Science.gov

Sample records for axial volumetric 320-detector

  1. Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner

    SciTech Connect

    Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo

    2010-11-15

    Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

  2. CT Coronary Angiography: 256-Slice and 320-Detector Row Scanners

    PubMed Central

    Hsiao, Edward M.; Rybicki, Frank J.; Steigner, Michael

    2010-01-01

    Multidetector computed tomography (MDCT) has rapidly evolved from 4-detector row systems in 1998 to 256-slice and 320-detector row CT systems. With smaller detector element size and faster gantry rotation speed, spatial and temporal resolution of the 64-detector MDCT scanners have made coronary artery imaging a reliable clinical test. Wide-area coverage MDCT, such as the 256-slice and 320-detector row MDCT scanners, has enabled volumetric imaging of the entire heart free of stair-step artifacts at a single time point within one cardiac cycle. It is hoped that these improvements will be realized with greater diagnostic accuracy of CT coronary angiography. Such scanners hold promise in performing a rapid high quality “triple rule-out” test without high contrast load, improved myocardial perfusion imaging, and even four-dimensional CT subtraction angiography. These emerging technical advances and novel applications will continue to change the way we study coronary artery disease beyond detecting luminal stenosis. PMID:20425186

  3. Diagnostic Performance of Transluminal Attenuation Gradient and Noninvasive Fractional Flow Reserve Derived from 320-Detector Row CT Angiography to Diagnose Hemodynamically Significant Coronary Stenosis: An NXT Substudy.

    PubMed

    Ko, Brian S; Wong, Dennis T L; Nørgaard, Bjarne L; Leong, Darryl P; Cameron, James D; Gaur, Sara; Marwan, Mohamed; Achenbach, Stephan; Kuribayashi, Sachio; Kimura, Takeshi; Meredith, Ian T; Seneviratne, Sujith K

    2016-04-01

    Purpose To compare the diagnostic performance of 320-detector row computed tomography (CT) coronary angiography-derived computed fractional flow reserve (FFR; FFRCT), transluminal attenuation gradient (TAG; TAG320), and CT coronary angiography alone to diagnose hemodynamically significant stenosis as determined by invasive FFR. Materials and Methods This substudy of the prospective NXT study (no. NCT01757678) was approved by each participating institution's review board, and informed consent was obtained from all participants. Fifty-one consecutive patients who underwent 320-detector row CT coronary angiographic examination and invasive coronary angiography with FFR measurement were included. Independent core laboratories determined coronary artery disease severity by using CT coronary angiography, TAG320, FFRCT, and FFR. TAG320 is defined as the linear regression coefficient between luminal attenuation and axial distance from the coronary ostium. FFRCT was computed from CT coronary angiography data by using computational fluid dynamics technology. Diagnostic performance was evaluated and compared on a per-vessel basis by the area under the receiver operating characteristic (ROC) curve (AUC). Results Among 82 vessels, 24 lesions (29%) had ischemia by FFR (FFR ≤ 0.80). FFRCT exhibited a stronger correlation with invasive FFR compared with TAG320 (Spearman ρ, 0.78 vs 0.47, respectively). Overall per-vessel accuracy, sensitivity, specificity, and positive and negative predictive values for TAG320 (<15.37) were 78%, 58%, 86%, 64%, and 83%, respectively; and those of FFRCT were 83%, 92%, 79%, 65%, and 96%, respectively. ROC curve analysis showed a significantly larger AUC for FFRCT (0.93) compared with that for TAG320 (0.72; P = .003) and CT coronary angiography alone (0.68; P = .008). Conclusion FFRCT computed from 320-detector row CT coronary angiography provides better diagnostic performance for the diagnosis of hemodynamically significant coronary stenoses

  4. Overbeaming and overlapping of volume-scan CT with tube current modulation in a 320-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Lan; Chen, Yan-Shi; Lai, Nan-Ku; Chuang, Keh-Shih; Tsai, Hui-Yu

    2014-11-01

    The purpose of this study was to evaluate the performance of volume scan tube current modulation (VS-ATCM) with adaptive iterative dose reduction 3D (AIDR3D) technique in abdomen CT examinations. We scanned an elliptical cone-shaped phantom utilizing AIDR3D technique combined with VS-ATCM mode in a 320-detector row CT scanner. The image noise distributions with conventional filtered back-projction (FBP) technique and those with AIDR3D technique were compared. The radiation dose profile and tube current time product (mAs) in three noise levels of VS-ATCM modes were compared. The radiation beam profiles of five preset scan lengths were measured using Gafchromic film strips to assess the effects of overbeaming and everlapping. The results indicated that the image noises with AIDR3D technique was 13-74% lower than those in FBP technique. The mAs distributions can be a prediction for various abdominal sizes when undergoing a VS-ATCM mode scan. Patients can receive the radiation dose of overbeaming and overlapping during the VS-ATCM mode scans.

  5. Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound.

    PubMed

    Takahashi, Shigekiyo; Kawasaki, Masanori; Miyata, Shusaku; Suzuki, Keita; Yamaura, Makoto; Ido, Takahisa; Aoyama, Takuma; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2016-01-01

    Recently, a new generation of multi-detector row computed tomography (CT) with 320-detector rows (DR) has become available in the clinical settings. The purpose of the present study was to determine the cutoff values of Hounsfield unit (HU) for discrimination of plaque components by comparing HU of coronary plaques with integrated backscatter intravascular ultrasound (IB-IVUS) serving as a gold standard. Seventy-seven coronary atherosclerotic lesions in 77 patients with angina were visualized by both 320-DR CT (Aquilion One, Toshiba, Japan) and IB-IVUS at the same site. To determine the thresholds for discrimination of plaque components, we compared HU with IB values as a gold standard. Optimal thresholds were determined from receiver operating characteristic (ROC) curves analysis. The HU values of lipid pool (n = 115), fibrosis (n = 93), vessel lumen and calcification (n = 73) were 28 ± 19 HU (range -18 to 69 HU), 98 ± 31 HU (44 to 195 HU), 357 ± 65 HU (227 to 534 HU) and 998 ± 236 HU (366 to 1,489 HU), respectively. The thresholds of 56 HU, 210 HU and 490 HU were the most reliable predictors of lipid pool, fibrosis, vessel lumen and calcification, respectively. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS (r = 0.63, p < 0.05), whereas fibrous volume measured by 320-DR CT was not. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS, whereas fibrous volume was not correlated with that measured by IB-IVUS because manual exclusion of the outside of vessel hindered rigorous discrimination between fibrosis and extravascular components. PMID:25217036

  6. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  7. Volumetric magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Wei, H.-Y.; Ma, L.; Soleimani, M.

    2012-05-01

    Magnetic induction tomography (MIT) is a new and emerging type of tomography technique that is able to map the passive electromagnetic properties (in particular conductivity) of an object. Because of its non-invasive feature, it becomes a suitable technique for many industries, such as metal processing and mining. This paper presents a volumetric MIT (VMIT) system based on an existing measurement setup in our 2D system (MIT Mk-I). By increasing the number of sensors in the axial direction, volumetric imaging can be realized and hence can improve the spatial resolution of the reconstructed images. All of the system control, data acquisition and signal demodulation are accomplished by a commercial data acquisition card and the National Instruments graphical programming language. In this paper, both the system architecture and the forward 3D sensitivity model will be presented. The image reconstruction scheme is modified by introducing a 3D sensitivity map to replace the previous 2D sensitivity map used for the MIT Mk-I system. The iterative Landweber technique was implemented as the inverse solver to reconstruct the images. Several laboratory-based experimental results are demonstrated in this paper, with different shapes of imaging objects. The reconstructed images are satisfactory showing for the first time volumetric conductivity reconstruction using a multi-layer MIT system. The results indicate the high-quality image reconstruction using our novel VMIT system for potential use in industrial applications, such as metal flow imaging.

  8. Measurement of electron density and effective atomic number by dual-energy scan using a 320-detector computed tomography scanner with raw data-based analysis: a phantom study.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Kiguchi, Masao; Tsushima, So; Taniguchi, Akira; Kaichi, Yoko; Yamagami, Takuji; Awai, Kazuo

    2014-01-01

    We evaluated the accuracy of the electron densities and effective atomic numbers determined by raw data-based dual-energy analysis on a 320-detector computed tomography scanner. The mean (SD) errors between the measured and true electron densities and between the measured and true effective atomic numbers were 1.3% (1.5%) and 3.1% (3.2%), respectively. Electron densities and effective atomic numbers can be determined with high accuracy, which may help to improve accuracy in radiotherapy treatment planning. PMID:24983439

  9. Axial Skeleton

    MedlinePlus

    ... Site-specific Modules Resources Archived Modules Updates Axial Skeleton (80 bones) Skull (28) Cranial Bones Parietal (2) ... Sternum (1) Ribs (24) « Previous (Divisions of the Skeleton) Next (Appendicular Skeleton (126 bones)) » Contact Us | Privacy ...

  10. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  11. Exploring volumetrically indexed cups

    NASA Astrophysics Data System (ADS)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  12. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  13. Axial superchargers

    NASA Technical Reports Server (NTRS)

    Betz, A

    1944-01-01

    Improvements, however, have been attained which permit a shortening of the structure without any impairment of the efficiency. The axial supercharger has a better efficiency and a simpler design than the radial supercharger. The relatively narrow range in which it operates satisfactorily should not be a very disturbing factor for practical flight problems. The length of this type of supercharger may be reduced considerably if some impairment in the efficiency is permitted.

  14. Use of Descartes Folium Equation for Deriving a Relation between Total Aperture of Fractures after Uniaxial Compression and Strain Parameters of Different Rocks Exhibiting Negative Total Volumetric Strains

    NASA Astrophysics Data System (ADS)

    Palchik, V.

    2014-11-01

    The axial, crack and total volumetric strains, porosity, elastic constants, crack damage stresses, uniaxial compressive strengths, as well as fracture apertures and number of fracture traces in rock samples surface after compression were defined for different chalk, basalt, dolomite, granite, limestone and sandstone samples exhibiting negative total volumetric strain at failure. It is established that the total (summed) aperture of vertical fractures obtained on the lateral surface of rock sample is related to three characteristic strain parameters: axial strain at the onset of negative total volumetric strain, axial failure strain and negative total volumetric strain at failure. The relation is based on Descartes folium equation, where the length of the loop of folium is equal to axial strain coordinate at the onset of negative total volumetric strain. This relation shows that the total aperture increases according to power law with increasing difference between axial failure strain and axial strain at the onset of negative total volumetric strain. Simultaneously, an increase in this difference leads to an increase in the value of negative total volumetric strain at failure. It is found that a direct correlation between total aperture of fractures and negative total volumetric strain at failure is relatively weak. Nevertheless, total aperture of fractures tends to increase with increasing absolute value of negative total volumetric strain at failure. It is revealed that there is no connection between the number of fracture traces and negative total volumetric strain at failure.

  15. Volumetric Muscle Loss.

    PubMed

    Pollot, Beth E; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig. PMID:27492162

  16. Flexible Volumetric Structure

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  17. PSF engineering in multifocus microscopy for increased depth volumetric imaging.

    PubMed

    Hajj, Bassam; El Beheiry, Mohamed; Dahan, Maxime

    2016-03-01

    Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm. PMID:27231584

  18. PSF engineering in multifocus microscopy for increased depth volumetric imaging

    PubMed Central

    Hajj, Bassam; El Beheiry, Mohamed; Dahan, Maxime

    2016-01-01

    Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm. PMID:27231584

  19. Continuous volumetric imaging via an optical phase-locked ultrasound lens

    PubMed Central

    Kong, Lingjie; Tang, Jianyong; Little, Justin P.; Yu, Yang; Lämmermann, Tim; Lin, Charles P.; Germain, Ronald N.; Cui, Meng

    2015-01-01

    In vivo imaging at high spatiotemporal resolution holds the key to the fundamental understanding of complex biological systems. Integrating an optical phase-locked ultrasound lens into a conventional two-photon fluorescence microscope, we achieved microsecond scale axial scanning, which enabled high-speed volumetric imaging. We applied this system to multicolor volumetric imaging of fast processes, including calcium dynamics in the cerebral cortex of behaving mice, and transient morphology changes and trafficking of immune cells. PMID:26167641

  20. Continuous volumetric imaging via an optical phase-locked ultrasound lens.

    PubMed

    Kong, Lingjie; Tang, Jianyong; Little, Justin P; Yu, Yang; Lämmermann, Tim; Lin, Charles P; Germain, Ronald N; Cui, Meng

    2015-08-01

    In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells. PMID:26167641

  1. Snapshot Hyperspectral Volumetric Microscopy.

    PubMed

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  2. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  3. Snapshot Hyperspectral Volumetric Microscopy

    PubMed Central

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  4. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    PubMed

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-01-01

    lacked the C-arm component, it is shown that the C-arm improves the delineation of volumes along the transverse axis. The results described herein suggest that volumetric reconstruction using multiple, unconstrained orthogonal sweeps can provide an improvement compared with traditional cone beam CT using standard axial rotations. PMID:21081893

  5. Volumetric HiLo microscopy employing an electrically tunable lens.

    PubMed

    Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W

    2016-06-27

    Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown. PMID:27410654

  6. A comparative study between axial and radial fluxfocusing magnetic gear topologies and mechanical gearboxes

    NASA Astrophysics Data System (ADS)

    Calvin, Matthew

    A variety of magnetic gear topologies have been investigated in recent years as alternatives to traditional mechanical gearboxes. In general these magnetic gears offer advantages in the non-contact transmission of torque including inherent overload protection, reduced acoustic emissions, and a reduction in the number of contacting components subject to wear. The earliest magnetic gear designs however suffered from low volumetric torque densities, which limited their utility for industrial applications. Research into flux focusing magnetic gearbox topologies has resulted in increased volumetric torque densities by actively engaging all of the magnets in the transmission of torque throughout the process. This research compared the volumetric torque density of axial and radial flux focusing magnetic gearbox designs and prototypes to planetary, cycloidal, and harmonic mechanical gearboxes. The rare earth scaled up radial and axial flux focusing topologies were found to have consistently higher volumetric torque densities than planetary gearboxes of comparable diameter. The cycloidal and harmonic gearboxes had comparable volumetric torque densities, with greater volumetric torque densities for some models and lesser volumetric torque densities for others. The expectation is that further improvements in volumetric torque density are possible for flux focusing magnetic gears with additional refinement and optimization of the designs. The current study does show that flux focusing magnetic gear topologies are a plausible future alternative to mechanical gearboxes in applications where their unique torque transmission mechanism would be advantageous.

  7. Volumetric Light-Field Excitation.

    PubMed

    Schedl, David C; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  8. Volumetric Light-Field Excitation

    PubMed Central

    Schedl, David C.; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  9. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  10. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  11. BWR AXIAL PROFILE

    SciTech Connect

    J. Huffer

    2004-09-28

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.

  12. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  13. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  14. Combined Volumetric and Surface Registration

    PubMed Central

    Zöllei, Lilla; Fischl, Bruce

    2009-01-01

    In this paper, we propose a novel method for the registration of volumetric images of the brain that optimizes the alignment of both cortical and subcortical structures. In order to achieve this, relevant geometrical information is extracted from a surface-based morph and diffused into the volume using the Navier operator of elasticity, resulting in a volumetric warp that aligns cortical folding patterns. This warp field is then refined with an intensity driven optical flow procedure that registers noncortical regions, while preserving the cortical alignment. The result is a combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain. PMID:19273000

  15. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  16. Is there Link between the Type of the Volumetric Strain Curve and Elastic Constants, Porosity, Stress and Strain Characteristics ?

    NASA Astrophysics Data System (ADS)

    Palchik, V.

    2013-03-01

    The stress [crack damage stress ( σ cd) and uniaxial compressive strength ( σ c)] and strain characteristics [maximum total volumetric strain ( ɛ cd), axial failure strain ( ɛ af)], porosity ( n) and elastic constants [elastic modulus ( E) and Poisson's ratio ( ν)] and their ratios were coordinated with the existence of two different types (type 1 and type 2) of volumetric strain curve. Type 1 volumetric strain curve has a reversal point and, therefore, σ cd is less than the uniaxial compressive strength ( σ c). Type 2 has no reversal point, and the bulk volume of rock decreases until its failure occurs (i.e., σ cd = σ c). It is confirmed that the ratio between the elastic modulus ( E) and the parameter λ = n/ ɛ cd strongly affects the crack damage stress ( σ cd) for both type 1 and type 2 volumetric strain curves. It is revealed that heterogeneous carbonate rock samples exhibit different types of the volumetric strain curve even within the same rock formation, and the range of σ cd/ σ c = 0.54-1 for carbonate rocks is wider than the range (0.71 < σ cd/ σ c < 0.84) obtained by other researchers for granites, sandstones and quartzite. It is established that there is no connection between the type of the volumetric strain curve and values of n, E, σ cd, ν, E/(1 - 2 ν), M R = E/ σ c and E/ λ. On the other hand, the type of volumetric strain curve is connected with the values of λ and the ratio between the axial failure strain ( ɛ af) and the maximum total volumetric strain ( ɛ cd). It is argued that in case of small ɛ af/ ɛ cd-small λ, volumetric strain curve follows the type 2.

  17. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  18. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  19. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  20. Seismic volumetric flattening and segmentation

    NASA Astrophysics Data System (ADS)

    Lomask, Jesse

    Two novel algorithms provide seismic interpretation solutions that use the full dimensionality of the data. The first is volumetric flattening and the second is image segmentation for tracking salt boundaries. Volumetric flattening is an efficient full-volume automatic dense-picking method applied to seismic data. First local dips (step-outs) are calculated over the entire seismic volume. The dips are then resolved into time shifts (or depth shifts) in a least-squares sense. To handle faults (discontinuous reflections), I apply a weighted inversion scheme. Additional information is incorporated in this flattening algorithm as geological constraints. The method is tested successfully on both synthetic and field data sets of varying degrees of complexity including salt piercements, angular unconformities, and laterally limited faults. The second full-volume interpretation method uses normalized cuts image segmentation to track salt interfaces. I apply a modified version of the normalized cuts image segmentation (NCIS) method to partition seismic images along salt interfaces. The method is capable of tracking interfaces that are not continuous, where conventional horizon tracking algorithms may fail. This method partitions the seismic image into two groups. One group is inside the salt body and the other is outside. Where the two groups meet is the salt boundary. By imposing bounds and by distributing the algorithm on a parallel cluster, I significantly increase efficiency and robustness. This method is demonstrated to be effective on both 2D and 3D seismic data sets.

  1. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  2. Altered Axial Skeletal Development

    EPA Science Inventory

    The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...

  3. Volumetric structured illumination microscopy enabled by tunable focus lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hinsdale, Taylor; Malik, Bilal; Olsovsky, Cory; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a volumetric imaging method for biological tissue that is free of mechanically scanning components. The optical sectioning in the system is obtained by structured illumination microscopy (SIM) with the depth of focus being varied by the use of an electronic tunable-focus lens (ETL). The performance of the axial scanning mechanism was evaluated and characterized in conjunction with SIM to ensure volumetric images could be recorded and reconstructed without significant losses in optical section thickness and lateral resolution over the full desired scan range. It was demonstrated that sub-cellular image resolutions were obtainable in both microsphere films and in ex vivo oral mucosa, spanning multiple cell layers, without significant losses in image quality. The mechanism proposed here has the ability to be integrated into any wide-field microscopy system to convert it into a three-dimensional imaging platform without the need for axial scanning of the sample or imaging optics. The ability to axially scan independent of mechanical movement also provides the opportunity for the development of endoscopic systems which can create volumetric images of tissue in vivo.

  4. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  5. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot was constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors were found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  6. Volumetric measurements of pulmonary nodules: variability in automated analysis tools

    NASA Astrophysics Data System (ADS)

    Juluru, Krishna; Kim, Woojin; Boonn, William; King, Tara; Siddiqui, Khan; Siegel, Eliot

    2007-03-01

    Over the past decade, several computerized tools have been developed for detection of lung nodules and for providing volumetric analysis. Incidentally detected lung nodules have traditionally been followed over time by measurements of their axial dimensions on CT scans to ensure stability or document progression. A recently published article by the Fleischner Society offers guidelines on the management of incidentally detected nodules based on size criteria. For this reason, differences in measurements obtained by automated tools from various vendors may have significant implications on management, yet the degree of variability in these measurements is not well understood. The goal of this study is to quantify the differences in nodule maximum diameter and volume among different automated analysis software. Using a dataset of lung scans obtained with both "ultra-low" and conventional doses, we identified a subset of nodules in each of five size-based categories. Using automated analysis tools provided by three different vendors, we obtained size and volumetric measurements on these nodules, and compared these data using descriptive as well as ANOVA and t-test analysis. Results showed significant differences in nodule maximum diameter measurements among the various automated lung nodule analysis tools but no significant differences in nodule volume measurements. These data suggest that when using automated commercial software, volume measurements may be a more reliable marker of tumor progression than maximum diameter. The data also suggest that volumetric nodule measurements may be relatively reproducible among various commercial workstations, in contrast to the variability documented when performing human mark-ups, as is seen in the LIDC (lung imaging database consortium) study.

  7. Axially chiral BODIPYs.

    PubMed

    Lerrick, Reinner I; Winstanley, Thomas P L; Haggerty, Karen; Wills, Corinne; Clegg, William; Harrington, Ross W; Bultinck, Patrick; Herrebout, Wouter; Benniston, Andrew C; Hall, Michael J

    2014-05-11

    The synthesis and resolution of a class of chiral organic fluorophores, axially chiral 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (Ax*-BODIPY), is described. Ax*-BODIPYs were prepared through a modular synthesis combined with a late stage Heck functionalisation. Resolution was achieved by preparative chiral HPLC. Absolute stereochemical assignment was performed by comparison of experimental ECD spectra with TD-DFT calculations. PMID:24676233

  8. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    NASA Astrophysics Data System (ADS)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  9. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy

    PubMed Central

    Hajj, Bassam; Wisniewski, Jan; El Beheiry, Mohamed; Chen, Jiji; Revyakin, Andrey; Wu, Carl; Dahan, Maxime

    2014-01-01

    Single molecule-based superresolution imaging has become an essential tool in modern cell biology. Because of the limited depth of field of optical imaging systems, one of the major challenges in superresolution imaging resides in capturing the 3D nanoscale morphology of the whole cell. Despite many previous attempts to extend the application of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) techniques into three dimensions, effective localization depths do not typically exceed 1.2 µm. Thus, 3D imaging of whole cells (or even large organelles) still demands sequential acquisition at different axial positions and, therefore, suffers from the combined effects of out-of-focus molecule activation (increased background) and bleaching (loss of detections). Here, we present the use of multifocus microscopy for volumetric multicolor superresolution imaging. By simultaneously imaging nine different focal planes, the multifocus microscope instantaneously captures the distribution of single molecules (either fluorescent proteins or synthetic dyes) throughout an ∼4-µm-deep volume, with lateral and axial localization precisions of ∼20 and 50 nm, respectively. The capabilities of multifocus microscopy to rapidly image the 3D organization of intracellular structures are illustrated by superresolution imaging of the mammalian mitochondrial network and yeast microtubules during cell division. PMID:25422417

  10. Survey of Volumetric Grid Generators

    NASA Technical Reports Server (NTRS)

    Woo, Alex; Volakis, John; Hulbert, Greg; Case, Jeff; Presley, Leroy L. (Technical Monitor)

    1994-01-01

    This document is the result of an Internet Survey of Volumetric grid generators. As such we have included information from only the responses which were sent to us. After the initial publication and posting of this survey, we would encourage authors and users of grid generators to send further information. Here is the initial query posted to SIGGRID@nas and the USENET group sci.physics.computational.fluid-dynamics. Date: Sun, 30 Jan 94 11:37:52 -0800 From: woo (Alex Woo x6010 227-6 rm 315) Subject: Info Sought for Survey of Grid Generators I am collecting information and reviews of both government sponsored and commercial mesh generators for large scientific calculations, both block structured and unstructured. If you send me a review of a mesh generator, please indicate its availability and cost. If you are a commercial concern with information on a product, please also include references for possible reviewers. Please email to woo@ra-next.arc.nasa.gov. I will post a summary and probably write a short note for the IEEE Antennas and Propagation Magazine. Alex Woo, MS 227-6 woo@ames.arc.nasa.gov NASA Ames Research Center NASAMAIL ACWOO Moffett Field, CA 94035-1000 SPANET 24582::W00 (415) 604-6010 (FAX) 604-4357 fhplabs,decwrl,uunet)!ames!woo Disclaimer: These are not official statements of NASA or EMCC. We did not include all the submitted text here. Instead we have created a database entry in the freely available and widely used BIBTeX format which has an Uniform Resource Locator (URL) field pointing to more details. The BIBTeX database is modeled after those available from the BIBNET project at University of Utah.

  11. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  12. Intervertebral disc segmentation and volumetric reconstruction from peripheral quantitative computed tomography imaging.

    PubMed

    Wong, Alexander; Mishra, Akshaya; Yates, Justin; Fieguth, Paul; Clausi, David A; Callaghan, Jack P

    2009-11-01

    An automatic system for segmenting and constructing volumetric representations of excised intervertebral discs from peripheral quantitative computed tomography (PQCT) imagery is presented. The system is designed to allow for automatic quantitative analysis of progressive herniation damage to the intervertebral discs under flexion/extension motions combined with a compressive load. Automatic segmentation and volumetric reconstruction of intervertebral disc from PQCT imagery is a very challenging problem due to factors such as streak artifacts and unclear material density separation between contrasted intervertebral disc and surrounding bone in the PQCT imagery, as well as the formation of multiple contrasted regions under axial scans. To address these factors, a novel multiscale level set approach based on the Mumford-Shah energy functional in iterative bilateral scale space is employed to segment the intervertebral disc regions from the PQCT imagery. A Delaunay triangulation is then performed based on the set of points associated with the intervertebral disc regions to construct the volumetric representation of the intervertebral disc. Experimental results show that the proposed system achieves segmentation and volumetric reconstructions of intervertebral discs with mean absolute distance error below 0.8 mm when compared to ground truth measurements. The proposed system is currently in operational use as a visualization tool for studying progressive intervertebral disc damage. PMID:19635691

  13. In vivo volumetric imaging of chicken retina with ultrahigh-resolution spectral domain optical coherence tomography

    PubMed Central

    Moayed, Alireza Akhlagh; Hariri, Sepideh; Song, Eun Sun; Choh, Vivian; Bizheva, Kostadinka

    2011-01-01

    The chicken retina is an established animal model for myopia and light-associated growth studies. It has a unique morphology: it is afoveate and avascular; oxygen and nutrition to the inner retina is delivered by a vascular tissue (pecten) that protrudes into the vitreous. Here we present, to the best of our knowledge, the first in vivo, volumetric high-resolution images of the chicken retina. Images were acquired with an ultrahigh-resolution optical coherence tomography (UHROCT) system with 3.5 µm axial resolution in the retina, at the rate of 47,000 A-scans/s. Spatial variations in the thickness of the nerve fiber and ganglion cell layers were mapped by segmenting and measuring the layer thickness with a semi-automatic segmentation algorithm. Volumetric visualization of the morphology and morphometric analysis of the chicken retina could aid significantly studies with chicken retinal models of ophthalmic diseases. PMID:21559138

  14. Extra-axial brain tumors.

    PubMed

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  15. Axial Patterning in Hydra

    PubMed Central

    Bode, Hans R.

    2009-01-01

    Morphogen gradients play an important role in pattern formation during early stages of embryonic development in many bilaterians. In an adult hydra, axial patterning processes are constantly active because of the tissue dynamics in the adult. These processes include an organizer region in the head, which continuously produces and transmits two signals that are distributed in gradients down the body column. One signal sets up and maintains the head activation gradient, which is a morphogenetic gradient. This gradient confers the capacity of head formation on tissue of the body column, which takes place during bud formation, hydra's mode of asexual reproduction, as well as during head regeneration following bisection of the animal anywhere along the body column. The other signal sets up the head inhibition gradient, which prevents head formation, thereby restricting bud formation to the lower part of the body column in an adult hydra. Little is known about the molecular basis of the two gradients. In contrast, the canonical Wnt pathway plays a central role in setting up and maintaining the head organizer. PMID:20066073

  16. Volumetric structured illumination microscopy enabled by a tunable-focus lens

    PubMed Central

    Hinsdale, Taylor; Malik, Bilal H.; Olsovsky, Cory; Jo, Javier A.; Maitland, Kristen C.

    2016-01-01

    We present a mechanical-scan-free method for volumetric imaging of biological tissue. The optical sectioning is provided by structured illumination, and the depth of the imaging plane is varied using an electrically tunable-focus lens. We characterize and evaluate the ability of this axial-scanning mechanism in structured illumination microscopy and demonstrate its ability to perform subcellular resolution imaging in oral mucosa ex vivo. The proposed mechanism can potentially convert any wide-field microscope to a 3D-imaging platform without the need for mechanical scanning of imaging optics and/or sample. PMID:26512489

  17. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  18. A volumetric flask as a projector

    NASA Astrophysics Data System (ADS)

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-03-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the volumetric flask filled with liquid, the movements of floating objects were clearly observed on a screen. The magnification was simply controlled by changing either the volume of the flask or the distance of the screen from the flask.

  19. Achromatic axially symmetric wave plate.

    PubMed

    Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru

    2012-12-31

    An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751

  20. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  1. Intra-axial brain tumors.

    PubMed

    Rapalino, Otto; Batchelor, Tracy; González, R Gilberto

    2016-01-01

    There is a wide variety of intra-axial primary and secondary brain neoplasms. Many of them have characteristic imaging features while other tumors can present in a similar fashion. There are peculiar posttreatment imaging phenomena that can present as intra-axial mass-like lesions (such as pseudoprogression or radiation necrosis), further complicating the diagnosis and clinical follow-up of patients with intracerebral tumors. The purpose of this chapter is to present a general overview of the most common intra-axial brain tumors and peculiar posttreatment changes that are very important in the diagnosis and clinical follow-up of patients with brain tumors. PMID:27432670

  2. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  3. A Volumetric Flask as a Projector

    ERIC Educational Resources Information Center

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-01-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the…

  4. Resolution and noise trade-off analysis for volumetric CT

    SciTech Connect

    Li Baojun; Avinash, Gopal B.; Hsieh, Jiang

    2007-10-15

    Until recently, most studies addressing the trade-off between spatial resolution and quantum noise were performed in the context of single-slice CT. In this study, we extend the theoretical framework of previous works to volumetric CT and further extend it by taking into account the actual shapes of the preferred reconstruction kernels. In the experimental study, we also attempt to explore a three-dimensional approach for spatial resolution measurement, as opposed to the conventional two-dimensional approaches that were widely adopted in previously published studies. By scanning a finite-sized sphere phantom, the MTF was measured from the edge profile along the spherical surface. Cases of different resolutions (and noise levels) were generated by adjusting the reconstruction kernel. To reduce bias, the total photon fluxes were matched: 120 kVp, 200 mA, and 1 s per gantry rotation. All data sets were reconstructed using a modified FDK algorithm under the same condition: Scan field-of-view (SFOV)=10 cm, and slice thickness=0.625 mm. The theoretical analysis indicated that the variance of noise is proportional to >4th power of the spatial resolution. Our experimental results supported this conclusion by showing the relationship is 4.6th (helical) or 5th (axial) power.

  5. Computed optical interferometric tomography for high-speed volumetric cellular imaging

    PubMed Central

    Liu, Yuan-Zhi; Shemonski, Nathan D.; Adie, Steven G.; Ahmad, Adeel; Bower, Andrew J.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  6. Computed optical interferometric tomography for high-speed volumetric cellular imaging.

    PubMed

    Liu, Yuan-Zhi; Shemonski, Nathan D; Adie, Steven G; Ahmad, Adeel; Bower, Andrew J; Carney, P Scott; Boppart, Stephen A

    2014-09-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  7. Volumetric PIV with a Plenoptic Camera

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Tim

    2012-11-01

    Plenoptic cameras have received attention recently due to their ability to computationally refocus an image after it has been acquired. We describe the development of a robust, economical and easy-to-use volumetric PIV technique using a unique plenoptic camera built in our laboratory. The tomographic MART algorithm is used to reconstruct pairs of 3D particle volumes with velocity determined using conventional cross-correlation techniques. 3D/3C velocity measurements (volumetric dimensions of 2 . 8 ' ' × 1 . 9 ' ' × 1 . 6 ' ') of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. This work has been supported by the Air Force Office of Scientific Research,(Grant #FA9550-100100576).

  8. Performance comparisons of planar and volumetric observers for lesion detection in PET scanning

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Seung; Kinahan, Paul E.; Lartizien, Carole; Comtat, Claude; Lewellen, Tom K.

    2003-05-01

    This work presents initial results of comparisons between planar and volumetric observer detection task performances for both human and model observers. Positron Emission Tomography (PET) imaging acquires and reconstructs tomographic images as contiguous volumetric (3D) images. Consequently physicians typically interpret these images by searching the image volume using linked orthogonal planar images in the three standard orientations (transverse, sagittal, and coronal). Most of observer studies, however, have typically used planar images for evaluation. For human observer ROC studies, an observer scoring tool, similar to the display tool being used in clinical PET oncology imaging, has been developed. For model observer studies the non-prewhitening matched filter (NPWMF) and the channelized Hotelling observer (CHO) were used to compute detectabilities as figures-of-merit for class separations. For the volumetric (3D)model observers, the entire image volume is used with appropriate 3D templates. For the planar (2D) model observers the transaxial plane centered on the target sphere is extracted and analyzed using 2D templates. Multiple realizations were generated using a non-Monte Carlo analytic simulator for feasible amount of simulation time and statistically accurate noise properties. For comparisons, the correlations between each model observer and human observer performance are computed. The result showed that 3D model observers have a higher correlation with human observers than 2D observers do when axial smoothing is not applied. With axial smoothing, however, the correlation of 2D model observers in general increased to the level of 3D model observer correlations with the human observer.

  9. Low-Pass Filtered Volumetric Shadows.

    PubMed

    Ament, Marco; Sadlo, Filip; Dachsbacher, Carsten; Weiskopf, Daniel

    2014-12-01

    We present a novel and efficient method to compute volumetric soft shadows for interactive direct volume visualization to improve the perception of spatial depth. By direct control of the softness of volumetric shadows, disturbing visual patterns due to hard shadows can be avoided and users can adapt the illumination to their personal and application-specific requirements. We compute the shadowing of a point in the data set by employing spatial filtering of the optical depth over a finite area patch pointing toward each light source. Conceptually, the area patch spans a volumetric region that is sampled with shadow rays; afterward, the resulting optical depth values are convolved with a low-pass filter on the patch. In the numerical computation, however, to avoid expensive shadow ray marching, we show how to align and set up summed area tables for both directional and point light sources. Once computed, the summed area tables enable efficient evaluation of soft shadows for each point in constant time without shadow ray marching and the softness of the shadows can be controlled interactively. We integrated our method in a GPU-based volume renderer with ray casting from the camera, which offers interactive control of the transfer function, light source positions, and viewpoint, for both static and time-dependent data sets. Our results demonstrate the benefit of soft shadows for visualization to achieve user-controlled illumination with many-point lighting setups for improved perception combined with high rendering speed. PMID:26356957

  10. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  11. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-01-01

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials. PMID:23470926

  12. Axial pumps for propulsion systems

    NASA Technical Reports Server (NTRS)

    Huppert, M. C.; Rothe, K.

    1974-01-01

    The development of axial flow hydrogen pumps is examined. The design features and the performance data obtained during the course of the development programs are discussed. The problems created by the pump characteristics are analyzed. Graphs of four stage pump performance for various turbine blade configurations are developed. The characteristics and performance of a variety of pumps are included.

  13. Axial structure of the nucleon

    SciTech Connect

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  14. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  15. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.

    PubMed

    Potsaid, Benjamin; Gorczynska, Iwona; Srinivasan, Vivek J; Chen, Yueli; Jiang, James; Cable, Alex; Fujimoto, James G

    2008-09-15

    We demonstrate ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000 - 312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5 - 3.0 micron axial image resolution is demonstrated at approximately 100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at >300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with approximately 8 - 9 micron axial resolution at 250,000 axial scans per second, a 512 x 512 x 400 voxel volumetric 3D-OCT data set can be acquired in only approximately 1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and

  16. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  17. Forced axial segregation in axially inhomogeneous rotating systems

    NASA Astrophysics Data System (ADS)

    González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.

    2015-08-01

    Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.

  18. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  19. BOREAS HYD-1 Volumetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. Volumetric capnography in the mechanically ventilated patient.

    PubMed

    Blanch, L; Romero, P V; Lucangelo, U

    2006-06-01

    Expiratory capnogram provides qualitative information on the waveform patterns associated with mechanical ventilation and quantitative estimation of expired CO2. Volumetric capnography simultaneously measures expired CO2 and tidal volume and allows identification of CO2 from 3 sequential lung compartments: apparatus and anatomic dead space, from progressive emptying of alveoli and alveolar gas. Lung heterogeneity creates regional differences in CO2 concentration and sequential emptying contributes to the rise of the alveolar plateau and to the steeper the expired CO2 slope. The concept of dead space accounts for those lung areas that are ventilated but not perfused. In patients with sudden pulmonary vascular occlusion due to pulmonary embolism, the resultant high V/Q mismatch produces an increase in alveolar dead space. Calculations derived from volumetric capnography are useful to suspect pulmonary embolism at the bedside. Alveolar dead space is large in acute lung injury and when the effect of positive end-expiratory pressure (PEEP) is to recruit collapsed lung units resulting in an improvement of oxygenation, alveolar dead space may decrease, whereas PEEP-induced overdistension tends to increase alveolar dead space. Finally, measurement of physiologic dead space and alveolar ejection volume at admission or the trend during the first 48 hours of mechanical ventilation might provide useful information on outcome of critically ill patients with acute lung injury or acute respiratory distress syndrome. PMID:16682932

  1. Quasi-axially symmetric stellarators

    PubMed Central

    Garabedian, Paul R.

    1998-01-01

    Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544

  2. Quasi-axially symmetric stellarators.

    PubMed

    Garabedian, P R

    1998-08-18

    Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544

  3. Adaptive controller for volumetric display of neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  4. Live volumetric imaging (LVI) intracardiac ultrasound catheter.

    PubMed

    Dausch, David E; Castellucci, John B; Gilchrist, Kristin H; Carlson, James B; Hall, Stephen D; von Ramm, Olaf T

    2013-01-01

    The Live Volumetric Imaging (LVI) catheter is capable of real-time 3D intracardiac echo (ICE) imaging, uniquely providing full volume sectors with deep penetration depth and high volume frame rate. The key enabling technology in this catheter is an integrated piezoelectric micromachined ultrasound transducer (pMUT), a novel matrix phased array transducer fabricated using semiconductor microelectromechanical systems (MEMS) manufacturing techniques. This technology innovation may enable better image guidance to improve accuracy, reduce risk, and reduce procedure time for transcatheter intracardiac therapies which are currently done with limited direct visualization of the endocardial tissue. Envisioned applications for LVI include intraprocedural image guidance of cardiac ablation therapies as well as transcatheter mitral and aortic valve repair. PMID:23773496

  5. Volumetric techniques: three-dimensional midface modeling

    PubMed Central

    Pierzchała, Ewa; Placek, Waldemar

    2014-01-01

    Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354

  6. Progressive Compression of Volumetric Subdivision Meshes

    SciTech Connect

    Laney, D; Pascucci, V

    2004-04-16

    We present a progressive compression technique for volumetric subdivision meshes based on the slow growing refinement algorithm. The system is comprised of a wavelet transform followed by a progressive encoding of the resulting wavelet coefficients. We compare the efficiency of two wavelet transforms. The first transform is based on the smoothing rules used in the slow growing subdivision technique. The second transform is a generalization of lifted linear B-spline wavelets to the same multi-tier refinement structure. Direct coupling with a hierarchical coder produces progressive bit streams. Rate distortion metrics are evaluated for both wavelet transforms. We tested the practical performance of the scheme on synthetic data as well as data from laser indirect-drive fusion simulations with multiple fields per vertex. Both wavelet transforms result in high quality trade off curves and produce qualitatively good coarse representations.

  7. Interactive stereoscopic rendering of volumetric environments.

    PubMed

    Wan, Ming; Zhang, Nan; Qu, Huamin; Kaufman, Arie E

    2004-01-01

    We present an efficient stereoscopic rendering algorithm supporting interactive navigation through large-scale 3D voxel-based environments. In this algorithm, most of the pixel values of the right image are derived from the left image by a fast 3D warping based on a specific stereoscopic projection geometry. An accelerated volumetric ray casting then fills the remaining gaps in the warped right image. Our algorithm has been parallelized on a multiprocessor by employing effective task partitioning schemes and achieved a high cache coherency and load balancing. We also extend our stereoscopic rendering to include view-dependent shading and transparency effects. We have applied our algorithm in two virtual navigation systems, flythrough over terrain and virtual colonoscopy, and reached interactive stereoscopic rendering rates of more than 10 frames per second on a 16-processor SGI Challenge. PMID:15382695

  8. In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT

    PubMed Central

    Bizheva, Kostadinka; Hutchings, Natalie; Sorbara, Luigina; Moayed, Alireza A.; Simpson, Trefford

    2011-01-01

    The limbus is the structurally rich transitional region of tissue between the cornea on one side, and the sclera and conjunctiva on the other. This zone, among other things, contains nerves passing to the cornea, blood and lymph vasculature for oxygen and nutrient delivery and for waste, CO2 removal and drainage of the aqueous humour. In addition, the limbus contains stem cells responsible for the existence and healing of the corneal epithelium. Here we present 3D images of the healthy human limbus, acquired in vivo with a spectral domain optical coherence tomography system operating at 1060nm. Cross-sectional and volumetric images were acquired from temporal and nasal locations in the human limbus with ~3µm x 18µm (axial x lateral) resolution in biological tissue at the rate of 92,000 A-scans/s. The imaging enabled detailed mapping of the corneo-scleral tissue morphology, and visualization of structural details such as the Vogt palisades, the blood and lymph vasculature including the Schlemm’s canal and the trabecular meshwork, as well as corneal nerve fiber bundles. Non-invasive, volumetric, high resolution imaging reveals fine details of the normal human limbal structure, and promises to provide invaluable information about its changes in health and disease as well as during and after corneal surgery. PMID:21750758

  9. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  10. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  11. Axial velocity in decaying swirl flow

    NASA Astrophysics Data System (ADS)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    1988-09-01

    Experiments were carried out on turbulent swirling flow with variable initial swirl at different flow rates to study the effect of swirl on axial velocity. A correlation was made between the defect in the swirling flow axial velocity and the swirl number which locally defines the swirl intensity. An expression which can be used to predict the axial velocity distribution of turbulent swirling flow in a pipe is presented.

  12. Sensorless Control of Axial Magnetic Bearings

    NASA Astrophysics Data System (ADS)

    Atsumo, Daichi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper describes a sensorless control method of axial active magnetic bearings (AMBs). At high frequencies, inductance of the axial electromagnets is hardly dependent on the airgap because of the eddy current effects of the non-laminated core. Therefore the carrier frequency should be 3 kHz below to improve the sensitivity to the airgap. In the experiment, Sensorless controll of the axial AMBs have been achieved.

  13. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    NASA Astrophysics Data System (ADS)

    Chughtai, I. R.; Iqbal, W.; Din, G. U.; Mehdi, S.; Khan, I. H.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD) analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl) scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM) was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe˜102) which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  14. Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jeevanjyoti; Please, Colin P.; Goriely, Alain; Chapman, S. Jonathan

    2015-04-01

    Volumetric expansion of silicon anode particles in a lithium-ion battery during charging may lead to the generation of undesirable internal stresses. For a cylindrical particle such growth may also lead to failure by buckling if the expansion is constrained in the axial direction due to other particles or supporting structures. To mitigate this problem, the possibility of reducing axial growth is investigated theoretically by studying simple modifications of the solid cylinder geometry. First, an annular cylinder is considered with lithiation either from the inside or from the outside. In both cases, the reduction of axial growth is not found to be significant. Next, explicit physical constraints are studied by addition of a non-growing elasto-plastic material: first, an outer annular constraint on a solid silicon cylinder, and second a rod-like inner constraint for an annular silicon cylinder. In both cases, it is found that axial growth can be reduced if the yield stress of the constraining material is significantly higher than that of silicon and/or the thickness of the constraint is relatively high. Phase diagrams are presented for both the outer and the inner constraint cases to identify desirable operating zones. Finally, to interpret the phase diagrams and isolate the key physical principles two different simplified models are presented and are shown to recover important qualitative trends of the numerical simulation results.

  15. Axial cylinder internal combustion engine

    SciTech Connect

    Gonzalez, C.

    1992-03-10

    This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

  16. Unsteady Flows in Axial Turbomachines

    NASA Technical Reports Server (NTRS)

    Marble, F. E.; Rannie, W. D.

    1957-01-01

    Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.

  17. Axially grooved heat pipe study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.

  18. Random Volumetric MRI Trajectories via Genetic Algorithms

    PubMed Central

    Curtis, Andrew Thomas; Anand, Christopher Kumar

    2008-01-01

    A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions show good detail and acceptable noise for large-volume imaging with 32 coils. PMID:18604305

  19. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  20. Volumetric depth peeling for medical image display

    NASA Astrophysics Data System (ADS)

    Borland, David; Clarke, John P.; Fielding, Julia R.; TaylorII, Russell M.

    2006-01-01

    Volumetric depth peeling (VDP) is an extension to volume rendering that enables display of otherwise occluded features in volume data sets. VDP decouples occlusion calculation from the volume rendering transfer function, enabling independent optimization of settings for rendering and occlusion. The algorithm is flexible enough to handle multiple regions occluding the object of interest, as well as object self-occlusion, and requires no pre-segmentation of the data set. VDP was developed as an improvement for virtual arthroscopy for the diagnosis of shoulder-joint trauma, and has been generalized for use in other simple and complex joints, and to enable non-invasive urology studies. In virtual arthroscopy, the surfaces in the joints often occlude each other, allowing limited viewpoints from which to evaluate these surfaces. In urology studies, the physician would like to position the virtual camera outside the kidney collecting system and see inside it. By rendering invisible all voxels between the observer's point of view and objects of interest, VDP enables viewing from unconstrained positions. In essence, VDP can be viewed as a technique for automatically defining an optimal data- and task-dependent clipping surface. Radiologists using VDP display have been able to perform evaluations of pathologies more easily and more rapidly than with clinical arthroscopy, standard volume rendering, or standard MRI/CT slice viewing.

  1. Autologous Fat Grafting in Facial Volumetric Restoration

    PubMed Central

    Pasquale, Piombino; Gaetano, Marenzi; Giovanni, Dell’Aversana Orabona; Luigi, Califano; Gilberto, Sammartino

    2015-01-01

    Abstract The authors reported their surgical experience about structural fat grafting in the management of facial volumetric deficit. The purpose of this study was to assess the real indications, cosmetic results, complications, and global patient satisfaction of the Coleman technique in redefining facial contours in congenital and postoperative deformities. A retrospective analysis of 32 patients grafted according to Coleman's technique was performed, and the long-term outcomes and patient satisfaction were evaluated. The mean postoperative clinical follow-up was 14 months. The morphological changes were analyzed by comparing the photographic presurgical facial contour and the postoperative correction of soft tissue defects. All consecutive cases reported showed a progressive fat resorption for 3 months after surgery and its stable integration only after this period. Best results were performed in the treatment of genetically determined syndromes, such as the Franceschetti and Romberg syndromes. The authors suggest this surgical technique also for the treatment of unaesthetic cutaneous abscess cavity after incision and drainage. Unsatisfactory outcomes were obtained in the treatment of the posttraumatic facial scar, which needed more surgical procedures. PMID:25974786

  2. A hand-held immaterial volumetric display

    NASA Astrophysics Data System (ADS)

    Sand, Antti; Rakkolainen, Ismo

    2014-03-01

    We have created an ultralight, movable, "immaterial" fogscreen. It is based on the fogscreen mid-air imaging technology. The hand-held unit is roughly the size and weight of an ordinary toaster. If the screen is tracked, it can be swept in the air to create mid-air slices of volumetric objects, or to show augmented reality (AR) content on top of real objects. Interfacing devices and methodologies, such as hand and gesture trackers, camera-based trackers and object recognition, can make the screen interactive. The user can easily interact with any physical object or virtual information, as the screen is permeable. Any real objects can be seen through the screen, instead of e.g., through a video-based augmented reality screen. It creates a mixed reality setup where both the real world object and the augmented reality content can be viewed and interacted with simultaneously. The hand-held mid-air screen can be used e.g., as a novel collaborating or classroom tool for individual students or small groups.

  3. Volumetric imaging system for the ionosphere (VISION)

    NASA Astrophysics Data System (ADS)

    Dymond, Kenneth F.; Budzien, Scott A.; Nicholas, Andrew C.; Thonnard, Stefan E.; Fortna, Clyde B.

    2002-01-01

    The Volumetric Imaging System for the Ionosphere (VISION) is designed to use limb and nadir images to reconstruct the three-dimensional distribution of electrons over a 1000 km wide by 500 km high slab beneath the satellite with 10 km x 10 km x 10 km voxels. The primary goal of the VISION is to map and monitor global and mesoscale (> 10 km) electron density structures, such as the Appleton anomalies and field-aligned irregularity structures. The VISION consists of three UV limb imagers, two UV nadir imagers, a dual frequency Global Positioning System (GPS) receiver, and a coherently emitting three frequency radio beacon. The limb imagers will observe the O II 83.4 nm line (daytime electron density), O I 135.6 nm line (nighttime electron density and daytime O density), and the N2 Lyman-Birge-Hopfield (LBH) bands near 143.0 nm (daytime N2 density). The nadir imagers will observe the O I 135.6 nm line (nighttime electron density and daytime O density) and the N2 LBH bands near 143.0 nm (daytime N2 density). The GPS receiver will monitor the total electron content between the satellite containing the VISION and the GPS constellation. The three frequency radio beacon will be used with ground-based receiver chains to perform computerized radio tomography below the satellite containing the VISION. The measurements made using the two radio frequency instruments will be used to validate the VISION UV measurements.

  4. System Study for Axial Vane Engine Technology

    NASA Technical Reports Server (NTRS)

    Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

    2008-01-01

    The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

  5. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    SciTech Connect

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  6. Treatment planning for volumetric modulated arc therapy

    SciTech Connect

    Bedford, James L.

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  7. Commissioning of Volumetric Modulated Arc Therapy (VMAT)

    SciTech Connect

    Bedford, James L. Warrington, Alan P.

    2009-02-01

    Purpose: Volumetric modulated arc therapy (VMAT) involves the simultaneous use of dynamic multileaf collimator (DMLC) techniques and gantry arcing; appropriate quality assurance is therefore required. This article describes the development and implementation of procedures for commissioning VMAT on a commercial linear accelerator (Elekta PreciseBeam VMAT with MLCi and Beam Modulator heads). Materials and Methods: Tests for beam flatness and symmetry at the variable dose rates required for VMAT were performed. Multileaf collimator (MLC) calibration was investigated using dynamic prescriptions. The cumulative dose delivered by a sliding window aperture was measured and compared with calculated values. Rotational accuracy was evaluated using dynamic prescriptions which required accurate correlated motion of both gantry and MLC leaves. Finally, measured and calculated dose distributions for complete VMAT treatment plans were compared and evaluated. Results: Beam symmetry was found to be better than 3% down to dose rates of 75 MU/min. MLC calibration provided continuity of dose at match planes of better than 4%, which was comparable to interleaf leakage effects. Integrated sliding window doses were within 3% of those calculated. Tests for rotational accuracy showed uniformity of peripheral dose mostly within {+-}4% of local control point dose, or approximately {+-}0.2% of total central dose. A two-arc prostate case showed an absolute dose difference between calculations and measurements of less than 3%, with gamma (3% and 3 mm) of better than 95%. Conclusions: VMAT has been successfully commissioned and has been introduced into clinical use. The Elekta DMLC has also been shown to be suitable for sliding window delivery.

  8. Volumetric optoacoustic monitoring of endovenous laser treatments

    NASA Astrophysics Data System (ADS)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  9. Volumetric interpretation of protein adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Barnthip, Naris

    Protein adsorption is believed to be a very important factor ultimately leading to a predictive basis for biomaterials design and improving biocompatibility. Standard adsorption theories are modified to accommodate experimental observations. Adsorption from single-protein solutions and competitive adsorption from binary solutions are mainly considered. The standard solution-depletion method of measuring protein adsorption is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure protein adsorption to hydrophobic octyl sepharose (OS) adsorbent particles. Standard radiometric methods have also been used as a further check on the electrophoresis method mentioned above for purified-protein cases. Experimental results are interpreted in terms of an alternative kinetic model called volumetric interpretation of protein adsorption. A partitioning process between bulk solution and a three-dimensional interphase region that separates bulk solution from the physical adsorbent surface is the concept of the model. Protein molecules rapidly diffuse into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface, then follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible. An important role of water in protein adsorption is emphasized and supported by this model. The fundamental aspects including the reversibility/irreversibility of protein adsorption, the multilayer adsorption, the applicability of thermodynamic/computational models, the capacity of protein adsorption, and the mechanism of so called Vroman effect are discussed and compared to the conventional theories. Superhydrophobic effect on the adsorption of human serum albumin is also examined.

  10. Comprehensive volumetric confocal microscopy with adaptive focusing

    PubMed Central

    Kang, DongKyun; Yoo, Hongki; Jillella, Priyanka; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular. PMID:21698005

  11. Increasing the volumetric efficiency of Diesel engines by intake pipes

    NASA Technical Reports Server (NTRS)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  12. Cytokine profiles in axial spondyloarthritis

    PubMed Central

    Madej, Marta; Nowak, Beata; Sokolik, Renata; Chlebicki, Arkadiusz; Korman, Lucyna; Woytala, Patryk; Lubiński, Łukasz; Wiland, Piotr

    2015-01-01

    Objectives Current studies concentrate on the cytokine network and its role in the pathogenesis of spondyloarthritis (SpA). In this study, we analyzed whether the serum cytokine profile (interleukins: IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33) correlates with demographic data, clinical manifestations, disease activity and treatment outcome in a group of patients with axial spondyloarthritis. Material and methods Forty-nine patients with an established diagnosis of axial spondyloarthritis (aSpA) and 19 healthy volunteers as controls were enrolled in the study. Clinical evaluation included patient's medical history, 44 joint count, back pain intensity and global disease activity in the preceding week (VAS), the duration of morning stiffness and blood tests. Disease activity was assessed using BASDAI and ASDAS-CRP. Serum concentration of IL-10, IL-11, IL-12, IL-15, IL-17, IL-23 and IL-33 was determined. Results In patients with aSpA, elevated serum concentration of IL-10, IL-15, IL-17 and IL-23 was detected. In the aSpA group we detected higher values of serum concentration of IL-23 and IL-33 in the subgroup with anterior uveitis (83.1 ±184.0 pg/ml vs. 14.0 ±17.1 pg/ml, p < 0.0001 and 45.5 ±71.9 pg/ml vs. 18.4 ±14.3 pg/ml, p < 0.0001, respectively). Additionally, in the subgroup with peripheral arthritis, elevation of serum concentration of IL-12 (249.3 ±246.9 pg/ml vs. 99.9 ±105.9 pg/ml, p = 0.0001) was detected. Patients with preradiological SpA had higher serum concentration of IL-17 than patients with established diagnosis of AS (6.37 ±8.50 pg/ml vs. 2.04 ±2.98 pg/ml, p = 0.0295). No differences in serum concentration of analyzed cytokines were found between the subgroup with low to moderate disease activity and the subgroup with high to very high disease activity. Conclusions We report that in aSpA patients, compared to controls, elevated serum concentrations of IL-10, IL-15, IL-17 and IL-23 were observed. Some cytokines may predispose to a more

  13. Liquid rocket engine axial-flow turbopumps

    NASA Technical Reports Server (NTRS)

    Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)

    1978-01-01

    The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.

  14. Quantification of volumetric cerebral blood flow using hybrid laser speckle contract and optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Valim, Niksa; Dunn, Andrew K.

    2016-03-01

    Studying neurovascular blood flow function in cerebrovascular activities requires accurate visualization and characterization of blood flow volume as well as the dynamics of blood cells in microcirculation. In this study, we present a novel integration of laser speckle contrast imaging (LSCI) and spectral domain optical coherence tomography (SD-OCT) for rapid volumetric imaging of blood flow in cortical capillaries. LSCI uses the illumination of wide-field near infrared light (NIR) and monitors back scattered light to characterize the relative dynamics of blood flow in microcirculation. Absolute measurement of blood cells and blood volume requires high-resolution volumetric structural information. SD-OCT system uses coherence gating to measure scattered light from a small volume within high structural resolution. The structural imaging system rapidly assesses large number of capillaries for spatio-temporal tracking of red blood cells (RBC). A very fast-ultra resolution SD-OCT system was developed for imaging high-resolution volumetric samples. The system employed an ultra wideband light source (1310 ± 200 nm in wavelength) corresponding to an axial resolution of 3 micrometers in tissue. The spectrometer of the SD-OCT was customized for a maximum scanning rate of 147,000 line/s. We demonstrated a fast volumetric OCT angiography algorithm to visualize large numbers of vessels in a 2-mm deep sample volume. A LSCI system that has been developed previously in our group was integrated to the imaging system for the characterization of dynamic blood cells. The conjunction data from LSCI and SD-OCT systems imply the feasibility of accurate quantification of absolute cortical blood flow.

  15. Multi-scale Heat Kernel based Volumetric Morphology Signature

    PubMed Central

    Wang, Gang; Wang, Yalin

    2015-01-01

    Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer's disease patient and normal control subject classification analysis. PMID:26550613

  16. Visualization and volumetric structures from MR images of the brain

    SciTech Connect

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  17. Axial interaction free-electron laser

    DOEpatents

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  18. Axial interaction free-electron laser

    DOEpatents

    Carlsten, Bruce E.

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  19. Psychogenic axial myoclonus: report on two cases.

    PubMed

    Sławek, Jarosław; Wichowicz, Hubert M; Cubała, Wiesław Jerzy; Sołtan, Witold; Palasik, Witold; Wilczewska, Lucyna; Fiszer, Urszula

    2010-04-01

    Axial myoclonus (AM) is characterized by sudden muscle jerks involving axial and proximal muscles. It includes propriospinal myoclonus (PSM) which consists of trunk flexion or extension jerking with activity arising in axial muscles and spreading to caudal and rostral muscles at low velocity along propriospinal pathways. We report on two patients displaying flexion AM jerks in the absence of structural lesion of the central nervous system or electrophysiological evidence of organic origin. A conversion disorder was diagnosed. The jerks disappeared after psychoeducation with the patients remaining symptom free in 6-year long follow-up. The diagnoses of psychogenic axial (propriospinal-like) myoclonus were established. The literature on psychogenic axial (propriospinal-like myoclonus) is limited to a case report. Our cases demonstrate a good response to psychotropic medication and psychoeducation and fulfill the psychogenic movement disorder criteria. The phenomenology of psychogenic abnormal movements is diverse and PSM-like clinical picture may be a novel presentation. PMID:20135184

  20. Sub-diffraction Limit Localization of Proteins in Volumetric Space Using Bayesian Restoration of Fluorescence Images from Ultrathin Specimens

    PubMed Central

    Wang, Gordon; Smith, Stephen J.

    2012-01-01

    Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902

  1. Combustion enhancement by axial vortices

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Schadow, K. C.; Parr, T. P.; Parr, D. M.; Wilson, K. J.

    1987-06-01

    A tapered slot jet was studied experimentally in nonreacting and reacting tests using hot-wire anemometry, water-tunnel flow visualization, and Planar Laser Induced Fluorescence (PLIF). The tapered slot jet is a modified elliptic jet which has a conical contraction leading to its outlet. The added contraction changes the entire flow field. The jet spread in the major axis plane is larger than in the minor axis plane, which is the opposite behavior of an elliptic jet. Consequently, no axes switching, typical to an elliptic jet, is observed. The turbulence amplification in the jet core is higher than in circular and elliptic jets. The different behavior is attributed to the change in flow direction, inside the nozzle, from the conical section to the slot outlet. During this transition, the flow acquires angular momentum thereby generating axial vorticity. The influence of the contraction angle and the outlet aspect ratio were investigated. The effect of the augmented turbulence on reactive flow was tested in a premixed flame. The combustion rate was augmented in both the core and edges of the flame relative to a circular burner.

  2. Non-Radiographic Axial Spondyloarthritis.

    PubMed

    Slobodin, Gleb; Eshed, Iris

    2015-12-01

    The term non-radiographic axial spondyloarthritis (nrAxSpA) was coined for patients who have a clinical picture of ankylosing spondylitis (AS) but do not exhibit radiographic sacroiliitis. The ASAS classification criteria for nrAxSpA, ensuring the recruitment of homogenous study cohorts, were accepted in 2009, although the respective diagnostic criteria for daily clinical practice have not yet been developed. The clinical diagnosis should be based on the composite of clinical symptoms and signs of the disease, HLA B27 status, and magnetic resonance imaging (MRI) of sacroiliac joints. Notably, a negative MRI or HLA B27 does not exclude the diagnosis in patients with a high clinical suspicion for nrAxSpA. The prevalence of nrAxSpA is similar to that of AS, but the former has a higher female preponderance. The rate of progression of nrAxSpA to the radiographic stage of disease (AS) ranges from 10% to 20% over 2 years. Current treatment strategies for nrAxSpA are the same as for AS and include non-steroidal anti-inflammatory drugs and inhibitors of tumor necrosis factor-alpha. While this review summarizes the current achievements in the field of nrAxSpA, further understanding of the epidemiology and natural history of the disease and, particularly, mechanisms of inflammation and subsequent new bone formation is essential for the development of new treatment strategies for nrAxSpA patients. PMID:26897981

  3. Novel Integration Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth; Brown, Gary

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.

  4. Novel Integrated Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.

  5. Non-axial muscle stress and stiffness.

    PubMed

    Zahalak, G I

    1996-09-01

    A generalization is developed of the classic two-state Huxley cross-bridge model to account for non-axial active stress and stiffness. The main ingredients of the model are: (i) a relation between the general three-dimensional deformation of an element of muscle and the deformations of the cross-bridges, that assumes macroscopic deformation is transmitted to the myofibrils, (ii) radial as well as axial cross-bridge stiffness, and (iii) variations of the attachment and detachment rates with lateral filament spacing. The theory leads to a generalized Huxley rate equation on the bond-distribution function, n(zeta, theta, t), of the form [equation: see text] where the Dij are the components of the relative velocity gradient and rho and ñ are functions of the polar angle, theta, and time that describe, respectively, the deformation of the myofilament lattice and the distribution of accessible actin sites (both of these functions can be calculated from the macroscopic deformation). Explicit expressions, in terms of n, are derived for the nine components of the active stress tensor, and the 21 non-vanishing components of the active stiffness tensor; the active stress tensor is found to be unsymmetric. The theory predicts that in general non-axial deformations will modify active axial stress and stiffness, and also give rise to non-axial (e.g., shearing) components. Under most circumstances the magnitudes of the non-axial stress and stiffness components will be small compared with the axial and, further, the effects of non-axial deformation rates will be small compared with those of the axial rate. Large transverse deformations may, however, greatly reduce the axial force and stiffness. The theory suggests a significant mechanical role for the non-contractile proteins in muscle, namely that of equilibrating the unsymmetric active stresses. Some simple applications of the theory are provided to illustrate its physical content. PMID:8917737

  6. Volumetric modulated arc radiotherapy for esophageal cancer

    SciTech Connect

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-04-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V{sub 20Gy} and V{sub 30Gy} dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D{sub 35%} of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V{sub 10Gy} and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  7. Axial force measurement for esophageal function testing.

    PubMed

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  8. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  9. Bone formation in axial spondyloarthritis.

    PubMed

    Lories, Rik J; Haroon, Nigil

    2014-10-01

    The success of targeted therapies directed against tumor necrosis factor for patients with spondyloarthritis has shifted the focus of physicians and scientists towards the prevention of structural damage to the involved structures, in particular the sacroiliac joints and the spine, to avoid loss of function and disability. Structural damage to the skeleton as witnessed by radiography mainly consists of new bone formation potentially progressively leading to spine or joint ankylosis. This important long-term outcome parameter has been difficult to study, not alone because the time window for change may be long but also because human tissues with direct translational relevance are rarely available. Data from rodent models have identified growth factor signaling pathways as relevant targets. Both human and animal studies have tried to understand the link between inflammation and new bone formation. At the current moment, most evidence points towards a strong link between both but with the question still lingering about the sequence of events, disease triggers, and the interdependence of both features of disease. New discoveries such as a masterswitch T cell population that carries the IL23 receptor and the analysis of auto-antibodies directed again noggin and sclerostin are contributing to innovative insights into the pathophysiology of disease. Long-term data with tumor necrosis factor (TNF) inhibitors also suggest that some window of opportunity may exist to inhibit structural disease progression. All these data provide support for a further critical analysis of the available datasets and boost research in the field. The introduction of novel disease definitions, in particular the characterization of non-radiographic axial spondyloarthritis patients, will likely be instrumental in our further understanding of structural damage. PMID:25488783

  10. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    NASA Astrophysics Data System (ADS)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  11. Volumetric loss quantification using ultrasonic inductively coupled transducers

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Oppenheim, Irving J.

    2015-03-01

    The pulse-echo method is widely used for plate and pipe thickness measurement. However, the pulse echo method does not work well for detecting localized volumetric loss in thick-wall tubes, as created by erosion damage, when the morphology of volumetric loss is irregular and can reflect ultrasonic pulses away from the transducer, making it difficult to detect an echo. In this paper, we propose a novel method using an inductively coupled transducer to generate longitudinal waves propagating in a thick-wall aluminum tube for the volumetric loss quantification. In the experiment, longitudinal waves exhibit diffraction effects during the propagation which can be explained by the Huygens-Fresnel principle. The diffractive waves are also shown to be significantly delayed by the machined volumetric loss on the inside surface of the thick-wall aluminum tube. It is also shown that the inductively coupled transducers can generate and receive similar ultrasonic waves to those from wired transducers, and the inductively coupled transducers perform as well as the wired transducers in the volumetric loss quantification when other conditions are the same.

  12. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  13. Axial grading of inert matrix fuels

    SciTech Connect

    Recktenwald, G. D.; Deinert, M. R.

    2012-07-01

    Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)

  14. Axial Thermal Rotation of Slender Rods

    NASA Astrophysics Data System (ADS)

    Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa

    2011-05-01

    Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

  15. Two pad axially grooved hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    San Andres, Luis A. (Inventor)

    1995-01-01

    A hydrostatic bearing having two axial grooves on opposite sides of the bearing for breaking the rotational symmetry in the dynamic force coefficients thus reducing the whirl frequency ratio and increasing the damping and stiffness of the hydrostatic bearing.

  16. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi

    2016-04-01

    In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180  μm, and scanning resolution (minimum step size) of ∼270  nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution. PMID:27192259

  17. Planned Axial Reorientation Investigation on Sloshsat

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper details the design and logic of an experimental investigation to study axial reorientation in low gravity. The Sloshsat free-flyer is described. The planned axial reorientation experiments and test matrixes are presented. Existing analytical tools are discussed. Estimates for settling range from 64 to 1127 seconds. The planned experiments are modelled using computational fluid dynamics. These models show promise in reducing settling estimates and demonstrate the ability of pulsed high thrust settling to emulate lower thrust continuous firing.

  18. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  19. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Fredenberg, E.; Lundqvist, Mats; Siewerdsen, J. H.

    2016-01-01

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  20. Determination of volumetric concentration of solids in vertical pipeline hydrotransport

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Strzępowicz, Anna; Zych, Piotr

    2016-03-01

    This paper presents an application of radioisotopes with reference to the determination of the solid phase volumetric concentration in a hydromixture by calibration of the measuring set. It shows how the gamma absorption equipment consisting of radioactive isotopes 241Am and scintillation probe, may be applied to the measurement of solid particles volumetric concentration in a flow. It is based on fact that the intensity of a gamma beam decreases as it passes through matter. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. The especially constructed calibration stand and obtained relation between the related intensity of radiation and mean volumetric concentration of the solid phase are presented.

  1. Automated segmentation and shape characterization of volumetric data.

    PubMed

    Galinsky, Vitaly L; Frank, Lawrence R

    2014-05-15

    Characterization of complex shapes embedded within volumetric data is an important step in a wide range of applications. Standard approaches to this problem employ surface-based methods that require inefficient, time consuming, and error prone steps of surface segmentation and inflation to satisfy the uniqueness or stability of subsequent surface fitting algorithms. Here we present a novel method based on a spherical wave decomposition (SWD) of the data that overcomes several of these limitations by directly analyzing the entire data volume, obviating the segmentation, inflation, and surface fitting steps, significantly reducing the computational time and eliminating topological errors while providing a more detailed quantitative description based upon a more complete theoretical framework of volumetric data. The method is demonstrated and compared to the current state-of-the-art neuroimaging methods for segmentation and characterization of volumetric magnetic resonance imaging data of the human brain. PMID:24521852

  2. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  3. Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.

    2000-08-29

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.

  4. A prototype table-top inverse-geometry volumetric CT system.

    PubMed

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J

    2006-06-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single

  5. A prototype table-top inverse-geometry volumetric CT system

    SciTech Connect

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-06-15

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a {+-}5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  6. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect

    Williams, Jeremiah D.

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  7. Volumetric Hall Effect Tomography – A Feasibility Study

    PubMed Central

    Wen, Han

    2010-01-01

    Hall effect imaging is an ultrasound-based method of mapping spatial variations in the dielectric constants of an acoustically-uniform sample. This paper presents three-dimensional Hall effect images of phantoms obtained by scanning a single transducer across a two-dimensional grid, effectively simulating two-dimensional phased-array signal reception. The experiments demonstrate the feasibility of volumetric Hall effect tomography and show the advantage of volumetric scans over planar scans. The images reflect several limitations of the current scanning method and point to directions for further hardware development. The inherent limitations of Hall effect imaging are also discussed in light of these results. PMID:10604800

  8. Volumetric feature extraction and visualization of tomographic molecular imaging.

    PubMed

    Bajaj, Chandrajit; Yu, Zeyun; Auer, Manfred

    2003-01-01

    Electron tomography is useful for studying large macromolecular complex within their cellular context. The associate problems include crowding and complexity. Data exploration and 3D visualization of complexes require rendering of tomograms as well as extraction of all features of interest. We present algorithms for fully automatic boundary segmentation and skeletonization, and demonstrate their applications in feature extraction and visualization of cell and molecular tomographic imaging. We also introduce an interactive volumetric exploration and visualization tool (Volume Rover), which encapsulates implementations of the above volumetric image processing algorithms, and additionally uses efficient multi-resolution interactive geometry and volume rendering techniques for interactive visualization. PMID:14643216

  9. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  10. Compton coincidence volumetric imaging: a new x-ray volumetric imaging modality based on Compton scattering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochao

    2014-03-01

    Compton scattering is a dominant interaction during radiography and computed tomography x-ray imaging. However, the scattered photons are not used for extracting imaging information, but seriously degrade image quality. Here we introduce a new scheme that overcomes most of the problems associated with existing Compton scattering imaging schemes and allows Compton scattered photons to be effectively used for imaging. In our scheme, referred as Compton coincidence volumetric imaging (CCVI), a collimated monoenergetic x-ray beam is directed onto a thin semiconductor detector. A small portion of the photons is Compton scattered by the detector and their energy loss is detected. Some of the scattered photons intersect the imaging object, where they are Compton scattered a second time. The finally scattered photons are recorded by an areal energy resolving detector panel around the object. The two detectors work in coincidence mode. CCVI images the spatial electron density distribution in the imaging object. Similar to PET imaging, the event location can be located within a curve; therefore the imaging reconstruction algorithms are also similar to those of PET. Two statistical iterative imaging reconstruction algorithms are tested. Our study verifies the feasibility of CCVI in imaging acquisition and reconstruction. Various aspects of CCVI are discussed. If successfully implemented, it will offer a great potential for imaging dose reduction compared with x-ray CT. Furthermore, a CCVI modality will have no moving parts, which potentially offers cost reduction and faster imaging speed.

  11. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    SciTech Connect

    Lee, C; Han, M; Baek, J

    2015-06-15

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  12. Volumetric Video Motion Detection for Unobtrusive Human-Computer Interaction

    SciTech Connect

    SMALL, DANIEL E.; LUCK, JASON P.; CARLSON, JEFFREY J.

    2002-04-01

    The computer vision field has undergone a revolution of sorts in the past five years. Moore's law has driven real-time image processing from the domain of dedicated, expensive hardware, to the domain of commercial off-the-shelf computers. This thesis describes their work on the design, analysis and implementation of a Real-Time Shape from Silhouette Sensor (RT S{sup 3}). The system produces time-varying volumetric data at real-time rates (10-30Hz). The data is in the form of binary volumetric images. Until recently, using this technique in a real-time system was impractical due to the computational burden. In this thesis they review the previous work in the field, and derive the mathematics behind volumetric calibration, silhouette extraction, and shape-from-silhouette. For the sensor implementation, they use four color camera/framegrabber pairs and a single high-end Pentium III computer. The color cameras were configured to observe a common volume. This hardware uses the RT S{sup 3} software to track volumetric motion. Two types of shape-from-silhouette algorithms were implemented and their relative performance was compared. They have also explored an application of this sensor to markerless motion tracking. In his recent review of work done in motion tracking Gavrila states that results of markerless vision based 3D tracking are still limited. The method proposed in this paper not only expands upon the previous work but will also attempt to overcome these limitations.

  13. Video-rate volumetric optical coherence tomography-based microangiography

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Wei, Wei; Xu, Jingjiang; Qi, Xiaoli; Davis, Wyatt O.; Wang, Ruikang K.

    2016-04-01

    Video-rate volumetric optical coherence tomography (vOCT) is relatively young in the field of OCT imaging but has great potential in biomedical applications. Due to the recent development of the MHz range swept laser sources, vOCT has started to gain attention in the community. Here, we report the first in vivo video-rate volumetric OCT-based microangiography (vOMAG) system by integrating an 18-kHz resonant microelectromechanical system (MEMS) mirror with a 1.6-MHz FDML swept source operating at ˜1.3 μm wavelength. Because the MEMS scanner can offer an effective B-frame rate of 36 kHz, we are able to engineer vOMAG with a video rate up to 25 Hz. This system was utilized for real-time volumetric in vivo visualization of cerebral microvasculature in mice. Moreover, we monitored the blood perfusion dynamics during stimulation within mouse ear in vivo. We also discussed this system's limitations. Prospective MEMS-enabled OCT probes with a real-time volumetric functional imaging capability can have a significant impact on endoscopic imaging and image-guided surgery applications.

  14. 100KE/KW fuel storage basin surface volumetric factors

    SciTech Connect

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin.

  15. Gas migration modeling improves volumetric method of well control

    SciTech Connect

    Leach, C.P.; Quentin, K.M. )

    1994-12-26

    In the volumetric method, gas expansion during gas migration is allowed for by bleeding small quantities of fluid through the choke. When gas first reaches the choke, the influx is distributed near the surface in the annulus. Rapid gas migration then occurs, and mud and gas may need to be bled to maintain constant bottom hole pressure. The volumetric method is a technique for controlling gas kicks when circulation is not possible. The industry-recognized method is based on simple calculations which assume a single bubble of gas, the classic kick. This technique can now be evaluated by using more realistic, deterministic kick models. The results from such models cast double on some of the conventional procedures taught and used in the industry. This article details the analysis of influx behavior following a typical volumetric method. Numerical modeling of fluid losses as the surface pressure rises, gas migration, and dispersion are included to correspond accurately with field observations of kicks. Revised procedures are suggested to deal with these events better, such that the goals of the volumetric method are still attained.

  16. Combination Gravimetric/Volumetric Sorption Instrument for Energy Applications

    NASA Astrophysics Data System (ADS)

    Bethea, Donald; Burress, Jacob

    The use of gaseous fuels such as hydrogen and methane (natural gas) will reduce emissions. Unfortunately, the storage of hydrogen and methane at room temperature is difficult because they are both supercritical gases, making the adoption of these fuels cumbersome. One means of overcoming the storage problem is to use physisorption-based systems which exploit the van der Waals interaction between the gas and a nanoporous material to compress the gases to near liquid densities. To measure the amount of gas in these materials, gravimetric or volumetric methods are employed. Gravimetric weighs the amount of gas and volumetric uses differences in gas pressures. Gravimetric systems typically have problems with buoyancy corrections. Volumetric systems normally have larger uncertainties that propagate through the isotherm. A modified system will be presented which allows for both gravimetric and volumetric gas sorption measurements. Additionally, the buoyancy corrections for the gravimetric measurements are significantly small and less than the uncertainties in the measurement. This apparatus can take measurements of most gases at room temperature and up to 200 bar.

  17. Axial-conductances angular filter investigation

    NASA Astrophysics Data System (ADS)

    Hannan, P. W.; Pedersen, J. F.

    1984-04-01

    This report describes the concept, analysis, design, construction, and tests of an angular filter using an axial-conductance medium. The filter provides rejection that increases with incidence angle in the E plane. It is essentially invisible at broadside incidence, does not have critical tolerances on dimensions or materials, and operates over a wide frequency band. Analysis of an ideal homogeneous axial-conductance medium shows that the optimum value for the axial loss tangent is unity. With this value, the homogeneous medium provides approximately 8 dB of absorptive rejection per wavelength of filter thickness at a 45 E-plane incidence angle. Analysis of a practical inhomogeneous axial-conductance medium shows that some loss is introduced at broadside incidence, and that two types of waves can exist in the medium when only one wave is incident at an oblique angle. When the practical medium has dimensions that are properly chosen, its broadside loss can be negligible, and its rejection versus incidence angle can approximate that of the ideal medium. Tests of inhomogeneous samples in simulator wave guide confirm these analytical results. A screen printing method for depositing thick-film resistive ink on thin dielectric sheets has been investigated. With this method a 5x5 foot angular filter, designed for operation at 10 GHz, has been constructed containing over 70,000 axial-conductance elements.

  18. Optimization of residual heat removal pump axial thrust and axial bearing

    SciTech Connect

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  19. Children with New Onset Epilepsy Exhibit Diffusion Abnormalities in Cerebral White Matter in the Absence of Volumetric Differences

    PubMed Central

    Hutchinson, Elizabeth; Pulsipher, Dalin; Dabbs, Kevin; Myers y Gutierrez, Adan; Sheth, Raj; Jones, Jana; Seidenberg, Michael; Meyerand, Elizabeth; Hermann, Bruce

    2010-01-01

    SUMMARY The purpose of this investigation was to examine the diffusion properties of cerebral white matter in children with recent onset epilepsy (n=19) compared to healthy controls (n=11). Subjects underwent DTI with quantification of mean diffusion (MD), fractional anisotropy (FA), axial diffusivity (Dax) and radial diffusivity (Drad) for regions of interest including anterior and posterior corpus callosum, fornix, cingulum, and internal and external capsules. Quantitative volumetrics were also performed for the corpus callosum and its subregions (anterior, midbody and posterior) and total lobar white and gray matter for the frontal, parietal, temporal and occipital lobes. The results demonstrated no group differences in total lobar gray or white matter volumes or volume of the corpus callosum and its subregions, but did show reduced FA and increased Drad in the posterior corpus callosum and cingulum. These results provide the earliest indication of microstructural abnormality in cerebral white matter among children with idiopathic epilepsies. This abnormality occurs in the context of normal volumetrics and suggests disruption in myelination processes. PMID:20044239

  20. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    PubMed

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  1. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  2. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.

    PubMed

    Grasman, Jonathan M; Do, Duc M; Page, Raymond L; Pins, George D

    2015-12-01

    A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues. PMID:26344363

  3. In vivo volumetric imaging of the human upper eyelid with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Lee, Patrick; Sorbara, Luigina; Hutchings, Natalie; Simpson, Trefford

    2010-07-01

    The upper eyelid is a biological tissue with complex structure, essential for the maintenance of an optically clear ocular surface due to its physical (blinking) effect. The Meibomian glands (MGs) are structures that lie beneath the surface of the inner eyelid and are partially responsible for the production of the superficial oily layer of the tear film. The MGs are only superficially visible under magnification when the eyelid is everted. We present for the first time in vivo 3-D images of healthy and inflamed human MGs. Tomograms were acquired from the tarsal plate of everted human eyelids with a 1060-nm ultrahigh-resolution optical coherence tomography (UHOCT) system, with ~3 μm×10 μm (axial×lateral) resolution in biological tissue at the rate of 91,911 A-scans/s. Comparison with histology shows that the UHOCT images reveal a spatial distribution of structures that appear to correspond with the MGs' acini and ducts (in healthy subjects), and accumulation of heterogeneous, highly scattering biological material and clear fluids in the visibly blocked glands. Noninvasive, volumetric high-resolution morphological imaging of the human tarsal area could have a significant impact in the clinical diagnosis of inflammatory and noninflammatory lid pathologies.

  4. Radial/axial power divider/combiner

    NASA Technical Reports Server (NTRS)

    Vaddiparty, Yerriah P. (Inventor)

    1987-01-01

    An electromagnetic power divider/combiner comprises N radial outputs (31) having equal powers and preferably equal phases, and a single axial output (20). A divider structure (1) and a preferably identical combiner structure (2) are broadside coupled across a dielectric substrate (30) containing on one side the network of N radial outputs (31) and on its other side a set of N equispaced stubs (42) which are capacitively coupled through the dielectric substrate (30) to the N radial outputs (31). The divider structure (1) and the combiner structure (2) each comprise a dielectric disk (12, 22, respectively) on which is mounted a set of N radial impedance transformers (14, 24, respectively). Gross axial coupling is determined by the thickness of the dielectric layer (30). Rotating the disks (12, 22) with respect to each other effectuates fine adjustment in the degree of axial coupling.

  5. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  6. Axial flow positive displacement worm gas generator

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  7. Cystic lesions accompanying extra-axial tumours.

    PubMed

    Lohle, P N; Wurzer, H A; Seelen, P J; Kingma, L M; Go, K G

    1999-01-01

    We examined the mechanism of cyst formation in extra-axial tumours in the central nervous system (CNS). Cyst fluid, cerebrospinal fluid (CSF) and blood plasma were analysed in eight patients with nine peritumoral cysts: four with meningiomas, two with intracranial and two spinal intradural schwannomas. Measuring concentrations of various proteins [albumin, immunoglobulin G (IgG), IgA, alpha 2-macroglobulin and IgM] in cyst fluid, CSF and blood plasma provides insight into the state of the semipermeability of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier. Peritumoral cysts accompanying intra-axial brain tumours are the end result of disruption of the BBB and oedema formation. Unlike intra-axial tumours which lie embedded within nervous tissue, extra-axial tumours tend to be separated from nervous tissue by arachnoid and pia mater. High concentrations of proteins were measured in the cyst fluid, approaching blood plasma levels, suggesting a local barrier disruption, and passage across the arachnoid, pia mater and cortical/medullary layer into the CNS parenchyma, leaving the protein concentrations of CSF practically unchanged. We confirmed that very high concentrations of protein are to be found in tumour cysts, plasma proteins forming almost 90% of the total protein in the cyst. We review current hypotheses on the pathogenesis of cysts accompanying neoplasms, particularly meningiomas and schwannomas, and conclude that the majority of proteins in cyst fluid in extra-axial, intradural meningiomas and schwannomas are plasma proteins. This provides a strong argument for pathogenesis of extra-axial intradural tumour cysts in favour of leakage of plasma proteins out of the tumour vessels into the nervous tissue. PMID:9987761

  8. Actuator Exerts Tensile Or Compressive Axial Load

    NASA Technical Reports Server (NTRS)

    Nozzi, John; Richards, Cuyler H.

    1994-01-01

    Compact, manually operated mechanical actuator applies controlled, limited tensile or compressive axial force. Designed to apply loads to bearings during wear tests in clean room. Intended to replace hydraulic actuator. Actuator rests on stand and imparts axial force to part attached to clevis inside or below stand. Technician turns control screw at one end of lever. Depending on direction of rotation of control screw, its end of lever driven downward (for compression) or upward (for tension). Lever pivots about clevis pin at end opposite of control screw; motion drives downward or upward link attached via shearpin at middle of lever. Link drives coupling and, through it, clevis attached to part loaded.

  9. Rotor self-lubricating axial stop

    NASA Technical Reports Server (NTRS)

    Blount, Dale H. (Inventor)

    1989-01-01

    A plurality of lubricating plugs are disposed in the stationary backup face adjacent to the axial stop face of a rotating impeller mounted in a turbopump for pumping liquid oxygen or liquid hydrogen. The stop face and the backup face are those surfaces which engage when the axial load on the impeller exceeds the load balancing capability. The plugs have a truncated conical configuration so as to be trapped in the backup face, and are disposed at varying radii on the face to provide complete surface lubrication. The plugs may be formed from Teflon, Kel-F or bronze filled Teflon.

  10. Rotor self-lubricating axial stop

    NASA Technical Reports Server (NTRS)

    Blount, Dale H.

    1988-01-01

    A series of lubricating plugs is located in the stationary backup face adjacent to the axial stop face of a rotating impeller mounted in a turbopump for pumping liquid oxygen or liquid hydrogen. The stop face and the backup face are those surfaces which engage when the axial load on the impeller exceeds the load balancing capability. The plugs have a truncated conical configuration so as to be trapped in the backup face, and are placed at varying radii on the face to provide complete surface lubrication. The plugs may be formed from Teflon, Kel-F or bronze filled Teflon.

  11. Theoretical Determination of Axial Fan Performance

    NASA Technical Reports Server (NTRS)

    Struve, E.

    1943-01-01

    The report presents a method for the computation of axial fan characteristics. The method is based on the assumption that the law of constancy of the circulation along the blade holds, approximately, for all fan conditions for which the blade elements operate at normal angles of attack (up to the stalling angles). Pressure head coefficient K(sub a) and power coefficient K(sub u) for the force components in the axial and tangential directions, respectively, and analogous to the lift and drag coefficients C(sub y) and C(sub x) are conveniently introduced.

  12. High axial load termination for TLP tendons

    SciTech Connect

    Salama, M.M.

    1992-03-03

    This patent describes a hollow high axial load termination for a composite tubular tendon. It comprises: a curved hollow termination body open at one end wit a circular opening and connected at the opposite curved end with an elongated hollow member of lesser diameter than the diameter of the circular opening of the termination body, a composite tubular tendon containing axial fibers and helical fibers laid on an inner hollow liner; fibers of the composite tubular tendon extending over and covering the termination body from the abutment with the composite tubular tendon to the elongated member of lesser diameter than the termination body.

  13. Investigations on Experimental Impellers for Axial Blowers

    NASA Technical Reports Server (NTRS)

    Encke, W.

    1947-01-01

    A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.

  14. Aerodynamic Design of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    Bullock, R. O. (Editor); Johnsen, I. A.

    1965-01-01

    An overview of 'Aerodynamic systems design of axial flow compressors' is presented. Numerous chapters cover topics such as compressor design, ptotential and viscous flow in two dimensional cascades, compressor stall and blade vibration, and compressor flow theory. Theoretical aspects of flow are also covered.

  15. Stability of structural members under axial load

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E

    1937-01-01

    The principles of the cross method of moment distribution are used to check the stability of structural members under axial load. A brief theoretical treatment of the subject, together with an illustrative problem, is included as well as a discussion of the reduced modulus at high stresses and a set of tables to aid in the solution of practical problems.

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  17. Volumetric velocity measurements on flows through heart valves

    NASA Astrophysics Data System (ADS)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2009-11-01

    Volumetric velocity fields inside two types of artificial heart valves were obtained experimentally through the use of volumetric 3-component velocimetry (V3V). Index matching was used to mitigate the effects of optical distortions due to interfaces between the fluid and curved walls. The steady flow downstream of a mechanical valve was measured and the results matched well with previously obtained 2D PIV results, such as those of Shipkowitz et al. (2002). Measurements upstream and downstream of a deformable silicone valve in a pulsatile flow were obtained and reveal significant three-dimensional features of the flow. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included. Reference: Shipkowitz, T, Ambrus J, Kurk J, Wickramasinghe K (2002) Evaluation technique for bileaflet mechanical valves. J. Heart Valve Disease. 11(2) pp. 275-282.

  18. A feasibility study of digital tomosynthesis for volumetric dental imaging

    NASA Astrophysics Data System (ADS)

    Cho, M. K.; Kim, H. K.; Youn, H.; Kim, S. S.

    2012-03-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  19. Automated volumetric segmentation of retinal fluid on optical coherence tomography

    PubMed Central

    Wang, Jie; Zhang, Miao; Pechauer, Alex D.; Liu, Liang; Hwang, Thomas S.; Wilson, David J.; Li, Dengwang; Jia, Yali

    2016-01-01

    We propose a novel automated volumetric segmentation method to detect and quantify retinal fluid on optical coherence tomography (OCT). The fuzzy level set method was introduced for identifying the boundaries of fluid filled regions on B-scans (x and y-axes) and C-scans (z-axis). The boundaries identified from three types of scans were combined to generate a comprehensive volumetric segmentation of retinal fluid. Then, artefactual fluid regions were removed using morphological characteristics and by identifying vascular shadowing with OCT angiography obtained from the same scan. The accuracy of retinal fluid detection and quantification was evaluated on 10 eyes with diabetic macular edema. Automated segmentation had good agreement with manual segmentation qualitatively and quantitatively. The fluid map can be integrated with OCT angiogram for intuitive clinical evaluation. PMID:27446676

  20. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  1. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  2. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  3. Determining the volumetric steam content in a BWR gravity leg

    SciTech Connect

    Fedulin, V.N.; Bartolomei, G.G.; Solodkii, V.A.; Shmelev, V.E.

    1987-09-01

    The structure of two-phase flow in a large-diameter limited-height gravity leg was investigated in the VK-50 reactor. Phase distribution properties and a physical model of the steam-water mixture flow in the gravity leg were described. On the basis of experimentally derived date a method was proposed for the calculation of volumetric steam content in the leg.

  4. Non-Equilibrium Volumetric Response of Shocked Polymers

    NASA Astrophysics Data System (ADS)

    Clements, Brad

    2009-06-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, recent investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities have reminded us that the volumetric behavior also exhibits a non-equilibrium response. An area where this work should be important is the impact of glassy polymers. At the time of impact and near the impact surface, the polymer's volumetric response will be described as being Hugoniot-like, i.e., standard shock Hugoniot jump conditions apply. However, at later times, release waves from neighboring free surfaces will cause the polymer's volumetric response to be far from Hugoniot. In this talk, experiments showing the non-equilibrium behavior will be described. Following that discussion, a continuum-level theory is proposed that will allow us to bridge the equilibrium and non-equilibrium behaviors with a single model that can go seamlessly from one regime to the other.[4pt] In collaboration with Philip Rae and Dana Dattelbaum, Los Alamos National Laboratory.

  5. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  6. Accuracy of endodontic microleakage results: autoradiographic vs. volumetric measurements.

    PubMed

    Ximénez-Fyvie, L A; Ximénez-García, C; Carter-Bartlett, P M; Collado-Webber, F J

    1996-06-01

    The correlation between autoradiographic and volumetric leakage measurements was evaluated. Seventy-two anterior teeth with a single canal were selected and divided into three groups of 24. Group 1 served as control (no obturation), group 2 was obturated with gutta-percha only, and group 3 was obturated with gutta-percha and endodontic sealer. Samples were placed in a vertical position in 48-well cell culture plates and immersed in 1 ml of [14C]urea for 14 days. One-mm-thick horizontal serial sections were cut with a diamond disk cooled with liquid-nitrogen gas. Linear penetration was recorded by five independent evaluators from autoradiographs. Volumetric results were based on counts per minute registered in a liquid scintillation spectrometer. Pearson's correlation coefficient test was used to determine the lineal correlation between both methods of evaluation. No acceptable correlation values were found in any of the three groups (group 1, r = 0.34; group 2, r = 0.23; group 3, r = 0.20). Our results indicate that there is no correlation between linear and volumetric measurements of leakage. PMID:8934988

  7. Innovative system architecture for spatial volumetric acoustic seeing

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Sergeyev, Aleksandr V.

    2009-04-01

    Situational awareness is a critical issue for the modern battle and security systems improvement of which will increase human performance efficiency. There are multiple research project and development efforts based on omni-directional (fish-eye) electro-optical and other frequency sensor fusion systems implementing head-mounted visualization systems. However, the efficiency of these systems is limited by the human eye-brain system perception limitations. Humans are capable to naturally perceive the situations in front of them, but interpretation of omni-directional visual scenes increases the user's mental workload, increasing human fatigue and disorientation requiring more effort for object recognition. It is especially important to reduce this workload making rear scenes perception intuitive in battlefield situations where a combatant can be attacked from both directions. This paper describes an experimental model of the system fusion architecture of the Visual Acoustic Seeing (VAS) for representation spatial geometric 3D model in form of 3D volumetric sound. Current research in the area of auralization points to the possibility of identifying sound direction. However, for complete spatial perception it is necessary to identify the direction and the distance to an object by an expression of volumetric sound, we initially assume that the distance can be encoded by the sound frequency. The chain: object features -> sensor -> 3D geometric model-> auralization constitutes Volumetric Acoustic Seeing (VAS). Paper describes VAS experimental research for representing and perceiving spatial information by means of human hearing cues in more details.

  8. Volumetric lattice Boltzmann simulation for blood flow in aorta arteries

    NASA Astrophysics Data System (ADS)

    Deep, Debanjan; Yu, Huidan (Whitney); Teague, Shawn

    2012-11-01

    Complicated moving boundaries pose a major challenge in computational fluid dynamics for complex flows, especially in the biomechanics of both blood flow in the cardiovascular system and air flow in the respiratory system where the compliant nature of the vessels can have significant effects on the flow rate and wall shear stress. We develop a computation approach to treat arbitrarily moving boundaries using a volumetric representation of lattice Boltzmann method, which distributes fluid particles inside lattice cells. A volumetric bounce-back procedure is applied in the streaming step while momentum exchange between the fluid and moving solid boundary are accounted for in the collision sub-step. Additional boundary-induced migration is introduced to conserve fluid mass as the boundary moves across fluid cells. The volumetric LBM (VLBM) is used to simulate blood flow in both normal and dilated aorta arteries. We first compare flow structure and pressure distribution in steady state with results from Navier-Stokes based solver and good agreements are achieved. Then we focus on wall stress within the aorta for different heart pumping condition and present quantitative measurement of wall shear and normal stress.

  9. Volumetric full-range magnetomotive optical coherence tomography

    PubMed Central

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  10. Description of Axial Detail for ROK Fuel

    SciTech Connect

    Trellue, Holly R; Galloway, Jack D

    2012-04-20

    For the purpose of NDA simulations of the ROK fuel assemblies, we have developed an axial burnup distribution to represent the pins themselves based on gamma scans of rods in the G23 assembly. For the purpose of modeling the G23 assembly (both at ORNL and LANL), the pin-by-pin burnup map as simulated by ROK is being assumed to represent the radial burnup distribution. However, both DA and NDA results indicate that this simulated estimate is not 100% correct. In particular, the burnup obtained from the axial gamma scan of 7 pins does not represent exactly the same 'average' pin burnup as the ROK simulation. Correction for this discrepancy is a goal of the well-characterized assembly task but will take time. For now, I have come up with a correlation for 26 axial points of the burnup as obtained by gamma scans of 7 different rods (C13, G01, G02, J11, K10, L02, and M04, neglecting K02 at this time) to the average burnup given by the simulation for each of the rods individually. The resulting fraction in each axial zone is then averaged for the 7 different rods so that it can represent every fuel pin in the assembly. The burnup in each of the 26 axial zones of rods in all ROK assemblies will then be directly adjusted using this fraction, which is given in Table 1. Note that the gamma scan data given by ROK for assembly G23 included a length of {approx}3686 mm, so the first 12 mm and the last 14 mm were ignored to give an actual rod length of {approx}366 cm. To represent assembly F02 in which no pin-by-pin burnup distribution is given by ROK, we must model it using infinitely-reflected geometry but can look at the effects of measuring in different axial zones by using intermediate burnup files (i.e. smaller burnups than 28 GWd/MTU) and determining which axial zone(s) each burnup represents. Details for assembly F02 are then given in Tables 2 and 3, which is given in Table 1 and has 44 total axial zones to represent the top meter in explicit detail in addition to the

  11. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  12. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  13. Nonlinear dynamics of axially moving plates

    NASA Astrophysics Data System (ADS)

    Ghayesh, Mergen H.; Amabili, Marco; Païdoussis, Michael P.

    2013-01-01

    The nonlinear dynamics for forced motions of an axially moving plate is numerically investigated using Von Kármán plate theory and retaining in-plane displacements and inertia. The equations of motion are obtained via an energy method based on Lagrange equations. This yields a set of second-order nonlinear ordinary differential equations with coupled terms. The equations are transformed into a set of first-order nonlinear ordinary differential equations and are solved via the pseudo-arclength continuation technique. The near-resonance nonlinear dynamics is examined via plotting the frequency-response curves of the system. Results are shown through frequency-response curves, time histories, and phase-plane diagrams. The effect of system parameters, such as the axial speed and the pretension, on the resonant responses is also highlighted.

  14. Axial X Pinch Backlighting on COBRA

    NASA Astrophysics Data System (ADS)

    Blesener, Isaac; Greenly, John; Pikuz, Sergey; Shelkovenko, Tatiania; Hammer, David; Kusse, Bruce

    2008-11-01

    X pinch backlighting is a useful imaging technique whereby two or more wires are crossed at a single point and driven with a high current (300-500 kA). At the crossing point, a micron-scale sub-nanosecond x-ray source is produced that acts as a point source and can be used for point-projection imaging. Axial x pinch backlighting is a new technique that allows an end-on image of Z pinches. New load geometry was developed at Cornell University to allow all standard diagnostics to be used on the same shot as the axial x pinch backlighting diagnostic. High density plasma features have been observed that correlate well with XUV self-emission images previously recorded on COBRA and simulation results from GORGON. Data and images will be presented illustrating the latest results from COBRA. Future applications include the possibility of shockwave imaging in the center of thing foil cylinders.

  15. Axial flow positive displacement worm compressor

    NASA Technical Reports Server (NTRS)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  16. Tri-axial tactile sensing element

    NASA Astrophysics Data System (ADS)

    Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.

    2013-05-01

    A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.

  17. Microwave axial dielectric properties of carbon fiber

    PubMed Central

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  18. Microwave axial dielectric properties of carbon fiber.

    PubMed

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-01-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity. PMID:26477579

  19. Microwave axial dielectric properties of carbon fiber

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  20. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    SciTech Connect

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  1. Nucleon Axial Charge in Full Lattice QCD

    SciTech Connect

    Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, Ph.; Negele, J.W.; Pochinsky, A.V.; Orginos, K.; Renner, D.B.; Schroers, W.

    2006-02-10

    The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm){sup 3}. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.

  2. Atlanto-axial subluxation: a case report

    PubMed Central

    Thurlow, Robert D

    1988-01-01

    One of the causes of death in rheumatoid patients is cord compression following atlanto-axial subluxation. Dislocations in the cervical spine are common with patients who have rheumatoid arthritis. Anterior subluxation occurs in up to 35%, followed by vertical subluxation in 22.2%, lateral subluxation in 20.6% and rarely posterior subluxation. A case report is presented to illustrate such a complication. ImagesFigure 1Figure 2Figure 3Figure 4

  3. Cyclotron axial ion-beam-buncher system

    SciTech Connect

    Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

    1982-02-11

    Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

  4. Axial pattern skin flaps in cats.

    PubMed

    Remedios, A M; Bauer, M S; Bowen, C V; Fowler, J D

    1991-01-01

    The major direct cutaneous vessels identified in the cat include the omocervical, thoracodorsal, deep circumflex iliac, and caudal superficial epigastric arteries. Axial pattern skin flaps based on the thoracodorsal and caudal superficial epigastric arteries have been developed in cats. Rotation of these flaps as islands allows skin coverage to the carpus and metatarsus, respectively. The thoracodorsal and caudal superficial epigastric flaps provide a practical, one-step option in the reconstruction of large skin defects involving the distal extremities of cats. PMID:2011063

  5. Numerical simulation of an axial blood pump.

    PubMed

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming

    2007-07-01

    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  6. Wetting on axially-patterned heterogeneous surfaces.

    PubMed

    Rodríguez-Valverde, M A; Ruiz-Cabello, F J Montes; Cabrerizo-Vilchez, M A

    2008-05-19

    Contact angle variability, leading to errors in interpretation, arises from various sources. Contact angle hysteresis (history-dependent wetting) and contact angle multiplicity (corrugation of three-phase contact line) are irrespectively the most frequent causes of this uncertainty. Secondary effects also derived from the distribution of chemical defects on solid surfaces, and so due to the existence of boundaries, are the known "stick/jump-slip" phenomena. Currently, the underlying mechanisms in contact angle hysteresis and their connection to "stick/jump-slip" effects and the prediction of thermodynamic contact angle are not fully understood. In this study, axial models of smooth heterogeneous surface were chosen in order to mitigate contact angle multiplicity. For each axial pattern, advancing, receding and equilibrium contact angles were predicted from the local minima location of the system free energy. A heuristic model, based on the local Young equation for spherical drops on patch-wise axial patterns, was fruitfully tested from the results of free-energy minimization. Despite the very simplistic surface model chosen in this study, it allowed clarifying concepts usually misleading in wetting phenomena. PMID:18279819

  7. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  8. Bessel beam CARS of axially structured samples

    PubMed Central

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-01-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern. PMID:26046671

  9. Computational analysis of a multistage axial compressor

    NASA Astrophysics Data System (ADS)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  10. Might axial myofascial properties and biomechanical mechanisms be relevant to ankylosing spondylitis and axial spondyloarthritis?

    PubMed

    Masi, Alfonse T

    2014-01-01

    Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated

  11. Volumetric imaging with an amplitude-steered array

    NASA Astrophysics Data System (ADS)

    Frazier, Catherine H.; Hughes, W. Jack; O'Brien, William D.

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results.

  12. Statistical volumetric model for characterization and visualization of prostate cancer

    NASA Astrophysics Data System (ADS)

    Lu, Jianping; Srikanchana, Rujirutana; McClain, Maxine A.; Wang, Yue J.; Xuan, Jian Hua; Sesterhenn, Isabell A.; Freedman, Matthew T.; Mun, Seong K.

    2000-04-01

    To reveal the spatial pattern of localized prostate cancer distribution, a 3D statistical volumetric model, showing the probability map of prostate cancer distribution, together with the anatomical structure of the prostate, has been developed from 90 digitally-imaged surgical specimens. Through an enhanced virtual environment with various visualization modes, this master model permits for the first time an accurate characterization and understanding of prostate cancer distribution patterns. The construction of the statistical volumetric model is characterized by mapping all of the individual models onto a generic prostate site model, in which a self-organizing scheme is used to decompose a group of contours representing multifold tumors into localized tumor elements. Next crucial step of creating the master model is the development of an accurate multi- object and non-rigid registration/warping scheme incorporating various variations among these individual moles in true 3D. This is achieved with a multi-object based principle-axis alignment followed by an affine transform, and further fine-tuned by a thin-plate spline interpolation driven by the surface based deformable warping dynamics. Based on the accurately mapped tumor distribution, a standard finite normal mixture is used to model the cancer volumetric distribution statistics, whose parameters are estimated using both the K-means and expectation- maximization algorithms under the information theoretic criteria. Given the desired number of tissue samplings, the prostate needle biopsy site selection is optimized through a probabilistic self-organizing map thus achieving a maximum likelihood of cancer detection. We describe the details of our theory and methodology, and report our pilot results and evaluation of the effectiveness of the algorithm in characterizing prostate cancer distributions and optimizing needle biopsy techniques.

  13. Volumetric retinal fluorescence microscopic imaging with extended depth of field

    NASA Astrophysics Data System (ADS)

    Li, Zengzhuo; Fischer, Andrew; Li, Wei; Li, Guoqiang

    2016-03-01

    Wavefront-engineered microscope with greatly extended depth of field (EDoF) is designed and demonstrated for volumetric imaging with near-diffraction limited optical performance. A bright field infinity-corrected transmissive/reflective light microscope is built with Kohler illumination. A home-made phase mask is placed in between the objective lens and the tube lens for ease of use. General polynomial function is adopted in the design of the phase plate for robustness and custom merit function is used in Zemax for optimization. The resulting EDoF system achieves an engineered point spread function (PSF) that is much less sensitive to object depth variation than conventional systems and therefore 3D volumetric information can be acquired in a single frame with expanded tolerance of defocus. In Zemax simulation for a setup using 32X objective (NA = 0.6), the EDoF is 20μm whereas a conventional one has a DoF of 1.5μm, indicating a 13 times increase. In experiment, a 20X objective lens with NA = 0.4 was used and the corresponding phase plate was designed and fabricated. Retinal fluorescence images of the EDoF microscope using passive adaptive optical phase element illustrate a DoF around 100μm and it is able to recover the volumetric fluorescence images that are almost identical to in-focus images after post processing. The image obtained from the EDoF microscope is also better in resolution and contrast, and the retinal structure is better defined. Hence, due to its high tolerance of defocus and fine restored image quality, EDoF optical systems have promising potential in consumer portable medical imaging devices where user's ability to achieve focus is not optimal, and other medical imaging equipment where achieving best focus is not a necessary.

  14. Volumetric imaging with an amplitude-steered array.

    PubMed

    Frazier, Catherine H; Hughes, W Jack; O'Brien, William D

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results. PMID:12508995

  15. An intelligent, robust approach to volumetric aircraft sizing

    NASA Astrophysics Data System (ADS)

    Upton, Eric

    Advances in computational power have produced great strides in the later design and production portions of an aircraft's life cycle, and these advances have included the internal layout component of the design and manufacturing process. However, conceptual and preliminary design tools for internal layout remain primarily based on historical regressions and estimations---a situation that becomes untenable when considering revolutionary designs or component technologies. Bringing internal layout information forward in the design process can encourage the same level of benefits enjoyed by other disciplines as advances in aerodynamics, structures and other fields propagate forward in the design of complex systems. Accurate prediction of the volume required to contain all of an aircraft's internal components results in a more accurate prediction of aircraft specifications, mission effectiveness, and costs, helping determine if an aircraft is the best choice for continued development. This is not a computationally simple problem, however, and great care must be taken to ensure the efficiency of any proposed solution. Any solution must also address the uncertainty inherent in describing internal components early in the design process. Implementing a methodology that applies notions of an intelligent search for a solution, as well as deals robustly with component sizing, produces a high chance of success. Development of a robust, rapid method for assessing the volumetric characteristics of an aircraft in the context of the conceptual and preliminary design processes can offer many of the benefits of a complete internal layout without the immense assignment of resources typical in the detail phase of the design process. A simplified methodology for volumetrically sizing an aircraft is presented here as well as an assessment of the state-of-the-art techniques for volumetric considerations used in current aircraft design literature. A prototype tool using a combination of

  16. Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields

    SciTech Connect

    Le Pape, Y.

    2015-11-22

    Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10+19 n cm₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of an unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3$_2^1$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$_2^1$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10+19 n cm₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.

  17. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    SciTech Connect

    Nichols, C.R.; Pietrafesa, L.J.

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  18. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  19. Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields

    DOE PAGESBeta

    Le Pape, Y.

    2015-11-22

    Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10+19 n cm₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of anmore » unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3$_2^1$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$_2^1$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10+19 n cm₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.« less

  20. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    PubMed Central

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  1. Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots.

    PubMed

    Park, Sang-Gil; Yang, Seung-Bum; Ahn, Myeong-Su; Oh, Young-Jae; Kim, Yong Tae; Jeong, Ki-Hun

    2016-01-14

    This work reports plasmon enhanced photoacoustic generation by using a three dimensional plasmonic absorber. The 3D plasmonic absorber comprises a thin polymer film on glass nanopillar arrays with nanogap-rich silver nanoislands. The 3D plasmonic absorber clearly shows 24.6 times higher enhancement of photoacoustic signals at an excitation wavelength of 630 nm than a simple polymeric absorber. The photoacoustic enhancement results from the volumetric electromagnetic field enhancement on a light-absorbing polymer through 3D plasmonic nanostructures. This novel photoacoustic absorber provides a new direction for highly efficient ultrasonic generation. PMID:26659557

  2. Mucosal wrinkling in animal antra induced by volumetric growth

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Yu, Shou-Wen

    2011-04-01

    Surface wrinkling of animal mucosas is crucial for the biological functions of some tissues, and the change in their surface patterns is a phenotypic characteristic of certain diseases. Here we develop a biomechanical model to study the relationship between morphogenesis and volumetric growth, either physiological or pathological, of mucosas. Theoretical analysis and numerical simulations are performed to unravel the critical characteristics of mucosal wrinkling in a spherical antrum. It is shown that the thicknesses and elastic moduli of mucosal and submucosal layers dictate the surface buckling morphology. The results hold clinical relevance for such diseases as inflammation and gastritis.

  3. Progressive lossless compression of volumetric data using small memory load.

    PubMed

    Klajnsek, Gregor; Zalik, Borut

    2005-06-01

    Nowadays, applications dealing with volumetric datasets, Medical applications being a typical representative, have become possible even on low cost computers due to a rapid increase of computer memory and processing power. However, even today, dealing with volumetric datasets creates two considerable problems: slow visualization and large file sizes. While recently, due to significant progress in graphics hardware, real-time or near real-time volume visualization has become possible, volume compression still remains a problematic issue. This paper introduces a new method for lossless compression of volumetric datasets. It is based on quadtree encoding. The method consists of three steps: during initialization, so-called division quadtree is built. The smallest unit of the division quadtree is called basic macro-block. During the processing phase, Boolean intersection is built on pairs of quadtrees, and the differences are stored. In the last phase, the variable length encoding is applied to reduce the entropy among the differences. Proposed method supports progressive visualization, what is especially important when a transfer trough the internet is needed. To test the efficiency of this method it was compared to popular octree encoding scheme. The results proved that data coherence is exploited more sufficiently using proposed quadtree approach. Additional advantage of this approach is that the algorithm does not need a lot of memory space. Only two quadtrees of two consecutive slices need be loaded in the memory at the same time. This feature makes this algorithm extremely attractive for possible hardware implementation. This paper introduces a new method for the compression of volumetric datasets. It is based on quadtree encoding. This method consists of three steps: during initialization, a so-called division quadtree is built. The smallest, unit of the division quadtree is called a basic macro-block. A Boolean intersection is built on pairs of quadtrees during

  4. A model for the volumetric radiation characteristics of cellular ceramics

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1997-12-01

    A unit cell based model for cellular ceramics was developed in conjunction with the discrete ordinates method for radiative transfer to predict theoretically the effective volumetric radiation characteristics of the cellular ceramics. Model input parameters include the porosity, pores per centimeter (PPC) and reflectivity of the solid material. Numerical calculations of the extinction coefficients and single scattering albedo are reported over the range of reflectivities from 0 to 1, porosities from 0.6 to 0.95 and PPC from 4 to 26. A comparison between model predictions and spectral emittance data for cellular ceramics reported in the literature shows agreement within 5 to 10% which is within experimental uncertainty.

  5. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  6. Cross-scale coefficient selection for volumetric medical image fusion.

    PubMed

    Shen, Rui; Cheng, Irene; Basu, Anup

    2013-04-01

    Joint analysis of medical data collected from different imaging modalities has become a common clinical practice. Therefore, image fusion techniques, which provide an efficient way of combining and enhancing information, have drawn increasing attention from the medical community. In this paper, we propose a novel cross-scale fusion rule for multiscale-decomposition-based fusion of volumetric medical images taking into account both intrascale and interscale consistencies. An optimal set of coefficients from the multiscale representations of the source images is determined by effective exploitation of neighborhood information. An efficient color fusion scheme is also proposed. Experiments demonstrate that our fusion rule generates better results than existing rules. PMID:22868528

  7. Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations.

    PubMed

    Bimurzaev, Seitkerim B; Serikbaeva, Gulnur S; Yakushev, Evgeniy M

    2003-01-01

    Computational formulae for the coefficients of the third-order spherical aberration and the second-order axial chromatic aberration are presented for an axially symmetric electrostatic electron mirror. A technique for eliminating the high-order derivatives of the potential axial distribution in mirror systems from the integrands is described. Conditions for elimination of spherical and axial chromatic aberrations, either separately or simultaneously, are found for a three-electrode axially symmetric mirror composed of coaxial cylinders of the same diameter. A principal scheme of the transmission electron microscope, where an electrostatic electron mirror serves as its objective, is presented. PMID:14599097

  8. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  9. CFD Simulation of Casing Treatment of Axial Flow Compressors

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth

    2005-01-01

    A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. It is shown that the computational tool used predicts an increase in operating range of the rotor when casing grooves are present. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to uncover the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force . However in the presence of casing grooves the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous sheer force and thus leads to an increase in the stall margin of the rotor.

  10. Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Rusanov, Andrey; Rusanov, Roman; Lampart, Piotr

    2015-10-01

    The paper describes an algorithm for the design of axial and radial-axial type turbines. The algorithm is based on using mathematical models of various levels of complexity - from 1D to 3D. Flow path geometry is described by means of analytical methods of profiling using a limited number of parameters. 3D turbulent flow model is realised in the program complex IPMFlow, developed based on the earlier codes FlowER and FlowER-U. Examples of developed or modernized turbines for differentpurpose power machines are presented. They are: an expansion turbine, ORC turbine and cogeneration mediumpressure turbine.

  11. Drop size selection in axially heated co-axial fiber capillary instability

    NASA Astrophysics Data System (ADS)

    Mowlavi, Saviz; Brun, Pierre-Thomas; Gallaire, Francois

    2015-11-01

    We analyze the sphere size selection mechanism in silicon-in-silica sphere formation through the application of an external axial thermal gradient to a co-axial silicon-in-silica fiber (Gumennik et al., Nature Com., 2013). We first apply a convective/absolute stability analysis to the in-fibre capillary instability governing the sphere formation and demonstrate that the resulting wavelength selection predicts a finite but still too large wavelength. A global stability analysis is then pursued, which accounts for the spatial inhomogeneity of the base flow. F.G. acknowledges funding from ERC SimCoMiCs 280117.

  12. CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients

    PubMed Central

    2013-01-01

    Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312

  13. G-A and Octet Axial Charges

    SciTech Connect

    Huey-Wen Lin

    2009-12-01

    We review recent progress on lattice calculations of nucleon axial coupling constants, as well as couplings of other octet members. With a combined SU(3) fit to all octet baryons, we find a better determination of g_A = 1.18(4)_stat(6)_syst. Our predictions for g_SS = 0.450(21)_stat(27)_syst and g_XX = -0.277(15)_stat(19)_syst are better determined than previous theoretical estimations. Finally, we describe a preliminary first full-QCD calculation of semileptonic decay quantity (g1(0)= f1(0))S->n = -0.348(37).

  14. Digital enhancement of computerized axial tomograms

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1978-01-01

    A systematic evaluation was conducted of certain digital image enhancement techniques performed in image space. Three types of images were used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification were explored. It was concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.

  15. Water ingestion into jet engine axial compressors

    NASA Technical Reports Server (NTRS)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    An axial flow compressor has been tested with water droplet ingestion under a variety of conditions. The results illustrate the manner in which the compressor pressure ratio, efficiency and surging characteristics are affected. A model for estimating the performance of a compressor during water ingestion has been developed and the predictions obtained compare favorably with the test results. It is then shown that with respect to five droplet-associated nonlinearly-interacting processes (namely, droplet-blade interactions, blade performance changes, centrifugal action, heat and mass transfer processes and droplet break-up), the initial water content and centrifugal action play the most dominant roles.

  16. Ultrasound velocities for axial eye length measurement.

    PubMed

    Hoffer, K J

    1994-09-01

    Since 1974, I have used individual sound velocities for each eye condition encountered for axial length measurement. The calculation results in 1,555 M/sec for the average phakic eye. A slower speed of 1,549 M/sec was found for an extremely long (30 mm) eye and a higher speed of 1,561 M/sec was noted for an extremely short (20 mm) eye. This inversely proportional velocity change can best be adjusted for by measuring the phakic eye at 1,532 M/sec and correcting the result by dividing the square of the measured axial length (AL1,532)2 by the difference of the measured axial length (AL1,532) minus 0.35 mm. A velocity of 1,534 M/sec was found for all aphakic eyes regardless of their length, and correction is clinically significant. The velocity of an eye containing a poly(methyl methacrylate) intraocular lens is not different from an average phakic eye but it does magnify the effect of axial length change. I recommend measuring the pseudophakic eye at 1,532 M/sec and adding to the result (AL1,532), + 0.04 + 44% of the IOL thickness. The speed for an eye with a silicone IOL was found to be 1,476 M/sec (or AL1,532 + 0.04 - 56% of IOL thickness) and for glass, 1,549 M/sec (or AL1,532 + 0.04 + 75% of IOL thickness). A speed of 1,139 M/sec was found for a phakic eye with silicone oil filling most of the vitreous cavity and 1,052 M/sec for an aphakic eye filled with oil. For varying volumes of oil, each eye should be calculated individually. The speed was 534 M/sec for phakic eyes filled with gas. Eyes containing a silicone IOL or oil or gas will create clinically significant errors (3 to 10 diopters) if the sound velocity is not corrected. PMID:7996413

  17. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  18. Flow field visualization about external axial corners

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1978-01-01

    An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.

  19. Stall in axial flow aero engine compressors

    NASA Astrophysics Data System (ADS)

    Freeman, Christopher J.

    The inception of stall in an aeroengine compressor over a range of speeds and the post stall behavior are described. Reference is made to the varying matching and system response as the speed is increased and the effects demonstrated on a single shaft gas turbine. In particular, the following are detailed: surge and stall in axial compressors, compressor matching, low speed stalls, mid speed stalls, stalls ending in rotating stalls, high speed surges, contour plots of stage 1, 4, and 7 pressures, and compressor behavior during surge.

  20. Spatio-volumetric hazard estimation in the Auckland volcanic field

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  1. High volumetric capacitance near the insulator-metal percolation transition

    NASA Astrophysics Data System (ADS)

    Efros, A. L.

    2011-10-01

    I propose a new type of capacitor with a very high volumetric capacitance. It is based on the known phenomenon of the sharp increase of the dielectric constant of a metal-insulator composite in the vicinity of the percolation threshold on the insulator side. The optimization suggests that the sizes of the metallic particles should fall within the nanoscale. The distance between planar electrodes should be somewhat larger than the correlation length of the percolation theory and ≈10-20 times larger than the size of the particles while the area of the electrodes could be unlimited. The random electric field in the capacitor is calculated and is shown to be larger than the average field corresponding to the potential difference of the electrodes. This random field is potentially responsible for the dielectric breakdown. The estimated breakdown voltage of the capacitor shows that the stored energy density might be significantly larger than that of electrolytic capacitors while the volumetric capacitances might be comparable. The charging and discharging times should be significantly smaller than the corresponding times of batteries and even electrolytic capacitors.

  2. Volumetric imaging of the auroral ionosphere: Initial results from PFISR

    NASA Astrophysics Data System (ADS)

    Semeter, Joshua; Butler, Thomas; Heinselman, Craig; Nicolls, Michael; Kelly, John; Hampton, Donald

    2009-05-01

    The Poker Flat Incoherent Scatter Radar (PFISR) is the first dedicated ISR built with an electronically steerable array. This paper demonstrates the capabilities of PFISR for producing three-dimensional volumetric images of E-region ionization patterns produced by the aurora. The phase table was configured to cycle through 121 beam positions arranged in an 11×11 grid. A 13-baud Barker coded pulse was used, which provided ~1.5-km range resolution out to a maximum range of 250 km. Backscattered power was converted to electron density by correcting for path loss and applying the Buneman approximation assuming equal electron and ion temperatures. The results were then interpolated onto a three-dimensional cartesian grid. Volumetric images are presented at 5-min, 1-min, and 14.6-s integration times (corresponding to 960, 192, and 48 pulses-per-position, respectively) to illustrate the tradeoff between spatio-temporal resolution and data quality. At 14.6 s cadence, variability in plasma density within the volume appears to be fully resolved in space and time, a result that is supported by both observational evidence and theoretical predictions of ionospheric response times. Some potential applications of this mode for studying magnetosphere-ionosphere interactions in the auroral zone are discussed.

  3. Interactive visualization of solar mass ejection imager (SMEI) volumetric data

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Hick, P. P.; Jackson, Bernard V.

    2005-08-01

    We present a volume rendering system developed for the real time visualization and manipulation of 3D heliospheric volumetric solar wind density and velocity data obtained from the Solar Mass Ejection Imager (SMEI) and interplanetary scintillation (IPS) velocities over the same time period. Our system exploits the capabilities of the VolumePro 1000 board from TeraRecon, Inc., a low-cost 64-bit PCI board capable of rendering up to a 512-cubed array of volume data in real time at up to 30 frames per second on a standard PC. Many volume-rendering operations have been implemented with this system such as stereo/perspective views, animations of time-sequences, and determination of coronal mass ejection (CME) volumes and masses. In these visualizations we highlight one time period where a halo CMEs was observed by SMEI to engulf Earth on October 29, 2003. We demonstrate how this system is used to measure the distribution of structure and provide 3D mass for individual CME features, including the ejecta associated with the large prominence viewed moving to the south of Earth following the late October CME. Comparisons with the IPS velocity volumetric data give pixel by pixel and total kinetic energies for these events.

  4. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  5. Volumetric three-dimensional display system with rasterization hardware

    NASA Astrophysics Data System (ADS)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  6. Left-ventricular boundary detection from spatiotemporal volumetric CT images

    NASA Astrophysics Data System (ADS)

    Tu, Hsiao-Kun; Matheny, Art; Goldgof, Dmitry B.

    1993-07-01

    This paper presents a new technique for LV boundary detection from 3-D volumetric cardiac images. The proposed method consists of boundary detection and boundary refinement stages. In the boundary detection stage, a spatio-temporal (4-D) gradient operator is used to capture the temporal gradients of dynamic LV boundaries and to smooth time uncorrelated noise. Spatio-temporal edge detection is performed outward from an approximate center of the left ventricle. In the boundary refinement stage, spherical harmonic model is fitted to the detected boundaries. Based on this model, false boundaries are removed; LV boundaries are recovered. A left ventricle is a bright, smooth region, varying in size over the heart cycle. This a priori knowledge is incorporated in detection and refinement of LV boundaries to reduce the effect of noise. The intensity of the inner (close to the center) neighbors of the LV boundary is brighter than the outer. The size of the left ventricle is used in boundary refinement to select proper boundaries to be fitted by the spherical harmonic mode. We demonstrate the advantages of 4-D edge detection over 3-D and the use of spherical harmonics to refine LV boundaries. Our experimental data is supplied by Dr. Eric Hoffman at University of Pennsylvania medical school and consists of 16 volumetric (128 by 128 by 118) CT images taken through a heart cycle.

  7. Volumetrics of CO2 storage in deep saline formations.

    PubMed

    Steele-MacInnis, Matthew; Capobianco, Ryan M; Dilmore, Robert; Goodman, Angela; Guthrie, George; Rimstidt, J Donald; Bodnar, Robert J

    2013-01-01

    Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO(2) from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO(2) must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO(2) depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO(2) stored as a supercritical fluid (structural or stratigraphic trapping); CO(2) dissolved in pre-existing brine (solubility trapping); and CO(2) solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO(2) by solubility trapping reduces the volume required to store the same amount of CO(2) by structural or stratigraphic trapping by about 50%. Accessibility of CO(2) to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO(2) volumetric requirements and long-term storage security. PMID:22916959

  8. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration. PMID:26292034

  9. Investigation of Volumetric Sources in Airframe Noise Simulations

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.

    2004-01-01

    Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.

  10. Three-dimensional volumetric display in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Kim, Isaac I.; Korevaar, Eric J.; Hakakha, Harel

    1996-03-01

    The successful demonstration of a novel 3D volumetric display based on the intersection of two low power diode laser beams in an atomic vapor is presented. A 780 nm laser and a 630 nm laser are directed via mirrors and x-y scanners towards an enclosure containing rubidium vapor, where they intersect at 90 degrees. Rubidium atoms within the small intersection volume undergo 5s1/2 to 5p3/2 excitation from the 780 nm laser, and then 5p3/2 to 6d5/2 excitation from the 630 nm laser, resulting in red omnidirectional fluorescence from the intersection point. Tuning of the lasers to the exact excitation wavelengths resulted in an extended red spot with maximum brightness. By tuning the lasers slightly off the transition wavelengths, a very localized red spot with slightly less brightness was produced. A series of intersection points were scanned in a time less than the eye's 15 Hz refresh rate to create true 3D volumetric images such as a floating cube and rotating globe, which were viewable from many angles. The maximum speed of the mechanical scanners limited the complexity of the 3D images. By incorporating higher power lasers and faster acousto-optical scanners, this technique could allow the 3D viewing of real time air traffic control, medical images, or theater battlefield management.