Science.gov

Sample records for axial flow blood

  1. Fluid dynamics aspects of miniaturized axial-flow blood pump.

    PubMed

    Kang, Can; Huang, Qifeng; Li, Yunxiao

    2014-01-01

    Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated. PMID:24211957

  2. Mechanical axial flow blood pump to support cavopulmonary circulation.

    PubMed

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  3. Development of miniaturized mass flow meter for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yamane, Takashi

    2007-05-01

    To grasp the conditions of patients and implantable artificial hearts, it is essential to monitor the blood flow rate continuously and noninvasively. However, it is difficult to monitor the pump flow rate in an implantable artificial heart, because the conventional flow meter is too large to implant into the human body, and the flow estimation method is influenced by changes in the blood characteristics and the pump performance. In particular, the power consumption has neither linearity nor uniqueness with respect to the pump flow rate in an axial flow blood pump. In this research, we develop a prototype miniaturized mass flow meter that uses centrifugal force F(c) for discharged patients with an axial flow blood pump. This flow meter measures the F(c) corresponding to the mass flow rate, and implements compensation for static pressure. Because the strain gauges are attached outside of the curved tube, this mass flow meter has no blood contact point, resulting in a compact design. To evaluate the measurement accuracy and the tracking performance, the mass flow meter was compared with the conventional ultrasonic flow meter in a mock-up circulation study. As a result, the measurement error ranging from 0.5 to 5.0 L/min was less than +/-10% with respect to the maximum flow rate. The tracking performance of pulsation flow was approximately equivalent to that of the conventional flow meter. These experiments demonstrated that the prototype miniaturized mass flow meter using F(c) could accurately measure the mass flow rate continuously and noninvasively. PMID:17470214

  4. Noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Fukuda, Kyohei; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2013-01-01

    In order to monitor the condition of a patient using a left ventricular assist system (LVAS), blood flow should be measured. However, the reliable determination of blood-flow rate has not been established. The purpose of the present study is to develop a noninvasive blood-flow meter using a curved cannula with zero compensation for an axial flow blood pump. The flow meter uses the centrifugal force generated by the flow rate in the curved cannula. Two strain gauges served as sensors. The first gauges were attached to the curved area to measure static pressure and centrifugal force, and the second gauges were attached to straight area to measure static pressure. The flow rate was determined by the differences in output from the two gauges. The zero compensation was constructed based on the consideration that the flow rate could be estimated during the initial driving condition and the ventricular suction condition without using the flow meter. A mock circulation loop was constructed in order to evaluate the measurement performance of the developed flow meter with zero compensation. As a result, the zero compensation worked effectively for the initial calibration and the zero-drift of the measured flow rate. We confirmed that the developed flow meter using a curved cannula with zero compensation was able to accurately measure the flow rate continuously and noninvasively. PMID:24110631

  5. Flow visualization in the outflow cannula of an axial blood pump.

    PubMed

    Liu, Guangmao; Zhang, Yan; Chen, Haibo; Sun, Hansong; Zhou, Jianye; Hu, Shengshou

    2014-01-01

    The properties of blood flow in the outflow cannula of an axial blood pump play a critical role in potential thrombus formation and vascular injury. In this study, an in vitro flow visualization technique using particle image velocimetry (PIV) was applied to investigate the flow characteristics in the outflow cannula of a FW-2 model axial pump. The two-dimensional (2-D) flow field in the axial central section and the three-dimensional (3-D) flow field in the whole outflow cannula were examined with the PIV system. Tests were carried out with a blood-mimic working fluid in the axial pump at a rotational speed of 8500 ± 20 rpm with a flow rate of 5 L/min. The velocity distribution in the outflow cannula was analyzed to evaluate the flow characteristics. There was no backflow or stagnant flow in the tested area, while the flow velocity rapidly increased outside the boundary layer. A spiral flow was observed near the boundary layer, but this was worn off within the tested area. Based on the results, hemolysis and thrombus formation in the cannula, and injury to aortic endothelium are unlikely to occur due to spiral flow. PMID:24211890

  6. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    PubMed

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. PMID:22040356

  7. A novel integrated rotor of axial blood flow pump designed with computational fluid dynamics.

    PubMed

    Zhang, Yan; Xue, Song; Gui, Xing-min; Sun, Han-song; Zhang, Hao; Zhu, Xiao-dong; Hu, Sheng-Shou

    2007-07-01

    Due to the smaller size, smaller artificial surface, and higher efficiency, axial blood pumps have been widely applied in clinic in recent years. However, because of its high rotor speed, axial flow pump always has a high risk for hemolysis, which the red blood cells devastated by the shearing of tip clearance flow. We reported a novel design with the integrated blade-shroud structure that was expected to solve this problem by abolishing the radial clearance between blade and casing designed with the techniques of computational fluid dynamics (CFD). However, the numerical simulation result of the newly designed structure showed an unexpected backflow (where flow velocity is reverse of the main flow direction) at the blade tip. In order to eliminate this backflow, four flow passes were attempted, and the expansion angles (which reflect the radial amplification of the flow pass, on the meridional section, and should be defined as the angle between the center line of the flow pass and the axial direction) of the blades of the integrated rotor are 0 degrees, 8 degrees, 15 degrees, and 20 degrees, respectively. In the CFD result, it could be easily found as the expansion angles increased, the backflow was restrained gradually, and was eliminated at last. After numerous "cut and try" circles, the pump model was finally optimized. The numerical simulation of this model also showed a stable hydraulic characteristic. PMID:17584484

  8. Numerical simulation and comparative analysis of flow field in axial blood pumps.

    PubMed

    Peng, Yuhua; Wu, Yaqin; Tang, Xiaoying; Liu, Weifeng; Chen, Duanduan; Gao, Tianxin; Xu, Yong; Zeng, Yanjun

    2014-05-01

    The objective study was to estimate the rheological properties and physiological compatibility of the blood pump by simulating the internal flow field of the blood pump. In this study we use computational fluid dynamics method to simulate and analyse two models of axial blood pumps with a three-blade diffuser and a six-blade diffuser, named pump I and pump II, respectively, and to compare the flow patterns of these two kinds of blood pumps while both of them satisfy the conditions of the normal human blood differential pressure and blood flow. Results indicate that (i) the high shear force occurs between the diffuser and the rotor in which the crucial place leads to haemolysis and (ii) under the condition of 100 mmHg pressure head and 5 l/min flow rate, the difference between the two kinds of blood pumps, as far as the haemolytic performance is concerned, is notable. The haemolysis index of the two pumps is 0.32% and 0.2%. In conclusion, the performance of the blood pump is influenced by the diffusers' blade number. Pump II performed better than pump I, which can be the basic model for blood pump option. PMID:22974125

  9. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system. PMID:8573818

  10. Suspension model blood flow through an inclined tube with an axially non-symmetrical stenosis

    NASA Astrophysics Data System (ADS)

    Chakraborty, Uday Shankar; Biswas, Devajyoti; Paul, Moumita

    2011-03-01

    The flow of blood in an inclined artery with an axially non-symmetrical but radially symmetrical mild stenosis has been presented in this study. To account for the slip at stenotic wall, hematocrit and inclination of the artery, blood has been represented by a particle-fluid suspension. The expression for the flow characteristics, namely, the impedance (resistance to flow), the wall shear stress and the shear stress at the throat of the stenosis have been derived and represented graphically with respect to different flow parameters. The impedance increases with the hematocrit and stenosis size but decreases with slip at wall and angle of inclination of the artery. The shear stress at the maximum stenosis height increases with the inclination of the artery but possess the characteristics similar to that of impedance with respect to other parameters. As an application, theoretical values of effective viscosity computed with the help of the present analysis are compared with experimental results and found that they are in reasonable agreement for low hematocrit values in small blood carrying vessels.

  11. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application. PMID:16683951

  12. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.

    PubMed

    Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan; Zhu, Xian-Ran

    2012-04-01

    The head curves of a 1.5:1 new axial blood pump model were measured using five working fluids at five rotational speeds. The working fluids were water, a 39wt% aqueous glycerin solution (GS), and three aqueous xanthan gum solutions (XGSs) with different concentrations. The flow velocities and shear stresses in the mechanical clearance between the casing and rotor were investigated using a laser Doppler velocimeter and hot-film sensor. At every rotational speed, the experiment in which viscous GS was used in the pump model showed a head curve lower than that obtained using water, whereas the head obtained using viscoelastic XGS was higher than that generated using water. A maximum difference of 65.8% between the heads measured in the 0.06% XGS and GS experiments was detected. The higher head produced by the XGS may have originated from the drag-reduction effect of XGS viscoelasticity. The measurements showed that a reverse washout flow at a velocity of 0.05-0.11m/s occurs in the clearance. This reverse washout flow is crucial to preventing flow stagnation and accompanying thrombus formation. The wall shear stress and the Taylor number of the rotating Couette-like flow in the clearance both indicated that it is a turbulent flow. PMID:21995643

  13. Numerical simulation of an axial blood pump.

    PubMed

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming

    2007-07-01

    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  14. Piezoelectric axial flow microvalve

    DOEpatents

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  15. Axial velocity in decaying swirl flow

    NASA Astrophysics Data System (ADS)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    1988-09-01

    Experiments were carried out on turbulent swirling flow with variable initial swirl at different flow rates to study the effect of swirl on axial velocity. A correlation was made between the defect in the swirling flow axial velocity and the swirl number which locally defines the swirl intensity. An expression which can be used to predict the axial velocity distribution of turbulent swirling flow in a pipe is presented.

  16. Unsteady Flows in Axial Turbomachines

    NASA Technical Reports Server (NTRS)

    Marble, F. E.; Rannie, W. D.

    1957-01-01

    Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.

  17. Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second

    PubMed Central

    Lee, ByungKun; Choi, WooJhon; Liu, Jonathan J.; Lu, Chen D.; Schuman, Joel S.; Wollstein, Gadi; Duker, Jay S.; Waheed, Nadia K.; Fujimoto, James G.

    2015-01-01

    Purpose. To develop and demonstrate a cardiac gating method for repeatable in vivo measurement of total retinal blood flow (TRBF) in humans using en face Doppler optical coherence tomography (OCT) at commercially available imaging speeds. Methods. A prototype swept-source OCT system operating at 100-kHz axial scan rate was developed and interfaced with a pulse oximeter. Using the plethysmogram measured from the earlobe, Doppler OCT imaging of a 1.5- × 2-mm area at the optic disc at 1.8 volumes/s was synchronized to cardiac cycle to improve sampling of pulsatile blood flow. Postprocessing algorithms were developed to achieve fully automatic calculation of TRBF. We evaluated the repeatability of en face Doppler OCT measurement of TRBF in 10 healthy young subjects using three methods: measurement at 100 kHz with asynchronous acquisition, measurement at 100 kHz with cardiac-gated acquisition, and a control measurement using a 400-kHz instrument with asynchronous acquisition. Results. The median intrasubject coefficients of variation (COV) of the three methods were 8.0%, 4.9%, and 6.1%, respectively. All three methods correlated well, without a significant bias. Mean TRBF measured at 100 kHz with cardiac-gated acquisition was 40.5 ± 8.2 μL/min, and the range was from 26.6 to 55.8 μL/min. Conclusions. Cardiac-gated en face Doppler OCT can achieve smaller measurement variability than previously reported methods. Although further validation in older subjects and diseased subjects is required, precise measurement of TRBF using cardiac-gated en face Doppler OCT at commercially available imaging speeds should be feasible. PMID:25744974

  18. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  19. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  20. Blood flow

    MedlinePlus Videos and Cool Tools

    As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body’s tissues and ... returns to the heart from the lungs, which pumps it throughout the body.

  1. Blood flow

    MedlinePlus Videos and Cool Tools

    As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body's tissues and vital organs. ... brain, liver, kidneys, stomach, and muscles, including the heart muscle itself. At the same time, the veins ...

  2. Magnetically suspended centrifugal blood pump with an axially levitated motor.

    PubMed

    Masuzawa, Toru; Ezoe, Shiroh; Kato, Tsuyoshi; Okada, Yohji

    2003-07-01

    The longevity of a rotary blood pump is mainly determined by the durability of its wearing mechanical parts such as bearings and seals. Magnetic suspension techniques can be used to eliminate these mechanical parts altogether. This article describes a magnetically suspended centrifugal blood pump using an axially levitated motor. The motor comprises an upper stator, a bottom stator, and a levitated rotor-impeller between the stators. The upper stator has permanent magnets to generate an attractive axial bias force on the rotor and electric magnets to control the inclination of the rotor. The bottom stator has electric magnets to generate attractive forces and rotating torque to control the axial displacement and rotation of the rotor. The radial displacement of the rotor is restricted by passive stability. A shrouded impeller is integrated within the rotor. The performance of the magnetic suspension and pump were evaluated in a closed mock loop circuit filled with water. The maximum amplitude of the rotor displacement in the axial direction was only 0.06 mm. The maximum possible rotational speed during levitation was 1,600 rpm. The maximum pressure head and flow rate were 120 mm Hg and 7 L/min, respectively. The pump shows promise as a ventricular assist device. PMID:12823418

  3. Mixing enhancement using axial flow

    NASA Technical Reports Server (NTRS)

    Papamoschou, Dimitri (Inventor)

    2003-01-01

    A method and an apparatus for enhancing fluid mixing. The method comprises the following: (a) configuring a duct to have an effective outer wall, an effective inner wall, a cross-sectional shape, a first cross-sectional area and an exit area, the first cross-sectional area and the exit area being different in size; (b) generating a first flow at the first cross-sectional area, the first flow having a total pressure and a speed equal to or greater than a local speed of sound; and (c) generating a positive streamwise pressure gradient in a second flow in proximity of the exit area. The second flow results from the first flow. Fluid mixing is enhanced downstream from the duct exit area.

  4. Axial flow positive displacement worm gas generator

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  5. Flow field visualization about external axial corners

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1978-01-01

    An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.

  6. Axial flow positive displacement worm compressor

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  7. Aerodynamics of advanced axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  8. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  9. The valvo-pump. An axial, nonpulsatile blood pump.

    PubMed

    Mitamura, Y; Yozu, R; Tanaka, T; Yamazaki, K

    1991-01-01

    The valvo-pump, an axial, nonpulsatile blood pump implanted at the heart valve position while preserving diseased heart muscle, has several advantages over an artificial heart replacement, including 1) a good anatomic fit to the natural heart, 2) less blood contacting surface, and 3) ease of implantation. The housing for the pump is a tube, 37 mm in diameter (maximum) and 33 mm in length. Within the housing there is an impeller with either 10 vanes (33 mm in diameter) or 5 vanes (22 mm in diameter). The impeller is connected to a samarium-cobalt-rare-earth magnet direct current (DC) brushless motor measuring 23.8 mm in diameter and 30.2 mm in length. Sealing is achieved by means of a magnetic fluid seal. A guiding wheel with 4 vanes is located behind the impeller. The pump was studied on a hydraulic mock circulatory system to evaluate its performance characteristics. A pump flow of 6.9 L/min was obtained at a pump differential pressure of 48 mmHg, and flow of 3.1 L/min was obtained at 58 mmHg. The valvo-pump can be made feasible by developing a small, high-output, power motor and an endurable seal, as well as by optimizing the impeller design. PMID:1751257

  10. Single Rod Vibration in Axial Flow

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe

    2013-11-01

    Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.

  11. Axial compressor middle stage secondary flow study

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Dring, R. P.; Joslyn, H. D.

    1983-01-01

    This report describes an experimental investigation of the secondary flow within and aft of an axial compressor model with thick endwall boundary layers. The objective of the study was to obtain detailed aerodynamic and trace gas concentration traverse data aft of a well documented isolated rotor for the ultimate purpose of improving the design phases of compressor development based on an improved physical understanding of secondary flow. It was determined from the flow visualization, aerodynamic, and trace gas concentration results that the relative unloading of the midspan region of the airfoil inhibitied a fullspan separation at high loading preventing the massive radial displacement of the hub corner stall to the tip. Radial distribution of high and low total pressure fluid influenced the magnitude of the spanwise distribution of loss, such that, there was a general decreases in loss near the hub to the extent that for the least loaded case a negative loss (increase in total pressure) was observed. The ability to determine the spanwise distribution of blockage was demonstrated. Large blockage was present in the endwall regions due to the corner stall and tip leakage with little blockage in the core flow region. Hub blockage was found to increase rapidly with loading.

  12. Mechanics of blood flow.

    PubMed

    Skalak, R; Keller, S R; Secomb, T W

    1981-05-01

    The historical development of the mechanics of blood flow can be traced from ancient times, to Leonardo da Vinci and Leonhard Euler and up to the present times with increasing biological knowledge and mathematical analysis. In the last two decades, quantitative and numerical methods have steadily given more complete and precise understanding. In the arterial system wave propagation computations based on nonlinear one-dimensional modeling have given the best representation of pulse wave propagation. In the veins, the theory of unsteady flow in collapsible tubes has recently been extensively developed. In the last decade, progress has been made in describing the blood flow at junctions, through stenoses, in bends and in capillary blood vessels. The rheological behavior of individual red blood cells has been explored. A working model consists of an elastic membrane filled with viscous fluid. This model forms a basis for understanding the viscous and viscoelastic behavior of blood. PMID:7024641

  13. Dynamics of Flapping Flag in Axial Flow

    NASA Astrophysics Data System (ADS)

    Abderrahmane, Hamid Ait; Fayed, Mohamed; Gunter, Amy-Lee; Paidoussis, Michael P.; Ng, Hoi Dick

    2010-11-01

    We investigate experimentally the phenomenon of the flapping of a flag, placed within a low turbulent axial flow inside a small scale wind tunnel test section. Flags of different sizes and flexural rigidities were used. Image processing technique was used and the time series of a given point on the edge of the flag was analyzed. The stability condition of the flag was obtained and compared to the recent theoretical models and numerical simulations. Afterwards, the nonlinear dynamics of the flapping was investigated using nonlinear time series method. The nonlinear dynamics is depicted in phase space and the correlation dimension of the attractors is determined. On the basis of observations made in this study, some conclusions on the existing models were drawn.

  14. Axially localized states in Taylor Couette flows

    NASA Astrophysics Data System (ADS)

    Lopez, Jose M.; Marques, Francisco

    2014-11-01

    We present numerical simulations of the flow in a Taylor Couette system with the inner cylinder rotating and aspect ratio Γ restricted to 0 . 86 <Γ/N < 0 . 95 , being N the number of Taylor vortices. For these values a complex experimental bifurcation scenario has been reported. The transition from wavy vortex flow (WVF) to a very low frequency mode VLF happens via an axisymmetric eigenfunction. The VLF plays an essential role in the dynamics, leading to chaos through a two-tori period-doubling route. This chaotic regime vanishes with further increase in Re and gives rise to a new flow regime ALS characterized by the existence of large jet oscillations localized in some pairs of vortices. The aim of this numerical study is to extend the available information on ALS by means of a detailed exploration of the parameter space in which it occurs. Frequency analysis from time series simultaneously recorded at several points of the domain has been applied to identify the different transitions taking place. The VLF occurs in a wide range of control parameters and its interaction with the axially localized states is crucial is most transitions, either between different ALS or to the chaotic regime. Spanish Ministry of Education and Science Grants (with FEDER funds) FIS2013-40880 and BES-2010-041542.

  15. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  16. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  17. Elliptic instability in a Rankine vortex with axial flow

    NASA Astrophysics Data System (ADS)

    Lacaze, Laurent; Birbaud, Anne-Laure; Le Dizès, Stéphane

    2005-01-01

    The elliptic instability of a Rankine vortex with axial flow subject to a weak strain field perpendicular to its axis is analyzed by asymptotic methods in the limit of small strain rate. General unstable modes associated with resonant Kelvin modes of arbitrary azimuthal wavenumbers are considered. Both the effects of axial flow and viscosity are analyzed in details.

  18. Initial Acute Animal Experiment Using a New Miniature Axial Flow Pump in Series With the Natural Heart.

    PubMed

    Okamoto, Eiji; Yano, Tetsuya; Shiraishi, Yasuyuki; Miura, Hidekazu; Yambe, Tomoyuki; Mitamura, Yoshinori

    2015-08-01

    We have advocated an axial flow blood pump called "valvo pump" that is implanted at the aortic valve position, and we have developed axial flow blood pumps to realize the concept of the valvo pump. The latest model of the axial flow blood pump mainly consists of a stator, a directly driven impeller, and a hydrodynamic bearing. The axial flow blood pump has a diameter of 33 mm and length of 74 mm, and the length of anatomical occupation is 33 mm. The axial flow blood pump is anastomosed to the aorta with polytetrafluoroethylene (PTFE) cuffs worn on the inflow and outflow ports. Dp-Q curves of the axial flow blood pump are flatter than those of ordinary axial flow pumps, and pump outflow of 5 L/min was obtained against a pressure difference of 50 mm Hg at a rotational speed of 9000 rpm in vitro. The axial flow blood pump was installed in a goat by anastomosing with the thoracic descending aorta using PTFE cuffs, and it was rotated at a rotational speed of 8000 rpm. Unlike in case of the ventricular assistance in parallel with the natural heart, pulsatilities of aortic pressure and aortic flow were preserved even when the pump was on, and mean aortic flow was increased by 1.5 L/min with increase in mean aortic pressure of 30 mm Hg. In conclusion, circulatory assistance in series with the natural heart using the axial flow blood pump was able to improve hemodynamic pulsatility, and it would contribute to improvement of end-organ circulation. . PMID:26234449

  19. Tissue blood flow mapping

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.

    1997-01-01

    The operating principles of Laser Doppler Perfusion Imaging (LDPI) for visualization of the tissue blood perfusion are explained. Using this emerging technology skin perfusion has been investigated in healthy volunteers and in patients with various conditions that affect skin blood flow. LDPI is anticipated to be particularly useful in evaluation of peripheral circulation in diabetics, as an objective tool in irritancy patch testing, assessment of burnt skin and visualization of spot-wise hyperperfusion in breast skin in association with carcinoma.

  20. Liquid rocket engine axial-flow turbopumps

    NASA Technical Reports Server (NTRS)

    Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)

    1978-01-01

    The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.

  1. CFD Simulation of Casing Treatment of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth

    2005-01-01

    A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. It is shown that the computational tool used predicts an increase in operating range of the rotor when casing grooves are present. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to uncover the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force . However in the presence of casing grooves the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous sheer force and thus leads to an increase in the stall margin of the rotor.

  2. Modeling blood flow heterogeneity.

    PubMed

    King, R B; Raymond, G M; Bassingthwaighte, J B

    1996-01-01

    It has been known for some time that regional blood flows within an organ are not uniform. Useful measures of heterogeneity of regional blood flows are the standard deviation and coefficient of variation or relative dispersion of the probability density function (PDF) of regional flows obtained from the regional concentrations of tracers that are deposited in proportion to blood flow. When a mathematical model is used to analyze dilution curves after tracer solute administration, for many solutes it is important to account for flow heterogeneity and the wide range of transit times through multiple pathways in parallel. Failure to do so leads to bias in the estimates of volumes of distribution and membrane conductances. Since in practice the number of paths used should be relatively small, the analysis is sensitive to the choice of the individual elements used to approximate the distribution of flows or transit times. Presented here is a method for modeling heterogeneous flow through an organ using a scheme that covers both the high flow and long transit time extremes of the flow distribution. With this method, numerical experiments are performed to determine the errors made in estimating parameters when flow heterogeneity is ignored, in both the absence and presence of noise. The magnitude of the errors in the estimates depends upon the system parameters, the amount of flow heterogeneity present, and whether the shape of the input function is known. In some cases, some parameters may be estimated to within 10% when heterogeneity is ignored (homogeneous model), but errors of 15-20% may result, even when the level of heterogeneity is modest. In repeated trials in the presence of 5% noise, the mean of the estimates was always closer to the true value with the heterogeneous model than when heterogeneity was ignored, but the distributions of the estimates from the homogeneous and heterogeneous models overlapped for some parameters when outflow dilution curves were

  3. Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Rusanov, Andrey; Rusanov, Roman; Lampart, Piotr

    2015-10-01

    The paper describes an algorithm for the design of axial and radial-axial type turbines. The algorithm is based on using mathematical models of various levels of complexity - from 1D to 3D. Flow path geometry is described by means of analytical methods of profiling using a limited number of parameters. 3D turbulent flow model is realised in the program complex IPMFlow, developed based on the earlier codes FlowER and FlowER-U. Examples of developed or modernized turbines for differentpurpose power machines are presented. They are: an expansion turbine, ORC turbine and cogeneration mediumpressure turbine.

  4. Internal flows and force matrices in axial flow inducers

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Abhijit

    1994-01-01

    Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid

  5. Echocardiographic Evaluation of the Jarvik 2000 Axial-Flow LVAD

    PubMed Central

    Stainback, Raymond F.; Croitoru, Mihai; Hernandez, Antonieta; Myers, Timothy J.; Wadia, Yasmin; Frazier, O. H.

    2005-01-01

    From April 2000 through September 2001, we studied 11 patients with the Jarvik 2000 —a left ventricular assist device with an axial-flow pump that provides continuous blood flow—to determine the echocardiographic characteristics. All patients underwent complete echocardiographic examination, including outflow-graft flow evaluation 24 hours after implantation and each month thereafter for the duration of support. Data were obtained at each pump setting (8,000–12,000 rpm in 1,000-rpm increments) and with the pump off. Left ventricular dimensions and shortening fraction and the duration of aortic valve systolic opening decreased as pump speed increased. Although the aortic valve remained closed at higher pump speeds, pump outflow-graft flow remained pulsatile, because of the systolic thrust of the assisted ventricle. Systolic dominance of phasic flow was more pronounced at lower pump speeds, due to normalization of the diseased heart's Starling response. When the aortic valve was closed continuously, echocardiographic contrast (indicating blood stasis) was noted in the aortic root. Because of the pump outflow graft's proximity to the chest wall, device output could be measured independently of cardiac contributions. Mean peak outflow-graft flow velocities were 0.75 ± 0.30 m/s (systolic) and 0.41 ± 0.13 m/s (diastolic). When the pump was turned off briefly, there was minimal regurgitation through the device into the left ventricle. This 1st echocardiographic heart function analysis of the Jarvik 2000 confirms that the device unloads the ventricle and increases cardiac output. Cardiac responses to device-speed changes can be evaluated readily with echocardiography in the early and late postoperative period. PMID:16392203

  6. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  7. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.

    2016-05-01

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.

  8. Stability of a helical vortex tube with axial flow

    NASA Astrophysics Data System (ADS)

    Hattori, Yuji; Fukumoto, Yasuhide

    2011-11-01

    The stability of a helical vortex tube with axial flow is studied analytically. The base flow is obtained by solving the Euler equation perturbatively assuming small ratio of core to curvature radius, which is denoted by ɛ, and Rankine vortex with uniform axial flow at the leading order. We apply both local and modal stability analysis. By local stability analysis we show that the flow is subject to not only curvature instability but also Coriolis instability, both having the same resonance condition. The unstable growth rate is O(ɛ) and given by the magnitude of a sum of the complex numbers corresponding to the two instabilities. Combined effects of the axial flow and the torsion of the helical vortex tube appear as O(ɛ2) modification. These results are confirmed by the modal stability analysis.

  9. Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels.

    PubMed

    McHedlishvili, G; Maeda, N

    2001-02-01

    The review article deals with phenomena of the blood flow structure (structuring) in narrow microvessels-capillaries and the adjacent arterioles and venules. It is particularly focused on the flow behavior of red blood cells (RBCs), namely, on their specific arrangements of mutual interaction while forming definite patterns of self-organized microvascular flow. The principal features of the blood flow structure in microvessels, including capillaries, include axial RBC flow and parietal plasma layer, velocity profile in larger microvessels, plug (or bolus) flow in narrow capillaries, and deformation and specific behavior of the RBCs in the flow. The actual blood flow structuring in microvessels seems to be a most significant factor in the development of pathological conditions, including arterial hypertension, brain and cardiac infarctions, inflammation, and many others. The blood flow structuring might become a basic concept in determining the blood rheological properties and disorders in the narrow microvessels. No solid theoretical (biorheological) basis of the blood flow structuring in microvessel has been found, but in the future it might become a foundation for a better understanding of the mechanisms of these properties under normal and pathological conditions in the narrowest microvessels 5 to 25 microm large. It is also a topic for further biorheological research directed to find the background of actual physiopathological phenomena in the microcirculation. PMID:11281993

  10. Stall in axial flow aero engine compressors

    NASA Astrophysics Data System (ADS)

    Freeman, Christopher J.

    The inception of stall in an aeroengine compressor over a range of speeds and the post stall behavior are described. Reference is made to the varying matching and system response as the speed is increased and the effects demonstrated on a single shaft gas turbine. In particular, the following are detailed: surge and stall in axial compressors, compressor matching, low speed stalls, mid speed stalls, stalls ending in rotating stalls, high speed surges, contour plots of stage 1, 4, and 7 pressures, and compressor behavior during surge.

  11. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  12. Measurements of inlet flow distortions in an axial flow fan (6 and 9 blade rotor)

    NASA Technical Reports Server (NTRS)

    Barr, L. C.

    1978-01-01

    A large quantity of experimental data on inlet flow distortions in an axial flow fan were obtained. The purpose of the study was to determine the effects of design and operating variables and the type of distortion on the response of an axial flow turbomachinery rotor. Included are background information and overall trends observed in distortion attenuation and unsteady total pressure losses.

  13. Transonic airfoil and axial flow rotary machine

    SciTech Connect

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  14. A survey of unclassified axial-flow-compressor literature

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G

    1955-01-01

    A survey of unclassified axial-flow-compressor literature is presented in the form of brief reviews of the methods, results, and conclusions of selected reports. The reports are organized into several main categories with subdivisions, and frequent references are made within the individual reviews to pertinent material elsewhere in the survey.

  15. A general representation for axial-flow fans and turbines

    NASA Technical Reports Server (NTRS)

    Perl, W; Tucker, M

    1945-01-01

    A general representation of fan and turbine arrangements on a single classification chart is presented that is made possible by a particular definition of the stage of an axial-flow fan or turbine. Several unconventional fan and turbine arrangements are indicated and the applications of these arrangements are discussed.

  16. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  17. Rotor wake characteristics of a transonic axial flow fan

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.

    1985-01-01

    State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.

  18. Free-Surface Induced Axial Flows in Oscillating Cylinder Wakes

    NASA Astrophysics Data System (ADS)

    Voorhees, A. V.; Wei, T.

    1999-11-01

    The problem to be discussed is that of the effect of a free surface on flow along the cores of Karman vortices shed from an inverted pendulum type cylinder. The motivation for this research was to determine the nature and extent of free surface effects in flow induced vibrations of structures aligned perpendicular to and penetrating a free surface. The 2.54 cm diameter cylinder studied had a low mass ratio and was attached at the bottom end by a leaf spring; the free, upper end protruded through the free surface of a large water tunnel. It has been observed that the vortex induced oscillations of the cylinder resulted in very strong axial flows upward toward the free surface, even for small amplitude motions. Approaching the free surface, however, there was an equal likelyhood that the axial flows would be directed down away from the surface. The connection between the direction of axial flow and the cylinder motion will be described using single and two view flow visualization techniques.

  19. Computational analysis of an axial flow pediatric ventricular assist device.

    PubMed

    Throckmorton, Amy L; Untaroiu, Alexandrina; Allaire, Paul E; Wood, Houston G; Matherne, Gaynell Paul; Lim, David Scott; Peeler, Ben B; Olsen, Don B

    2004-10-01

    Longer-term (>2 weeks) mechanical circulatory support will provide an improved quality of life for thousands of pediatric cardiac failure patients per year in the United States. These pediatric patients suffer from severe congenital or acquired heart disease complicated by congestive heart failure. There are currently very few mechanical circulatory support systems available in the United States as viable options for this population. For that reason, we have designed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. As a geometrically similar, smaller scaled version of our axial flow pump for the adult population, the PVAD has a design point of 1.5 L/min at 65 mm Hg to meet the full physiologic needs of pediatric patients. Conventional axial pump design equations and a nondimensional scaling technique were used to estimate the PVAD's initial dimensions, which allowed for the creation of computational models for performance analysis. A computational fluid dynamic analysis of the axial flow PVAD, which measures approximately 65 mm in length by 35 mm in diameter, shows that the pump will produce 1.5 L/min at 65 mm Hg for 8000 rpm. Fluid forces (approximately 1 N) were also determined for the suspension and motor design, and scalar stress values remained below 350 Pa with maximum particle residence times of approximately 0.08 milliseconds in the pump. This initial design demonstrated acceptable performance, thereby encouraging prototype manufacturing for experimental validation. PMID:15384993

  20. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  1. Brain Function and Blood Flow

    ERIC Educational Resources Information Center

    Lassen, Niels A.; And Others

    1978-01-01

    Discusses the use of radioactive isotopes to graphically represent changes in the amount of blood flowing in areas of the human cerebral cortex, reflecting changes in the activity of those areas. Numerous illustrations are included. (Author/MA)

  2. The new performance calculation method of fouled axial flow compressor.

    PubMed

    Yang, Huadong; Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  3. The New Performance Calculation Method of Fouled Axial Flow Compressor

    PubMed Central

    Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  4. Analysis of vortical flow with axial swirl and toroidal circulation

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sukalyan

    2006-11-01

    Vortical flows with an axial swirl and a toroidal circulation can be observed in a wide range of fluid mechanical phenomena such as flow around rotary machines or natural vortices like tornadoes and hurricanes. These flows can be described by a general scalar equation if incompressible fluid and negligible viscous dissipation are assumed. We consider one of the simpler cases of this general formulation where the involved equation has a resemblance with the governing equation of the hydrogen problem. As a result, we obtain a quantization relation similar to the expression of quantized energies in an hydrogen atom. We solve the equation for two systems. First, we consider three- dimensional vortices confined between two parallel walls. Our examples include flows between two infinite plates, inside and outside of a vertical cylinder bounded at the ends by walls, and in an axially confined annular region. Then we also use our formulation to compute highly chaotic velocity fields with three-dimensional vortical structures which qualitatively mimic the features of physical flows. Hence, these solutions may be used in modeling of complicated flow systems.

  5. Choroidal Blood Flow Change in Eyes with High Myopia

    PubMed Central

    Yang, Young Seong

    2015-01-01

    Purpose To evaluate choroidal blood flow changes in eyes with high myopia according to the pulsatile components of ocular blood flow analysis. Methods A total of 104 subjects (52 males and 52 females) were included in this study. One eye of each participant was randomly selected and assigned to one of four refractive groups, designated as, hyperopes (n = 20; refractive error, ≥+1.00 diopter [D]), emmetropes (n = 28; refractive error, ±0.75 D), lower myopes (n = 33; refractive error, -1.00 to -4.75 D), and high myopes (n = 23; refractive error, ≤-5.00 D). Components of pulse amplitude (OBFa), pulse volume (OBFv), pulse rate (OBFr), and pulsatile ocular blood flow (POBF) were analyzed using a blood flow analyzer. Intraocular pressure and axial length were measured. Results Pulsatile components of OBFa, OBFv, and POBF showed positive correlations with refractive error and showed negative correlations with axial length (r = 0.729, r = 0.772, r = 0.781, respectively, all p < 0.001; r = -0.727, r = -0.762, r = -0.771, respectively, all p < 0.001). The correlations of refractive error and axial length with OBFr were irrelevant (r = -0.157, p = 0.113; r = 0.123, p = 0.213). High myopes showed significantly lower OBFa, OBFv, and POBF than the other groups (all p < 0.001). Conclusions Axial length changes in high myopes potentially influence choroidal blood flow, assuming the changes are caused by narrowing of the choroidal vessel diameter and increasing rigidity of the choroidal vessel wall. These finding explains the influence of axial length on OBFa, OBFv, and POBF, but not on OBFr. Thus, changes in axial length and the possible influence of these changes on the physical properties of choroidal vessels is the mechanism believed to be responsible for putting high myopes at risk for ocular vascular diseases. PMID:26457036

  6. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    PubMed

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  7. Blade selection for a modern axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Wright, L. C.

    1974-01-01

    The procedures leading to successful design of an axial flow compressor are discussed. The three related approaches to cascade selection are: (1) experimental approach which relies on the use of experimental results from identical cascades to satisfy the velocity diagrams calculated, (2) a purely analytical procedure whereby blade shapes are calculated from the theoretical cascade and viscous flow equations, and (3) a semiempirical procedure which used experimental data together with the theoretically derived functional relations to relate the cascade parameters. Diagrams of typical transonic blade sections with uncambered leading edges are presented.

  8. Chaotic advection in blood flow.

    PubMed

    Schelin, A B; Károlyi, Gy; de Moura, A P S; Booth, N A; Grebogi, C

    2009-07-01

    In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation. PMID:19658798

  9. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L. PMID:20883393

  10. Dynamics of a flexible cylinder in subsonic axial flow

    SciTech Connect

    Paidoussis, M.P.; Ostoja-Starzewski, M.

    1981-11-01

    This paper examines the dynamics of a flexible cylinder with pinned ends immersed in axial subsonic flow, either bounded or unconfined. The problem proves to be surprisingly resistant to exact solution, as compared to the incompressible flow case, because of difficulties in determining precisely the inviscid aerodynamic forces. This paper presents a number of distinct formulations of these forces, involving different approximations: (1) a slender-body approximation; (2) an approximate three-dimensional formulation where, in the determination of the aerodynamic forces, the axial shape is prescribed in advance; and (3) an exact integral formulation of the generalized aerodynamic forces. In each case, Galerkin-type solutions yield the system eigenfrequencies which describe the dynamical behavior of the system. It is found that for sufficiently high flow velocities, divergence and flutter are possible. The different methods yield similar, but not quantitatively identical results. Interestingly, dependence of the dynamical characteristics on Mach number is shown to be weak for slender cylinders; for nonslender ones, it is stronger. Finally, a brief discussion of wave propagation in an unconstrained cylinder indicates the existence of a cutoff flow velocity for backward propagating waves, followed by wave amplification at higher flow, which is closely related to loss of stability in the constrained system.

  11. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  12. Secondary flows in axial turbines--a review.

    PubMed

    Langston, L S

    2001-05-01

    An important problem that arises in the design and the performance of axial flow turbines is the understanding, analysis, prediction and control of secondary flows. Sieverding has given a review of secondary flow literature, covering up to 1985. In this paper a brief review of pre-1985 work is given, and then a survey of open literature secondary flow investigations since the Sieverding review is presented. Most of the studies reviewed deal with plane or annular cascade flows. Tip clearance effects are not covered. The basic secondary flow picture for a turbine cascade, as measured and verified by a number of investigators is described. Recent work that shows refined secondary flow vortex structures is examined. A flow parameter based on inlet boundary layer properties used to predict horseshoe vortex swirl is presented. Work on secondary flow loss reduction, involving airfoil geometry, endwall fences and endwall contouring is briefly reviewed. A new leading edge bulb geometry that has demonstrated impressive loss reduction is considered. It is concluded that accurate routine prediction of secondary flow losses has not yet been achieved, and must await either a better turbulence model or more experiments to reveal new endwall loss production mechanisms. Lastly, loss is examined from the standpoint of entropy generation. PMID:11460621

  13. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H

    2013-03-01

    Recently, continuous-flow ventricular assist devices (CF-VADs) have supplanted older, pulsatile-flow pumps, for treating patients with advanced heart failure. Despite the excellent results of the newer generation devices, the effects of long-term loss of pulsatility remain unknown. The aim of this study is to compare the ability of both axial and centrifugal continuous-flow pumps to intrinsically modify pulsatility when placed under physiologically diverse conditions. Four VADs, two axial- and two centrifugal-flow, were evaluated on a mock circulatory flow system. Each VAD was operated at a constant impeller speed over three hypothetical cardiac conditions: normo-tensive, hypertensive, and hypotensive. Pulsatility index (PI) was compared for each device under each condition. Centrifugal-flow devices had a higher PI than that of axial-flow pumps. Under normo-tension, flow PI was 0.98 ± 0.03 and 1.50 ± 0.02 for the axial and centrifugal groups, respectively (p < 0.01). Under hypertension, flow PI was 1.90 ± 0.16 and 4.21 ± 0.29 for the axial and centrifugal pumps, respectively (p = 0.01). Under hypotension, PI was 0.73 ± 0.02 and 0.78 ± 0.02 for the axial and centrifugal groups, respectively (p = 0.13). All tested CF-VADs were capable of maintaining some pulsatile-flow when connected in parallel with our mock ventricle. We conclude that centrifugal-flow devices outperform the axial pumps from the basis of PI under tested conditions. PMID:24231821

  14. End wall flow characteristics and overall performance of an axial flow compressor stage

    NASA Technical Reports Server (NTRS)

    Sitaram, N.; Lakshminarayana, B.

    1983-01-01

    This review indicates the possible future directions for research on endwall flows in axial flow compressors. Theoretical investigations on the rotor blade endwall flows in axial flow compressors reported here include the secondary flow calculation and the development of the momentum integral equations for the prediction of the annulus wall boundary layer. The equations for secondary vorticity at the rotor exit are solved analytically. The solution includes the effects of rotation and the viscosity. The momentum integral equations derived include the effect of the blade boundary layers. The axial flow compressor facility of the Department of Aerospace Engineering at The Pennsylvania State University, which is used for the experimental investigations of the endwall flows, is described in some detail. The overall performance and other preliminary experimental results are presented. Extensive radial flow surveys are carried out at the design and various off design conditions. These are presented and interpreted in this report. The following experimental investigations of the blade endwall flows are carried out. (1) Rotor blade endwall flows: The following measurements are carried out at four flow coefficients. (a) The rotor blade static pressures at various axial and radial stations (with special emphasis near the blade tips). (b) The hub wall static pressures inside the rotor blade passage at various axial and tangential stations. (2) IGV endwall flows: The following measurements are carried out at the design flow coefficient. (a) The boundary layer profiles at various axial and tangential stations inside the blade passage and at the blade exit. (b) Casing static pressures and limiting streamline angles inside the blade passage.

  15. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  16. Stall inception and development in an axial flow aeroengine

    NASA Astrophysics Data System (ADS)

    Wilson, A. G.; Freeman, C.

    1994-04-01

    This paper describes the phenomenon of stall and surge in an axial flow aeroengine using fast response static pressure measurements from the compressor of a Rolls-Royce VIPER engine. It details the growth of flow instability at various speeds, from a small zone of stalled fluid involving only a few blades into the violent surge motion of the entire machine. Various observations from earlier theoretical and compressor rig results are confirmed by these new engine measurements. The main findings are as follows: (1) The point of stall inception moves rearward as engine speed increases, and is shown to be simply related to the axial matching of the compressor. (2) The final unstable operation of the machine can be divided into rotating stall at low speed and surge or multiple surge at high speed. (3) The inception process is independent of whether the final unstable operation is rotating stall or multiple surge. (4) Stall/surge always starts as a circumferentially small flow disturbance, rotating around the annulus at some fraction of rotor speed.

  17. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  18. Effects of non Newtonian spiral blood flow through arterial stenosis

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  19. Regulation of pulpal blood flow

    SciTech Connect

    Kim, S.

    1985-04-01

    The regulation of blood flow of the dental pulp was investigated in dogs and rats anesthetized with sodium pentobarbital. Pulpal blood flow was altered by variations of local and systemic hemodynamics. Macrocirculatory blood flow (ml/min/100 g) in the dental pulp was measured with both the /sup 133/Xe washout and the 15-microns radioisotope-labeled microsphere injection methods on the canine teeth of dogs, to provide a comparison of the two methods in the same tooth. Microcirculatory studies were conducted in the rat incisor tooth with microscopic determination of the vascular pattern, RBC velocity, and intravascular volumetric flow distribution. Pulpal resistance vessels have alpha- and beta-adrenergic receptors. Activation of alpha-receptors by intra-arterial injection of norepinephrine (NE) caused both a reduction in macrocirculatory Qp in dogs and decreases in arteriolar and venular diameters and intravascular volumetric flow (Qi) in rats. These responses were blocked by the alpha-antagonist PBZ. Activation of beta-receptors by intra-arterial injection of isoproterenal (ISO) caused a paradoxical reduction of Qp in dogs. In rats, ISO caused a transient increase in arteriolar Qi followed by a flow reduction; arteriolar dilation was accompanied by venular constriction. These macrocirculatory and microcirculatory responses to ISO were blocked by the alpha-antagonist propranolol.

  20. Investigation of unsteady flow in axial turbine stage

    NASA Astrophysics Data System (ADS)

    Jelínek, Tomáš; Němec, Martin

    2012-04-01

    The never ending process to increase the efficiency of turbine stages introduced an idea to create an axial turbine stage test rig as part of closed loop transonic wind tunnel at Vyzkumny a zkusebni letecky ustav (VZLU). Studying of unsteady flow field behaviours in turbine stages is nowadays essential in the development process. Therefore, the test rig was designed with focusing on possibility of detailed studying of unsteady flow fields in turbine stages. New methodologies and new instrumentations were developed at VZLU and successfully integrated to gain valuable information from experiments with turbine stages. Two different turbine stages were tested during the facility introduction process. The measurement of these two models demonstrated how flexible the test rig is. One of them was an enlarged model of small gas turbine stage. The other was scaled-down model of stage of intermediate-pressure steam turbine. The external characteristics of both models were acquired during experiments as well as the detailed unsteady flow field measurement. Turbine stages were tested in various regimes in order to check the capabilities of the facility, methodology and instrumentation together. The paper presents results of unsteady flow field investigation in the enlarged turbine stage with unshrouded rotor. The interaction of structures developed in a stator with the rotor flow field is depicted and the influence of turbine load on evolution of secondary flows in rotor is analysed.

  1. Buffeting of a slender circular beam in axial turbulent flows

    SciTech Connect

    Lin, W.H.

    1984-05-01

    This paper deals with the buffeting of a slender, circular, flexible beam-rod in an axial turbulent flow. The principal excitation mechanisms are the turbulent wall pressure fluctuations and the motion-dependent (self-excited) aerodynamic force caused by the beam motion. On the assumption that the turbulent wall pressure fluctuations are independent of the beam motion, a linear forced-vibration model is used to determine the buffeting response of the beam and to investigate the length scale effects of turbulences on the beam buffeting. Transverse buffeting of the beam in an axial turbulent flow depends largely on the ratio of the longitudinal scale of the turbulences to the bending wavelength of the beam and on the ratio of the circumferential scale of the turbulences to the radius of the beam. The spectra and the mean square values of the buffeting displacement of the beam become vanishingly small, both when either of these ratios is very small (<10/sup -2/) and when the latter is very large (>10/sup 2/). When the former ratio is very large the first mode of the buffeting is dominant and other modes are less apparent, especially the high-frequency modes. 27 references, 3 figures.

  2. Interaction of Two Flapping Flags in Axial Flow

    NASA Astrophysics Data System (ADS)

    Gunter, Amy-Lee; Fayed, Mohamed; Abderrahmane, Hamid Ait; Paidoussis, Michael P.; Ng, Hoi Dick

    2010-11-01

    The flapping of two parallel flags in axial low turbulence flow is investigated experimentally inside a small scale wind tunnel test section. The variables of the problem are the size and flexural rigidity of the flags, and the distance that separates the two flags. The flow velocity represents the control parameter that governs the coupling and flapping mode of the flags. Two flapping modes, in-phase and out-of-phase modes, were observed in the experiment. Image processing technique was used and the time series of a given point on the flag edge was analyzed. The stability condition of the flags was obtained and compared to the recent theoretical models. The dynamics of the coupling between the two flags is also studied.

  3. Investigation of an Experimental Supersonic Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Erwin, John R.; Wright, Linwood C.; Kantrowitz, Arthur

    1947-01-01

    An investigation is in progress at the Langley Laboratory of the NACA to explore the possibilities of axial-flow compressors operating with supersonic velocities relative to the blade rows. The first phase of this investigation, a study of supersonic diffusers, has been reported. The second phase, an analysis of supersonic compressors, has also been reported. Preliminary calculations have shown that very high pressure ratios across a stage, together with somewhat increased mass flows, are possible with compressors which decelerate air through the speed of sound in their rotor blading. These performance characteristics are desirable in compressors for aircraft jet propulsion units, gas turbines, or superchargers. The third phase, presented here, is a preliminary experimental investigation of a supersonic compressor designed to produce a high pressure ratio in a single stage.

  4. Aerodynamic Design of Axial-flow Compressors. Volume III

    NASA Technical Reports Server (NTRS)

    Johnson, Irving A; Bullock, Robert O; Graham, Robert W; Costilow, Eleanor L; Huppert, Merle C; Benser, William A; Herzig, Howard Z; Hansen, Arthur G; Jackson, Robert J; Yohner, Peggy L; Dugan, Ames F , Jr

    1956-01-01

    Chapters XI to XIII concern the unsteady compressor operation arising when compressor blade elements stall. The fields of compressor stall and surge are reviewed in Chapters XI and XII, respectively. The part-speed operating problem in high-pressure-ratio multistage axial-flow compressors is analyzed in Chapter XIII. Chapter XIV summarizes design methods and theories that extend beyond the simplified two-dimensional approach used previously in the report. Chapter XV extends this three-dimensional treatment by summarizing the literature on secondary flows and boundary layer effects. Charts for determining the effects of errors in design parameters and experimental measurements on compressor performance are given in Chapters XVI. Chapter XVII reviews existing literature on compressor and turbine matching techniques.

  5. Effects of fluid viscoelasticity on the performance of an axial blood pump model.

    PubMed

    Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan

    2012-01-01

    An aqueous Xanthan gum solution (XGS) was used as blood analog fluid to explore the influence of fluid viscoelasticity on the performance of an axial blood pump model. For comparison, a 39 wt% Newtonian aqueous glycerin solution (GS), the common fluid in blood pump tests, was also used as a working fluid. The experimental results showed that a higher head curve was obtained using XGS in the pump than using GS. The heads of the XGS that were computed using the viscoelastic turbulence model agreed well with the measured data. In contrast, the standard k-ε turbulence model failed to provide satisfactory predictions for the XGS. The computational results revealed that in most parts of the pump model flow fields, the Reynolds shear stress values and turbulent dissipation rates of the XGS were all lower than those of the GS. The hemolysis index of the pump model using the XGS was calculated to be only one-third of that using the GS. PMID:22210649

  6. Dynamics of axially localized states in Taylor-Couette flows.

    PubMed

    Lopez, Jose M; Marques, Francisco

    2015-05-01

    We present numerical simulations of the flow confined in a wide gap Taylor-Couette system, with a rotating inner cylinder and variable length-to-gap aspect ratio. A complex experimental bifurcation scenario differing from the classical Ruelle-Takens route to chaos has been experimentally reported in this geometry. The wavy vortex flow becomes quasiperiodic due to an axisymmetric very low frequency mode. This mode plays a key role in the dynamics of the system, leading to the occurrence of chaos via a period-doubling scenario. Further increasing the rotation of the inner cylinder results in the appearance of a new flow pattern which is characterized by large amplitude oscillations localized in some of the vortex pairs. The purpose of this paper is to study numerically the dynamics of these axially localized states, paying special attention to the transition to chaos. Frequency analysis from time series simultaneously recorded at several points has been applied in order to identify the flow transitions taking place. It has been found that the very low frequency mode is essential to explain the behavior associated with the different transitions towards chaos including localized states. PMID:26066253

  7. Regenerative growth due to axial flow induced by vortex-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Stout, Eric; Hussain, Fazle

    2013-11-01

    Direct numerical simulations of a vortex column embedded in fine scale homogeneous, isotropic turbulence reveals an inviscid mechanism for induction of axial flow on the column. Vortex threads, produced outside the column during vortex-turbulence interaction, are shown to drive the mechanism of axial flow generation. Oppositely oriented threads radially separate by self-induction, hence causing net axial flow. At computationally accessible Reynolds numbers (Re ≡ vortex circulation/viscosity = 10 000), the axial flow due to a pair of oppositely signed vortex threads outside the column increases both with Re and time. At high Re, the axial flow can increase sufficiently to render the vortex column unstable by the well-known q criterion. The vorticity field reveals that axial flow is another mechanism, perhaps more dominant than the parent-offspring hairpin vortex scenario (Hussain, Pradeep & Stout JFM 2011), of regenerative energy growth - likely to be important for implementing breakup of aircraft trailing vortices.

  8. Nonlinear Interactions between Slender Structures and Axial Flow

    NASA Astrophysics Data System (ADS)

    Du, Li

    2015-03-01

    For decades, dynamic behaviors of a slender structure with axial flow have been extensively studied. However, the governing equation based on expansions of small quantities is complicatedly-expressed and can be inappropriate as amplitude becomes considerably large. In this research, we are dedicated to finding an approach to study the nonlinear dynamics of a fluid-conveying slender strcture with arbitrary amplitude. By introducing the Intrinsic Coordinate, we find a concise way to describe the configuration of the system. Differential relations of such coordinate are studied and the rigorous nonlinear equation of motion is derived. Then rather than small-deflection approximation, linear dynamics are studied using Argand Diagram under a weaker condition named low-varying approximation. Nonlinear properties including Hopf bifurcation, limit-cycle motion and vibration frequencies are studied theoretically and experimentally.

  9. Time-dependent transonic flow solutions for axial turbomachinery

    NASA Technical Reports Server (NTRS)

    Erdos, J.; Alzner, E.; Kalben, P.; Mcnally, W.; Slutsky, S.

    1975-01-01

    Three-dimensional unsteady transonic flow through an axial turbomachine stage is described in terms of a pair of two-dimensional formulations pertaining to orthogonal surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting systems of nonlinear, inviscid, compressible equations of motion are solved by an explicit finite-difference technique. The blade-to-blade program includes the periodic interaction between rotor and stator blade rows. Treatment of the boundary conditions and of the blade slipstream motion by a characteristic type procedure is discussed in detail. Harmonic analysis of the acoustic far field produced by the blade row interaction, including an arbitrary initial transient, is outlined. Results from the blade-to-blade program are compared with experimental measurements of the rotating pressure field at the tip of a high-speed fan. The hub-to-casing program determines circumferentially averaged flow properties on a meridional plane. Blade row interactions are neglected in this formulation, but the force distributions over the entire blade surface for both the rotor and stator are obtained. Results from the hub-to-casing program are compared with a relaxation method solution for a subsonic rotor. Results are also presented for a quiet fan stage which includes transonic flow in both the rotor and stator and a normal shock in the stator.

  10. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.

  11. Ocular Blood Flow Autoregulation Mechanisms and Methods

    PubMed Central

    Luo, Xue; Shen, Yu-meng; Jiang, Meng-nan; Lou, Xiang-feng; Shen, Yin

    2015-01-01

    The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described. PMID:26576295

  12. Left ventricular volume unloading with axial and centrifugal rotary blood pumps.

    PubMed

    Giridharan, Guruprasad A; Koenig, Steven C; Soucy, Kevin G; Choi, Young; Pirbodaghi, Tohid; Bartoli, Carlo R; Monreal, Gretel; Sobieski, Michael A; Schumer, Erin; Cheng, Allen; Slaughter, Mark S

    2015-01-01

    Axial (AX) and centrifugal (CFG) rotary blood pumps have gained clinical acceptance for the treatment of advanced heart failure. Differences between AX and CFG designs and mechanism of blood flow delivery may offer clinical advantages. In this study, pump characteristics, and acute physiologic responses during support with AX (HeartMate II) and CFG (HVAD) left ventricular assist devices (LVAD) were investigated in mock loop and chronic ischemic heart failure bovine models. In the mock loop model, pump performance was characterized over a range of pump speeds (HeartMate II: 7,000-11,000 rpm, HVAD: 2,000-3,600 rpm) and fluid viscosities (2.7 cP, 3.2 cP, 3.7 cP). In the ischemic heart failure bovine model, hemodynamics, echocardiography, and end-organ perfusion were investigated. CFG LVAD had a flatter HQ curve, required less power, and had a more linear flow estimation relation than AX LVAD. The flow estimation error for the AX LVAD (±0.9 L/min at 2.7 cP, ±0.7 L/min at 3.2 cP, ±0.8 L/min at 3.7 cP) was higher than the CFG LVAD (±0.5 L/min at 2.7 cP, ±0.2 L/min at 3.2 cP, ±0.5 L/min at 3.7 cP). No differences in acute hemodynamics, echocardiography, or end-organ perfusion between AX and CFG LVAD over a wide range of support were statistically discernible. These findings suggest no pronounced acute differences in LV volume unloading between AX and CFG LVAD. PMID:25635936

  13. Effect of flow oscillations on axial energy transport in a porous material

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1987-01-01

    The effects of flow oscillations on axial energy diffusion in a porous medium, in which the flow is continuously disrupted by the irregularities of the porous structure, are analyzed. The formulation employs an internal heat transfer coefficient that couples the fluid and solid temperatures. The final relationship shows that the axial energy transport per unit cross-sectional area and time is directly proportional to the axial temperature gradient and the square of the maximum fluid displacement.

  14. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124

  15. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  16. In vivo experimental testing of the FW axial blood pump for left ventricular support in Fu Wai Hospital.

    PubMed

    Zhang, Yan; Hu, Sheng-Shou; Zhou, Jian-Ye; Sun, Han-Song; Tang, Yue; Zhang, Hao; Zheng, Zhe; Li, Guo-Rong; Zhu, Xiao-Dong; Gui, Xin-Min

    2009-01-01

    A fully implantable, axial flow blood pump has been developed in Fu Wai Hospital aiming for clinical use. This ventricular assist device (VAD), which was developed after numerous CFD analyses for the flow characteristics of the pump, is 58.5-mm long, 30-mm wide (including DC motor), and weighs 240 g. The pump can deliver 5 L/min for pressures of 100 mm Hg over 8,000 rpm. In this study, short-term hemocompatibility effects of the axial left ventricular assist device (LVAD) (FW blood pump) were evaluated in four healthy sheep. The device was implanted into the left ventricular apex of beating hearts. The outflow graft of each device was anastomosed to the descending aorta. The hemolysis, which was evaluated in vivo by free hemoglobin value, was below 30 mg/dL. Evaluation of serum biochemical data showed that implantation of the FW blood pump in sheep with normal hearts did not impair end organ function. Gross and microscopic sections of kidney, liver, and lung revealed no evidence of microemboli. Performance of the pump in vivo was considered sufficient for a LVAD, although further design improvement is necessary in terms of hemolysis and antithrombosis to improve biocompatibility of the pump. PMID:19092667

  17. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  18. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  19. Development of the Baylor/NASA axial flow ventricular assist device: in vitro performance and systematic hemolysis test results.

    PubMed

    Mizuguchi, K; Damm, G A; Bozeman, R J; Akkerman, J W; Aber, G S; Svejkovsky, P A; Bacak, J W; Orime, Y; Takatani, S; Nosé, Y

    1994-01-01

    Our newly developed axial flow pump consists of a flow tube, an internal rotating impeller, and a fixed flow stator (we call the stator) behind the impeller. This pump produces a flow of 3 to 8 L/min against 50 to 150 mm Hg pressure difference, respectively, in the range of 10,000 to 16,000 rpm. An axial flow pump that will be used as a ventricular assist device (VAD) has to have low hemolytic and good antithrombogenic characteristics. This paper will show how to decrease the hemolytic properties of this axial flow pump systematically using a test matrix. The test variables evaluated were impeller blade tip geometry, impeller flow tube clearance (radial clearance), impeller stator clearance (axial clearance), impeller blade number, stator blade number, and impeller length. All in vitro hemolysis tests were performed at 5.0 L/min against 100 mm Hg pressure difference using a total of 83 bags of fresh bovine blood. The results were as follows: the impeller blade tip geometry did not significantly effect hemolysis, a 0.005-inch and a 0.009-inch radial clearance were significantly (p < 0.01 or 0.001) less hemolytic than the other clearances, a 0.075-inch axial clearance was significantly (p < 0.05) more hemolytic than the other clearances, two- and six-bladed impellers were significantly (p < 0.01 and 0.02, respectively) less hemolytic than a four-bladed impeller, a five-bladed stator was significantly (p < 0.05 or 0.01) less hemolytic than the other stators, and the impeller length did not make a significant difference. Currently, the best index of hemolysis is 0.031 +/- 0.018 g/100 L, and using parameters from these results, implantable devices are being fabricated. PMID:8141655

  20. Mini hemoreliable axial flow LVAD with magnetic bearings: part 1: historical overview and concept advantages.

    PubMed

    Goldowsky, Michael

    2002-01-01

    Intec has been developing an ultra-miniature axial flow left ventricular assist device (LVAD) turbo pump that incorporates non-contacting magnetic bearings specifically designed to eliminate thrombus. The patent pending pump is similar in size to the Jarvik 2000, being 1.0 inch in diameter and having a volume of 25cc. This paper provides two decades of historical background regarding blood pumps and discusses new advances made possible by our contactless design. Design details are left for parts two and three. This LVAD is presently the smallest magnetically suspended turbo pump. It was made possible by use of new 1/2-inch diameter fringing ring magnetic bearings. These axial field bearings are 10 times smaller than equal capacity radial field conventional magnetic bearings currently in development in turbo pumps. Our LVAD is physiologically controllable, without the use of invasive sensors, by directly measuring pump differential pressure with the magnetic bearings. This mechanism will allow attainment of cyclic, closed-loop control of impeller revolutions per minute to achieve a high degree of pressure pulsatility. Pulsatile flow is important in obtaining long-term hemodynamic reliability without thrombus being generated in either the pump or body. PMID:11814105

  1. Numerical simulation of tip clearance leakage vortex flow characteristic in axial flow pump

    NASA Astrophysics Data System (ADS)

    Shi, W. D.; Li, T. T.; Zhang, D. S.; Tian, F.; Zhang, G. J.

    2012-11-01

    Tip Leakage Vortex (TLV) in axial flow pump is mainly cased by the leakage flow entraining with the main stream of the blade suction side, which could interfere with the main flow field of the whole passage and the performance of pump. The low pressure area of vortex nuclear also cause the cavitation, which often induce the noise, vibration and cavitation erosion on the end wall of the impeller. The steady turbulent flow fields of the tip clearance region at different conditions with different blade tip clearance sizes (0.15 mm, 0.50 mm, 1.50 mm and 3.00mm) were simulated based on the ANSYS CFX software. The application of the different turbulent models were compared and analyzed in the whole passage flow simulation and choose a turbulent model which can adapt the tip leakage vortex flow in the axial flow pump. Furthermore, the flow fields under different tip clearance sizes were simulated, the relationship of the flow field structure and size of the tip clearance was analyzed. The numerical results show that: The SST k-ω turbulent model can predict the energy characteristics of the model pump accurately, adapt the shear flow of the adverse pressure gradient and predict the tip leakage flow very well; With the increase of the mass flow, the start position of the tip leakage vortex cores remove from near the leading edge to the trailing edge along the shroud of the blade, and the strength of the vortex cores decreased; The energy characteristic decrease with the increase of the tip clearance; The positive-slope point arrive earlier when the tip above the 1.5mm; With the increase of the tip clearance, the start position of the tip leakage vortex cores remove from near the leading edge to the trailing edge along the shroud of the blade, the pressure of the vortex cores decrease, the strength of the vortex entrainment is bigger; The leakage vortex within the tip clearance of the axial flow pump enhances as the blade tip clearance size is more than 0.50 mm, and the

  2. Cutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.; Staberg, B.

    1983-12-01

    The disappearance rate of /sup 133/Xe was studied in 20 patients with psoriasis vulgaris, using an epicutaneous labeling technique in involved skin lesions or normal-appearing skin of the proximal extensor site of the forearm. Control experiments were performed in 10 normal subjects. Calculations of the cutaneous blood flow (CBF) in psoriatic skin lesions were performed using a tissue-to-blood partition coefficient for /sup 133/Xe, lambda c,pso, of 1.2 ml/100 g/min. lambda c,pso was estimated after the relative content of water, lipids, and proteins had been analyzed in psoriatic skin biopsies of 6 patients with untreated psoriasis. The mean relative content of water was markedly reduced to 23.5 +/- 1.5% (SEM), and lipids and proteins were markedly increased to 2.5 +/- 0.7% and 74.0 +/- 2.2, respectively, compared to previously published data for normal skin (water 72.5%, lipids 1%, proteins 26.5%). Mean CBF in untreated psoriatic skin was 63.5 +/- 9.0 ml/100 g/min. This was significantly higher than the mean CBF in 10 normal subjects, 6.3 +/- 0.5 ml/100 g/min (p much less than 0.0001). Mean CBF in normal-appearing skin in patients with psoriasis was 11.0 +/- 1.3 ml/100 g/min. This was significantly higher than CBF in normal subjects (p less than 0.0002).

  3. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  4. Initial hydrodynamic study on a new intraaortic axial flow pump: Dynamic aortic valve.

    PubMed

    Li, G; Zhao, H; Hu, S; Zhu, X; Wu, Q; Ren, B; Ma, W

    2001-04-01

    Rotary blood pumps have been researched as implantable ventricular assist devices for years. To further reduce the complex of implanted axial pumps, the authors proposed a new concept of intraaortic axial pump, termed previously as "dynamic aortic valve (DAV)". Instead of being driven by an intraaortic micro-electric motor, it was powered by a magnetic field from outside of body. To ensure the perfusion of coronary artery, the axial flow pump is to be implanted in the position of aortic valve. It could serve as either a blood pump or a mechanical valve depending on the power input. This research tested the feasibility of the new concept in model study. A column, made from permanent magnet, is jointed to an impeller in a concentric way to form a "rotor-impeller". Supported by a hanging shaft cantilevered in the center of a rigid cage, the rotor-impeller can be turned by the magnetic field in the surrounding space. In the present prototype, the rotor is 8 mm in diameter and 15 mm in length, the impeller has 3 vanes with an outer diameter of 18 mm. The supporting cage is 22 mm in outer diameter and 20 mm in length. When tested, the DAV prototype is inserted into the tube of a mock circuit. The alternative magnetic field is produced by a rotating magnet placed side by side with the rotor-impeller at a distance of 30 mm. Once the alternative magnetic field is presented in the surrounding space, the DAV starts to turn, leading to a pressure difference and liquid flow in the tube. The flow rate or pressure difference is proportioned to rotary speed. At the maximal output of hydraulic power, the flow rate reached 5 L/min against an afterload of 100 mmHg. The maximal pressure difference generated by DAV at a rotation rate of 12600 r/min was 147 mmHg. The preliminary results demonstrated the feasibility of "DAV", further research on this concept is justifiable. PMID:18726438

  5. Cerebral blood flow changes during sodium-lactate-induced panic attacks

    SciTech Connect

    Stewart, R.S.; Devous, M.D. Sr.; Rush, A.J.; Lane, L.; Bonte, F.J.

    1988-04-01

    Dynamic single-photon emission computed axial tomography (CAT) with inhaled xenon-133 was used to measure regional cerebral blood flow in 10 drug-free patients with DSM-III-diagnosed panic disorder and in five normal control subjects. All subjects underwent regional cerebral blood flow studies while at rest or during normal saline infusion and during sodium lactate infusion. Six of the 10 patients and none of the control subjects experienced lactate-induced panic attacks. Lactate infusion markedly raised hemispheric blood flow levels in both control subjects and patients who did not panic. Patients who did panic experienced either a minimal increase or a decrease in hemispheric blood flow.

  6. Effects of shaft supporting structure on performance test of axial flow fan

    NASA Astrophysics Data System (ADS)

    Ma, R.; Liu, S. L.; Li, M. X.; Zheng, S. Y.

    2016-05-01

    CFD numerical simulation combined with theoretical analysis are used to research and discuss the obstructing effect, caused by the supporting structure of torsion meter and connecting shaft, on the outlet airflow of axial-flow fan in type-C ducted inlet device. The relations between axial flow fan's total pressure efficiency and flow rate are studied when the distance between supporting structure and outlet section is different, which may provide a reference for the proper design of the performance test device.

  7. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  8. Regional cerebral blood flow in schizophrenia

    SciTech Connect

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  9. Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles

    NASA Astrophysics Data System (ADS)

    Verkaik, A. C.; Beulen, B. W. A. M. M.; Bogaerds, A. C. B.; Rutten, M. C. M.; van de Vosse, F. N.

    2009-02-01

    To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform correct volume flow estimations of blood flow in arteries based on local blood velocity measurements. In clinical practice, estimates of flow are currently made using a straight-tube assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find a new volume flow estimation method. The study is restricted to steady flow, enabling the use of analytical methods. First, analytical approximation methods for steady flow in curved tubes at low Dean numbers (Dn) and low curvature ratios (δ) are investigated. From the results a novel volume flow estimation method, the cos θ-method, is derived. Simulations for curved tube flow in the physiological range (1≤Dn≤1000 and 0.01≤δ≤0.16) are performed with a computational fluid dynamics (CFD) model. The asymmetric axial velocity profiles of the analytical approximation methods are compared with the velocity profiles of the CFD model. Next, the cos θ-method is validated and compared with the currently used Poiseuille method by using the CFD results as input. Comparison of the axial velocity profiles of the CFD model with the approximations derived by Topakoglu [J. Math. Mech. 16, 1321 (1967)] and Siggers and Waters [Phys. Fluids 17, 077102 (2005)] shows that the derived velocity profiles agree very well for Dn≤50 and are fair for 50100), no analytical approximation method exists. In the position of the maximum axial velocity, a shift toward the inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position of the maximum velocity is located at the outer curve. When the position of

  10. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  11. Multifractality of cerebral blood flow

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz

    2003-02-01

    Scale invariance, the property relating time series across multiple scales, has provided a new perspective of physiological phenomena and their underlying control systems. The traditional “signal plus noise” paradigm of the engineer was first replaced with a model in which biological time series have a fractal structure in time (Fractal Physiology, Oxford University Press, Oxford, 1994). This new paradigm was subsequently shown to be overly restrictive when certain physiological signals were found to be characterized by more than one scaling parameter and therefore to belong to a class of more complex processes known as multifractals (Fractals, Plenum Press, New York, 1988). Here we demonstrate that in addition to heart rate (Nature 399 (1999) 461) and human gait (Phys. Rev. E, submitted for publication), the nonlinear control system for cerebral blood flow (CBF) (Phys. Rev. Lett., submitted for publication; Phys. Rev. E 59 (1999) 3492) is multifractal. We also find that this multifractality is greatly reduced for subjects with “serious” migraine and we present a simple model for the underlying control process to describe this effect.

  12. Vascular structure determines pulmonary blood flow distribution

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  13. Method of characteristics for three-dimensional axially symmetrical supersonic flows.

    NASA Technical Reports Server (NTRS)

    Sauer, R

    1947-01-01

    An approximation method for three-dimensional axially symmetrical supersonic flows is developed; it is based on the characteristics theory (represented partly graphically, partly analytically). Thereafter this method is applied to the construction of rotationally symmetrical nozzles. (author)

  14. Pancreatic islet blood flow and its measurement.

    PubMed

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  15. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  16. Impact of Endothelium Roughness on Blood Flow

    PubMed Central

    Park, Sangwoo; Intaglietta, Marcos; Tartakovsky, Daniel M.

    2012-01-01

    Cell free layer (CFL), a plasma layer bounded by the red blood cell (RBC) core and the endothelium, plays an important physiological role. Its width affects the effective blood viscosity as well as the scavenging and production of nitric oxide (NO). Measurements of the CFL and its spatio-temporal variability are highly uncertain, exhibiting random fluctuations. Yet traditional models of blood flow and NO scavenging treat the CFL’s bounding surfaces as deterministic and smooth. We investigate the effects of the endothelium roughness and uncertain (random) spatial variability on blood flow and estimates of effective blood viscosity. PMID:22300799

  17. Design and numeric evaluation of a novel axial-flow left ventricular assist device.

    PubMed

    Toptop, Koral; Kadipasaoglu, Kamuran A

    2013-01-01

    Virtual design characteristics and performance of the first Turkish axial-flow left ventricular assist device (LVAD) are presented, with emphasis on rotor geometry. The patented rotor design includes a central flow channel carved inside the main block, which carries permanent magnets. A concentric rotor-stator gap minimizes the distance between respective magnets, improving electromagnetic efficiency and creating a second blood pathway. Dual sets of three helical blades, placed on the shaft and external surface of the rotor block, ensure unidirectionality. Hemodynamic performance was tested with computational fluid dynamics (CFD); and rotor-blade geometry was optimized, to maximize overall efficiency d and minimize backflow and wall shear stresses. For a shaft radius of 4.5 mm, rotor blade height of 2.5 mm, and blade inlet and exit metal angles of 67° and 32°, pump operation at the nominal head-flow combination (5 L/min and 100.4 mm Hg) was achieved at a rotor speed of 10,313 rpm. At the nominal point, backflow as percent of total flow was 7.29 and 29.87% at rotor inlet and exit, respectively; overall hydraulic efficiency reached 21.59%; and maximum area-averaged shroud shear was 520 Pa. Overall efficiency peaked at 24.07% for a pump flow of 6.90 L/min, and averaged at 22.57% within the flow range of 4-8 L/min. We concluded that the design satisfies initial rotor design criteria, and that continued studies with diffuser optimization and transient flow analysis are warranted. PMID:23644609

  18. Subcutaneous blood flow in psoriasis

    SciTech Connect

    Klemp, P.

    1985-03-01

    The simultaneously recorded disappearance rates of /sup 133/xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant in NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for /sup 133/Xe was therefore measured--using a double isotope washout method (/sup 133/Xe and (/sup 131/I)antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin.

  19. Shear stress related blood damage in laminar couette flow.

    PubMed

    Paul, Reinhard; Apel, Jörn; Klaus, Sebastian; Schügner, Frank; Schwindke, Peter; Reul, Helmut

    2003-06-01

    Artificial organs within the blood stream are generally associated with flow-induced blood damage, particularly hemolysis of red blood cells. These damaging effects are known to be dependent on shear forces and exposure times. The determination of a correlation between these flow-dependent properties and actual hemolysis is the subject of this study. For this purpose, a Couette device has been developed. A fluid seal based on fluorocarbon is used to separate blood from secondary external damage effects. The shear rate within the gap is controlled by the rotational speed of the inner cylinder, and the exposure time by the amount of blood that is axially pumped through the device per given time. Blood damage is quantified by the index of hemolysis (IH), which is calculated from photometric plasma hemoglobin measurements. Experiments are conducted at exposure times from texp=25 - 1250 ms and shear rates ranging from tau=30 up to 450 Pa ensuring Taylor-vortex free flow characteristics. Blood damage is remarkably low over a broad range of shear rates and exposure times. However, a significant increase in blood damage can be observed for shear stresses of tau>or= 425 Pa and exposure times of texp>or= 620 ms. Maximum hemolysis within the investigated range is IH=3.5%. The results indicate generally lower blood damage than reported in earlier studies with comparable devices, and the measurements clearly indicate a rather abrupt (i.e., critical levels of shear stresses and exposure times) than gradual increase in hemolysis, at least for the investigated range of shear rates and exposure times. PMID:12780506

  20. Shock-induced separation of adiabatic turbulent boundary layers in supersonic axially symmetric internal flow

    NASA Technical Reports Server (NTRS)

    Page, R. J.; Childs, M. E.

    1974-01-01

    An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur.

  1. Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-03-01

    When a compact microchannel heat exchanger is operated at cryogenic environments, it has potential problems of axial conduction and flow maldistribution. To analyze these detrimental effects, the heat exchanger model that includes both axial conduction and flow maldistribution effect is developed in consideration of the microchannel heat exchanger geometry. A dimensionless axial conduction parameter (λ) is used to describe the axial conduction effect, and the coefficient of variation (CoV) is introduced to quantify the flow maldistribution condition. The effectiveness of heat exchanger is calculated according to the various values of the axial conduction parameter and the CoV. The analysis results show that the heat exchanger effectiveness is insensitive when λ is less than 0.005, and effectiveness is degraded with the large value of CoV. Three microchannel heat exchangers are fabricated with printed circuit heat exchanger (PCHE) technology for validation purpose of the heat exchanger model. The first heat exchanger is a conventional heat exchanger, the second heat exchanger has the modified cross section to eliminate axial conduction effect, and the third heat exchanger has the modified cross section and the cross link in parallel channel to mitigate flow maldistribution effect. These heat exchangers are tested in cryogenic single-phase, and two-phase environments. The third heat exchanger shows the ideal thermal characteristic, while the other two heat exchangers experience some performance degradation due to axial conduction or flow maldistribution. The impact of axial conduction and flow maldistribution effects are verified by the simulation results and compared with the experimental results.

  2. Calculation of flow distribution in large radius ratio stages of axial flow turbines and comparison of theory and experiment

    NASA Technical Reports Server (NTRS)

    Herzog, J.

    1974-01-01

    A method of calculating stage parameters and flow distribution of axial turbines is described. The governing equations apply to space between the blade rows and are based on the assumption of rotationally symmetrical, compressible, adiabatic flow conditions. Results are presented for stage design and flow analysis calculations. Theoretical results from the calculation system are compared with experimental data from low pressure steam turbine tests.

  3. Axial PEGylation of Tin Octabutoxy Naphthalocyanine Extends Blood Circulation for Photoacoustic Vascular Imaging.

    PubMed

    Huang, Haoyuan; Wang, Depeng; Zhang, Yuzhen; Zhou, Yang; Geng, Jumin; Chitgupi, Upendra; Cook, Timothy R; Xia, Jun; Lovell, Jonathan F

    2016-07-20

    Attachment of polyethylene glycol (PEG) can prolong blood circulation of biological molecules, a useful trait for a vascular imaging agent. Here, we present a route for modifying octabutoxy naphthalocyanine (ONc) with PEG, via axial conjugation following ONc chelation with Sn(IV) chloride (Sn-ONc). Tin chelation caused ONc absorbance to shift from 860 to 930 nm. Hydroxy terminated PEG was treated with sodium and then was axially attached to the tin, generating PEG-Sn-ONc. Unlike ONc or Sn-ONc, PEG-Sn-ONc was soluble in methanol. ONc and PEG-Sn-ONc were dissolved in polysorbate solutions and administered to mice intravenously. PEG-Sn-ONc demonstrated substantially longer blood circulation time than ONc, with a 4 times longer half-life and a nearly 10 times greater area under the curve. PEG-Sn-ONc gave rise to photoacoustic contrast and could be used for noninvasive brain vessel imaging even 24 h following injection. This work demonstrates that nonmetallic naphthalocyanines can be chelated with tin, and be axially modified with PEG for enhanced circulation times for long-term vascular imaging with photoacoustic tomography. PMID:27259401

  4. Unsteady flow field under surge and rotating stall in a three-stage axial flow compressor

    NASA Astrophysics Data System (ADS)

    Hara, Takayuki; Morita, Daisuke; Ohta, Yutaka; Outa, Eisuke

    2011-03-01

    The unsteady flow structure between rotor blade-to-blade passages in a three-stage axial flow compressor is experimentally investigated by detailed measurements of unsteady performance characteristics, casing wall pressure fluctuations and their wavelet analyses. The main feature of the test compressor is a capacity tank facility connected in series to the compressor outlet in order to supply compression and/or expansion waves from downstream of the compressor. Research attention is focused on the post-stall characteristics of the surge and rotating stall which occur simultaneously. The influence of the compressor operating point on the unsteady performance curve shows that the surge cycle changes irregularly depending on the steady-state resistance characteristics, and the results of the wavelet analyses of the wall pressure fluctuations suggest that the surge cycle may selectively be determined by the rotating stall cell structure within the rotor cascade.

  5. Radioisotopic flow scanning for portal blood flow and portal hypertension

    SciTech Connect

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-08-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed.

  6. An Electromagnetic Catheter Blood Flow Meter of Minimal Lateral Dimensions*

    PubMed Central

    Kolin, Alexander

    1970-01-01

    A method is described to reduce the lateral dimensions of an electromagnetic catheter blood flow meter to the maximum possible extent. To achieve this, the magnetic field is generated by a magnet placed outside the subject. Thus, only the electrodes and a minimal supporting structure have to be introduced into the blood vessel to pick up the electromotive force induced in the blood streaming at right angles to the magnetic field. To suppress induction of a transformer electromotive force in the electrode leads, the latter form a co-axial lead system of small gauge. One electrode is at the tip of the insulated external tube of this lead system (a gauge no. 28 hypodermic tube) and is insulated from it. The other electrode is a bare section of the external tube about 2 cm from its tip. The tube is bent at an angle of about 30° just below the second electrode. Thus, this bent section places the two electrodes near two diametrically opposite wall sections of the blood vessels after insertion of the fine catheter via a hollow catheter through a branch blood vessel into the main vessel. The catheter is rotated until the plane containing the bent section is perpendicular to the magnetic field. The potential difference between the two electrodes measures the volume rate of flow through the blood vessel. This principle can be used to monitor the flow in the major blood vessels as well as in their branches. Catheter flow meters down to about 0.5 mm in external diameter have thus been made and much smaller ones can be made without excessive difficulty. Images PMID:5273901

  7. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  8. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  9. Study on cavitation influence for pump head in an axial flow pump

    NASA Astrophysics Data System (ADS)

    Hosono, K.; Kajie, Y.; Saito, S.; Miyagawa, K.

    2015-12-01

    The size of axial flow pumps used in drainage pump stations has recently decreased, and their rotation speeds have increased, causing an increase in the risk of cavitation. Therefore, to provide highly reliable pumps, it is important to understand the internal flow of pumps under cavitating conditions. In this study, high-speed camera measurements and computational fluid dynamics analysis were performed to understand the cavitation performance of an axial flow pump. The mechanism that causes the head to change as a result of cavitation under low net positive suction head values is shown to be the balance between the increasing angular momentum and the loss indicated by the changing streamlines.

  10. CARBOXYHEMOGLOBIN AND BRAIN BLOOD FLOW IN HUMANS

    EPA Science Inventory

    It has been shown that with increased carboxyhemoglobin (COHb) and associated decrease in blood oxygen-carrying capacity, a compensatory increase in brain-blood flow (BBF) develops. he BBF response in humans has been shown to be quite variable. wo experiments were conducted in wh...

  11. Tip clearance flow interaction with circumferential groove casing treatment in a transonic axial compressor

    NASA Astrophysics Data System (ADS)

    Ross, Mark Hamilton

    Experimental and computational studies were conducted to study the role of the tip leakage flow in axial compressor stall and the relationship between the tip clearance flow flow field and surge margin extension from circumferential groove casing treatment. The CFD results were used to identify the existence of an interface between the approach ow and the tip-leakage flow. The experiments used a surface streaking visualization method to identify the time-averaged location of this interface as a line of zero axial shear stress at the casing. The axial position of this line, denoted xzs, moved upstream with decreasing ow coefficient in both the experiments and computations. The line was consistently located at the rotor leading edge plane at the stalling flow coefficient, regardless of in flow boundary condition. These results were successfully modeled using a control volume approach that balanced the reverse axial momentum ux of the tip-leakage flow with the momentum flux of the approach fluid. Non-uniform tip clearance measurements demonstrated that movement of the interface upstream of the rotor leading edge plane leads to the generation of short length scale rotating disturbances. Therefore, stall was interpreted as a critical point in the momentum flux balance of the approach ow and the reverse axial momentum flux of the tip-leakage flow. Experimental measurements of surge margin extension from seven CGCT configurations with a fixed groove geometry demonstrated that the contribution of individual grooves in a multi-groove casing to surge margin extension is an (a) additive and (b) linear function of the smooth wall tip clearance axial momentum ux at the location of a each groove. Extending the axial momentum model to include the in uence of a CGCT showed that circumferential grooves reduce the tip leakage flow axial momentum through radial transport. The equivalent force due to a circumferential groove was demonstrated to be related to the smooth wall tip

  12. Investigation of Axial-flow Fan and Compressor Rotors Designed for Three-dimensional Flow

    NASA Technical Reports Server (NTRS)

    Kahane, A

    1947-01-01

    An investigation has been conducted to determine whether three-dimensional flows may be utilized in axial-flow fan and compressor rotors so that the spanwise load distribution may be varied to obtain high pressure rise. Two rotors, one with approximately uniform and one with solid-body downstream tangential-velocity distributions, were designed and tested at the design blade angle. Radial surveys of total pressure, static pressure, and flow angle were made upstream and downstream of the test rotors through a quantity-coefficient range. Tests of the solid-body rotor were also conducted at a large value of tip clearance. The results indicated that the three-dimensional flows may be utilized with high efficiency and that the three-dimensional theory used in conjunction with two-dimensional cascade data is sufficiently accurate for design purposes. The tests also showed that the tip-clearance losses of rotors highly loaded at the tips are not excessive. The existing three-dimensional theory in simplified for and an illustrative rotor design are presented in appendixes.

  13. Nutrient and nonnutrient renal blood flow

    SciTech Connect

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H. )

    1990-06-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%).

  14. Pancreatic blood flow in experimental acute pancreatitis

    SciTech Connect

    Berry, A.R.; Millar, A.M.; Taylor, T.V.

    1982-05-01

    The etiology and pathogenesis of acute necrotizing hemorrhagic pancreatitis remain controversial. Recent work has suggested that an early fall in pancreatic blood flow, causing ischemia, may be the initiating factor. Using an established rat model of hemorrhagic pancreatitis and the fractional indicator distribution technique with /sup 86/RbCl, pancreatic blood flow and tissue perfusion have been measured at various times in the condition. Six groups of ten rats were studied: control sham operation and pancreatitis groups were sacrificed at 1, 6, and 24 hr. Pancreatic blood flow (% of cardiac output) and perfusion (blood flow/g tissue) were measured. Blood flow was increased by a maximum of 53% at 1 hr (P less than 0.001) and remained elevated for 24 hr, and perfusion was increased by a maximum of 70% (P less than 0.001) at 1 hr and remained elevated at 6 hr. Pancreatic perfusion declines after 6 hr due to increasing gland edema. The results demonstrate a significant increase in pancreatic blood flow and perfusion in experimentally induced acute pancreatitis, suggesting a primary inflammatory response, and refute the ischemic etiological theory.

  15. Simple LMFBR axial-flow friction-factor correlation

    SciTech Connect

    Chan, Y.N.; Todreas, N.E.

    1982-12-01

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest.

  16. Perturbation of red blood cell flow in small tubes by white blood cells.

    PubMed

    Thompson, T N; La Celle, P L; Cokelet, G R

    1989-02-01

    The flow of blood in the microcirculation is facilitated by the dynamic reduction in viscosity (Fahraeus-Lindquist effect) resulting from the axial flow of deforming erythrocytes (RBCs) and from the decrease in the ratio of cell to vessel diameter. RBC velocity exceeds that of average fluid velocity; however the slower moving white blood cells (WBC) perturb flow velocity and the ratio of cell to vessel diameter by obstructing red cell flow through formation of "trains" of red cells collecting behind the white cell. This effect of white cells was studied quantitatively in a model in vitro tubes less than 10 microns in diameter with the demonstration that flow resistance increases linearly with white cell numbers up to 1,000 WBC/mm3 at tube hematocrit of 17.7%. The increase in resistance exceeds the flow resistance of WBC and appears to relate directly to train formation. A mechanical model of train formation developed to predict WBC influence in flow resistance over the range of WBC studied reasonably fits observed WBC effects. PMID:2928089

  17. Raynaud's disease: reduced hand blood flows with normal blood viscosity.

    PubMed

    McGrath, M A; Peek, R; Penny, R

    1978-04-01

    Hand blood flows and the blood and plasma viscosities were measured in patients with Raynaud's disease in an attempt to identify the mechanism of the episodic vascular insufficiency. Using venous occlusion plethysmography the following observations were made: (1) the hand blood flows were significantly less than in normals at 32 degrees, 27 degrees and 20 degrees C; (2) the percentage decrease in flow with cooling was greater in normals and (3) cooling of one hand from 32 degrees to 27 degrees C caused an abnormal decrease in flow through the contralateral hand. Using a rotational viscometer the blood and plasma viscosities were found to be normal at both high and low shear rates. The percentage increase in the blood viscosity with cooling from 35 degrees to 25 degrees was also normal. These studies demonstrate an increased constrictive response of the cutaneous vasculature of the hand to both local and reflex stimulation, and exclude a rheological abnormality, under conditions similar to those of the present study. PMID:277163

  18. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  19. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  20. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  1. 21 CFR 870.2120 - Extravascular blood flow probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  2. Laser anemometer measurements in a transonic axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.; Powell, J. A.

    1979-01-01

    A laser anemometer system employing an efficient data acquisition technique was used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwall boundary layers. Adjustable laser beam orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall boundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.

  3. In vivo photoacoustic tomography of total blood flow and Doppler angle

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.

  4. Modeling Blood Flow in the Aorta.

    ERIC Educational Resources Information Center

    McConnell, Colin J.; Carmichael, Jonathan B.; DeMont, M. Edwin

    1997-01-01

    Presents an exercise to demonstrate two fundamental concepts of fluid mechanics: the Reynolds number and the Principle of Continuity. The exercise demonstrates flow in a major blood vessel, such as the aorta, with and without a stenosis. Students observe the transition from laminar to turbulent flow as well as downstream persistence of turbulence.…

  5. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    NASA Astrophysics Data System (ADS)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  6. Three dimensional supersonic flows with subsonic axial Mach numbers

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Moretti, G.

    1976-01-01

    A numerical approach is presented for the computation of flows in which the component of velocity in the selected marching direction is subsonic although the total velocity is supersonic. A local coordinate rotation procedure is employed together with an implicit differencing scheme. Complex coordinate transformations and time-consuming iterations are avoided. The implementation of the described approach is illustrated with the aid of a two-dimensional problem. An application in the case of three-dimensional flows is also discussed.

  7. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  8. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  9. Investigation of tip clearance flow physics in axial flow turbine rotors

    NASA Astrophysics Data System (ADS)

    Xiao, Xinwen

    In axial turbines, the tip clearance between casing wall and rotating blades results in a tip leakage flow, which significantly affects loss production, heat protection, vibration and noise. It is important to minimize these effects for a better turbine engine performance and higher reliability. Most of previous efforts were concentrated on turbine cascades that however may not completely and correctly simulate the flow physics in practical turbine rotors. An investigation has to be performed in turbine rotors to reveal the real tip leakage flow physics in order to provide a scientific basis for minimizing its effects. This is the objective of this thesis research. The three dimensional flow field near the end wall/tip clearance region in a turbine rotor has been investigated experimentally, complemented by a numerical simulation to study the influences of inlet turbulence intensities on the development of the tip leakage flow. The experimental investigation is carried out in a modern unshrouded high pressure turbine stage. The survey region covers 20% span near the end wall, and extends axially from 10% chord upstream of the leading edge, through the rotor passage, and to 20% chord downstream of the trailing edge. It has been found that the tip leakage effects extend only to the surveyed region. The three dimensional LDV technique is used to measure the velocity and turbulence field upstream of the rotor, inside the rotor passage, and near the trailing edge. The static pressure on blade surfaces is surveyed from the rotating frame. The transient pressure on the casing wall is measured using a dynamic pressure sensor with a shaft encoder. A rotating Five Hole Probe is employed to measure the losses as well as the pressure and the three dimensional velocity field at 20% chord downstream of the rotor. The unsteady flow field is also investigated at this location by using a slanted single-element Hot Wire technique. The physics of the tip leakage flow and vortex in

  10. Three dimensional inviscid compressible calculations around axial flow turbine blades

    NASA Astrophysics Data System (ADS)

    Fourmaux, Antoine; Petot, Bertrand

    1991-12-01

    The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.

  11. Study on the Axial-Flow-Induced Vibration of Coil Springs

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Ito, T.; Kohno, N.; Nunokawa, K.

    1993-08-01

    Flow-induced vibration of coil springs due to an axial flow was investigated experimentally using a fundamental test apparatus. The effects of spring stiffness, gap between the spring and the inner rod and initial compression of the spring on the vibration of the coil spring were clarified, and a stability diagram is presented for this vibration. Furthermore, the effectiveness of the counter-measures developed for suppressing the flow-induced vibration are confirmed.

  12. Effects of axial flow on the stability of a helical vortex tube

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Fukumoto, Y.

    2012-05-01

    The effects of axial flow on the stability of a helical vortex tube are studied by short-wavelength stability analysis. By axial flow we mean the flow along the helical tube inside the vortex core. At the leading order the base flow is set to the Rankine vortex with uniform velocity along the helical tube. The exponential growth rate is obtained analytically as the magnitude of the sum of three O(ɛ) and five O(ɛ2) complex numbers, where ɛ is the ratio of the core to curvature radius. At O(ɛ) the effect of axial flow can be regarded as the effect of the Coriolis force; as a result the instability is the superposition of the curvature instability and the Coriolis or precessional instability since the two instabilities occur under the same resonance condition. At O(ɛ2) combined effects of the axial flow and the torsion appear; the maximum growth rate increases when the period of particle motion increases.

  13. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah; Ong, Wendy; Koh, Sy-Yuan; Chong, Victor

    2005-03-01

    A series of numerical models are generated to investigate the flow characteristics and performance of an axial blood pump. The pump model includes a straightener, an inducer-impeller, and diffuser. Numerical studies of the effects of angular alignment of the inducer and impeller blades and the axial clearance gap between the inducer and impeller are presented in this article. The pump characteristics derived from numerical simulation are validated with experimental data. Numerically simulated results showed a sinusoidal variation in the pressure generated across the pump with changes in angular alignment between the inducer and impeller. This is attributed to additional losses when flow is forced or diverted from the trailing edge of the inducer to either the pressure or suction side of the impeller blade when the alignment between the two sets of blades is not optimal. The pressure generated is a maximum when the impeller blades are at 0 or 30 degrees with respect to the inducer. The effect of rotating the impeller with respect to the inducer causes the sinusoidal pressure variation. In addition, it was observed that when the clearance gap between the inducer and impeller is reduced to 1 mm, the pressure generated is a minimum when compared to the other models. This is attributed to the interference between the inducer and impeller when the gap separating them is too small. The location of the maximum pressure on the pressure side of the impeller blade shifts upstream while its magnitude decreases for small clearance gap between the inducer and the impeller. There was no flow separation in the inducer while small regions of backflow are observed at the impeller trailing edge. Recommendations for future modifications and improvements to the pump design and model simulation are also given. PMID:15725228

  14. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  15. Mesoscale simulation of blood flow in microvessels

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2006-11-01

    Computational modeling of blood flow in microvessels (20--500 micron) is a major challenge. Blood in such vessels behaves as a multiphase suspension of deformable particles. Individual red blood cell (RBC), which is highly deformable, must be considered in the model. Multiple cells, often a few thousands in number, must also be considered. We present two dimensional computational simulation of blood flow in 20--300 micron vessels at discharge hematocrit of 10--60 percent taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population of up to 2500 cells is simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell- free layer are studied. Results on the trajectory and velocity traces of the RBCs are presented. Also presented are the plug flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The computational results are in good agreement with the experimental results of Bishop et al (2001, 2002) and Pries et al (1992).

  16. Simulation of a 3D unsteady flow in an axial turbine stage

    NASA Astrophysics Data System (ADS)

    Straka, Petr

    2012-04-01

    The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  17. An implantable blood pressure and flow transmitter.

    NASA Technical Reports Server (NTRS)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  18. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    NASA Astrophysics Data System (ADS)

    Y Gao, J.; Hou, Y. S.; Xi, S. Z.; Cai, Z. H.; Yao, P. P.; Shi, H. L.

    2013-12-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Qd, 1.0Qd, 1.1Qd) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life.

  19. Design of gas circulation system in the high power fast axial flow CO2 laser

    NASA Astrophysics Data System (ADS)

    Huang, Hongyan; Wang, Youqing; Li, Qing; Jia, Xinting

    2009-08-01

    Increasing the output power of the fast axial flow CO2 laser requires a proportional growth of the mass flow with the laser power for convective cooling of the active laser medium. The previous research on high power CO2 laser was mostly focused on gas discharge. However, little attention was focused on the gas circulation system, which is also an essential technology to ensure the long time stable work of the high power fast axial flow CO2 laser. Based on the analysis of the characteristics of the 7 KW fast axial flow CO2 laser, expounded the important role of the gas circulation system, and then analyzed the parameters, the structure and the design of the system. After that, this paper compared various types of blowers and heat exchangers, chose magnetic levitation radial turbine blower and rectangle finned heat exchanger, in light of the prominent performance and compact structure. Further more, this paper also supplied the methods of the blower and heat exchanger selection and design. The results indicate that the magnetic levitation radial turbine blower and rectangle finned heat exchanger which have been chosen are suitable to the 7 kW fast axial flow CO2 laser.

  20. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    NASA Astrophysics Data System (ADS)

    Chughtai, I. R.; Iqbal, W.; Din, G. U.; Mehdi, S.; Khan, I. H.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD) analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl) scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM) was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe˜102) which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  1. Desensitization of Tip Clearance Effects in Axial Flow Turbines

    NASA Astrophysics Data System (ADS)

    El-Ghandour, Mohamed; Mori, Koichi; Nakamura, Yoshiaki

    The present study aims to control the leakage flow and total pressure loss in high pressure turbines. A new tip shape is proposed. It is based on the triple squealer shape by adopting a new middle squealer, along the camber line, whose first and last thirds were removed. An unstructured, finite volume, multiblock, 3-D, compressible Reynolds-Averaged Navier-Stokes equations solver was used to compute the flow through a high pressure turbine cascade. The turbulent viscosity was calculated by the Delayed Detached Eddy Simulation (DDES) model which is based on the Spalart-Allmaras one equation turbulence model. The performance of the new shape is compared to that of flat tip, double and triple squealers. The results successfully demonstrate that the new shape has the least total pressure loss among them.

  2. Numerical simulation of fluid-structure interaction for axial flow blade based on weak coupling

    NASA Astrophysics Data System (ADS)

    Zheng, X. B.; Guo, P. C.; Luo, X. Q.

    2012-11-01

    Numerical simulation of three-dimensional flow in whole flow passage of axial flow hydraulic turbine was conducted based on the Reynolds-averaged N-S equations and the standard k-ε model. Stress analysis of axial flow blade were carried on by elasticity unsteady FEM. The fluid domain and solid domain were calculated by sequential iteration. Based on weak coupling technology, the fluid-structure interaction analysis of the axial flow blade was conducted. Instantaneous flow field characteristic and stress distribution on blade were analyzed. According to the comparing with the results of pure flow numerical simulation, the pressure difference between press side and suction side increases after considering the FSI, to a certain extent, which will worsen cavitations performance of the blade. Meanwhile, stress distribution on the blades do not change significantly, but the maximum stress value increases markedly, and the maximum displacement reduces slightly. The research demonstrates that the FSI not only changes the distribution of the flow field in blade area, but also have a greater impact on the stress of the blades.

  3. Eliminating primary air axial flow fan stall at the D. B. Wilson station

    SciTech Connect

    Studley, B.C. ); Schmidt, E. ); Foreman, J.D. )

    1990-01-01

    Having originally chosen two axial flow primary air fans operating in parallel to deliver pulverized coal to this 440 Mw facility because of their high efficiencies and precise flow control, a program for first controlling and then eliminating fan stall was undertaken. An axial flow fan stalls when air flow separation occurs around the blades. This results in heavy turbulence with the fan no longer operating on its normal performance curve and consequently a rapid decrease in both pressure and flow is experienced. In addition, this condition results in high vibration which over time can be destructive to the fan. The immediate effect is obviously a sudden decrease in fuel flow followed b y both steam flow and electrical output. Although fan stall is a potential drawback of axial flow fans, the program implemented, which is described in this paper, has been successful at first controlling and recently eliminating fan stall all together. This was possible through an extensive test program and finally the installation of anti-stall rings on both fans. The net result of this operating improvement has been improved availability, reliability and capacity, in addition to higher fan discharge pressures as the anti-stall rings have modified the pressure-versus-volume curves of the fan similar to the characteristics of a cof a centrifugal fan.

  4. Blood flow distribution in cerebral arteries

    PubMed Central

    Zarrinkoob, Laleh; Ambarki, Khalid; Wåhlin, Anders; Birgander, Richard; Eklund, Anders; Malm, Jan

    2015-01-01

    High-resolution phase–contrast magnetic resonance imaging can now assess flow in proximal and distal cerebral arteries. The aim of this study was to describe how total cerebral blood flow (tCBF) is distributed into the vascular tree with regard to age, sex and anatomic variations. Forty-nine healthy young (mean 25 years) and 45 elderly (mean 71 years) individuals were included. Blood flow rate (BFR) in 21 intra- and extracerebral arteries was measured. Total cerebral blood flow was defined as BFR in the internal carotid plus vertebral arteries and mean cerebral perfusion as tCBF/brain volume. Carotid/vertebral distribution was 72%/28% and was not related to age, sex, or brain volume. Total cerebral blood flow (717±123 mL/min) was distributed to each side as follows: middle cerebral artery (MCA), 21% distal MCA, 6% anterior cerebral artery (ACA), 12%, distal ACA, 4% ophthalmic artery, 2% posterior cerebral artery (PCA), 8% and 20% to basilar artery. Deviating distributions were observed in subjects with ‘fetal' PCA. Blood flow rate in cerebral arteries decreased with increasing age (P<0.05) but not in extracerebral arteries. Mean cerebral perfusion was higher in women (women: 61±8; men: 55±6 mL/min/100 mL, P<0.001). The study describes a new method to outline the flow profile of the cerebral vascular tree, including reference values, and should be used for grading the collateral flow system. PMID:25564234

  5. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  6. Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow

    NASA Astrophysics Data System (ADS)

    del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.

    2009-10-01

    The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.

  7. Transcutaneous measurement of volume blood flow

    NASA Technical Reports Server (NTRS)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  8. Steady-State Axial Temperature and Flow Velocity in Triga Channel.

    Energy Science and Technology Software Center (ESTSC)

    2007-02-28

    Version 00 TRISTAN-IJS is a computer program for calculating steady-state axial temperature distribution and flow velocity through a vertical coolant channel in low power TRIGA reactor core, cooled by natural circulation. It is designed for steady-state thermohydraulic analysis of TRIGA research reactors operating at a low power level of 1-2 MW.

  9. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  10. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  11. Prediction of overall and blade-element performance for axial-flow pump configurations

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.

    1973-01-01

    A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.

  12. A mathematical model of the controlled axial flow divider for mobile machines

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Karelin, D. L.; Belousov, A. M.

    2016-06-01

    The authors give a mathematical model of the axial adjustable flow divider allowing one to define the parameters of the feed pump and the hydraulic motor-wheels in the multi-circuit hydrostatic transmission of mobile machines, as well as for example built features that allows to clearly evaluate the mutual influence of the values of pressure and flow on all input and output circuits of the system.

  13. Computational investigations of axial and radial flow compressor aeromechanics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Kishore

    The focus of this research is aeromechanics issues in advanced compressors of the type used in modern day high thrust-to-weight ratio aircraft gas turbine engines. The driving factor for the studies undertaken is the High Cycle Fatigue (HCF) failure of gas turbine blades. HCF is a key technology issue in the development and endurance of gas turbine engines that arises primarily due to resonant response of turbomachine blading to unsteady aerodynamic excitation. Because it is a truly coupled nonlinear fluid-structure problem, predicting HCF requires a unified approach to modeling both the fluid and the structure. Considering the serious nature of HCF and the inadequacy of lower order design systems to accurately predict blade vibratory stress, the need to develop advanced predictive tools is pressing. The first aspect of this research therefore addresses the development of a turbomachinery coupled fluid-structure interaction tool to predict flow-induced blade vibration. To this end, the TAM-ALE3D solver is further developed as a derivative of the ALE3D code of Lawrence Livermore National Laboratory. In the second aspect of this research, TAM-ALE3D is validated by predicting viscous blade row unsteady aerodynamics and the modal properties of the stator vane in the baseline configuration of the Purdue Transonic Compressor. It is then used to predict the vane vibratory response excited by rotor wakes at resonance, with the resulting stresses in the range expected. For radial flow compressors, a very limited knowledge base exists on the unsteady aerodynamic and aeroelastic mechanisms that result in HCF. The bulk of this research is thus directed at the understanding of these fundamental unsteady phenomena using TAM-ALE3D as an investigative tool. The energy transfer from the downstream diffuser generated forcing function to the impeller blading is addressed by means of unsteady aerodynamic and aeroelastic analyses. From these computational investigations, the details of

  14. Blood flow dynamics in the snake spectacle.

    PubMed

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed. PMID:24172887

  15. Effects of flow geometry on blood viscoelasticity.

    PubMed

    Thurston, George B; Henderson, Nancy M

    2006-01-01

    The viscoelastic properties of blood are dominated by microstructures formed by red cells. The microstructures are of several types such as irregular aggregates, rouleaux, and layers of aligned cells. The dynamic deformability of the red cells, aggregation tendency, cell concentration, size of confining vessel and rate of flow are determining factors in the microstructure. Viscoelastic properties, viscosity and elasticity, relate to energy loss and storage in flowing blood while relaxation time and Weissenberg number play a role in assessing the importance of the elasticity relative to the viscosity. These effects are shown herein for flow in a large straight cylindrical tube, a small tube, and a porous medium. These cases approximate the geometries of the arterial system: large vessels, small vessels and vessels with many branches and bifurcations. In each case the viscosity, elasticity, relaxation time and Weissenberg number for normal human blood as well as blood with enhanced cell aggregation tendency and diminished cell deformability are given. In the smaller spaces of the microtubes and porous media, the diminished viscosity shows the possible influence of the Fåhraeus-Lindqvist effect and at high shear rates, the viscoelasticity of blood shows dilatancy. This is true for normal, aggregation enhanced and hardened cells. PMID:17148856

  16. Ergot alkaloids decrease rumen epithelial blood flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  17. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  18. Hypovolemic shock, pancreatic blood flow, and pancreatitis.

    PubMed

    Robert, J H; Toledano, A E; Toth, L S; Premus, G; Dreiling, D A

    1988-05-01

    Electromagnetic blood flow determinations were carried out on the superior pancreatic duodena (SPDA), the splenic (SA) and the superior mesenteric (SMA) arteries and compared to cardiac output (CO, thermodilution technique) in 12 anesthetized dogs submitted to hypovolemic shock of various duration: 5 dogs underwent a one-hour and 7 a three-hour period of shock. A 50 mm Hg level of mean arterial blood pressure (MABP) was maintained throughout hypovolemia. Dogs were then reinfused. Control preshock values were 4.12 l/min for CO, 38.0 ml/min for SPDA, 405.9 ml/min for SA, and 963.6 ml/min for SMA. SPDA, SA and SMA flows expressed as % of CO amounted to 0.9, 9.8 and 23.4% respectively. No significant changes in SPDA and SMA flows were noted within the first hour of shock. However, from the end of the second hour on, both flows differed significantly (P less than 0.01), SMA increasing from -75.6% of its control value at the end of bleeding to -61.0%, and SPDA decreasing from -75.6 to -86.9%. Similar observations were made when respective flows were considered as % of CO. The SA behaved somewhat in an intermediate fashion. This relative spoliation in pancreatic blood supply as hypovolemia proceeds supports an ischemic etiology of acute pancreatitis (AP), which could account for some of the so-called idiopathic cases of AP. PMID:3385221

  19. Local aggregation characteristics of microscale blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, Efstathios; Sherwood, Joseph M.; Dusting, Jonathan; Balabani, Stavroula

    2015-11-01

    Erythrocyte aggregation (EA) is an important aspect of microvascular flows affecting blood flow and viscosity. Microscale blood flows have been studied extensively in recent years using computational and microfluidic based approaches. However, the relationship between the local structural characteristics of blood and the velocity field has not been quantified. We report simultaneous measurements of the local velocity, aggregation and haematocrit distributions of human erythrocytes flowing in a microchannel. EA was induced using Dextran and flows were imaged using brightfield microscopy. Local aggregation characteristics were investigated using statistical and edge-detection image processing techniques while velocity profiles were obtained using PIV algorithms. Aggregation intensity was found to strongly correlate with local variations in velocity in both the central and wall regions of the channel. The edge detection method showed that near the side wall large aggregates are associated with high local velocities and low local shear rates. In the central region large aggregates occurred in regions of low velocity and high erythrocyte concentration. The results demonstrate the combined effect of haematocrit and velocity distributions on local aggregation characteristics.

  20. Investigation of X24C-2 10-Stage Axial-Flow Compressor. III - Surge Characteristics

    NASA Technical Reports Server (NTRS)

    Buckner, Howard A., Jr.; Downing, Richard M.

    1948-01-01

    Compressor operation at low air flows for a given speed is limited by unstable flow conditions, commonly called surge. An investigation of surge in centrifugal compressors (reference 1) showed that the pulsation of pressures and velocities occurred when the slope of the compressor characteristic curve was positive and that the magnitude and frequency, as well as the incidence of surge, depended on the capacity and resistance of the total system. Although the theory presented in reference 1 is applicable to axial-floe compressors, little experimental information is available on the surge characteristics of the individual stages of axial-flow compressors, or on the variation of the surge characteristics with operating conditions. During the investigation to determine the performance of the X24C-2 compressor (references 2 and 3), instrumentation was added to study the surge characteristics and to determine the effect of speed and inlet pressure on the frequency, amplitude, and phase relation of the pressure pulsations behind each stage.

  1. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  2. Modeling of blood flow in arterial trees.

    PubMed

    Anor, Tomer; Grinberg, Leopold; Baek, Hyoungsu; Madsen, Joseph R; Jayaraman, Mahesh V; Karniadakis, George E

    2010-01-01

    Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees. We discuss alternative approaches and validity of various assumptions often made to simplify the modeling. To highlight the similarities and discrepancies of data computed with different models, computationally intensive three-dimensional (3D) and inexpensive one-dimensional (1D) flow simulations in very large arterial networks are employed. Finally, we discuss the possibilities, challenges, and limitations of the computational methods for predicting outcomes of therapeutic interventions for individual patients. PMID:20836052

  3. Investigation of flow in axial turbine stage without shroud-seal

    NASA Astrophysics Data System (ADS)

    Straka, Petr; Němec, Martin; Jelínek, Thomáš

    2015-05-01

    This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the "mixing plane" interface and the unsteady flow using the "sliding mesh" interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a) positive and b) negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  4. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.

    PubMed

    Moazami, Nader; Fukamachi, Kiyotaka; Kobayashi, Mariko; Smedira, Nicholas G; Hoercher, Katherine J; Massiello, Alex; Lee, Sangjin; Horvath, David J; Starling, Randall C

    2013-01-01

    The recent success of continuous-flow circulatory support devices has led to the growing acceptance of these devices as a viable therapeutic option for end-stage heart failure patients who are not responsive to current pharmacologic and electrophysiologic therapies. This article defines and clarifies the major classification of these pumps as axial or centrifugal continuous-flow devices by discussing the difference in their inherent mechanics and describing how these features translate clinically to pump selection and patient management issues. Axial vs centrifugal pump and bearing design, theory of operation, hydrodynamic performance, and current vs flow relationships are discussed. A review of axial vs centrifugal physiology, pre-load and after-load sensitivity, flow pulsatility, and issues related to automatic physiologic control and suction prevention algorithms is offered. Reliability and biocompatibility of the two types of pumps are reviewed from the perspectives of mechanical wear, implant life, hemolysis, and pump deposition. Finally, a glimpse into the future of continuous-flow technologies is presented. PMID:23260699

  5. On the steady and unsteady blood flows in an artery with an overlapping stenosis

    NASA Astrophysics Data System (ADS)

    Roy, Ranadhir; Riahi, Daniel N.

    2012-12-01

    The problems of steady and unsteady blood flow in an artery with an overlapping symmetric stenosis are considered. The governing equations for the mass conservation and momentum are used for blood flow system, but here the dynamic viscosity of the fluid is a function of the radial variable as modeled by Einstein to take into account the hematocrit. Hematocrit is the percentage of the red cells by volume in the whole blood fluid. Mathematical models for steady and unsteady blood flow are developed for the leading order flow velocity, pressure gradient, impedance and shear stress, and investigate the dependence of these quantities on the hematoocrit, frequency, height of stenosis, parameter determining the shape of the constriction. It was observed that the higher value of the frequency, hematocrit, height of stenonis leads to higher values of the axial velocity, the impedance and the wall shear stress in the stenosis zone.

  6. Ocular Blood Flow and Normal Tension Glaucoma

    PubMed Central

    Fan, Ning; Wang, Pei; Tang, Li; Liu, Xuyang

    2015-01-01

    Normal tension glaucoma (NTG) is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP) does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI), magnetic resonance imaging (MRI), and laser speckle flowgraphy (LSFG), have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer's disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction. PMID:26558263

  7. Dexmedetomidine decreases the oral mucosal blood flow.

    PubMed

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  8. Ocular Blood Flow and Normal Tension Glaucoma.

    PubMed

    Fan, Ning; Wang, Pei; Tang, Li; Liu, Xuyang

    2015-01-01

    Normal tension glaucoma (NTG) is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP) does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI), magnetic resonance imaging (MRI), and laser speckle flowgraphy (LSFG), have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer's disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction. PMID:26558263

  9. Effects of Inflow Distortion due to Hub Cap's Shape on the Performance of Axial Flow Fan

    NASA Astrophysics Data System (ADS)

    Jang, Choon-Man; Choi, Seung-Man; Kim, Kwang-Yong

    Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis. Two kinds of hub-cap, rounded and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depend on the distance between hub-cap and blade leading edge. Three-dimensional Reynolds-averaged Navier-Stokes equations are introduced to analyze the flow characteristics inside the blade passage. Numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flow angle. Large recirculation flow upstream the fan rotor for the right-angled hub-cap induces separated flow on the blade surfaces near the hub region, and thus deteriorates the performance of fan rotor. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  10. Numerical simulation and analysis of the flow in a two-staged axial fan

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.

    2016-05-01

    In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.

  11. A model of unsteady spatially inhomogeneous flow in a radial-axial blade machine

    NASA Astrophysics Data System (ADS)

    Ambrozhevich, A. V.; Munshtukov, D. A.

    A two-dimensional model of the gasdynamic process in a radial-axial blade machine is proposed which allows for the instantaneous local state of the field of flow parameters, changes in the set angles along the median profile line, profile losses, and centrifugal and Coriolis forces. The model also allows for the injection of cooling air and completion of fuel combustion in the flow. The model is equally applicable to turbines and compressors. The use of the method of singularities provides for a unified and relatively simple description of various factors affecting the flow and, therefore, for computational efficiency.

  12. High-resolution AUV mapping and lava flow ages at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.; Martin, J.

    2011-12-01

    Mapping along mid-ocean ridges, as on land, requires identification of flow boundaries and sequence, and ages of some flows to understand eruption history. Multibeam sonars on autonomous underwater vehicles (AUV) now generate 1-m resolution maps that resolve lava pillars, internal flow structures and boundaries, and lava flow emplacement sequences using crosscutting relations and abundance of fissures. MBARI has now mapped the summit caldera floor and rims and the upper south rift zone on Axial Seamount on the Juan de Fuca Ridge. With the advent of the high-resolution bathymetry and the ability to observe flow contacts to determine superposition using ROVs and submersibles, the missing component has been determining absolute ages of the flows. We used the MBARI ROV Doc Ricketts to collect short push cores (<30 cm) of the thin sediment nestled between pillow lava lobes and sieve and then hand-pick planktic foraminifera from the base of the cores to date by AMS 14C. Ages of planktic foraminifera are marine-calibrated in years before present, and provide minimum ages for the underlying flows, as there is probably some basal sediment that is not recovered. 14C ages have been determined for 10 cores near the summit of Axial Seamount and for 6 from the lowermost south rift. Ages of nearby samples commonly yield statistically identical ages, and 2 cores near the center of the caldera had multiple layers dated. These ages systematically increase with depth, indicating that redistribution of sediment by bottom currents does not significantly affect the stratigraphy. We will expand these collections in summer 2011. The coring is accompanied by collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition inferred from the mapping data. Six ages from the lowermost part of the south rift of Axial Seamount include samples on a cone with deep summit crater that is ~16,580 aBP and on 5 flows between 950 and 1510 aBP. Two

  13. Measurement of Liver Blood Flow: A Review

    PubMed Central

    Stansby, G. P.; Hobbs, K. E. F.; Hawkes, D. J.; Colchester, A. C. F.

    1991-01-01

    The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The liver has the most complicated circulation of any organ and many physiological and pathological processes can affect it1,2. This review surveys the methods available for assessing liver blood flow, examines the different parameters being measured and outlines problems of applicability and interpretation for each technique. The classification of these techniques is to some extent arbitrary and several so called “different” methods may share certain common principles. The methods reviewed have been classified into two groups (Table 1): those primarily reflecting flow through discrete vessels or to the whole organ and those used to assess local microcirculatory blood flow. All techniques have their advantages and disadvantages and in some situations a combination may provide the most information. In addition, because of the many factors affecting liver blood flow and sinusoidal perfusion, readings in a single subject may vary depending on positioning, recent food intake, anxiety, anaesthesia and drug therapy. This must be borne in mind if different studies are to be meaningfully compared. PMID:1931785

  14. Laminar Flow About a Rotating Body of Revolution in an Axial Airstream

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1956-01-01

    We have set ourselves the problem of calculating the laminar flow on a body of revolution in an axial flow which simultaneously rotates about its axis. The problem mentioned above, the flow about a rotating disk in a flow, which we solved some time ago, represents the first step in the calculation of the flow on the rotating body of revolution in a flow insofar as, in the case of a round nose, a small region about the front stagnation point of the body of revolution may be replaced by its tangential plane. In our problem regarding the rotating body of revolution in a flow, for laminar flow, one of the limiting cases is known: that of the body which is in an axial approach flow but does not rotate. The other limiting case, namely the flow in the neighborhood of a body which rotates but is not subjected to a flow is known only for the rotating circular cylinder, aside from the rotating disk. In the case of the cylinder one deals with a distribution of the circumferential velocity according to the law v = omega R(exp 2)/r where R signifies the cylinder radius, r the distance from the center, and omega the angular velocity of the rotation. The velocity distribution as it is produced here by the friction effect is therefore the same as in the neighborhood of a potential vortex. When we treat, in what follows, the general case of the rotating body of revolution in a flow according to the calculation methods of Prandtl's boundary-layer theory, we must keep in mind that this solution cannot contain the limiting case of the body of revolution which only rotates but is not subjected to a flow. However, this is no essential limitation since this case is not of particular importance for practical purposes.

  15. Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines

    NASA Technical Reports Server (NTRS)

    Sharma, Om P.; Stetson, Gary M.; Daniels, William A,; Greitzer, Edward M.; Blair, Michael F.; Dring, Robert P.

    1997-01-01

    Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing.

  16. Numerical predictions of the turbulent cavitating flow around a marine propeller and an axial turbine

    NASA Astrophysics Data System (ADS)

    Morgut, M.; Jošt, D.; Nobile, E.; Škerlavaj, A.

    2015-12-01

    The numerical predictions of cavitating flow around a marine propeller working in non-uniform inflow and an axial turbine are presented. The cavitating flow is modelled using the homogeneous (mixture) model. Time-dependent simulations are performed for the marine propeller case using OpenFOAM. Three calibrated mass transfer models are alternatively used to model the mass transfer rate due to cavitation and the two-equation SST (Shear Stress Transport) turbulence model is employed to close the system of the governing equations. The predictions of the cavitating flow in an axial turbine are carried out with ANSYS-CFX, where only the native mass transfer model with tuned parameters is used. Steady-state simulations are performed in combination with the SST turbulence model, while time-dependent results are obtained with the more advanced SAS (Scale Adaptive Simulation) SST model. The numerical results agree well with the available experimental measurements, and the simulations performed with the three different calibrated mass transfer models are close to each other for the propeller flow. Regarding the axial turbine the effect of the cavitation on the machine efficiency is well reproduced only by the time dependent simulations.

  17. Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery

    NASA Astrophysics Data System (ADS)

    Zaman, Akbar; Ali, Nasir; Sajid, M.

    2016-01-01

    Slip effects on unsteady non-Newtonian blood hydro-magnetic flow through an inclined catheterized overlapping stenotic artery are analyzed. The constitutive equation of power law model is employed to simulate the rheological characteristics of the blood. The governing equations giving the flow derived by assuming the flow to be unsteady and two-dimensional. Mild stenosis approximation is employed to obtain the reduced form of the governing equations. Finite difference method is employed to obtain the solution of the non-linear partial differential equation in the presence of slip at the surface. An extensive quantitative analysis is performed for the effects of slip parameter, Hartmann number, cathetered parameter and arterial geometrical parameters of stenosis on the quantities of interest such as axial velocity, flow rate, resistance impedance and wall shear stress. The streamlines for the blood flow through the artery are also included.

  18. Methods for the calculation of axial wave numbers in lined ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1981-01-01

    A survey is made of the methods available for the calculation of axial wave numbers in lined ducts. Rectangular and circular ducts with both uniform and non-uniform flow are considered as are ducts with peripherally varying liners. A historical perspective is provided by a discussion of the classical methods for computing attenuation when no mean flow is present. When flow is present these techniques become either impractical or impossible. A number of direct eigenvalue determination schemes which have been used when flow is present are discussed. Methods described are extensions of the classical no-flow technique, perturbation methods based on the no-flow technique, direct integration methods for solution of the eigenvalue equation, an integration-iteration method based on the governing differential equation for acoustic transmission, Galerkin methods, finite difference methods, and finite element methods.

  19. High-resolution mapping of the 1998 lava flows at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.

    2011-12-01

    Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has

  20. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1980-01-01

    The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.

  1. Inlet Flow Test Calibration for a Small Axial Compressor Facility. Part 1: Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1994-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. The inlet region consisted of a long flowpath region with two series of support struts and a flapped inlet guide vane. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the inlet for a highly loaded two-stage axial compressor test. Several flow conditions and IGV angle settings were established in which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. A detailed discussion of the flowpath design along with a summary of the experimental results are provided in Part 1.

  2. Caffeine reduces myocardial blood flow during exercise.

    PubMed

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes. PMID:23764265

  3. Laser Doppler flowmetry: reproducibility, reliability, and diurnal blood flow variations.

    PubMed

    Roeykens, Herman J J; Deschepper, Ellen; De Moor, Roeland J G

    2016-08-01

    The aim of this investigation was (1) to evaluate the reliability of laser Doppler flowmetry (LDF) taking into consideration the use of a silicone splint and the inclination of the probe towards the buccal surface of a human tooth and (2) to determine whether diurnal variations of pulpal blood flow can be registered by means of LDF. Forty-one splints were made by one and the same principal investigator for the registration of pulpal blood flow in vivo in a maxillary right central incisor. Thirty dentists, without experience in LDF recording, were then asked to drill a right-angled shaft in a pre-manufactured splint with a referral point at 2 mm from the enamel-cement border central on the buccal surface of the right central upper incisor. The remaining 11 splints were handled by the principal investigator. The shafts in the 30 splints were analysed using Cone Beam CT imaging of the axial and sagittal angles and compared these to the 11 shafts prepared by the trained principal investigator. LDF was recorded for 90 s in each splint and statistically analysed. LDF values without the use of a splint were statistically significantly different (p < 0.05) and the variance was greater, indicating the superiority of splint use. Significant diurnal variations on LDF values were observed, indicating that special attention should be paid to registration during the day, especially when multiple measurements are to be compared. PMID:27184153

  4. Deterministic Aperiodic Sickle Cell Blood Flows

    NASA Astrophysics Data System (ADS)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  5. Myocardial blood flow: Roentgen videodensitometry techniques

    NASA Technical Reports Server (NTRS)

    Smith, H. C.; Robb, R. A.; Wood, E. H.

    1975-01-01

    The current status of roentgen videodensitometric techniques that provide an objective assessment of blood flow at selected sites within the coronary circulation were described. Roentgen videodensitometry employs conventional radiopaque indicators, radiological equipment and coronary angiographic techniques. Roentgen videodensitometry techniques developed in the laboratory during the past nine years, and for the past three years were applied to analysis of angiograms in the clinical cardiac catheterization laboratory.

  6. Flow visualization for investigating stator losses in a multistage axial compressor

    NASA Astrophysics Data System (ADS)

    Smith, Natalie R.; Key, Nicole L.

    2015-05-01

    The methodology and implementation of a powder-paint-based flow visualization technique along with the illuminated flow physics are presented in detail for application in a three-stage axial compressor. While flow visualization often accompanies detailed studies, the turbomachinery literature lacks a comprehensive study which both utilizes flow visualization to interrupt the flow field and explains the intricacies of execution. Lessons learned for obtaining high-quality images of surface flow patterns are discussed in this study. Fluorescent paint is used to provide clear, high-contrast pictures of the recirculation regions on shrouded vane rows. An edge-finding image processing procedure is implemented to provide a quantitative measure of vane-to-vane variability in flow separation, which is approximately 7 % of the suction surface length for Stator 1. Results include images of vane suction side corner separations from all three stages at three loading conditions. Additionally, streakline patterns obtained experimentally are compared with those calculated from computational models. Flow physics associated with vane clocking and increased rotor tip clearance and their implications to stator loss are also investigated with this flow visualization technique. With increased rotor tip clearance, the vane surface flow patterns show a shift to larger separations and more radial flow at the tip. Finally, the effects of instrumentation on the flow field are highlighted.

  7. Enhanced capabilities and updated users manual for axial-flow turbine preliminary sizing code TURBAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    Several modifications have been made to the axial-flow turbine preliminary sizing code TURBAN. Turbine cooling has been added to the analysis. New alternative input options allow direct specification of stage reaction, stage work factor, and stage work split. The Reynolds number loss dependency was modified and an internal calculation of air viscosity was added. A complete description of input and output along with sample cases are included.

  8. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  9. Effect of argon on the performance of a fast-axial flow CO2 laser

    NASA Astrophysics Data System (ADS)

    Jelvani, S.; Amiri, Kh; Pazokian, H.; Montazerolghaem, M.; Mollabashi, M.; Naeimi, S. A.; Esmaeilpour, D.

    2011-01-01

    The performance characteristics of a fast-axial flow (FAF) cw CO2 laser are described. The dependences of the output power, efficiency, and discharge voltage on the discharge current of a FAF cw CO2 laser with optimised composition of the CO2:N2:He=1:4.4:7.6 gas mixture with a small amount of argon are studied experimentally at two pressures of 50 and 60 mbar in open and closed cycle regimes of the laser system.

  10. Rotor whirl forces induced by the tip clearance effect in axial flow compressors

    SciTech Connect

    Ehrich, F. )

    1993-10-01

    It is now widely recognized that destabilizing forces, tending to generate forward rotor whirl, are generated in axial flow turbines as a result of the nonuniform torque induced by the nonuniform tip-clearance in a deflected rotor--the so called Thomas/Alford force. It is also recognized that there will be a similar effect in axial flow compressors, but qualitative considerations cannot definitively establish the magnitude or even the direction of the induced whirling forces--that is, if they will tend to forward or backward whirl. Applying a parallel compressor model to simulate the operation of a compressor rotor deflected radially in its clearance, it is possible to derive a quantitative estimate of the proportionality factor [beta] which relates the Thomas/Alford force in axial flow compressors (i.e., the tangential force generated by a radial deflection of the rotor) to the torque level in the compressor. The analysis makes use of experimental data from the GE Aircraft Engines Low Speed Research Compressor facility comparing the performance of three different axial flow compressors, each with four stages (typical of a mid-block of an aircraft gas turbine compressor) at two different clearances. It is found that the value of [beta] is in the range of +0.27 to [minus]0.71 in the vicinity of the stages' nominal operating line and +0.08 to [minus]1.25 in the vicinity of the stages' operation at peak efficiency. The value of [beta] reaches a level of between [minus]1.16 and [minus]3.36 as the compressor is operated near its stalled condition.

  11. Gender Differences in Ocular Blood Flow

    PubMed Central

    Schmidl, Doreen; Garhöfer, Gerhard; Popa-Cherecheanu, Alina

    2015-01-01

    Gender medicine has been a major focus of research in recent years. The present review focuses on gender differences in the epidemiology of the most frequent ocular diseases that have been found to be associated with impaired ocular blood flow, such as age-related macular degeneration, glaucoma and diabetic retinopathy. Data have accumulated indicating that hormones have an important role in these diseases, since there are major differences in the prevalence and incidence between men and pre- and post-menopausal women. Whether this is related to vascular factors is, however, not entirely clear. Interestingly, the current knowledge about differences in ocular vascular parameters between men and women is sparse. Although little data is available, estrogen, progesterone and testosterone are most likely important regulators of blood flow in the retina and choroid, because they are key regulators of vascular tone in other organs. Estrogen seems to play a protective role since it decreases vascular resistance in large ocular vessels. Some studies indicate that hormone therapy is beneficial for ocular vascular disease in post-menopausal women. This evidence is, however, not sufficient to give any recommendation. Generally, remarkably few data are available on the role of sex hormones on ocular blood flow regulation, a topic that requires more attention in the future. PMID:24892919

  12. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  13. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  14. Large-eddy simulations of a flexible cylinder in axial flow

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Balaras, Elias; Bardet, Philippe

    2015-11-01

    A slender cylinder immersed in axial flow shows different behavior for different flow and material properties. Several studies have pointed to the importance of the dimensionless velocity, U = (ρA / EI)0.5Uo D , relating the fluid and structural inertia. However, it is not clear how this behavior changes for different Reynolds numbers and flow regimes, while keeping U constant. In this study a slender cylinder immersed in axial flow is considered as an one-dimensional beam. The fluid-structure interaction is simulated using an immersed-boundary method for a series of Re numbers. A non-linear Euler-Bernouli hypothesis is utilized to account for the deflection and rotation of the cylinder. It is observed that for small dimensionless velocities the cylinder oscillates with small amplitude around its axis. Increasing U results in buckling of the cylinder. For higher U beam looses its quasi steady buckled state and flutters. It is investigated that how this behavior changes for different Re and different flow regimes (laminar vs turbulent boundary layers). Overall buckling occurs at higher U at laminar flow conditions. The results are in agreement both qualitatively and quantitatively with experiments in the literature.

  15. Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Braunscheidel, Edward P.

    2006-01-01

    Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.

  16. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  17. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  18. Computation of the viscous supersonic flow over symmetrical and asymmetrical external axial corners

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Pulliam, T. H.; Vigneron, Y. C.

    1978-01-01

    The primary objective of the reported investigation is the computational verification of the experimental results obtained by Salas and Daywitt (1978). Two existing computer codes were used to compute the supersonic flow field surrounding the external axial corner. For the inviscid and turbulent flow results, the unsteady, three-dimensional implicit code of Pulliam and Steger (1978) was used. For the laminar flow results, the unsteady two-dimensional explicit procedure of Vigneron et al. (1977) was employed. Inviscid solutions for a symmetric configuration with a rounded corner resulted in either single or triple surface crossflow stagnation point flows, depending on the corner radius. Numerical results obtained for the same symmetric configuration tested experimentally show the crossflow in the vicinity of the corner to be away from the corner and thus in agreement with the experimental oil flow results.

  19. Numerical Prediction of Transient Axial Thrust and Internal Flows in a Rocket Engine Turbopump

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine; Bailey, John W.; Majumdar, Alok

    1999-01-01

    This paper presents the application of the Generalized Fluid System Simulation Program (GFSSP) to model the time-dependent flow in a complex secondary flow circuit of the turbopump of the Fastrac engine currently under development at Marshall Space Flight Center. GFSSP is a general purpose computer program for analyzing steady-state and time-dependant flowrates, pressures, temperatures, and concentrations in a complex flow network. The program employs a finite volume formulation of mass, momentum and energy conservation equations in conjunction with the thermodynamic equation of state of real fluids. GFSSP was used to calculate the axial thrust and internal flow distribution of the Fastrac engine turbopump during the start and shut down transients. The models discussed in this paper use boundary conditions that were extracted from turbopump test data. The GFSSP predicted turbopump secondary flow passage pressures and temperatures were compared with actual measured values.

  20. Restoring Blood Flow Beats Exercise for Poor Leg Circulation

    MedlinePlus

    ... news/fullstory_158683.html Restoring Blood Flow Beats Exercise for Poor Leg Circulation Opening vessels could prevent ... restore blood flow may have greater benefits than exercise, preliminary research suggests. People with peripheral artery disease ( ...

  1. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. PMID:26071649

  2. Discrete frequency noise and its reduction in small axial-flow fans

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. M.

    1982-03-01

    The discrete frequency noise radiated from representative types of axial-flow fans used in electronic equipment is studied in detail. Narrowband analysis of the discrete frequency noise radiated by these types of fans has been conducted in a free-field environment. The far-field sound pressure level, radiated directivity, and total radiated power of the discrete frequency noise is presented. The influence of operating point on the sound radiated from the fans is determined. The discrete frequency noise dominates the characteristic acoustic spectra at high flow coefficients.

  3. CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine

    NASA Astrophysics Data System (ADS)

    Surwilo, Jan; Lampart, Piotr; Szymaniak, Mariusz

    2015-10-01

    Basic operational advantages of the Organic Rankine Cycle (ORC) systems and specific issues of turbines working in these systems are discussed. The strategy for CFD simulation of the considered ORC turbine and the main issues of the numerical model are presented. The method of constructing the 3D CAD geometry as well as discretisation of the flow domain are also shown. Main features of partial admission flow in the multi-stage axial turbine are discussed. The influence of partial admission on the working conditions of the subsequent stage supplied at the full circumference is also described.

  4. Numerical simulation of high-swirl flow in axial turbine stage

    NASA Astrophysics Data System (ADS)

    Straka, Petr

    2016-03-01

    This article deals with numerical modelling of flow in an axial turbine stage with prismatic blades which are not equipped with shroud. In this case flow through a radial gap above and below ends of blades leads to generation of strong secondary vortices which significantly affect an effciency of the stage. The main attention is paid to turbulence modelling. Besides a linear model based on Boussinesq approximation a nonlinear model based on higher order closure formula is used. Also an effect of a curvature correction is taken into account.

  5. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  6. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  7. Rapid manufacturing techniques in the development of an axial blood pump impeller.

    PubMed

    Chan, W K; Wong, Y W; Chua, C K; Lee, C W; Feng, C

    2003-01-01

    This paper presents a comparison of manufacturing techniques used in the development of an axial blood pump impeller. In this development process the impeller was designed and its performance was evaluated with the aid of computational fluid dynamics (CFD). Prototypes of those designs where the CFD results show promise were needed in sufficient quantities at a low cost for experimental validation of the CFD results. As the impeller is less than 16 mm in diameter with a maximum blade thickness of about 1.5 mm, innovative manufacturing techniques are explored in this paper to determine the best process for quick fabrication of prototypes that are dimensionally accurate, structurally robust and low in cost. Four rapid prototyping techniques were explored. The completed parts were compared on the basis of manufacturing time, quality and strength of parts obtained, manufacturing cost and also in vitro performances. Based on these studies, it was concluded that selective laser sintering (SLS) is the most appropriate method for the quick production of prototype parts for evaluation of pump performance. PMID:14702984

  8. Gender differences in regional cerebral blood flow

    SciTech Connect

    Gur, R.E.; Gur, R.C. )

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined.

  9. Foetal placental blood flow in the lamb

    PubMed Central

    Faber, J. Job; Green, Thomas J.

    1972-01-01

    1. Fifteen sheep foetuses of 1·5-5·2 kg body weight were prepared with indwelling arterial and venous catheters for experimentation one to six days later. 2. Unanaesthetized foetuses were found to have mean arterial and central venous blood pressures of 40 ± 1·5 (S.E. of mean) and 2·0 ± 0·3 (S.E. of mean) mm Hg respectively, compared to intra-uterine pressure. Intra-uterine pressure was 16 ± 0·8 (S.E. of mean) mm Hg with respect to atmospheric pressure at mid-uterine level. 3. Mean placental blood flow of the foetuses was 199 ± 20 (S.E. of mean) ml./(min.kg body wt.). Mean cardiac output in eleven of the foetuses was 658 ± 102 (S.E. of mean) ml./(min.kg). 4. Mean foetal and maternal colloid osmotic pressures were 17·5 ± 0·7 (S.E. of mean) and 20·5 ± 0·6 (S.E. of mean) mm Hg respectively at 38° C. 5. Intravenous infusions into six ewes of 1·8 mole of mannitol and 0·4 mole of NaCl resulted in significant increases in foetal plasma osmolarity, sodium, potassium, and haemoglobin concentrations, without detectable transfer of mannitol to the foetal circulation. 6. In the sheep placenta there is osmotic and hydrostatic equilibration of water. As a consequence, there should be an interaction between foetal placental blood flow and foetal water exchange with the maternal circulation. It was concluded that this interaction tends to stabilize foetal placental blood flow. PMID:5039279

  10. Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel.

    PubMed

    Ali, N; Zaman, A; Sajid, M; Nieto, J J; Torres, A

    2015-11-01

    The unsteady flow characteristics of blood in a catheterized overlapping stenosed artery are analyzed in presence of body acceleration and magnetic field. The stenosed arterial segment is modeled as a rigid constricted tube. An improved shape of stenosis in the realm of the formulation of the arterial narrowing caused by atheroma is integrated in the present study. The catheter inside the artery is approximated by a thin rigid tube of small radius while the streaming blood in the artery is characterized by the Carreau model. Employing mild stenosis condition, the governing equation of the flow is derived which is then solving numerically using finite difference scheme. The variation of axial velocity, flow rate, resistance impendence and wall shear stress is shown graphically for various parameters of interest. The flow patterns illustrating the global behavior of blood are also presented. PMID:26361287

  11. Unsteady Flow in Stenotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy L.; Devi Williamson, Shobha; Berger, Stanley A.; Saloner, David

    2003-11-01

    Recent studies show that many heart attacks and strokes occur from sudden rupture of partially occluding atherosclerotic plaque rather than total vessel occlusion. Our goal is to understand how the mechanical forces induced by blood flow on specific plaque deposits makes them vulnerable to rupture. Models of severely stenotic carotid bifurcations are created from MR images and grids generated for the flow domains. The three-dimensional, unsteady, incompressible Navier-Stokes equations in finite-volume form are solved numerically using physiological boundary conditions. During systole a high velocity jet forms at the stenotic throat in one of the branches, and a long recirculation zone is observed downstream of the plaque. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady with chaotic streamlines. Whereas flow in healthy arteries is laminar, irregular geometries and sharp changes in vessel diameter of a severely stenotic artery significantly disrupt the flow, with consequences for shear and normal wall stresses at the wall, and important implications for plaque stability. Supported by NIH Grant HL61823

  12. Nonlinear stability of cylindrical shells subjected to axial flow: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Karagiozis, K. N.; Païdoussis, M. P.; Amabili, M.; Misra, A. K.

    2008-01-01

    This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid-structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.

  13. Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model

    SciTech Connect

    Sugiharto; Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Abidin, Zainal

    2010-12-23

    Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.

  14. Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model

    NASA Astrophysics Data System (ADS)

    Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Abidin, Zainal

    2010-12-01

    Radioactive tracer 82Br in the form of KBr-82 with activity ± 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.

  15. Regional cerebral blood flow in childhood headache

    SciTech Connect

    Roach, E.S.; Stump, D.A.

    1989-06-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical.

  16. Differentiation of abnormal blood flow patterns in coronary arteries based on Doppler catheter recordings.

    PubMed

    Denardo, S J; Yock, P G; Hargrave, V K; Srebro, J P; Ports, T A; Talbot, L

    1991-09-01

    Abnormal arterial blood flow patterns have been implicated as etiologic factors in thrombosis and atherosclerosis. Intravascular pulsed Doppler ultrasound techniques with fast-Fourier transform analysis offer the opportunity to measure these abnormalities. The authors hypothesized that statistical analysis of radial-directed beam spectra could be used to distinguish disturbed from non-disturbed flow and that analysis of conventional axial-directed beam spectra could then be used to distinguish laminar high-shear from laminar low-shear flow. They developed a scaled-up in-vitro model of coronary flow consisting of a glycerol/H2O test fluid flowing through an acrylic cylinder at Reynolds numbers spanning the typical physiologic range within the coronary arteries. A scaled-up Doppler catheter with the capacity for 90 degrees reflection of the beam was placed centrally. Disturbed flow was created by introducing a flow screen, and altered shear rates were produced by changing the Reynolds number. For the radial-directed beam studies, the coefficients of variation of the Doppler spectra for the disturbed flow states were significantly greater than for the nondisturbed flow states (p less than 0.01). For the axial-directed beam studies, the coefficients of variation of the Doppler spectra for the laminar high-shear flow states were significantly greater than for the laminar low-shear flow states (p less than 0.01). They conclude that abnormal blood flow patterns can be differentiated by the selective use of radial-directed and axial-directed Doppler catheter recordings. PMID:1928812

  17. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1974-01-01

    The effort conducted to gather additional understanding of the complex inviscid and viscid effects existing within the passages of a three-bladed axial flow inducer operating at a flow coefficient of 0.065 is summarized. The experimental investigations included determination of the blade static pressure and blade limiting streamline angle distributions, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. Analytical investigations were conducted to predict the three-dimensional inviscid flow in the inducer by numerically solving the exact equations of motion, and to approximately predict the three-dimensional viscid flow by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate.

  18. Renal pericytes: regulators of medullary blood flow

    PubMed Central

    Kennedy-Lydon, T M; Crawford, C; Wildman, S S P; Peppiatt-Wildman, C M

    2013-01-01

    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla. PMID:23126245

  19. Integrative regulation of human brain blood flow

    PubMed Central

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-01-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  20. Integrative regulation of human brain blood flow.

    PubMed

    Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N

    2014-03-01

    Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059

  1. Experimental investigation of the flow in a simplified model of water lubricated axial thrust bearing

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Riedelbauch, S.

    2014-03-01

    In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.

  2. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  3. Laser anemometer measurements in a transonic axial-flow fan rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, Anthony J.; Wood, Jerry R.; Hathaway, Michael D.; Suder, Kenneth L.

    1989-01-01

    Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.

  4. Axial Green’s function method for steady Stokes flow in geometrically complex domains

    NASA Astrophysics Data System (ADS)

    Jun, Sukky; Kim, Do Wan

    2011-03-01

    Axial Green's function method (AGM) is developed for the simulation of Stokes flow in geometrically complex solution domains. The AGM formulation systematically decomposes the multidimensional steady-state Stokes equations into 1D forms. The representation formula for the solution variables can then be derived using the 1D Green's functions only, from which a system of 1D integral equations is obtained. Furthermore, the explicit representation formula for the pressure variable enable the unique AGM approach to facilitating the stabilization issue caused by the saddle structure between velocity and pressure. The convergence of numerical solutions, the simple axial discretization of complex solution domains, and the nature of integral schemes are demonstrated through a variety of numerical examples.

  5. Preliminary Analysis of Axial-Flow Compressors Having Supersonic Velocity at the Entrance of the Stator

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1949-01-01

    A supersonic compressor design having supersonic velocity at the entrance of the stator is analyzed on the assumption of two-dimensional flow. The rotor and stator losses assumed in the analysis are based on the results of preliminary supersonic cascade tests. The results of the analysis show that compression ratios per stage of 6 to 10 can be obtained with adiabatic efficiency between 70 and 80 percent. Consideration is also given in the analysis to the starting, stability, and range of efficient performance of this type of compressor. The desirability of employing variable-geometry stators and adjustable inlet guide vanes is indicated. Although either supersonic or subsonic axial component of velocity at the stator entrance can be used, the cascade test results suggest that higher pressure recovery can be obtained if the axial component is supersonic.

  6. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  7. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  8. Turbulent flow and pressure fluctuation prediction of the impeller in an axial-flow pump based on LES

    NASA Astrophysics Data System (ADS)

    Shen, J. F.; Li, Y. J.; Liu, Z. Q.; Tang, X. L.

    2013-12-01

    The Large Eddy Simulation method with sliding mesh technique has been used for analyzing the unsteady flow in an axial-flow pump at five different flow rates. The tip leakage flow in the tip-gap region and the pressure pulsations on the blade surface were examined. The results indicate that the agreement between predicted pump performance and experimental data was reasonably good. The dominate tip-leakage vortex(TLV) extended to the pressure side of the neighboring blade for all five investigated flow rates. As the flow rate increases from 0.7Qd to 1.2Qd, the angle between the dominate TLV and the blade reduced from 20 deg to 14 deg. The results also showed that the amplitude of pressure fluctuation on the near-tip zone of the blade surface increases as the flow rate farer from the design flow rate, especially on the pressure side of the blade. At the 0.7Qd operation condition, the pressure fluctuation amplitude of the monitoring point PP3 (at the near-tip zone on the pressure side of the blade close to the blade leading edge) was 8.5 times of the one at design flow rate, and the high-frequency(18fr) pulsation occurred due to tip leakage vortex. When the flow rate was more than 1.0Qd, the pressure fluctuations of PP3 was dominated by the rotation frequency(fr).

  9. Cerebral blood flow in humans following resuscitation from cardiac arrest

    SciTech Connect

    Cohan, S.L.; Mun, S.K.; Petite, J.; Correia, J.; Tavelra Da Silva, A.T.; Waldhorn, R.E.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage.

  10. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  11. Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice

    PubMed Central

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K

    2012-01-01

    We present a novel application of optical microangiography (OMAG) imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image the posterior segment of eyes in mice. By applying an OMAG algorithm to extract the moving blood flow signals out of the background tissue, we are able to provide true capillary level imaging of the retinal and choroidal vasculature. The microvascular patterns within different retinal layers are presented. An en face Doppler OCT approach [Srinivasan et al., Opt Express 18, 2477 (2010)] was adopted for retinal blood flow measurement. The flow is calculated by integrating the axial blood flow velocity over the vessel area measured in an en face plane without knowing the blood vessel angle. Total retinal blood flow can be measured from both retinal arteries and veins. The results indicate that OMAG has the potential for qualitative and quantitative evaluation of the microcirculation in posterior eye compartments in mouse models of retinopathy and neovascularization. PMID:23162733

  12. Effects of vasoactive stimuli on blood flow to choroid plexus

    SciTech Connect

    Faraci, F.M.; Mayhan, W.G.; Williams, J.K.; Heistad, D.D. )

    1988-02-01

    The goal of this study was to examine effects of vasoactive stimuli on blood flow to choroid plexus. The authors used microspheres to measure blood flow to choroid plexus and cerebrum in anesthetized dogs and rabbits. A critical assumption of the microsphere method is that microspheres do not pass through arteriovenous shunts. Blood flow values obtained with simultaneous injection of 15- and 50-{mu}m microspheres were similar, which suggest that shunting of 15-{mu}m microspheres was minimal. Blood flow to choroid plexus under control conditions was 287 {plus minus} 26 (means {plus minus} SE) ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} in dogs and 385 {plus minus} 73 ml {center dot} min{sup {minus}1} 100 g{sup {minus}1} in rabbits. Consecutive measurements under control conditions indicated that values for blood flow are reproducible. Adenosine did not alter blood flow to cerebrum but increased blood flow to choroid plexus two- to threefold in dogs and rabbits. Norepinephrine and phenylephrine did not affect blood flow to choroid plexus and cerebrum but decreased blood flow to choroid plexus by {approx} 50%. The authors suggest that (1) the microsphere method provides reproducible valid measurements of blood flow to the choroid plexus in dogs and rabbits and (2) vasoactive stimuli may have profoundly different effects on blood flow to choroid plexus and cerebrum.

  13. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  14. Application of radial-equilibrium condition to axial-flow compressor and turbine design

    NASA Technical Reports Server (NTRS)

    Wu, Chung-Hua; Wolfenstein, Lincoln

    1950-01-01

    Basic general equations governing the three-dimensional compressible flow of gas through a compressor or turbine are given in terms of total enthalpy, entropy, and velocity components of the gas. Two methods of solution are obtained for the simplified, steady axially symmetric flow; one involves the use of a number of successive planes normal to the axis of the machine and short distances apart, and the other involves only three stations for a stage in which an appropriate radial-flow path is used. Methods of calculation for the limiting cases of zero and infinite blade aspect ratios and an approximate method of calculation for finite blade aspect ratio are also given. In these methods, the blade loading and the shape of the annular passage wall may be arbitrarily specified.

  15. Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Culley, Dennis E.; Zaman, Khairul B.M.Q.

    2008-01-01

    Flow control using synthetic jet injection has been applied in a low speed axial compressor. The synthetic jets were applied from the suction surface of a stator vane via a span-wise row of slots pitched in the streamwise direction. Actuation was provided externally from acoustic drivers coupled to the vane tip via flexible tubing. The acoustic resonance characteristics of the system, and the resultant jet velocities were obtained. The effects on the separated flow field for various jet velocities and frequencies were explored. Total pressure loss reductions across the vane passage were measured. The effect of synthetic jet injection was shown to be comparable to that of pulsatory injection with mass addition for stator vanes which had separated flow. While only a weak dependence of the beneficial effect was noted based on the excitation frequency, a strong dependence on the amplitude was observed at all frequencies.

  16. Blood-Flow Magnetic Resonance Imaging of Retinal Degeneration

    PubMed Central

    Li, Yingxia; Cheng, Haiying; Shen, Qiang; Kim, Moon; Thule, Peter M; Olson, Darin E; Pardue, Machelle T; Duong, Timothy Q

    2009-01-01

    Purpose To investigate quantitative basal blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas of the Royal-College-of-Surgeons (RCS) rats with spontaneous retinal degeneration and to compare with those of normal rat retinas. Methods Experiments were performed on male RCS rats at post-natal day P90 (n=4), P220 (n=5) and age-matched controls at P90 (n=7) and P220 (n=6). Hyperoxic (100% O2) and hypercapnic (5% CO2, 21% O2, balance N2) challenges were used to modulate blood flow. Quantitative baseline blood flow, hypercapnia- and hyperoxia-induced blood-flow changes in the retinas were imaged using continuous arterial-spin-labeling magnetic resonance imaging at 90×90×1500 μm. Results In the normal rat retinas, basal blood flow was 5.5ml/gram/min, significantly higher than those reported in the brain (∼1ml/gram/min). Hyperoxia decreased blood flow due to vasoconstriction and hypercapnia increased blood flow due to vasodilation in the normal retinas. In the RCS rat retinas, basal blood flow was diminished significantly (P<0.05). Interestingly, absolute hyperoxia- and hypercapnia-induced blood-flow changes in the RCS retinas were not statistically different from those in the normal retinas (P>0.05). However, percent changes in blood-flow were significantly larger than in normal retinas due to lower basal blood flow. Conclusion Retinal degeneration markedly reduces basal blood-flow but does not appear to impair vascular reactivity. These data also suggest caution when interpreting the relative stimulus-evoked functional MRI changes in diseased states where basal parameters are significantly perturbed. Quantitative blood-flow MRI may serve as a valuable tool to study the retina without depth limitation. PMID:18952917

  17. Cerebral blood flow tomography with xenon-133

    SciTech Connect

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  18. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria. PMID:26738932

  19. Tests of a 2-Stage, Axial-Flow, 2-Phase Turbine

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A two phase flow turbine with two stages of axial flow impulse rotors was tested with three different working fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen and water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam and water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen and water and Refrigerant 22 were 86 percent of theoretical. At that fraction of theoretical, the efficiencies of optimized two phase turbines would be in the low 60 percent range with organic working fluids and in the mid 50 percent range with steam and water. The recommended turbine design is a two stage axial flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.

  20. Extension of Useful Operating Range of Axial-Flow Compressors by Use of Adjustable Stator Blades

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Voss, William J

    1948-01-01

    A theory has been developed for resetting the blade angles of an axial-flow compressor in order to improve the performance at speeds and flows other than the design and thus extend the useful operating range of the compressor. The theory is readily applicable to the resetting of both rotor and stator blades or to the resetting of only the stator blades and is based on adjustment of the blade angles to obtain lift coefficients at which the blades will operate efficiently. Calculations were made for resetting the stator blades of the NACA eight-stage axial-flow compressor for 75 percent of design speed and a series of load coefficients ranging from 0.28 to 0.70 with rotor blades left at the design setting. The NACA compressor was investigated with three different blade settings: (1) the design blade setting, (2) the stator blades reset for 75 percent of design speed and a load coefficient of 0.48, and (3) the stator blades reset for 75 percent of design speed and a load coefficient of 0.65.

  1. Global design optimization for an axial-flow tandem pump based on surrogate method

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  2. Analysis of effect of basic design variables on subsonic axial-flow-compressor performance

    NASA Technical Reports Server (NTRS)

    Sinnette, John T , Jr

    1948-01-01

    A blade-element theory for axial-flow compressors has been developed and applied to the analysis of the effects of basic design variables such as Mach number, blade loading, and velocity distribution on compressor performance. A graphical method that is useful for approximate design calculations is presented. The relations among several efficiencies useful in compressor design are derived and discussed. The possible gains in useful operating range obtainable by the use of adjustable stator blades are discussed and a rapid approximate method of calculating blade-angle resettings is shown by an example. The relative Mach number is shown to be a dominant factor in determining the pressure ratio.

  3. Analytical modeling of the buffeting of a rod in axial flow. [PWR; BWR

    SciTech Connect

    Lin, W.H.; Wamsganss, M.W.

    1981-12-01

    Turbulent buffeting of a circular, flexible rod in axial flows is reported. The main excitation mechanisms are turbulent wall-pressure fluctuations and the motion-dependent force field caused by the rod motion. On the assumption that the turbulent wall-pressure fluctuations are independent of rod motion, a linear forced vibration model is proposed to compute the buffeting displacement of the rod with the aid of empirical constants determined from experimental measurements of wall-pressure fluctuations. Predicted and measured values of the root-mean-square rod displacement are shown to be in reasonably good agreement.

  4. Preliminary compressor design study for an advanced multistage axial flow compressor

    NASA Technical Reports Server (NTRS)

    Marman, H. V.; Marchant, R. D.

    1976-01-01

    An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.

  5. Rotor whirl forces induced by the tip clearance effect in axial flow compressors

    NASA Astrophysics Data System (ADS)

    Ehrich, F.

    1993-10-01

    It is now widely recognized that destabilizing forces, tending to generate forward rotor whirl, are generated in axial flow turbines as a result of the nonuniform torque induced by the nonuniform tip-clearance in a deflected rotor-the so called Thomas/Alford force (Thomas, 1958, and Alford, 1965). It is also recognized that there will be a similar effect in axial flow compressors, but qualitative considerations cannot definitively establish the magnitude or even the direction of the induced whirling forces-that is, if they will tend to forward or backward whirl. Applying a 'parallel compressor' model to simulate the operation of a compressor rotor deflected radially in its clearance, it is possible to derive a quantitative estimate of the proportionality factor which relates the Thomas/Alford force in axial flow compressors (i.e., the tangential force generated by a radial deflection of the rotor) to the torque level in the compressor. The analysis makes use of experimental data from the GE Aircraft Engines Low Speed Research Compressor facility comparing the performance of three different axial flow compressors, each with four stages (typical of a mid-block of an aircraft gas turbine compressor) at two different clearances (expressed as a percent of blade length) - CL/L = 1.4 percent and CL/L = 2.8 percent. It is found that the value of Beta is in the range of + 0.27 to - 0.71 in the vicinity of the stages' nominal operating line and + 0.08 to - 1.25 in the vicinity of the stages' operation at peak efficiency. The value of Beta reaches a level of between - 1.16 and - 3.36 as the compressor is operated near its stalled condition. The final result bears a very strong resemblance to the correlation obtained by improvising a normalization of the experimental data of Vance and Laudadio (1984) and a generic relationship to the analytic results of Colding-Jorgensen (1990).

  6. Comparison between optical measurements and a numerical solution of the flow field within a transonic axial-flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.; Chima, R. V.

    1980-01-01

    A comparison between numerical and experimental results is presented for the flowfield within a transonic axial-flow compressor rotor. The rotor was tested at design speed and a wide open throttle discharge condition. The relative tip Mach number was 1.4. A laser anemometer system was used to measure velocity and flow angle upstream, within, and downstream of the rotor. A holographic interferometer was used to visualize the rotor shock system near the tip. The computational procedure solves the full three-dimensional Euler equations using a time-marching technique. Shock location and shape determined from the two optical systems are compared. Calculated relative Mach number and flow angle contours, shock locations, and shock strength are compared to values measured with the laser anemometer.

  7. An experimental study on the effects of tip clearance on flow field and losses in an axial flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zhang, J.; Murthy, K. N. S.

    1987-01-01

    Detailed measurement of the flow field in the tip region of a compressor rotor was carried out using a Laser Doppler Velocimeter (LDV) and a Kiel probe at two different tip clearance heights. At both clearance sizes, the relative stagnation pressure and the axial and tangential components of relative velocities were measured upstream, inside the passage and downstream of the rotor, up to about 20 percent of the blade span from the annulus wall. The velocities, outlet angles, losses, momentum thickness, and force defect thickness are compared for the two clearances. A detailed interpretation of the effect of tip clearance on the flow field is given. There are substantial differences in flow field, on momentum thickness, and performance as the clearance is varied. The losses increase linearly within the passage and their values increase in direct proportion to tip clearance height. No discernable vortex (discrete) is observed downstream of the rotor.

  8. Modified Beer-Lambert law for blood flow.

    PubMed

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  9. Modified Beer-Lambert law for blood flow

    PubMed Central

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2014-01-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330

  10. The effect of confinement on the stability of the Rankine vortex with axial flow

    NASA Astrophysics Data System (ADS)

    Juniper, Matthew

    2007-11-01

    It has been shown recently that two-dimensional inviscid jets and wakes become significantly more unstable when they are confined between two flat plates, due to the interaction of Kelvin-Helmholtz modes in the inner and outer flows. It has also been shown that swirl significantly destabilizes unconfined inviscid jets and wakes, due to the interaction between Kelvin-Helmholtz modes and inertial modes. In this paper, the Rankine vortex with axial flow is confined within a duct in order to test the combined effect of confinement and swirl. The flow's stability is calculated as a function of shear, density ratio, swirl and confinement using a classic spatio-temporal instability analysis. It is found that confinement particularly destabilizes the helical m=1 and m=2 modes. These are at their most unstable when the radius of the outer flow is 1.4 times the radius of the inner flow. Experiments on coaxial fuel injectors with this geometry have shown that confined shear flows exhibit a strong helical m=1 mode, which can be exploited to increase mixing in a combustion chamber. This paper explains this effect and shows how the presence of strong helical modes can be predicted with a low order model.

  11. Flow control in axial fan inlet guide vanes by synthetic jets

    NASA Astrophysics Data System (ADS)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  12. Flow performance of highly loaded axial fan with bowed rotor blades

    NASA Astrophysics Data System (ADS)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  13. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  14. Computerised multiparametric analysis from images of blood flow through frog mesenteric arterial bifurcation.

    PubMed

    Umrani, J; Prakash, B; Singh, M

    1997-07-01

    A computerised multiparametric procedure is developed to analyse the images of blood flow through various locations of the mesenteric arterial bifurcation of frog. The data are recorded by a video microscopic system and, after digitisation and pre-processing, are analysed by an IBM PC/AT based image processing system to obtain erythrocyte and velocity distribution profiles by axial tomographic and image velocimetry techniques, respectively. The vessel radius, haematocrit, blood flow through main and branch arteries and flow separation zones are determined from the data by various analytical procedures. In contrast to the earlier techniques the data are obtained from the same location of the vessel and thus the variability in flow parameters is minimised. PMID:9327615

  15. Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong

    2016-08-01

    The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)

  16. Unsteady flow analysis of an axial flow hydraulic turbine with collection devices comprising a different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Hirama, Sou; Kikuchi, Norio

    2015-06-01

    We previously devised a new type of portable hydraulic turbine that uses the kinetic energy of an open-channel flow to improve output power by catching and accelerating the flow. The turbine contains an axial flow runner with an appended collection device and a diffuser section that is not axisymmetric. The objective of this study is to determine how interference between the collection device and the runner influences performance characteristics of the turbine. We investigated the performance characteristics of the turbine and flow field for different numbers of blades during both unsteady and steady flow. During an unsteady flow, the maximum values of power coefficients for three and two blades increased by approximately 8.8% and 21.4%, respectively, compared to those during a steady flow. For the three-blade runner, the power coefficient showed small fluctuations, but for the two-blade runner, the power coefficient showed large fluctuations. These fluctuations in the power coefficient are attributed to fluctuations in the loading coefficient, which were generated by interference between the runner and the diffuser section of the collection device.

  17. Axial flow effects on robustness of vortical structures about actively deflected wings in flapping flight

    NASA Astrophysics Data System (ADS)

    Medina, Albert; Kweon, Jihoon; Choi, Haecheon; Eldredge, Jeff D.

    2012-11-01

    Flapping wing flight has garnered much attention in the past decade driven by our desire to understand capabilities observed in nature and to develop agile small-scale aerial vehicles. Nature has demonstrated the breadth of maneuverability achievable by flapping wing flight. However, despite recent advances the role of wing flexibility remains poorly understood. In an effort to develop a deeper understanding of wing deflection effects and to explore novel approaches to increasing leading-edge vortex robustness, this three-dimensional computational study explores the aerodynamics of low aspect ratio plates, in hovering kinematics, with isolated flexion lines undergoing prescribed deflection. Major flexion lines, recognized as the primary avenue for deflection in biological fliers, are isolated here in two distinct configurations, resulting in deflection about the wing root and the wing tip, respectively. Of interest is the interaction between axial flow along the span and the vortical structures about the wing. It is proposed that the modes of deflection explored may provide a means of axial flow control for favorably promoting LEV robustness over a broad range of flapping conditions, and provide insight into the nature of flexibility in flapping wing flight. National Science Foundation, National Research Foundation of Korea.

  18. Hydrogen turbines for space power systems: A simplified axial flow gas turbine model

    NASA Technical Reports Server (NTRS)

    Hudson, Steven L.

    1988-01-01

    Hydrogen cooled, turbine powered space weapon systems require a relatively simple, but reasonably accurate hydrogen gas expansion turbine model. Such a simplified turbine model would require little computational time and allow incorporation into system level computer programs while providing reasonably accurate volume/mass estimates. This model would then allow optimization studies to be performed on multiparameter space power systems and provide improved turbine mass and size estimates for the various operating conditions (when compared to empirical and power law approaches). An axial flow gas expansion turbine model was developed for these reasons and is in use as a comparative bench mark in space power system studies at Sandia. The turbine model is based on fluid dynamic, thermodynamic, and material strength considerations, but is considered simplified because it does not account for design details such as boundary layer effects, shock waves, turbulence, stress concentrations, and seal leakage. Although the basic principles presented here apply to any gas or vapor axial flow turbine, hydrogen turbines are discussed because of their immense importance on space burst power platforms.

  19. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.; Waggoner, Charles A.

    2013-07-01

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilize a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)

  20. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

    2014-12-01

    In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

  1. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahmardan, M. M.; Norouzi, M.; Rashidi, A. M.; Behzadmehr, A.

    2014-09-01

    In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid-fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

  2. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  3. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  4. Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines

    NASA Astrophysics Data System (ADS)

    Kameier, F.; Neise, W.

    1997-06-01

    An experimental study is presented to investigate the aeroacoustic generation mechanism of the tip clearance noise in axial turbomachines. In addition to the increased broadband levels reported in the literature when the tip clearance is enlarged, significant level increases were observed within narrow frequency bands below the blade passing frequency. Measurements of the pressure fluctuations at the casing wall just upstream of the entrance plane of the impeller and on the rotating blades reveal that the tip clearance noise is associated with a rotating blade flow instability at the blade tip which in turn is only present under reversed flow conditions in the tip clearance gap. The rotating instability is interpreted as a rotating source or vortex mechanism which moves relative to the blade row at a fraction of the impeller shaft speed, similar to the cell(s) of rotating stall. A model for the generation of the narrow-band tip clearance noise is presented.

  5. Frequency response of an axial-flow compressor exposed to inlet pressure perturbations

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Wenzel, L. M.; Paulovich, F. J.

    1974-01-01

    Experimental results of a series of engine tests designed to obtain the stage dynamics of an eight-stage axial-flow compressor over the frequency range of 0.5 to 200 hertz are presented. The total pressure at the compressor face was varied by means of a secondary air jet system installed in the engine inlet and positioned to oppose the primary airflow. Total-pressure probes located at each compressor stage were used to obtain the frequency response of each compressor-stage total pressure to the average compressor-inlet total pressure. The engine operating conditions were chosen to illustrate the effects of changing the rotor speed, changing the exhaust nozzle area, and isolating the compressor discharge pressure perturbations from the fuel control and hence, the fuel flow.

  6. Performance of a highly loaded two stage axial-flow fan

    NASA Technical Reports Server (NTRS)

    Ruggeri, R. S.; Benser, W. A.

    1974-01-01

    A two-stage axial-flow fan with a tip speed of 1450 ft/sec (442 m/sec) and an overall pressure ratio of 2.8 was designed, built, and tested. At design speed and pressure ratio, the measured flow matched the design value of 184.2 lbm/sec (83.55kg/sec). The adiabatic efficiency at the design operating point was 85.7 percent. The stall margin at design speed was 10 percent. A first-bending-mode flutter of the second-stage rotor blades was encountered near stall at speeds between 77 and 93 percent of design, and also at high pressure ratios at speeds above 105 percent of design. A 5 deg closed reset of the first-stage stator eliminated second-stage flutter for all but a narrow speed range near 90 percent of design.

  7. Analysis of instability inception in high-speed multistage axial-flow compressors

    SciTech Connect

    Hendricks, G.J.; Sabnis, J.S.; Feulner, M.R.

    1997-10-01

    A nonlinear, two-dimensional, compressible dynamic model has been developed to study rotating stall/surge inception and development in high-speed, multistage, axial flow compressors. The flow dynamics are represented by the unsteady Euler equations, solved in each interblade row gap and inlet and exit ducts as two-dimensional domains, and in each blade passage as a one-dimensional domain. The resulting equations are solved on a computational grid. The boundary conditions between domains are represented by ideal turning coupled with empirical loss and deviation correlations. Results are presented comparing model simulations to instability inception data of an eleven stage, high-pressure-ratio compressor operating at both part and full power, and the results analyzed in the context of a linear modal analysis.

  8. Cerebral blood flow in normal pressure hydrocephalus

    SciTech Connect

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-11-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed.

  9. Intraoperative cerebral blood flow imaging of rodents

    NASA Astrophysics Data System (ADS)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  10. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  11. Topical menthol increases cutaneous blood flow.

    PubMed

    Craighead, Daniel H; Alexander, Lacy M

    2016-09-01

    Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol+ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol+ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux·mmHg(-1)) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 vs 1.1±0.19CVC: p<0.001). During the dose-response, SkBF increased with increasing doses of menthol (main effect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol

  12. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  13. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    NASA Astrophysics Data System (ADS)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  14. Mapping blood flow directionality in the human brain.

    PubMed

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis. PMID:26968145

  15. Effect of trabeculectomy on ocular blood flow

    PubMed Central

    Berisha, F; Schmetterer, K; Vass, C; Dallinger, S; Rainer, G; Findl, O; Kiss, B; Schmetterer, L

    2005-01-01

    Background/aim: Current evidence suggests that vascular insufficiencies in the optic nerve head play an important part in the pathogenesis of glaucomatous optic neuropathy. Trabeculectomy is the most common operative procedure for the treatment of medically uncontrolled glaucoma. This study was conducted to investigate whether trabeculectomy may improve ocular haemodynamics. Methods: 30 patients with primary open angle glaucoma about to undergo trabeculectomy were included in the study. Patients were evaluated before surgery and at 2 and 10 weeks after trabeculectomy. Optic nerve head blood flow (OnhBF) was assessed with scanning laser Doppler flowmetry. Fundus pulsation amplitude (FPA) measurements were obtained with laser interferometry. Results: Because of the decrease in intraocular pressure there was a significant increase in ocular perfusion pressure (OPP) following trabeculectomy (18.5% (SD 12.0%) and 19.0% (17.1%) at 2 and 10 weeks postoperatively; p <0.001). A significant increase in OnhBF was observed after trabeculectomy (11.6% (16.4%) and 16.2% (20.2%) for each postoperative visit, respectively; p <0.001). FPA was also significantly higher compared with baseline values (17.2% (17.3%) and 17.4% (16.3%), respectively; p <0.001). A significant association between the increase in OPP and the increase in OnhBF and FPA was observed 10 weeks after surgery (r = 0.47; p = 0.009, and r = 0.50; p = 0.005, respectively). Conclusion: The results of this study suggest that trabeculectomy improves ocular blood flow in patients with chronic open angle glaucoma. PMID:15665350

  16. Quantitative Estimation of Tissue Blood Flow Rate.

    PubMed

    Tozer, Gillian M; Prise, Vivien E; Cunningham, Vincent J

    2016-01-01

    The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging.Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method. PMID:27172960

  17. Blood flow in microvascular networks: A study in nonlinear biology

    PubMed Central

    Geddes, John B.; Carr, Russell T.; Wu, Fan; Lao, Yingyi; Maher, Meaghan

    2010-01-01

    Plasma skimming and the Fahraeus–Lindqvist effect are well-known phenomena in blood rheology. By combining these peculiarities of blood flow in the microcirculation with simple topological models of microvascular networks, we have uncovered interesting nonlinear behavior regarding blood flow in networks. Nonlinearity manifests itself in the existence of multiple steady states. This is due to the nonlinear dependence of viscosity on blood cell concentration. Nonlinearity also appears in the form of spontaneous oscillations in limit cycles. These limit cycles arise from the fact that the physics of blood flow can be modeled in terms of state dependent delay equations with multiple interacting delay times. In this paper we extend our previous work on blood flow in a simple two node network and begin to explore how topological complexity influences the dynamics of network blood flow. In addition we present initial evidence that the nonlinear phenomena predicted by our model are observed experimentally. PMID:21198135

  18. On deriving lumped models for blood flow and pressure in the systemic arteries.

    PubMed

    Olufsen, Mette S; Nadim, Ali

    2004-06-01

    Windkessel and similar lumped models are often used to represent blood flow and pressure in systemic arteries. The windkessel model was originally developed by Stephen Hales (1733) and Otto Frank (1899) who used it to describe blood flow in the heart. In this paper we start with the onedimensional axisymmetric Navier-Stokes equations for time-dependent blood flow in a rigid vessel to derive lumped models relating flow and pressure. This is done through Laplace transform and its inversion via residue theory. Upon keeping contributions from one, two, or more residues, we derive lumped models of successively higher order. We focus on zeroth, first and second order models and relate them to electrical circuit analogs, in which current is equivalent to flow and voltage to pressure. By incorporating effects of compliance through addition of capacitors, windkessel and related lumped models are obtained. Our results show that given the radius of a blood vessel, it is possible to determine the order of the model that would be appropriate for analyzing the flow and pressure in that vessel. For instance, in small rigid vessels ( R < 0.2 cm) it is adequate to use Poiseuille's law to express the relation between flow and pressure, whereas for large vessels it might be necessary to incorporate spatial dependence by using a one-dimensional model accounting for axial variations. PMID:20369960

  19. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  20. Three-dimensional flow phenomena in a transonic, high-throughflow, axial-flow compressor stage

    SciTech Connect

    Copenhaver, W.W.; Puterbaugh, S.L. ); Hah, C. )

    1993-04-01

    A detailed aerodynamic study of a transonic, high-throughflow, single-stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.

  1. Transport of platelets in flowing blood.

    PubMed

    Eckstein, E C; Bilsker, D L; Waters, C M; Kippenhan, J S; Tilles, A W

    1987-01-01

    Distribution and transport of platelets in flowing blood were studied experimentally using suspensions of washed red cells and fluorescent latex beads as platelet analogues. Distributions of the platelet analogues were obtained from stroboscopic epifluorescence photomicrographs of flow in 50-micron channels and from images of the cut cross sections of cryogenically frozen thin-walled 200-micron tubes. Concentration profiles of platelet analogues had a substantial near-wall excess for situations with a substantial hematocrit (greater than 10%) and a substantial wall shear rate (greater than 400 s-1). The viscosity of the suspending fluid was found to affect the size of the near-wall excess and its shear-dependent onset. Additionally, the shear-rate dependence of the near-wall excess did not occur with suspensions of hardened red cells. The excess extended a substantial distance from the wall in the 200-micron tubes and a portion of the profile could be fitted to an exponential curve. The random walk model that is used to describe enhanced platelet diffusion is envisioned as a walk (lateral platelet motion) caused by shear-induced collisions with red cells. A more comprehensive random walk model that includes biased collisions produces an effective lateral motion of convective nature in addition to a diffusional motion; it is used to explain the observed nonuniform distributions of platelet analogues. PMID:3439741

  2. Noninvasive method of estimating human newborn regional cerebral blood flow

    SciTech Connect

    Younkin, D.P.; Reivich, M.; Jaggi, J.; Obrist, W.; Delivoria-Papadopoulos, M.

    1982-12-01

    A noninvasive method of estimating regional cerebral blood flow (rCBF) in premature and full-term babies has been developed. Based on a modification of the /sup 133/Xe inhalation rCBF technique, this method uses eight extracranial NaI scintillation detectors and an i.v. bolus injection of /sup 133/Xe (approximately 0.5 mCi/kg). Arterial xenon concentration was estimated with an external chest detector. Cerebral blood flow was measured in 15 healthy, neurologically normal premature infants. Using Obrist's method of two-compartment analysis, normal values were calculated for flow in both compartments, relative weight and fractional flow in the first compartment (gray matter), initial slope of gray matter blood flow, mean cerebral blood flow, and initial slope index of mean cerebral blood flow. The application of this technique to newborns, its relative advantages, and its potential uses are discussed.

  3. Axial Seamount 2015 Eruption: A 127 m Thick, Microbially-Covered Lava Flow

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.; Chadwick, W.; Philip, B. T.; Merle, S. G.

    2015-12-01

    On April 24th, Axial Seamount on the Juan de Fuca Ridge erupted. This site now hosts the most advanced submarine volcanic observatory with a diverse, multidisciplinary array of 48 cabled instruments at its summit and base, and an instrumented state-of-the-art shallow profiling mooring providing real-time data to shore as part of NSF's Ocean Observatory Initiative (Delaney et al., AGU-2015). The onset of the eruption was marked by more than 8000 earthquakes (Wilcock et al., AGU-2015; Garcia et al., AGU-2015) and a drop in the seafloor of 2.4 m (Nooner et al., AGU-2015). Follow-on analyses of hydrophone data (Tolstoy et al., AGU-2015) pointed to the location of the eruption as the Northern Rift zone. During the OOI-NSF-UW Cabled Array maintenance cruise, the Northern Rift and eastern side of the caldera was mapped using the R/V Thompson's EM302 system at. Differencing of 2007 (Hydrosweep) and 2013 EM302 bathymetric data indicated that the flow was ~ 7 km in length and up to 127 m thick, where it filled in a preexisting small depression. On July 26th, the ROV ROPOS dove near the toe of the northeastern lobe of the flow, the location of the highest bathymetric difference. The steep north face of this lobe is composed of glassy pillow flows: ROPOS ascended ~ 85 m before reaching the summit. Immediately upon reaching the summit, the vehicle was engulfed in a blizzard of biologically-produced 'snowblower' material issuing from distributed small sites of diffuse flow that reached 18°C. These areas hosted white filamentous bacteria, presumably methane metabolizers. Extensive areas of the flow summit were covered with orange microbial mats that completely masked the underlying pillows flows. Particle-poor diffuse fluids issued from microbially-covered collapse features along the summit, assumed to mark the main feeder channels. This eruption was markedly different than the Axial April 2011 eruption, which was characterized by vast sheet flows and extensive collapse zones.

  4. Bone blood flow after spinal paralysis in the rat

    SciTech Connect

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K. )

    1990-05-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow.

  5. A Discussion on the Regulation of Blood Flow and Pressure.

    PubMed

    Wolff, Christopher B; Collier, David J; Shah, Mussadiq; Saxena, Manish; Brier, Timothy J; Kapil, Vikas; Green, David; Lobo, Melvin

    2016-01-01

    This paper discusses two kinds of regulation essential to the circulatory system: namely the regulation of blood flow and that of (systemic) arterial blood pressure. It is pointed out that blood flow requirements sub-serve the nutritional needs of the tissues, adequately catered for by keeping blood flow sufficient for the individual oxygen needs. Individual tissue oxygen requirements vary between tissue types, while highly specific for a given individual tissue. Hence, blood flows are distributed between multiple tissues, each with a specific optimum relationship between the rate of oxygen delivery (DO2) and oxygen consumption (VO2). Previous work has illustrated that the individual tissue blood flows are adjusted proportionately, where there are variations in metabolic rate and where arterial oxygen content (CaO2) varies. While arterial blood pressure is essential for the provision of a sufficient pressure gradient to drive blood flow, it is applicable throughout the arterial system at any one time. Furthermore, It is regulated independently of the input resistance to individual tissues (local arterioles), since they are regulated locally, that being the means by which the highly specific adequate local requirement for DO2 is ensured. Since total blood flow is the summation of all the individually regulated tissue blood flows cardiac inflow (venous return) amounts to total tissue blood flow and as the heart puts out what it receives cardiac output is therefore determined at the tissues. Hence, regulation of arterial blood pressure is independent of the distributed independent regulation of individual tissues. It is proposed here that mechanical features of arterial blood pressure regulation will depend rather on the balance between blood volume and venous wall tension, determinants of venous pressure. The potential for this explanation is treated in some detail. PMID:26782204

  6. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    SciTech Connect

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.

  7. Interaction of impeller and guide vane in a series-designed axial-flow pump

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, Y. S.; Lee, K. Y.; Kim, J. H.

    2012-11-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  8. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  9. An experimental investigation on the tip leakage noise in axial-flow fans with rotating shroud

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio; Milanese, Gabriele; Parodi, Davide

    2016-08-01

    The tip leakage noise generated by a shrouded rotor of an axial-flow fan has been experimentally studied. The measurements have been taken at high flow rate and at the design point in a hemi-anechoic chamber, at constant rotational speed and during speed ramps. A test plenum designed according to ISO 10302 has been employed to modify the operating conditions and different inlet configurations, ducted and unducted with standard and reduced tip gap, have been considered. The basic features of the inflow have been studied by means of aerodynamic measurements taken upstream of the rotor. To separate the noise generating mechanisms from the acoustic propagation effects, the acoustic response function of the test configuration has been computed employing the spectral decomposition method, and then it has been compared with the velocity-scaled, constant-Strouhal number SPL. In this way, the noise components related to the tip leakage flow have been identified and their connection with geometry have been highlighted. The broadband part of the spectra and the peaks related to the tip leakage flow are affected by the same propagation effects, but show a different dependence on the rotational speed and on the operating point. The upstream geometry affects the radiated noise much more than the performance and even a strong reduction in the tip-gap cannot completely eliminate the related noise.

  10. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    SciTech Connect

    Suder, K.L.; Celestina, M.L.

    1996-04-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part-speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100 percent design speed and at near peak efficiency at 60 percent design speed. The role of the passage shock/leakage vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only five times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the end-wall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with the primary flow downstream of the rotor at both design and part-speed conditions is also discussed.

  11. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    NASA Astrophysics Data System (ADS)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  12. Effects of the Tip Clearance on Vortical Flow and Its Relation to Noise in an Axial Flow Fan

    NASA Astrophysics Data System (ADS)

    Jang, Choon-Man; Fukano, Tohru; Furukawa, Masato

    Three-dimensional vortical flow structures and velocity fluctuation near the rotor tip in an axial flow fan having two different tip clearances have been investigated by experimental analysis using a rotating hot wire probe and a numerical simulation. It is found that a tip leakage vortex is observed in the blade passage, which has a major role near the rotor tip. The tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction, and forms a local recirculation region resulting from a vortex breakdown inside the blade passage. The recirculation region is enlarged by increasing the tip clearance. The larger recirculation region induces the acceleration of the through flow, thus resulting in the increase of the broadband noise. High velocity fluctuation is observed at the interference region between the tip leakage vortex and the through flow in the flow field where the tip leakage vortex is tightly rolled up without its breakdown. Near the casing wall, a discrete frequency is formed between tip leakage vortex core and rotor trailing edge.

  13. Blood flow distribution in submerged and surface-swimming ducks.

    PubMed

    Stephenson, R; Jones, D R

    1992-05-01

    Observations that the response of the avian heart rate to submergence varies under different circumstances have led to speculation about variability of blood flow distribution during voluntary dives. We used a radiological imaging technique to examine the patterns of circulating blood flow in captive redhead ducks (Aythya americana) during rest, swimming, escape dives, forced dives and trapped escape dives and have shown that blood flow distribution in escape dives was the same as that in ducks swimming at the water surface. The response during trapped escape dives, however, was highly variable. Blood pressure was unchanged from the resting value during all activities. Predictions made about blood flow distribution during unrestrained dives on the basis of heart rate and other indirect data were confirmed in this study. However, the trapped escape dive responses indicated that heart rate alone is not always a reliable indicator of tissue blood flow in exercising ducks. PMID:1602277

  14. Calculation of Turbine Axial Thrust by Coupled CFD Simulations of the Main Flow Path and Secondary Cavity Flow in an SLI LOX Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, D. J.; Marci, Bogdan; Tran, Ken; Sargent, Scott

    2003-01-01

    Each single reusable Space Launch Initiative (SLI) booster rocket is an engine operating at a record vacuum thrust level of over 730,000 Ibf using LOX and LH2. This thrust is more than 10% greater than that of the Delta IV rocket, resulting in relatively large LOX and LH2 turbopumps. Since the SLI rocket employs a staged combustion cycle the level of pressure is very high (thousands of psia). This high pressure creates many engineering challenges, including the balancing of axial-forces on the turbopumps. One of the main parameters in the calculation of the axial force is the cavity pressure upstream of the turbine disk. The flow in this cavity is very complex. The lack of understanding of this flow environment hinders the accurate prediction of axial thrust. In order to narrow down the uncertainty band around the actual turbine axial force, a coupled, unsteady computational methodology has been developed to simulate the interaction between the turbine main flow path and the cavity flow. The CORSAIR solver, an unsteady three- dimensional Navier-Stokes code for turbomachinery applications, was used to solve for both the main and the secondary flow fields. Turbine axial thrust values are presented in conjunction with the CFD simulation, together with several considerations regarding the turbine instrumentation for axial thrust estimations during test.

  15. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  16. Blood flow augmentation by intrinsic venular contraction in vivo.

    PubMed

    Dongaonkar, Ranjeet M; Quick, Christopher M; Vo, Jonathan C; Meisner, Joshua K; Laine, Glen A; Davis, Michael J; Stewart, Randolph H

    2012-06-15

    Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion. PMID:22513742

  17. Higher-order axial singularity distributions for potential flow about bodies of revolution

    NASA Astrophysics Data System (ADS)

    Zedan, M. F.; Dalton, C.

    1980-03-01

    The approach of using axial singularity distributions of different orders for representing bodies of revolution in axial flow to solve both the direct and inverse problems has been developed and critically evaluated. A polynomial of arbitrary degree is used to represent the variation of the intensity of the source distribution over each element. The effects of the order of the distribution, the number of elements, the normalization of the body coordinates, the fineness ratio and the geometry of the profile on the performance of the method have been studied in detail by using a number of test cases of known solutions. With appropriate choice of these parameters, this approach for both the direct and inverse axisymmetric problems can be as accurate as the surface singularity approach even for simple bodies with inflection points. However, the present scheme has the advantage of being much simpler and faster. A new technique has been developed for the calculation of the body radius in the iterative inverse problem scheme. This technique proved to be essential for velocity distributions representing bodies with inflection points. Such bodies are of great interest in the design of low-drag shapes.

  18. Nanoparticles analysis on the blood flow through a tapered catheterized elastic artery with overlapping stenosis

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Ijaz, S.

    2014-11-01

    This paper is concerned with the analysis of blood through an annulus, bounded between an arterial stenosis and a uniform catheter. The nature of blood through coaxial tubes is considered as that of a nano viscous fluid. The mild stenosis approximation and corresponding boundary conditions are used to obtain analytic expressions for axial velocity, temperature distribution, nanoparticle volume fraction, wall shear stress and resistance impedance to flow. The model is also used to study the consequence of thermophoresis, Brownian motion, local nanoparticle Grashof and local temperature Grashof numbers on the flow by plotting graphs and streamlines. The variation with different flow parameters through tables is also discussed to understand the effects of stenosis height in constricted annular regions.

  19. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    NASA Astrophysics Data System (ADS)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  20. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  1. Numerical simulation of steady three-dimensional flows in axial turbomachinery bladerows

    NASA Astrophysics Data System (ADS)

    Basson, Anton Herman

    The formulation for and application of a numerical model for low Mach number steady three-dimensional flows in axial turbomachinery blade rows is presented. The formulation considered here includes an efficient grid generation scheme (particularly suited to computational grids for the analysis of turbulent turbomachinery flows) and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, applicable to viscous and inviscid flows. The grid generation technique uses a combination of algebraic and elliptic methods, in conjunction with the Minimal Residual Method, to economically generate smooth structured grids. For typical H-grids in turbomachinery bladerows, when compared to a purely elliptic grid generation scheme, the presented grid generation scheme produces grids with much improved smoothness near the leading and trailing edges, allows the use of small near wall grid spacing required by low Reynolds number turbulence models, and maintains orthogonality of the grid near the solid boundaries even for high flow angle cascades. A specialized embedded H-grid for application particularly to tip clearance flows is presented. This topology smoothly discretizes the domain without modifying the tip shape, while requiring only minor modifications to H-grid flow solvers. Better quantitative modeling of the tip clearance vortex structure than that obtained with a pinched tip approximation is demonstrated. The formulation of artificial dissipation terms for a semi-implicit, pressure-based (SIMPLE type) flow solver, is presented. It is applied to both the Euler and the Navier-Stokes equations, expressed in generalized coordinates using a non-staggered grid. This formulation is compared to some SIMPLE and time marching formulations, revealing the artificial dissipation inherent in some commonly used semi-implicit formulations. The effect of the amount of dissipation on the accuracy of the solution and the convergence rate

  2. Effects of Axial Vibration on Needle Insertion into the Tail Veins of Rats and Subsequent Serial Blood Corticosterone Levels

    PubMed Central

    Clement, Ryan S; Unger, Erica L; Ocón-Grove, Olga M; Cronin, Thomas L; Mulvihill, Maureen L

    2016-01-01

    Blood collection is commonplace in biomedical research. Obtaining sufficient sample while minimizing animal stress requires significant skill and practice. Repeated needle punctures can cause discomfort and lead to variable release of stress hormones, potentially confounding analysis. We designed a handheld device to reduce the force necessary for needle insertion by using low-frequency, axial (forward and backward) micromotions (that is, vibration) delivered to the needle during venipuncture. Tests with cadaver rat-tail segments (n = 18) confirmed that peak insertion forces were reduced by 73% on average with needle vibration. A serial blood-sampling study was then conducted by using Sprague–Dawley rats divided into 2 groups based on needle condition used to cause bleeds: vibration on (n = 10) and vibration off (n = 9). On 3 days (1 wk apart), 3 tail-vein blood collections were performed in each subject at 1-h intervals. To evaluate associated stress levels, plasma corticosterone concentration was quantified by radioimmunoassay and behavior (that is, movement and vocalization) was scored by blinded review of blood-sampling videos. After the initial trial, average corticosterone was lower (46% difference), the mean intrasubject variance trended lower (72%), and behavioral indications of stress were rated lower for the vibration-on group compared with the vibration-off group. Adding controlled vibrations to needles during insertion may decrease the stress associated with blood sampling from rats—an important methodologic advance for investigators studying and assessing stress processes and a refinement over current blood sampling techniques. PMID:27025813

  3. Estimation of deviation angle for axial-flow compressor blade sections using inviscid-flow solutions

    NASA Technical Reports Server (NTRS)

    Miller, M. J.

    1974-01-01

    Development of a method of estimating deviation angles by analytical procedures was begun. Solutions for inviscid, irrotational flow in the blade-to-blade plane were obtained with a finite-difference calculation method. Deviation angles for a plane cascade with a rounded trailing edge were estimated by using the inviscid-flow solutions and three trailing-edge hypotheses. The estimated deviation angles were compared with existing experimental data over a range of incidence angles at inlet flow angles of 30 deg and 60 deg. The results indicate that deviation angles can be estimated accurately (within 1 deg) by using one of the three trailing-edge hypotheses, but only when pressure losses are low. A new trailing-edge hypotheses is presented which is suitable (for the cascade considered) for both low- and high-loss operating points.

  4. Measuring tissue blood flow using ultrasound modulated diffused light

    NASA Astrophysics Data System (ADS)

    Ron, A.; Racheli, N.; Breskin, I.; Metzger, Y.; Silman, Z.; Kamar, M.; Nini, A.; Shechter, R.; Balberg, M.

    2012-02-01

    We demonstrate the ability of a novel device employing ultrasound modulation of near infrared light (referred as "Ultrasound tagged light" or UTL) to perform non-invasive monitoring of blood flow in the microvascular level in tissue. Monitoring microcirculatory blood flow is critical in clinical situations affecting flow to different organs, such as the brain or the limbs. . However, currently there are no non-invasive devices that measure microcirculatory blood flow in deep tissue continuously. Our prototype device (Ornim Medical, Israel) was used to monitor tissue blood flow on anesthetized swine during controlled manipulations of increased and decreased blood flow. Measurements were done on the calf muscle and forehead of the animal and compared with Laser Doppler (LD). ROC analysis of the sensitivity and specificity for detecting an increase in blood flow on the calf muscle, demonstrated AUC = 0.951 for 23 systemic manipulations of cardiac output by Epinephrine injection, which is comparable to AUC = 0.943 using laser Doppler. Some examples of cerebral blood flow monitoring are presented, along with their individual ROC curves. UTL flowmetry is shown to be effective in detecting changes in cerebral and muscle blood flow in swine, and has merit in clinical applications.

  5. Flow structure interaction around an axial-flow hydrokinetic turbine: Experiments and CFD simulations

    NASA Astrophysics Data System (ADS)

    Kang, S.; Chamorro, L.; Hill, C.; Arndt, R.; Sotiropoulos, F.

    2014-12-01

    We carry out large-eddy simulation of turbulent flow past a complete hydrokinetic turbine mounted on the bed of a straight rectangular open channel. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1], and velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. In this study we attempt to directly resolve flow-blade interactions without introducing turbine parameterization methods. The computed wake profiles of velocities and turbulent stresses agree well with the experimentally measured values.

  6. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  7. Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis

    NASA Astrophysics Data System (ADS)

    Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori

    A supercritical CO2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen1). The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified ideal

  8. Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Deng, Haoyu; Song, Guangyi; He, Jian-Jun

    2014-11-01

    A method for measuring blood oxygenation and blood flow rate using a single widely tunable semiconductor laser is proposed and investigated. It is shown that a 700-nm-band tunable laser gives the highest sensitivity for blood oxygen measurement. The corresponding tunable laser is designed using the V-coupled cavity structure. The wavelength tuning range can reach 8 nm, which is sufficient for the blood oxygenation measurement in the 700-nm-band by using the Beer- Lambert law. In contrast to conventional blood oxygenation measurement method based on two LEDs, the laser can be used at the same time to measure the blood flow rate based on the Doppler principle.

  9. Blood flow-restricted exercise in space

    PubMed Central

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and endurance when performed in a variety of ambulatory populations. This training methodology couples a remarkably low exercise training load (approximately 20%–50% one repetition maximum (1RM)) with an inflated external cuff (width, ranging between approximately 30–90 mm; pressure, ranging between approximately 100–250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise training adaptations, mechanisms, and safety and will provide directions for future research. PMID:23849078

  10. Synthetic Capillaries to Control Microscopic Blood Flow

    PubMed Central

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  11. Synthetic Capillaries to Control Microscopic Blood Flow

    NASA Astrophysics Data System (ADS)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  12. Synthetic Capillaries to Control Microscopic Blood Flow.

    PubMed

    Sarveswaran, K; Kurz, V; Dong, Z; Tanaka, T; Penny, S; Timp, G

    2016-01-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using "live cell lithography"(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision-no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function. PMID:26905751

  13. Pulsatile blood flow in Abdominal Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  14. A mechanistic approach to blood flow occlusion.

    PubMed

    Loenneke, J P; Wilson, G J; Wilson, J M

    2010-01-01

    Low-Intensity occlusion training provides a unique beneficial training mode for promoting muscle hypertrophy. Training at intensities as low as 20% 1RM with moderate vascular occlusion results in muscle hypertrophy in as little as three weeks. The primary mechanisms by which occlusion training is thought to stimulate growth include, metabolic accumulation, which stimulates a subsequent increase in anabolic growth factors, fast-twitch fiber recruitment (FT), and increased protein synthesis through the mammalian target of rapamycin (mTOR) pathway. Heat shock proteins, Nitric oxide synthase-1 (NOS-1) and Myostatin have also been shown to be affected by an occlusion stimulus. In conclusion, low-intensity occlusion training appears to work through a variety of mechanisms. The research behind these mechanisms is incomplete thus far, and requires further examination, primarily to identify the actual metabolite responsible for the increase in GH with occlusion, and determine which mechanisms are associated to a greater degree with the hypertrophic/anti-catabolic changes seen with blood flow restriction. PMID:19885776

  15. Tissue Blood Flow During Remifentanil Infusion With Carbon Dioxide Loading.

    PubMed

    Kanbe, Hiroaki; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya

    2015-01-01

    The aim of this study was to investigate the effect of changes in end-tidal carbon dioxide tension (ETCO2) during remifentanil (Remi) infusion on oral tissue blood flow in rabbits. Eight male tracheotomized Japan White rabbits were anesthetized with sevoflurane under mechanical ventilation. The infusion rate of Remi was 0.4 μg/kg/min. Carbon dioxide was added to the inspired gas to change the inspired CO2 tension to prevent changes in the ventilating condition. Observed variables were systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), common carotid artery blood flow (CCBF), tongue mucosal blood flow (TBF), mandibular bone marrow tissue blood flow (BBF), masseter muscle tissue blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF). The CCBF, TBF, BBF, UBF, and LBF values were increased, while MBF was decreased, under hypercapnia, and vice versa. The BBF, UBF, and LBF values were increased, while the MBF value was decreased, under hypercapnia during Remi infusion, and vice versa. The BBF, MBF, UBF, and LBF values, but not the CCBF and TBF values, changed along with ETCO2 changes during Remi infusion. PMID:26061573

  16. Investigation of boundary layer and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Anand, A.; Gorton, C.; Lakshminarayana, B.; Yamaoka, H.

    1973-01-01

    A study of the boundary layer and turbulence characteristics inside the passages of an axial flow inducer is reported. The first part deals with the analytical and experimental investigation of the boundary layer characteristics in a four bladed flat plate inducer passage operated with no throttle. An approximate analysis for the prediction of radial and chordwise velocity profiles across the passage is carried out. The momentum integral technique is used to predict the gross properties of the boundary layer. Equations are given for the exact analysis of the turbulent boundary layer characteristics using the turbulent field method. Detailed measurement of boundary layer profiles, limiting streamline angle and skin friction stress on the rotating blade is also reported. Part two of this report deals with the prediction of the flow as well as blade static pressure measurements in a three bladed inducer with cambered blades operated at a flow coefficient of 0.065. In addition, the mean velocity and turbulence measurements carried out inside the passage using a rotating triaxial probe is reported.

  17. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  18. A computational study of the interaction noise from a small axial-flow fan.

    PubMed

    Lu, H Z; Huang, Lixi; So, R M C; Wang, J

    2007-09-01

    Small axial-flow fans used for computer cooling and many other appliances feature a rotor driven by a downstream motor held by several cylindrical struts. This study focuses on the aerodynamic mechanism of rotor-strut interaction for an isolated fan. The three-dimensional, unsteady flow field is calculated using FLUENT, and the sound radiation predicted by acoustic analogy is compared with measurement data. Striking differences are found between the pressure oscillations in various parts of the structural surfaces during an interaction event. The suction surface of the blade experiences a sudden increase in pressure when the blade trailing edge sweeps past a strut, while the process of pressure decrease on the pressure side of the blade is rather gradual during the interaction. The contribution of the latter towards the total thrust force on the structure is cancelled out significantly by that on the strut. In terms of the acoustic contributions from the rotor and strut, the upstream rotor dominates and this feature differs from the usual rotor-stator interaction acoustics in which the downstream part is responsible for most of the noise. It is therefore argued that the dominant interaction mechanism is potential flow in nature. PMID:17927402

  19. Effect of prolonged hypokinesia on tissue blood flow

    NASA Technical Reports Server (NTRS)

    Levites, Z. P.; Fedotova, V. F.

    1979-01-01

    The influence of hypokinesia on the blood flow in the tissues of rabbits was studied. Motor activity of animals was restricted during 90 days and blood flow recorded through resorption rate of NaI-131. Perfusion of tissues under the influence of hypokinesia was found to be reduced.

  20. Statistical variations of ultrasound signals backscattered from flowing blood.

    PubMed

    Huang, Chih-Chung; Wang, Shyh-Hau

    2007-12-01

    The statistical distributions of ultrasonic signals backscattered from blood have recently been used to characterize hemodynamic properties, such as red blood cell (RBC) aggregation and blood coagulation. However, a thorough understanding of the relationship between blood properties and the statistical behavior of signals backscattered from flowing blood is still lacking. This prompted us to use the statistical parameter to characterize signals backscattered from both whole blood and RBC suspensions at different flow velocities (from 10 to 60 cm/s) and hematocrits (from 20% to 50%) under a steady laminar flow condition. The Nakagami parameter, scaling parameter, backscatter amplitude profile and flow velocity profile across a flow tube were acquired using a 10 MHz focused ultrasonic transducer. The backscattered signal peaked approximately at the centerline of the flow tube due to the effects of RBC aggregation, with the peak value increasing as the flow velocity of whole blood decreased. The Nakagami parameter increased from 0.45 to 0.78 as the flow velocity increased from 10 to 60 cm/s. The probability density function (PDF) of signals backscattered from flowing whole blood conformed with a pre-Rayleigh distribution. The Nakagami parameter was close to 1 for signals backscattered from RBC suspensions at all the flow velocities and hematocrits tested, for which the PDF was Rayleigh distributed. These differences in the statistical distributions of backscattered signals between whole blood and RBC suspensions suggest that variations in the size of dynamic scatterers in the flow affect the shape of the backscattered signal envelope, which should be considered in future statistical models used to characterize blood properties. PMID:17673357

  1. Muscle metaboreflex and cerebral blood flow regulation in humans: implications for exercise with blood flow restriction.

    PubMed

    Prodel, Eliza; Balanos, George M; Braz, Igor D; Nobrega, Antonio C L; Vianna, Lauro C; Fisher, James P

    2016-05-01

    We investigated the effect of activating metabolically sensitive skeletal muscle afferents (muscle metaboreflex) on cerebral blood flow and the potentially confounding influence of concomitant changes in the partial pressure of arterial carbon dioxide. Eleven healthy males (25 ± 4 yr) performed submaximal leg cycling exercise on a semirecumbent cycle ergometer (heart rate: ∼120 beats/min), and assessments were made of the partial pressure of end-tidal carbon dioxide (PetCO2 ), internal carotid artery blood flow (ICAQ) and conductance (ICACVC), and middle cerebral artery mean blood velocity (MCAvm) and conductance index (MCACVCi).The muscle metaboreflex was activated during cycling with leg blood flow restriction (BFR) or isolated with postexercise ischemia (PEI). In separate trials, PetCO2 was either permitted to fluctuate spontaneously (control trial) or was clamped at 1 mmHg above resting levels (PetCO2 clamp trial). In the control trial, leg cycling with BFR decreased PetCO2 (Δ-4.8 ± 0.9 mmHg vs. leg cycling exercise) secondary to hyperventilation, while ICAQ, ICACVC, and MCAvm were unchanged and MCACVCi decreased. However, in the PetCO2 clamp trial, leg cycling with BFR increased both MCAvm (Δ5.9 ± 1.4 cm/s) and ICAQ (Δ20.0 ± 7.8 ml/min) and attenuated the decrease in MCACVCi, while ICACVC was unchanged. In the control trial, PEI decreased PetCO2 (Δ-7.0 ± 1.3 mmHg vs. rest), MCAvm and MCACVCi, whereas ICAQ and ICACVC were unchanged. In contrast, in the PetCO2 clamp trial both ICAQ (Δ18.5 ± 11.9 ml/min) and MCAvm (Δ8.8 ± 2.0 cm/s) were elevated, while ICACVC and MCACVCi were unchanged. In conclusion, when hyperventilation-related decreases in PetCO2 are prevented the activation of metabolically sensitive skeletal muscle afferent fibers increases cerebral blood flow. PMID:26873971

  2. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation.

    PubMed

    Mizuguchi, K; Damm, G; Benkowsky, R; Aber, G; Bacak, J; Svjkovsky, P; Glueck, J; Takatani, S; Nosé, Y; Noon, G P

    1995-07-01

    A collaborative effort between Baylor College of Medicine and NASA/Johnson Space Center is underway to develop an axial flow ventricular assist device (VAD). We evaluated inducer/impeller component designs in a series of in vitro hemolysis tests. As a result of computational fluid dynamic analysis, a flow inducer was added to the front of the pump impeller. According to the surface pressure distribution, the flow inducer blades were connected to the impeller long blades. This modification eliminated high negative pressure areas at the leading edge of the impeller. Comparative studies were performed between inducer blade sections that flowed smoothly into the impeller blades (continuous blades) and those that formed discrete separate pumping sections (discontinuous blades). The inducer/impeller with continuous blades showed significantly (p < 0.003) lower hemolysis with a normalized index of hemolysis (NIH) of 0.018 +/- 0.007 g/100 L (n = 3), compared with the discontinuous model, which demonstrated an NIH of 0.050 +/- 0.007 g/100 L (n = 3). The continuous blade model was evaluated in vivo for 2 days with no problems. One of the pumps evaluated ran for 5 days in vivo although thrombus formation was recognized on the flow straightener and the inducer/impeller. As a result of this study, the pump material was changed from polyether polyurethane to polycarbonate. The fabrication method was also changed to a computer numerically controlled (CNC) milling process with a final vapor polish. These changes resulted in an NIH of 0.0029 +/- 0.0009 g/100 L (n = 4), which is a significant (p < .0001) value 6 times less than that of the previous model.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8572968

  3. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  4. Mammary blood flow regulation in the nursing rabbit

    SciTech Connect

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  5. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  6. Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Ramachandran, N.; Volz, M. P.

    1999-01-01

    Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level

  7. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  8. Blood flow changes in arteriovenous malformation during behavioral activation.

    PubMed

    Deutsch, G

    1983-01-01

    Striking task-dependent fluctuations were observed in the cerebral blood flow pattern of a patient with a left posterior hemispheric arteriovenous malformation (AVM). Two-dimensional measures of regional cerebral flow in the resting state, using the xenon 133 inhalation technique, revealed a region of high flow coincident with the AVM seen on the patient's arteriograms. In subsequent studies, the AVM stood out as a region of high blood flow during a relaxed state, while it approached normal levels of flow when there was attentional demand. These observations suggest that focal regulatory mechanisms exist at the AVM or else that very substantial redistributions of blood flow are taking place which the flow rate in the AVM reflects only passively. Patients considered for embolic treatment of an AVM would benefit from an assessment of behavioral influences on flow in the AVM. PMID:6830163

  9. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  10. Retinal blood flow measurement by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Fabritius, Tapio; Miura, Masahiro; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2008-02-01

    Quantification of the three-dimensional (3D) retinal vessel structure and blood flow is demonstrated. 3D blood flow distribution is obtained by Doppler optical coherence angiography (D-OCA). Vessel parameters, i.e. diameter, orientation, and position, are determined in an en face vessel image. The Doppler angle is estimated as the angle between the retinal vessel and the incident probing beam in representative cross-sectional flow image which extracted from the 3D flow distribution according to the vessel parameters. Blood flow velocity and volume rate can be quantified with these vessel parameters. The retinal blood flow velocity and volume rate are measured in the retinal vessels around the optic nerve head.

  11. Blood flow in the rabbit aortic arch and descending thoracic aorta.

    PubMed

    Vincent, P E; Plata, A M; Hunt, A A E; Weinberg, P D; Sherwin, S J

    2011-12-01

    The distribution of atherosclerotic lesions within the rabbit vasculature, particularly within the descending thoracic aorta, has been mapped in numerous studies. The patchy nature of such lesions has been attributed to local variation in the pattern of blood flow. However, there have been few attempts to model and characterize the flow. In this study, a high-order continuous Galerkin finite-element method was used to simulate blood flow within a realistic representation of the rabbit aortic arch and descending thoracic aorta. The geometry, which was obtained from computed tomography of a resin corrosion cast, included all vessels originating from the aortic arch (followed to at least their second generation) and five pairs of intercostal arteries originating from the proximal descending thoracic aorta. The simulations showed that small geometrical undulations associated with the ductus arteriosus scar cause significant deviations in wall shear stress (WSS). This finding highlights the importance of geometrical accuracy when analysing WSS or related metrics. It was also observed that two Dean-type vortices form in the aortic arch and propagate down the descending thoracic aorta (along with an associated skewed axial velocity profile). This leads to the occurrence of axial streaks in WSS, similar in nature to the axial streaks of lipid deposition found in the descending aorta of cholesterol-fed rabbits. Finally, it was observed that WSS patterns within the vicinity of intercostal branch ostia depend not only on local flow features caused by the branches themselves, but also on larger-scale flow features within the descending aorta, which vary between branches at different locations. This result implies that disease and WSS patterns in the vicinity of intercostal ostia are best compared on a branch-by-branch basis. PMID:21593030

  12. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial- or mixed-flow turbomachine. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  13. Cerebral blood flow at high altitude.

    PubMed

    Ainslie, Philip N; Subudhi, Andrew W

    2014-06-01

    This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3-5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes: 1) hypoxic cerebral vasodilatation; 2) hypocapnic cerebral vasoconstriction; 3) hypoxic ventilatory response; and 4) hypercapnic ventilatory response. Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain's large and consistent demand for oxygen. This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided. PMID:24971767

  14. Axial development and radial non-uniformity of flow in packed columns.

    PubMed

    Park, Jaekeun C; Raghavan, Karthik; Gibbs, Stephen J

    2002-02-01

    Flow inhomogeneity and axial development in low-pressure chromatographic columns have been studied by magnetic resonance imaging velocimetry. The columns studied included (a) an 11.7-mm I.D. column packed with either 50 microm diameter porous polyacrylamide, or 99 or 780 microm diameter impermeable polystyrene beads, and (b) a 5-mm I.D. column commercially packed with 10 microm polymeric beads. The packing methods included gravity settling, slurry packing, ultrasonication, and dry packing with vibration. The magnetic resonance method used averaged apparent fluid velocity over both column cross-sections and fluid displacements greater than one particle diameter and hence permits assessment of macroscopic flow non-uniformities. The results confirm that now non-uniformities induced by the conical distributor of the 11.7-mm I.D. column or the presence of voids at the column entrance relax on a length scale of the column radius. All of the 11.7-mm I.D. columns examined exhibit near wall channeling within a few particle diameters of the wall. The origins of this behavior are demonstrated by imaging of the radial dependence of the local porosity for a column packed with 780 microm beads. Columns packed with the 99-microm beads exhibit reduced flow in a region extending from ten to three-to-five particle diameters from the wall. This velocity reduction is consistent with a reduced porosity of 0.35 in this region as compared to approximately 0.43 in the bulk of the column. Ultrasonicated and dry-packed columns exhibit enhanced flow in a region located between approximately eight and 20 particle diameters from the wall. This enhancement maybe caused by packing density inhomogeneity and/or particle size segregation caused by vibration during the packing process. No significant non-uniformities on length scales of 20 microm or greater were observed in the commercially packed column packed with 10 microm particles. PMID:11860146

  15. Hemodilution increases cerebral blood flow in acute ischemic stroke

    SciTech Connect

    Vorstrup, S.; Andersen, A.; Juhler, M.; Brun, B.; Boysen, G.

    1989-07-01

    We measured cerebral blood flow in 10 consecutive, but selected, patients with acute ischemic stroke (less than 48 hours after onset) before and after hemodilution. Cerebral blood flow was measured by xenon-133 inhalation and emission tomography, and only patients with focal hypoperfusion in clinically relevant areas were included. Hemodilution was done according to the hematocrit level: for a hematocrit greater than or equal to 42%, 500 ml whole blood was drawn and replaced by the same volume of dextran 40; for a hematocrit between 37% and 42%, only 250 ml whole blood was drawn and replaced by 500 cc of dextran 40. Mean hematocrit was reduced by 16%, from 46 +/- 5% (SD) to 39 +/- 5% (SD) (p less than 0.001). Cerebral blood flow increased in both hemispheres by an average of 20.9% (p less than 0.001). Regional cerebral blood flow increased in the ischemic areas in all cases, on an average of 21.4 +/- 12.0% (SD) (p less than 0.001). In three patients, a significant redistribution of flow in favor of the hypoperfused areas was observed, and in six patients, the fractional cerebral blood flow increase in the hypoperfused areas was of the same magnitude as in the remainder of the brain. In the last patient, cerebral blood flow increased relatively less in the ischemic areas. Our findings show that cerebral blood flow increases in the ischemic areas after hemodilution therapy in stroke patients. The marked regional cerebral blood flow increase seen in some patients could imply an improved oxygen delivery to the ischemic tissue.

  16. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  17. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  18. Flapping Instability of Two Tandem Flexible Foils in Uniform Axial Flow

    NASA Astrophysics Data System (ADS)

    Gurugubelli, Pardha Saradhi; Jaiman, Rajeev Kumar; Chua, Cassey

    2015-11-01

    We present a numerical analysis on the stability and coupled dynamics of two tandem flexible foils clamped at their leading edges in a uniform axial flow. The flexible foils considered for this study correspond to the fixed-point stable regime of the single flexible foil where the flexible foil aligns itself in the flow direction with no significant trailing edge oscillations. A high-order nonlinear coupled solver based on the variational formulation has been considered for analyzing the effects of gap between the foils on the stability and coupled behaviour of both the upstream and downstream foils. As a function of decreasing gap, it is observed that the tandem foil configuration is more prone to flapping instability than its single flexible foil counterpart. The evolution of the instability for the downstream foil shows two distinct dynamical scenarios: (i) only the downstream foil exhibits flapping motion and (ii) both the upstream and the downstream foils perform flapping. With the aid of a rigid foil in the upstream of a flexible foil, we further present a detailed analysis on the effects of the upstream wake and vortex shedding on the stability and flapping dynamics of the downstream foil.

  19. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  20. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  1. Acoustic Characterization of Axial Flow Left Ventricular Assist Device Operation In Vitro and In Vivo.

    PubMed

    Yost, Gardner L; Royston, Thomas J; Bhat, Geetha; Tatooles, Antone J

    2016-01-01

    The use of left ventricular assist devices (LVADs), implantable pumps used to supplement cardiac output, has become an increasingly common and effective treatment for advanced heart failure. Although modern continuous-flow LVADs improve quality of life and survival more than medical management of heart failure, device malfunction remains a common concern. Improved noninvasive methods for assessment of LVAD function are needed to detect device complications. An electronic stethoscope was used to record sounds from the HeartMate II axial flow pump in vitro and in vivo. The data were then uploaded to a computer and analyzed using two types of acoustic analysis software. Left ventricular assist device acoustics were quantified and were related to pump speed, acoustic environment, and inflow and outflow graft patency. Peak frequency values measured in vivo were found to correlate strongly with both predicted values and in vitro measurements (r > 0.999). Plots of the area under the acoustic spectrum curve, obtained by integrating over 50 Hz increments, showed strong correlations between in vivo and in vitro measurements (r > 0.966). Device thrombosis was found to be associated with reduced LVAD acoustic amplitude in two patients who underwent surgical device exchange. PMID:26536535

  2. Analysis of tonal noise generating mechanisms in low-speed axial-flow fans

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Zecchin, Fabio Mazzocut

    2016-08-01

    The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans. A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present: large-scale inlet turbulent structures, tip-gap flow, turbulent wakes, and rotor-stator interaction. The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and, in order to vary the acoustic source strength, during low angular acceleration, linear speed ramps. In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered, the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method. Then, the properties of the tonal noise generating mechanisms have been studied. To this aim, the constant-Strouhal number SPL, obtained by means of measurements taken during the speed ramps, have been compared with the propagation function. Finally, the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.

  3. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-07-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries. PMID:26414530

  4. On the Role of the Blood Vessel Endothelial Microvilli in the Blood Flow in Small Capillaries

    PubMed Central

    Makarov, Vladimir; Zueva, Lidia; Sanabria, Priscila; Wessinger, William Dave; Golubeva, Tatiana; Khmelinskii, Igor; Inyushin, Mikhail

    2015-01-01

    Endothelial microvilli that protrude into the capillary lumen, although invisible in the optical microscopy, may play an important role in the blood flow control in the capillaries. Because of the plug effects, the width of the gap between the capillary wall and the blood cell is especially critical for the blood flow dynamics in capillaries, while microvilli located on the capillary wall can easily control the velocity of the blood flow. We report that microvilli in the capillaries of different vertebrate species have similar characteristics and density, suggesting similarities between the respective regulation mechanisms. A simplified physical model of the capillary effective diameter control by the microvilli is presented. PMID:26604921

  5. Carreau model for oscillatory blood flow in a tube

    NASA Astrophysics Data System (ADS)

    Tabakova, S.; Nikolova, E.; Radev, St.

    2014-11-01

    The analysis of the blood flow dynamics (hemodynamics) in tubes is crucial when investigating the rupture of different types of aneurysms. The blood viscosity nonlinear dependence on the flow shear rate creates complicated manifestations of the blood pulsations. Although a great number of studies exists, experimental and numerical, this phenomenon is still not very well understood. The aim of the present work is to propose a numerical model of the oscillatory blood flow in a tube on the basis of the Carreau model of the blood viscosity (nonlinear model with respect to the shear rate). The obtained results for the flow velocity and tangential stress on the tube wall are compared well with other authors' results.

  6. The importance of splenic blood flow in clearing pneumococcal organisms.

    PubMed Central

    Horton, J; Ogden, M E; Williams, S; Coln, D

    1982-01-01

    Overwhelming infection from encapsulated bacteria occurs after splenectomy. Decreases in IgM, tufsin, and serum opsonin are known to occur in animals and humans after splenectomy. A substantial immunologic advantage exists if some splenic tissue remains, but this may not offer sufficient protection from encapsulated bacteria if splenic arterial blood flow is reduced. This experiment was designed to examine the rate of pneumococcal clearance by the spleen and to determine the relationship between splenic blood flow and splenic tissue mass in bacterial clearance from the blood. Pneumococcal clearance, splenic blood flow, and residual splenic weight were measured in 171 rabbits with normal spleens, ligated splenic arteries, splenic autotransplants, hemisplenectomies, and splenectomies. Interruption of the splenic artery results in delayed pneumococcal clearance that is due to reduced blood flow and not to a decrease in splenic tissue mass. Splenic artery ligation to preserve an injured spleen cannot be assumed to give protection from sepsis. PMID:7055394

  7. AXIAL FLOW COMPRESSOR IN THE 8X6 FOOT SUPERSONIC WIND TUNNEL - ELECTRIC MOTORS OF 87,000 HORSEPOWER

    NASA Technical Reports Server (NTRS)

    1949-01-01

    AXIAL FLOW COMPRESSOR IN THE 8X6 FOOT SUPERSONIC WIND TUNNEL - ELECTRIC MOTORS OF 87,000 HORSEPOWER DRIVE THIS HUGE COMPRESSOR TO PRODUCE 1300 MILE PER HOUR AIRSPEEDS - THE 2 HALVES OF THE 18 FOOT DIAMETER CASING ARE SHOWN OPENED TO EXPOSE THE 7 ROW

  8. Laser speckle technique for monitoring of blood and lymph flow

    NASA Astrophysics Data System (ADS)

    Fedosov, Ivan V.; Tuchin, Valery V.

    2004-07-01

    Laser speckle technique developed for monitoring of micro scale blood and lymph flows is described and discussed. It is based on the space-time correlation properties of dynamic speckle field formed by coherent light scattered by capillary flow of blood or lymph. As it was proved experimentally, the estimating of cross-correlation of speckle-field intensity fluctuations recorded in two different point allows for measurement of flow velocity and flow direction discrimination. Developed technique was applied for investigation of push-pull dynamics of lymph flow in rat mesentery. The results of experiments with models of bioflows and in vivo measurements are presented.

  9. Numerical analysis of head degrade law under cavitation condition of contra-rotating axial flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Huang, D.; Pan, Z. Y.

    2015-01-01

    In order to study the flow-head characteristic curve, the SST turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in contra-rotating axial flow waterjet pump under different conditions based on ANSYS CFX software. The distribution of cavity, pressure coefficient of the blade at the design point under different cavitation conditions were obtained. The analysis results of flow field show that the vapour volume distribution on the impeller indicates that the vapour first appears at the leading edge of blade and then extends to the outlet of impeller with the reduction of Net Positive Suction Head Allowance (NPSHA). The present study illustrates that the main reason for the decline of the pump performance is the development of cavitation, and the simulation can truly reflect the cavitation performance of the contra-rotating axial flow waterjet pump.

  10. Nasal mucosal blood flow after intranasal allergen challenge

    SciTech Connect

    Holmberg, K.; Bake, B.; Pipkorn, U.

    1988-03-01

    The nasal mucosal blood flow in patients with allergic rhinitis was determined at nasal allergen challenges with the /sup 133/Xenon washout method. Determinations were made in 12 subjects before and 15 minutes after challenge with diluent and increasing doses of allergen. The time course was followed in eight subjects by means of repeated measurements during 1 hour after a single allergen dose. Finally, the blood flow was measured after unilateral allergen challenge in the contralateral nasal cavity. A dose-dependent decrease in blood flow was found after nasal challenge with increasing doses of allergens, whereas challenge with diluent alone did not induce any changes. The highest allergen dose, which also induced pronounced nasal symptoms, resulted in a decrease in blood flow of 25% (p less than 0.001). The time-course study demonstrated a maximum decrease in blood flow 10 to 20 minutes after challenge and then a gradual return to baseline. Unilateral allergen challenge resulted in a decrease in blood flow in the contralateral, unchallenged nasal cavity, suggesting that part of the allergen-induced changes in blood flow were reflex mediated.

  11. Acute cocaine administration alters posttraumatic blood pressure and cerebral blood flow in rats.

    PubMed

    Muir, J K; Ellis, E F

    1995-01-01

    Cocaine abuse is widespread, and it is possible that its two main pharmacological actions, sympathomimetic and local anesthetic, could influence the blood pressure and cerebral blood flow response to brain injury, which occurs with increased frequency in drug abusers. We tested this hypothesis in ventilated barbiturate-anesthetized rats. Brain injury was induced using the fluid-percussion method, and cortical blood flow was measured using laser-Doppler flowmetry. Saline, cocaine, methamphetamine, or lidocaine was administered 10 min before injury. Upon injury, both cocaine- and saline-pretreated rats showed a similar acute hypertensive phase, which was followed by a period of more pronounced hypotension in the cocaine group (68 +/- 4 vs. 100 +/- 6 mmHg). Cortical blood flow increased dramatically 3-15 s following injury-induced hypertension in both the cocaine and saline groups (approximately 230-260%), but then fell below preinjury values within minutes. At 1 h postinjury, the blood flow in the saline group was 53 +/- 6% of the preinjury value, while in the cocaine group, flow was 74 +/- 7% of preinjury baseline. Similar to the cocaine-treated animals, methamphetamine also caused a more pronounced hypotensive event, but blood flow was not significantly different from saline controls. Lidocaine did not alter posttraumatic blood pressure but did significantly elevate blood flow throughout the 1-h postinjury period. At 60 min posttrauma, blood flow in the lidocaine group was 80 +/- 10% of the preinjury value. The mechanism by which cocaine alters blood pressure and blood flow after injury is not entirely certain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7840303

  12. State variable model for unsteady two dimensional axial vortex flow with pressure relaxation

    NASA Astrophysics Data System (ADS)

    Abuharaz, Mazin Mohammed Elbakri

    This research has utilized a state variable model for unsteady two dimensional axial vortex flows experiencing non-equilibrium pressure gradient forces. The model was developed successfully using perturbed radial and azimuthal momentum equations and a pressure Poisson's equations. Three main regions of the axial vortex flow were highlighted in this study including: a laminar core region, a non-equilibrium pressure envelope, and an outer potential vortex. Linear stability theory was utilized to formulate the model and the perturbation functions were assumed to be of the Fourier type. The flow parameters considered were the Reynolds numbers, ranging between 6,000 and 14,000, and a new non-equilibrium swirl parameter, Np determining the area of significant non-equilibrium pressure forces. Two other state variable parameters were imposed-complex frequency and associated azimuthal mode number. Perturbation outputs included primary Reynolds stress, radial and azimuthal velocity amplitudes, and radial pressure gradient amplitudes. Maximum perturbation growth occurred inside the non-equilibrium pressure zone between one and five core radii from the rotational axis, while the inner core remained laminar. The maximum amplitudes and critical radii depended on the four physical and state variable parameters. Increases in Np resulted in lower perturbation pressure gradient amplitudes, moving the critical radius closer to the vortex core, and expanding the non-equilibrium pressure zone. Increasing the frequency resulted in steady increases in the perturbation amplitudes until a particular dimensionless frequency was reached. Beyond that frequency, additional perturbation growth was insignificant or the amplitude decayed because of a high damping factor. Two types of azimuthal modes were unstable, the +/-½ modes inside the non-equilibrium pressure zone, causing the pressure gradient amplitudes to peak even though the azimuthal velocity profile remained stable, and +/- 1 helical

  13. Anharmonic analysis of arterial blood pressure and flow pulses.

    PubMed

    Voltairas, P A; Fotiadis, D I; Massalas, C V; Michalis, L K

    2005-07-01

    Fourier analysis is usually employed for the computation of blood flow in arteries. Although the orthogonality of Fourier eigenfunctions guarantees the accurate mathematical modeling of the blood pressure and flow waveforms, the physics behind this objective function is frequently missing. We propose a new method to account for the blood pressure and flow, single-cycle (systole-diastole) waveforms. It is based on the one dimensional hydrodynamic mass and momentum conservation equations for viscous flow. The similarity of the linear problem, under discussion, with related transmission line theory in electromagnetic wave propagation, permits expansion in anharmonic, non-separable eigenfunctions. In some cases one term in the expansion is adequate to fit the main peak of the observed waveforms. Analytical formulas are derived for the dependence of the pressure and flow main peaks on whole blood viscosity and distance from the heart, which interpret observations related to hypertension. PMID:15922753

  14. Uterine artery blood flow, fetal hypoxia and fetal growth

    PubMed Central

    Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.

    2015-01-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  15. Uterine artery blood flow, fetal hypoxia and fetal growth.

    PubMed

    Browne, Vaughn A; Julian, Colleen G; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G

    2015-03-01

    Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072

  16. The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage

    NASA Astrophysics Data System (ADS)

    Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali

    2016-06-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  17. Modified Beer-Lambert law for blood flow

    NASA Astrophysics Data System (ADS)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  18. A Porous Media Model for Blood Flow within Reticulated Foam

    PubMed Central

    Ortega, J.M.

    2013-01-01

    A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10−8 to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation data of blood flow through two reticulated foam geometries, the model adequately captures the pressure gradient within all three regimes, especially that within the Newtonian regime where blood transitions from a power-law to a constant viscosity fluid. PMID:24031095

  19. Abnormal Myocardial Blood Flow Reserve Observed in Cardiac Amyloidosis

    PubMed Central

    Nel, Karen; Senior, Roxy; Greaves, Kim

    2016-01-01

    We performed real-time myocardial contrast echocardiography on a patient with cardiac amyloidosis and previous normal coronary angiography presenting with atypical chest pain to assess myocardial blood flow reserve (MBFR). Myocardial contrast echocardiography was performed and flash microbubble destruction and replenishment analysis was used to calculate myocardial blood flow. Dipyridamole was used to achieve hyperemia. MBFR was derived from the ratio of peak myocardial blood flow at hyperemia and rest. The results show a marked reduction in MBFR in our patient. Previous reports of luminal obstruction of intramyocardial rather than epicardial vessels by amyloid deposition may be causing microvascular dysfunction. PMID:27081447

  20. Numerical Simulation of Cellular Blood Flow through a Rigid Artery

    NASA Astrophysics Data System (ADS)

    Reasor, Daniel; Clausen, Jonathan; Aidun, Cyrus

    2009-11-01

    In blood flow, red blood cells (RBCs), the most numerous constituent of blood, influence continuum-level measures by altering the suspension at microscopic scales. The presence of RBCs alters the stress and diffusion individual cells experience, which can influence cardiovascular diseases by affecting other cells present in blood like platelets and white blood cells. Simulations of blood at a cellular level provide a tool that allows exploration of both the rheology and the stress and diffusion of individual suspended cells. In this work, a hybrid lattice-Boltzmann/finite element method is used to simulate suspension flows characteristic of blood with deformable RBCs at realistic hematocrit values. We have shown the ability to simulate thousands deformable suspensions capturing non-Newtonian flow characteristics such as shear thinning, and the results agree well with experimental observations. Simulations through rigid arteries have been deformed with as many as 2500 RBCs. This work outlines results obtained for pressure-gradient driven blood flow through a rigid artery with 20%, 30%, 40%, and 50% hematocrit values. Results include the effect these deformable RBCs have on mean velocity, flow rate, radial variation of RBC concentration, and the effective viscosity for simulations at moderate to low cell capillary numbers, Ca <=0.08.

  1. Regulation of exercise blood flow: Role of free radicals.

    PubMed

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  2. Capillary pericytes regulate cerebral blood flow in health and disease

    PubMed Central

    Sutherland, Brad A.; O’Farrell, Fergus M.; Buchan, Alastair M.; Lauritzen, Martin; Attwell, David

    2014-01-01

    Brain blood flow increases, evoked by neuronal activity, power neural computation and are the basis of BOLD functional imaging. It is controversial whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease which damages neurons after stroke. PMID:24670647

  3. Three-dimensional flow phenomena in a transonic, high-through-flow, axial-flow compressor stage

    NASA Technical Reports Server (NTRS)

    Copenhaver, William W.; Hah, Chunill; Puterbaugh, Steven L.

    1992-01-01

    A detailed aerodynamic study of a transonic, high-through-flow, single stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.

  4. Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis).

    PubMed

    Jensen, Bjarke; Elfwing, Magnus; Elsey, Ruth M; Wang, Tobias; Crossley, Dane A

    2016-01-01

    Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure. PMID:26436857

  5. Relationship between beta-adrenoceptors and coronary blood flow heterogeneity

    SciTech Connect

    Upsher, M.E.; Weiss, H.R.

    1989-01-01

    The purpose of this study was to investigate the hypothesis that the heterogeneous distribution of ..beta.. adrenoceptors contributes to the control of flow heterogeneity in the canine myocardium. ..beta.. adrenoceptor density and affinity were measured simultaneously with coronary blood flow in multiple sections of the left ventricle of 14 anesthetized open chest dogs. Radioactive microspheres were used for the measurement of blood flow. Receptor density (Bmax) and dissociation constant (Kd) were measured using (/sup 125/I)- iodopindolol. The average control myocardial blood flow (MBF) was 86/+-/15 ml/min/100 g. Isoproterenol increased MBF by 82%, whereas propranolol reduced MBF by 13%. The mean value of Bmax was unaltered by either treatment. Under control conditions, a significant positive positive correlation was observed between Bmax and blood flow. In the isoproterenol treatment group, this correlation was enhanced. Beta adrenoceptor blockade led to a negative correlation. Kd showed no overall correlation with blood flow. Kd but not Bmax was significantly higher in the EPI than in the ENDO and in the base compared to the apex. There appears to be a direct linear relationship between the distribution of beta adrenoceptors and MBF distribution which is enhanced under conditions of high beta adrenergic activity. There is a correlation between beta adrenoceptor activity and blood flow distribution in the canine myocardium.

  6. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  7. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Beach, Timothy A.

    1989-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  8. Analysis of Effects of Inlet Pressure Losses on Performance of Axial-Flow Type Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D; Palasics, John

    1948-01-01

    The experimentally determined performance characteristics of an axial-flow turbojet engine have been used to estimate the effects of inlet total-pressure losses on net thrust and specific fuel consumption at a constant engine speed. At low altitudes and flight Mach numbers, inlet pressure losses cause an increase in engine discharge temperature and it is possible that the maximum allowable turbine temperature maybe exceeded. An inlet absolute total-pressure loss of 10 percent will result in a thrust loss of 14 percent and a 15-percent increase in specific fuel consumption based on net thrust. At high altitudes and flight Mach numbers, choking conditions exist in the exhaust nozzle and the inlet pressure losses do not affect the discharge temperatures. Under these conditions, a 10-percent loss in inlet absolute total pressure produces a 22-percent loss in net thrust and a 16-percent increase in specific fuel consumption. If the exhaust-nozzle-outlet area is adjusted to compensate for the effect of inlet losses on discharge temperature in the nonchoking cases (low altitude and Mach numbers), the thrust and fuel consumption will be changed in a manner similar to the results obtained in the choking cases.

  9. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Astrophysics Data System (ADS)

    Beach, T. A.

    1990-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  10. Performance of NACA Eight-stage Axial-flow Compressor Designed on the Basis of Airfoil Theory

    NASA Technical Reports Server (NTRS)

    Sinnette, John T; Schey, Oscar W; King, J Austin

    1943-01-01

    The NACA has conducted an investigation to determine the performance that can be obtained from a multistage axial-flow compressor based on airfoil research. A theory was developed; an eight-stage axial-flow compressor was designed, constructed, and tested. The performance of the compressor was determined for speeds from 5000 to 14,000 r.p.m with varying air flow at each speed. Most of the tests were made with air at room temperature. The performance was determined in accordance with the Committee's recommended procedure for testing superchargers. The expected performance was obtained, showing that a multistage compressor of high efficiency can be designed by the application of airfoil theory.

  11. Inlet flow test calibration for a small axial compressor rig. Part 2: CFD compared with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1995-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the compressor inlet for a highly loaded two-stage axial compressor test. Several flow conditions and inlet guide vane (IGV) angle settings were established, for which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. Several computational fluid dynamics (CFD) calculations were made for selected flow conditions established during the test. Good agreement between the CFD and test data were obtained for these test conditions.

  12. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  13. Optic Nerve Head Blood Flow Autoregulation during Changes in Arterial Blood Pressure in Healthy Young Subjects

    PubMed Central

    Boltz, Agnes; Told, Reinhard; Napora, Katarzyna J.; Palkovits, Stefan; Werkmeister, René M.; Schmidl, Doreen; Popa-Cherecheanu, Alina; Garhöfer, Gerhard; Schmetterer, Leopold

    2013-01-01

    Aim In the present study the response of optic nerve head blood flow to an increase in ocular perfusion pressure during isometric exercise was studied. Based on our previous studies we hypothesized that subjects with an abnormal blood flow response, defined as a decrease in blood flow of more than 10% during or after isometric exercise, could be identified. Methods A total of 40 healthy subjects were included in this study. Three periods of isometric exercise were scheduled, each consisting of 2 minutes of handgripping. Optic nerve head blood flow was measured continuously before, during and after handgripping using laser Doppler flowmetry. Blood pressure was measured non-invasively in one-minute intervals. Intraocular pressure was measured at the beginning and the end of the measurements and ocular perfusion pressure was calculated as 2/3*mean arterial pressure –intraocular pressure. Results Isometric exercise was associated with an increase in ocular perfusion pressure during all handgripping periods (p < 0.001). By contrast no change in optic nerve head blood flow was seen. However, in a subgroup of three subjects blood flow showed a consistent decrease of more than 10% during isometric exercise although their blood pressure values increased. In addition, three other subjects showed a consistent decline of blood flow of more than 10% during the recovery periods. Conclusion Our data confirm previous results indicating that optic nerve head blood flow is autoregulated during an increase in perfusion pressure. In addition, we observed a subgroup of 6 subjects (15%) that showed an abnormal response, which is in keeping with our previous data. The mechanisms underlying this abnormal response remain to be shown. PMID:24324774

  14. Skeletal Blood Flow in Bone Repair and Maintenance

    PubMed Central

    Tomlinson, Ryan E.; Silva, Matthew J.

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anatomy, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups. PMID:26273509

  15. Aging, regional cerebral blood flow, and neuropsychological functioning

    SciTech Connect

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-10-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the /sup 133/xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning.

  16. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  17. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    SciTech Connect

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  18. Experimental comparison of mammalian and avian blood flow in microchannels

    NASA Astrophysics Data System (ADS)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  19. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    PubMed

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm < D < 100 μm. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can

  20. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map.

    PubMed

    Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F

    2015-09-01

    Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy. PMID:26577357

  1. Effect of pulsatile swirling flow on stenosed arterial blood flow.

    PubMed

    Ha, Hojin; Lee, Sang Joon

    2014-09-01

    The existence of swirling flow phenomena is frequently observed in arterial vessels, but information on the fluid-dynamic roles of swirling flow is still lacking. In this study, the effects of pulsatile swirling inlet flows with various swirling intensities on the flow field in a stenosis model are experimentally investigated using a particle image velocimetry velocity field measurement technique. A pulsatile pump provides cyclic pulsating inlet flow and spiral inserts with two different helical pitches (10D and 10/3D) induce swirling flow in the stenosed channel. Results show that the pulsatile swirling flow has various beneficial effects by reducing the negative wall shear stress, the oscillatory shear index, and the flow reverse coefficient at the post-stenosis channel. Temporal variations of vorticity fields show that the short propagation length of the jet flow and the early breakout of turbulent flow are initiated as the swirling flow disturbs the symmetric development of the shear layer. In addition, the overall energy dissipation rate of the flow is suppressed by the swirling component of the flow. The results will be helpful for elucidating the hemodynamic characteristics of atherosclerosis and discovering better diagnostic procedures and clinical treatments. PMID:24984589

  2. Effect of tropicamide on ocular blood flow in the rabbit

    SciTech Connect

    Delgado, D.; Michel, P.; Jaanus, S.D.

    1982-05-01

    Intracardiac injection of 15 microspheres labeled with /sup 85/Sr (strontium) and /sup 141/Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed.

  3. Blood-flow measurement in muscle with Xe-133

    SciTech Connect

    Chung, S.Y.; Kim, I.; Ryo, U.Y.; Maskin, C.; Pinsky, S.

    1987-11-01

    An alternative method to the conventional miniature probe system for the measurement of blood flow in muscle has been developed. Xenon-133 was injected into the quadriceps muscles of ten subjects. A gamma camera and an online computer were then used to measure the half-clearance time of the Xe-133 while the subject was both at rest and exercising on an upright bicycle ergometer. The blood flow in the muscle was then calculated from the acquired data.

  4. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  5. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.

    1990-02-13

    This patent describes radiopharmaceuticals useful in brain imaging. They comprise radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  6. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  7. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia.

    PubMed

    Coverdale, Nicole S; Gati, Joseph S; Opalevych, Oksana; Perrotta, Amanda; Shoemaker, J Kevin

    2014-11-15

    To establish the accuracy of transcranial Doppler ultrasound (TCD) measures of middle cerebral artery (MCA) cerebral blood flow velocity (CBFV) as a surrogate of cerebral blood flow (CBF) during hypercapnia (HC) and hypocapnia (HO), we examined whether the cross-sectional area (CSA) of the MCA changed during HC or HO and whether TCD-based estimates of CBFV were equivalent to estimates from phase contrast (PC) magnetic resonance imaging. MCA CSA was measured from 3T magnetic resonance images during baseline, HO (hyperventilation at 30 breaths/min), and HC (6% carbon dioxide). PC and TCD measures of CBFV were measured during these protocols on separate days. CSA and TCD CBFV were used to calculate CBF. During HC, CSA increased from 5.6 ± 0.8 to 6.5 ± 1.0 mm(2) (P < 0.001, n = 13), while end-tidal carbon dioxide partial pressure (PETCO2) increased from 37 ± 3 to 46 ± 5 Torr (P < 0.001). During HO, CSA decreased from 5.8 ± 0.9 to 5.3 ± 0.9 mm(2) (P < 0.001, n = 15), while PetCO2 decreased from 36 ± 4 to 23 ± 3 Torr (P < 0.001). CBFVs during baseline, HO, and HC were compared between PC and TCD, and the intraclass correlation coefficient was 0.83 (P < 0.001). The relative increase from baseline was 18 ± 8% greater (P < 0.001) for CBF than TCD CBFV during HC, and the relative decrease of CBF during HO was 7 ± 4% greater than the change in TCD CBFV (P < 0.001). These findings challenge the assumption that the CSA of the MCA does not change over modest changes in PETCO2. PMID:25012027

  8. Blood flow structure in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  9. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  10. Acupuncture affects regional blood flow in various organs.

    PubMed

    Uchida, Sae; Hotta, Harumi

    2008-06-01

    In this review, our recent studies using anesthetized animals concerning the neural mechanisms of vasodilative effect of acupuncture-like stimulation in various organs are briefly summarized. Responses of cortical cerebral blood flow and uterine blood flow are characterized as non-segmental and segmental reflexes. Among acupuncture-like stimuli delivered to five different segmental areas of the body; afferent inputs to the brain stem (face) and to the spinal cord at the cervical (forepaw), thoracic (chest or abdomen), lumbar (hindpaw) and sacral (perineum) levels, cortical cerebral blood flow was increased by stimuli to face, forepaw and hindpaw. The afferent pathway of the responses is composed of somatic groups III and IV afferent nerves and whose efferent nerve pathway includes intrinsic cholinergic vasodilators originating in the basal forebrain. Uterine blood flow was increased by cutaneous stimulation of the hindpaw and perineal area, with perineal predominance. The afferent pathway of the response is composed of somatic group II, III and IV afferent nerves and the efferent nerve pathway includes the pelvic parasympathetic cholinergic vasodilator nerves. Furthermore, we briefly summarize vasodilative regulation of skeletal muscle blood flow via a calcitonin gene-related peptide (CGRP) induced by antidromic activation of group IV somatic afferent nerves. These findings in healthy but anesthetized animals may be applicable to understanding the neural mechanisms improving blood flow in various organs following clinical acupuncture. PMID:18604254

  11. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    PubMed

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter. PMID:27335889

  12. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    NASA Astrophysics Data System (ADS)

    Shit, G. C.; Majee, Sreeparna

    2015-08-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank-Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance.

  13. Measuring bovine mammary gland blood flow using a transit time ultrasonic flow probe.

    PubMed

    Gorewit, R C; Aromando, M C; Bristol, D G

    1989-07-01

    Lactating cattle were used to validate a transit time ultrasonic blood flow metering system for measuring mammary gland arterial blood flow. Blood flow probes were surgically placed around the right external pudic artery. An electromagnetic flow probe was implanted in tandem with the ultrasonic probe in two cows for comparative measurements. The absolute accuracy of the implanted flow probes was assessed in vivo by mechanical means on anesthetized cows after 2 to 3 wk of implantation. The zero offset of the ultrasonic probes ranged from -12 to 8 ml/min. When the ultrasonic probe was properly implanted, the slopes of the calibration curves were linear and ranged from .92 to .95, tracking absolute flow to within 8%. The transit time instrument's performance was examined under a variety of physiological conditions. These included milking and hormone injections. The transit time ultrasonic flow meter accurately measured physiological changes in mammary arterial blood flow in chronically prepared conscious cattle. Blood flow increased 29% during milking. Epinephrine decreased mammary blood flow by 90 to 95%. Oxytocin doses increased mammary blood flow by 15 to 24%. PMID:2674232

  14. Cerebral aneurysms treated with flow-diverting stents: Computational models using intravascular blood flow measurements

    PubMed Central

    Levitt, Michael R; McGah, Patrick M; Aliseda, Alberto; Mourad, Pierre D; Nerva, John D; Vaidya, Sandeep S; Morton, Ryan P; Ghodke, Basavaraj V; Kim, Louis J

    2013-01-01

    Background and Purpose Computational fluid dynamics modeling is useful in the study of the hemodynamic environment of cerebral aneurysms, but patient-specific measurements of boundary conditions, such as blood flow velocity and pressure, have not been previously applied to the study of flow-diverting stents. We integrated patient-specific intravascular blood flow velocity and pressure measurements into computational models of aneurysms before and after treatment with flow-diverting stents to determine stent effects on aneurysm hemodynamics. Methods Blood flow velocity and pressure were measured in peri-aneurysmal locations using an intravascular dual-sensor pressure and Doppler velocity guidewire before and after flow-diverting stent treatment of four unruptured cerebral aneurysms. These measurements defined inflow and outflow boundary conditions for computational models. Intra-aneurysmal flow rates, wall shear stress and wall shear stress gradient were calculated. Results Measurements of inflow velocity and outflow pressure were successful in all four patients. Computational models incorporating these measurements demonstrated significant reductions in intra-aneurysmal wall shear stress and wall shear stress gradient, and a trend in reduced intra-aneurysmal blood flow. Conclusions Integration of intravascular dual-sensor guidewire measurements of blood flow velocity and blood pressure provided patient-specific computational models of cerebral aneurysms. Aneurysm treatment with flow-diverting stents reduces blood flow and hemodynamic shear stress in the aneurysm dome. PMID:23868162

  15. Measurement of normal portal venous blood flow by Doppler ultrasound.

    PubMed

    Brown, H S; Halliwell, M; Qamar, M; Read, A E; Evans, J M; Wells, P N

    1989-04-01

    The volume flow rate of blood in the portal vein was measured using a duplex ultrasound system. The many errors inherent in the duplex method were assessed with particular reference to the portal vein and appropriate correction factors were obtained by in vitro calibration. The effect of posture on flow was investigated by examining 45 healthy volunteers in three different positions; standing, supine and tilted head down at 20 degrees from the horizontal. The mean volume blood flow in the supine position was 864 (188)ml/min (mean 1SD). When standing, the mean volume blood flow was significantly reduced by 26% to 662 (169)ml/min. There was, however, no significant difference between flow when supine and when tilted head down at 20 degrees from the horizontal. PMID:2653973

  16. Blood flow and arterial endothelial dysfunction: Mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Barakat, Abdul I.

    2013-06-01

    The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

  17. Validation studies for brain blood flow assessment by radioxenon tomography

    SciTech Connect

    Rezai, K.; Kirchner, P.T.; Armstrong, C.; Ehrhardt, J.C.; Heistad, D.

    1988-03-01

    A tomographic technique has been used recently for cerebral blood flow measurements with inhaled radioxenon. Based on experiments in a specially developed dynamic phantom and on studies in primates in vivo, we have analyzed the validity of this method for measurements of both regional and total blood flow in the brain. We have also examined the errors introduced into flow computations as a function of changes in such parameters as: rate of xenon input, size of region of interest, magnitude of regional flow rates, and inter-regional flow differences. Our findings indicate a reasonable degree of accuracy for flow measurements in gray matter regions that are 3 cm in diameter or larger, while white matter blood flow is generally overestimated. The accuracy for regional flow assessments degrades as a function of: diminishing region size, increasing inter-regional flow differences, and flow rates in excess of 100 ml/100 g/min. Measurements for brain regions 2 cm or smaller in diameter can be in error by 25-50% as a result of partial volume averaging. Although the technique is not ideal for accurate flow measurements in small regions of the brain, it nevertheless provides a convenient means of assessing perfusion in major vascular territories of the brain in routine clinical applications.

  18. Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Moses, Jason J; Serovy, George, K

    1951-01-01

    A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.

  19. Design and performance of a high-pressure-ratio, highly loaded axial-flow transonic compressor space

    NASA Technical Reports Server (NTRS)

    Lewis, G. W., Jr.; Reid, L.; Tysl, E. R.

    1974-01-01

    A 50-cm-diam. axial-flow transonic compressor stage with multiple-circular-arc blades was designed and tested. At design speed, a rotor peak efficiency of 0.85 occurred at an equivalent weight flow of 29.3 kg/sec. Stage peak efficiency was 0.79 at 28.6 kg/sec. Stage total pressure ratio at peak efficiency was 1.84. The stall margin at design speed was 5 percent. Rotor and stator losses were higher than predicted. The stator choked at design flow.

  20. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall

    PubMed Central

    Zhou, Yi; Zhang, Kun; Zhang, Kexin; Gao, Lian

    2016-01-01

    This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue's motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity. PMID:27478840

  1. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall.

    PubMed

    Zhang, Qinghui; Zhang, Yufeng; Zhou, Yi; Zhang, Kun; Zhang, Kexin; Gao, Lian

    2016-01-01

    This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue's motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity. PMID:27478840

  2. Measurement of directed blood flow by laser speckle

    NASA Astrophysics Data System (ADS)

    Hirst, Evan R.; Thompson, Oliver B.; Andrews, Michael K.

    2011-03-01

    Recent success in reconciling laser Doppler and speckle measurements of dermal perfusion by the use of multi-exposure speckle has prompted an investigation of speckle effects arising from directed blood flow which might be expected in the small blood vessels of the eye. Unlike dermal scatter, the blood in retinal vessels is surrounded by few small and stationary scatterers able to assist the return of light energy by large-angle scatter. Returning light is expected to come from multiple small angle scatter from the large red blood cells which dominate the fluid. This work compares speckle measurements on highly scattering skin, with measurements on flow in a retinal phantom consisting of a glass capillary which is itself immersed in an index matching fluid to provide a flat air-phantom interface. Brownian motion dominated measurements when small easily levitated scatters were used, and flow was undetectable. With whole-blood, Brownian motion was small and directed flows in the expected region of tens of mm/s were detectable. The nominal flow speed relates to the known pump rate; within the capillary the flow will have a profile reducing toward the walls. The pulsatile effects on laser speckle contrast in the retina are discussed with preliminary multi-exposure measurements on retinal vessels using a fundus camera. Differences between the multiple exposure curves and power spectra of perfused tissue and ordered flow are discussed.

  3. Nonlinear dynamics of the blood flow studied by Lyapunov exponents.

    PubMed

    Bracic, M; Stefanovska, A

    1998-05-01

    In order to gain an insight into the dynamics of the cardiovascular system throughout which the blood circulates, the signals measured from peripheral blood flow in humans were analyzed by calculating the Lyapunov exponents. Over a wide range of algorithm parameters, paired values of both the global and the local Lyapunov exponents were obtained, and at least one exponent equaled zero within the calculation error. This may be an indication of the deterministic nature and finite number of degrees of freedom of the cardiovascular system governing the blood-flow dynamics on a time scale of minutes. A difference was observed in the Lyapunov dimension of controls and athletes. PMID:9608852

  4. Extensional flow of blood analog solutions in microfluidic devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.; Oliveira, M. S. N.; Alves, M. A.

    2011-01-01

    In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic and abrupt contractions∕expansions. The hyperbolic shape was selected in order to impose a nearly constant strain rate at the centerline of the microchannels and achieve a quasihomogeneous and strong extensional flow often found in features of the human microcirculatory system such as stenoses. The two blood analog fluids used are aqueous solutions of a polyacrylamide (125 ppm w∕w) and of a xanthan gum (500 ppm w∕w), which were characterized rheologically in steady-shear flow using a rotational rheometer and in extension using a capillary breakup extensional rheometer (CaBER). Both blood analogs exhibit a shear-thinning behavior similar to that of whole human blood, but their relaxation times, obtained from CaBER experiments, are substantially different (by one order of magnitude). Visualizations of the flow patterns using streak photography, measurements of the velocity field using microparticle image velocimetry, and pressure-drop measurements were carried out experimentally for a wide range of flow rates. The experimental results were also compared with the numerical simulations of the flow of a Newtonian fluid and a generalized Newtonian fluid with shear-thinning behavior. Our results show that the flow patterns of the two blood analog solutions are considerably different, despite their similar shear rheology. Furthermore, we demonstrate that the elastic properties of the fluid have a major impact on the flow characteristics, with the polyacrylamide solution exhibiting a much stronger elastic character. As such, these properties must be taken into account in the

  5. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    SciTech Connect

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  6. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  7. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  8. Cerebral blood flow measured by NMR indicator dilution in cats

    SciTech Connect

    Ewing, J.R.; Branch, C.A.; Helpern, J.A.; Smith, M.B.; Butt, S.M.; Welch, K.M.

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  9. The effects of hypoxemia on myocardial blood flow during exercise.

    PubMed

    Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J

    1989-03-01

    We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2704596

  10. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality.

    PubMed

    Bellapart, Judith; Chan, Gregory S H; Tzeng, Yu-Chieh; Ainslie, Philip N; Dunster, Kimble R; Barnett, Adrian G; Boots, Rob; Fraser, John F

    2011-09-01

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects. PMID:21775798

  11. Detecting Blood Flow Response to Stimulation of the Human Eye

    PubMed Central

    Pechauer, Alex D.; Huang, David; Jia, Yali

    2015-01-01

    Retinal blood supply is tightly regulated under a variety of hemodynamic considerations in order to satisfy a high metabolic need and maintain both vessel structure and function. Simulation of the human eye can induce hemodynamics alterations, and attempt to assess the vascular reactivity response has been well documented in the scientific literature. Advancements in noninvasive imaging technologies have led to the characterization of magnitude and time course in retinal blood flow response to stimuli. This allowed for a better understanding of the mechanism in which blood flow is regulated, as well as identifying functional impairments in the diseased eye. Clinically, the ability to detect retinal blood flow reactivity during stimulation of the eye offers potential for the detection, differentiation, and diagnosis of diseases. PMID:26504775

  12. A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2014-01-01

    A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.

  13. Installation effects on the tonal noise generated by axial flow fans

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio

    2015-03-01

    The paper presents the results of experiments on a low-speed axial-flow fan flush mounted on flat panels typically employed in tests on automotive cooling fans. The experiments have been conducted in a hemi-anechoic chamber and were aimed at evaluating the installation effects of the whole test configuration, including chamber floor and size and shape of the mounting panel. The largest panels cause important SPL variations in a narrow, low frequency range. Their effect on the propagation function has been verified by means of parametric BEM computations. A regular wavy trend associated with reflections from the floor is also present. In both cases, the tonal noise is more strongly affected than the broadband one. The analysis is performed by means of an existing spectral decomposition technique and a new one, which allows to consider different noise generating mechanisms and also to separate the emitted tonal and broadband noise from the associated propagation effects. In order to better identify the features of the noise at the blade passing frequency (BPF) harmonics, the phase of the acoustic pressure is also analysed. Measurements are taken during speed ramps, which allow to obtain both constant-Strouhal number SPL data and constant-speed data. The former data set is employed in the new technique, while the latter may be employed in the standard spectral decomposition techniques. Based on both the similarity theory and the analysis of the Green's function of the problem, a theoretical description of the structure of the received SPL spectrum is given. Then, the possibility of discriminating between tonal and broadband noise generating mechanisms is analysed and a theoretical base for the new spectral decomposition technique is provided.

  14. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140

  15. Use of laser speckle flowgraphy in ocular blood flow research.

    PubMed

    Sugiyama, Tetsuya; Araie, Makoto; Riva, Charles E; Schmetterer, Leopold; Orgul, Selim

    2010-11-01

    Laser speckle flowgraphy (LSFG) allows for the quantitative estimation of blood flow in the optic nerve head, choroid, retina and iris in vivo. It was developed to facilitate the non-contact analysis of ocular blood flow in living eyes, utilizing the laser speckle phenomenon. The technique uses a fundus camera, a diode laser, an image sensor, an infrared charge-coupled device (CCD) camera and a high-resolution digital CCD camera. Normalized blur (NB), an approximate reciprocal of speckle contrast, represents an index of blood velocity, and shows a good correlation with tissue blood flow rates determined with the microsphere method in the retina, choroid or iris, as well as blood flow rates determined with the hydrogen gas clearance method in the optic nerve head. The square blur ratio (SBR), another index for quantitative estimation of blood velocity, is proportional to the square of the NB. The SBR is theoretically a more exact measurement which is proportional to velocity, whereas the NB is an approximation. Normalized blur was calculated in earlier versions of LSFG because of technical limitations; the SBR is used in current versions of the LSFG instrument. As these values are in arbitrary units, they should not be used to make comparisons between different eyes or different sites in an eye. Clinical protocols, calibration, evaluation procedures and possible limitations of the LSFG technique are described and the results of ocular blood flow studies using LSFG are briefly summarized. The LSFG method is suitable for monitoring the time-course of change in the tissue circulation at the same site in the same eye at various intervals, ranging from seconds to months. Unresolved issues concern the effect of pupil size on measurement results, the effects of various stimulations, and how to measure choroidal and retinal blood flow velocity separately without using the blue-component of argon laser. PMID:19725814

  16. Appearance of rapidly flowing blood on magnetic resonance images

    SciTech Connect

    Bradley, W.G. Jr.; Waluch, V.; Lai, K.S.; Fernandez, E.J.; Spalter, C.

    1984-12-01

    The appearance of rapidly flowing blood on imaging (MRI) was evaluated using flow phantoms and dye infusion experiments. Laminar flow can be maintained at high velocities in small-diameter vessels. Under such conditions, flow-related enhancement may be observed several slices into a multislice imaging volume. As the velocity increases, turbulence occurs. The increased random motion of the protons causes loss of intensity on the first-echo image, although rephasing with increased intensity can be noted on the second-echo image. The flow pattern of a simple intraluminal obstruction is demonstrated by MRI and dye infusion experiments. Clinical examples of the phantom findings are shown and applications are discussed.

  17. Quantitative OCT angiography of optic nerve head blood flow

    PubMed Central

    Jia, Yali; Morrison, John C.; Tokayer, Jason; Tan, Ou; Lombardi, Lorinna; Baumann, Bernhard; Lu, Chen D.; Choi, WooJhon; Fujimoto, James G.; Huang, David

    2012-01-01

    Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma. PMID:23243564

  18. Regional myocardial blood flow in man during dipyridamole coronary vasodilation

    SciTech Connect

    Sorensen, S.G.; Groves, B.M.; Horwitz, L.D.; Chaudhuri, T.K.

    1985-06-01

    Regional myocardial blood flow before and after intravenous dipyridamole (0.56 mg/kg) was measured during cardiac catheterization in 11 patients using the /sup 133/Xe washout technique. Significant increases in heart rate and decreases in systolic blood pressure were observed with dipyridamole infusion. However, double product and cardiac output did not differ before or after drug infusion. Regional myocardial blood flow increased from 67 to 117 ml/100 mg/min in myocardial segments supplied by nonobstructed coronary arteries. In stenotic coronary arteries, flow increased from 57 to 79 ml/100 mg/min with dipyridamole. We conclude that dipyridamole infusion results in flow differences which discriminate stenotic from nonstenotic coronary arteries.

  19. Quantifying the glycocalyx effects in blood flow in capillaries

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    We employ Dissipative Particle Dynamics (DPD) to simulate blood flow in small capillaries with the glycocalyx attached to the endothelial surface. The effects of the glycocalyx on hematocrit and resistance to blood flow are analyzed by comparing with and without glycocalyx attached to the surface. Of particular interest is the quantification of the slip boundary condition at the edge of glycocalyx and also of the glycocalyx deformation at different grafting densities, stiffness and height of the glycocalyx. In addition to the physical insight gained for this important but relatively unexplored bio-flow, simple models for the slip velocity will be proposed that can be used in continuum simulations of blood flow in micro-vessels.

  20. Azimuthal velocity profiles in Rayleigh-stable Taylor-Couette flow and implied axial angular momentum transport

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef; Lathrop, Daniel P.

    2015-07-01

    We present azimuthal velocity profiles measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of $\\eta = 0.716$, an aspect-ratio of $\\Gamma = 11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $Re_S \\sim O(10^5) \\,$, both for $\\Omega_i > \\Omega_o > 0$ (quasi-Keplerian regime) and $\\Omega_o > \\Omega_i > 0$ (sub-rotating regime) where $\\Omega_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles matches the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation is approached at fixed $Re_S$. Flow super-rotation, an angular velocity greater than that of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that were larger than the torques for the case of laminar Taylor-Couette flow. The quasi-Keplerian profiles are composed of a well mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor-Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.

  1. Dissipative particle dynamics modeling of blood flow in arterial bifurcations

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Lykov, Kirill; Pivkin, Igor V.; Karniadakis, George Em

    2013-11-01

    The motion of a suspension of red blood cells (RBCs) flowing in bifurcations is investigated using both low-dimensional RBC (LD-RBC) and multiscale RBC (MS-RBC) models based on dissipative particle dynamics (DPD). The blood flow is first simulated in a symmetric geometry between the diverging and converging channels to satisfy the periodic flow assumption along the flow direction. The results show that the flowrate ratio of the daughter channels and the feed hematocrit level has considerable influence on blood-plasma separation. We also propose a new method to model the inflow and outflow boundaries for the blood flow simulations: the inflow at the inlet is duplicated from a fully developed flow generated by DPD fluid with periodic boundary conditions; the outflow in two adjacent regions near the outlet is controlled by adaptive forces to keep the flowrate and velocity gradient equal, while the particles leaving the microfluidic channel at the outlet at each time step are removed from the system. The simulation results of the developing flow match analytical solutions from continuum theory. Plasma skimming and the all-or-nothing phenomenon of RBCs in bifurcation have been investigated in the simulations. The simulation results are consistent with previous experimental results and theoretical predictions. This work is supported by the NIH Grant R01HL094270.

  2. Ultrasonic Enrichment of Flowing Blood Cells in Capillars: Influence of the Flow Rate

    NASA Astrophysics Data System (ADS)

    Carreras, Pilar; Gonzalez, Itziar; Ahumada, Oscar

    Red blood cells subjected to standing waves collect at the pressure nodes during their flow motion. Blood is a non-newtonian fluid whose density and other properties are defined by its flow velocity. Their drift motion is governed by the radiation force together with hydrodynamic conditions. This work presents a study of the blood cell enrichment performed in a rectangular capillar at f=1 MHz as a function of their flow motion. The cells collect along the central axis of the capillary in very few seconds, with a clearance in other lateral areas. Optimal flow rates below 100uL/min were found in the experiments.

  3. Numerical investigation on the self-induced unsteadiness in tip leakage flow of a micro-axial fan rotor

    NASA Astrophysics Data System (ADS)

    Chen, Jinxin; Lai, Huanxin

    2015-06-01

    The self-induced unsteadiness in tip leakage flow (TLF) of a micro-axial fan rotor is numerically studied by solvingReynolds-averaged Navier-Stokes equations. The micro-axial fan, which is widely used in cooling systems of electronic devices, has a tip clearance of 6% of the axial chord length of the blade. At the design rotation speed, four cases near the peak efficiency point (PEP) with self-induced unsteadiness and four steady cases which have much weaker pressure fluctuations are investigated Using the "interface" separating the incoming main flow and the TLF defined by Du et al. [1], an explanation based on the propagation of the low energy spot and its multi-passing through the high gradient zone of the relativetotal pressure, is proposed to clarify the originating mechanism of the unsteadiness. At the operating points near the PEP, the main flow is weaker than the TLF and the interface moves upstream. The low energy spot which propagates along in the close behind of the interface has opportunity to circulate in the circumferential direction and passes through the sensitive interfaces several times, a slight perturbation therefore may be magnified significantlyand develops into the self-induced unsteadiness. The explanation is demonstrated by numerical results

  4. Effects of interstage diffuser flow distortion on the performance of a 15.41-centimeter tip diameter axial power turbine

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.

    1983-01-01

    The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.

  5. One dimensional blood flow in a planetocentric orbit

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  6. Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings

    NASA Astrophysics Data System (ADS)

    Pick, Simon; Lehmann, Fritz-Olaf

    2009-12-01

    Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.

  7. Intraperitoneal Resuscitation Improves Intestinal Blood Flow Following Hemorrhagic Shock

    PubMed Central

    Zakaria, El Rasheid; Garrison, R. Neal; Spain, David A.; Matheson, Paul J.; Harris, Patrick D.; Richardson, J. David

    2003-01-01

    Objective To study the effects of peritoneal resuscitation from hemorrhagic shock. Summary Background Data Methods for conventional resuscitation (CR) from hemorrhagic shock (HS) often fail to restore adequate intestinal blood flow, and intestinal ischemia has been implicated in the activation of the inflammatory response. There is clinical evidence that intestinal hypoperfusion is a major factor in progressive organ failure following HS. This study presents a novel technique of peritoneal resuscitation (PR) that improves visceral perfusion. Methods Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure (MAP) and resuscitated with shed blood plus 2 equal volumes of saline (CR). Groups were 1) sham, 2) HS + CR, and 3) HS + CR + PR with a hyperosmolar dextrose-based solution (Delflex 2.5%). Groups 1 and 2 had normal saline PR. In vivo videomicroscopy and Doppler velocimetry were used to assess terminal ileal microvascular blood flow. Endothelial cell function was assessed by the endothelium-dependent vasodilator acetylcholine. Results Despite restored heart rate and MAP to baseline values, CR animals developed a progressive intestinal vasoconstriction and tissue hypoperfusion compared to baseline flow. PR induced an immediate and sustained vasodilation compared to baseline and a marked increase in average intestinal blood flow during the entire 2-hour post-resuscitation period. Endothelial-dependent dilator function was preserved with PR. Conclusions Despite the restoration of MAP with blood and saline infusions, progressive vasoconstriction and compromised intestinal blood flow occurs following HS/CR. Hyperosmolar PR during CR maintains intestinal blood flow and endothelial function. This is thought to be a direct effect of hyperosmolar solutions on the visceral microvessels. The addition of PR to a CR protocol prevents the splanchnic ischemia that initiates systemic inflammation. PMID:12724637

  8. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  9. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia

    SciTech Connect

    Bryan, R.M. Jr.; Myers, C.L.; Page, R.B.

    1988-08-01

    Regional cerebral blood flow (rCBF) was measured in the neurohypophysis and hypothalamus in normocapnic and hypercapnic rats using (/sup 14/C)isopropyliodoamphetamine. Rats were surgically prepared using nitrous oxide and halothane and placed in plaster restraining casts. Hypercapnia was produced by increasing the fractional concentration of inspired CO/sub 2/ (FICO/sub 2/). rCBF in normocapnic rats was higher in the paraventricular nucleus, supraoptic nucleus, median eminence, and neural lobe than rates previously measured by use of diffusible tracers. During hypercapnia blood flow increased linearly with arterial PCO/sub 2/ (PACO/sub 2/) in all regions except the median eminence and neural lobe, which were not affected by hypercapnia. When rats were pretreated with phentolamine (1 mg/kg) to block the alpha-adrenergic receptors, blood flow in the median eminence and neural lobe increased significantly during hypercapnia. We conclude that blood flow in the cell bodies of the paraventricular nucleus and supraoptic nucleus is regulated differently during hypercapnia than blood flow in the nerve terminals in the median eminence and neural lobe. Furthermore, vasodilation produced by increased CO/sub 2/ is offset by alpha-receptor stimulation in the median eminence and neural lobe.

  10. Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery

    NASA Astrophysics Data System (ADS)

    Zaman, A.; Ali, N.; Sajid, M.; Hayat, T.

    2015-03-01

    A two-dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered artery with stenosis. The rheology of the flowing blood is captured by the constitutive equation of Carreau model. The geometry of the time-variant stenosis has been used to carry out the present analysis. The flow equations are set up under the assumption that the lumen radius is sufficiently smaller than the wavelength of the pulsatile pressure wave. A radial coordinate transformation is employed to immobilize the effect of the vessel wall. The resulting partial differential equations along with the boundary and initial conditions are solved using finite difference method. The dimensionless radial and axial velocity, volumetric flow rate, resistance impedance and wall shear stress are analyzed for normal and diseased artery with particular focus on variation of these quantities with non-Newtonian parameters.

  11. Hall effect in electrolyte flow measurements: introduction to blood flow measurements.

    PubMed

    Szwast, Maciej; Piatkiewicz, Wojciech

    2012-06-01

    The Hall effect has been applied to electrolyte flow measurement. It has been proven that Hall voltage does not depend on electrolyte concentration; however, there is a linear relationship between Hall voltage and flow velocity. Obtained results for electrolyte allow us to suppose that Hall effect can be used to determine blood flow. Research on blood will be conducted as the next step. PMID:22145845

  12. Pentobarbital changes compartmental contribution to cerebral blood flow

    SciTech Connect

    Laurent, J.P.; Lawner, P.; Simeone, F.A.; Fink, E.

    1982-04-01

    Barbiturates were administered to normal dogs, establishing an isoelectric electrocorticogram. Cortical cerebral blood flows (CBF) and deeper CBF's were respectively measured by krypton-85 (85Kr) and xenon-133 (133 Xe). Following barbiturate administration, the two methods of measuring CBF showed a poor coefficient of variation (r.0.12, p less than 0.05). The cortical flows decreased less than the fast compartment flows. A shifting of percentage contribution of flow to the slow compartment (60% increase, p less than 0.001) was observed after barbiturate infusion. A selective shunting of blood flow to the slower areas may explain the lowering of intracranial pressure and protection of the deep white matter observed by many authors who use barbiturates in clinical an experimental situations.

  13. On the solution of the unsteady Navier-Stokes equations for hypersonic flow about axially-symmetric blunt bodies

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Weed, R. A.; Thompson, J. F.

    1980-01-01

    A formulation of the complete Navier-Stokes problem for a viscous hypersonic flow in general curvilinear coordinates is presented. This formulation is applicable to both the axially symmetric and three dimensional flows past bodies of revolution. The equations for the case of zero angle of attack were solved past a circular cylinder with hemispherical caps by point SOR finite difference approximation. The free stream Mach number and the Reynolds number for the test case are respectively 22.04 and 168883. The whole algorithm is presented in detail along with the preliminary results for pressure, temperature, density and velocity distributions along the stagnation line.

  14. Turbine modeling technique to generate off-design performance data for both single and multistage axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Converse, G. L.

    1981-01-01

    This technique is applicable to larger axial flow turbines which may or may not incorporate variable geometry in the first stage stator. A user specified option will also permit the calculation of design point cooling flow levels and the corresponding change in turbine efficiency. The modeling technique was incorporated into a time sharing computer program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual.

  15. STGSTK: A computer code for predicting multistage axial flow compressor performance by a meanline stage stacking method

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1982-01-01

    A FORTRAN computer code is presented for off-design performance prediction of axial-flow compressors. Stage and compressor performance is obtained by a stage-stacking method that uses representative velocity diagrams at rotor inlet and outlet meanline radii. The code has options for: (1) direct user input or calculation of nondimensional stage characteristics; (2) adjustment of stage characteristics for off-design speed and blade setting angle; (3) adjustment of rotor deviation angle for off-design conditions; and (4) SI or U.S. customary units. Correlations from experimental data are used to model real flow conditions. Calculations are compared with experimental data.

  16. The effects of recirculation flows on mass transfer from the arterial wall to flowing blood.

    PubMed

    Zhang, Zhiguo; Deng, Xiaoyan; Fan, Yubo; Guidoin, Robert

    2008-01-01

    Using a sudden tubular expansion as a model of an arterial stenosis, the effect of disturbed flow on mass transfer from the arterial wall to flowing blood was studied theoretically and tested experimentally by measuring the dissolution rate of benzoic acid disks forming the outer tube of a sudden tubular expansion. The study revealed that mass transfer from vessel wall to flowing fluid in regions of disturbed flow is independent of wall shear rates. The rate of mass transfer is significantly higher in regions of disturbed flow with a local maximum around the reattachment point where the wall shear rate is zero. The experimental study also revealed that the rate of mass transfer from the vessel wall to a flowing fluid is much higher in the presence of microspheres (as models of blood cells) in the flowing fluid and under the condition of pulsatile flow than in steady flow. These results imply that flow disturbance may enhance the transport of biochemicals and macromolecules, such as plasma proteins and lipoproteins synthesized within the blood vessel wall, from the blood vessel wall to flowing blood. PMID:18204314

  17. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    NASA Technical Reports Server (NTRS)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p< 0.05. RESULTS: Artery diameter did not change from baseline. BF increased (p<0.05) after exercise in each condition except LBFR(sub SBP) in the order of HL (12.73+/-1.42 cm3,mean+/-SE) > LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of

  18. Verapamil buffering effect on the abrupt elevation in blood pressure, linkage with microcirculatory blood flow.

    PubMed

    Gmitrov, J

    2008-01-01

    1 We studied the effects of verapamil on sudden elevation in blood pressure, microcirculation and arterial baroreflex sensitivity (BRS). 2 Thirty experiments (10 controls and 20 with verapamil) were performed in rabbits sedated using pentobarbital infusion (5 mg kg(-1) h(-1)). 3 BRS, mean femoral artery blood pressure (MAP), heart rate (HR) and ear lobe skin microcirculatory blood flow, estimated using microphotoelectric plethysmography (MPPG), were simultaneously measured during 30 min of verapamil infusion (20 mug kg(-1) min(-1)). BRS was assessed from HR and MAP responses to intravenous phenylephrine (Ph) and by power spectral analysis using transfer function (TF) from MAP to the HR (BRS(Ph,TF)). 4 Verapamil significantly increased microcirculatory blood flow, and decreased BRS(Ph,TF) and phenylephrine-induced abrupt elevation in MAP (MAP(AE)). 5 A significant inverse correlation was found between verapamil-induced changes in MAP(AE), BRS and in microcirculatory blood flow, measured before phenylephrine blood pressure ramps (DeltaMAP(AE) with DeltaBRS(TF), r = -0.47, P < 0.036; DeltaMAP(AE) with DeltaMPPG, r = -0.49, P < 0.025). 6 These results suggest involvement of the arterial baroreflex and vascular blood pressure-buffering mechanisms, their enhancement by verapamil, and thus a potential benefit of verapamil in cardiovascular conditions where patients present with abrupt high elevations in blood pressure. PMID:18598288

  19. Intravital video microscopy measurements of retinal blood flow in mice.

    PubMed

    Harris, Norman R; Watts, Megan N; Leskova, Wendy

    2013-01-01

    Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats. PMID:24429840

  20. Blood flow and wall motion in an idealized left ventricle

    NASA Astrophysics Data System (ADS)

    Tavoularis, Stavros; Doyle, Matthew; Bourgault, Yves

    2006-11-01

    During diastole of the heart, the left ventricle (LV) expands as a result of both incoming blood flow and wall material relaxation. In this work, we simulate both of these effects, along with the fluid-structure interaction between the blood and the heart wall. As a first step leading to more realistic studies, we approximate the LV by a prolate ellipsoid and the valves by cylindrical tubes. The mitral valve is open, allowing blood to enter the LV, whereas the aortic valve is closed. To account for the effects of muscle fibers in the heart wall, we model the wall as a multi-layered orthotropic linear elastic material with different material properties in the fiber, sheet, and sheet-normal directions within each layer. Results will be presented for this idealized configuration, while simulations of blood flow in realistic canine left and right ventricles are currently underway.

  1. Bone Blood Flow During Simulated Microgravity: Physiological and Molecular Mechanisms

    NASA Technical Reports Server (NTRS)

    Bloomfield, Susan A.

    1999-01-01

    Blood flow to bone has been shown to affect bone mass and presumably bone strength. Preliminary data indicate that blood flow to the rat femur decreases after 14 days of simulated microgravity, using hindlimb suspension (HLS). If adult rats subjected to HLS are given dobutamine, a synthetic catecholamine which can cause peripheral vasodilation and increased blood flow, the loss of cortical bone area usually observed is prevented. Further, mechanisms exist at the molecular level to link changes in bone blood flow to changes in bone cell activity, particularly for vasoactive agents like nitric oxide (NO). The decreases in fluid shear stress created by fluid flow associated with the shifts of plasma volume during microgravity may result in alterations in expression of vasoactive agents such as NO, producing important functional effects on bone cells. The primary aim of this project is to characterize changes in 1) bone blood flow, 2) indices of bone mass, geometry, and strength, and 3) changes in gene expression for modulators of nitric oxide activity (e.g., nitric oxide synthase) and other candidate genes involved in signal transduction of mechanical loading after 3, 7, 14, 21, and 28 days of HLS in the adult rat. Using a rat of at least 5 months of age avoids inadvertently studying effects of simulated microgravity on growing, rather than adult, bone. Utilizing the results of these studies, we will then define how altered blood flow contributes to changes in bone with simulated microgravity by administering a vasodilatory agent (which increases blood flow to tissues) during hindlimb suspension. In all studies, responses in the unloaded hindlimb bones (tibial shaft, femoral neck) will be compared with those in the weightbearing humeral shaft and the non-weightbearing calvarium (skull) from the same animal. Bone volumetric mineral density and geometry will be quantified by peripheral quantitative CT; structural and material properties of the long bones will be

  2. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  3. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM(®) was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  4. Association of Meteorological Variables and Coronary Blood Flow.

    PubMed

    Yildiz, Ali; Sezen, Yusuf; Gunebakmaz, Ozgur; Kaya, Zekeriya; Altiparmak, Ibrahim Halil; Erkus, Emre; Demirbag, Recep; Yilmaz, Remzi

    2015-09-01

    We aimed to assess the impact of meteorological variables on coronary blood flow (CBF). Coronary blood flow was evaluated using the thrombolysis in myocardial infarction frame count (TFC). The association of CBF with meteorological parameters such as temperature, relative humidity, total solar radiation, atmospheric pressure, wind velocity, and total sunshine duration were investigated as well as demographic, clinical, and laboratory characteristics. Assessment of 1206 patients (median age = 53 years, 723 females) revealed the presence of slow coronary flow (SCF) in 196 patients. Daily maximum temperature [odds ratio = 0.951, 95% confidence interval = 0.916-0.986, P = .007] was the only independent predictor of the presence of SCF, whereas systolic blood pressure (β = -0.139, P = .026), hematocrit level (β = 0.128, P = .044), and daily maximum temperature (β = -1.479, P = .049) were independent predictors of log10 (mean TFC). Findings of the present study suggest a role of meteorological parameters in CBF regulation. PMID:25313313

  5. A Porous Media Model for Blood Flow within Reticulated Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason

    2013-11-01

    A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10-8 to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation data of blood flow through two reticulated foam geometries, the model adequately captures the pressure gradient within all three regimes, especially that within the Newtonian regime where blood transitions from a power-law to a constant viscosity fluid. This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462 and partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Quantification of volumetric cerebral blood flow using hybrid laser speckle contract and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Valim, Niksa; Dunn, Andrew K.

    2016-03-01

    Studying neurovascular blood flow function in cerebrovascular activities requires accurate visualization and characterization of blood flow volume as well as the dynamics of blood cells in microcirculation. In this study, we present a novel integration of laser speckle contrast imaging (LSCI) and spectral domain optical coherence tomography (SD-OCT) for rapid volumetric imaging of blood flow in cortical capillaries. LSCI uses the illumination of wide-field near infrared light (NIR) and monitors back scattered light to characterize the relative dynamics of blood flow in microcirculation. Absolute measurement of blood cells and blood volume requires high-resolution volumetric structural information. SD-OCT system uses coherence gating to measure scattered light from a small volume within high structural resolution. The structural imaging system rapidly assesses large number of capillaries for spatio-temporal tracking of red blood cells (RBC). A very fast-ultra resolution SD-OCT system was developed for imaging high-resolution volumetric samples. The system employed an ultra wideband light source (1310 ± 200 nm in wavelength) corresponding to an axial resolution of 3 micrometers in tissue. The spectrometer of the SD-OCT was customized for a maximum scanning rate of 147,000 line/s. We demonstrated a fast volumetric OCT angiography algorithm to visualize large numbers of vessels in a 2-mm deep sample volume. A LSCI system that has been developed previously in our group was integrated to the imaging system for the characterization of dynamic blood cells. The conjunction data from LSCI and SD-OCT systems imply the feasibility of accurate quantification of absolute cortical blood flow.

  7. Determination of Yield and Flow Surfaces for Inconel 718 Under Axial-Torsional Loading at Temperatures Up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.

    1998-01-01

    An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.

  8. Heart blood flow simulation: a perspective review.

    PubMed

    Doost, Siamak N; Ghista, Dhanjoo; Su, Boyang; Zhong, Liang; Morsi, Yosry S

    2016-01-01

    Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we

  9. Axial-flow compressor turning angle and loss by inviscid-viscous interaction blade-to-blade computation

    NASA Technical Reports Server (NTRS)

    Hansen, E. C.; Serovy, G. K.; Sockol, P. M.

    1979-01-01

    A method for computation of the flow field around an arbitrary airfoil cascade on an axially symmetric blade-to-blade surface was developed which takes into account the development and separation of the blade surface boundary layers and mixing in the wake. The method predicts the overall fluid turning and total pressure loss in the context of an inviscid-viscous interaction scheme. The inviscid flow solution is obtained from a compressible flow matrix method. The viscous flow is obtained from a differential boundary layer method which calculates laminar, transitional and turbulent boundary layers. Provisions for the calculation of laminar and turbulent separation regions were added to the viscous scheme. The combined inviscid-viscous interaction scheme described yields results which are quantitatively consistent with experimental data. This suggests that the physical basis for the interactive system is correct and justifies continued exploration and use of the method.

  10. Coronary blood flow during cardiopulmonary resuscitation in swine

    SciTech Connect

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic (EMF) and radiomicrosphere (RMS)) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal.

  11. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    PubMed

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. PMID:24920757

  12. Renal blood flow and oxygenation drive nephron progenitor differentiation

    PubMed Central

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K.; Bates, Carlton M.

    2014-01-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. PMID:24920757

  13. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  14. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  15. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  16. Single wall carbon nanotube (SWCNT) examination on blood flow through a multiple stenosed artery with variable nanofluid viscosity

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Ijaz, S.

    2015-10-01

    The present theoretical model deals with the analysis of variable viscosity and thermal conductivity of a single wall carbon nanotube within the considered base fluid flowing through multiple stenosed arteries. A mathematical model is presented for the mild stenosis case and then solved by using symmetry boundary conditions to determine the exact solution of temperature, axial velocity and pressure gradient. The main hemodynamics due to multiple stenosis is also computed under the influence of a SWCNT. Numerical simulations are presented for the SWCNT with different values of nanoparticles volume fraction. The behavior of fluid flow for blood based SWCNT is discussed through graphs and streamlines.

  17. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  18. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  19. Computer program for definition of transonic axial-flow compressor blade rows. [computer program for fabrication and aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1974-01-01

    A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.

  20. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    SciTech Connect

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-03-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow.

  1. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.

    PubMed

    Untaroiu, Alexandrina; Throckmorton, Amy L; Patel, Sonna M; Wood, Houston G; Allaire, Paul E; Olsen, Don B

    2005-07-01

    Thousands of adult cardiac failure patients may benefit from the availability of an effective, long-term ventricular assist device (VAD). We have developed a fully implantable, axial flow VAD (LEV-VAD) with a magnetically levitated impeller as a viable option for these patients. This pump's streamlined and unobstructed blood flow path provides its unique design and facilitates continuous washing of all surfaces contacting blood. One internal fluid contacting region, the diffuser, is extremely important to the pump's ability to produce adequate pressure but is challenging to manufacture, depending on the complex blade geometries. This study examines the influence of the diffuser on the overall LEV-VAD performance. A combination of theoretical analyses, computational fluid (CFD) simulations, and experimental testing was performed for three different diffuser models: six-bladed, three-bladed, and no-blade configuration. The diffuser configurations were computationally and experimentally investigated for flow rates of 2-10 L/min at rotational speeds of 5000-8000 rpm. For these operating conditions, CFD simulations predicted the LEV-VAD to deliver physiologic pressures with hydraulic efficiencies of 15-32%. These numerical performance results generally agreed within 10% of the experimental measurements over the entire range of rotational speeds tested. Maximum scalar stress levels were estimated to be 450 Pa for 6 L/min at 8000 rpm along the blade tip surface of the impeller. Streakline analysis demonstrated maximum fluid residence times of 200 ms with a majority of particles exiting the pump in 80 ms. Axial fluid forces remained well within counter force generation capabilities of the magnetic suspension design. The no-bladed configuration generated an unacceptable hydraulic performance. The six-diffuser-blade model produced a flow rate of 6 L/min against 100 mm Hg for 6000 rpm rotational speed, while the three-diffuser-blade model produced the same flow rate and

  2. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  3. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    NASA Astrophysics Data System (ADS)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  4. Computational biorheology of human blood flow in health and disease.

    PubMed

    Fedosov, Dmitry A; Dao, Ming; Karniadakis, George Em; Suresh, Subra

    2014-02-01

    Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia. PMID:24419829

  5. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  6. Vortex method for blood flow through heart valves

    SciTech Connect

    McCracken, M.F.; Peskin, C.S.

    1980-04-01

    A combination vortex-grid method for solving the two-dimensional, incompressible Navier--Stokes equations in regions with complicated internal, elastic boundaries is presented. The authors believe the method to be applicable to the case of at least moderately high Reynolds number flow. The method is applied to the study of blood flow through the mammalian mitral valve. Previous work of Peskin is extended and the conjecture that the behavior of mammalian heart valves is independent of Reynolds number is supported.

  7. Recovery of testicular blood flow following ligation of testicular vessels

    SciTech Connect

    Pascual, J.A.; Villanueva-Meyer, J.; Salido, E.; Ehrlich, R.M.; Mena, I.; Rajfer, J.

    1989-08-01

    To determine whether initial ligation of the testicular vessels of the high undescended testis followed by a delayed secondary orchiopexy is a viable alternative to the classical Fowler-Stephens procedure, a series of preliminary experiments were conducted in the rat in which testicular blood flow was measured by the 133-xenon washout technique before, and 1 hour and 30 days after ligation of the vessels. In addition, testicular histology, and testis and sex-accessory tissue weights were measured in 6 control, 6 sham operated and 6 testicular vessel ligated rats 54 days after vessel ligation. The data demonstrate that ligation and division of the testicular blood vessels produce an 80 per cent decrease in testicular blood flow 1 hour after ligation of the vessels. However, 30 days later testis blood flow returns to the control and pre-treatment value. There were no significant changes in testis or sex-accessory tissue weights 54 days after vessel ligation. Histologically, 4 of the surgically operated testes demonstrated necrosis of less than 25 per cent of the seminiferous tubules while 1 testis demonstrated more than 75 per cent necrosis. The rest of the tubules in all 6 testes demonstrated normal spermatogenesis. From this study we conclude that initial testicular vessel ligation produces an immediate decrease in testicular blood flow but with time the collateral vessels are able to compensate and return the testis blood flow to its normal pre-treatment value. These preliminary observations lend support for the concept that initial ligation of the testicular vessels followed by a delayed secondary orchiopexy in patients with a high undescended testis may be a possible alternative to the classical Fowler-Stephens approach.

  8. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.

    PubMed

    Liepsch, D W

    1990-01-01

    Atherosclerotic lesions are found primarily at arterial bends and bifurcations. Flow disturbances at these anatomic sites play a major role in atherogenesis. How hemodynamic factors such as vessel geometry, the pulsatile nature of blood flow, vessel wall elasticity and the non-Newtonian flow behavior of blood influence the flow field at these sites must be clarified. We have performed fundamental studies using a birefringent solution in a simplified rigid 90 degree T-bifurcation and pulsatile flow. The velocity distribution was measured with a laser Doppler anemometer. Flow in an elastic abdominal aorta model has been visualized using magnetic resonance imaging. In both flow studies, zones with negative velocity were found. These model measurements demonstrate that no flow parameter can be neglected. Further detailed studies are necessary to examine the interaction between fluid dynamic and cellular surface properties. PMID:2404201

  9. Synchronization patterns in cerebral blood flow and peripheral blood pressure under minor stroke

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Ivanov, Plamen C.; Hu, Kun; Stanley, H. Eugene; Novak, Vera

    2003-05-01

    Stroke is a leading cause of death and disability in the United States. The autoregulation of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase synchronization method. We find an increase in the vascular resistance and a much stronger cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment of the BFV and BP signals for the subjects with stroke compared to healthy subjects.

  10. Age and gender related differences in aortic blood flow

    NASA Astrophysics Data System (ADS)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  11. Three dimensional mean velocity and turbulence characteristics in the annulus wall region of an axial flow compressor rotor passage

    NASA Technical Reports Server (NTRS)

    Davino, R.; Lakshminarayana, B.

    1982-01-01

    The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.

  12. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  13. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    NASA Astrophysics Data System (ADS)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  14. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    NASA Astrophysics Data System (ADS)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  15. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells

    NASA Astrophysics Data System (ADS)

    Ponalagusamy, R.

    2016-06-01

    The present article describes the blood flow in a catheterized artery with radially symmetric and axially asymmetric stenosis. To understand the effects of red cell concentration, plasma layer thickness and catheter size simultaneously, blood is considered by a two-layered model comprising a core region of suspension of all the erythrocytes (particles) supposed to be a particle-fluid mixture and a peripheral zone of cell-free plasma. The analytical expressions for flow features, such as fluid phase and particle phase velocities, flow rate, wall shear stress and resistive force are obtained. It is witnessed that the presence of the catheter causes a substantial increase in the frictional forces on the walls of arterial stenosis and catheter, shear stress and flow resistance, in addition to that, have occurred due to the presence of red cells concentration (volume fraction density of the particles) and the absence of peripheral plasma layer near the wall of the stenosed artery. The introduction of an axially asymmetric nature of stenosis and plasma layer thickness causes significant reduction in flow resistance. One can notice that the two-phase fluid (suspension model) is more profound to the thickness of peripheral plasma layer and catheter than the single-phase fluid.

  16. Ascending aortic blood flow dynamics following intense exercise.

    PubMed

    Kilgour, R D; Sellers, W R

    1990-10-01

    The purpose of this study was to compare and contrast aortic blood flow kinetics during recovery from intense aerobic (maximal oxygen uptake test) and anaerobic (Wingate anaerobic power test) exercise. Fifteen healthy male subjects (VO2max = 56.1 +/- 5.8 mk/kg/min) participated in this study. Beat-to-beat peak aortic blood flow velocity (pkV) and acceleration (pkA) measurements were obtained by placing a 3.0 MHz continuous-wave ultrasonic transducer on the suprasternal notch at rest and during recovery (immediately post-exercise, 2.5 min, and 5.0 min) following the two exercise conditions. Peak velocity and acceleration significantly increased (p less than 0.01) from rest to immediately post-exercise and remained elevated throughout the 5-min recovery period. No differences were observed between the aerobic and anaerobic tests. Stroke distance significantly declined (p less than 0.01) immediately following exercise and progressively rose during the 5-min recovery period. The results indicate that: 1) aortic blood flow kinetics remained elevated during short-term recovery, and 2) intense aerobic and anaerobic exercise exhibit similar post-exercise aortic blood flow kinetics. PMID:2262232

  17. Control of cutaneous blood flow by central nervous system.

    PubMed

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  18. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  19. Control of cutaneous blood flow by central nervous system

    PubMed Central

    Ootsuka, Youichirou; Tanaka, Mutsumi

    2015-01-01

    Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we ‘go pale with fright’. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control. PMID:27227053

  20. Optically measured microvascular blood flow contrast of malignant breast tumors.

    PubMed

    Choe, Regine; Putt, Mary E; Carlile, Peter M; Durduran, Turgut; Giammarco, Joseph M; Busch, David R; Jung, Ki Won; Czerniecki, Brian J; Tchou, Julia; Feldman, Michael D; Mies, Carolyn; Rosen, Mark A; Schnall, Mitchell D; DeMichele, Angela; Yodh, Arjun G

    2014-01-01

    Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66), and using normal tissue in the contralateral breast was 2.27 (1.90-2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography. PMID:24967878