Science.gov

Sample records for avian comparative genomics

  1. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  2. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  3. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    PubMed Central

    Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676

  4. Psittacid Herpesvirus 1 and Infectious Laryngotracheitis Virus: Comparative Genome Sequence Analysis of Two Avian Alphaherpesviruses

    PubMed Central

    Thureen, Dean R.; Keeler, Calvin L.

    2006-01-01

    Psittacid herpesvirus 1 (PsHV-1) is the causative agent of Pacheco's disease, an acute, highly contagious, and potentially lethal respiratory herpesvirus infection in psittacine birds, while infectious laryngotracheitis virus (ILTV) is a highly contagious and economically significant avian herpesvirus which is responsible for an acute respiratory disease limited to galliform birds. The complete genome sequence of PsHV-1 has been determined and compared to the ILTV sequence, assembled from published data. The PsHV-1 and ILTV genomes exhibit similar structural characteristics and are 163,025 bp and 148,665 bp in length, respectively. The PsHV-1 genome contains 73 predicted open reading frames (ORFs), while the ILTV genome contains 77 predicted ORFs. Both genomes contain an inversion in the unique long region similar to that observed in pseudorabies virus. PsHV-1 is closely related to ILTV, and it is proposed that it be assigned to the Iltovirus genus. These two avian herpesviruses represent a phylogenetically unique clade of alphaherpesviruses that are distinct from the Marek's disease-like viruses (Mardivirus). The determination of the complete genomic nucleotide sequences of PsHV-1 and ILTV provides a tool for further comparative and functional analysis of this unique class of avian alphaherpesviruses. PMID:16873243

  5. Genomic Avenue to Avian Colisepticemia

    PubMed Central

    Huja, Sagi; Oren, Yaara; Trost, Eva; Brzuszkiewicz, Elzbieta; Biran, Dvora; Blom, Jochen; Goesmann, Alexander; Gottschalk, Gerhard; Hacker, Jörg

    2015-01-01

    ABSTRACT Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. PMID:25587010

  6. Adaptation to nocturnality - learning from avian genomes.

    PubMed

    Le Duc, Diana; Schöneberg, Torsten

    2016-07-01

    The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general. PMID:27172298

  7. Draft genome sequences of two virulent serotypes of avian Pasteurella multocida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent Pasteurella multocida strain Pm70....

  8. Complete Genomic Sequence for an Avian Group G Rotavirus from South Africa

    PubMed Central

    Stucker, Karla M.; Stockwell, Timothy B.; Nyaga, Martin M.; Halpin, Rebecca A.; Fedorova, Nadia; Akopov, Asmik; Ngoveni, Harry; Peenze, Ina; Seheri, Mapaseka L.; Mphahlele, M. Jeffrey

    2015-01-01

    We report the first complete sequence for an avian group G rotavirus (RVG) genome from Africa, which is the third publically available RVG genome. These RVG genomes are highly diverse, especially in their VP4, VP7, NSP4, and NSP3 segments, indicating that RVG diversity is comparable to that of rotavirus A. PMID:25767240

  9. Complete genomic sequence for an avian group G rotavirus from South Africa.

    PubMed

    Stucker, Karla M; Stockwell, Timothy B; Nyaga, Martin M; Halpin, Rebecca A; Fedorova, Nadia; Akopov, Asmik; Ngoveni, Harry; Peenze, Ina; Seheri, Mapaseka L; Mphahlele, M Jeffrey; Wentworth, David E

    2015-01-01

    We report the first complete sequence for an avian group G rotavirus (RVG) genome from Africa, which is the third publically available RVG genome. These RVG genomes are highly diverse, especially in their VP4, VP7, NSP4, and NSP3 segments, indicating that RVG diversity is comparable to that of rotavirus A. PMID:25767240

  10. Complete Genomic Sequence of an Avian Pathogenic Escherichia coli Strain of Serotype O7:HNT

    PubMed Central

    Maluta, Renato P.; Nicholson, Bryon; Logue, Catherine M.; Nolan, Lisa K.; Rojas, Thaís C. G.

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) is associated with colibacillosis in poultry. Here, we present the first complete sequence of an APEC strain of the O7:HNT serotype and ST73 sequence type, isolated from a broiler with cellulitis. Complete genomes of APEC with distinct genetic backgrounds may be useful for comparative analysis. PMID:26823578

  11. The value of avian genomics to the conservation of wildlife

    PubMed Central

    2009-01-01

    Background Genomic studies in non-domestic avian models, such as the California condor and white-throated sparrow, can lead to more comprehensive conservation plans and provide clues for understanding mechanisms affecting genetic variation, adaptation and evolution. Developing genomic tools and resources including genomic libraries and a genetic map of the California condor is a prerequisite for identification of candidate loci for a heritable embryonic lethal condition. The white-throated sparrow exhibits a stable genetic polymorphism (i.e. chromosomal rearrangements) associated with variation in morphology, physiology, and behavior (e.g., aggression, social behavior, sexual behavior, parental care). In this paper we outline the utility of these species as well as report on recent advances in the study of their genomes. Results Genotyping of the condor resource population at 17 microsatellite loci provided a better assessment of the current population's genetic variation. Specific New World vulture repeats were found in the condor genome. Using condor BAC library and clones, chicken-condor comparative maps were generated. A condor fibroblast cell line transcriptome was characterized using the 454 sequencing technology. Our karyotypic analyses of the sparrow in combination with other studies indicate that the rearrangements in both chromosomes 2m and 3a are complex and likely involve multiple inversions, interchromosomal linkage, and pleiotropy. At least a portion of the rearrangement in chromosome 2m existed in the common ancestor of the four North American species of Zonotrichia, but not in the one South American species, and that the 2m form, originally thought to be the derived condition, might actually be the ancestral one. Conclusion Mining and characterization of candidate loci in the California condor using molecular genetic and genomic techniques as well as linkage and comparative genomic mapping will eventually enable the identification of carriers of the

  12. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  13. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  14. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    PubMed

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886 bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. PMID:27033902

  15. Ebolavirus comparative genomics

    DOE PAGESBeta

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  16. Ebolavirus comparative genomics.

    PubMed

    Jun, Se-Ran; Leuze, Michael R; Nookaew, Intawat; Uberbacher, Edward C; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S; Pedersen, Thomas D; Wassenaar, Trudy M; Ussery, David W

    2015-09-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  17. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  18. The smallest avian genomes are found in hummingbirds

    PubMed Central

    Gregory, T. Ryan; Andrews, Chandler B.; McGuire, Jimmy A.; Witt, Christopher C.

    2009-01-01

    It has often been suggested that the genome sizes of birds are constrained relative to other tetrapods owing to the high metabolic demands of powered flight and the link between nuclear DNA content and red blood cell size. This hypothesis predicts that hummingbirds, which engage in energy-intensive hovering flight, will display especially constrained genomes even relative to other birds. We report genome size measurements for 37 species of hummingbirds that confirm this prediction. Our results suggest that genome size was reduced before the divergence of extant hummingbird lineages, and that only minimal additional reduction occurred during hummingbird diversification. Unlike in some other avian taxa, the small amount of variation observed within hummingbirds is not explained by variation in respiratory and flight-related parameters. Unexpectedly, genome size appears to have increased in four unrelated hummingbird species whose distributions are centred on humid forests of the upper-tropical elevational zone on the eastern slope of the Andes. This suggests that the secondary expansion of the genome may have been mediated by biogeographical and demographic effects. PMID:19656792

  19. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  20. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  1. Endogenous Hepadnaviruses in the Genome of the Budgerigar (Melopsittacus undulatus) and the Evolution of Avian Hepadnaviruses

    PubMed Central

    Cui, Jie

    2012-01-01

    Endogenous hepadnaviruses (hepatitis B viruses [HBVs]) were recently discovered in the genomes of passerine birds. We mined six additional avian genomes and discovered multiple copies of endogenous HBVs in the budgerigar (order Psittaciformes), designated eBHBV. A phylogenetic analysis reveals that the endogenous hepadnaviruses are more diverse than their exogenous counterparts and that the endogenous and exogenous hepadnaviruses form distinct lineages even when sampled from the same avian order, indicative of multiple genomic integration events. PMID:22553337

  2. Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses.

    PubMed

    Cui, Jie; Holmes, Edward C

    2012-07-01

    Endogenous hepadnaviruses (hepatitis B viruses [HBVs]) were recently discovered in the genomes of passerine birds. We mined six additional avian genomes and discovered multiple copies of endogenous HBVs in the budgerigar (order Psittaciformes), designated eBHBV. A phylogenetic analysis reveals that the endogenous hepadnaviruses are more diverse than their exogenous counterparts and that the endogenous and exogenous hepadnaviruses form distinct lineages even when sampled from the same avian order, indicative of multiple genomic integration events. PMID:22553337

  3. Comparative genomics of Brassicaceae crops

    PubMed Central

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-01-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  4. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  5. Complete Genome Sequence of an Avian Paramyxovirus Representative of Putative New Serotype 13.

    PubMed

    Goraichuk, Iryna; Sharma, Poonam; Stegniy, Borys; Muzyka, Denys; Pantin-Jackwood, Mary J; Gerilovych, Anton; Solodiankin, Olexii; Bolotin, Vitaliy; Miller, Patti J; Dimitrov, Kiril M; Afonso, Claudio L

    2016-01-01

    Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13. PMID:27469958

  6. Complete Genome Sequence of an Avian Paramyxovirus Representative of Putative New Serotype 13

    PubMed Central

    Goraichuk, Iryna; Sharma, Poonam; Stegniy, Borys; Muzyka, Denys; Pantin-Jackwood, Mary J.; Gerilovych, Anton; Solodiankin, Olexii; Bolotin, Vitaliy; Miller, Patti J.; Dimitrov, Kiril M.

    2016-01-01

    Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13. PMID:27469958

  7. Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype.

    PubMed Central

    Masabanda, Julio S; Burt, Dave W; O'Brien, Patricia C M; Vignal, Alain; Fillon, Valerie; Walsh, Philippa S; Cox, Helen; Tempest, Helen G; Smith, Jacqueline; Habermann, Felix; Schmid, Michael; Matsuda, Yoichi; Ferguson-Smith, Malcolm A; Crooijmans, Richard P M A; Groenen, Martien A M; Griffin, Darren K

    2004-01-01

    Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic characterization of each chicken chromosome using chromosome painting and mapping of individual clones by FISH. Where possible, we have assigned the chromosomes to known linkage groups. We propose, on the basis of size, that the NOR chromosome is approximately the size of chromosome 22; however, we suggest that its original assignment of 16 should be retained. We also suggest a definitive chromosome classification system and propose that the probes developed here will find wide utility in the fields of developmental biology, DT40 studies, agriculture, vertebrate genome organization, and comparative mapping of avian species. PMID:15082555

  8. Sequencing of avian influenza virus genomes following random amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) is a significant disease of birds and a threat to humans. Recently, as a result of the emergence of Asian H5N1 viruses capable of zoonotic spread, wild and domestic bird surveillance for Avian Influenza viruses (AIV) has increased worldwide, requiring the development of fast a...

  9. Comparative genomics for biodiversity conservation

    PubMed Central

    Grueber, Catherine E.

    2015-01-01

    Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem. PMID:26106461

  10. Genomic Signatures for Avian H7N9 Viruses Adapting to Humans

    PubMed Central

    Chen, Guang-Wu; Kuo, Shu-Ming; Yang, Shu-Li; Gong, Yu-Nong; Hsiao, Mei-Ren; Liu, Yi-Chun; Shih, Shin-Ru; Tsao, Kuo-Chien

    2016-01-01

    An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP) complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans. PMID:26845764

  11. Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains

    PubMed Central

    Pan, Zihao; Hu, Lin; Wang, Shaohui; Wang, Haojin; Leung, Frederick C.; Dai, Jianjun; Fan, Hongjie

    2014-01-01

    Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140) with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89). Furthermore, the unique PAI I5155 (GI-12) was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18) strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China) through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates. PMID:25397580

  12. Comparative genomic analyses in Asparagus.

    PubMed

    Kuhl, Joseph C; Havey, Michael J; Martin, William J; Cheung, Foo; Yuan, Qiaoping; Landherr, Lena; Hu, Yi; Leebens-Mack, James; Town, Christopher D; Sink, Kenneth C

    2005-12-01

    Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales. PMID:16391674

  13. Enhancer Identification through Comparative Genomics

    SciTech Connect

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  14. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class.

    PubMed

    Jarvis, Erich D

    2016-01-01

    The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class. PMID:26884102

  15. Enhancer Identification through Comparative Genomics

    PubMed Central

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2007-01-01

    With the availability of genomic sequence from numerous vertebrates, a paradigm shift has occurred in the identification of distant-acting gene regulatory elements. In contrast to traditional gene-centric studies in which investigators randomly scanned genomic fragments that flank genes of interest in functional assays, the modern approach begins electronically with publicly available comparative sequence datasets that provide investigators with prioritized lists of putative functional sequences based on their evolutionary conservation. However, although a large number of tools and resources are now available, application of comparative genomic approaches remains far from trivial. In particular, it requires users to dynamically consider the species and methods for comparison depending on the specific biological question under investigation. While there is currently no single general rule to this end, it is clear that when applied appropriately, comparative genomic approaches exponentially increase our power in generating biological hypotheses for subsequent experimental testing. It is anticipated that cardiac-related genes and the identification of their distant-acting transcriptional enhancers are particularly poised to benefit from these modern capabilities. PMID:17276707

  16. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    PubMed Central

    2009-01-01

    Background The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo) and the first analysis of copy number variants (CNVs) in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos), an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots"). Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies. PMID:19656363

  17. Comparative genomics: methods and applications

    NASA Astrophysics Data System (ADS)

    Haubold, Bernhard; Wiehe, Thomas

    2004-09-01

    Interpreting the functional content of a given genomic sequence is one of the central challenges of biology today. Perhaps the most promising approach to this problem is based on the comparative method of classic biology in the modern guise of sequence comparison. For instance, protein-coding regions tend to be conserved between species. Hence, a simple method for distinguishing a functional exon from the chance absence of stop codons is to investigate its homologue from closely related species. Predicting regulatory elements is even more difficult than exon prediction, but again, comparisons pinpointing conserved sequence motifs upstream of translation start sites are helping to unravel gene regulatory networks. In addition to interspecific studies, intraspecific sequence comparison yields insights into the evolutionary forces that have acted on a species in the past. Of particular interest here is the identification of selection events such as selective sweeps. Both intra- and interspecific sequence comparisons are based on a variety of computational methods, including alignment, phylogenetic reconstruction, and coalescent theory. This article surveys the biology and the central computational ideas applied in recent comparative genomics projects. We argue that the most fruitful method of understanding the functional content of genomes is to study them in the context of related genomic sequences. In particular, such a study may reveal selection, a fundamental pointer to biological relevance.

  18. Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland.

    PubMed

    Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind

    2015-01-01

    Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV). PMID:26404592

  19. Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland

    PubMed Central

    Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine

    2015-01-01

    Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV). PMID:26404592

  20. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure

    PubMed Central

    Chen, Li-Cheng; Lan, Hong; Sun, Li; Deng, Yan-Li; Tang, Ke-Yi; Wan, Qiu-Hong

    2015-01-01

    The major histocompatibility complex (MHC) plays an important role in immune response. Avian MHCs are not well characterized, only reporting highly compact Galliformes MHCs and extensively fragmented zebra finch MHC. We report the first genomic structure of an endangered Pelecaniformes (crested ibis) MHC containing 54 genes in three regions spanning ~500 kb. In contrast to the loose BG (26 loci within 265 kb) and Class I (11 within 150) genomic structures, the Core Region is condensed (17 within 85). Furthermore, this Region exhibits a COL11A2 gene, followed by four tandem MHC class II αβ dyads retaining two suites of anciently duplicated “αβ” lineages. Thus, the crested ibis MHC structure is entirely different from the known avian MHC architectures but similar to that of mammalian MHCs, suggesting that the fundamental structure of ancestral avian class II MHCs should be “COL11A2-IIαβ1-IIαβ2.” The gene structures, residue characteristics, and expression levels of the five class I genes reveal inter-locus functional divergence. However, phylogenetic analysis indicates that these five genes generate a well-supported intra-species clade, showing evidence for recent duplications. Our analyses suggest dramatic structural variation among avian MHC lineages, help elucidate avian MHC evolution, and provide a foundation for future conservation studies. PMID:25608659

  1. Comparative and evolutionary insights into CD4 gene across mammalian and avian taxa

    PubMed Central

    Khan, Naazneen

    2015-01-01

    The present day genetic architecture of a species bears much significance to its closely related species which is due to species-specific differences, shaped by different evolutionary forces across time scale. With the availability of whole genome sequence of several closely related species, it is now possible to infer evolutionary patterns of genes and genomes in specific lineages. To this respect, CD4 gene, primarily responsible for defensive mechanism in human, is conserved across a few taxa, and thus, comparative genomic studies could be useful for better understanding of host–pathogen biology. Comparative and evolutionary analyses were performed in eleven taxa (10 mammalian and avian) with different statistical algorithms. Phylogenetic inferences revealed recent divergence of human and chimpanzee, and pig was found to be diverged from rest of the taxa significantly. Additionally, gene length, microsatellites, and secondary structures were observed across taxa. The genetic architecture of CD4 gene and its evolutionary history in different mammalian taxa provide crucial evidence in support of the fact that this gene might have been evolving at a similar rate to other human immune system genes. Future population-based study and structural modeling would unravel the differential ability to interact with HIV virus and influence immune system in humans. PMID:26767121

  2. Comparative Genomics of Carp Herpesviruses

    PubMed Central

    Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.

    2013-01-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  3. Comparative genomics of carp herpesviruses.

    PubMed

    Davison, Andrew J; Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P; Waltzek, Thomas B

    2013-03-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  4. Avian Astrovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviru...

  5. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  6. Comparative genomic hybridization: an overview.

    PubMed Central

    Houldsworth, J.; Chaganti, R. S.

    1994-01-01

    Comparative genomic hybridization (CGH) is a newly described molecular-cytogenetic assay that globally assays for chromosomal gains and losses in a genomic complement. In this assay, normal human metaphase chromosomes are competitively hybridized with two differentially labeled genomic DNAs (test and reference), which upon fluorescence microscopy, reveal the chromosomal locations of copy number changes in DNA sequences between the two complements. Application of CGH to DNAs extracted from fresh frozen specimens and cell lines of various tumor types has revealed a number of recurring chromosomal gains and losses that were undetected by traditional cytogenetic analysis. Few previously known sites were found to be in higher copy number, or lost by CGH, while many novel amplified regions were identified. These regions warrant further molecular genetic studies aimed at isolating the perturbed genes. Since CGH can also be performed on DNA extracted from formalin-fixed paraffin-embedded archived tumor specimens with few modifications, gains and losses of genetic material can be determined for specimens that would otherwise be unanalyzable. Prospective and retrospective application of CGH to tumor specimens would permit correlative studies to be performed, possibly identifying diagnostic and prognostic indicators of disease. CGH may also have a future role in detection and identification of chromosomal abnormalities in prenatal diagnosis and in dysmorphic anomalies. Images Figure 1 Figure 2 PMID:7992829

  7. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  8. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  9. Complete genome sequences of an avian orthoreovirus isolated from guangxi, china.

    PubMed

    Teng, Liqiong; Xie, Zhixun; Xie, Liji; Liu, Jiabo; Pang, Yaoshan; Deng, Xianwen; Xie, Zhiqin; Fan, Qing; Luo, Sisi

    2013-01-01

    We report the complete genomic sequences of an avian orthoreovirus, strain GuangxiR1, isolated from a chicken flock in Guangxi Province, southern China, in 2000. Phylogenetic analyses suggest that the strain is closely related to the S1133 strain, which is associated with tenosynovitis, but is far different from strain AVS-B, which is associated with runting-stunting syndrome in broilers. PMID:23846280

  10. Conservation and Losses of Non-Coding RNAs in Avian Genomes

    PubMed Central

    Gardner, Paul P.; Fasold, Mario; Burge, Sarah W.; Ninova, Maria; Hertel, Jana; Kehr, Stephanie; Steeves, Tammy E.; Griffiths-Jones, Sam; Stadler, Peter F.

    2015-01-01

    Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous “losses” of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes. PMID:25822729

  11. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    NASA Astrophysics Data System (ADS)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  12. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    PubMed

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. PMID:26638019

  13. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas Americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99 percent identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  14. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    USGS Publications Warehouse

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Meixell, B.W.; Runstadler, J.A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4. years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10. km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9. days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America. ?? 2011.

  15. Cocoa/Cotton Comparative Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  16. Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.

    PubMed

    Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A

    2016-01-01

    One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. PMID:27238013

  17. Exploring novel candidate genes from the Mouse Genome Informatics database: Potential implications for avian migration research.

    PubMed

    Contina, Andrea; Bridge, Eli S; Kelly, Jeffrey F

    2016-07-01

    To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies. PMID:27061206

  18. Complete Genome Sequence of Avian Tembusu-Related Virus Strain WR Isolated from White Kaiya Ducks in Fujian, China

    PubMed Central

    Wan, Chunhe; Fu, Guanghua; Shi, Shaohua; Cheng, Longfei; Chen, Hongmei

    2012-01-01

    Avian tembusu-related virus, which was first identified in China, is an emerging virus causing serious economic loss to the Chinese poultry industry. We report here the complete genome sequences of avian tembusu-related virus strain WR, isolated from a White Kaiya duck with disease characterized by an abrupt decrease in egg laying with ovarian hemorrhage, which will help in further understanding the molecular and evolutionary characteristics and pathogenesis of avian tembusu-related virus, the new flavivirus affecting ducks in Southern China. PMID:22966199

  19. Comparative genomics of protoploid Saccharomycetaceae.

    PubMed

    Souciet, Jean-Luc; Dujon, Bernard; Gaillardin, Claude; Johnston, Mark; Baret, Philippe V; Cliften, Paul; Sherman, David J; Weissenbach, Jean; Westhof, Eric; Wincker, Patrick; Jubin, Claire; Poulain, Julie; Barbe, Valérie; Ségurens, Béatrice; Artiguenave, François; Anthouard, Véronique; Vacherie, Benoit; Val, Marie-Eve; Fulton, Robert S; Minx, Patrick; Wilson, Richard; Durrens, Pascal; Jean, Géraldine; Marck, Christian; Martin, Tiphaine; Nikolski, Macha; Rolland, Thomas; Seret, Marie-Line; Casarégola, Serge; Despons, Laurence; Fairhead, Cécile; Fischer, Gilles; Lafontaine, Ingrid; Leh, Véronique; Lemaire, Marc; de Montigny, Jacky; Neuvéglise, Cécile; Thierry, Agnès; Blanc-Lenfle, Isabelle; Bleykasten, Claudine; Diffels, Julie; Fritsch, Emilie; Frangeul, Lionel; Goëffon, Adrien; Jauniaux, Nicolas; Kachouri-Lafond, Rym; Payen, Célia; Potier, Serge; Pribylova, Lenka; Ozanne, Christophe; Richard, Guy-Franck; Sacerdot, Christine; Straub, Marie-Laure; Talla, Emmanuel

    2009-10-01

    Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified. PMID:19525356

  20. [Research proceedings on primate comparative genomics].

    PubMed

    Liao, Cheng-Hong; Su, Bing

    2012-02-01

    With the accomplishment of genome sequencing of human, chimpanzee and other primates, there has been a great amount of primate genome information accumulated. Primate comparative genomics has become a new research field at current genome era. In this article, we reviewed recent progress in phylogeny, genome structure and gene expression of human and nonhuman primates, and we elaborated the major biological differences among human, chimpanzee and other non-human primate species, which is informative in revealing the mechanism of human evolution. PMID:22345018

  1. Comparative evolutionary genomics of the STAT family of transcription factors

    PubMed Central

    Wang, Yaming; Levy, David E.

    2012-01-01

    The STAT signaling pathway is one of the seven common pathways that govern cell fate decisions during animal development. Comparative genomics revealed multiple incidences of stat gene duplications throughout metazoan evolutionary history. While pseudogenization is a frequent fate of duplicated genes, many of these STAT duplications evolved into novel genes through rapid sequence diversification and neofunctionalization. Additionally, the core of STAT gene regulatory networks, comprising stat1 through 4, stat5 and stat6, arose early in vertebrate evolution, probably through the two whole genome duplication events that occurred after the split of Cephalochordates but before the rise of Chondrichthyes. While another complete genome duplication event took place during the evolution of bony fish after their separation from the tetrapods about 450 million years ago (Mya), modern fish have only one set of these core stats, suggesting the rapid loss of most duplicated stat genes. The two stat5 genes in mammals likely arose from a duplication event in early Eutherian evolution, a period from about 310 Mya at the avian-mammal divergence to the separation of marsupials from other mammals about 130 Mya. These analyses indicate that whole genome duplications and gene duplications by unequal chromosomal crossing over were likely the major mechanisms underlying the evolution of STATs. PMID:24058748

  2. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits.

    PubMed

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R(2) = 0.57) and ET (R(2) = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  3. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits

    PubMed Central

    Duan, Zhongyi; Sun, Congjiao; Shen, ManMan; Wang, Kehua; Yang, Ning; Zheng, Jiangxia; Xu, Guiyun

    2016-01-01

    The ultrastructure of an eggshell is considered the major determinant of eggshell quality, which has biological and economic significance for the avian and poultry industries. However, the interrelationships and genome-wide architecture of eggshell ultrastructure remain to be elucidated. Herein, we measured eggshell thickness (EST), effective layer thickness (ET), mammillary layer thickness (MT), and mammillary density (MD) and conducted genome-wide association studies in 927 F2 hens. The SNP-based heritabilities of eggshell ultrastructure traits were estimated to be 0.39, 0.36, 0.17 and 0.19 for EST, ET, MT and MD, respectively, and a total of 719, 784, 1 and 10 genome-wide significant SNPs were associated with EST, ET, MT and MD, respectively. ABCC9, ITPR2, KCNJ8 and WNK1, which are involved in ion transport, were suggested to be the key genes regulating EST and ET. ITM2C and KNDC1 likely affect MT and MD, respectively. Additionally, there were linear relationships between the chromosome lengths and the variance explained per chromosome for EST (R2 = 0.57) and ET (R2 = 0.67). In conclusion, the interrelationships and genetic architecture of eggshell ultrastructure traits revealed in this study are valuable for our understanding of the avian eggshell and contribute to research on a variety of other calcified shells. PMID:27456605

  4. Comparative Reannotation of 21 Aspergillus Genomes

    SciTech Connect

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  5. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC).

    PubMed

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  6. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Lee, Jung Seok; Jang, Ho Bin; Kim, Ki Sei; Kim, Tae Hwan; Im, Se Pyeong; Kim, Si Won; Lazarte, Jassy Mary S.; Kim, Jae Sung; Jung, Tae Sung

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis. PMID:26555076

  7. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host.

    PubMed

    Leontovyč, Roman; Young, Neil D; Korhonen, Pasi K; Hall, Ross S; Tan, Patrick; Mikeš, Libor; Kašný, Martin; Horák, Petr; Gasser, Robin B

    2016-02-01

    To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. PMID:26863542

  8. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host

    PubMed Central

    Leontovyč, Roman; Young, Neil D.; Korhonen, Pasi K.; Hall, Ross S.; Tan, Patrick; Mikeš, Libor; Kašný, Martin; Horák, Petr; Gasser, Robin B.

    2016-01-01

    To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. PMID:26863542

  9. Gramene: a growing plant comparative genomics resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (www.gramene.org) is a curated genetic, genomic and comparative genome analysis resource for the major crop species, such as rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project, with all data and software freely downloadable through the ftp site ...

  10. Gramene 2013: Comparative plant genomics resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework fo...

  11. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  12. Comparative genomics of BCG vaccines.

    PubMed

    Behr, M A

    2001-01-01

    Bacille Calmette-Guérin (BCG) vaccines have been given to more people than any other vaccine. They have also probably resulted in as much controversy as any other vaccine. In clinical trials, the efficacy of BCG vaccination against pulmonary TB has been widely variable. At the same time, a number of investigators have observed phenotypic differences between BCG daughter strains, raising the possibility that differences between BCG products may in some way translate into different outcomes. With recent genomic analysis of BCG strains, it has become possible to piece together the molecular events that have resulted in current BCG vaccines. Between the derivation of BCG in 1921 and the lyophilization of BCG Pasteur 1173 in 1961, there have been at least seven genetic events, including deletions, duplications and a single nucleotide polymorphism. The phenotypic relevance of these changes in BCG vaccines remains to be explored. PMID:11463238

  13. The complete DNA sequence and genomic organization of the avian adenovirus CELO.

    PubMed Central

    Chiocca, S; Kurzbauer, R; Schaffner, G; Baker, A; Mautner, V; Cotten, M

    1996-01-01

    The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions. PMID:8627769

  14. Linking the genomes of nonmodel teleosts through comparative genomics.

    PubMed

    Sarropoulou, E; Nousdili, D; Magoulas, A; Kotoulas, G

    2008-01-01

    Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications. PMID:18297360

  15. The complete mitochondrial genome of Fulica atra (Avian, Gruiformes, Rallidae).

    PubMed

    He, Ke; Ren, Ting; Zhu, Songhui; Zhao, Ayong

    2016-09-01

    To analyze the gene structure and the evolutionary roadmap of Fulica atra, the complete mitogenome is sequenced. It is composed of 37 genes and 1 control region, and the structure and arrangement of all genes are identical to other Rallidae. The comparative mitogenome revealed that the start codon and stop codon varied in Rallidae, and the gene lengths are different in ND2, COX1, ND3, ND5 and CYTB due to incompleteness of stop codon, frameshift mutation and various numbers of amino acids. We analyzed the correlation between phylogeny and gene characteristic in Rallidae with respect to the usage of start/stop codon and gene length, but no correlation was found. It indicates these discrepancies might happen independently. This work can afford an in-depth insight of phyletic evolution in Rallidae. PMID:25758044

  16. Homology-independent metrics for comparative genomics.

    PubMed

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of "genomic dark matter" with no significant similarity - and, consequently, no inferred homology to any other known sequence - from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  17. Genomic Selection for the Improvement of Antibody Response to Newcastle Disease and Avian Influenza Virus in Chickens

    PubMed Central

    Luo, Chenglong; Li, Xuewei; Shu, Dingming; Lund, Mogens Sandø; Su, Guosheng

    2014-01-01

    Newcastle disease (ND) and avian influenza (AI) are the most feared diseases in the poultry industry worldwide. They can cause flock mortality up to 100%, resulting in a catastrophic economic loss. This is the first study to investigate the feasibility of genomic selection for antibody response to Newcastle disease virus (Ab-NDV) and antibody response to Avian Influenza virus (Ab-AIV) in chickens. The data were collected from a crossbred population. Breeding values for Ab-NDV and Ab-AIV were estimated using a pedigree-based best linear unbiased prediction model (BLUP) and a genomic best linear unbiased prediction model (GBLUP). Single-trait and multiple-trait analyses were implemented. According to the analysis using the pedigree-based model, the heritability for Ab-NDV estimated from the single-trait and multiple-trait models was 0.478 and 0.487, respectively. The heritability for Ab-AIV estimated from the two models was 0.301 and 0.291, respectively. The estimated genetic correlation between the two traits was 0.438. A four-fold cross-validation was used to assess the accuracy of the estimated breeding values (EBV) in the two validation scenarios. In the family sample scenario each half-sib family is randomly allocated to one of four subsets and in the random sample scenario the individuals are randomly divided into four subsets. In the family sample scenario, compared with the pedigree-based model, the accuracy of the genomic prediction increased from 0.086 to 0.237 for Ab-NDV and from 0.080 to 0.347 for Ab-AIV. In the random sample scenario, the accuracy was improved from 0.389 to 0.427 for Ab-NDV and from 0.281 to 0.367 for Ab-AIV. The multiple-trait GBLUP model led to a slightly higher accuracy of genomic prediction for both traits. These results indicate that genomic selection for antibody response to ND and AI in chickens is promising. PMID:25401767

  18. Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan

    PubMed Central

    Kydyrmanov, A.; Seidalina, A.; Asanova, S.; Sayatov, M.; Kasymbekov, E.; Khan, E.; Daulbayeva, K.; Harrison, S. M.; Carr, I. M.; Goodman, S. J.; Zhumatov, K.

    2016-01-01

    A novel avian paramyxovirus was identified during annual viral surveillance of wild bird populations in Kazakhstan in 2013. The virus was isolated from a white fronted goose (Anser albifrons) in northern Kazakhstan. Here, we report the complete genome sequence of the isolate, which we suggest should constitute a novel serotype. PMID:27198008

  19. Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan.

    PubMed

    Karamendin, K; Kydyrmanov, A; Seidalina, A; Asanova, S; Sayatov, M; Kasymbekov, E; Khan, E; Daulbayeva, K; Harrison, S M; Carr, I M; Goodman, S J; Zhumatov, K

    2016-01-01

    A novel avian paramyxovirus was identified during annual viral surveillance of wild bird populations in Kazakhstan in 2013. The virus was isolated from a white fronted goose (Anser albifrons) in northern Kazakhstan. Here, we report the complete genome sequence of the isolate, which we suggest should constitute a novel serotype. PMID:27198008

  20. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51

    PubMed Central

    Stegger, Marc; Andersen, Paal S.; Pedersen, Karl; Li, Lili; Thøfner, Ida C. N.; Olsen, Rikke H.

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their potential for use in autogenous vaccines for broiler breeders. PMID:27491996

  1. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51.

    PubMed

    Ronco, Troels; Stegger, Marc; Andersen, Paal S; Pedersen, Karl; Li, Lili; Thøfner, Ida C N; Olsen, Rikke H

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their potential for use in autogenous vaccines for broiler breeders. PMID:27491996

  2. Complete Genome Sequence of Avian Paramyxovirus Strain APMV-6/red-crested pochard/Balkhash/5842/2013 from Kazakhstan

    PubMed Central

    Kydyrmanov, Aidyn; Seidalina, Aigerim; Jenckel, Maria; Starick, Elke; Grund, Christian; Asanova, Saule; Khan, Elizaveta; Daulbayeva, Klara; Kasymbekov, Yermukhammet; Zhumatov, Kainar; Sayatov, Marat; Beer, Martin

    2015-01-01

    An avian paramyxovirus 6 strain was isolated during a wild bird monitoring study in Kazakhstan in 2013. The virus was isolated from a wild duck red-crested pochard (Netta rufina) in southeastern Kazakhstan. Here, we present the complete genome sequence of the virus. PMID:26184926

  3. Complete genome sequence and characterization of avian pathogenic Escherichia coli field isolate ACN001.

    PubMed

    Wang, Xiangru; Wei, Liuya; Wang, Bin; Zhang, Ruixuan; Liu, Canying; Bi, Dingren; Chen, Huanchun; Tan, Chen

    2016-01-01

    Avian pathogenic Escherichia coli is an important etiological agent of avian colibacillosis, which manifests as respiratory, hematogenous, meningitic, and enteric infections in poultry. It is also a potential zoonotic threat to human health. The diverse genomes of APEC strains largely hinder disease prevention and control measures. In the current study, pyrosequencing was used to analyze and characterize APEC strain ACN001 (= CCTCC 2015182(T) = DSMZ 29979(T)), which was isolated from the liver of a diseased chicken in China in 2010. Strain ACN001 belongs to extraintestinal pathogenic E. coli phylogenetic group B1, and was highly virulent in chicken and mouse models. Whole genome analysis showed that it consists of six different plasmids along with a circular chromosome of 4,936,576 bp, comprising 4,794 protein-coding genes, 108 RNA genes, and 51 pseudogenes, with an average G + C content of 50.56 %. As well as 237 coding sequences, we identified 39 insertion sequences, 12 predicated genomic islands, 8 prophage-related sequences, and 2 clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. In addition, most of the virulence and antibiotic resistance genes were located on the plasmids, which would assist in the distribution of pathogenicity and multidrug resistance elements among E. coli populations. Together, the information provided here on APEC isolate ACN001 will assist in future study of APEC strains, and aid in the development of control measures. PMID:26823959

  4. Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment

    PubMed Central

    Borodavka, Alexander; Ault, James; Stockley, Peter G.; Tuma, Roman

    2015-01-01

    Reoviruses are important human, animal and plant pathogens having 10–12 segments of double-stranded genomic RNA. The mechanisms controlling the assortment and packaging of genomic segments in these viruses, remain poorly understood. RNA–protein and RNA–RNA interactions between viral genomic segment precursors have been implicated in the process. While non-structural viral RNA-binding proteins, such as avian reovirus σNS, are essential for virus replication, the mechanism by which they assist packaging is unclear. Here we demonstrate that σNS assembles into stable elongated hexamers in vitro, which bind single-stranded nucleic acids with high affinity, but little sequence specificity. Using ensemble and single molecule fluorescence spectroscopy, we show that σNS also binds to a partially double-stranded RNA, resulting in gradual helix unwinding. The hexamer can bind multiple RNA molecules and exhibits strand-annealing activity, thus mediating conversion of metastable, intramolecular stem-loops into more stable heteroduplexes. We demonstrate that the ARV σNS acts as an RNA chaperone facilitating specific RNA–RNA interactions between genomic precursors during segment assortment and packaging. PMID:26109354

  5. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America

    USGS Publications Warehouse

    Pearce, John M.; Ramey, Andrew M.; Flint, Paul L.; Koehler, Anson V.; Fleskes, Joseph P.; Franson, J. Christian; Hall, Jeffrey S.; Derksen, Dirk V.; Ip, Hon S.

    2009-01-01

    Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.

  6. Evidence of methylation of B77 avian sarcoma virus genome RNA subunits.

    PubMed Central

    Stoltzfus, C M; Dimock, K

    1976-01-01

    B77 avian sarcoma virus RNA was labeled with (methyl-3H) methionine under conditions that prevent non-methyl incorporation of 3H radioactivity into purine rings. From the determined values for the extent of methylation of 4S RNA isolated from infected chicken embryo cells, it was estimated that 30 to 40S RNA subunits that results from heat denaturation of the 60 to 70S RNA contain approximately 21 methyl groups, of which 14 to 16 are present at internal positions as N6 -methyladenosine residues. In addition, each of the virion RNA subunits appears to contain about two methyl groups in the "capped" 5' -terminal structure m7G(5')ppp(5') gm. These properties are consistent with the hypothesis that the 30 to 40S genome RNA os oncornaviruses also serves an mRNA function in infected cells. PMID:178899

  7. Phytozome System for Comparative Plant Genomics

    Energy Science and Technology Software Center (ESTSC)

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome providesmore » access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.« less

  8. Phytozome System for Comparative Plant Genomics

    SciTech Connect

    2011-09-27

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the UC Berkeley Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release 7.0, Phytozome provides access to twenty-five sequenced and annotated green plant genomes which have been clustered into gene families at eleven evolutionarily significant nodes., Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are lyper-linked and searchable.

  9. Homology-Independent Metrics for Comparative Genomics

    PubMed Central

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  10. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  11. Comparative genomic hybridization with single cells after whole genome amplification

    SciTech Connect

    Haddad, B.R.; Baldini, A.; Hughes, M.R.

    1994-09-01

    Conventional karyotype analysis is the ideal way to diagnose chromosomal imbalances. However it requires cell culture and chromosome preparation. There are instances where a very small number of cells are available for cytogenetic evaluation and chromosomes cannot be obtained. Comparative genomic hybridization (CGH) is a novel molecular cytogenetic technique that provides information about genetic imbalances affecting the genome. The power of this technique lies in its ability to detect genetic imbalances using total genomic DNA. We have previously demonstrated the feasibility of whole genome amplification from single cells for subsequent analysis of multiple genetic loci by PCR. In this present work, we combine whole genome amplification with CGH to detect chromosomal imbalances from small numbers of cells. Both cytogenetically normal and abnormal cells were individually picked by micromanipulation and subjected to whole genome amplification using random oligonucleotide primers. Amplified test and control DNA were differentially labeled by incorporation of digoxigenin or biotin, mixed together and hybridized to normal male metaphase spreads. Hybridization was detected with two fluorochromes, rhodamine-anti-digoxigenin and FITC -Avidin. Ratio of intensities of the two fluorochromes along the target chromosomes was analyzed using locally developed computer imaging software. Using the combination of whole genome amplification and CGH, we were able to detect different chromosomal aneuploidies from 30, 20, and 10 cells. It can also be applied to the analysis of fetal cells sorted from maternal circulation, or to tumor cells obtained from needle biopsies or from different body fluids and effusions. Finally, its successful application to single cells will have a great impact on preimplantation diagnosis.

  12. VISTA - computational tools for comparative genomics

    SciTech Connect

    Frazer, Kelly A.; Pachter, Lior; Poliakov, Alexander; Rubin,Edward M.; Dubchak, Inna

    2004-01-01

    Comparison of DNA sequences from different species is a fundamental method for identifying functional elements in genomes. Here we describe the VISTA family of tools created to assist biologists in carrying out this task. Our first VISTA server at http://www-gsd.lbl.gov/VISTA/ was launched in the summer of 2000 and was designed to align long genomic sequences and visualize these alignments with associated functional annotations. Currently the VISTA site includes multiple comparative genomics tools and provides users with rich capabilities to browse pre-computed whole-genome alignments of large vertebrate genomes and other groups of organisms with VISTA Browser, submit their own sequences of interest to several VISTA servers for various types of comparative analysis, and obtain detailed comparative analysis results for a set of cardiovascular genes. We illustrate capabilities of the VISTA site by the analysis of a 180 kilobase (kb) interval on human chromosome 5 that encodes for the kinesin family member3A (KIF3A) protein.

  13. Ebolavirus comparative genomics

    SciTech Connect

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Ussery, David W.

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.

  14. Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs

    PubMed Central

    WATSON, REBECCA R.; FU, ZHENXING; WEST, JOHN B.

    2009-01-01

    Previous physiological studies suggest that avian pulmonary capillaries behave like almost rigid tubes. We made morphometric measurements to determine the diameter of the capillaries in chicken lungs when the transmural pressure was altered over a wide range. The diameter of avian pulmonary capillaries increased by only 13% when the pressure inside them was raised from 0–25 cm H2O. In contrast, other studies have shown that the mean width of the pulmonary capillaries in dogs increased by about 125% and in cats by 128% for the same pressure change. Furthermore, raising the pressure 35 cmH2O outside the capillaries compared to the pressure inside the capillaries in chicken lungs caused little change in diameter whereas under the same conditions in mammal lungs the capillaries are completely collapsed. We conclude that the epithelial bridges between the blood capillaries in the bird lung provide strong support to the capillaries both in expansion and compression. PMID:17981521

  15. Comparative genomics of Shiga toxin encoding bacteriophages

    PubMed Central

    2012-01-01

    Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential. PMID:22799768

  16. Advances in genetic engineering of the avian genome: "Realising the promise".

    PubMed

    Doran, Timothy J; Cooper, Caitlin A; Jenkins, Kristie A; Tizard, Mark L V

    2016-06-01

    This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity. PMID:26820412

  17. The Aedes aegypti genome: a comparative perspective.

    PubMed

    Waterhouse, R M; Wyder, S; Zdobnov, E M

    2008-02-01

    The sequencing of the second mosquito genome, Aedes aegypti, in addition to Anopheles gambiae, is a major milestone that will drive molecular-level and genome-wide high-throughput studies of not only these but also other mosquito vectors of human pathogens. Here we overview the ancestry of the mosquito genes, list the major expansions of gene families that may relate to species adaptation processes, as exemplified by CYP9 cytochrome P450 genes, and discuss the conservation of chromosomal gene arrangements among the two mosquitoes and fruit fly. Many more invertebrate genomes are expected to be sequenced in the near future, including additional vectors of human pathogens (see http://www.vectorbase.org), and further comparative analyses will become increasingly refined and informative, hopefully improving our understanding of the genetic basis of phenotypical differences among these species, their vectorial capacity, and ultimately leading to the development of novel disease control strategies. PMID:18237279

  18. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli.

    PubMed

    Chen, Mianmian; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2016-05-10

    Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases. PMID:26828615

  19. Genomic analysis of avian influenza viruses from waterfowl in Western Alaska, USA

    USGS Publications Warehouse

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Ely, C.R.; Schmutz, J.A.; Flint, P.L.; Derksen, D.V.; Ip, H.S.; Trust, K.A.

    2013-01-01

    The Yukon-Kuskokwim Delta (Y-K Delta) in western Alaska is an immense and important breeding ground for waterfowl. Migratory birds from the Pacific Americas, Central Pacific, and East Asian-Australasian flyways converge in this region, providing opportunities for intermixing of North American- and Eurasian-origin hosts and infectious agents, such as avian influenza virus (AIV). We characterized the genomes of 90 low pathogenic (LP) AIV isolates from 11 species of waterfowl sampled on the Y-K Delta between 2006 and 2009 as part of an interagency surveillance program for the detection of the H5N1 highly pathogenic (HP) strain of AIV. We found evidence for subtype and genetic differences between viruses from swans and geese, dabbling ducks, and sea ducks. At least one gene segment in 39% of all isolates was Eurasian in origin. Target species (those ranked as having a relatively high potential to introduce HP H5N1 AIV to North America) were no more likely than nontarget species to carry viruses with genes of Eurasian origin. These findings provide evidence that the frequency at which viral gene segments of Eurasian origin are detected does not result from a strong species effect, but rather we suspect it is linked to the geographic location of the Y-K Delta in western Alaska where flyways from different continents overlap. This study provides support for retaining the Y-K Delta as a high priority region for the surveillance of Asian avian pathogens such as HP H5N1 AIV.

  20. Mallard or chicken? Comparing the isolation of avian influenza A viruses in embryonated Mallard and chicken eggs

    PubMed Central

    Järhult, Josef D.; Wahlgren, John; Hasan, Badrul; Salaneck, Erik; Lundkvist, Åke

    2015-01-01

    Background To date, the most efficient and robust method for isolating avian influenza A viruses (IAVs) is using embryonated chicken eggs (ECEs). It is known that low-pathogenic avian IAVs undergo rapid genetic changes when introduced to poultry holdings, but the factors driving mutagenesis are not well understood. Despite this, there is limited data on the effects of the standard method of virus isolation of avian-derived viruses, that is, whether isolation in ECEs causes adaptive changes in avian IAVs. Eggs from a homologous species could potentially offer an isolation vessel less prone to induce adaptive changes. Methods We performed eight serial passages of two avian IAVs isolated from fecal samples of wild Mallards in both ECEs and embryonated Mallard eggs, and hemagglutination assay titers and hemagglutinin sequences were compared. Results There was no obvious difference in titers between ECEs and embryonated Mallard eggs. Sequence analyses of the isolates showed no apparent difference in the rate of introduction of amino acid substitutions in the hemagglutinin gene (three substitutions in total in embryonated Mallard eggs and two substitutions in ECEs). Conclusion Embryonated Mallard eggs seem to be good isolation vessels for avian IAVs but carry some practical problems such as limited availability and short egg-laying season of Mallards. Our study finds isolation of Mallard-derived avian IAVs in ECEs non-inferior to isolation in embryonated Mallard eggs, but more research in the area may be warranted as this is a small-scale study. PMID:26356095

  1. Comparative genomics of brain size evolution

    PubMed Central

    Enard, Wolfgang

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution. PMID:24904382

  2. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    EPA Science Inventory

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  3. Comparative genomics tools applied to bioterrorism defence.

    PubMed

    Slezak, Tom; Kuczmarski, Tom; Ott, Linda; Torres, Clinton; Medeiros, Dan; Smith, Jason; Truitt, Brian; Mulakken, Nisha; Lam, Marisa; Vitalis, Elizabeth; Zemla, Adam; Zhou, Carol Ecale; Gardner, Shea

    2003-06-01

    Rapid advances in the genomic sequencing of bacteria and viruses over the past few years have made it possible to consider sequencing the genomes of all pathogens that affect humans and the crops and livestock upon which our lives depend. Recent events make it imperative that full genome sequencing be accomplished as soon as possible for pathogens that could be used as weapons of mass destruction or disruption. This sequence information must be exploited to provide rapid and accurate diagnostics to identify pathogens and distinguish them from harmless near-neighbours and hoaxes. The Chem-Bio Non-Proliferation (CBNP) programme of the US Department of Energy (DOE) began a large-scale effort of pathogen detection in early 2000 when it was announced that the DOE would be providing bio-security at the 2002 Winter Olympic Games in Salt Lake City, Utah. Our team at the Lawrence Livermore National Lab (LLNL) was given the task of developing reliable and validated assays for a number of the most likely bioterrorist agents. The short timeline led us to devise a novel system that utilised whole-genome comparison methods to rapidly focus on parts of the pathogen genomes that had a high probability of being unique. Assays developed with this approach have been validated by the Centers for Disease Control (CDC). They were used at the 2002 Winter Olympics, have entered the public health system, and have been in continual use for non-publicised aspects of homeland defence since autumn 2001. Assays have been developed for all major threat list agents for which adequate genomic sequence is available, as well as for other pathogens requested by various government agencies. Collaborations with comparative genomics algorithm developers have enabled our LLNL team to make major advances in pathogen detection, since many of the existing tools simply did not scale well enough to be of practical use for this application. It is hoped that a discussion of a real-life practical application of

  4. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  5. Comparative Analysis of Genome Sequences with VISTA

    DOE Data Explorer

    Dubchak, Inna

    VISTA is a comprehensive suite of programs and databases developed by and hosted at the Genomics Division of Lawrence Berkeley National Laboratory. They provide information and tools designed to facilitate comparative analysis of genomic sequences. Users have two ways to interact with the suite of applications at the VISTA portal. They can submit their own sequences and alignments for analysis (VISTA servers) or examine pre-computed whole-genome alignments of different species. A key menu option is the Enhancer Browser and Database at http://enhancer.lbl.gov/. The VISTA Enhancer Browser is a central resource for experimentally validated human noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation with other vertebrates. The results of this enhancer screen are provided through this publicly available website. The browser also features relevant results by external contributors and a large collection of additional genome-wide conserved noncoding elements which are candidate enhancer sequences. The LBL developers invite external groups to submit computational predictions of developmental enhancers. As of 10/19/2009 the database contains information on 1109 in vivo tested elements - 508 elements with enhancer activity.

  6. Comparative genomics of biotechnologically important yeasts.

    PubMed

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  7. Comparative genome analysis of Basidiomycete fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  8. Image analysis in comparative genomic hybridization

    SciTech Connect

    Lundsteen, C.; Maahr, J.; Christensen, B.

    1995-01-01

    Comparative genomic hybridization (CGH) is a new technique by which genomic imbalances can be detected by combining in situ suppression hybridization of whole genomic DNA and image analysis. We have developed software for rapid, quantitative CGH image analysis by a modification and extension of the standard software used for routine karyotyping of G-banded metaphase spreads in the Magiscan chromosome analysis system. The DAPI-counterstained metaphase spread is karyotyped interactively. Corrections for image shifts between the DAPI, FITC, and TRITC images are done manually by moving the three images relative to each other. The fluorescence background is subtracted. A mean filter is applied to smooth the FITC and TRITC images before the fluorescence ratio between the individual FITC and TRITC-stained chromosomes is computed pixel by pixel inside the area of the chromosomes determined by the DAPI boundaries. Fluorescence intensity ratio profiles are generated, and peaks and valleys indicating possible gains and losses of test DNA are marked if they exceed ratios below 0.75 and above 1.25. By combining the analysis of several metaphase spreads, consistent findings of gains and losses in all or almost all spreads indicate chromosomal imbalance. Chromosomal imbalances are detected either by visual inspection of fluorescence ratio (FR) profiles or by a statistical approach that compares FR measurements of the individual case with measurements of normal chromosomes. The complete analysis of one metaphase can be carried out in approximately 10 minutes. 8 refs., 7 figs., 1 tab.

  9. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    SciTech Connect

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  10. Comparative genome map of human and cattle

    SciTech Connect

    Solinas-Toldo, S.; Fries, R.; Lengauer, C.

    1995-06-10

    Chromosomal homologies between individual human chromosomes and the bovine karyotype have been established by using a new approach termed Zoo-FISH. Labeled DNA libraries from flow-sorted human chromosomes were used as probes for fluorescence in situ hybridization on cattle chromosomes. All human DNA libraries, except the Y chromosome library, hybridized to one or more cattle chromosomes, identifying and delineating 50 segments of homology, most of them corresponding to the regions of homology as identified by the previous mapping of individual conserved loci. However, Zoo-FISH refines the comparative maps constructed by molecular gene mapping of individual loci by providing information on the boundaries of conserved regions in the absence of obvious cytogenetic homologies of human and bovine chromosomes. It allows study of karyotypic evolution and opens new avenues for genomic analysis by facilitating the extrapolation of results from the human genome initiative. 50 refs., 3 figs., 1 tab.

  11. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    PubMed

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  12. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  13. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.

    PubMed

    Parenteau-Bareil, Rémi; Gauvin, Robert; Cliche, Simon; Gariépy, Claude; Germain, Lucie; Berthod, François

    2011-10-01

    Combining bovine collagen with chitosan followed by freeze-drying has been shown to produce porous scaffolds suitable for skin and connective tissue engineering applications. In this study collagen extracted from porcine and avian skin was compared with bovine collagen for the production of tissue engineered scaffolds. A similar purity of the collagen extracts was shown by electrophoresis, confirming the reliability of the extraction process. Collagen was solubilized, cross-linked by adding chitosan to the solution and freeze-dried to generate a porous structure suitable for tissue engineering applications. Scaffold porosity and pore morphology were shown to be source dependant, with bovine collagen and avian collagen resulting into the smallest and largest pores, respectively. Scaffolds were seeded with dermal fibroblasts and cultured for 35 days to evaluate the suitability of the different collagen-chitosan scaffolds for long-term tissue engineered dermal substitute maturation in vitro. Cell proliferation and scaffold biocompatibility were found to be similar for all the collagen-chitosan scaffolds, demonstrating their capability to support long-term cell adhesion and growth. The scaffolds contents was assessed by immunohistochemistry and showed increased deposition of extracellular matrix by the cells as a function of time. These results correlate with measurements of the mechanical properties of the scaffolds, since both the ultimate tensile strength and tensile modulus of the cell seeded scaffolds had increased by the end of the culture period. This experiment demonstrates that porcine and avian collagen could be used as an alternative to bovine collagen in the production of collagen-chitosan scaffolding materials. PMID:21723967

  14. Comparative genomic hybridization (CGH) in genotoxicology.

    PubMed

    Baumgartner, Adolf

    2013-01-01

    In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants. PMID:23896881

  15. Quantitative analysis of comparative genomic hybridization

    SciTech Connect

    Manoir, S. du; Bentz, M.; Joos, S. |

    1995-01-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a program for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.

  16. Comparative genomics of ten solanaceous plastomes.

    PubMed

    Kaur, Harpreet; Singh, Bhupinder Pal; Singh, Harpreet; Nagpal, Avinash Kaur

    2014-01-01

    Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna). AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura. PMID:25477958

  17. Comparative Genomics of Ten Solanaceous Plastomes

    PubMed Central

    Kaur, Harpreet; Singh, Bhupinder Pal; Singh, Harpreet; Nagpal, Avinash Kaur

    2014-01-01

    Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna). AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura. PMID:25477958

  18. A Novel Recombinant Retrovirus in the Genomes of Modern Birds Combines Features of Avian and Mammalian Retroviruses

    PubMed Central

    Henzy, Jamie E.; Gifford, Robert J.; Johnson, Welkin E.

    2014-01-01

    ABSTRACT Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, “TgERV-F,” that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. IMPORTANCE Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and

  19. Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Li, Cai; Smeds, Linnea; Zhang, Guojie; Ellegren, Hans

    2015-01-01

    Summary Global climate fluctuations have significantly influenced the distribution and abundance of biodiversity [1]. During unfavorable glacial periods, many species experienced range contraction and fragmentation, expanding again during interglacials [2–4]. An understanding of the evolutionary consequences of both historical and ongoing climate changes requires knowledge of the temporal dynamics of population numbers during such climate cycles. Variation in abundance should have left clear signatures in the patterns of intraspecific genetic variation in extant species, from which historical effective population sizes (Ne) can be estimated [3]. We analyzed whole-genome sequences of 38 avian species in a pairwise sequentially Markovian coalescent (PSMC, [5]) framework to quantitatively reveal changes in Ne from approximately 10 million to 10 thousand years ago. Significant fluctuations in Ne over time were evident for most species. The most pronounced pattern observed in many species was a severe reduction in Ne coinciding with the beginning of the last glacial period (LGP). Among species, Ne varied by at least three orders of magnitude, exceeding 1 million in the most abundant species. Several species on the IUCN Red List of Threatened Species showed long-term reduction in population size, predating recent declines. We conclude that cycles of population expansions and contractions have been a common feature of many bird species during the Quaternary period, likely coinciding with climate cycles. Population size reduction should have increased the risk of extinction but may also have promoted speciation. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic threats. PMID:25891404

  20. Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences.

    PubMed

    Nadachowska-Brzyska, Krystyna; Li, Cai; Smeds, Linnea; Zhang, Guojie; Ellegren, Hans

    2015-05-18

    Global climate fluctuations have significantly influenced the distribution and abundance of biodiversity. During unfavorable glacial periods, many species experienced range contraction and fragmentation, expanding again during interglacials. An understanding of the evolutionary consequences of both historical and ongoing climate changes requires knowledge of the temporal dynamics of population numbers during such climate cycles. Variation in abundance should have left clear signatures in the patterns of intraspecific genetic variation in extant species, from which historical effective population sizes (N(e)) can be estimated. We analyzed whole-genome sequences of 38 avian species in a pairwise sequentially Markovian coalescent (PSMC, [5]) framework to quantitatively reveal changes in N(e) from approximately 10 million to 10 thousand years ago. Significant fluctuations in N(e) over time were evident for most species. The most pronounced pattern observed in many species was a severe reduction in N(e) coinciding with the beginning of the last glacial period (LGP). Among species, N(e) varied by at least three orders of magnitude, exceeding 1 million in the most abundant species. Several species on the IUCN Red List of Threatened Species showed long-term reduction in population size, predating recent declines. We conclude that cycles of population expansions and contractions have been a common feature of many bird species during the Quaternary period, likely coinciding with climate cycles. Population size reduction should have increased the risk of extinction but may also have promoted speciation. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic threats. PMID:25891404

  1. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    SciTech Connect

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  2. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    PubMed Central

    Tachezy, Ruth; Rector, Annabel; Havelkova, Marta; Wollants, Elke; Fiten, Pierre; Opdenakker, Ghislain; Jenson, A Bennett; Sundberg, John P; Van Ranst, Marc

    2002-01-01

    Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus). The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV) were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs) differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs) papillomavirus (FPV) reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution. PMID:12110158

  3. Complete Genome Sequence of Avian Bornavirus Genotype 1 from a Macaw with Proventricular Dilatation Disease

    PubMed Central

    Mirhosseini, Negin; Gray, Patricia L.; Tizard, Ian

    2012-01-01

    Avian bornaviruses (ABV) were first detected and described in 2008. They are the etiologic agents of proventricular dilatation disease (PDD), a frequently fatal neurologic disease of captive parrots. Seven ABV genogroups have been identified worldwide from a variety of sources, and that number may increase as surveillance for novel bornaviruses continues. Here, we report the first complete sequence of a genogroup 1 avian bornavirus (ABV1). PMID:22628404

  4. Complete genome sequence of avian bornavirus genotype 1 from a Macaw with proventricular dilatation disease.

    PubMed

    Mirhosseini, Negin; Gray, Patricia L; Tizard, Ian; Payne, Susan

    2012-06-01

    Avian bornaviruses (ABV) were first detected and described in 2008. They are the etiologic agents of proventricular dilatation disease (PDD), a frequently fatal neurologic disease of captive parrots. Seven ABV genogroups have been identified worldwide from a variety of sources, and that number may increase as surveillance for novel bornaviruses continues. Here, we report the first complete sequence of a genogroup 1 avian bornavirus (ABV1). PMID:22628404

  5. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  6. Avihepadnavirus diversity in parrots is comparable to that found amongst all other avian species.

    PubMed

    Piasecki, Tomasz; Harkins, Gordon W; Chrząstek, Klaudia; Julian, Laurel; Martin, Darren P; Varsani, Arvind

    2013-04-10

    Avihepadnaviruses have previously been isolated from various species of duck, goose, stork, heron and crane. Recently the first parrot avihepadnavirus was isolated from a Ring-necked Parakeet in Poland. In this study, 41 psittacine liver samples archived in Poland over the last nine years were tested for presence of Parrot hepatitis B virus (PHBV). We cloned and sequenced PHBV isolates from 18 birds including a Crimson Rosella, an African grey parrot and sixteen Ring-necked Parakeets. PHBV isolates display a degree of diversity (>78% genome wide pairwise identity) that is comparable to that found amongst all other avihepadnaviruses (>79% genome wide pairwise identity). The PHBV viruses can be subdivided into seven genetically distinct groups (tentatively named A-G) of which the two isolated of PHBV-G are the most divergent sharing ∼79% genome wide pairwise identity with all their PHBVs. All PHBV isolates display classical avihepadnavirus genome architecture. PMID:23411008

  7. [Comparative genomic classification of human hepatocellular carcinoma].

    PubMed

    Kaposi-Novák, Pál

    2009-03-01

    Global transcriptome analysis has been successfully applied to characterize various human tumors, including hepatocellular carcinomas. This novel technology can facilitate early diagnosis, as well as prognostic and therapeutic diversification of cancer patients. To enhance access to the genomic information buried in archived pathology samples, we assessed RT-PCR amplification rates in paraffin-embedded tissues preserved in three different fixatives. Reliable amplification could be achieved from all paraffin-embedded specimens, when the amplicon size did not exceed 225 bp. A longer amplicon size resulted in rapid decrease of yield and reproducibility. In addition, formalin provided superior morphology and better reactivity with claudin-4 and -7 immunohistochemistry. Amplification of the initial sample is often required before transcriptome analysis of clinical specimens could be performed. We introduced a random nonamer primed T3 polymerase reaction into the conventional linear RNA amplification protocol. The modified T3T7 method generated a sense strand product ideal for synthesizing indirectly labeled cDNA templates. Microarray analysis of amplified frozen and laser-microdissected Myc and Myc/TGFalpha mouse liver tumors confirmed good reproducibility (r=0.9) of the reaction and conservation of original transcriptional patterns (r=0.78). Finally, we tested the utility of expression profiling for the classification of human HCC samples. By comparing expression data from HGF-treated c-Met conditional knock-out and control primary mouse hepatocytes, we identified 690 HGF/c-Met target genes. Functional analysis of the significant gene set implicated c-Met as key regulator of hepatocyte motility and oxidative homeostasis. Cross comparison of the c-Met-induced transcription signature with human HCC expression profiles revealed a group of tumors (27%) with potentially activated c-Met signaling (MET+). These tumors were characterized by higher vascular invasion rate

  8. Comparative genomics of the lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  9. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant

    PubMed Central

    Crépin, Sébastien; Lamarche, Martin G; Garneau, Philippe; Séguin, Julie; Proulx, Julie; Dozois, Charles M; Harel, Josée

    2008-01-01

    Background Avian pathogenic E. coli (APEC) are associated with extraintestinal diseases in poultry. The pstSCAB-phoU operon belongs to the Pho regulon and encodes the phosphate specific transport (Pst) system. A functional Pst system is required for full virulence in APEC and other bacteria and contributes to resistance of APEC to serum, to cationic antimicrobial peptides and acid shock. The global mechanisms contributing to the attenuation and decreased resistance of the APEC pst mutant to environmental stresses have not been investigated at the transcriptional level. To determine the global effect of a pst mutation on gene expression, we compared the transcriptomes of APEC strain χ7122 and its isogenic pst mutant (K3) grown in phosphate-rich medium. Results Overall, 470 genes were differentially expressed by at least 1.5-fold. Interestingly, the pst mutant not only induced systems involved in phosphate acquisition and metabolism, despite phosphate availability, but also modulated stress response mechanisms. Indeed, transcriptional changes in genes associated with the general stress responses, including the oxidative stress response were among the major differences observed. Accordingly, the K3 strain was less resistant to reactive oxygen species (ROS) than the wild-type strain. In addition, the pst mutant demonstrated reduced expression of genes involved in lipopolysaccharide modifications and coding for cell surface components such as type 1 and F9 fimbriae. Phenotypic tests also established that the pst mutant was impaired in its capacity to produce type 1 fimbriae, as demonstrated by western blotting and agglutination of yeast cells, when compared to wild-type APEC strain χ7122. Conclusion Overall, our data elucidated the effects of a pst mutation on the transcriptional response, and further support the role of the Pho regulon as part of a complex network contributing to phosphate homeostasis, adaptive stress responses, and E. coli virulence. PMID:19038054

  10. Comparative genomic hybridization in clinical cytogenetics

    SciTech Connect

    Bryndorf, T.; Kirchhoff, M.; Rose, H.

    1995-11-01

    We report the results of applying comparative genomic hybridization (CGH) in a cytogenetic service laboratory for (1) determination of the origin of extra and missing chromosomal material in intricate cases of unbalanced aberrations and (2) detection of common prenatal numerical chromosome aberrations. A total of 11 fetal samples were analyzed. Seven cases of complex unbalanced aberrations that could not be identified reliably by conventional cytogenetics were successfully resolved by CGH analysis. CGH results were validated by using FISH with chromosome-specific probes. Four cases representing common prenatal numerical aberrations (trisomy 21, 18, and 13 and monosomy X) were also successfully diagnosed by CGH. We conclude that CGH is a powerful adjunct to traditional cytogenetic techniques that makes it possible to solve clinical cases of intricate unbalanced aberrations in a single hybridization. CGH may also be a useful adjunct to screen for euchromatic involvement in marker chromosomes. Further technical development may render CGH applicable for routine aberration screening. 16 refs., 4 figs., 2 tabs.

  11. In vitro development of Haemoproteus columbae (Haemosporida: Haemoproteidae), with perspectives for genomic studies of avian haemosporidian parasites.

    PubMed

    Coral, Arelis A; Valkiūnas, Gediminas; González, Angie D; Matta, Nubia E

    2015-10-01

    The evolutionary origin of wildlife and human malaria parasites (Plasmodium spp.) has been discussed for several decades. The lack of genomic data about species of wildlife haemosporidian parasites related to Plasmodium limits the number of taxa available for phylogenetic analysis. Genomic data about avian parasites of the genus Haemoproteus parasites, the sister genus to Plasmodium are still not available, mainly due to difficulties in obtaining pure DNA of parasites inhabiting nucleated avian host cells. Recent studies show that microgametes of Haemoproteus (Parahaemoproteus) spp. develop in vitro and can be isolated by simple centrifugation, allowing the isolation of pure parasite DNA for genomic studies. However, in vitro development of Haemoproteus (Haemoproteus) spp. has not been investigated, and it is unclear if microgametes of these parasites also can be obtained under in vitro conditions. Here, we provide the first data about the in vitro development of Haemoproteus (Haemoproteus) columbae, a widespread avian haemosporidian parasite, which is specific to pigeons and doves (Columbiformes) and is transmitted by hippoboscid flies (Diptera, Hippoboscidae). In vitro gametogenesis and ookinete development of H. columbae were studied using a strain isolated from a feral Rock Pigeon (Columba livia) in Bogotá-Colombia. The morphological events leading to exflagellation, fertilization and ookinete formation, as well as the rate of development of these stages were followed in vitro at 40 °C, 19 °C and 15 °C for 48 h. Macrogametes, microgametes, zygotes and initial stages of ookinete development were observed in all temperatures, but mature ookinetes were seen only at 40 °C. The largest diversity of sporogonic stages of H. columbae were present at 40 °C however, exflagellation, fertilization of macrogametes and development of immature ookinetes were also observed at 15 °C and 19 °C. Morphological and morphometric features of these stages in vitro were

  12. Does predation select for or against avian coloniality? A comparative analysis.

    PubMed

    Varela, S A M; Danchin, E; Wagner, R H

    2007-07-01

    Some studies have supported predation as a selective pressure contributing to the evolution of coloniality. However, evidence also exists that colonies attract predators, selecting against colonial breeding. Using comparative analyses, we tested the reduced predation hypothesis that individuals aggregate into colonies for protection, and the opposite hypothesis, that breeding aggregations increase predation risk. We used locational and physical characteristics of nests to estimate levels of species' vulnerability to predation. We analysed the Ciconiiformes, a large avian order with the highest prevalence of coloniality, using Pagel's general method of comparative analysis for discrete variables. A common requirement of both hypotheses, that there is correlated evolution between coloniality and vulnerability to predation, was fulfilled in our data set of 363 species. The main predictions of the reduced predation hypothesis were not supported, namely that (1) solitary/vulnerable species are more prone to become colonial than solitary/protected species and (2) colonial/protected species are more likely to evolve towards vulnerability than solitary/protected species. In contrast, the main predictions of the increased predation hypothesis were supported, namely that colonial/vulnerable species are more prone (1) to become protected than solitary/vulnerable species and/or (2) to become solitary than colonial/protected species. This suggests that the colonial/vulnerable state is especially exposed to predation as coloniality may often attract predators rather than provide safety. PMID:17584242

  13. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  14. Complete sequence of the genome of avian paramyxovirus type 2 (strain Yucaipa) and comparison with other paramyxoviruses

    PubMed Central

    Subbiah, Madhuri; Xiao, Sa; Collins, Peter L.; Samal, Siba K

    2009-01-01

    The complete RNA genome sequence of avian paramyxovirus (APMV) serotype 2, strain Yucaipa isolated from chicken has been determined. With genome size of 14,904 nucleotides (nt), strain Yucaipa is consistent with the “rule of six” and is the smallest virus reported to date among the members of subfamily Paramyxovirinae. The genome contains six non-overlapping genes in the order 3′-N-P/V-M-F-HN-L-5′. The genes are flanked on either side by highly-conserved transcription start and stop signals and have intergenic sequences varying in length from 3 to 23 nt. The genome contains a 55 nt leader sequence at 3′ end and a 154 nt trailer sequence at 5′ end. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Yucaipa proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-2 strain Yucaipa is more closely related to APMV-6 than APMV-1. PMID:18603323

  15. Avian haemosporidian parasites (Haemosporida): A comparative analysis of different polymerase chain reaction assays in detection of mixed infections.

    PubMed

    Bernotienė, Rasa; Palinauskas, Vaidas; Iezhova, Tatjana; Murauskaitė, Dovilė; Valkiūnas, Gediminas

    2016-04-01

    Mixed infections of different species and genetic lineages of haemosporidian parasites (Haemosporida) predominate in wildlife, and such infections are particularly virulent. However, currently used polymerase chain reaction (PCR)-based detection methods often do not read mixed infections. Sensitivity of different PCR assays in detection of mixed infections has been insufficiently tested, but this knowledge is essential in studies addressing parasite diversity in wildlife. Here, we applied five different PCR assays, which are broadly used in wildlife avian haemosporidian research, and compared their sensitivity in detection of experimentally designed mixed infections of Haemoproteus and Plasmodium parasites. Three of these PCR assays use primer sets that amplify fragments of cytochrome b gene (cyt b), one of cytochrome oxidase subunit I (COI) gene, and one target apicoplast genome. We collected blood from wild-caught birds and, using microscopic and PCR-based methods applied in parallel, identified single infections of ten haemosporidian species with similar parasitemia. Then, we prepared 15 experimental mixes of different haemosporidian parasites, which often are present simultaneously in wild birds. Similar concentration of total DNA was used in each parasite lineage during preparation of mixes. Positive amplifications were sequenced, and the presence of mixed infections was reported by visualising double-base calling in sequence electropherograms. This study shows that the use of each single PCR assay markedly underestimates biodiversity of haemosporidian parasites. The application of at least 3 PCR assays in parallel detected the majority, but still not all lineages present in mixed infections. We determined preferences of different primers in detection of parasites belonging to different genera of haemosporidians during mixed infections. PMID:26821298

  16. Comparative genomic hybridization: Detection of segmental aneusomies

    SciTech Connect

    Cronin, J.E.; Magrane, G.G.; Gray, J.W.

    1994-09-01

    Comparative genomic hybridization (CGH) has been used successfully to detect whole chromosome and segmental aneusomies. However, its sensitivity for detection of segmental aneusomies is still not well known. We present here an analysis of CGH sensitivity with emphasis on detection of abnormalities commonly found during pre-and neo-natal diagnosis. CGH is performed by hybridizing green and red fluorescing test and normal DNA samples, respectively, to normal metaphase spreads and measuring green:red fluorescence ratios along all chromosomes. The ratios are normalized such that 2 copies of a normal chromosome region in the test sample gives a ratio of 1.0. Alterations in test vs. control gene copy number range from 1.5 [trisomy] to 0.5 [monosomy]. Clinical samples analyzed included Wolf Hirschhorn (4p-), Cri du Chat (5p-) and DiGeorge (22q-). In addition, 7 cell lines with chromosome 21 segmental aneusomies were analyzed. These included 3 with terminal duplications, 1 with a terminal deletion, 1 with an interstitial deletion and 2 with interstitial amplifications. The DiGeorge deletion was the only deletion not deleted by CGH. This is not surprising as standard G banding does not routinely detect this 1-2 megabase deletion. The 4p- and 5p- monosomies were detected and breakpoints correctly assigned prospectively. Proximal alterations involving 21q22.11 are unambiguously defined. Specifically, two interstitial aneusomies involving this region are detected. Studies involving late prophase chromosome normal spreads gave identical breakpoints. Thus, analysis of extended chromosomes did not improve the sensitivity of the technique. Taken together, these data suggest that CGH can detect segmental aneusomies greater than 8 megabases in extent. Smaller aneusomies can, at times, be detected. Work is now underway to modify the analysis software to increase sensitivity and to decrease the amount of material needed for analysis.

  17. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  18. Comparative genomics of Cluster O mycobacteriophages.

    PubMed

    Cresawn, Steven G; Pope, Welkin H; Jacobs-Sera, Deborah; Bowman, Charles A; Russell, Daniel A; Dedrick, Rebekah M; Adair, Tamarah; Anders, Kirk R; Ball, Sarah; Bollivar, David; Breitenberger, Caroline; Burnett, Sandra H; Butela, Kristen; Byrnes, Deanna; Carzo, Sarah; Cornely, Kathleen A; Cross, Trevor; Daniels, Richard L; Dunbar, David; Findley, Ann M; Gissendanner, Chris R; Golebiewska, Urszula P; Hartzog, Grant A; Hatherill, J Robert; Hughes, Lee E; Jalloh, Chernoh S; De Los Santos, Carla; Ekanem, Kevin; Khambule, Sphindile L; King, Rodney A; King-Smith, Christina; Klyczek, Karen; Krukonis, Greg P; Laing, Christian; Lapin, Jonathan S; Lopez, A Javier; Mkhwanazi, Sipho M; Molloy, Sally D; Moran, Deborah; Munsamy, Vanisha; Pacey, Eddie; Plymale, Ruth; Poxleitner, Marianne; Reyna, Nathan; Schildbach, Joel F; Stukey, Joseph; Taylor, Sarah E; Ware, Vassie C; Wellmann, Amanda L; Westholm, Daniel; Wodarski, Donna; Zajko, Michelle; Zikalala, Thabiso S; Hendrix, Roger W; Hatfull, Graham F

    2015-01-01

    Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange. PMID:25742016

  19. Comparative Genomics of Cluster O Mycobacteriophages

    PubMed Central

    Cresawn, Steven G.; Pope, Welkin H.; Jacobs-Sera, Deborah; Bowman, Charles A.; Russell, Daniel A.; Dedrick, Rebekah M.; Adair, Tamarah; Anders, Kirk R.; Ball, Sarah; Bollivar, David; Breitenberger, Caroline; Burnett, Sandra H.; Butela, Kristen; Byrnes, Deanna; Carzo, Sarah; Cornely, Kathleen A.; Cross, Trevor; Daniels, Richard L.; Dunbar, David; Findley, Ann M.; Gissendanner, Chris R.; Golebiewska, Urszula P.; Hartzog, Grant A.; Hatherill, J. Robert; Hughes, Lee E.; Jalloh, Chernoh S.; De Los Santos, Carla; Ekanem, Kevin; Khambule, Sphindile L.; King, Rodney A.; King-Smith, Christina; Klyczek, Karen; Krukonis, Greg P.; Laing, Christian; Lapin, Jonathan S.; Lopez, A. Javier; Mkhwanazi, Sipho M.; Molloy, Sally D.; Moran, Deborah; Munsamy, Vanisha; Pacey, Eddie; Plymale, Ruth; Poxleitner, Marianne; Reyna, Nathan; Schildbach, Joel F.; Stukey, Joseph; Taylor, Sarah E.; Ware, Vassie C.; Wellmann, Amanda L.; Westholm, Daniel; Wodarski, Donna; Zajko, Michelle; Zikalala, Thabiso S.; Hendrix, Roger W.; Hatfull, Graham F.

    2015-01-01

    Mycobacteriophages – viruses of mycobacterial hosts – are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages – Corndog, Catdawg, Dylan, Firecracker, and YungJamal – designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8–9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange. PMID:25742016

  20. Comparative Genomics in Identifying Aflatoxin Biosynthetic Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus produces the most toxic and the most carcinogenic mycotoxins, aflatoxin B1 and B2. In order to solve aflatoxin contamination of food commodities, A. flavus genomics tools for identification of genes involved in aflatoxin biosynthesis have been employed. A. flavus Expressed Seque...

  1. Comparative Genome Mapping of Sorghum and Maize

    PubMed Central

    Whitkus, R.; Doebley, J.; Lee, M.

    1992-01-01

    Linkage relationships were determined among 85 maize low copy number nuclear DNA probes and seven isozyme loci in an F(2) population derived from a cross of Sorghum bicolor ssp. bicolor X S. bicolor ssp. arundinaceum. Thirteen linkage groups were defined, three more than the 10 chromosomes of sorghum. Use of maize DNA probes to produce the sorghum linkage map allowed us to make several inferences concerning processes involved in the evolutionary divergence of the maize and sorghum genomes. The results show that many linkage groups are conserved between these two genomes and that the amount of recombination in these conserved linkage groups is roughly equivalent in maize and sorghum. Estimates of the proportions of duplicated loci suggest that a larger proportion of the loci are duplicated in the maize genome than in the sorghum genome. This result concurs with a prior estimate that the nuclear DNA content of maize is three to four times greater than that of sorghum. The pattern of conserved linkages between maize and sorghum is such that most sorghum linkage groups are composed of loci that map to two maize chromosomes. This pattern is consistent with the hypothesized ancient polyploid origin of maize and sorghum. There are nine cases in which locus order within shared linkage groups is inverted in sorghum relative to maize. These may have arisen from either inversions or intrachromosomal translocations. We found no evidence for large interchromosomal translocations. Overall, the data suggest that the primary processes involved in divergence of the maize and sorghum genomes were duplications (either by polyploidy or segmental duplication) and inversions or intrachromosomal translocations. PMID:1360933

  2. Analysis of the allohexaploid bread wheat genome (Triticum aestivum) using comparative whole genome shotgun sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large 17 Gb allopolyploid genome of bread wheat is a major challenge for genome analysis because it is composed of three closely- related and independently maintained genomes, with genes dispersed as small “islands” separated by vast tracts of repetitive DNA. We used a novel comparative genomi...

  3. Comparative Genomic Analyses of Attenuated Strains of Mycoplasma gallisepticum▿ †

    PubMed Central

    Szczepanek, S. M.; Tulman, E. R.; Gorton, T. S.; Liao, X.; Lu, Z.; Zinski, J.; Aziz, F.; Frasca, S.; Kutish, G. F.; Geary, S. J.

    2010-01-01

    Mycoplasma gallisepticum is a significant respiratory and reproductive pathogen of domestic poultry. While the complete genomic sequence of the virulent, low-passage M. gallisepticum strain R (Rlow) has been reported, genomic determinants responsible for differences in virulence and host range remain to be completely identified. Here, we utilize genome sequencing and microarray-based comparative genomic data to identify these genomic determinants of virulence and to elucidate genomic variability among strains of M. gallisepticum. Analysis of the high-passage, attenuated derivative of Rlow, Rhigh, indicated that relatively few total genomic changes (64 loci) occurred, yet they are potentially responsible for the observed attenuation of this strain. In addition to previously characterized mutations in cytadherence-related proteins, changes included those in coding sequences of genes involved in sugar metabolism. Analyses of the genome of the M. gallisepticum vaccine strain F revealed numerous differences relative to strain R, including a highly divergent complement of vlhA surface lipoprotein genes, and at least 16 genes absent or significantly fragmented relative to strain R. Notably, an Rlow isogenic mutant in one of these genes (MGA_1107) caused significantly fewer severe tracheal lesions in the natural host compared to virulent M. gallisepticum Rlow. Comparative genomic hybridizations indicated few genetic loci commonly affected in F and vaccine strains ts-11 and 6/85, which would correlate with proteins affecting strain R virulence. Together, these data provide novel insights into inter- and intrastrain M. gallisepticum genomic variability and the genetic basis of M. gallisepticum virulence. PMID:20123709

  4. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  5. GenColors-based comparative genome databases for small eukaryotic genomes

    PubMed Central

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources. PMID:23193285

  6. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle.

    PubMed

    Sommer, Ralf J; Streit, Adrian

    2011-01-01

    Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT). PMID:21721943

  7. Comparative pathology of H5N1 highly pathogenic avian influenza virus infection in avian species in the Orders Anseriformes and Charadriiformes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen species of ducks, geese, swans and gulls present in the North American wild bird populations were inoculated intranasally with A/Whooper Swan/Mongolia/244/05 (H5N1) avian influenza virus to evaluate the range of viral shedding and pathology within these two avian orders. Based on mortality...

  8. Prediction of microbial phenotypes based on comparative genomics

    PubMed Central

    2015-01-01

    The accessibility of almost complete genome sequences of uncultivable microbial species from metagenomes necessitates computational methods predicting microbial phenotypes solely based on genomic data. Here we investigate how comparative genomics can be utilized for the prediction of microbial phenotypes. The PICA framework facilitates application and comparison of different machine learning techniques for phenotypic trait prediction. We have improved and extended PICA's support vector machine plug-in and suggest its applicability to large-scale genome databases and incomplete genome sequences. We have demonstrated the stability of the predictive power for phenotypic traits, not perturbed by the rapid growth of genome databases. A new software tool facilitates the in-depth analysis of phenotype models, which associate expected and unexpected protein functions with particular traits. Most of the traits can be reliably predicted in only 60-70% complete genomes. We have established a new phenotypic model that predicts intracellular microorganisms. Thereby we could demonstrate that also independently evolved phenotypic traits, characterized by genome reduction, can be reliably predicted based on comparative genomics. Our results suggest that the extended PICA framework can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomics studies. PMID:26451672

  9. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  10. GenoSets: Visual Analytic Methods for Comparative Genomics

    PubMed Central

    Cain, Aurora A.; Kosara, Robert; Gibas, Cynthia J.

    2012-01-01

    Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest. PMID:23056299

  11. Computational Methods for the Analysis of Array Comparative Genomic Hybridization

    PubMed Central

    Chari, Raj; Lockwood, William W.; Lam, Wan L.

    2006-01-01

    Array comparative genomic hybridization (array CGH) is a technique for assaying the copy number status of cancer genomes. The widespread use of this technology has lead to a rapid accumulation of high throughput data, which in turn has prompted the development of computational strategies for the analysis of array CGH data. Here we explain the principles behind array image processing, data visualization and genomic profile analysis, review currently available software packages, and raise considerations for future software development. PMID:17992253

  12. The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy

    PubMed Central

    REINER, ANTON; PERKEL, DAVID J.; BRUCE, LAURA L.; BUTLER, ANN B.; CSILLAG, ANDRÁS; KUENZEL, WAYNE; MEDINA, LORETA; PAXINOS, GEORGE; SHIMIZU, TORU; STRIEDTER, GEORG; WILD, MARTIN; BALL, GREGORY F.; DURAND, SARAH; GÜTÜRKÜN, ONUR; LEE, DIANE W.; MELLO, CLAUDIO V.; POWERS, ALICE; WHITE, STEPHANIE A.; HOUGH, GERALD; KUBIKOVA, LUBICA; SMULDERS, TOM V.; WADA, KAZUHIRO; DUGAS-FORD, JENNIFER; HUSBAND, SCOTT; YAMAMOTO, KEIKO; YU, JING; SIANG, CONNIE; JARVIS, ERICH D.

    2008-01-01

    Many of the assumptions of homology on which the standard nomenclature for the cell groups and fiber tracts of avian brains have been based are in error, and as a result that terminology promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains. Recognizing this problem, a number of avian brain researchers began an effort to revise the terminology, which culminated in the Avian Brain Nomenclature Forum, held at Duke University from July 18 to 20, 2002. In the new terminology approved at this Forum, the flawed conception that the telencephalon of birds consists nearly entirely of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual parts of the basal ganglia and its brainstem afferent cell groups have been given names reflecting their now evident homologies. The telencephalic regions that were erroneously named to reflect presumed homology to mammalian basal ganglia were renamed as parts of the pallium, using prefixes that retained most established abbreviations (to maintain continuity with the replaced nomenclature). Details of this meeting and its major conclusions are presented in this paper, and the details of the new terminology and its basis are presented in a longer companion paper. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. PMID:19626136

  13. Comparative Genomics of an Emerging Amphibian Virus

    PubMed Central

    Epstein, Brendan; Storfer, Andrew

    2015-01-01

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination. PMID:26530419

  14. Comparative Genomics of an Emerging Amphibian Virus.

    PubMed

    Epstein, Brendan; Storfer, Andrew

    2016-01-01

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination. PMID:26530419

  15. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus

    PubMed Central

    Sharma, Gaurav; Narwani, Tarun; Subramanian, Srikrishna

    2016-01-01

    Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria. PMID:26900859

  16. Generation of Influenza Virus from Avian Cells Infected by Salmonella Carrying the Viral Genome

    PubMed Central

    Zhang, Xiangmin; Kong, Wei; Wanda, Soo-Young; Xin, Wei; Alamuri, Praveen; Curtiss, Roy

    2015-01-01

    Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo. PMID:25742162

  17. Gramene 2016: comparative plant genomics and pathway resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the data...

  18. Cyberinfrastructure for (Comparative) Plant Genome Research Through PlantGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and comprehensive gene structure annotation in emerging and assembled genomes is fundamental to comparative, functional, and translational genomics. We plan to build the cyberinfrastructure necessary for defining and accessing the plant gene space. Our Plant Genetic Data Base (PlantGDB) r...

  19. Transgenic Quail as a Model for Research in the Avian Nervous System – A Comparative Study of the Auditory Brainstem

    PubMed Central

    Seidl, Armin H.; Sanchez, Jason Tait; Schecterson, Leslayann; Tabor, Kathryn M.; Wang, Yuan; Kashima, Daniel T.; Poynter, Greg; Huss, David; Fraser, Scott E.; Lansford, Rusty; Rubel, Edwin W

    2012-01-01

    Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proven problematic. As a result, experiments aimed at genetic manipulations on birds remained difficult for this popular research tool. Recently, lentiviral methods have enabled production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal-specificity and stable expression of eGFP across generations (termed here as GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of gene manipulation, we compared the development, organization, structure and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) to that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM) and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken. PMID:22806400

  20. Microbial NAD metabolism: lessons from comparative genomics.

    PubMed

    Gazzaniga, Francesca; Stebbins, Rebecca; Chang, Sheila Z; McPeek, Mark A; Brenner, Charles

    2009-09-01

    NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer. Biochemical, genetic, and genomic analyses have advanced to the point at which the precursors and pathways utilized by a microorganism can be predicted. Challenges remain in dissecting regulation of pathways. PMID:19721089

  1. Comparative genomics of autism and schizophrenia

    PubMed Central

    Crespi, Bernard; Stead, Philip; Elliot, Michael

    2010-01-01

    We used data from studies of copy-number variants (CNVs), single-gene associations, growth-signaling pathways, and intermediate phenotypes associated with brain growth to evaluate four alternative hypotheses for the genomic and developmental relationships between autism and schizophrenia: (i) autism subsumed in schizophrenia, (ii) independence, (iii) diametric, and (iv) partial overlap. Data from CNVs provides statistical support for the hypothesis that autism and schizophrenia are associated with reciprocal variants, such that at four loci, deletions predispose to one disorder, whereas duplications predispose to the other. Data from single-gene studies are inconsistent with a hypothesis based on independence, in that autism and schizophrenia share associated genes more often than expected by chance. However, differentiation between the partial overlap and diametric hypotheses using these data is precluded by limited overlap in the specific genetic markers analyzed in both autism and schizophrenia. Evidence from the effects of risk variants on growth-signaling pathways shows that autism-spectrum conditions tend to be associated with up-regulation of pathways due to loss of function mutations in negative regulators, whereas schizophrenia is associated with reduced pathway activation. Finally, data from studies of head and brain size phenotypes indicate that autism is commonly associated with developmentally-enhanced brain growth, whereas schizophrenia is characterized, on average, by reduced brain growth. These convergent lines of evidence appear most compatible with the hypothesis that autism and schizophrenia represent diametric conditions with regard to their genomic underpinnings, neurodevelopmental bases, and phenotypic manifestations as reflecting under-development versus dysregulated over-development of the human social brain. PMID:19955444

  2. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    PubMed Central

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  3. Comparative Genomics and Extensive Recombinations in Phage Communities

    NASA Astrophysics Data System (ADS)

    Poisson, Guylaine; Belcaid, Mahdi; Bergeron, Anne

    Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities.

  4. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    PubMed

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/. PMID:25480115

  5. Plastic architecture of bacterial genome revealed by comparative genomics of Photorhabdus variants

    PubMed Central

    Gaudriault, Sophie; Pages, Sylvie; Lanois, Anne; Laroui, Christine; Teyssier, Corinne; Jumas-Bilak, Estelle; Givaudan, Alain

    2008-01-01

    Background The phenotypic consequences of large genomic architecture modifications within a clonal bacterial population are rarely evaluated because of the difficulties associated with using molecular approaches in a mixed population. Bacterial variants frequently arise among Photorhabdus luminescens, a nematode-symbiotic and insect-pathogenic bacterium. We therefore studied genome plasticity within Photorhabdus variants. Results We used a combination of macrorestriction and DNA microarray experiments to perform a comparative genomic study of different P. luminescens TT01 variants. Prolonged culturing of TT01 strain and a genomic variant, collected from the laboratory-maintained symbiotic nematode, generated bacterial lineages composed of primary and secondary phenotypic variants and colonial variants. The primary phenotypic variants exhibit several characteristics that are absent from the secondary forms. We identify substantial plasticity of the genome architecture of some variants, mediated mainly by deletions in the 'flexible' gene pool of the TT01 reference genome and also by genomic amplification. We show that the primary or secondary phenotypic variant status is independent from global genomic architecture and that the bacterial lineages are genomic lineages. We focused on two unusual genomic changes: a deletion at a new recombination hotspot composed of long approximate repeats; and a 275 kilobase single block duplication belonging to a new class of genomic duplications. Conclusion Our findings demonstrate that major genomic variations occur in Photorhabdus clonal populations. The phenotypic consequences of these genomic changes are cryptic. This study provides insight into the field of bacterial genome architecture and further elucidates the role played by clonal genomic variation in bacterial genome evolution. PMID:18647395

  6. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  7. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    PubMed

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  8. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database

    PubMed Central

    Winsor, Geoffrey L.; Griffiths, Emma J.; Lo, Raymond; Dhillon, Bhavjinder K.; Shay, Julie A.; Brinkman, Fiona S. L.

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  9. Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells

    PubMed Central

    Cassey, Phillip; Portugal, Steven J.; Maurer, Golo; Ewen, John G.; Boulton, Rebecca L.; Hauber, Mark E.; Blackburn, Tim M.

    2010-01-01

    Background The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating

  10. Comparative Pharmacokinetics and Allometric Scaling of Carboplatin in Different Avian Species

    PubMed Central

    De Baere, Siegrid; Hellebuyck, Tom; Van de Maele, Isabel; Rouffaer, Lieze; Stemkens, Hendrickus J. J.; De Backer, Patrick; Martel, An; Croubels, Siska

    2015-01-01

    The use of chemotherapeutics as a possible treatment strategy in avian oncology is steadily increasing over the last years. Despite this, literature reports regarding dosing strategies and pharmacokinetic behaviour of chemotherapeutics in avian species are lacking. The aim of the present study was to investigate the pharmacokinetics of carboplatin in a representative species of the order of Galliformes, Anseriformes, Columbiformes and Psittaciformes. Eight chickens, ducks and pigeons and twenty-eight parakeets were administered carboplatin intravenously (5 mg/kg body weight). A specific and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of the free carboplatin in plasma of the four birds species (limit of quantification: 20 ng/mL for chicken and duck, 50 ng/mL for pigeon and 100 ng/mL for parakeets). Non-compartmental pharmacokinetic analysis and allometric scaling demonstrated a significant correlation (R² = 0.9769) between body weight (BW) and elimination half-life (T1/2el). T1/2el ranged from 0.41 h in parakeets (BW: 61 ± 8 g) to 1.16 h chickens (BW: 1909 ± 619 g). T1/2el is a good parameter for dose optimization of carboplatin in other avian species, since also the previously reported T1/2el in cockatoos (average BW: 769 ± 68 g) of 1.00 h corresponds to the results obtained in the present study. PMID:26222777

  11. Comparative Pharmacokinetics and Allometric Scaling of Carboplatin in Different Avian Species.

    PubMed

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Hellebuyck, Tom; Van de Maele, Isabel; Rouffaer, Lieze; Stemkens, Hendrickus J J; De Backer, Patrick; Martel, An; Croubels, Siska

    2015-01-01

    The use of chemotherapeutics as a possible treatment strategy in avian oncology is steadily increasing over the last years. Despite this, literature reports regarding dosing strategies and pharmacokinetic behaviour of chemotherapeutics in avian species are lacking. The aim of the present study was to investigate the pharmacokinetics of carboplatin in a representative species of the order of Galliformes, Anseriformes, Columbiformes and Psittaciformes. Eight chickens, ducks and pigeons and twenty-eight parakeets were administered carboplatin intravenously (5 mg/kg body weight). A specific and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of the free carboplatin in plasma of the four birds species (limit of quantification: 20 ng/mL for chicken and duck, 50 ng/mL for pigeon and 100 ng/mL for parakeets). Non-compartmental pharmacokinetic analysis and allometric scaling demonstrated a significant correlation (R² = 0.9769) between body weight (BW) and elimination half-life (T1/2el). T1/2el ranged from 0.41 h in parakeets (BW: 61 ± 8 g) to 1.16 h chickens (BW: 1909 ± 619 g). T1/2el is a good parameter for dose optimization of carboplatin in other avian species, since also the previously reported T1/2el in cockatoos (average BW: 769 ± 68 g) of 1.00 h corresponds to the results obtained in the present study. PMID:26222777

  12. Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution

    PubMed Central

    2009-01-01

    Two opposing selective pressures have shaped the evolution of the structure of the blood-gas barrier in air breathing vertebrates. The first pressure, which has been recognized for 100 years, is to facilitate diffusive gas exchange. This requires the barrier to be extremely thin and have a large area. The second pressure, which has only recently been appreciated, is to maintain the mechanical integrity of the barrier in the face of its extreme thinness. The most important tensile stress comes from the pressure within the pulmonary capillaries, which results in a hoop stress. The strength of the barrier can be attributed to the type IV collagen in the extracellular matrix. In addition, the stress is minimized in mammals and birds by complete separation of the pulmonary and systemic circulations. Remarkably, the avian barrier is about 2.5 times thinner than that in mammals and also is much more uniform in thickness. These advantages for gas exchange come about because the avian pulmonary capillaries are unique among air breathers in being mechanically supported externally in addition to the strength that comes from the structure of their walls. This external support comes from epithelial plates that are part of the air capillaries, and the support is available because the terminal air spaces in the avian lung are extremely small due to the flow-through nature of ventilation in contrast to the reciprocating pattern in mammals. PMID:19793953

  13. Mycobacterial species as case-study of comparative genome analysis.

    PubMed

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-01-01

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species. PMID:21396338

  14. A Multi-Platform Draft de novo Genome Assembly and Comparative Analysis for the Scarlet Macaw (Ara macao)

    PubMed Central

    Seabury, Christopher M.; Dowd, Scot E.; Seabury, Paul M.; Raudsepp, Terje; Brightsmith, Donald J.; Liboriussen, Poul; Halley, Yvette; Fisher, Colleen A.; Owens, Elaine; Viswanathan, Ganesh; Tizard, Ian R.

    2013-01-01

    Data deposition to NCBI Genomes This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N’s). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We

  15. Complete genome sequences of avian paramyxovirus serotype 6 prototype strain Hong Kong and a recent novel strain from Italy: evidence for the existence of subgroups within the serotype

    PubMed Central

    Xiao, Sa; Subbiah, Madhuri; Kumar, Sachin; De Nardi, Roberta; Terregino, Calogero; Collins, Peter L.; Samal, Siba K.

    2010-01-01

    Complete genome sequences were determined for two strains of avian paramyxovirus serotype 6 (APMV-6): the prototype Hong Kong (HK) strain and a more recent isolate from Italy (IT4524-2). The genome length of strain HK is 16236 nucleotide (nt), which is the same as for the other two APMV-6 strains (FE and TW) that have been reported to date, whereas that of strain IT4524-2 is 16230 nt. The length difference in strain IT4524-2 is due to a 6-nt deletion in the downstream untranslated region of the F gene. All of these viruses follow the “rule of six”. Each genome consists of seven genes in the order of 3’N-P-M-F-SH-HN-L5’, which differs from other APMV serotypes in containing an additional gene encoding the small hydrophobic (SH) protein. Sequence comparisons revealed that strain IT4524-2 shares an unexpectedly low level of genome nt sequence identity (70%) and aggregate predicted amino acid (aa) sequence identity (79%) with other three strains, which in contrast are more closely related to each other with nt sequence 94–98% nt identity and 90–100% aggregate aa identity. Sequence analysis of the F-SH-HN genome region of two other recent Italian isolates showed that they fall in the HK/FE/TW group. The predicted signal peptide of IT4524-2 F protein lacks the N-terminal first 10 aa that are present in the other five strains. Also, the F protein cleavage site of strain IT4524-2, REPR↓L, has two dibasic aa (arginine, R) compared to the monobasic F protein cleavage site of PEPR↓L in the other strains. Reciprocal cross-hemagglutination inhibition (HI) assays using post infection chicken sera indicated that strain IT4524-2 is antigenically related to the other APMV-6 strains, but with 4- to 8-fold lower HI tiers for the test sera between strain IT4524-2 and the other APMV-6 strains. Taken together, our results indicated that the APMV-6 strains represents a single serotype with two subgroups that differ substantially based on nt and aa sequences and can be

  16. Evolutionary and comparative analyses of the soybean genome

    PubMed Central

    Cannon, Steven B.; Shoemaker, Randy C.

    2012-01-01

    The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58 Mya and >130 Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including http://www.phytozome.net, http://soybase.org, http://comparative-legumes.org, and http://www.legumebase.brc.miyazaki-u.ac.jp. The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods. PMID:23136483

  17. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts

    PubMed Central

    Newton, Irene LG; Girguis, Peter R; Cavanaugh, Colleen M

    2008-01-01

    Background The Vesicomyidae (Bivalvia: Mollusca) are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. Results To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. Conclusion The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments. PMID:19055818

  18. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont.

    PubMed

    Lindsey, Amelia R I; Werren, John H; Richards, Stephen; Stouthamer, Richard

    2016-01-01

    Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. PMID:27194801

  19. Comparative rates of evolution in endosymbiotic nuclear genomes

    PubMed Central

    Patron, Nicola J; Rogers, Matthew B; Keeling, Patrick J

    2006-01-01

    Background The nucleomorphs associated with secondary plastids of cryptomonads and chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes. Although not as widespread as their prokaryotic equivalents in mitochondria and plastids, nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in several aspects, not least in that they encode proteins that target to the plastid, and so function in a different compartment from that in which they are encoded. Results Here, we test whether the phylogenetically distinct nucleomorph genomes of the cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced similar evolutionary pressures during their transformation to reduced organelles. We compared the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which encode proteins that function in the same cellular compartment, the plastid, and are thus subject to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs within cryptomonads by comparing G. theta and Rhodomonas salina. Conclusion Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate than other genomes within the same cell, regardless of the compartment where the gene product functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different, despite the similarities between the structures of their genomes. PMID:16772046

  20. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont

    PubMed Central

    Lindsey, Amelia R. I.; Werren, John H.; Richards, Stephen; Stouthamer, Richard

    2016-01-01

    Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. PMID:27194801

  1. Genome sequence and comparative genome analysis of Pseudomonas syringae pv. syringae type strain ATCC 19310.

    PubMed

    Park, Yong-Soon; Jeong, Haeyoung; Sim, Young Mi; Yi, Hwe-Su; Ryu, Choong-Min

    2014-04-01

    Pseudomonas syringae pv. syringae (Psy) is a major bacterial pathogen of many economically important plant species. Despite the severity of its impact, the genome sequence of the type strain has not been reported. Here, we present the draft genome sequence of Psy ATCC 19310. Comparative genomic analysis revealed that Psy ATCC 19310 is closely related to Psy B728a. However, only a few type III effectors, which are key virulence factors, are shared by the two strains, indicating the possibility of host-pathogen specificity and genome dynamics, even under the pathovar level. PMID:24444998

  2. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    PubMed Central

    Jung, Kyongyong; Park, Jongsun; Choi, Jaeyoung; Park, Bongsoo; Kim, Seungill; Ahn, Kyohun; Choi, Jaehyuk; Choi, Doil; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site . PMID:19055845

  3. Sputnik: a database platform for comparative plant genomics.

    PubMed

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics. PMID:12519965

  4. The MicrobesOnline Web site for comparative genomics

    SciTech Connect

    Alm, Eric J.; Huang, Katherine H.; Price, Morgan N.; Koche,Richard P.; Keller, Keith; Dubchak, Inna L.; Arkin, Adam P.

    2004-11-05

    At present, hundreds of microbial genomes have been sequenced, and hundreds more are currently in the pipeline. The Virtual Institute for Microbial Stress and Survival has developed a publicly available suite of Web-based comparative genomic tools (http://www.microbesonline.org) designed to facilitate multispecies comparison among prokaryotes. Highlights of the Microbes Online Web site include operon and regulon predictions, a multispecies genome browser, a multispecies Gene Ontology browser, a comparative KEGG metabolic pathway viewer, a Bioinformatics Workbench for in-depth sequence analysis, and Gene Carts that allow users to save genes of interest for further study while they browse. In addition, we provide an interface for genome annotation, which like all of the tools reported here, is freely available to the scientific community.

  5. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  6. Distinguishing noise from signal in patterns of genomic divergence in a highly polymorphic avian radiation.

    PubMed

    Campagna, Leonardo; Gronau, Ilan; Silveira, Luís Fábio; Siepel, Adam; Lovette, Irby J

    2015-08-01

    Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced-representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans. PMID:26175196

  7. Comparative Genome Analysis of Basidiomycete Fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  8. Gramene 2016: comparative plant genomics and pathway resources

    PubMed Central

    Tello-Ruiz, Marcela K.; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M.; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A.; Huerta, Laura; Keays, Maria; Tang, Y. Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J.; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  9. Gramene 2016: comparative plant genomics and pathway resources.

    PubMed

    Tello-Ruiz, Marcela K; Stein, Joshua; Wei, Sharon; Preece, Justin; Olson, Andrew; Naithani, Sushma; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Jiao, Yinping; Mulvaney, Joseph; Kumari, Sunita; Chougule, Kapeel; Elser, Justin; Wang, Bo; Thomason, James; Bolser, Daniel M; Kerhornou, Arnaud; Walts, Brandon; Fonseca, Nuno A; Huerta, Laura; Keays, Maria; Tang, Y Amy; Parkinson, Helen; Fabregat, Antonio; McKay, Sheldon; Weiser, Joel; D'Eustachio, Peter; Stein, Lincoln; Petryszak, Robert; Kersey, Paul J; Jaiswal, Pankaj; Ware, Doreen

    2016-01-01

    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials. PMID:26553803

  10. Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

    PubMed

    Rey, Andrés; Silva-Quintero, Laura; Dussán, Jenny

    2016-09-01

    Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41. PMID:27419068

  11. A new avian leukosis virus-based packaging cell line that uses two separate transcomplementing helper genomes.

    PubMed Central

    Cosset, F L; Legras, C; Chebloune, Y; Savatier, P; Thoraval, P; Thomas, J L; Samarut, J; Nigon, V M; Verdier, G

    1990-01-01

    An avian leukosis virus-based packaging cell line was constructed from the genome of the Rous-associated virus type 1. The gag, pol, and env genes were separated on two different plasmids; the packaging signal and the 3' long terminal repeat were removed. On a plasmid expressing the gag and pol genes, the env gene was replaced by the hygromycin resistance gene. The phleomycin resistance gene was inserted in the place of the gag-pol genes on a plasmid expressing the env gene. The plasmid containing the gag, pol, and Hygror genes was transfected into QT6 cells. Clones that produced high levels of p27gag were transfected with the plasmid containing the Phleor and env genes. Clones that produced high levels of env protein (as measured by an interference assay) were tested for their ability to package NeoR-expressing replication-defective vectors (TXN3'). One of the clones (Isolde) was able to transfer the Neo+ phenotype to recipient cells at a titer of 10(5) resistance focus-forming units per ml. Titers of supernatants of cells infected with Rous-associated virus type 1 prior to transfection by Neor vectors were similar. Tests for recombination events that might result in intact helper virus showed no evidence for the generation of replication-competent virus. The use of selectable genes inserted next to the viral genes to generate high-producer packaging cell lines is discussed. PMID:2154593

  12. Comparative genome analysis of Solanum lycopersicum and Solanum tuberosum

    PubMed Central

    Lall, Rohit; Thomas, George; Singh, Satendra; Singh, Archana; Wadhwa, Gulshan

    2013-01-01

    Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato. PMID:24307771

  13. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes

    SciTech Connect

    Gupta, Nitin; Benhamida, Jamal; Bhargava, Vipul; Goodman, Daniel; Kain , Elisabeth; Kerman, Ian; Nguyen , Ngan; Ollikainen, Noah; Rodriguez, Jesse; Wang, J.; Lipton, Mary S.; Romine, Margaret F.; Bafna, Vineet; Smith, Richard D.; Pevzner, Pavel A.

    2008-07-30

    While bacterial genome annotations have significantly improved in recent years, techniques for bacterial proteome annotation (including post-translational chemical modifications, signal peptides, proteolytic events, etc.) are still in their infancy. At the same time, the number of sequenced bacterial genomes is rising sharply, far outpacing our ability to validate the predicted genes, let alone annotate bacterial proteomes. In this study, we use tandem mass spectrometry (MS/MS) to annotate the proteome of Shewanella oneidensis MR-1, an important microbe for bioremediation. In particular, we provide the first comprehensive map of post-translational modifications in a bacterial genome, including a large number of chemical modifications, signal peptide cleavages and cleavage of N-terminal methionine residues. We also detect multiple genes that were missed or assigned incorrect start positions by gene prediction programs and suggest corrections to improve the gene annotation. This study demonstrates that complementing every genome sequencing project by an MS/MS project would significantly improve both genome and proteome annotations for a reasonable cost.

  14. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology

    PubMed Central

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases—sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions–deletions. PMID:23193278

  15. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure

    PubMed Central

    Wilson, Laura E.; Chin, Karen

    2014-01-01

    The broad biogeographic distribution of Hesperornis fossils in Late Cretaceous Western Interior Seaway deposits has prompted questions about whether they endured polar winters or migrated between mid- and high latitudes. Here, we compare microstructures of hesperornithiform long bones from Kansas and the Arctic to investigate whether migration or Late Cretaceous polar climate affected bone growth. We also examine modern penguin bones to determine how migration and climate may influence bone growth in birds with known behaviours. Histological analysis of hesperornithiform samples reveals continuous bone deposition throughout the cortex, plus an outer circumferential layer in adults. No cyclic growth marks, zonation or differences in vasculature are apparent in the Hesperornis specimens. Comparatively, migratory Adélie and chinstrap penguin bones show no zonation or changes in microstructure, suggesting that migration is not necessarily recorded in avian bone microstructure. Non-migratory gentoos show evidence of rapid bone growth possibly associated with increased chick growth rates in high-latitude populations and large body size. The absence of histological evidence for migration in extinct Hesperornis and extant pygoscelid penguins may reflect that these birds reached skeletal maturity before migration or overwintering. This underscores the challenges of using bone microstructure to infer the effects of behaviour and climate on avian growth. PMID:26064560

  16. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses

    PubMed Central

    Huang, Sijun; Zhang, Si; Jiao, Nianzhi; Chen, Feng

    2015-01-01

    Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation. PMID:26569403

  17. Genome evolution in the eremothecium clade of the Saccharomyces complex revealed by comparative genomics.

    PubMed

    Wendland, Jürgen; Walther, Andrea

    2011-12-01

    We used comparative genomics to elucidate the genome evolution within the pre-whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy-type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  18. Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics

    PubMed Central

    Wendland, Jürgen; Walther, Andrea

    2011-01-01

    We used comparative genomics to elucidate the genome evolution within the pre–whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  19. DCODE.ORG Anthology of Comparative Genomic Tools

    SciTech Connect

    Loots, G G; Ovcharenko, I

    2005-01-11

    Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.

  20. Sockeye: a 3D environment for comparative genomics.

    PubMed

    Montgomery, Stephen B; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A Gordon; Sleumer, Monica; Siddiqui, Asim S; Jones, Steven J M

    2004-05-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  1. Phytozome: a Tool for Green Plant Comparative Genomics

    DOE Data Explorer

    Phytozome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst green plants. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of release v4.0, Phytozome provides access to nine sequenced and annotated green plant genomes, eight of which have been clustered into gene families at six evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable. [Copied from the Overview at http://www.phytozome.net/Phytozome_info.php

  2. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    SciTech Connect

    Callister, Stephen J.; McCue, Lee Ann; Turse, Josh E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-02-06

    Comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry. Experimental validation of the existence of this core genome requires extensive measurement and is not typically undertaken. Enabled by an extensive proteome database development over a six year period, we experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. While genomic studies establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.

  3. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  4. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity

    PubMed Central

    2012-01-01

    Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated

  5. The tiger genome and comparative analysis with lion and snow leopard genomes.

    PubMed

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  6. The tiger genome and comparative analysis with lion and snow leopard genomes

    PubMed Central

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  7. Initial sequence and comparative analysis of the cat genome

    PubMed Central

    Pontius, Joan U.; Mullikin, James C.; Smith, Douglas R.; Lindblad-Toh, Kerstin; Gnerre, Sante; Clamp, Michele; Chang, Jean; Stephens, Robert; Neelam, Beena; Volfovsky, Natalia; Schäffer, Alejandro A.; Agarwala, Richa; Narfström, Kristina; Murphy, William J.; Giger, Urs; Roca, Alfred L.; Antunes, Agostinho; Menotti-Raymond, Marilyn; Yuhki, Naoya; Pecon-Slattery, Jill; Johnson, Warren E.; Bourque, Guillaume; Tesler, Glenn; O’Brien, Stephen J.

    2007-01-01

    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence. PMID:17975172

  8. An Integrative Method for Accurate Comparative Genome Mapping

    PubMed Central

    Swidan, Firas; Rocha, Eduardo P. C; Shmoish, Michael; Pinter, Ron Y

    2006-01-01

    We present MAGIC, an integrative and accurate method for comparative genome mapping. Our method consists of two phases: preprocessing for identifying “maximal similar segments,” and mapping for clustering and classifying these segments. MAGIC's main novelty lies in its biologically intuitive clustering approach, which aims towards both calculating reorder-free segments and identifying orthologous segments. In the process, MAGIC efficiently handles ambiguities resulting from duplications that occurred before the speciation of the considered organisms from their most recent common ancestor. We demonstrate both MAGIC's robustness and scalability: the former is asserted with respect to its initial input and with respect to its parameters' values. The latter is asserted by applying MAGIC to distantly related organisms and to large genomes. We compare MAGIC to other comparative mapping methods and provide detailed analysis of the differences between them. Our improvements allow a comprehensive study of the diversity of genetic repertoires resulting from large-scale mutations, such as indels and duplications, including explicitly transposable and phagic elements. The strength of our method is demonstrated by detailed statistics computed for each type of these large-scale mutations. MAGIC enabled us to conduct a comprehensive analysis of the different forces shaping prokaryotic genomes from different clades, and to quantify the importance of novel gene content introduced by horizontal gene transfer relative to gene duplication in bacterial genome evolution. We use these results to investigate the breakpoint distribution in several prokaryotic genomes. PMID:16933978

  9. Genome Sequences of Two Tunisian Field Strains of Avian Mycoplasma, M. meleagridis and M. gallinarum

    PubMed Central

    Yacoub, Elhem; Sirand-Pugnet, Pascal; Barré, Aurélien; Blanchard, Alain; Hubert, Christophe; Maurier, Florence; Bouilhol, Emmanuel

    2016-01-01

    Mycoplasma meleagridis and Mycoplasma gallinarum are bacteria that affect birds, but little is known about the genetic basis of their interaction with chickens and other poultry. Here, we sequenced the genomes of M. meleagridis strain MM_26B8_IPT and M. gallinarum strain Mgn_IPT, both isolated from chickens showing respiratory symptoms, poor growth, reduction in hatchability, and loss of production. PMID:27313300

  10. Genome Sequences of Two Tunisian Field Strains of Avian Mycoplasma, M. meleagridis and M. gallinarum.

    PubMed

    Yacoub, Elhem; Sirand-Pugnet, Pascal; Barré, Aurélien; Blanchard, Alain; Hubert, Christophe; Maurier, Florence; Bouilhol, Emmanuel; Ben Abdelmoumen Mardassi, Boutheina

    2016-01-01

    Mycoplasma meleagridis and Mycoplasma gallinarum are bacteria that affect birds, but little is known about the genetic basis of their interaction with chickens and other poultry. Here, we sequenced the genomes of M. meleagridis strain MM_26B8_IPT and M. gallinarum strain Mgn_IPT, both isolated from chickens showing respiratory symptoms, poor growth, reduction in hatchability, and loss of production. PMID:27313300

  11. Sequencing and comparative analyses of the genomes of zoysiagrasses.

    PubMed

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-04-01

    Zoysiais a warm-season turfgrass, which comprises 11 allotetraploid species (2n= 4x= 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession 'Nagirizaki' (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella 'Wakaba' and Z. pacifica 'Zanpa' were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica'Kyoto', Z. japonica'Miyagi' and Z. matrella'Chiba Fair Green', were accumulated, and aligned against the reference genome of 'Nagirizaki' along with those from 'Wakaba' and 'Zanpa'. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the 'Zoysia Genome Database' at http://zoysia.kazusa.or.jp. PMID:26975196

  12. Sequencing and comparative analyses of the genomes of zoysiagrasses

    PubMed Central

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-01-01

    Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp. PMID:26975196

  13. Comparative genomics and functional annotation of bacterial transporters

    NASA Astrophysics Data System (ADS)

    Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2008-03-01

    Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of enzymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role. We overview the main techniques of analysis of transporters' structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms.

  14. Comparing Competitive Fitness of West Nile Virus Strains in Avian and Mosquito Hosts

    PubMed Central

    Worwa, Gabriella; Wheeler, Sarah S.; Brault, Aaron C.; Reisen, William K.

    2015-01-01

    Enzootic transmission of West Nile virus (WNV; Flaviviridae, Flavivirus) involves various species of birds and ornithophilic mosquitoes. Single nucleotide substitutions in the WNV genome may impact viral fitness necessary for WNV adaptation and evolution as previously shown for the WN02 genotype. In an effort to study phenotypic change, we developed an in vivo fitness competition model in two biologically relevant hosts for WNV. The House Finch (HOFI; Haemorhous mexicanus) and Culex tarsalis mosquitoes represent moderately susceptible hosts for WNV, are highly abundant in Western North America and frequently are infected with WNV in nature. Herein, we inoculated HOFIs and Cx. tarsalis competitively (dually) and singly with infectious-clone derived viruses of the founding California isolate COAV997-2003 (COAV997-IC), the founding North American isolate NY99 (NY99-IC), and a 2004 field isolate from California (CA-04), and compared the replicative capacities (fitness) of these viruses to a genetically marked virus of COAV997 (COAV997-5nt) by measuring RNA copy numbers. COAV997 and COAV997-5nt exhibited neutral fitness in HOFIs and Cx. tarsalis, and the temperature-sensitive phenotype of COAV997 did not affect replication in HOFIs as none of the infected birds became febrile. The NY99 and CA-04 isolates demonstrated elevated fitness in HOFIs compared to COAV997-5nt, whereas all viruses replicated to similar titers and RNA copies in Cx. tarsalis, and the only fitness differences were related to infection rates. Our data demonstrated that competitive replication allows for the sensitive comparison of fitness differences among two genetically closely related viruses using relevant hosts of WNV while eliminating host-to-host differences. In conclusion, our approach may be helpful in understanding the extent of phenotypic change in fitness associated with genetic changes in WNV. PMID:25965850

  15. Comparing presence of avian paramyxovirus-1 through immunohistochemistry in tracheas of experimentally and naturally infected chickens.

    PubMed

    Brown, Corrie C; Sullivan, Lauren; Dufour-Zavala, Louise; Kulkarni, Arun; Williams, Susan; Susta, Leonardo; Zhang, Jian; Sellers, Holly

    2013-03-01

    Tracheas from chickens infected both in the field and experimentally with lentogenic Newcastle disease virus (also known as avian paramyxovirus-1 [APMV-1] and referred to here as "lentogenic NDV") were examined histopathologically to score degree of pathologic changes and by immunohistochemistry to determine presence of viral protein. In the field cases there was often a striking lack of correlation between severity of tracheal lesions and amount of immunohistochemical signal for APMV-1 protein. Experimental cases had minimal pathologic changes and also minimal immunohistochemical signal. Positive cells were often associated with surface deciliation. It may be that lentogenic NDV has only a minor role as a respiratory pathogen, merely compromising the mucosa to allow other respiratory pathogens to infect and worsen the clinical and pathologic presentation. PMID:23678727

  16. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    PubMed Central

    2011-01-01

    Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae. PMID:21226921

  17. Using Comparative Genomics to Drive New Discoveries in Microbiology

    PubMed Central

    Haft, Daniel H.

    2015-01-01

    Bioinformatics looks to many microbiologists like a service industry. In this view, annotation starts with what is known from experiments in the lab, makes reasonable inferences of which genes match other genes in function, builds databases to make all that we know accessible, but creates nothing truly new. Experiments lead, then biocuration and computational biology follow. But the astounding success of genome sequencing is changing the annotation paradigm. Every genome sequenced is an intercepted coded message from the microbial world, and as all cryptographers know, it is easier to decode a thousand messages than a single message. Some biology is best discovered not by phenomenology, but by decoding genome content, forming hypotheses, and doing the first few rounds of validation computationally. Through such reasoning, a role and function may be assigned to a protein with no sequence similarity to any protein yet studied. Experimentation can follow after the discovery to cement and to extend the findings. Unfortunately, this approach remains so unfamiliar to most bench scientists that lab work and comparative genomics typically segregate to different teams working on unconnected projects. This review will discuss several themes in comparative genomics as a discovery method, including highly derived data, use of patterns of design to reason by analogy, and in silico testing of computationally generated hypotheses. PMID:25617609

  18. CFGP: a web-based, comparative fungal genomics platform.

    PubMed

    Park, Jongsun; Park, Bongsoo; Jung, Kyongyong; Jang, Suwang; Yu, Kwangyul; Choi, Jaeyoung; Kong, Sunghyung; Park, Jaejin; Kim, Seryun; Kim, Hyojeong; Kim, Soonok; Kim, Jihyun F; Blair, Jaime E; Lee, Kwangwon; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the 'fill-in-the-form-and-press-SUBMIT' user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI. PMID:17947331

  19. Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology

    PubMed Central

    2015-01-01

    Background Corynebacterium urealyticum is an opportunistic pathogen that normally lives on skin and mucous membranes in humans. This high Gram-positive bacteria can cause acute or encrusted cystitis, encrusted pyelitis, and pyelonephritis in immunocompromised patients. The bacteria is multi-drug resistant, and knowledge about the genes that contribute to its virulence is very limited. Two complete genome sequences were used in this comparative genomic study: C. urealyticum DSM 7109 and C. urealyticum DSM 7111. Results We used comparative genomics strategies to compare the two strains, DSM 7109 and DSM 7111, and to analyze their metabolic pathways, genome plasticity, and to predict putative antigenic targets. The genomes of these two strains together encode 2,115 non-redundant coding sequences, 1,823 of which are common to both genomes. We identified 188 strain-specific genes in DSM 7109 and 104 strain-specific genes in DSM 7111. The high number of strain-specific genes may be a result of horizontal gene transfer triggered by the large number of transposons in the genomes of these two strains. Screening for virulence factors revealed the presence of the spaDEF operon that encodes pili forming proteins. Therefore, spaDEF may play a pivotal role in facilitating the adhesion of the pathogen to the host tissue. Application of the reverse vaccinology method revealed 19 putative antigenic proteins that may be used in future studies as candidate drug or vaccine targets. Conclusions The genome features and the presence of virulence factors in genomic islands in the two strains of C. urealyticum provide insights in the lifestyle of this opportunistic pathogen and may be useful in developing future therapeutic strategies. PMID:26041051

  20. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  1. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity

    PubMed Central

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-01-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  2. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity.

    PubMed

    Xu, Teng; Qin, Song; Hu, Yongwu; Song, Zhijian; Ying, Jianchao; Li, Peizhen; Dong, Wei; Zhao, Fangqing; Yang, Huanming; Bao, Qiyu

    2016-08-01

    Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies. PMID:27330141

  3. African Relapsing Fever Borreliae Genomospecies Revealed by Comparative Genomics

    PubMed Central

    Elbir, Haitham; Abi-Rached, Laurent; Pontarotti, Pierre; Yoosuf, Niyaz; Drancourt, Michel

    2014-01-01

    Background: Relapsing fever borreliae are vector-borne bacteria responsible for febrile infection in humans in North America, Africa, Asia, and in the Iberian Peninsula in Europe. Relapsing fever borreliae are phylogenetically closely related, yet they differ in pathogenicity and vectors. Their long-term taxonomy, based on geography and vector grouping, needs to be re-apprised in a genomic context. We therefore embarked into genomic analyses of relapsing fever borreliae, focusing on species found in Africa. Results: Genome-wide phylogenetic analyses group Old World Borrelia crocidurae, Borrelia hispanica, B. duttonii, and B. recurrentis in one clade, and New World Borrelia turicatae and Borrelia hermsii in a second clade. Accordingly, average nucleotide identity is 99% among B. duttonii, B. recurrentis, and B. crocidurae and 96% between latter borreliae and B. hispanica while the similarity is 86% between Old World and New World borreliae. Comparative genomics indicates that the Old World relapsing fever B. duttonii, B. recurrentis, B. crocidurae, and B. hispanica have a 2,514-gene pan genome and a 933-gene core genome that includes 788 chromosomal and 145 plasmidic genes. Analyzing the role that natural selection has played in the evolution of Old World borreliae species revealed that 55 loci were under positive diversifying selection, including loci coding for membrane, flagellar, and chemotaxis proteins, three categories associated with adaption to specific niches. Conclusion: Genomic analyses led to a reappraisal of the taxonomy of relapsing fever borreliae in Africa. These analyses suggest that B. crocidurae, B. duttonii, and B. recurrentis are ecotypes of a unique genomospecies, while B. hispanica is a distinct species. PMID:25229054

  4. Utility of array comparative genomic hybridization in cytogenetic analysis.

    PubMed

    Singh, Rashmi R; Cheung, K-John J; Horsman, Douglas E

    2011-01-01

    Conventional comparative genomic hybridization (CGH), high-resolution oligonucleotide, and BAC array CGH have modernized the field of cytogenetics to enable access to unbalanced genomic aberrations such as whole or partial chromosomal gains and losses. The basic principle of array CGH involves hybridizing differentially labeled proband/test (e.g., tumor) and normal reference DNA on an array of oligonucleotide or BAC clones instead of normal metaphases as in conventional CGH. The sub-megabase resolution tiling BAC arrays are extremely useful for the analysis of acquired aberrations in cancer genomes. Array CGH can be extremely useful to identify the chromosomal makeup of marker and ring chromosomes, to define/delineate the precise location/bands involved in structural aberrations and the accurate localization of translocation breakpoints in both simple and complex karyotypes either alone or in combination with standard karyotype analysis. PMID:21431645

  5. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    SciTech Connect

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  6. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  7. A web server for mining Comparative Genomic Hybridization (CGH) data

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ranka, Sanjay; Kahveci, Tamer

    2007-11-01

    Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.

  8. Comparative mitochondrial genomics within and among species of killifish

    PubMed Central

    Whitehead, Andrew

    2009-01-01

    Background This study was motivated by the observation of unusual mitochondrial haplotype distributions and associated physiological differences between populations of the killifish Fundulus heteroclitus distributed along the Atlantic coast of North America. A distinct "northern" haplotype is fixed in all populations north of New Jersey, and does not appear south of New Jersey except in extreme upper-estuary fresh water habitats, and northern individuals are known to be more tolerant of hyposmotic conditions than southern individuals. Complete mitochondrial genomes were sequenced from individuals from northern coastal, southern coastal, and fresh water populations (and from out-groups). Comparative genomics approaches were used to test multiple evolutionary hypotheses proposed to explain among-population genome variation including directional selection and hybridization. Results Structure and organization of the Fundulus mitochondrial genome is typical of animals, yet subtle differences in substitution patterns exist among populations. No signals of directional selection or hybridization were detected. Mitochondrial genes evolve at variable rates, but all genes exhibit very low dN/dS ratios across all lineages, and the southern population harbors more synonymous polymorphism than other populations. Conclusion Evolution of mitochondrial genomes within Fundulus is primarily governed by interaction between strong purifying selection and demographic influences, including larger historical population size in the south. Though directional selection and hybridization hypotheses were not supported, adaptive processes may indirectly contribute to partitioning of variation between populations. PMID:19144111

  9. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  10. FusoBase: an online Fusobacterium comparative genomic analysis platform

    PubMed Central

    Ang, Mia Yang; Heydari, Hamed; Jakubovics, Nick S.; Mahmud, Mahafizul Imran; Dutta, Avirup; Wee, Wei Yee; Wong, Guat Jah; Mutha, Naresh V.R.; Tan, Shi Yang; Choo, Siew Woh

    2014-01-01

    Fusobacterium are anaerobic gram-negative bacteria that have been associated with a wide spectrum of human infections and diseases. As the biology of Fusobacterium is still not well understood, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of infections and diseases. To facilitate the ongoing genomic research on Fusobacterium, a specialized database with easy-to-use analysis tools is necessary. Here we present FusoBase, an online database providing access to genome-wide annotated sequences of Fusobacterium strains as well as bioinformatics tools, to support the expanding scientific community. Using our custom-developed Pairwise Genome Comparison tool, we demonstrate how differences between two user-defined genomes and how insertion of putative prophages can be identified. In addition, Pathogenomics Profiling Tool is capable of clustering predicted genes across Fusobacterium strains and visualizing the results in the form of a heat map with dendrogram. Database URL: http://fusobacterium.um.edu.my. PMID:25149689

  11. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity.

    PubMed

    Smokvina, Tamara; Wels, Michiel; Polka, Justyna; Chervaux, Christian; Brisse, Sylvain; Boekhorst, Jos; van Hylckama Vlieg, Johan E T; Siezen, Roland J

    2013-01-01

    Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link

  12. MicroScope: a platform for microbial genome annotation and comparative genomics

    PubMed Central

    Vallenet, D.; Engelen, S.; Mornico, D.; Cruveiller, S.; Fleury, L.; Lajus, A.; Rouy, Z.; Roche, D.; Salvignol, G.; Scarpelli, C.; Médigue, C.

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope’s rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  13. Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    PubMed Central

    Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops. PMID:21633709

  14. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    PubMed Central

    2011-01-01

    Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes

  15. Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria.

    PubMed

    Leyn, Semen A; Suvorova, Inna A; Kholina, Tatiana D; Sherstneva, Sofia S; Novichkov, Pavel S; Gelfand, Mikhail S; Rodionov, Dmitry A

    2014-01-01

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼ 200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria. PMID:25411846

  16. Comparative Genomics of Transcriptional Regulation of Methionine Metabolism in Proteobacteria

    PubMed Central

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2014-01-01

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria. PMID:25411846

  17. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    DOE PAGESBeta

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific andmore » genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.« less

  18. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    SciTech Connect

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.

  19. Comparative genomics and transcriptomics of trait-gene association

    PubMed Central

    2012-01-01

    Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs). We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis. PMID:23181781

  20. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants

    PubMed Central

    Solheim, Margrete; Aakra, Ågot; Snipen, Lars G; Brede, Dag A; Nes, Ingolf F

    2009-01-01

    Background Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal tract, is now ranked among the leading causes of nosocomial infections. In an attempt to gain insight into the genetic make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants. Results The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages. Conclusion The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E. faecalis have identified so-called high-risk enterococcal clonal complexes (HiRECC), defined as genetically distinct subpopulations, epidemiologically associated with enterococcal infections. The observed correlation between CGH and MLST presented here, may offer a method for the identification of lineage-specific genes, and may therefore add clues on how to distinguish pathogenic from commensal E. faecalis. In this work, information on the core genome of E. faecalis is also substantially extended. PMID:19393078

  1. Lactobacillus paracasei Comparative Genomics: Towards Species Pan-Genome Definition and Exploitation of Diversity

    PubMed Central

    Smokvina, Tamara; Wels, Michiel; Polka, Justyna; Chervaux, Christian; Brisse, Sylvain; Boekhorst, Jos; Vlieg, Johan E. T. van Hylckama; Siezen, Roland J.

    2013-01-01

    Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its “pan-genome”. We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800–3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25–53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to

  2. Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps

    PubMed Central

    Desjardins, Christopher A; Gundersen-Rindal, Dawn E; Hostetler, Jessica B; Tallon, Luke J; Fadrosh, Douglas W; Fuester, Roger W; Pedroni, Monica J; Haas, Brian J; Schatz, Michael C; Jones, Kristine M; Crabtree, Jonathan; Forberger, Heather; Nene, Vishvanath

    2008-01-01

    Background Polydnaviruses, double-stranded DNA viruses with segmented genomes, have evolved as obligate endosymbionts of parasitoid wasps. Virus particles are replication deficient and produced by female wasps from proviral sequences integrated into the wasp genome. These particles are co-injected with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and, thereby, survival of proviral DNA. Here we characterize and compare the encapsidated viral genome sequences of bracoviruses in the family Polydnaviridae associated with Glyptapanteles gypsy moth parasitoids, along with near complete proviral sequences from which both viral genomes are derived. Results The encapsidated Glyptapanteles indiensis and Glyptapanteles flavicoxis bracoviral genomes, each composed of 29 different size segments, total approximately 517 and 594 kbp, respectively. They are generated from a minimum of seven distinct loci in the wasp genome. Annotation of these sequences revealed numerous novel features for polydnaviruses, including insect-like sugar transporter genes and transposable elements. Evolutionary analyses suggest that positive selection is widespread among bracoviral genes. Conclusions The structure and organization of G. indiensis and G. flavicoxis bracovirus proviral segments as multiple loci containing one to many viral segments, flanked and separated by wasp gene-encoding DNA, is confirmed. Rapid evolution of bracovirus genes supports the hypothesis of bracovirus genes in an 'arms race' between bracovirus and caterpillar. Phylogenetic analyses of the bracoviral genes encoding sugar transporters provides the first robust evidence of a wasp origin for some polydnavirus genes. We hypothesize transposable elements, such as those described here, could facilitate transfer of genes between proviral segments and host DNA. PMID:19116010

  3. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii

    PubMed Central

    2006-01-01

    Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island—the largest identified to date—in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance. PMID:16415984

  4. Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array.

    PubMed

    Chirac, Pierre; Maillet, Denis; Leprêtre, Frédéric; Isaac, Sylvie; Glehen, Olivier; Figeac, Martin; Villeneuve, Laurent; Péron, Julien; Gibson, Fernando; Galateau-Sallé, Françoise; Gilly, François-Noël; Brevet, Marie

    2016-09-01

    Malignant peritoneal mesotheliomas (MPM) are rare, accounting for approximately 8% of cases of mesothelioma in France. We performed comparative genomic hybridization (CGH) on frozen MPM samples using the Agilent Human Genome CGH 180 K array. Samples were taken from a total of 33 French patients, comprising 20 men and 13 women with a mean (range) age of 58.4 (17-76) years. Asbestos exposure was reported in 8 patients (24.2%). Median (range) overall survival (OS) was 39 (0-119) months. CGH analysis demonstrated the presence of chromosomal instability in patients with MPM, with a genomic pattern that was similar to that described for pleural mesothelioma, including the loss of chromosomal regions 3p21, 9p21, and 22q12. In addition, novel genomic copy number alterations were identified, including the 15q26.2 region and the 8p11.22 region. Median OS was associated with a low peritoneal cancer index (P=.011), epithelioid subtype (P=.038), and a low number of genomic aberrations (P=.015), all of which constitute good prognostic factors for MPM. Our results provide new insights into the genetic and genomic background of MPM. Although pleural and peritoneal mesotheliomas have different risk factors, different therapeutics, and different prognosis; these data provide support to combine pleural and peritoneal mesothelioma in same clinical assays. PMID:27184482

  5. The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion.

    PubMed

    Wang, Xuelin; Bi, Changwei; Xu, Yiqing; Wei, Suyun; Dai, Xiaogang; Yin, Tongming; Ye, Ning

    2016-01-01

    The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants. PMID:27148547

  6. A Web-Based Comparative Genomics Tutorial for Investigating Microbial Genomes

    PubMed Central

    STRONG, MICHAEL; CASCIO, DUILIO; EISENBERG, DAVID

    2004-01-01

    As the number of completely sequenced microbial genomes continues to rise at an impressive rate, it is important to prepare students with the skills necessary to investigate microorganisms at the genomic level. As a part of the core curriculum for first-year graduate students in the biological sciences, we have implemented a web-based tutorial to introduce students to the fields of comparative and functional genomics. The tutorial focuses on recent computational methods for identifying functionally linked genes and proteins on a genome-wide scale and was used to introduce students to the Rosetta Stone, Phylogenetic Profile, conserved Gene Neighbor, and Operon computational methods. Students learned to use a number of publicly available web servers and databases to identify functionally linked genes in the Escherichia coli genome, with emphasis on genome organization and operon structure. The overall effectiveness of the tutorial was assessed based on student evaluations and homework assignments. The tutorial is available to other educators at http://www.doe-mbi.ucla.edu/~strong/m253.php. PMID:23653555

  7. The Whole Genome Assembly and Comparative Genomic Research of Thellungiella parvula (Extremophile Crucifer) Mitochondrion

    PubMed Central

    Wang, Xuelin; Bi, Changwei; Xu, Yiqing; Wei, Suyun; Dai, Xiaogang; Yin, Tongming; Ye, Ning

    2016-01-01

    The complete nucleotide sequences of the mitochondrial (mt) genome of an extremophile species Thellungiella parvula (T. parvula) have been determined with the lengths of 255,773 bp. T. parvula mt genome is a circular sequence and contains 32 protein-coding genes, 19 tRNA genes, and three ribosomal RNA genes with a 11.5% coding sequence. The base composition of 27.5% A, 27.5% T, 22.7% C, and 22.3% G in descending order shows a slight bias of 55% AT. Fifty-three repeats were identified in the mitochondrial genome of T. parvula, including 24 direct repeats, 28 tandem repeats (TRs), and one palindromic repeat. Furthermore, a total of 199 perfect microsatellites have been mined with a high A/T content (83.1%) through simple sequence repeat (SSR) analysis and they were distributed unevenly within this mitochondrial genome. We also analyzed other plant mitochondrial genomes' evolution in general, providing clues for the understanding of the evolution of organelles genomes in plants. Comparing with other Brassicaceae species, T. parvula is related to Arabidopsis thaliana whose characters of low temperature resistance have been well documented. This study will provide important genetic tools for other Brassicaceae species research and improve yields of economically important plants. PMID:27148547

  8. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau.

    PubMed

    Qu, Y; Lei, F; Zhang, R; Lu, X

    2010-01-01

    Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. In contrast to Europe and North America where the effects of recent glacial cycles on genetic diversity have been well studied, the genetic legacy of the Pleistocene for the Qinghai-Tibetan (Tibetan) plateau, a region where glaciation was not synchronous with the North Hemisphere ice sheet maxima, remains poorly understood. Here, we compared the phylogeographical patterns of five avian species on the Qinghai-Tibetan plateau by three mitochondrial DNA fragments: the Tibetan snow finch (Montifringilla adamsi), the Blanford's snow finch (Pyrgilauda blanfordi), the horned lark (Eremophila alpestris), the twite (Carduelis flavirostris) and the black redstart (Phoenicurus ochruros). Our results revealed the three species mostly distributed on the platform region of the plateau that experienced population expansion following the retreat of the extensive glaciation period (0.5-0.175 Ma). These results are at odds with the results from avian species of Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023-0.018 Ma). A single refugium was identified in a restricted semi-continuous area around the eastern margin of the plateau, instead of multiple independent refugia for European and North American species. For the other two species distributed on the edges of the plateau (the twite and black redstart), populations were maintained at stable levels. Edge areas are located on the eastern margin, which might have had little or no ice cover during the glaciation period. Thus, milder climate may have mitigated demographic stresses for edge species relative to the extremes experienced by platform counterparts, the present-day ranges of which were heavily ice covered during the glaciation period. Finally, various behavioural and ecological characteristics, including dispersal capacities, habitat preference and altitude specificity

  9. Decoding the molecular evolution of human cognition using comparative genomics

    PubMed Central

    Usui, Noriyoshi; Co, Marissa; Konopka, Genevieve

    2014-01-01

    Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia, and Alzheimer’s disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene co-expression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance and methods for functional studies of individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition. PMID:25247723

  10. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and