dynamic power management. In this paper we model power management problem in a sensor node as an average reward Markov Decision Process and solve it using dynamic programming. We achieve an optimal policy that maximizes long-term average of utility per energy consumption. Simulation results show our approach has the ability of reaching to the same amount of utility as always on policy while consuming less energy than always on policy.

  11. High average power parametric frequency conversion-new concepts and new pump sources

    SciTech Connect

    Velsko, S.P.; Webb, M.S.

    1994-03-01

    A number of applications, including long range remote sensing and antisensor technology, require high average power tunable radiation in several distinct spectral regions. Of the many issues which determine the deployability of optical parametric oscillators (OPOS) and related systems, efficiency and simplicity are among the most important. It is only recently that the advent of compact diode laser pumped solid state lasers has produced pump sources for parametric oscillators which can make compact, efficient, high average power tunable sources possible. In this paper we outline several different issues in parametric oscillator and pump laser development which are currently under study at Lawrence Livermore National Laboratory.

  12. High-average-power 100-Hz repetition rate table-top soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Reagan, Brendan A.; Wernsing, Keith; Wang, Yong; Yin, Liang; Wang, Shoujun; Berrill, Mark; Woolston, Mark R.; Curtis, Alden H.; Furch, Federico J. A.; Shlyaptsev, Vyacheslav N.; Luther, Brad M.; Patel, Dinesh; Marconi, Mario C.; Menoni, Carmen S.

    2013-09-01

    The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.

  13. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the area of crystal growth and device fabrication technology. High quality of single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  14. Silicon carbide, a semiconductor for space power electronics

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Matus, Lawrence G.

    1991-01-01

    After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.

  15. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  16. Magnetic hysteresis curve influenced by power-semiconductor characteristics in pulse-width-modulation inverter

    NASA Astrophysics Data System (ADS)

    Fujisaki, Keisuke; Liu, Sungju

    2014-05-01

    The influence of power semiconductor characteristic in Pulse-width-modulation (PWM) inverter on the magnetic hysteresis curve in silicon steel is discussed through the measured magnetic hysteresis curves. The magnetic hysteresis curve of PWM inverter-fed silicon steel has a lot of minor loops as closed loops and open loops, which make an influence on the iron loss. Two shapes of minor loops are found to be caused by the voltage shifts and they are derived from the on-voltage of the semiconductors in PWM inverter circuit. Therefore, it is concluded that the power-semiconductor characteristic in PWM inverter makes an influence on the magnetic hysteresis curve in silicon steel.

  17. Megawatt-scale average-power ultrashort pulses in an enhancement cavity.

    PubMed

    Carstens, H; Lilienfein, N; Holzberger, S; Jocher, C; Eidam, T; Limpert, J; Tünnermann, A; Weitenberg, J; Yost, D C; Alghamdi, A; Alahmed, Z; Azzeer, A; Apolonski, A; Fill, E; Krausz, F; Pupeza, I

    2014-05-01

    We investigate power scaling of ultrashort-pulse enhancement cavities. We propose a model for the sensitivity of a cavity design to thermal deformations of the mirrors due to the high circulating powers. Using this model and optimized cavity mirrors, we demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz. These results represent an average power improvement of one order of magnitude compared to state-of-the-art systems with similar pulse durations and will thus benefit numerous applications such as the further scaling of tabletop sources of hard x rays (via Thomson scattering of relativistic electrons) and of soft x rays (via high harmonic generation). PMID:24784054

  18. High average power quasi-CW single-mode green and UV fiber lasers

    NASA Astrophysics Data System (ADS)

    Avdokhin, Alexey; Gapontsev, Valentin; Kadwani, Pankaj; Vaupel, Andreas; Samartsev, Igor; Platonov, Nicholai; Yusim, Alex; Myasnikov, Daniil

    2015-02-01

    Kilowatt-level narrow-linewidth SM ytterbium fiber laser operating in high-repetition-rate QCW regime was used to obtain 700 W average power at 532 nm with single-mode beam quality and wall-plug efficiency of over 23 %. To the best of our knowledge, this is ~60 % higher power than previously reported for single-mode green lasers based on other platforms, and also is ~30 % increase comparing to the previous result obtained by our group on the base of similar fiber laser platform. We have also experimentally proved that the same type of fiber laser can be used for generating of world-record levels of power at other wavelengths of visible and UV spectral ranges by employing cascaded non-linear frequency conversion. Thus, utilizing frequency tripling in 2 LBO crystals, we achieved over 160 W average power of nearly single-mode UV light at 355 nm with THG efficiency of more than 25 %. As far as we know, this is the highest output power ever reported for UV laser with nearly diffraction limited beam quality. We also conducted some preliminary experiments to demonstrate suitability of our approach for generating longer wavelengths of the visible spectrum. By pre-shifting fundamental emission wavelength in fiber Raman converter, followed by frequency doubling in NCPM LBO, we obtained average powers of 36 W at 589 nm and 27 W at 615 nm. These proof-of-concept experiments were performed with low-power pump laser and were not fully optimized with respect to frequency conversion. Our analysis indicates that employing kW-level QCW ytterbium laser with optimized SRS and SHG converters we can achieve hundreds of Watts of average power in red and orange color with single-mode beam quality.

  19. Optical design and performance of the amplifier stage for the average power laser experiment

    NASA Astrophysics Data System (ADS)

    Quimby, D. C.; Parazzoli, C. G.; Pistoresi, D. J.

    1992-07-01

    Boeing, in collaboration with Los Alamos and STI Optronics, is embarking on a program to build and operate the Average Power Laser Experiment (APLE) to demonstrate the high power capability of free-electron lasers at a wavelength of 10 μm. The experiment utilizes the single-accelerator, master-oscillator, power-amplifier (SAMOPA) approach. The performance of the power amplifier stage, as calculated by the time-dependent 3D FELEX code, is presented. The SAMOPA concept has important advantages in terms of excellent electron trapping fraction and remarkable insensitivity to slippage, input optical power, and detuning from resonance, but key requirements are placed on the e-beam peak current and emittance and on the allowable induced energy spread in the oscillator stage. Optical design tradeoffs between strong guiding and power extraction are described and a complete evaluation of the performance sensitivity to various error sources and misalignments is presented.

  20. Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Kowalewski, K.; Envid, V.; Zembek, J.; Canale, B.; Kolis, J. W.; McMillen, C. D.; Geisber, H.

    2012-06-01

    Cryogenic Yb:YAG lasers operating at 1029 nm have been demonstrated at Snake Creek Lasers with high average power CW and ultrafast output powers, and provide near diffraction-limited output beams that are ideal for applications in harmonic generation. We describe experiments that have produced high average power green output power at 515 nm as well as preliminary experiments producing UV output power at 257.25 nm. Frequency doubling experiments used a 20 mm long non-critically phase-matched LBO crystal mounted in a constant temperature oven. A mode-locked Yb fiber laser operating at 50 MHz was used to drive a two Yb:YAG cryogenic amplifier system, producing hundreds of watts of average power output with a FWHM pulsewidth of 12 ps. Doubling efficiencies of > 50 % have been observed. For frequency quadrupling, we have used hydrothermally grown KTTP crystals grown at Clemson University and Advanced Photonic Crystals. KBBF offers unprecedented UV transmission down to 155 nm, and was used in a Type I phasematching configuration. The properties of KBBF will be discussed, as well as the experimental results observed and conversion efficiency.

  1. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  2. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.

    PubMed

    Alexander, Nathan S; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S; Palczewski, Krzysztof

    2016-07-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)]. PMID:27446697

  3. GENERATION OF HIGH-AVERAGE-POWER ULTRABROAD-BAND INFRARED PULSES

    EPA Science Inventory

    This paper summarizes the results of analytical and numerical studies on a novel technique that is capable of providing high average power ultra broadband radiation that extends from approximately 2 to 16 m. Such a spectrum has several potential applications, including telecommu...

  4. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  5. Image registration and averaging of low laser power two-photon fluorescence images of mouse retina

    PubMed Central

    Alexander, Nathan S.; Palczewska, Grazyna; Stremplewski, Patrycjusz; Wojtkowski, Maciej; Kern, Timothy S.; Palczewski, Krzysztof

    2016-01-01

    Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [PalczewskaG., Nat Med. 20, 785 (2014)24952647 SharmaR., Biomed. Opt. Express 4, 1285 (2013)24009992]. PMID:27446697

  6. Gain measurements and average power capabilities of Cr(3+): LiSrAlF6

    NASA Astrophysics Data System (ADS)

    Hanson, F.; Bendall, C.; Poirier, P.

    1993-09-01

    Long wavelength operation of Cr:LiSrAlF6 is reported. The problem of thermal fracture effectively limits flash-lamp-pumped rod geometries to lower repetition rates. Thin face-pumped slabs allow higher average power capability, but peak gain could be limited by upconversion losses.

  7. Bessel integrals in epsilon expansion: Squared spherical Bessel functions averaged with Gaussian power-law distributions

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-12-01

    Bessel integrals of type {int_0^infty {k^{μ+2}{e}^{-ak2-(b+{i} ω)k}j_l^{2} (pk)dk}} are studied, where the squared spherical Bessel function j {/l 2} is averaged with a modulated Gaussian power-law density. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. The averages can be calculated in closed form as finite Hankel series, which allow high-precision evaluation. In the case of integer power-law exponents μ, singularities emerge in the series coefficients, which requires ɛ expansion. The pole extraction and regularization of singular Hankel series is performed, for integer Gaussian power-law densities as well as for the special case of Kummer averages (a = 0 in the exponential of the integrand). The singular ɛ residuals are used to derive combinatorial identities (sum rules) for the rational Hankel coefficients, which serve as consistency checks in precision calculations of the integrals. Numerical examples are given, and the Hankel evaluation of Gaussian and Kummer averages is compared with their high-index Airy approximation over a wide range of integer Bessel indices l.

  8. The LUCIA project: a high average power ytterbium diode pumped solid state laser chain

    NASA Astrophysics Data System (ADS)

    Bourdet, Gilbert L.; Chanteloup, Jean-Christophe; Fulop, A.; Julien, Y.; Migus, Arnold

    2004-04-01

    With the goal to set up a high average power Diode Pumped Solid State Laser (100 Joules/10 Hz/10 ns), the Laboratory for Use of Intense Laser (LULI) is now studying various solutions concerning the amplifier medium, the cooling, the pumping and the extraction architectures. In this paper, we present the last states of these developments and the solutions already chosen.

  9. Estimating ensemble average power delivered by a piezoelectric patch actuator to a non-deterministic subsystem

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Wahid, Azni N.; Nor, Khairul A. M.

    2014-02-01

    Engineering systems such as aircraft, ships and automotive are considered built-up structures. Dynamically they are taught of as being fabricated from many components that are classified as 'deterministic subsystems' (DS) and 'non-deterministic subsystems' (Non-DS). Structures' response of the DS is deterministic in nature and analysed using deterministic modelling methods such as finite element (FE) method. The response of Non-DS is statistical in nature and estimated using statistical modelling technique such as statistical energy analysis (SEA). SEA method uses power balance equation, in which any external input to the subsystem must be represented in terms of power. Often, input force is taken as point force and ensemble average power delivered by point force is already well-established. However, the external input can also be applied in the form of moments exerted by a piezoelectric (PZT) patch actuator. In order to be able to apply SEA method for input moments, a mathematical representation for moment generated by PZT patch in the form of average power is needed, which is attempted in this paper. A simply-supported plate with attached PZT patch is taken as a benchmark model. Analytical solution to estimate average power is derived using mobility approach. Ensemble average of power given by the PZT patch actuator to the benchmark model when subjected to structural uncertainties is also simulated using Lagrangian method and FEA software. The analytical estimation is compared with the Lagrangian model and FE method for validation. The effects of size and location of the PZT actuators on the power delivered to the plate are later investigated.

  10. High average power of Q-switched Tm:YAG slab laser

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Liu, Pian; Liu, Xuan; Huang, Haitao; Yao, Weichao; Shen, Deyuan

    2016-08-01

    A laser-diode end-pumped Tm:YAG single crystal slab laser in acousto-optic Q-switched operation was demonstrated. For Q-switched operation, the average output power of 20.7 W at 1 kHz was achieved under the absorbed pump power of 83.6 W, corresponding to the slope efficiency of 36.1%, the shortest pulse width of 84 ns and the maximum pulse energy of 20.7 mJ with peak power of 250 kW were obtained.

  11. Nature of the Thermoelectric Power in Bipolar Semiconductors

    NASA Astrophysics Data System (ADS)

    Titov, O. Yu; Bulat, L. P.; Gurevich, Yu. G.

    2016-08-01

    Thermoelectricity increasingly draws the attention of researchers because it can provide us with methods to generate environmentally clean energy and solid-state cooling. However, some problems in thermoelectricity's physics remain unsolved. In this paper, a new approach to thermoelectric phenomena is presented, one that uses a linear description of the nonequilibrium charge carrier transport. The role of nonequilibrium carriers of both surface and bulk recombination processes has been shown to be crucial even within the linear approximation. Electron and hole quasi-Fermi levels originated from the thermal field are explicitly obtained in the case of a thermoelectric current flowing through an external circuit; the necessary corresponding boundary conditions are obtained. For the first time, it is shown that the quasi-Fermi level of one of the carriers can be a nonmonotonous function of spatial coordinates. General expressions for the thermoelectric current, the thermo-electromotive force (thermo-emf), and the electrical resistance of bipolar semiconductors have been obtained. Also for the first time, the influence of both surface recombination and surface resistance in thermoelectric phenomena was taken into account.

  12. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    SciTech Connect

    Neau, E.L.

    1994-09-01

    Short-pulse accelerator technology developed during the early 1960`s through the late 1980`s is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm{sup 2}. Similar high average power technology is being used at {le} 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100`s of cm{sup 2}.

  13. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    PubMed

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system. PMID:23037392

  14. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  15. Electron-beam and high speed optical diagnostics for the Average Power Laser Experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; McVey, B. D.; Greegor, R. B.; Dowell, D. H.

    The Average Power Laser Experiment (APLE) program is a collaboration of Boeing and Los Alamos to build a free-electron laser (FEL) operating at a wavelength of 10 microns and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to the simulations of the expected electron beam properties, diagnostic plans have been developed for the low-duty and the 25 percent-duty operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near infrared light (optical transition radiation, Cerenkov radiation, synchrotron radiation, and spontaneous emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  16. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  17. Techniques for increasing output power from mode-locked semiconductor lasers

    SciTech Connect

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  18. Measurement of the absorption of nonlinear crystals used for high-average-power frequency doubling

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Seidel, Stefan

    1997-07-01

    The absorption coefficients of nonlinear crystals for fundamental and second harmonic wave are of great importance for high average power second harmonic generation. A practical method to measure low absorption coefficients for high average power second harmonic generation. A practical method to measure low absorption coefficients is to use an interferometric laser calorimeter with high power lasers. Therefore Q-switched Nd:YAG laser systems with intracavity second harmonic generation are used. The measurements are made with optical powers up to 300 W and 45 W, respectively. Because of the high power, the resolution limit for the absorption coefficients is 0.001 percent/cm. The absorption coefficients of KTP and LBO crystals of different manufacturers are determined. The results are used for a numerical model which takes into account the decrease of conversion efficiency due to thermal effects caused by the absorption of laser power in the nonlinear crystal. This model describes saturation effects which appear in the range of 100 W in the green using a KTP crystal. A new idea for compensation of thermal effects will be presented.

  19. High-average-power actively-mode-locked Tm3+ fiber lasers

    NASA Astrophysics Data System (ADS)

    Eckerle, Michael; Kieleck, Christelle; Hübner, Philipp; Świderski, Jacek; Jackson, Stuart D.; Mazé, Gwenael; Eichhorn, Marc

    2012-02-01

    Fiber lasers emitting in the 2 μm wavelength range doped with thulium ions can be used as highly efficient pump sources for nonlinear converters to generate mid-infrared radiation. For spectroscopic purposes, illumination and countermeasures, a broad mid-infrared emission spectrum is advantageous. This can be reached by supercontinuum generation in fibers, e.g. fluoride fibers, which up to now has, however, only been presented with either low average power, complex Raman-shifted 1.55 μm pump sources or multi-stage amplifier pump schemes. Here we present recent results of a new actively-mode-locked single-oscillator scheme that can provide the high-repetition rate sub-ns pump pulses needed for pumping supercontinuum generators. A thulium-doped silica fiber laser is presented that provides > 11 W of average power CW-mode-locked pulses at 38 MHz repetition rate at ~ 38 ps pulse width. Upgrading the setup to allow Q-switched mode-locked operation yields mode-locked 40 MHz pulses arranged in 60 kHz bunched Q-switch envelopes and thus increases further the available peak power. In this Q-switched mode-locked regime over 5 W of average power has been achieved.

  20. A kilowatt average power laser for sub-picosecond materials processing

    SciTech Connect

    Stephen V. Benson; George R. Neil; C. Bohn; , G. Biallas; D. Douglas; F. Dylla; J. Fugitt; K. Jordan; G. Krafft; , L. Merminga; , J. Preble; , Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-11-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. The authors present operational results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce {approximately}0.7 ps pulses in a continuous train at {approximately}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  1. Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Düsterer, S; Prandolini, M J; Feldhaus, J; Faatz, B; Rossbach, J; Drescher, M; Tavella, F

    2012-02-27

    An Yb:YAG thin-disk multipass laser amplifier system was developed operating in a 10 Hz burst operation mode with 800 µs burst duration and 100 kHz intra-burst repetition rate. Methods for the suppression of parasitic amplified spontaneous emission are presented. The average output pulse energy is up to 44.5 mJ and 820 fs compressed pulse duration. The average power of 4.45 kW during the burst is the highest reported for this type of amplifier. PMID:22418308

  2. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO₄ laser at 1342 nm with a semiconductor saturable absorber mirror.

    PubMed

    Li, Fang-Qin; Liu, Ke; Han, Lin; Zong, Nan; Bo, Yong; Zhang, Jing-Yuan; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2011-04-15

    A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively. PMID:21499398

  3. Power and length requirements for all-optical switching in semiconductor-doped glass waveguides

    NASA Astrophysics Data System (ADS)

    Mayweather, Derek T.; Digonnet, Michel J. F.; Pantell, Richard H.; Shaw, H. J.

    1994-10-01

    We present a theoretical model that computes the nonlinear index (n2) of semiconductor- doped glasses (SDG), based on the material's properties, and predicts the power and length requirements, as well as the optimum operating wavelengths, for an all-optical SDG waveguide switch. The main conclusions are that (1) n2 depends strongly on pump intensity, which partly explains the large disparity in reported values of n2, (2) the pump and signal wavelengths should be in specific and different ranges to minimize switching power and signal loss, (3) for CdSSe- and CdTe-doped glasses, n2 is relatively small, and the switching power requirement for these two SDGs is consequently quite high (2 - 16 W). We provide evidence that this weak nonlinearity, compared to that of similar semiconductors in bulk, is due to the strong nonradiative recombination of carriers arising from the small size of the semiconductor microcrystallites. Projections indicate that the switching power would be reduced by up to three orders of magnitude by increasing the microcrystallite size, thus producing a slower (ns) but more power-efficient switch.

  4. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  5. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    SciTech Connect

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  6. Synchronously injected amplifiers, a novel approach to high-average-power FEL

    SciTech Connect

    Nguyen, D.C.; Fortgang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Sheffield, R.L.

    1996-11-01

    Two new FEL ideas based on synchronously injected amplifiers are described. Both of these rely on the synchronous injection of the optical signal into a high-gain, high-efficiency tapered wiggler. The first concept, called Regenerative Amplifier FEL (RAFEL), uses an optical feedback loop to provide a coherent signal at the wiggler entrance so that the optical power can reach saturation rapidly. The second idea requires the use of a uniform wiggler in the feedback loop to generate light that can be synchronously injected back into the first wiggler. The compact Advanced FEL is being modified to implement the RAFEL concept. We describe future operation of the Advanced FEL at high average current and discuss the possibility of generating 1 kW average power.

  7. A high-average-power blue-green laser for underwater communications

    NASA Astrophysics Data System (ADS)

    Pacheco, D. P.; Aldag, H. R.; Klimek, D. E.; Rostler, P. S.; Scheps, R.

    A flashlamp-pumped dye laser designed for high average power at an atomic resonance line and long service life is described. Initial characterization yields broad output in excess of 4 J/pulse and tuned output greater than 1.5 J/pulse at 458 nm and 30 mA bandwidth. The laser design features are described, including the laser head, resonator, lamp driving circuitry, dye replenishment, and system component limiting service life.

  8. High-average-power narrow-line-width sum frequency generation 589 nm laser

    NASA Astrophysics Data System (ADS)

    Lu, Yanhua; Fan, Guobin; Ren, Huaijin; Zhang, Lei; Xu, Xiafei; Zhang, Wei; Wan, Min

    2015-10-01

    An 81 W average-power all-solid-state sodium beacon laser at 589 nm with a repetition rate of 250 Hz is introduced, which is based on a novel sum frequency generation idea between two high-energy, different line widths, different beam quality infrared lasers (a 1064 nm laser and a 1319 nm laser). The 1064 nm laser, which features an external modulated CW single frequency seed source and two stages of amplifiers, can provide average-power of 150 W, beam quality M2 of ~1.8 with ultra-narrow line width (< 100 kHz). The 1319 nm laser can deliver average-power of 100 W, beam quality M2 of ~3.0 with a narrow line width of ~0.3 GHz. By sum frequency mixing in a LBO slab crystal (3 mm x 12 mm x 50 mm), pulse energy of 325 mJ is achieved at 589 nm with a conversion efficiency of 32.5 %. Tuning the center wavelength of 1064 nm laser by a PZT PID controller, the target beam's central wavelength is accurately locked to 589.15910 nm with a line width of ~0.3 GHz, which is dominated mainly by the 1319 nm laser. The beam quality is measured to be M2 < 1.3. The pulse duration is measured to be 150 μs in full-width. To the best of our knowledge, this represents the highest average-power for all-solid-state sodium beacon laser ever reported.

  9. Use of induction linacs with nonlinear magnetic drive as high average power accelerators

    SciTech Connect

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1984-08-20

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 Mev/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.

  10. Physical optics and the direction of maximization of the far-field average power

    NASA Astrophysics Data System (ADS)

    Asvestas, John S.

    1986-12-01

    For the problem of physical optics scattering by a perfectly conducting plate of finite dimensions and arbitrary shape, attention is drawn to the fact that the directions in which the far-field average power is maximized can be easily determined for H-polarization, while the same is not true for E-polarization. Moreover, it is shown by means of an example that the directions of maximization for E-polarization are not necessarily those for H-polarization.

  11. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V. PMID:24256403

  12. Temperature-insensitive frequency tripling for generating high-average power UV lasers.

    PubMed

    Zhong, Haizhe; Yuan, Peng; Wen, Shuangchun; Qian, Liejia

    2014-02-24

    Aimed for generating high-average power ultraviolet (UV) lasers via third-harmonic generation (THG) consisting of frequency doubling and tripling stages, we numerically and experimentally demonstrate a novel frequency tripling scheme capable of supporting temperature-insensitive phase-matching (PM). Two cascaded tripling crystals, with opposite signs of the temperature derivation of phase-mismatch, are proposed and theoretically studied for improving the temperature-acceptance of PM. The proof-of-principle tripling experiment using two crystals of LBO and BBO shows that the temperature acceptance can be ~1.5 times larger than that of using a single tripling crystal. In addition, the phase shift caused by air dispersion, along with its influence on the temperature-insensitive PM, are also discussed. To illustrate the potential applications of proposed two-crystal tripling design in the high-average-power regime, full numerical simulations for the tripling process, are implemented based on the realistic crystals. The demonstrated two-crystal tripling scheme may provide a promising route to high-average-power THG in the UV region. PMID:24663750

  13. Hybrid metal-semiconductor mirror for high power VECSEL

    NASA Astrophysics Data System (ADS)

    Laurain, Alexandre; Gbele, Kokou; Hader, Jorg; Stolz, Wolfgang; Koch, Stephan; Ruiz Perez, Antje; Moloney, Jerome V.

    2016-03-01

    We demonstrate a low thermal impedance hybrid mirror VECSEL. We used only 14 pairs of AlGaAs/AlAs, transparent at the pump wavelength, and we used a patterned mask to deposit pure gold on areas of the chip to be pumped, and Ti/Au on other area to circumvent the poor adhesion of gold on GaAs. A higher gain is observed on an area metallized with pure gold and an output power of 4W was obtained, showing the effectiveness of the metallic mirror and validating the bonding quality. Chip processing and laser characteristics are studied in detail and compared to simulations.

  14. Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier.

    PubMed

    Wilson, A C; Sharpe, J C; McKenzie, C R; Manson, P J; Warrington, D M

    1998-07-20

    The output of a grating-stabilized external-cavity diode laser was injected into a semiconductor tapered amplifier in a master-oscillator power amplifier configuration, producing as much as 500 mW of power with narrow linewidth. The additional linewidth that is due to the tapered amplifier is much smaller than the typical linewidth of grating-stabilized laser diodes. To demonstrate the usefulness of the narrow linewidth and high output power, we used the system to perform Doppler-free two-photon spectroscopy with rubidium. PMID:18285950

  15. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  16. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment.

    PubMed

    Saraceno, Clara J; Emaury, Florian; Heckl, Oliver H; Baer, Cyrill R E; Hoffmann, Martin; Schriber, Cinia; Golling, Matthias; Südmeyer, Thomas; Keller, Ursula

    2012-10-01

    We present an ultrafast thin disk laser that generates an average output power of 275 W, which is higher than any other modelocked laser oscillator. It is based on the gain material Yb:YAG and operates at a pulse duration of 583 fs and a repetition rate of 16.3 MHz resulting in a pulse energy of 16.9 μJ and a peak power of 25.6 MW. A SESAM designed for high damage threshold initiated and stabilized soliton modelocking. We reduced the nonlinearity of the atmosphere inside the cavity by several orders of magnitude by operating the oscillator in a vacuum environment. Thus soliton modelocking was achieved at moderate amounts of self-phase modulation and negative group delay dispersion. Our approach opens a new avenue for power scaling femtosecond oscillators to the kW level. PMID:23188316

  17. 100 Hz repetition rate, high average power, plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Berrill, Mark; Durivage, Leon; Furch, Federico; Curtis, Alden; Luther, Bradley; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2013-10-01

    Numerous applications demand high average power / high repetition rate compact sources of coherent soft x-ray radiation. We report the demonstration table-top soft x-ray lasers at wavelengths ranging from 10.9 nm to 18.9 nm from plasmas created at 100 Hz repetition rate. Results includes a record average power of 0.15 mW at λ = 18.9 nm from a laser-produced Mo plasma and 0.1 mW average power at λ = 13.9 nm from a Ag plasma. These soft x-ray lasers are driven by collisional electron impact excitation in elongated line focus plasmas a few mm in length heated by a compact, directly diode-pumped, chirped pulse amplification Yb:YAG laser that produces 1 J pulses of ps duration at 100 Hz repetition rate. Pulses from this laser irradiate the surface of polished metal targets producing transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Tailoring of the temporal profile of the driver laser pulse is observed to significantly increase soft x-ray laser output power as well as allow the generation of shorter wavelength lasers with reduced pump energy. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  18. A technique for optimizing the design of power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Schlegel, E. S.

    1976-01-01

    A technique is described that provides a basis for predicting whether any device design change will improve or degrade the unavoidable trade-off that must be made between the conduction loss and the turn-off speed of fast-switching high-power thyristors. The technique makes use of a previously reported method by which, for a given design, this trade-off was determined for a wide range of carrier lifetimes. It is shown that by extending this technique, one can predict how other design variables affect this trade-off. The results show that for relatively slow devices the design can be changed to decrease the current gains to improve the turn-off time without significantly degrading the losses. On the other hand, for devices having fast turn-off times design changes can be made to increase the current gain to decrease the losses without a proportionate increase in the turn-off time. Physical explanations for these results are proposed.

  19. Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation at 271.2 nm.

    PubMed

    Biswal, Ramakanta; Agrawal, Praveen K; Dixit, Sudhir K; Nakhe, Shankar V

    2015-11-10

    This paper presents to our knowledge a first time study on the generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet (UV) radiation at 271.2 nm. The work is based on frequency summing of coherent green (G: 510.6 nm) and yellow (Y: 578.2 nm) radiations of a copper-HBr laser in a β-barium borate crystal. Average and peak sum frequency conversion efficiencies of about 13% and 16%, respectively, are obtained. The sum frequency results are experimentally analyzed in terms of the extent of matching of green and yellow pump radiations in space, time, and frequency domains. The result is of high significance for many applications in photonics components fabrication, semiconductor technology, and spectroscopy. PMID:26560794

  20. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  1. Application of Bayesian model averaging to measurements of the primordial power spectrum

    SciTech Connect

    Parkinson, David; Liddle, Andrew R.

    2010-11-15

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940averaging can tighten the credible upper limit, depending on prior assumptions.

  2. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  3. Experimental studies of high average power CO2-laser-induced thermomechanical processes

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1990-04-01

    Pulsed high average power CO2 lasers allow for a most efficient conversion of coherence IR laser radiation into thermal and mechanical energies. Investigations using a specially developed repetitively pulsed high energy CO2 laser are presented. This powerful device provides mean powers of several kW and peak powers of the individual pulses in the multi-MW range. Studies were performed to obtain information on the transient behavior of the fast energy transfer mechanisms that occur at peak power densities near or above the surface plasma ignition thresholds. As shown, these plasma waves are periodically building up, expanding and recombining during the short time intervals between subsequent pulses, even in the case of the highest repetition rates that are presently limited to 100 Hz. Besides the efficient thermal energy transfer through plasma enhanced thermal coupling mechanisms, the simultaneously induced mechanical pressure waves are providing an additional impulsive loading of the targets. These pressures were investigated by using PVDF gauges. The experiments reveal that these effects are also responsible for improvements, concerning the energy balance, in most manufacturing processes such as in cutting or in drilling, where these fast thermomechanically coupled processes, for example, contribute to increase the mass removal rates.

  4. Experimental studies of high-average-power pulsed CO2-laser-induced thermomechanical processes

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1990-10-01

    Pulsed high average power C02-lasers allow for a most efficient conversion of coherent IR-laser radiation into thermal and mechanical energies. This paper is concerned with investigations using a specially developed repetitively pulsed high energy C02-laser. This powerful device provides mean powers of several kW and peak powers of the individual pulses in the multi-MW range. Studies were performed to obtain information on the transient behaviour of the fast energy transfer mechanisms that occur at peak power densities near or above the surface plasma ignition thresholds. As shown, these plasma waves are periodically building up, expanding and recombining during the short time intervals between subsequent pulses, even in case of the highest repetition rates that are presently limited to 100 Hz. Besides the efficient thermal energy transfer through plasma-enhanced thermal coupling mechanisms, the simultaneously induced mechanical pressure waves are providing an additional impulsive loading of the targets. These pressures were investigated by using PVDF gauges. The experiments reveal that these effects too are responsible for improvements, concerning the energy balance, in most manufacturing processes such as in cutting or in drilling, where these fast thermo-mechanically coupled processes, for example, contribute to increase the mass removal rates.

  5. The influence of seat configuration on maximal average crank power during pedaling: a simulation study.

    PubMed

    Rankin, Jeffery W; Neptune, Richard R

    2010-11-01

    Manipulating seat configuration (i.e., seat tube angle, seat height and pelvic orientation) alters the bicycle-rider geometry, which influences lower extremity muscle kinematics and ultimately muscle force and power generation during pedaling. Previous studies have sought to identify the optimal configuration, but isolating the effects of specific variables on rider performance from the confounding effect of rider adaptation makes such studies challenging. Of particular interest is the influence of seat tube angle on rider performance, as seat tube angle varies across riding disciplines (e.g., road racers vs. triathletes). The goals of the current study were to use muscle-actuated forward dynamics simulations of pedaling to 1) identify the overall optimal seat configuration that produces maximum crank power and 2) systematically vary seat tube angle to assess how it influences maximum crank power. The simulations showed that a seat height of 0.76 m (or 102% greater than trochanter height), seat tube angle of 85.1 deg, and pelvic orientation of 20.5 deg placed the major power-producing muscles on more favorable regions of the intrinsic force-length-velocity relationships to generate a maximum average crank power of 981 W. However, seat tube angle had little influence on crank power, with maximal values varying at most by 1% across a wide range of seat tube angles (65 to 110 deg). The similar power values across the wide range of seat tube angles were the result of nearly identical joint kinematics, which occurred using a similar optimal seat height and pelvic orientation while systematically shifting the pedal angle with increasing seat tube angles. PMID:21245509

  6. New generation of high average power industry grade ultrafast ytterbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Yusim, Alex; Samartsev, Igor; Shkurikhin, Oleg; Myasnikov, Daniil; Bordenyuk, Andrey; Platonov, Nikolai; Kancharla, Vijay; Gapontsev, Valentin

    2016-03-01

    We report an industrial grade picosecond and femtosecond pulse Yb fiber lasers with >100 μJ pulse energy and hundreds of Watts of average power for improved laser machining speed of sapphire and glass. This highly efficient laser offers >25% wall plug efficiency within a compact 3U rack-mountable configuration plus a long >2m fiber delivery cable. Reconfigurable features such as controllable repetition rate, fine pulse duration control, burst mode operation and adjustable pulse energy permit the customer to tailor the laser to their application.

  7. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth. PMID:26030570

  8. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  9. Laser properties of an improved average-power Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Marshall, Christopher D.; Bayramian, Andy J.; Wilke, Gary D.; Hayden, Joseph S.

    1994-10-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% gain cross section and a 25% longer low-concentration emission lifetime.

  10. Specification of optical components for a high average-power laser environment

    SciTech Connect

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  11. Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint

    NASA Astrophysics Data System (ADS)

    Fakoorian, S. Ali. A.; Swindlehurst, A. Lee

    2013-05-01

    This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel model, where there exists a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. In this paper, we first revisit the rank property of the optimal input covariance matrix that achieves the secrecy capacity of the multiple antenna MIMO Gaussian wiretap channel under the average power constraint. Next, we obtain necessary and sufficient conditions on the MIMO wiretap channel parameters such that the optimal input covariance matrix is full-rank, and we fully characterize the resulting covariance matrix as well. Numerical results are presented to illustrate the proposed theoretical findings.

  12. Yttrium Calcium Oxyborate for high average power frequency doubling and OPCPA

    SciTech Connect

    Liao, Z M; Jovanovic, I; Ebbers, C A; Bayramian, A; Schaffers, K; Caird, J; Bibeau, C; Barty, C J; Fei, Y; Chai, B

    2006-06-20

    Significant progress has been achieved recently in the growth of Yttrium Calcium Oxyborate (YCOB) crystals. Boules have been grown capable of producing large aperture nonlinear crystal plates suitable for high average power frequency conversion or optical parametric chirped pulse amplification (OPCPA). With a large aperture (5.5 cm x 8.5 cm) YCOB crystal we have demonstrated a record 227 W of 523.5nm light (22.7 J/pulse, 10 Hz, 14 ns). We have also demonstrated the applicability of YCOB for 1053 nm OPCPA.

  13. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  14. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Brocklesby, W. S.; Nilsson, J.; Schreiber, T.; Limpert, J.; Brignon, A.; Bourderionnet, J.; Lombard, L.; Michau, V.; Hanna, M.; Zaouter, Y.; Tajima, T.; Mourou, Gérard

    2014-05-01

    The application of petawatt lasers to scientific and technological problems is advancing rapidly. The usefulness of these applications will depend on being able to produce petawatt pulses at much higher repetition rates than is presently possible. The International Coherent Amplification Network (ICAN) consortium seeks to design high repetition rate petawatt lasers using large scale coherent beam combination of femtosecond pulse amplifiers built from optical fibres. This combination of technologies has the potential to overcome many of the hurdles to high energy, high average power pulsed lasers, opening up applications and meeting societal challenges.

  15. High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm.

    PubMed

    Härkönen, Antti; Rautiainen, Jussi; Guina, Mircea; Konttinen, Janne; Tuomisto, Pietari; Orsila, Lasse; Pessa, Markus; Okhotnikov, Oleg G

    2007-03-19

    We report on an optically-pumped intracavity frequency doubled GaInNAs/GaAs -based semiconductor disk laser emitting around 615 nm. The laser operates at fundamental wavelength of 1230 nm and incorporates a BBO crystal for light conversion to the red wavelength. Maximum output power of 172 mW at 615 nm was achieved from a single output. Combined power from two outputs was 320 mW. The wavelength of visible emission could be tuned by 4.5 nm using a thin glass etalon inside the cavity. PMID:19532562

  16. High average power pulsed phase conjugate laser with birefringence correction. Revision 1

    SciTech Connect

    Bowers, M.W.; Hankla, A.K.; Jacobson, G.F.

    1994-05-01

    Nd:YAG rod lasers have been plagued with the inability to go to high average powers because of thermally induced birefringence and focusing. Several methods have been employed to correct for the birefringence and the thermal aberrations of such systems, but place stringent constraints on the laser heads and/or the system alignment. They have developed a scalable Nd: YAG master oscillator/power amplifier (MOPA) laser system which employs a novel phase conjugation scheme to correct both for the material and thermal distortions as well as the thermal birefringence in double pass amplifier systems. This method reduces the double pass depolarization from 42% to less than 2% and is easy to align.

  17. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; Liu, H.; Merminga, L.; Neil, G. R.; Neuffer, D.; Shinn, M.; Sinclair, C.; Wiseman, M.; Brillson, L. J.; Henkel, D. P.; Helvajian, H.; Kelley, M. J.; Nair, Shanti

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  18. Power scalable semiconductor disk lasers for frequency conversion and mode-locking

    SciTech Connect

    Okhotnikov, O G

    2008-12-31

    The semiconductor disk laser, a relatively novel type of light oscillators, is now under intensive development. These lasers produce an excellent beam quality in conjunction with a scalable output power. This paper presents recent achievements in power scalability, mode-locking and frequency conversion with optically-pumped semiconductor disk lasers. A novel concept for power scaling described here allows the thermal load of the gain material to be reduced, increasing the threshold of rollover and extending the capability for boosting the output power without degradation in the beam quality. The proposed technique is based on the multiple gain scheme. The total power of over 8 W was achieved in dual-gain configuration, while one-gain lasers could produce separately up to 4 W, limited by the thermal rollover of the output characteristics. The results show that the reduced thermal load to a gain element in a dual-gain cavity allows extending the range of usable pump powers boosting the laser output. Orange-red radiation required for a number of challenging applications can be produced through frequency-doubling using a GaInNAs/GaAs laser. Using such a disk laser operating at a fundamental wavelength of 1224 nm, we demonstrate an output power of 2.68 W in the visible region with an optical-to-optical conversion efficiency of 7.4%. The frequency-converted signal could be launched into a single-mode optical fibre with 70%-78% coupling efficiency, demonstrating good beam quality for the visible radiation. Using a Fabry-Perot glass etalon, the emission wavelength could be tuned over an 8-nm spectral range. We report on optically-pumped disk lasers passively mode-locked with a semiconductor saturable-absorber mirror. The potential of harmonic mode-locking in producing pulse trains at multigigahertz repetition rates has been explored. The mode-locked disk laser is investigated for different designs of the gain medium that allow bistable mode-locking to be controlled. An

  19. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  20. Green sub-ps laser exceeding 400 W of average power

    NASA Astrophysics Data System (ADS)

    Gronloh, Bastian; Russbueldt, Peter; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2014-02-01

    We present the world's first laser at 515 nm with sub-picosecond pulses and an average power of 445 W. To realize this beam source we utilize an Yb:YAG-based infrared laser consisting of a fiber MOPA system as a seed source, a rod-type pre-amplifier and two Innoslab power amplifier stages. The infrared system delivers up to 930 W of average power at repetition rates between 10 and 50 MHz and with pulse durations around 800 fs. The beam quality in the infrared is M² = 1.1 and 1.5 in fast and slow axis. As a frequency doubler we chose a Type-I critically phase-matched Lithium Triborate (LBO) crystal in a single-pass configuration. To preserve the infrared beam quality and pulse duration, the conversion was carefully modeled using numerical calculations. These take dispersion-related and thermal effects into account, thus enabling us to provide precise predictions of the properties of the frequency-doubled beam. To be able to model the influence of thermal dephasing correctly and to choose appropriate crystals accordingly, we performed extensive absorption measurements of all crystals used for conversion experiments. These measurements provide the input data for the thermal FEM analysis and calculation. We used a Photothermal Commonpath Interferometer (PCI) to obtain space-resolved absorption data in the bulk and at the surfaces of the LBO crystals. The absorption was measured at 1030 nm as well as at 515 nm in order to take into account the different absorption behavior at both occurring wavelengths.

  1. Yb3+ doped ribbon fiber for high-average power lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Drachenberg, Derrek R.; Messerly, Michael J.; Pax, Paul H.; Sridharan, Arun K.; Tassano, John B.; Dawson, Jay W.

    2014-03-01

    Diffraction-limited high power lasers in the region of 10s of kW to greater than 100 kW are needed for defense, manufacturing and future science applications. A balance of thermal lensing and Stimulated Brillouin Scattering (SBS) for narrowband amplifiers and Stimulated Raman Scattering (SRS) for broadband amplifiers is likely to limit the average power of circular core fiber amplifiers to 2 kW (narrowband) or 36 kW (broadband). A ribbon fiber, which has a rectangular core, operating in a high order mode can overcome these obstacles by increasing mode area without becoming thermal lens limited and without the on-axis intensity peak associated with circular high order modes. High order ribbon fiber modes can also be converted to a fundamental Gaussian mode with high efficiency for applications in which this is necessary. We present an Yb-doped, air clad, optical fiber having an elongated, ribbon-like core having an effective mode area of area of 600 μm² and an aspect ratio of 13:1. As an amplifier, the fiber produced 50% slope efficiency and a seed-limited power of 10.5 W, a gain of 24 dB. As an oscillator, the fiber produced multimode power above 40 W with 71% slope efficiency and single mode power above 5 W with 44% slope efficiency. The multimode M2 beam quality factor of the fiber was 1.6 in the narrow dimension and 15 in the wide dimension.

  2. A picosecond thin-rod Yb:YAG regenerative laser amplifier with the high average power of 20 W

    NASA Astrophysics Data System (ADS)

    Matsubara, S.; Tanaka, M.; Takama, M.; Hitotsuya, H.; Kobayashi, T.; Kawato, S.

    2013-05-01

    A high-average-power, laser-diode-pumped, picosecond-pulse regenerative amplifier was developed using the thin-rod Yb:YAG (yttrium aluminum garnet) laser architecture. This architecture has a complete set of favorable properties for the cost-effective, high-average-power, and high-peak-power lasers. These include low amplified spontaneous emission with high gain and high repetition rate. For the amplifier system, an average output power of 20 W was achieved at a pulse repetition rate of 100 kHz, which corresponds to an output pulse energy of 200 μJ with an output pulse width of 2 ps.

  3. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10{sup 13} n/cm {sup 2} and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  4. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  5. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Williams, Joel; Biedron, Sandra; Harris, John; Martinez, Jorge; Milton, Stephen; Benson, S.; Evtushenko, P.; Neil, G.; Zhang, S.

    2014-03-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system in an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance, one needs to investigate the longitudinal emittance during operation, preferably in a non-invasive manner. Using electro-optical (EO) methods, we plan to measure the bunch longitudinal profile of an energy (~120-MeV), high-power (~10 kW or more average FEL output power) beam. Such a diagnostic could be critical in efforts to diagnose and help mitigate deleterious beam effects for high output power FELs.

  6. Thermally induced distortion of high average power laser system by an optical transport system

    SciTech Connect

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.

  7. 1KHz high average power single-frequency Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Ma, Xiuhua; Li, Shiguang; Chen, Weibiao

    2015-02-01

    A laser-diode-pumped master oscillator and power amplifier was developed with high efficiency, high average power and high beam quality. The oscillator is an injection-seeding, fiber coupled diode-end-pumped E-O Q-switched Nd:YAG laser, producing single frequency pulse laser output with pulse energy of 8mJ and pulse width of 11ns at a pulse repetition rate of 1KHz,The 1KHz was divided into four chains with frequency of 250Hz, through E-O modulation technology, The power amplifier utilizes conductively-cooling Nd:YAG zigzag slab with two sides' pump architecture at bounce point. Pulse energy of more than 800mJ with pulse widths of 12.6ns was obtained at repetition rate of 250Hz in every amplifier chain, the frequency-doubled pulse energy of 360mJ when KTP crystal was used was obtained at a repetition of 250Hz.

  8. Towards high power flip-chip long-wavelength semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Rantamaki, A.; Saarinen, E.; Lyytikäinen, J.; Kontio, J.; Heikkinen, J.; Lahtonen, K.; Valden, M.; Okhotnikov, O.

    2015-03-01

    Optically pumped semiconductor disk lasers (SDLs) are presented with emphasis on wafer bonding InP-based active regions with GaAs-based distributed Bragg reflectors (DBRs) and reducing the number of required layer pairs in the DBR. The wafer bonding is performed at a relatively low temperature of 200 °C utilizing transparent intermediate bonding layers. The reflectivity of the semiconductor DBR section is enhanced by finishing the DBR with a thin low refractive index layer and a highly reflecting metal layer. Such a design enables considerably thinner mirror structures than the conventional design, where the semiconductor DBR is finished with mere metal layers. In addition, a 90 nm thick Al2O3 layer is shown to produce negligible increase in the thermal resistance of the SDL. Furthermore, a flip-chip SDL with a GaAs/AlAs-Al2O3-Al mirror is demonstrated with watt-level output power at the wavelength of 1.32 μm. The properties and future improvement issues for flip-chip SDLs emitting at 1.3-1.6 μm are also discussed.

  9. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  10. High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. . Lab. for Plasma Research); Freund, H.P. )

    1989-01-01

    A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

  11. Status of HiLASE project: High average power pulsed DPSSL systems for research and industry

    NASA Astrophysics Data System (ADS)

    Mocek, T.; Divoky, M.; Smrz, M.; Sawicka, M.; Chyla, M.; Sikocinski, P.; Vohnikova, H.; Severova, P.; Lucianetti, A.; Novak, J.; Rus, B.

    2013-11-01

    We introduce the Czech national R&D project HiLASE which focuses on strategic development of advanced high-repetition rate, diode pumped solid state laser (DPSSL) systems that may find use in research, high-tech industry and in the future European large-scale facilities such as HiPER and ELI. Within HiLASE we explore two major concepts: thin-disk and cryogenically cooled multislab amplifiers capable of delivering average output powers above 1 kW level in picosecond-to-nanosecond pulsed regime. In particular, we have started a programme of technology development to demonstrate the scalability of multislab concept up to the kJ level at repetition rate of 1-10 Hz.

  12. A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.

    2015-04-01

    A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.

  13. Procedure for pressure contact on high-power semiconductor devices free of thermal fatigue

    NASA Technical Reports Server (NTRS)

    Knobloch, J.

    1979-01-01

    To eliminate thermal fatigue, a procedure for manufacturing semiconductor power devices with pure pressure contact without solid binding was developed. Pressure contact without the use of a solid binding to avoid a limitation of the maximum surface in the contact was examined. A silicon wafer covered with a relatively thick metal layer is imbedded with the aid of a soft silver foil between two identically sized hard contact discs (molybdenum or tungsten) which are rotationally symmetrical. The advantages of this concept are shown for large diameters. The pressure contact was tested successfully in many devices in a large variety of applications.

  14. Theoretical and experimental analysis of high-power frequency-stabilized semiconductor master oscillator power-amplifier system.

    PubMed

    Ji, Encai; Liu, Qiang; Nie, Mingming; Fu, Xing; Gong, Mali

    2016-04-10

    We present a compact high-power 780 nm frequency-stabilized diode laser with a power of as high as 2.825 W, corresponding to an estimated overall efficiency of 38.5%. The tapered amplifier (TPA) gain was about 24.5 dB, which was basically consistent with the simulation results. The beam quality factor was M2<1.72. The core feature of the system was stabilizing the frequency of the narrowband semiconductor TPA system with the matured saturated absorption spectrum technique. The laser frequency was stabilized against mode hops for a period of >4200  s with a frequency fluctuation around 6.7×10-10 within 1 s of the observation period, and the linewidth was no more than 0.95 MHz. The laser performance indicates that the current frequency-stabilized semiconductor laser has great potential in certain conditions that require several watts of output power. PMID:27139853

  15. Wavefront control in high average-power multi-slab laser system

    NASA Astrophysics Data System (ADS)

    Pilar, Jan; Bonora, Stefano; Divoky, Martin; Phillips, Jonathan; Smith, Jodie; Ertel, Klaus; Collier, John; Jelinkova, Helena; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-03-01

    A high average power cryogenically-cooled diode-pumped solid-state laser system for Hilase centre in Czech Republic is being developed by Central Laser Facility at Rutherford Appleton Laboratory, England in collaboration with Hilase team. The system will deliver pulses with energy of 100 J at 10 Hz repetition rate and will find applications in research and industry. The laser medium and other elements of the system are subject to heavy thermal loading which causes serious optical aberrations and degrade the output beam quality. To meet the stringent laser requirements of this kWclass laser, it is necessary to implement adaptive optics system, which will correct for these aberrations. During our research the sources of aberrations have been identified and analyzed. Based on this analysis, a suitable adaptive optics system was proposed. After finalizing numerical models, simulations and optimizations, the adaptive optics system was developed, characterized and installed in a cryogenically-cooled multi-slab laser system running up to 6 J and 10 Hz. The adaptive optics system consists of 6x6 actuator bimorph deformable mirror and wavefront sensor based on quadriwave lateral shearing interferometry operated in closed loop. The functionality of the system was demonstrated at full power.

  16. 800-keV Electron Induction Injector with High Average Power

    NASA Astrophysics Data System (ADS)

    Mamaev, G. L.; Glazov, A. I.; Krasnopolsky, V. A.; Latypov, T. A.; Mamaev, S. L.; Puchkov, S. N.; Shcherbakov, A. M.; Tenyakov, I. E.; Terechkin, Y. M.; Vlasenko, S. I.

    1997-05-01

    Design parameters of the induction injector are 800 keV beam energy, 2...5 kA current, 80 ns pulse flat top and 100 Hz repetition rate. The average beam power of the series of pulses is 40 kW. The injector modules use metglass cores. The electron source mounted on the stem consists of a 80 mm diameter velvet cathode placed on a field forming electrode. The tapered insulator assembly separates the oil-filled induction modules from the vacuum diode. The magnetic field necessary for beam extraction is generated by two magntic cores. 150 kV, 40 kA, 100 ns, 100 Hz pulse generator has been designed in Radiotechnical institute. The generator is a two-stage magnetic power compressor with a thyratron switch. The voltage pulse is produced by the water-filled pulse forming line (PFL) with the impedance of 3.3 ohm. The calculated parameters of the injector, the design features of its modules and the experimental results of their testing are presented.

  17. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  18. Novel cavities and functionality in high-power highbrightness semiconductor vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Hessenius, Chris

    Ever since the first laser demonstration in 1960, applications for laser systems have increased to include diverse fields such as: national defense, biology and medicine, entertainment, imaging, and communications. In order to serve the growing demand, a wide range of laser types including solid-state, semiconductor, gas, and dye lasers have been developed. For most applications it is critical to have lasers with both high optical power and excellent beam quality. This has traditionally been difficult to simultaneously achieve in semiconductor lasers. In the mid 1990's, the advent of an optically pumped semiconductor vertical-external-cavity surface-emitting laser (VECSEL) led to the demonstration of high (multi-watt) output power with near diffraction limited (TEM00) beam quality. Since that time VECSELs covering large wavelength regions have been developed. It is the objective of this dissertation to investigate and explore novel cavity designs which can lead to increased functionality in high power, high brightness VECSELs. Optically pumped VECSELs have previously demonstrated their potential for high power, high brightness operation. In addition, the "open" cavity design of this type of laser makes intracavity nonlinear frequency conversion, linewidth narrowing, and spectral tuning very efficient. By altering the external cavity design it is possible to add additional functionality to this already flexible design. In this dissertation, the history, theory, design, and fabrication are first presented as VECSEL performance relies heavily on the design and fabrication of the chip. Basic cavities such as the linear cavity and v-shaped cavity will be discussed, including the role they play in wavelength tuning, transverse mode profile, and mode stability. The development of a VECSEL for use as a sodium guide star laser is presented including the theory and simulation of intracavity frequency generation in a modified v-cavity. The results show agreement with theory

  19. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  20. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power.

    PubMed

    Rothhardt, Jan; Hädrich, Steffen; Carstens, Henning; Herrick, Nicholas; Demmler, Stefan; Limpert, Jens; Tünnermann, Andreas

    2011-12-01

    We report on nonlinear pulse compression at very high average power. A high-power fiber chirped pulse amplification system based on a novel large pitch photonic crystal fiber delivers 700 fs pulses with 200 μJ pulse energy at a 1 MHz repetition rate, resulting in 200 W of average power. Subsequent spectral broadening in a xenon-filled hollow-core fiber and pulse compression with chirped mirrors is employed for pulse shortening and peak power enhancement. For the first time, to our knowledge, more than 100 W of average power are transmitted through a noble-gas-filled hollow fiber. After pulse compression of 81 fs, 93 μJ pulses are obtained at a 1 MHz repetition rate. PMID:22139257

  1. Sub-700fs pulses at 152 W average power from a Tm-doped fiber CPA system

    NASA Astrophysics Data System (ADS)

    Gaida, Christian; Stutzki, Fabian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe D.; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas

    2015-03-01

    Thulium-based fiber lasers potentially provide for the demand of high average-power ultrafast laser systems operating at an emission wavelength around 2 μm. In this work we use a Tm-doped photonic-crystal fiber (PCF) with a mode field diameter of 36 μm enabling high peak powers without the onset of detrimental nonlinear effects. For the first time a Tmdoped PCF amplifier allows for a pump-power limited average output power of 241 W with a slope efficiency above 50%, good beam quality and linear polarization. A record compressed average power of 152 W and a pulse peak power of more than 4 MW at sub-700 fs pulse duration are enabled by dielectric gratings with diffraction efficiencies higher than 98% leading to a total compression efficiency of more than 70%. A further increase of pulse peak power towards the GW-level is planned by employing Tm-doped large-pitch fibers with mode field diameters well above 50 μm. The coherent combination of ultrafast pulses might eventually lead to kW-level average power and multi-GW peak power.

  2. Laser properties of a new average-power Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Payne, S. A.; Marshall, C. D.; Bayramian, A.; Wilke, G. D.; Hayden, J. S.

    1995-09-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially available Average-Power Glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime. Other measurements pertaining to the concentration quenching, thermal lensing, and saturation of the extraction are also described in this article. It is note-worthy that APG-t offers increased bandwidth near the peak of the 1054 nm gain spectrum, suggesting that this material may have special utility as a means of generating and amplifying ultrashort pulses of light.

  3. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  4. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    SciTech Connect

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-22

    Gamma-({gamma}{sup -}) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A {gamma}-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition {gamma}-source assumes placing the Compton interaction point inside a CO{sub 2} laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of {gamma}-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO{sub 2}-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO{sub 2} laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO{sub 2} laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  5. Numerical simulation studies of the design and performance of the AFEL for high average power operation

    SciTech Connect

    Goldstein, J.C.; Takeda, H.; Nguyen, D.C.

    1994-10-01

    AFEL (Advanced Free-Electron Laser) at Los Alamos is a compact free-electron laser oscillator which utilizes a very high-brightness electron beam generated by a high gradient linac whose source of electrons is a photocathode injector. This device has been operating, with 15--17 MeV electrons, at optical wavelengths in the 4.5--6.0 {mu}m range, since April of 1993 with a one-centimeter-period, permanent-magnet wiggler which is 24 periods long. The linac produces about 12 {mu}s macropulses at a normal repetition rate of one Hz, while the micropulse repetition rate within a macropulse is 108.33 Mhz which is consistent with the optical cavity length of about 138.5 cm. A program is now underway to upgrade the subsystems of this laser in order to allow it to produce long-time-average optical output powers in the range of 0.1 to 1.0 kW. In this communication, we briefly indicate the details of the equipment upgrades, describe a new high-extraction-efficiency wiggler, and present the results of numerical simulation studies of the design.

  6. Industrial applications of a fiber-based high-average-power picosecond laser

    NASA Astrophysics Data System (ADS)

    Moorhouse, Colin

    2009-02-01

    Presently lasers are well established tools for materials processing due to advantages such as (i) the non-contact nature of the laser-material interaction, (ii) the high precision achievable and (iii) no requirement for high vacuum equipment or costly chemicals. Now, industrial laser users demand improvements in order to achieve higher quality features with reduced heat affected zones and so it is increasingly necessary to use shorter pulse durations. To satisfy these needs, there has been significant research into ultrafast laser technology for decades, however at this time, these lasers have yet to be adopted by industry for mass production. Recent developments have shown that the combination of a fibre seed oscillator and Diode Pumped Solid State (DPSS) amplifying technology can offer high average power, picosecond pulses (~10ps) in an industrially-rugged package. The significant laser design aspects are outlined here, along with the advantages this technology offers for applications such as silicon via drilling, thin film patterning and the machining of wide bandgap materials.

  7. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  8. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  9. Laser damage of dichroic coatings in a high average power laser vacuum resonator

    SciTech Connect

    Arnold, P A; Berzins, L V; Chow, R; Erbert, G V

    1999-07-28

    In our application, dichroics in a high average power, near-infrared, laser system have short operating lifetimes. These dichroics were used as the resonator fold mirrors and permitted the transmission of the pumping argon (Ar) ion laser light. Representative samples of two different dichroic optics were taken off-line and the transmission performance monitored in various scenarios. Irradiating these optics under resonator vacuum conditions, ({le}1 mT, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) resulted in a degradation of transmission with time. Irradiating these optics in a rarefied oxygen atmosphere (1 to 10 T of oxygen, 11.7 kW/cm{sup 2}, Ar laser running all wavelengths) the transmission remained steady over a period of days. The transmission loss observed in the optic tested in vacuum was somewhat reversible if the optic was subsequently irradiated in a rarefied oxygen atmosphere. This reversibility was only possible if the transmission degradation was not too severe. Further tests demonstrated that an atmosphere of 10 T of air also prevented the transmission degradation. In addition, tests were performed to demonstrate that the optic damage was not caused by the ultra-violet component in the Ar ion laser. Mechanisms that may account for this behavior are proposed.

  10. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  11. High-average-power 266 nm generation with a KBe₂BO₃F₂ prism-coupled device.

    PubMed

    Wang, Lirong; Zhai, Naixia; Liu, Lijuan; Wang, Xiaoyang; Wang, Guiling; Zhu, Yong; Chen, Chuangtian

    2014-11-01

    High-average-power fourth harmonic generation (4thHG) of an Nd:YAG laser has been achieved by using a KBe₂BO₃F₂-prism-coupled device (KBBF-PCD) . The highest output power of 7.86 W at 266 nm was obtained with a conversion efficiency of 10%. To our knowledge, this is the highest power ever obtained by a KBBF-PCD. The stability of the 266 nm output power at 3.26 W was measured over a period of 60 minutes, and the standard deviation jitter of the average power was 1.4%. Moreover, the temperature bandwidth for KBBF was also measured at 266nm for the first time,which shows that KBBF has significant advantages in high power 4thHG compared to other major nonlinear optical crystals and is potential for UV applications. PMID:25401859

  12. Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber.

    PubMed

    Südmeyer, T; Brunner, F; Innerhofer, E; Paschotta, R; Furusawa, K; Baggett, J C; Monro, T M; Richardson, D J; Keller, U

    2003-10-15

    We demonstrate that nonlinear fiber compression is possible at unprecedented average power levels by use of a large-mode-area holey (microstructured) fiber and a passively mode-locked thin disk Yb:YAG laser operating at 1030 nm. We broaden the optical spectrum of the 810-fs pump pulses by nonlinear propagation in the fiber and remove the resultant chirp with a dispersive prism pair to achieve 18 W of average power in 33-fs pulses with a peak power of 12 MW and a repetition rate of 34 MHz. The output beam is nearly diffraction limited and is linearly polarized. PMID:14587786

  13. Power-averaging method to characterize and upscale permeability in DFNs

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J. R.; Davy, P.; Pichot, G.; Le Goc, R.; Maillot, J.; Darcel, C.; Meheust, Y.

    2015-12-01

    In a lot of geological environments, permeability is dominated by the existence of fractures and by their degree of interconnections. Flow properties depend mainly on the statistical properties of the fracture population (length, apertures, orientation), on the network topology, as well as on some detailed properties within fracture planes. None of them can be a priori discarded as fracture networks are potentially close to some percolation threshold. Still, most details are strongly homogenized by the inherent diffusive nature of flows. It should thus be possible to upscale permeability on the basis of a limited number of descriptors. Based on an extensive analysis of 2D and 3D DFNs as well as on reference connectivity structures, we investigate the relation between the local fracture structures and the effective permeability. On one hand poor connectivity, small intersections and fracture closures limit permeability. If these patterns control flow, permeability would derive from a suite of fracture in series dominated by its weakest element. Effective permeability could then be approached by the harmonic mean of the local permeabilities. On the other hand, extended fractures and locally higher fracture densities, enhance permeability. If these patterns control flow, all fractures would take equally part to flow and effective permeability would tend to the arithmetic mean of the local permeabilities. Defined as the relative weight between the two extreme harmonic and arithmetic means, the power-law averaging exponent gives a compact way to compare fracture network hydraulics. It may further lead to some comprehensive upscaling rules. Permeability is not only determined by global connectivity but also by more local effects. We measure them by defining a local connectivity index equal to the number of fracture connections at some reference local scale. Knowledge of the relative local to global effects should help optimizing characterization strategies.

  14. SiC Semiconductor Detector Power Monitors for Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reisi Fard, Mehdi; Blue, Thomas E.; Miller, Don W.

    2004-02-01

    As a part of a Department of Energy-Nuclear Engineering Research Initiative (NERI) Project, we are investigating SiC semiconductor detectors as power monitors for Generation IV power reactors. SiC detectors are well-suited as power monitors for reactors for space nuclear propulsion, due to their characteristics of small size, mass, and power consumption; mechanical ruggedness; radiation hardness; capability for high temperature operation; and potential for pulse mode operation at high count rates, which may allow for a reduction in the complexity of the reactor instrumentation and control system, as well as allow for verification of detector sensitivity, verification of channel operability, and channel self-repair. In this paper, a mathematical model of a SiC detector is presented. The model includes a description of the formation of electron-hole pairs in a SiC diode detector, using the computer code TRIM. The TRIM results are used as input to a MATLAB simulation of detector current output pulse formation, the results of which are intended for use as the input to a model of the detector channel as a whole.

  15. Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials

    NASA Astrophysics Data System (ADS)

    Mavoori, Hareesh; Ramirez, Ainissa G.; Jin, Sungho

    2001-05-01

    The surfaces of electronic and optical materials such as nitrides, carbides, oxides, sulfides, fluorides, selenides, diamond, silicon, and GaAs are known to be very difficult to bond with low melting point solders (<300 °C). We have achieved a direct and powerful bonding on these surfaces by using low temperature solders doped with rare-earth elements. The rare earth is stored in micron-scale, finely-dispersed intermetallic islands (Sn3Lu or Au4Lu), and when released, causes chemical reactions at the interface producing strong bonds. These solders directly bond to semiconductor surfaces and provide ohmic contacts. They can be useful for providing direct electrical contacts and interconnects in a variety of electronic assemblies, dimensionally stable and reliable bonding in optical fiber, laser, or thermal management assemblies.

  16. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. PMID:23779084

  17. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN bipolar junction transistors (BJTs), metal-oxide-semiconductor field effect transistors (MOSFETs), and static induction transistors (SITs) are given. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Postirradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  18. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees. PMID:19340174

  19. New Performance Indicators of Metal-Oxide-Semiconductor Field-Effect Transistors for High-Frequency Power-Conscious Design

    NASA Astrophysics Data System (ADS)

    Katayama, Kosuke; Fujishima, Minoru

    2012-02-01

    With the progress of complementary metal-oxide-semiconductor (CMOS) process technology, it is possible to apply CMOS devices to millimeter-wave amplifier design. However, the power consumption of the system becomes higher in proportion to its target frequency. Moreover, CMOS devices are biased at a point where the device achieves the highest gain and consumes much power. In order to reduce the power consumption without any compromise, we introduce two types of indicator. One works towards achieving the highest gain with the lowest power consumption. The other works towards achieving the highest linearity with consideration of the power consumption. In this work, we have shown the effectiveness of those indicators by applying measured data of the fabricated metal-oxide-semiconductor field-effect transistors (MOSFETs) to cascade common-source amplifiers.

  20. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods. PMID:21164825

  1. High-average-power, intense THz pulses from a LiNbO3 slab with silicon output coupler

    NASA Astrophysics Data System (ADS)

    Tsarev, M. V.; Ehberger, D.; Baum, P.

    2016-02-01

    Many applications of THz radiation require high fields and high repetition rates at the same time, implying substantial average power levels. Here, we report high-power Cherenkov-type THz generation in a LiNbO3 slab covered with a silicon prism outcoupler, a geometry in which the ratio between heat-removing surfaces and pump volume is naturally maximized for facilitating heat removal. At a conversion efficiency of 0.04 %, we achieve ~100 times more output power than before with such geometry. Although about 10 % of the 15 W pump power is converted to heat via multi-photon absorption effects, the peak crystal temperature increases by only 8 K. This result is due to the focus' extreme aspect ratio of ~100, indicating the scalability of the approach to even higher average power levels. A line-shaped focus should be advantageous for removing heat in other optical conversions as well.

  2. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  3. Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Paget, D.; Rowe, A. C. H.; Berkovits, V. L.; Ulin, V. P.; Arscott, S.; Peytavit, E.

    2013-09-01

    For n- and p-type semiconductors doped above the 1016 cm-3 range, simple analytical expressions for the surface recombination velocity S have been obtained as a function of excitation power P and surface state density NT. These predictions are in excellent agreement with measurements on p-type GaAs films, using a novel polarized microluminescence technique. The effect on S of surface passivation is a combination of the changes of three factors, each of which depends on NT: (i) a power-independent factor which is inversely proportional to NT and (ii) two factors which reveal the effect of photovoltage and the shift of the electron surface quasi Fermi level, respectively. In the whole range of accessible excitation powers, these two factors play a significant role so that S always depends on power. Three physical regimes are outlined. In the first regime, illustrated experimentally by the oxidized GaAs surface, S depends on P as a power law of exponent determined by NT. A decrease of S such as the one induced by sulfide passivation is caused by a marginal decrease of NT. In a second regime, as illustrated by GaInP-encapsulated GaAs, because of the reduced value of S, the photoelectron concentration in the subsurface depletion layer can no longer be neglected. Thus, S-1 depends logarithmically on P and very weakly on surface state density. In a third regime, expected at extremely small values of P, the photovoltage is comparable to the thermal energy, and S increases with P and decreases with increasing NT.

  4. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  5. High average power harmonic mode-locking of a Raman fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhao, C. J.; Gao, Y. X.; Fan, D. Y.

    2016-03-01

    We experimentally demonstrate the operation of a stable harmonically mode-locked Raman fiber laser based on the nonlinear polarization rotation technique. A maximum average output power of up to 235 mW is achieved at the repetition rate of 466.2 MHz, corresponding to the 1665th order harmonic mode-locking. The temporal width of the mode-locked pulse train is 450 ps. The experimental results should shed some light on the design of wavelength versatile ultrashort lasers with high repetition rate and average output power.

  6. Femtosecond Innoslab amplifier with 300W average power and pulse energies in the mJ-regime

    NASA Astrophysics Data System (ADS)

    Mans, T.; Graf, R.; Dolkemeyer, J.; Schnitzler, C.

    2014-02-01

    We demonstrate a femtosecond Yb:YAG InnoSlab laser amplifier producing <3mJ pulse energy at 100kHz pulse repetition rate. The minimal pulse duration is <1ps resulting in pulse powers <3GW. High energy and high average power could be obtained with the use of chirped pulse amplification on the power amplifier end. The laser setup consists of a seed laser with 10mW average power at pulse repetition rates of 100kHz to 1MHz, a pre-amplifier stage, a highpower InnoSlab-amplifier stage and a grating based pulse compressor. This laser source is suited for pumping of OPCPA setups und parallelisation of applications in materials processing.

  7. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  8. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  9. Efficient processing of CFRP with a picosecond laser with up to 1.4 kW average power

    NASA Astrophysics Data System (ADS)

    Onuseit, V.; Freitag, C.; Wiedenmann, M.; Weber, R.; Negel, J.-P.; Löscher, A.; Abdou Ahmed, M.; Graf, T.

    2015-03-01

    Laser processing of carbon fiber reinforce plastic (CFRP) is a very promising method to solve a lot of the challenges for large-volume production of lightweight constructions in automotive and airplane industries. However, the laser process is actual limited by two main issues. First the quality might be reduced due to thermal damage and second the high process energy needed for sublimation of the carbon fibers requires laser sources with high average power for productive processing. To achieve thermal damage of the CFRP of less than 10μm intensities above 108 W/cm² are needed. To reach these high intensities in the processing area ultra-short pulse laser systems are favored. Unfortunately the average power of commercially available laser systems is up to now in the range of several tens to a few hundred Watt. To sublimate the carbon fibers a large volume specific enthalpy of 85 J/mm³ is necessary. This means for example that cutting of 2 mm thick material with a kerf width of 0.2 mm with industry-typical 100 mm/sec requires several kilowatts of average power. At the IFSW a thin-disk multipass amplifier yielding a maximum average output power of 1100 W (300 kHz, 8 ps, 3.7 mJ) allowed for the first time to process CFRP at this average power and pulse energy level with picosecond pulse duration. With this unique laser system cutting of CFRP with a thickness of 2 mm an effective average cutting speed of 150 mm/sec with a thermal damage below 10μm was demonstrated.

  10. Stopping power of fluorides and semiconductor organic films for low-velocity protons

    SciTech Connect

    Serkovic Loli, L. N.; Sanchez, E. A.; Grizzi, O.; Arista, N. R.

    2010-02-15

    A combined experimental and theoretical study of the energy loss of protons in fluorides and organic films is presented. The measurements were performed in fresh AlF{sub 3}, LiF, and N,N{sup '}-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) evaporated in situ on self-supported C or Ag foils, covering the very low energy range from 25 keV down to 0.7 keV. The transmission method is used in combination with time-of-flight (TOF) spectrometry. In the case of fluorides with large band gap energies (AlF{sub 3} and LiF), the experimental stopping power increases almost linearly with the mean projectile velocity showing a velocity threshold at about 0.1 a.u. These features are well reproduced by a model based on quantum scattering theory that takes into account the velocity distribution and the excitation of the active 2p electrons in the F{sup -} anions, and the properties of the electronic bands of the insulators. In the case of the semiconductor organic film with a lower gap, the experimental stopping power increases linearly with the mean projectile velocity without presenting a clear threshold. This trend is also reproduced by the proposed model.

  11. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures.

    PubMed

    Xu, Gangyi; Colombelli, Raffaele; Khanna, Suraj P; Belarouci, Ali; Letartre, Xavier; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Beere, Harvey E; Ritchie, David A

    2012-01-01

    Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric mode in the device centre and confine the antisymmetric modes close to the laser facet. This modal spatial separation is combined with absorbing boundaries to increase the antisymmetric mode loss, and force device operation on the symmetric mode, with elevated radiation efficiency. Application of this concept to terahertz quantum cascade lasers leads to record-high peak-power surface emission (>100 mW) and differential efficiencies (230 mW A(-1)), together with low-divergence, single-lobed emission patterns, and is also applicable to continuous-wave operation. Such flexible tuning of the radiation loss using graded photonic heterostructures, with only a minimal influence on threshold current, is highly desirable for optimizing second-order distributed feedback lasers. PMID:22805559

  12. A Code to Produce Cell Averaged Cross Sections for Fast Critical Assemblies and Fast Power Reactors.

    Energy Science and Technology Software Center (ESTSC)

    1987-05-14

    Version 00 SLAROM solves the neutron integral transport equations to determine the flux distribution and spectra in a fast reactor lattice and calculates cell averaged effective cross sections. The code uses multigroup data of the type in DLC-111/JFS that use Bondarenko factors for resonance effects.

  13. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  14. 200W average power 1mJ pulse energy from spectrally combined pulsed sub-5 ns fiber laser source

    NASA Astrophysics Data System (ADS)

    Schmidt, O.; Ortac, B.; Limpert, J.; Tünnermann, A.; Andersen, Thomas V.

    2009-02-01

    In this contribution, we report on spectral combination of four sub-5ns pulsed fiber amplifier systems with an average output power of 200W at 200kHz repetition rate resulting in 1mJ of pulse energy. A dielectric reflection grating is used to combine four individual beams to one output possessing a measured M2 value of 1.3 and 1.8, respectively, independent of power level. Extraction of higher pulse energies and peak powers will be discussed.

  15. Electron-beam and high-speed optical diagnostics for the average power laser experiment (APLE) program

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.; McVey, Brian D.; Greegor, Robert B.; Dowell, David H.

    1992-07-01

    The average power laser experiment (APLE) program is a collaboration between Boeing Aerospace and Electronics Company and Los Alamos National Laboratory to build a free-electron laser (FEL) operating at a wavelength of 10 μm and an average power of 100 kW. This program includes demonstration experiments at Boeing on the injector and at Los Alamos on a single accelerator master oscillator power amplifier (SAMOPA). In response to simulations of the expected electron beam properties, diagnostic plans have been developed for the low duty factor and the 25% duty factor operations of APLE. Preliminary evaluations of diagnostics based on information conversion to visible or near-infrared light (optical-transition radiation, Cherenkov radiation, synchrotron radiation, and spontaneous-emission radiation) or electrical signals (striplines, toroids, flying wires, etc.) are addressed.

  16. Large optical power margin of signal light in OFDR-OCT by using semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Asaka, Kota

    2008-02-01

    We demonstrate a sensitivity improvement in an optical frequency domain reflectometry-optical coherence tomography (OFDR-OCT) system with a discretely swept light source by incorporating a semiconductor optical amplifier (SOA) in a sample arm. With the system, we achieve a high sensitivity of -134.4 dB when we measure the reflective mirror with an A-line rate of 0.25 kHz. This improves the sensitivity (-125.2 dB) by 9.2 dB compared with a system without the SOA. The OCT system without the SOA shows a signal-to-noise ratio (SNR) of 56 dB when the signal light power is attenuated by about 66 dB, and the SNRs of less than 56 dB are obtained at higher attenuation levels. However, an SOA-incorporated OCT system provides the SNR of 56 dB at the much higher attenuation level of 86 dB. This means that using the SOA offers the large signal light power margin of 20 dB needed to obtain SNR of 56 dB. It is shown that the power margin is qualitatively dependent on the optical gain of the SOA. From an experimental analysis of the noises in the SOA-incorporated system, we found that the sensitivity enhancement is mainly limited by the beat noise between the reference light and the amplified spontaneous emission (ASE) of the SOA. We obtained images that show clear cluster structures of enamel crystals near the dentin-enamel junction of an extracted human tooth with our SOA-incorporated discretely swept OFDR-OCT imaging, revealing the potential to achieve a high-speed OCT system with high sensitivity.

  17. Different cooling configurations for a high average power longitudinally diode-pumped Yb:YAG amplifier.

    PubMed

    Yu, Haiwu; Bourdet, Gilbert

    2006-08-20

    We analyze the temperature distribution in several Yb:YAG longitudinally pumped amplifier crystals by using various cooling configurations. The crystal designs are (i) a composite crystal made of a thin sheet of high-doped Yb:YAG bonded on a bulk piece of undoped YAG and (ii) a thick piece of low-doped Yb:YAG crystal. The cooling configurations investigated here include those both from the rear face or from the rear and side faces together. In every case we determine the average temperature rise, the longitudinal and radial temperature gradient, and the resulting crystal bending and optical phase distortion. We optimize the best cooling configuration and crystal design by compromising the average temperature, thermodeformation, and optical phase distortion. The experimental results also indicate that a thin sheet of gain medium (1.6 mm thick at 10 at. % doping) suffers from a notable bending deformation, which results in an unexpected decrease of the output energy. PMID:16892125

  18. Multipulse operation of a high average power, good beam quality zig-zag dye laser

    SciTech Connect

    Mandl, A.; Klimek, D.E.

    1996-03-01

    A laser pumped zig-zag dye laser operating at 568 nm with a pulse length {approximately} 2 {micro}s has been scaled to high power using a MOPA configuration. Pulse energies in excess of 7 J with beam quality < 2 XDL have been achieved under repetitively pulsed, 10 Hz operation. RMS jitter was measured as 0.12 of a 1 XDL spot. The device has operated with over 70 W output for runs up to 5 s. Substantially longer run times and output powers are possible. This device represents an advance in dye laser capabilities. Improvement in pointing accuracy of better than an order of magnitude have been demonstrated. In addition, an improvement in beam quality by about an order of magnitude has been achieved compared to other dye lasers operating in this power range.

  19. Simulations of the high average power selene free electron laser prototype. Master's thesis

    SciTech Connect

    Quick, D.D.

    1994-06-01

    Free electron laser (FEL) technology continues to advance, providing alternative solutions to existing and potential problems. The capabilities of an FEL with respect to tunability, power and efficiency make it an attractive choice when moving into new laser utilization fields. The initial design parameters, for any new system, offer a good base to begin system simulation tests in an effort to determine the best possible design. This is a study of the Novosibirsk design which is a prototype for the proposed SELENE FEL. The design uses a three-section, low-power optical klystron followed by a single-pass, high-power radiator. This system is inherently sensitive to electron beam quality, but affords flexibility in achieving the final design. The performance of the system is studied using the initial parameters. An FEL, configured as a simple, two section optical klystron is studied to determine the basic operating characteristics of a high current FEL klystron.

  20. Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power.

    PubMed

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Pung, Aaron; Poutous, Menelaos K; Johnson, Eric G; Richardson, Martin

    2012-08-27

    We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode field adapter, and a fiber-coupled isolator. The laser components ultimately determine the system architecture and the limits of laser performance, particularly considering the immature and rapidly developing state of fiber components in the 2 μm wavelength regime. PMID:23037103

  1. Simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm

    SciTech Connect

    Gorlachuk, P V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Simakov, V A; Chernov, R V

    2014-02-28

    We report the simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm. A technique is described which allows one to determine the thermal resistance and characteristic temperatures of a laser diode. The radiative and nonradiative carrier recombination rates are evaluated. Simulation results are shown to agree well with experimental data. (lasers)

  2. A high-average power femtosecond laser for synchrotron light source applications

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Schoenlein, R. W.

    2007-02-01

    We describe a 60W, 70fs, 20kHz Ti:sapphire CPA laser system using cryogenically-cooled amplifiers, currently operating at the Advanced Light Source at LBNL. The system consists of an oscillator, a 20 kHz regenerative preamplifier, and two power amplifiers to produce two output beams, each at 30W. Each power amp can be pumped by two 90 Watt, 10 kHz, diode-pumped, doubled YLF lasers simultaneously (for 10 kHz) or interleaved in time (for 20 kHz). The regen is pumped at 20 kHz and 60W, producing 8W output which is split between the power amps. To maintain the crystals near the thermal conductivity peak at ~50°K, we used 300 Watt cryorefrigerators mechanically decoupled from the optical table. Pulses are compressed in a quartz transmission grating compressor, to minimize thermal distortions of the phase front typical of gold coated gratings at high power density. Transmission through the compressor is >80%, using a single 100 x 100mm grating. One of the 30W output beams is used to produce 70fs electron bunches in the synchrotron light source. The other is delayed by 300ns in a 12-pass Herriot cell before amplification, to be synchronized with the short light pulse from the synchrotron.

  3. Does Stevens's Power Law for Brightness Extend to Perceptual Brightness Averaging?

    ERIC Educational Resources Information Center

    Bauer, Ben

    2009-01-01

    Stevens's power law ([Psi][infinity][Phi][beta]) captures the relationship between physical ([Phi]) and perceived ([Psi]) magnitude for many stimulus continua (e.g., luminance and brightness, weight and heaviness, area and size). The exponent ([beta]) indicates whether perceptual magnitude grows more slowly than physical magnitude ([beta] less…

  4. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1979-01-01

    The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current and the signal multiplier was studied. It was concluded that this measurement error can be minimized if the frequency responses of the first order transfer functions are identical.

  5. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang

    2001-10-01

    Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.

  6. High-average-power diode-end-pumped intracavity-doubled Nd:YAG laser

    SciTech Connect

    Honea, E.C.; Ebbers, C.A.; Beach, R.J.; Speth, J.A.; Emanuel, M.S>; Skidmore, J.A.; Payne, S.A.

    1998-02-12

    A compact diode-pumped ND:YAG laser was frequency-doubled to 0.532 {mu}m with an intracavity KTP or LBO crystal using a `V` cavity configuration. Two acousto-optic Q-switches were employed at repetition rates of 10-30 kHz. Dichroic fold and end mirrors were used to output two beams with up to 140 W of 0.532 {mu}m power using KTP and 116 W using LBO as the frequency doubling crystal. This corresponds to 66% of the maximum output power at 1.064 {mu}m obtained with an optimized output coupler reflectivity. The minimum output pulse duration varied with repetition rate from 90 to 130 ns. The multimode output beam had a smooth profile and a beam quality of M{sup 2} = 5 1.

  7. Program THEK energy production units of average power and using thermal conversion of solar radiation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  8. High-Efficiency 800 nm Multi-Layer Dielectric Gratings for High Average Power Laser Systems

    SciTech Connect

    Nguyen, H T; Britten, J A; Patel, D; Brizuela, F; Rocca, J J; Menoni, C S

    2006-06-15

    We report on the design, fabrication, and performance of a 1740 l/mm multilayer dielectric diffraction grating for use with 800 nm light. At an input angle of 8{sup o} from Littrow and a wavelength from 770 to 830 nm, >90% diffraction efficiency is achieved, with peak diffraction efficiency of >97% at 800nm. We will also comment on laser damage threshold and power-handling properties.

  9. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power

    NASA Astrophysics Data System (ADS)

    Gapontsev, Valentin; Avdokhin, Alexey; Kadwani, Pankaj; Samartsev, Igor; Platonov, Nikolai; Yagodkin, Roman

    2014-02-01

    We report a single-mode (SM) green laser based on single-pass frequency doubling of a linearly-polarized narrowlinewidth Yb fiber laser in LBO crystal, and configured to operate in a range of regimes from continuous-wave (CW) to high-repetition-rate quasi-continuous-wave (QCW). Adjusting the duty cycle, we maintained high second harmonic generation (SHG) efficiency for various output powers. Average powers of over 550W in QCW and over 350W in CW regimes were obtained with the wall-plug efficiency up to 15%, opening the possibility to creating new class of simple, compact and efficient single-mode green lasers with output power up to 1kW and above. The same approach could also be used to create high-power lasers operating at other wavelengths in ultraviolet and visible spectral ranges.

  10. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. PMID:22535061