Achromatic axially symmetric wave plate.
Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru
2012-12-31
An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751
Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2003-01-01
The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.
NASA Technical Reports Server (NTRS)
Hood, L. L.
1987-01-01
Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos.
Hood, L.L.
1987-07-01
Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.
Quasi-axially symmetric stellarators
Garabedian, Paul R.
1998-01-01
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
Quasi-axially symmetric stellarators.
Garabedian, P R
1998-08-18
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.
2001-01-01
The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.
Stationary axially symmetric solutions in Brans-Dicke theory
NASA Astrophysics Data System (ADS)
Kirezli, Pınar; Delice, Özgür
2015-11-01
Stationary, axially symmetric Brans-Dicke-Maxwell solutions are reexamined in the framework of the Brans-Dicke (BD) theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electrovacuum spacetimes for this theory. This analysis also permits us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for BD theory from a seed solution of general relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e., the Kinnersley solution and general magnetized Kerr-Newman-type solutions. Some physical properties and the circular motion of test particles for a particular subclass of Kinnersley solution, i.e., a Kerr-Newman-NUT-type solution for BD theory, are also investigated in some detail.
Polarization converters based on axially symmetric twisted nematic liquid crystal.
Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien
2010-02-15
An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369
Axial Halbach Magnetic Bearings
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
STED microscopy based on axially symmetric polarized vortex beams
NASA Astrophysics Data System (ADS)
Zhehai, Zhou; Lianqing, Zhu
2016-03-01
A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).
Axially symmetric shapes with minimum wave drag
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Fuller, Franklyn B
1956-01-01
The external wave drag of bodies of revolution moving at supersonic speeds can be expressed either in terms of the geometry of the body, or in terms of the body-simulating axial source distribution. For purposes of deriving optimum bodies under various given conditions, it is found that the second of the methods mentioned is the more tractable. By use of a quasi-cylindrical theory, that is, the boundary conditions are applied on the surface of a cylinder rather than on the body itself, the variational problems of the optimum bodies having prescribed volume or caliber are solved. The streamline variations of cross-sectional area and drags of the bodies are exhibited, and some numerical results are given.
Electromagnetic fields in axial symmetric waveguides with variable cross section
Kheifets, S.
1980-02-15
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed. 6 refs., 10 figs.
Perturbation approximation for orbits in axially symmetric funnels
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2014-11-01
A perturbation method that can be traced back to Isaac Newton is applied to obtain approximate analytic solutions for objects sliding in axially symmetric funnels in near circular orbits. Some experimental observations are presented for balls rolling in inverted cones with different opening angles, and in a funnel with a hyperbolic surface that approximately simulates the gravitational force.
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). PMID:25910551
Fully Characterizing Axially Symmetric Szekeres Models with Three Data Sets
NASA Astrophysics Data System (ADS)
Célérier, Marie-Nöelle Mishra, Priti; Singh, Tejinder P.
2015-01-01
Inhomogeneous exact solutions of General Relativity with zero cosmological constant have been used in the literature to challenge the ΛCDM model. From one patch Lemaître-Tolman-Bondi (LTB) models to axially symmetric quasi-spherical Szekeres (QSS) Swiss-cheese models, some of them are able to reproduce to a good accuracy the cosmological data. It has been shown in the literature that a zero Λ LTB model with a central observer can be fully determined by two data sets. We demonstrate that an axially symmetric zero Λ QSS model with an observer located at the origin can be fully reconstructed from three data sets, number counts, luminosity distance and redshift drift. This is a first step towards a future demonstration involving five data sets and the most general Szekeres model.
Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel
2013-01-01
The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810
Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach
Vasko, I. Y.; Artemyev, A. V.; Popov, V. Y.; Malova, H. V.
2013-02-15
In this paper, we present new class of solutions of Grad-Shafranov-like (GS-like) equations, describing kinetic plane and axially symmetric 2D current sheets. We show that these equations admit symmetry groups only for Maxwellian and {kappa}-distributions of charged particles. The admissible symmetry groups are used to reduce GS-like equations to ordinary differential equations for invariant solutions. We derive asymptotes of invariant solutions, while invariant solutions are found analytically for the {kappa}-distribution with {kappa}=7/2. We discuss the difference of obtained solutions from equilibria widely used in other studies. We show that {kappa} regulates the decrease rate of plasma characteristics along the current sheet and determines the spatial distribution of magnetic field components. The presented class of plane and axially symmetric (disk-like) current sheets includes solutions with the inclined neutral plane.
Dain, Sergio; Ortiz, Omar E.
2009-07-15
We present numerical evidences for the validity of the inequality between the total mass and the total angular momentum for multiple axially symmetric (nonstationary) black holes. We use a parabolic heat flow to solve numerically the stationary axially symmetric Einstein equations. As a by-product of our method, we also give numerical evidences that there are no regular solutions of Einstein equations that describe two extreme, axially symmetric black holes in equilibrium.
Method of characteristics for three-dimensional axially symmetrical supersonic flows.
NASA Technical Reports Server (NTRS)
Sauer, R
1947-01-01
An approximation method for three-dimensional axially symmetrical supersonic flows is developed; it is based on the characteristics theory (represented partly graphically, partly analytically). Thereafter this method is applied to the construction of rotationally symmetrical nozzles. (author)
Axially symmetric dissipative fluids in the quasi-static approximation
NASA Astrophysics Data System (ADS)
Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J.
2016-01-01
Using a framework based on the 1 + 3 formalism, we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi-static regime. We first derive a set of invariantly defined “velocities”, which allow for an inambiguous definition of the quasi-static approximation. Next, we rewrite all the relevant equations in this approximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular, we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of “velocities” change their sign within the fluid distribution with respect to their sign on the boundary surface. It is shown that states of gravitational radiation are not a priori incompatible with the quasi-static regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.
Three-dimensional equilibria in axially symmetric tokamaks.
Garabedian, Paul R
2006-12-19
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of alpha particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Three-dimensional equilibria in axially symmetric tokamaks
Garabedian, Paul R.
2006-01-01
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Stationary axially symmetric relativistic thin discs with nonzero radial pressure
NASA Astrophysics Data System (ADS)
González, Guillermo A.; Gutiérrez-Piñeres, Antonio C.
2012-07-01
A detailed analysis of the surface energy-momentum (SEMT) tensor of stationary axially symmetric relativistic thin discs with nonzero radial pressure is presented. The physical content of the SEMT is analysed and expressions for the velocity vector, energy density, principal stresses and heat flow are obtained. We also present the counter-rotating model interpretation for these discs by considering the SEMT as the superposition of two counter-rotating perfect fluids. We analyse the possibility of counter-rotation along geodesics as well as counter-rotation with equal and opposite tangential velocities, and explicit expressions for the velocities are obtained in both the cases. By assuming a given choice for the counter-rotating velocities, explicit expressions for the energy densities and pressures of the counter-rotating fluids are then obtained. Some simple thin disc models obtained from the Kerr solution are also presented.
Redshift drift in axially symmetric quasispherical Szekeres models
NASA Astrophysics Data System (ADS)
Mishra, Priti; Célérier, Marie-Noëlle; Singh, Tejinder P.
2012-10-01
Models of inhomogeneous universes constructed with exact solutions of Einstein’s general relativity have been proposed in the literature with the aim of reproducing the cosmological data without any need for a dark energy component. Besides large scale inhomogeneity models spherically symmetric around the observer, Swiss-cheese models have also been studied. Among them, Swiss cheeses where the inhomogeneous patches are modeled by different particular Szekeres solutions have been used for reproducing the apparent dimming of the type Ia supernovae. However, the problem of fitting such models to the type Ia supernovae data is completely degenerate and we need other constraints to fully characterize them. One of the tests which is known to be able to discriminate between different cosmological models is the redshift drift. This drift has already been calculated by different authors for Lemaître-Tolman-Bondi models. We compute it here for one particular axially symmetric quasispherical Szekeres Swiss cheese which has previously been shown to reproduce to a good accuracy the type Ia supernovae data, and we compare the results to the drift in the ΛCDM model and in some Lemaître-Tolman-Bondi models that can be found in the literature. We show that it is a good discriminator between them. Then, we discuss our model’s remaining degrees of freedom and propose a recipe to fully constrain them.
Neoclassical transport in quasi-axially symmetric stellarators
Mynick, H.E.
1997-04-01
The author presents a numerical and analytic assessment of the transport in two quasi-axially symmetric stellarators, including one variant of the MHH2 class of such devices, and a configuration they refer to as NHH2, closely related to MHH2. Monte Carlo simulation results are compared with expectations from established stellarator neoclassical theory, and with some empirical stellarator scalings, used as an estimate of the turbulent transport which might be expected. From the standpoint of transport, these may be viewed as either tokamaks with large ({delta} {approximately} 1%) but low-n ripple, or as stellarators with small ripple. For NHH2, numerical results are reasonably well explained by analytic neoclassical theory. MHH2 adheres less to assumptions made in most analytic theory, and its numerical results agree less well with theory than those for NHH2. However, for both, the non-axisymmetric contribution to the heat flux is comparable with the symmetric neoclassical contribution, and also falls into the range of the expected anomalous (turbulent) contribution. Thus, it appears effort to further optimize the thermal transport beyond the particular incarnations studied here would be of at most modest utility. However, the favorable thermal confinement relies heavily on the radial electric field. Thus, the present configurations will have a loss cone for trapped energetic ions, so that further optimization may be indicated for large devices of this type.
Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
1987-01-01
A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
Novel Integration Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
EBQ code: transport of space-charge beams in axially symmetric devices
Paul, A.C.
1982-11-01
Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.
Novel Integrated Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
Sensorless Control of Axial Magnetic Bearings
NASA Astrophysics Data System (ADS)
Atsumo, Daichi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper describes a sensorless control method of axial active magnetic bearings (AMBs). At high frequencies, inductance of the axial electromagnets is hardly dependent on the airgap because of the eddy current effects of the non-laminated core. Therefore the carrier frequency should be 3 kHz below to improve the sensitivity to the airgap. In the experiment, Sensorless controll of the axial AMBs have been achieved.
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
Shearing and geodesic axially symmetric perfect fluids that do not produce gravitational radiation
NASA Astrophysics Data System (ADS)
Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J.
2015-01-01
Using a framework based on the 1 +3 formalism we carry out a study on axially and reflection symmetric perfect and geodesic fluids, looking for possible models of sources radiating gravitational waves. Therefore, the fluid should be necessarily shearing, for otherwise the magnetic part of the Weyl tensor vanishes, leading to a vanishing of the super-Poynting vector. However, for the family of perfect, geodesic fluids considered here, it appears that all possible cases reduce to conformally flat, shear-free, vorticity-free fluids, i.e., Friedman-Robertson-Walker. The super-Poynting vector vanishes and therefore no gravitational radiation is expected to be produced. The physical meaning of the obtained result is discussed.
Normal glow discharge in axial magnetic field
NASA Astrophysics Data System (ADS)
Surzhikov, S.; Shang, J.
2014-10-01
Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.
Gapless excitations of axially symmetric vortices in systems with tensorial order parameter
Peterson, Adam J.; Shifman, Mikhail
2014-09-15
We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1){sub P}×SO(3){sub S}×SO(3){sub L} symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3){sub S+L} vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.
An inverse problem design method for branched and unbranched axially symmetrical ducts
NASA Technical Reports Server (NTRS)
Nelson, C. D.; Yang, T.
1976-01-01
This paper concerns the potential flow design of axially symmetrical ducts of both circular and annular cross section with or without wall suction or blowing slots. The objective of the work was to develop a method by which such ducts could be designed with directly prescribed wall pressure variation. Previous axially symmetrical design methods applied only to circular cross sectional ducts and required that the pressure distribution be prescribed along the duct centerline and not along the duct wall. The present method uses an inverse problem approach which extends the method of Stanitz to the axially symmetrical case, and an approximation is used to account for the stagnation point in branched duct designs. Two examples of successful designs of diffusers with suction slots are presented.
Axially symmetric multi-baryon solutions and their quantization in the chiral quark soliton model
NASA Astrophysics Data System (ADS)
Komori, S.; Sawado, N.; Shiiki, N.
2004-05-01
We study axially symmetric solutions with B=2-5 in the chiral quark soliton model. In the background of axially symmetric chiral fields, the quark eigenstates and profile functions of the chiral fields are computed self-consistently. The resultant quark bound spectrum are doubly degenerate due to the symmetry of the chiral field. Upon quantization, various observable spectra of the chiral solitons are obtained. Taking account of the Finkelstein-Rubinstein constraints, we show that the quantum numbers of our solitons coincide with the physical observations for B=2 and 4 while B=3 and 5 do not.
NASA Technical Reports Server (NTRS)
Page, R. J.; Childs, M. E.
1974-01-01
An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur.
On axially symmetric incompressible magnetohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Lei, Zhen
2015-10-01
In the short article we study the ideal incompressible magnetohydrodynamic equations in three dimensions in which the Faraday law is inviscid. We prove the global well-posedness of classical solutions for a family of special axisymmetric initial data whose swirl components of the velocity field and magnetic vorticity field are trivial.
Axially Symmetric Cosmological Model with Bulk Stress in Saez-Ballester Theory of Gravitation
NASA Astrophysics Data System (ADS)
Mete, V. G.; Nimkar, A. S.; Elkar, V. D.
2016-01-01
An Axially symmetric non-static space time is considered in presence of bulk stress in scalar tensor theory formulated by Saez and Ballester (Phys. Lett. A113, 467 1985). For solving the field equations, relation between metric potential and shear velocity is proportional to scale expansion are used. Also various physical and geometrical properties of the model have been discussed.
Electromagnetic fields in an axial symmetric waveguide with variable cross section
Kheifets, S.
1980-07-01
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed.
Axially symmetric loop phase-conjugation scheme with broadband longitudinally dispersed light beams
Odintsov, Vladimir I
2004-07-31
A loop phase-conjugation scheme based on an axially symmetric four-wave interaction of focused light beams is proposed. It is shown that, when a longitudinal dispersion is introduced into the light beams, this scheme allows a phase conjugation of spatially coherent broadband radiation. The region of coherent interaction of focused longitudinally dispersed light beams is estimated. (nonlinear optical phenomena)
Investigation of Flow in an Axially Symmetrical Heated Jet of Air
NASA Technical Reports Server (NTRS)
Corrsin, Stanley
1943-01-01
The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)
Electromagnetic torque and force in axially symmetric liquid-crystal droplets.
Jánossy, István
2008-10-15
Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angular momentum conservation of light [Phys. Rev. Lett.96, 163905 (2006)]. PMID:18923626
NASA Astrophysics Data System (ADS)
Romano, Marcello
2010-04-01
A new method is introduced to control and analyze the rotational motion of an axially symmetric rigid-body spacecraft. In particular, this motion is seen as the combination of the rotation of a virtual sphere with respect to the inertial frame, and the rotation of the body, about its symmetry axis, with respect to this sphere. Two new exact solutions are introduced for the motion of axially symmetric rigid bodies subjected to a constant external torque in the following cases: (1) torque parallel to the angular momentum and (2) torque parallel to the vectorial component of the angular momentum on the plane perpendicular to the symmetry axis. By building upon these results, two rotational maneuvers are proposed for axially symmetric spacecraft: a detumbling maneuver and a nutation canceling maneuver. The two maneuvers are the minimum time maneuvers for spherically constrained maximum torque. These maneuvers are simple and elegant, as they reduce the control of the three degrees-of-freedom nonlinear rotational motion to a single degree-of-freedom linear problem. Furthermore, the complete (both for the dynamics and for the kinematics) and exact analytic solutions are found for the two maneuvers. An extended survey is reported in the introduction of the paper of the few cases where the rotation of a rigid body is fully reduced to an exact analytic solution in closed form.
Computation of the viscous supersonic flow over symmetrical and asymmetrical external axial corners
NASA Technical Reports Server (NTRS)
Kutler, P.; Pulliam, T. H.; Vigneron, Y. C.
1978-01-01
The primary objective of the reported investigation is the computational verification of the experimental results obtained by Salas and Daywitt (1978). Two existing computer codes were used to compute the supersonic flow field surrounding the external axial corner. For the inviscid and turbulent flow results, the unsteady, three-dimensional implicit code of Pulliam and Steger (1978) was used. For the laminar flow results, the unsteady two-dimensional explicit procedure of Vigneron et al. (1977) was employed. Inviscid solutions for a symmetric configuration with a rounded corner resulted in either single or triple surface crossflow stagnation point flows, depending on the corner radius. Numerical results obtained for the same symmetric configuration tested experimentally show the crossflow in the vicinity of the corner to be away from the corner and thus in agreement with the experimental oil flow results.
A cylindrical shell with an axial crack under skew-symmetric loading.
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
Off-axis reflecting telescope with axially-symmetric optical property and its applications
NASA Astrophysics Data System (ADS)
Chang, Seunghyuk
2006-06-01
The basic concept and fundamental result of a recently developed geometric aberration theory for classical off-axis reflecting telescopes and imaging systems are presented. It is shown that a classical off-axis reflecting telescope can be designed to have practically axially-symmetric optical property by eliminating the dominant aberration (linear astigmatism) caused by the asymmetric geometry. A simple closed-form equation for elimination of linear astigmatism is presented. Also, to show how the developed aberration theory can be applied to current and future telescopes, several off-axis reflecting telescopes and imaging systems are designed and analyzed.
Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate.
Fan, Fan; Du, Tao; Srivastava, Abhishek Kumar; Lu, Wang; Chigrinov, Vladimir; Kwok, Hoi Sing
2012-10-01
We present a method to fabricate a radially and azimuthally polarized light converter by deploying a patterned liquid crystal (LC) quarter-wave plates (QWP). The patterned QWP has been fabricated by providing the axially symmetric alignment to the LC layer by mean of photo-alignment. When the left handed circularly (LHC) or right handed circularly (RHC) polarized light passes through these patterned QWPs, the emergent light becomes radially or azimuthally polarized. Moreover, the proposed polarization converters are characterized by the fast response time, thus could find application in various fast photonic devices. PMID:23188267
The harmonic-map structure of the axially symmetric stationary Einstein equations
NASA Astrophysics Data System (ADS)
Whitman, Andrew P.; Stoeger, William R.
1992-06-01
We systematically review the solutions of the vacuum Einstein equations for the axially symmetric stationary case which are harmonic maps. In particular, we show that the interesting part of the Kerr solution is a composition of a harmonic map intoH {1/2} with a totally geodesic map fromH {1/2} into SS(1,1). We also point out, relying on Sanchez' results, that there is an analogous structure for the Lorentz-domain cases involving cylindrical gravitational waves and colliding plane waves.
Carbon-13 and tin-119 relaxation studies of some axially symmetrical organotin compounds
NASA Astrophysics Data System (ADS)
Chapelle, S.; Granger, P.
We have studied a variety of axially symmetrical tin compounds by 119Sn and 13C NMR. Tin was observed at two field strengths and, except for Ph 3SnCl, T1 is field independent and governed mainly by spin-rotation. A chemical-shift anisotropy of 136 ppm is observed for 119Sn in Ph 3SnCl. Deverell's relationship provides a good estimate of the values of the spin-rotational constants and the theory of Woessner, Snowden, and Huntress leads to the values of the rotational diffusion constants.
NASA Technical Reports Server (NTRS)
Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.
1974-01-01
This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.
Absence of saturation for finite injected currents in axially symmetric cavity diode
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Kumar, Raghwendra; Puri, R. R.
2003-11-01
The Child-Langmuir law is investigated numerically using a fully electromagnetic particle-in-cell code for a closed axially symmetric diode. It is found that the average current transmitted to the anode (JTR) increases with the injected current (JIN) even after the formation of virtual cathode in both the nonrelativistic and relativistic cases. The increase is found to be a power law, JTR˜JIN1-β. In other words, the time averaged fraction f of electrons reaching the anode varies with the input current as, f˜JIN-β, where β<1. In contrast, for an infinite parallel plate diode, f˜JIN-1. The possibility of asymptotic saturation is also discussed.
NASA Astrophysics Data System (ADS)
Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J.
2014-04-01
We carry out a general study on the collapse of axially (and reflection-)symmetric sources in the context of general relativity. All basic equations and concepts required to perform such a general study are deployed. These equations are written down for a general anisotropic dissipative fluid. The proposed approach allows for analytical studies as well as for numerical applications. A causal transport equation derived from the Israel-Stewart theory is applied, to discuss some thermodynamic aspects of the problem. A set of scalar functions (the structure scalars) derived from the orthogonal splitting of the Riemann tensor are calculated and their role in the dynamics of the source is clearly exhibited. The characterization of the gravitational radiation emitted by the source is discussed.
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Octupolar approximation for the excluded volume of axially symmetric convex bodies
NASA Astrophysics Data System (ADS)
Piastra, Marco; Virga, Epifanio G.
2013-09-01
We propose a simply computable formula for the excluded volume of convex, axially symmetric bodies, based on the classical Brunn-Minkoski theory for convex bodies, which is briefly outlined in an Appendix written in a modern mathematical language. This formula is applied to cones and spherocones, which are regularized cones; a shape-reconstruction algorithm is able to generate the region in space inaccessible to them and to compute their excluded volume, which is found to be in good agreement with our approximate analytical formula. Finally, for spherocones with an appropriately tuned amplitude, we predict the occurrence of a relative deep minimum of the excluded volume in a configuration lying between the parallel alignment (where the excluded volume is maximum) and the antiparallel alignment (where the excluded volume is minimum).
Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei
Martini, M.; Goriely, S.; Péru, S.
2014-06-15
In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.
A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.
2016-01-01
Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.
Nonlinear resonance and envelope instability of intense beam in axial symmetric periodic channel
NASA Astrophysics Data System (ADS)
Li, Chao; Liu, Zhicong; Zhao, Yaliang; Qin, Qing
2016-03-01
When an intense charged particle beam propagates through a given periodic focusing channel, it will experience the phenomena of nonlinear resonance, collective instability or chaotic motion with different conditions. In this paper, the collective envelope instability mechanisms are studied for symmetric beam propagation in an axially symmetric periodic channel. The beam is characterized as collectively stable if there exists a stable fixed point (SFP) located at the matched beam condition (rm , 0) in (r ,pr) phase space. It is found that the well-known collective envelope instability is dynamically related to the period-two orbits bifurcation of the matched SFP, meanwhile the unique stable SFP turns into an unstable saddle-node, surrounded by 1/2 resonance islands. However, higher orders of resonance (l / n, n > 2) coming from period-n bifurcation will not lead to collective beam instability because a new SFP emerges immediately upon the bifurcation process. The orders of SFP bifurcation is numerically depicted by the envelope tune ν=ϕ/360, where ϕ is the eigenphase of the Poincar e ´ tangent map T(s) in one focusing period at SFP, as functions of depressed phase advance. With strong space charge, due to these resonances from SFP bifurcation could be overlapped, mismatched beam would even show chaotic motion. For specific parameters, regular orbits, resonance islands, chaotic regions formed by resonance overlapping are clearly depicted with frequency analysis and Lyapunov spectral exponents, a method that may prove useful when extended to higher phase-space dimensions.
Suspension model blood flow through an inclined tube with an axially non-symmetrical stenosis
NASA Astrophysics Data System (ADS)
Chakraborty, Uday Shankar; Biswas, Devajyoti; Paul, Moumita
2011-03-01
The flow of blood in an inclined artery with an axially non-symmetrical but radially symmetrical mild stenosis has been presented in this study. To account for the slip at stenotic wall, hematocrit and inclination of the artery, blood has been represented by a particle-fluid suspension. The expression for the flow characteristics, namely, the impedance (resistance to flow), the wall shear stress and the shear stress at the throat of the stenosis have been derived and represented graphically with respect to different flow parameters. The impedance increases with the hematocrit and stenosis size but decreases with slip at wall and angle of inclination of the artery. The shear stress at the maximum stenosis height increases with the inclination of the artery but possess the characteristics similar to that of impedance with respect to other parameters. As an application, theoretical values of effective viscosity computed with the help of the present analysis are compared with experimental results and found that they are in reasonable agreement for low hematocrit values in small blood carrying vessels.
Space charge field in a FEL with axially symmetric electron beam
Goncharov, I.A.; Belyavskiy, E.D.
1995-12-31
Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.
Development and Testing of an Axial Halbach Magnetic Bearing
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2006-01-01
The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.
NASA Astrophysics Data System (ADS)
Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.
2016-07-01
We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
1997-01-01
A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates that are subjected to linearly varying edge loads, uniform shear loads, or combinations of these loads is presented. The study focuses on the effects of the shape of linearly varying edge load distribution, plate orthotropy, and plate flexural anisotropy on plate buckling behavior. In addition, the study exmines the interaction of linearly varying edge loads and uniform shear loads with plate flexural anisotropy and orthotropy. Results obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates are presented for [+/- theta](sub s), thin graphite-epoxy laminates that are representative of spacecraft structural components. Also, numerous generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These charts show explicitly the effects of flexural orthotropy and flexural anisotropy on plate buckling behavior for linearly varying edge loads, uniform shear loads, or combinations of these loads. The most important finding of the present study is that specially orthotropic and flexurally anisotropic plates that are subjected to an axial edge load distribution that is tension dominated can support shear loads that are larger in magnitude than the shear buckling load.
Fluid-structure interaction in axially symmetric models of abdominal aortic aneurysms.
Fraser, K H; Li, M-X; Lee, W T; Easson, W J; Hoskins, P R
2009-02-01
Abdominal aortic aneurysm disease progression is probably influenced by tissue stresses and blood flow conditions and so accurate estimation of these will increase understanding of the disease and may lead to improved clinical practice. In this work the blood flow and tissue stresses in axially symmetric aneurysms are calculated using a complete fluid-structure interaction as a benchmark for calculating the error introduced by simpler calculations: rigid walled for the blood flow, homogeneous pressure for the tissue stress, as well as one-way-coupled interactions. The error in the peak von Mises stress in a homogeneous pressure calculation compared with a fluid-structure interaction calculation was less than 3.5 per cent for aneurysm diameters up to 7 cm. The error in the mean wall shear stress, in a rigid-walled calculation compared with a fluid-structure interaction calculation, varied from 30 per cent to 60 per cent with increasing aneurysm diameter. These results suggest that incorporation of the fluid-structure interaction is unnecessary for purely mechanical modelling, with the aim of evaluating the current rupture probability. However, for more complex biological modelling, perhaps with the aim of predicting the progress of the disease, where accurate estimation of the wall shear stress is essential, some form of fluid-structure interaction is necessary. PMID:19278197
Linear optical response of carbon nanotubes under axial magnetic field
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-04-01
We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.
NASA Astrophysics Data System (ADS)
Roque, Kristine Faith J.; Tapang, Giovanni A.; Saloma, Caesar A.
2015-07-01
We present the parametric investigation of the axial trapping forces generated by the interaction of an ellipsoidal dielectric and a focused, randomly polarized Gaussian beam in the geometrical optics regime. We show that particle elongation along the optical axis results to a more unstable axial trap compared to that of a reference sphere due to the more positive axial forces for positive axial displacements. Decreasing the refractive index difference between the particle and the surrounding medium (Δn = 0.09) decreases the magnitude of the axial force for positive particle displacements; and for a narrow range of axial displacements an axial trap can be achieved. Increasing the beam wavelength increases the magnitude of the axial force and for 1060 nm an axial trap can be achieved.
Magnetically suspended centrifugal blood pump with an axially levitated motor.
Masuzawa, Toru; Ezoe, Shiroh; Kato, Tsuyoshi; Okada, Yohji
2003-07-01
The longevity of a rotary blood pump is mainly determined by the durability of its wearing mechanical parts such as bearings and seals. Magnetic suspension techniques can be used to eliminate these mechanical parts altogether. This article describes a magnetically suspended centrifugal blood pump using an axially levitated motor. The motor comprises an upper stator, a bottom stator, and a levitated rotor-impeller between the stators. The upper stator has permanent magnets to generate an attractive axial bias force on the rotor and electric magnets to control the inclination of the rotor. The bottom stator has electric magnets to generate attractive forces and rotating torque to control the axial displacement and rotation of the rotor. The radial displacement of the rotor is restricted by passive stability. A shrouded impeller is integrated within the rotor. The performance of the magnetic suspension and pump were evaluated in a closed mock loop circuit filled with water. The maximum amplitude of the rotor displacement in the axial direction was only 0.06 mm. The maximum possible rotational speed during levitation was 1,600 rpm. The maximum pressure head and flow rate were 120 mm Hg and 7 L/min, respectively. The pump shows promise as a ventricular assist device. PMID:12823418
Axial Anomaly, Dirac Sea, and the Chiral Magnetic Effect
Kharzeev, D.E.
2010-05-26
Gribov viewed the axial anomaly as a manifestation of the collective motion of Dirac fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss the experimental status and recent developments.
Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields
NASA Astrophysics Data System (ADS)
Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.
2016-05-01
A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.
Alton, Gerald D.
1996-01-01
An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.
Flow Separation Ahead of a Blunt Axially Symmetric Body at Mach Numbers 1.76 to 2.10
NASA Technical Reports Server (NTRS)
Moeckel, W E
1951-01-01
The pressure distribution and drag were determined for a spherical-nosed axially symmetric body with thin projecting rods at Mach numbers of 1.76, 1.93, and 2.10. The upstream projection distance of the rods was varied over a wide range to study changes in the character of the flow separation and to determine the variation of drag and pressure distribution with tip projection. Drag coefficients between 0.18 and 0.30 were obtained for most tip projections at each Mach number.
NASA Technical Reports Server (NTRS)
Warsi, Z. U. A.; Weed, R. A.; Thompson, J. F.
1980-01-01
A formulation of the complete Navier-Stokes problem for a viscous hypersonic flow in general curvilinear coordinates is presented. This formulation is applicable to both the axially symmetric and three dimensional flows past bodies of revolution. The equations for the case of zero angle of attack were solved past a circular cylinder with hemispherical caps by point SOR finite difference approximation. The free stream Mach number and the Reynolds number for the test case are respectively 22.04 and 168883. The whole algorithm is presented in detail along with the preliminary results for pressure, temperature, density and velocity distributions along the stagnation line.
Axial inlet conversion to a centrifugal compressor with magnetic bearings
Novecosky, T. )
1994-01-01
NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings have been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).
Electrostatic waves in carbon nanotubes with an axial magnetic field
NASA Astrophysics Data System (ADS)
Abdikian, Alireza; Bagheri, Mehran
2013-10-01
Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.
Electrostatic waves in carbon nanotubes with an axial magnetic field
Abdikian, Alireza; Bagheri, Mehran
2013-10-15
Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.
NASA Astrophysics Data System (ADS)
Nam-Il, Kim; Moon-Young, Kim
2005-06-01
An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.
Ion pump using cylindrically symmetric spindle magnetic field
NASA Astrophysics Data System (ADS)
Rashid, M. H.
2012-11-01
For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.
Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Valone, Thomas F.
2010-01-01
power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ♯4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.
Collimation of laser-produced plasmas using axial magnetic field
Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.
2015-06-01
We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.
Toroidal linear force-free magnetic fields with axial symmetry
NASA Astrophysics Data System (ADS)
Vandas, M.; Romashets, E.
2016-01-01
Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-08-01
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
High temperature superconducting axial field magnetic coupler: realization and test
NASA Astrophysics Data System (ADS)
Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.
2015-09-01
Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.
Axial Symmetric Solutions to Einstein's Field Equations for Deformed Neutron Stars
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2016-03-01
Traditional models of neutron stars are constructed under of assumption that they are perfect spheres. This is not correct, however, if the matter inside of neutron stars is described by an non-isotropic model for the equation of state. Examples of such stars are magnetars and neutron stars that would contain color-superconducting quark matter. In this work, we derive the stellar structure equations which describe the properties of non-isotropic neutron stars. The equations are solved numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure and density profiles and investigate any changes from conventional spherically symmetric neutron stars. This work was supported through the National Science Foundation under Grants PHYS-1411708 and DUE-1259951. Additional computing resources were provided by the CSRC at SDSU and the Department of Sciences at Wentworth Institute of Technology.
Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
NASA Astrophysics Data System (ADS)
Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
Yang, Wanan; Li, Yan; Qin, Fengqing
2015-01-01
To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring’s magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg–Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance. PMID:25733935
Staudhammer, Karl P.
2004-01-01
The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.
Höhne, Christian; Prager, Jens; Gravenkamp, Hauke
2015-12-01
In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given. PMID:26126952
Zampolli, Mario; Tesei, Alessandra; Jensen, Finn B; Malm, Nils; Blottman, John B
2007-09-01
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. PMID:17927408
Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field
Kheiri, Golshad; Esmaeilzadeh, Mahdi
2013-12-15
A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.
NASA Astrophysics Data System (ADS)
Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.
1982-01-01
The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.
A Model for Axial Magnetic Bearings Including Eddy Currents
NASA Technical Reports Server (NTRS)
Kucera, Ladislav; Ahrens, Markus
1996-01-01
This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
NASA Astrophysics Data System (ADS)
Jazayeri, S. M.; Sohrabi, A. R.
2014-06-01
We use a method based on the conservation of energy, the mean-energy error criterion, to approximately locate the place of a cantorus by locating the series of its convergents. The mean-energy error curve has nearly stationary parts in the vicinity of elliptic (minimax) orbits, the so-called magnetic islands. Stable minimax orbits converge to orbits homoclinic to a cantorus. By tracing the island series, we limit the cantorus to a narrow region. A near-critical perturbation parameter is used so that, while the cantorus may be destabilized, its high-order minimax orbits remain intact. As illustrations, we consider two symplectic maps, systematically derived from the Hamilton-Jacobi equation and Jacobi's theorem, in the context of the magnetically confined plasmas in a tokamak: a symmetric tokamap realistically reproduces the main features of a tokamak, and a symmetric ergodic magnetic limiter (EML) map is defined to describe the action of EML rings on the magnetic field lines in the tokamak.
NASA Technical Reports Server (NTRS)
Matthiesen, D. H.; Wargo, M. J.; Motakef, S.; Carlson, D. J.; Nakos, J. S.
1987-01-01
Ga-doped germanium was grown in a vertical Bridgman-Stockbarger system with melt stabilization by axial magnetic fields of 30 kG. It was found that radial segregation of gallium is negligible and that the initial transient of axial macro-segregation is in apparent compliance with the theory of diffusion controlled plane front solidification.
Effect of Axial Loading on Quench Performance in Nb3Sn Magnets
Ambrosio, G.; Bordini, B.; Caspi, S.; Dietderich, D.R.; Felice, H.; Hafalia, A.R.; Hannaford, C.R.; Lizarazo, J.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.L.; DiMarco, J.D.; Tartaglia, M.; Vedrice, P.; Ferracin, P.
2008-06-01
A series of tests has been performed at Lawrence Berkeley National Laboratory (LBNL) and Fermi National Accelerator Laboratory (FNAL) with the goal of assessing the influence of coil axial pre-load on Nb{sub 3}Sn magnet training. The tests involved two subscale Nb{sub 3}Sn magnets: SQ02, a quadrupole magnet fabricated as part of the US LHC Accelerator Research Program (LARP), and SD01, a dipole magnet developed in collaboration between CEA/Saclay and LBNL. Both magnets used similar Nb{sub 3}Sn flat racetrack coils from LBNL Subscale Magnet Program, and implemented an axial support system composed of stainless steel end-plates and aluminum rods. The system was designed to withstand full longitudinal electro-magnetic forces and provide controllable preloads. Quench performances, training, and quench locations have been recorded in various axial loading conditions. Test results are reported.
Symmetric and anti-symmetric Landau parameters and magnetic properties of dense quark matter
NASA Astrophysics Data System (ADS)
Pal, Kausik; Dutt-Mazumder, Abhee K.
2010-05-01
We calculate the dimensionless Fermi liquid parameters (FLPs), F0,1sym and F0,1asym, for spin asymmetric dense quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove such divergences, the hard density loop (HDL) corrected gluon propagator is used. The FLPs so determined are then invoked to calculate magnetic properties such as magnetization
NASA Astrophysics Data System (ADS)
Zheng, Ping; Zhao, Jing; Wu, Qian; Fan, Weiguang; Shen, Lin; Li, Lina; Liu, Ranran
2008-04-01
A novel axial-axial flux compound-structure permanent-magnet synchronous machine (CS-PMSM), which is a hybrid electric vehicle (HEV) power train concept, is integrated by two axial flux disk machines. As the two machines share a common rotor [a magnet rotor with permanent magnets (PMs) on both sides], there may be magnetic coupling between them. Three-dimensional (3D) finite-element method (FEM) calculation shows that the two machines have little magnetic coupling if they have the same pole number and consistent magnetization direction of the two layers of PMs on the common rotor. The performance of the CS-PMSM is evaluated on criteria such as power, power per unit volume and mass, torque, and torque ripple. The power and torque equations of this type of machine are deduced and verified with 3D FEM. After the optimization of diameter ratio and pole number, the power and power per unit active volume and mass are high. The torque ripple is much reduced due to the optimization of the pole arc embrace and magnet skewing angle.
Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG
NASA Astrophysics Data System (ADS)
Sun, Jinji; Wang, Chun'e.; Le, Yun
2016-08-01
To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB.
NASA Technical Reports Server (NTRS)
An, C.-H.; Bao, J. J.; Wu, S. T.; Suess, S. T.
1988-01-01
A two-dimensional MHD model simulating the formation of Kippenhahn-Schluter (1957) quiescent prominence (QP) magnetic field configurations is used to explore symmetric mass injection into a dipole magnetic field. An optimum magnetic field strength for QP formation by mass injection is obtained. It is found that a weaker magnetic field strength is more favorable for the condensation of the injected plasma but that a stronger field is more favorable for supporting the condensed plasma against gravity.
Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar
2000-01-01
This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.
Wakayama, Toshitaka Yonemura, Motoki; Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke; Dinh, Thanh-Hung; Otani, Yukitoshi; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Miura, Taisuke; Takahashi, Akihiko; Nakamura, Daisuke; Okada, Tatsuo
2015-08-24
We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
NASA Astrophysics Data System (ADS)
Pimshtein, V. G.
2016-07-01
The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.
NASA Astrophysics Data System (ADS)
Ghotra, Harjit Singh; Kant, Niti
2015-12-01
We examine the electron acceleration by a radially polarized (RP) laser pulse in vacuum under influence of an intense axial magnetic field. The electron while interaction with a RP laser pulse gets accelerated with high energy gain. The attained energy gain further enhanced up-to the order of GeV with an intense RP laser pulse. We observe a significant enhancement in energy gain in the presence of an intense axial magnetic field in the direction of propagation of laser pulse. The presence of axial magnetic field improves the strength of v → × B → force which supports the retaining of betatron resonance for longer durations. This improves the electron acceleration with an enhanced energy gain up to 5.2 GeV. It is noticed that the axial magnetic field is sensitive to electron acceleration, small change in magnetic field leads to enhance electron energy gain significantly. Our results also show relatively smaller scattering of the electrons in the presence of axial magnetic field.
Magnetic properties of FeCo laminates subjected to axial loading
NASA Astrophysics Data System (ADS)
Turgut, Z.; Horwath, J. C.; Huang, M. Q.; Fingers, R. T.
2003-05-01
While manufacturing the stator/rotor assemblies of the aircraft power components, increased power losses are typically pronounced due to an imposed axial load onto the stack of magnetic laminates to increase the rigidity of the stack. An axial loader to enable core loss measurements to be made while the laminate stack is subjected to an axial load has been designed. The apparatus and multilayered slotted interface plates, allowing for the toroidal windings and simultaneous load application were used to evaluate the effect of compression up to 27.5 MPa on magnetic properties of commercially available Fe-Co based Hiperco® 50, Hiperco® 50 HS, and Hiperco® 27 alloys. For each composition, we tested two sets of samples: (1) completely insulated and (2) uninsulated. We report the increased losses due to an axial load and discuss the origin of these increased losses in terms of constant size anisotropy for completely insulated laminates.
Axial-field permanent magnet motors for electric vehicles
NASA Technical Reports Server (NTRS)
Campbell, P.
1981-01-01
The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.
NASA Astrophysics Data System (ADS)
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Further Development of an Optimal Design Approach Applied to Axial Magnetic Bearings
NASA Technical Reports Server (NTRS)
Bloodgood, V. Dale, Jr.; Groom, Nelson J.; Britcher, Colin P.
2000-01-01
Classical design methods involved in magnetic bearings and magnetic suspension systems have always had their limitations. Because of this, the overall effectiveness of a design has always relied heavily on the skill and experience of the individual designer. This paper combines two approaches that have been developed to aid the accuracy and efficiency of magnetostatic design. The first approach integrates classical magnetic circuit theory with modern optimization theory to increase design efficiency. The second approach uses loss factors to increase the accuracy of classical magnetic circuit theory. As an example, an axial magnetic thrust bearing is designed for minimum power.
Revisiting the cylindrical positive column in an axial magnetic field
Franklin, R. N.
2012-09-15
This paper seeks to bring together past and present work in this area and to remove some recent inconsistencies. It concludes that while some aspects were not completely correct in the early work, the general picture of azimuthal motion of electrons and ions is an important feature and accounts for the diamagnetism of a bounded active plasma and other features of an axially magnetised plasma. It also introduces a means of testing the equations derived by interchanging electrons and positive ions; under such a 'transformation,' the equations to be solved should be identical. This is a fundamental principle and is implicit in treatments given in many of the standard texts, but not made explicit.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Velikovich, A. L.; Rudakov, L. I.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Williamson, K. M.; Stafford, A.; Shlyaptseva, V. V.
2011-10-01
The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev , Phys. PlasmasPHPAEN1070-664X10.1063/1.2896577 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.
Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V.; Velikovich, A. L.; Rudakov, L. I.; Williamson, K. M.
2011-10-15
The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.
NASA Astrophysics Data System (ADS)
Cubarsi, Rafael
2014-07-01
Under a common potential, a finite mixture of ellipsoidal velocity distributions satisfying the Boltzmann collisionless equation provides a set of integrability conditions that may constrain the population kinematics. They are referred to as conditions of consistency and were discussed in a previous paper on mixtures of axisymmetric populations. As a corollary, these conditions are now extended to point-axial symmetry, that is, point symmetry around the rotation axis or bisymmetry, by determining which potentials are connected with a more flexible superposition of stellar populations. Under point-axial symmetry, the potential is still axisymmetric, but the velocity and mass distributions are not necessarily. A point-axial stellar system is, in a natural way, consistent with a flat velocity distribution of a disc population. Therefore, no additional integrability conditions are required to solve the Boltzmann collisionless equation for such a population. For other populations, if the potential is additively separable in cylindrical coordinates, the populations are not kinematically constrained, although under point-axial symmetry, the potential is reduced to the harmonic function, which, for the Galaxy, is proven to be non-realistic. In contrast, a non-separable potential provides additional conditions of consistency. When mean velocities for the populations are unconstrained, the potential becomes quasi-stationary, being a particular case of the axisymmetric model. Then, the radial and vertical mean velocities of the populations can differ and produce an apparent vertex deviation of the whole velocity distribution. However, single population velocity ellipsoids still have no vertex deviation in the Galactic plane and no tilt in their intersection with a meridional Galactic plane. If the thick disc and halo ellipsoids actually have non-vanishing tilt, as the surveys of the solar neighbourhood that include RAdial Velocity Experiment (RAVE) data seem to show, the
Effects of an axial magnetic field on Z-pinch plasmas for extreme ultraviolet sources
Katsuki, Sunao; Kimura, Akihiro; Kondo, Yoshihiro; Horita, Hiroyuki; Namihira, Takao; Sakugawa, Takashi; Akiyama, Hidenori
2006-01-01
This paper describes the effect of an axial magnetic field (B{sub z}) on plasma pinch dynamics and on the extreme ultraviolet (EUV) emission property of a compact Z-pinch device for EUV sources. The Z-pinch xenon plasma was driven by a pulse current with an amplitude of 27 kA and duration of 150 ns in an alumina tube with a diameter of 5 mm. A quasistatic magnetic field of up to 360 G is applied to the plasma. The EUV emission was evaluated for spectra, spatial distribution of the emission, and light energy at 13.5 nm with 2% bandwidth. A time-resolved interferogram provides the electron line density and pinch dynamics of the plasma. When a magnetic field of 160 G was applied to the plasma, the emission energy was approximately double that without the magnetic field. The spectroscopic measurement shows that the EUV spectrum drastically varies with magnetic-field strength. The time-resolved interferogram indicates that the axial magnetic field contributes by making the plasma compression smooth and by sustaining certain plasma conditions longer. From these experimental results, it was concluded that applying an axial magnetic field can be an effective method to improve EUV emission.
Effect of radial plasma transport at the magnetic throat on axial ion beam formation
NASA Astrophysics Data System (ADS)
Zhang, Yunchao; Charles, Christine; Boswell, Rod
2016-08-01
Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.
Axial Magnetic Field Compression within Radial Foil Plasma Jets, Experiment and Simulation
NASA Astrophysics Data System (ADS)
Byvank, Tom; Potter, William; Chang, Jae Young; Banasek, Jacob; Greenly, John; Seyler, Charles; Kusse, Bruce
2015-11-01
Compression of an axial magnetic field correlates with density hollowing and azimuthal rotation of a plasma jet generated by the COBRA pulsed power machine (1 MA peak current in 100 ns rise time) in a radial foil (15 μm Al thin disk) configuration. The plasma jet compresses an external 1 T axial magnetic field (Bz) as it collimates along the central z-axis. Experimental measurements use a Bdot magnetic probe placed in the center of the hollow plasma jet. Experimental results show compression of the 1 T Bz field to 2.4 +/- 0.3 T. Predictions made by the extended magnetohydrodynamics (XMHD) code, PERSEUS, show a 5.0 +/- 0.7 T field at the probe location. We overview physical reasons for the discrepancy between the experimental and simulation magnetic field compression measurements.
Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell
Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T
2005-01-15
A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. Such a description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the "spin" of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. The derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.
Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts
Feng, Dingyu; Xiu, Shixin Wang, Yi; Liu, Gang; Zhang, Yali; Bi, Dongli
2015-10-15
The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.
Magnetic thermal stability of permalloy microstructures with shape-induced bi-axial anisotropy
NASA Astrophysics Data System (ADS)
Telepinsky, Yevgeniy; Sinwani, Omer; Mor, Vladislav; Schultz, Moty; Klein, Lior
2016-02-01
We study the thermal stability of the magnetization states in permalloy microstructures in the form of two crossing elongated ellipses, a shape which yields effective bi-axial magnetic anisotropy in the overlap area. We prepare the structure with the magnetization along one of the easy axes of magnetization and measure the waiting time for switching when a magnetic field favoring the other easy axis is applied. The waiting time for switching is measured as a function of the applied magnetic field and temperature. We determine the energy barrier for switching and estimate the thermal stability of the structures. The experimental results are compared with numerical simulations. The results indicate exceptional stability which makes such structures appealing for a variety of applications including magnetic random access memory based on the planar Hall effect.
NASA Astrophysics Data System (ADS)
Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh
2009-04-01
The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψt,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψt is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m =1, n =±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are
Nonisothermal theory of the positive column of an electric discharge in the axial magnetic field
Ul'yanov, D. K. Ul'yanov, K. N.
2013-01-15
A nonisothermal model of the positive column allowing for electron energy balance is analyzed. The influence of the axial magnetic field on the characteristics of the cylindrical positive column of a low-pressure discharge is investigated in the hydrodynamic approximation. It is shown that the magnetic field affects the plasma density distribution, plasma velocity, and electron energies. The radial dependences of the plasma density, electron energy, and plasma velocity, as well as the azimuthal velocities of electrons and ions, are calculated for helium at different values of the magnetic field strength. It is established that inertia should be taken into account in the equations for the azimuthal motion of electrons and ions. The results obtained in the hydrodynamic approximation differ significantly from those obtained in the framework of the common diffusion model of the positive column in the axial magnetic field. It is shown that the distributions of the plasma density and radial plasma velocity in the greater part of the positive column tend to those obtained in the diffusion approximation at higher values of the axial magnetic field and gas density, although substantial differences remain in the near-wall region.
Effect of axial magnetic field on axicon laser-induced electron acceleration
NASA Astrophysics Data System (ADS)
Kant, Niti; Rajput, Jyoti; Giri, Pankaj; Singh, Arvinder
2016-03-01
Radially polarized axicon Gaussian laser-induced electron acceleration has been studied under the influence of axial magnetic field. Employing an axicon is a significant method to generate a focused and diffraction free radially polarized laser beam. We have investigated direct electron acceleration in vacuum by employing a relativistic single particle simulation. It is observed that the net electron energy gain from the axicon Gaussian radially polarized laser beam can be enhanced under the influence of time varying axial magnetic field. This additional effect of the magnetic field reveals the fact that multi GeV energy gain can be achieved without the use of petawatt power lasers. Effect of laser initial intensity, initial spot size, initial phase, pulse duration and initial energy are taken into consideration for efficient electron acceleration up to GeV energies.
NASA Astrophysics Data System (ADS)
Calvin, Matthew
A variety of magnetic gear topologies have been investigated in recent years as alternatives to traditional mechanical gearboxes. In general these magnetic gears offer advantages in the non-contact transmission of torque including inherent overload protection, reduced acoustic emissions, and a reduction in the number of contacting components subject to wear. The earliest magnetic gear designs however suffered from low volumetric torque densities, which limited their utility for industrial applications. Research into flux focusing magnetic gearbox topologies has resulted in increased volumetric torque densities by actively engaging all of the magnets in the transmission of torque throughout the process. This research compared the volumetric torque density of axial and radial flux focusing magnetic gearbox designs and prototypes to planetary, cycloidal, and harmonic mechanical gearboxes. The rare earth scaled up radial and axial flux focusing topologies were found to have consistently higher volumetric torque densities than planetary gearboxes of comparable diameter. The cycloidal and harmonic gearboxes had comparable volumetric torque densities, with greater volumetric torque densities for some models and lesser volumetric torque densities for others. The expectation is that further improvements in volumetric torque density are possible for flux focusing magnetic gears with additional refinement and optimization of the designs. The current study does show that flux focusing magnetic gear topologies are a plausible future alternative to mechanical gearboxes in applications where their unique torque transmission mechanism would be advantageous.
NASA Astrophysics Data System (ADS)
Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing
2016-06-01
The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk
2012-04-01
Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.
Self-fields in a planar wiggler and axial magnetic field
Esmaeilzadeh, Mahdi; Ghafouri, Vahid; Najafi, Mehrdad; Taghavi, Amin; Namvar, Esmaeil
2007-10-15
A theory for self-fields induced by charge and current densities of the electron beam in a free-electron laser with planar wiggler and axial magnetic field is presented. Mutual influence of the electron velocity and self-magnetic field is considered to account for the total self-magnetic field. The quasisteady-state orbits and their stability under the influence of self-fields are derived and discussed. The function {phi} which determines the rate of change of axial velocity with energy is then derived. It is shown that for a planar wiggler, the wiggler-induced self-magnetic has two components. The first one is perpendicular to the wiggler magnetic field and the second is parallel (or antiparallel) to the wiggler magnetic field. The wiggler-induced self-magnetic field has a diamagnetic effect for group I orbits, while for group II orbits it has a paramagnetic effect. Some interesting effects of self-fields on electron dynamics include the generation of a negative singularity for function {phi} and creation of new unstable orbits for group II which are not found in the absence of self-fields.
Three-dimensional model and simulation of vacuum arcs under axial magnetic fields
Wang Lijun; Jia Shenli; Zhou Xin; Wang Haijing; Shi Zongqian
2012-01-15
In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.
Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.
Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori
2015-06-01
The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124
An axial-flux permanent-magnet generator for a gearless wind energy system
Chalmers, B.J.; Wu, W.; Spooner, E.
1999-06-01
The paper discusses the development of an axial-flux permanent-magnet generator for a gearless wind energy system which aims to demonstrate the feasibility of integrating wind and photovoltaic energy converters for the generation of electricity and to achieve optimum exploitation of the two energy sources. The merits of an axial-flux generator topology are discussed with reference to the particular requirements of an electrical generator for a direct-coupled wind turbine application. The design, construction and test results of a 5 kW, 200 rev/min permanent-magnet generator, to form a 10 kW pilot power plant with a 5 kW photovoltaic array, are presented.
Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle
NASA Technical Reports Server (NTRS)
Kliman, G. B.
1982-01-01
An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.
Development of a Co-Axial Hot Cathode for Magnetized Ion Source Plasma
Miyamoto, N.; Hamamoto, N.; Imakita, S.; Mendenilla, A. G.; Wada, M.
2008-11-03
Directly heated high temperature cathodes of refractory metals such as tungsten run electric current of more than several tens of amperes. The electric current makes magnetic field around the cathode wire, and the magnetic field causes inhomogeneous emission of electrons from the cathode. To solve this problem we have designed the cathode having a co-axial heater current flow structure, and mounted it in a Bernas-type ion source. A plasma produced by co-axial hot cathode showed a clearer column along the external magnetic field and less displacement in the direction perpendicular to the field than that produced by a hair-pin filament. Stable discharge current as high as 5000 mA was obtained for Ar and BF{sub 3} gases with the co-axial cathode. Boron and phosphorus ion beams were extracted from the source on an actual ion implanter. The ion beam currents were 1.5 times as large as those obtained with a hair-pin filament.
Manipulating Magnetism: Ru-2(5+) Paddlewheels Devoid of Axial Interactions
Chiarella, Gina M; Cotton, F. A.; Murillo, Carlos A; Ventura, Karen; Vilagran, Dino; Wang, Xiaoping
2014-01-01
Variable-temperature magnetic and structural data of two pairs of diruthenium isomers, one pair having an axial ligand and the formula Ru-2(DArF)(4)Cl (where DArF is the anion of a diarylformamidine isomer and Ar = p-anisyl or m-anisyl) and the other one being essentially identical but devoid of axial ligands and having the formula [Ru-2(DArF)(4)]BF4, show that the axial ligand has a significant effect on the electronic structure of the diruthenium unit. Variable temperature crystallographic and magnetic data as well as density functional theory calculations unequivocally demonstrate the occurrence of pi interactions between the p orbitals of the chlorine ligand and the pi* orbitals in the Ru-2(5+) units. The magnetic and structural data are consistent with the existence of combined ligand sigma/metal sigma and ligand p pi/metal-d pi interactions. Electron paramagnetic resonance data show unambiguously that the unpaired electrons are in metal-based molecular orbitals.
Magnetic control of Rashba splittings in symmetric InAs quantum wells
NASA Astrophysics Data System (ADS)
Matsuura, Toru; Faniel, Sébastien; Monta, Nozomu; Koga, Takaaki
2010-09-01
We propose a mechanism to control the Rashba-induced subband splitting by a magnetic field using a symmetric double quantum well (QW) system, where the lowest two subbands are coupled by a position-dependent Rashba parameter α(z). In such a system, all subbands are spin degenerate due to the time reversal symmetry and the spatial inversion symmetry at zero magnetic field, despite the presence of the Rashba spin-orbit interaction. Applying an external magnetic field parallel to the QW plane ( B∥y^) lifts this spin degeneracy breaking the time reversal symmetry, where the spin splitting energies are controllable in the range between zero and 2.9 meV, the latter being on the same order of magnitude as a typical Rashba splitting in a narrow asymmetric QW. We find that the first and second subband energy levels for a selected spin state with k∥=(kF,0,0) anticross each other, and that the energy of the subband splitting Δ0, equivalent to the Rashba splitting for the case of single QWs, can be determined from the value of the anticrossing magnetic field Bac. These results suggest that the investigation in the symmetric double QWs would provide useful approaches for quantitative understanding of the Rashba spin-orbit interaction.
Goldowsky, Michael
2002-01-01
Intec has been developing an ultra-miniature axial flow left ventricular assist device (LVAD) turbo pump that incorporates non-contacting magnetic bearings specifically designed to eliminate thrombus. The patent pending pump is similar in size to the Jarvik 2000, being 1.0 inch in diameter and having a volume of 25cc. This paper provides two decades of historical background regarding blood pumps and discusses new advances made possible by our contactless design. Design details are left for parts two and three. This LVAD is presently the smallest magnetically suspended turbo pump. It was made possible by use of new 1/2-inch diameter fringing ring magnetic bearings. These axial field bearings are 10 times smaller than equal capacity radial field conventional magnetic bearings currently in development in turbo pumps. Our LVAD is physiologically controllable, without the use of invasive sensors, by directly measuring pump differential pressure with the magnetic bearings. This mechanism will allow attainment of cyclic, closed-loop control of impeller revolutions per minute to achieve a high degree of pressure pulsatility. Pulsatile flow is important in obtaining long-term hemodynamic reliability without thrombus being generated in either the pump or body. PMID:11814105
Ultra-high speed permanent magnet axial gap alternator with multiple stators
Hawsey, Robert A.; Bailey, J. Milton
1991-01-01
An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.
Magnetohydrodynamic stability of cylindrical liquid bridges under a uniform axial magnetic field
NASA Astrophysics Data System (ADS)
Nicolás, J. A.
1992-11-01
The effect of a uniform axial magnetic field on the stability of cylindrical liquid bridges of negligible viscosity and resistivity is examined in this paper, in the limit case when magnetic forces dominate inertia forces. The analysis yields the bifurcation curve and the growth factor in the neighborhood of the stability limit points as a function of two dimensionless parameters: Λ, the slenderness of the bridge and M, a nondimensional quantity proportional to the magnetic field. It is found that bridges of any slenderness can be stabilized by magnetic fields when M≳1/√2. The results are compared to those existing for capillary liquid jets, showing that the stability curves coincide and that the stabilizing effects are greater for liquid bridges than for infinite columns.
Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes
Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.
2013-05-28
The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.
NASA Technical Reports Server (NTRS)
Bilharz, Herbert; Hoelder, Ernst
1947-01-01
The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Deur, Alexandre P.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
NASA Astrophysics Data System (ADS)
Ruden, E. L.; Kiuttu, G. F.; Peterkin, R. E.; Chase, J. B.
2004-11-01
The expansion of the armature of an axial magnetic flux compression generator results in an increase in the armature's electrical resistivity and possible melting due to compression and plastic work heating. If melting occurs, further flux compression is impaired by a greatly enhanced Rayleigh-Taylor instability. Even without melting, the expansion process can become unstable, with the armature fragmenting by plastic instability. These processes result in decreased performance. To complement more detailed modeling via multi-dimensional codes, terms are derived suitable for use in a code that couples a zero dimensional model of the armature to a lumped circuit. For computational simplicity, only armature properties averaged over the armature thickness as functions of axial position and time are modeled. Further simplifications resulting in analytic approximations are presented to provide some preliminary indication of the significance of material effects.
Magnetic moment of the majorana neutrino in the left-right symmetric model
Boyarkin, O. M. Boyarkina, G. G.
2013-04-15
Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing
2015-05-01
This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.
SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources
Lee, Choonkyu; Min, Hyunsoo
2013-12-15
For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulate a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.
Measurements of the Ion Species of Cathodic Arc Plasma in an Axial Magnetic Field
Oks, Efim; Anders, Andre
2010-10-19
Metal and gas ion species and their charge state distributions were measured for pulsed copper cathodic arcs in argon background gas in the presence of an axial magnetic field. It was found that changing the cathode position relative to anode and ion extraction system as well as increasing the gas pressure did not much affect the arc burning voltage and the related power dissipation. However, the burning voltage and power dissipation greatly increased as the magnetic field strength was increased. The fraction of metal ions and the mean ion charge state were reduced as the discharge length was increased. The observations can be explained by the combination of charge exchange collisions and electron impact ionization. They confirm that previously published data on characteristic material-dependent charge state distributions (e.g., Anders and Yushkov, J. Appl. Phys., Vol. 91, pp. 4824-4832, 2002) are not universal but valid for high vacuum conditions and the specifics of the applied magnetic fields.
Disorder-promoted C4-symmetric magnetic order in iron-based superconductors
NASA Astrophysics Data System (ADS)
Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg
2016-04-01
In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.
NASA Astrophysics Data System (ADS)
Kim, S. B.; Imai, M.; Takano, R.; Kashima, K.; Hahn, S.
2010-11-01
Recently, the performance of high-temperature superconducting (HTS) bulks such as a critical current density, size, and mechanical strength has been improved. In consequence, various applications with HTS bulks such as motors, bearings, and flywheels are being investigated by many research groups; Compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of an HTS bulk more than 11.7 T, 500 MHz 1H NMR frequency, has been developed. This new compact NMR magnet out of HTS bulks is far less expensive than those conventional NMR magnets and expected to be widely used in food and drug industry. In design and manufacture of those compact NMR magnets, the issues of spatial homogeneity and temporal stability of trapped magnetic fields in HTS bulk annuli are very important. In this paper, the characteristics of the trapped magnetic fields in a stack of assembled HTS bulk annuli were investigated with various axial spaces between HTS bulks, experimentally and analytically.
Helical plasma striations in liners in the presence of an external axial magnetic field
NASA Astrophysics Data System (ADS)
Atoyan, L.; Hammer, D. A.; Kusse, B. R.; Byvank, T.; Cahill, A. D.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.
2016-02-01
Awe et al. found on the 20 MA Z machine [Acta Phys. Pol. A 115, 956 (2009)] that applying an externally generated axial magnetic field to an imploding liner leads to a helical pattern in the liner when viewed with soft x-ray radiography ([Phys. Rev. Lett. 111, 235005 (2013)] and [Phys. Plasmas 21, 056303 (2014)]). Here, we show that this phenomenon is also observed in extreme ultraviolet self-emission images of 10 mm long cylindrical metal liners having varying diameters and varying wall thicknesses on a 1 MA, 100-200 ns pulsed power generator. The magnetic field in these experiments is created using either twisted return current wires positioned close to the liner, generating a time-varying Bz, or a Helmholtz coil, generating a steady-state Bz.
NASA Astrophysics Data System (ADS)
Nagaya, S.; Kashima, N.; Kawashima, H.; Kakiuchi, Y.; Hoshino, A.; Isobe, S.
2003-10-01
Flywheel with superconducting magnetic bearings requires the characteristics for the motor/generator such as lower loss, higher efficiency, lower bearing load and more displacement tolerance of the radial directions. We developed an extremely flat shape axial gap type motor/generator which consists of a rotor with permanent magnets and slotless windings to satisfy these characteristics. We introduced the system for adjusting intensity of the excitation to decrease the eddy current loss during the storage and to get the controllability of electromotive force for variable speed operation during charging and discharging. We manufactured the motor/generator of output power 17 kW at 10,000 rpm. It was tested to perform the fundamental functions of motor and generator at partial speeds up to 4000 rpm.
NASA Astrophysics Data System (ADS)
Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.
2016-07-01
Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.
Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria
2013-04-15
Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Design of an axial flux PM motor using magnetic and thermal equivalent network
NASA Astrophysics Data System (ADS)
Mignot, Romain-Bernard; Glises, Raynal; Espanet, Christophe; Saint Ellier, Emeline; Dubas, Frédéric; Chamagne, Didier
2013-09-01
This paper deals with the development of a new generation of electric motors (7.5-15 kW) for automotive powertrains. The target is a full electric direct drive vehicle, for the particular application to heavy quadricycles. An original axial flux PM structure is proposed due to the simplicity of its manufacturing. However it leads to a 3D structure, difficult to study. The paper deals with analytical models that can be used to achieve the analysis and the sizing of the motor. The electromagnetic behavior is modeled using a simple magnetic equivalent network and the thermal behavior is analyzed with a thermal network. Finally, the analytical results are compared to those experimentally obtained and it proves the interest of the proposed structure: the construction is simple and the performances are satisfying.
Design, simulation and analysis of 3 kW low speed axial flux permanent magnet generator
NASA Astrophysics Data System (ADS)
Kasim, Muhammad; Irasari, Pudji; Hikmawan, Muhammad Fathul
2016-03-01
Design and simulation of an axial flux permanent magnet generator (AFPMG) have been described in this paper. It was designed using the single rotor - single stator construction. The analytical method was using in the design process. The design process also employed the simulation using Finite Element Method Magnetics (FEMM) 4.2 software for identifying the magnetic characteristic and heat transfer. The effect of fill factor (FF) variation on the generator performances also observed in this paper. The design result shows that using the selected FF, the conductor diameter, power output, efficiency and heat distribution are affected but not for the Bg. The generator output can achieve up to 5.2 kW using the FF 0.4 which is more than assumed power output at the pre-design using FF 0.3. It also can be seen that the increasing FF will increase the power output and the efficiency. Despite a higher temperature compared with FF 0.3 and 0.35, the value of 0.4 is the most appropriate FF for designing the AFPMG.
Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field
Karličić, Danilo; Cajić, Milan; Murmu, Tony; Kozić, Predrag; Adhikari, Sondipon
2014-06-21
Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form
ERIC Educational Resources Information Center
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
Cremaschini, Claudio Stuchlík, Zdeněk; Tessarotto, Massimo
2014-05-15
Astrophysical plasmas in the surrounding of compact objects and subject to intense gravitational and electromagnetic fields are believed to give rise to relativistic regimes. Theoretical and observational evidences suggest that magnetized plasmas of this type are collisionless and can persist for long times (e.g., with respect to a distant observer, coordinate, time), while exhibiting geometrical structures characterized by the absence of well-defined spatial symmetries. In this paper, the problem is posed whether such configurations can correspond to some kind of kinetic equilibrium. The issue is addressed from a theoretical perspective in the framework of a covariant Vlasov statistical description, which relies on the method of invariants. For this purpose, a systematic covariant variational formulation of gyrokinetic theory is developed, which holds without requiring any symmetry condition on the background fields. As a result, an asymptotic representation of the relativistic particle magnetic moment is obtained from its formal exact solution, in terms of a suitably defined invariant series expansion parameter (perturbative representation). On such a basis, it is shown that spatially non-symmetric kinetic equilibria can actually be determined, an example being provided by Gaussian-like distributions. As an application, the physical mechanisms related to the occurrence of a non-vanishing equilibrium fluid 4-flow are investigated.
Hamann, F. Combis, P.; Videau, L.
2015-08-15
The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas.
Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux
NASA Astrophysics Data System (ADS)
Nguyen, Q. H.; Choi, S. B.
2012-05-01
This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared.
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
NASA Astrophysics Data System (ADS)
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level
Pidcoe, Stephen V.; Zink, Roger A.; Boroski, William N.; McCaw, William R.
1993-01-01
An arrangement for measuring the field angle of a magnetic field as a function of axial position within a magnet bore tube of a magnet such as is used with the Superconducting Super Collider (SSC). The arrangement includes a magnetic field alignment gauge that is carried through the magnet bore tube by a positioning shuttle in predetermined increments. The positioning shuttle includes an extensible body assembly which is actuated by an internal piston arrangement. A pair of spaced inflatable cuffs are carried by the body assembly and are selectively actuated in cooperation with pressurizing of the piston to selectively drive the positioning shuttle in an axial direction. Control of the shuttle is provided by programmed electronic computer means located exteriorly of the bore tube and which controls valves provided pressurized fluid to the inflatable cuss and the piston arrangement.
NASA Astrophysics Data System (ADS)
Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.
2016-08-01
In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.
NASA Astrophysics Data System (ADS)
Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean
2003-09-01
The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.
Reciprocal and unidirectional scattering of parity-time symmetric structures
Jin, L.; Zhang, X. Z.; Zhang, G.; Song, Z.
2016-01-01
Parity-time symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in -symmetric system is closely related to the type of symmetry, that is, the axial (reflection) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity and time-reversal symmetry but keep the parity-time symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) -symmetric ring centre. The explorations of symmetry and asymmetry from symmetry may shed light on novel one-way optical devices and application of -symmetric metamaterials. PMID:26876806
Singh, K. P.
2006-08-15
Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.
Investigation of mechanical field weakening of axial flux permanent magnet motor
NASA Astrophysics Data System (ADS)
Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.
2015-12-01
An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.
Abdelaziz, Osama; Eshra, Mohamed; Belal, Ahmed; Elshafei, Mohamed
2016-07-01
Background Magnetic resonance spectroscopy (MRS) is usually added to conventional magnetic resonance imaging (MRI) to refine the diagnosis of different brain lesions. Stereotactic brain biopsy is a well-established method to obtain tissues for histopathologic examination. The purpose of the study is to compare the diagnostic yields of MRS and stereotactic biopsy in the characterization of brain lesions. Material and Methods A prospective study conducted on 27 consecutive patients presenting with multifocal, diffuse, as well as deeply seated intra-axial brain lesions. All patients had both brain MRI and MRS prior to stereotactic biopsy. Histopathologic examinations of the obtained tissue specimens, using appropriate stains including immunostains, were performed. Results MRS diagnosed neoplastic brain lesions in 15 cases (56%) and nonneoplastic brain lesions in 12 (44%). Correlation between the preoperative diagnosis by MRS and the histopathologic diagnosis following stereotactic biopsy of either a neoplastic or nonneoplastic lesion revealed matching in 25 of 27 cases (sensitivity 88%; specificity 100%). Within the group of cases (n = 15) diagnosed preoperatively by MRS as neoplastic, 12 patients were diagnosed with brain gliomas of different grades. The MRS grading of gliomas exactly matched the histopathologic grading following stereotactic biopsy in 10 of the 12 cases (sensitivity 89%; specificity 67%). Conclusions MRS is a useful addition to the management armamentarium, providing molecular information that assists in the characterization of various brain lesions. Multivoxel MRS may increase the diagnostic yield of stereotactic biopsy by guidance to target the higher choline and lower N-acetylaspartate areas, expected to have greater tumor activity. PMID:26935295
NASA Astrophysics Data System (ADS)
Ghotra, Harjit Singh; Kant, Niti
2016-05-01
Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ < δ < 20 ∘ for a sideway injection of electron about the axis of propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.
Papadichev, V.A.
1995-12-31
Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.
NASA Astrophysics Data System (ADS)
Cho, Chahee Peter
1995-01-01
Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.
Akou, H. Hamedi, M.
2015-10-15
In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-04-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268
NASA Astrophysics Data System (ADS)
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-04-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.
Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv
2012-01-01
A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device’s characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268
NASA Technical Reports Server (NTRS)
Hong, S. H.; Wilhelm, H. E.
1978-01-01
An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.
Controlling electric, magnetic, and chiral dipolar emission with PT-symmetric potentials
NASA Astrophysics Data System (ADS)
Alaeian, Hadiseh; Dionne, Jennifer A.
2015-06-01
We investigate the effect of parity-time (PT) symmetric optical potentials on the radiation of achiral and chiral dipole sources. Two properties unique to PT-symmetric potentials are observed. First, the dipole can be tuned to behave as a strong optical emitter or absorber based on the non-Hermiticity parameter and the dipole location. Second, exceptional points give rise to new system resonances that lead to orders-of-magnitude enhancements in the dipolar emitted or absorbed power. Utilizing these properties, we show that enantiomers of chiral molecules near PT-symmetric metamaterials exhibit a 4.5-fold difference in their emitted power and decay rate. The results of this work could enable new atom-cavity interactions for quantum optics, as well as all-optical enantioselective separation.
Tri-axial magnetic anisotropies in RE{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15−y} superconductors
Horii, Shigeru Doi, Toshiya; Okuhira, Shota; Yamaki, Momoko; Kishio, Kohji; Shimoyama, Jun-ichi
2014-03-21
We report a novel quantification method of tri-axial magnetic anisotropy in orthorhombic substances containing rare earth (RE) ions using tri-axial magnetic alignment and tri-axial magnetic anisotropies depending on the type of RE in RE-based cuprate superconductors. From the changes in the axes for magnetization in magnetically aligned powders of (RE′{sub 1−x}RE″{sub x}){sub 2}Ba{sub 4}Cu{sub 7}O{sub y} [(RE′,RE″)247] containing RE ions with different single-ion magnetic anisotropies, the ratios of three-dimensional magnetic anisotropies between RE′247 and RE″247 could be determined. The results in (Y,Er)247, (Dy,Er)247, (Ho,Er)247, and (Y,Eu)247 systems suggest that magnetic anisotropies largely depended on the type of RE′ (or RE″), even in the heavy RE ions with higher magnetic anisotropies. An appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of their bulks and thick films based on the tri-axial magnetic alignment technique using modulated rotation magnetic fields.
Angular Momentum of a Magnetically Trapped Atomic Condensate
Zhang, P.; Jen, H. H.; Sun, C. P.; You, L.
2007-01-19
For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B field) is not axially symmetric, the difference of the two becomes surprisingly conserved. In this Letter we investigate the relationship between the values of the sum or difference angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of magnetically trapped atomic quantum gases.
NASA Astrophysics Data System (ADS)
Dong, Xiaomin
2016-01-01
An axial flux permanent magnet energy harvester (AFPMEH) is proposed and analyzed for a vehicle magneto-rheological (MR) damper. The relationship between the output voltage and the input excitations are analytically developed. Under different constant rotation speeds and sinusoidal excitations, the harvesting energy is numerically computed for different loads of pure resistance and coil in the MR damper. To check the performance of the proposed AFPMEH for the MR damper, the AFPMEH and MR damper are fabricated individually. Experiments are performed to measure the harvesting energy of the AFPMEH and the damping characteristics of the MR damper under different excited conditions. The excited conditions include three constant rotation speeds and sinusoidal inputs. Load inputs of the pure resistance and the coil of the MR damper are considered. The results show that the time history of the generated voltage of the AFPMEH in experiment is agreed well with that of the AFPMEH in simulation. Under constant rotation speeds, the root mean square (rms) of loaded voltage will increase with the increment of load, whereas the rms of power will be affected by the amplitude of load. The MR damper powered by the AFPMEH can almost obtain the similar damping characteristics of that external power supply. Under sinusoidal inputs, the rms of loaded voltage will increase with the increment of external loads, whereas the rms of power will be almost kept as a constant. The damping range of the MR damper can also be enlarged over 30% comparing to off-state damping force. A quarter car model with an MR damper powered by the AFPMEH is developed to investigate the control performance. The on-off skyhook control is adopted to tune the input current of the MR damper. The vibration performance of the MR suspension is investigated under different roads and vehicle speeds. The numerical results show that the MR suspension with the AFPMEH under on-off skyhook control can achieve better ride comfort
Wang Lijun; Jia Shenli; Liu Ke; Wang Liuhuo; Shi Zongqian
2009-10-15
In this paper, the two-dimensional high-current vacuum arc (HCVA) model under the combined action of axial magnetic field (AMF) and external magnetic field from bus bar (EMFBB) is established. Based on this model, the influence of AMF and EMFBB on HCVA characteristics can be simulated and analyzed. Simulation results show that the HCVA column will be deflected by the Lorentz force generated by EMFBB and higher arc current. Moreover, the deflection level will be increased with the increase in external EMFBB strength. For HCVA, due to the smaller axial velocity near cathode side, the deflection of plasma parameters (such as ion number density, ion temperature, electron temperature, plasma pressure, and so on) near cathode side is more significant than that near anode side. The current deflection near cathode side toward direction of Lorentz force is more significant than that near anode side.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Astrophysics Data System (ADS)
Davies, Christopher; Thomas, Christian
2006-11-01
Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.
Mayhall, D J; Stein, W; Gronberg, J B
2006-05-15
We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.
Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.
2013-11-18
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.
NASA Astrophysics Data System (ADS)
Jing, C.; Chang, C.; Gold, S. H.; Konecny, R.; Antipov, S.; Schoessow, P.; Kanareykin, A.; Gai, W.
2013-11-01
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian
2016-04-01
In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field Bt and AMF Bz (Bt/Bz). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.
Yang, Juan; Cai, Jing; Wang, Hongjun; Chang, Zheng; Czito, Brian G.; Bashir, Mustafa R.; Yin, Fang-Fang
2014-03-15
Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquired across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its
van der Heijde, Désirée; Sieper, Joachim; Maksymowych, Walter P; Brown, Matthew A; Lambert, Robert G W; Rathmann, Suchitrita S; Pangan, Aileen L
2014-01-01
Objective To evaluate the presence of spinal inflammation with and without sacroiliac (SI) joint inflammation on magnetic resonance imaging (MRI) in patients with active nonradiographic axial spondyloarthritis (SpA), and to compare the disease characteristics of these subgroups. Methods ABILITY-1 is a multicenter, randomized, controlled trial of adalimumab versus placebo in patients with nonradiographic axial SpA classified using the Assessment of SpondyloArthritis international Society axial SpA criteria. Baseline MRIs were centrally scored independently by 2 readers using the Spondyloarthritis Research Consortium of Canada (SPARCC) method for the SI joints and the SPARCC 6–discovertebral unit method for the spine. Positive evidence of inflammation on MRI was defined as a SPARCC score of ≥2 for either the SI joints or the spine. Results Among patients with baseline SPARCC scores, 40% had an SI joint score of ≥2 and 52% had a spine score of ≥2. Forty-nine percent of patients with baseline SI joint scores of <2, and 58% of those with baseline SI joint scores of ≥2, had a spine score of ≥2. Comparison of baseline disease characteristics by baseline SI joint and spine scores showed that a greater proportion of patients in the subgroup with a baseline SPARCC score of ≥2 for both SI joints and spine were male, and patients with spine and SI joint scores of <2 were younger and had shorter symptom duration. SPARCC spine scores correlated with baseline symptom duration, and SI joint scores correlated negatively with the baseline Bath Ankylosing Spondylitis Disease Activity Index, but neither correlated with the baseline Ankylosing Spondylitis Disease Activity Score, total back pain, the patient's global assessment of disease activity, the Bath Ankylosing Spondylitis Functional Index, morning stiffness, nocturnal pain, or C-reactive protein level. Conclusion Assessment by experienced readers showed that spinal inflammation on MRI might be observed in half of
NASA Astrophysics Data System (ADS)
Zhao, Jing; Cheng, Dansong; Zheng, Ping; Liu, Xiangdong; Tong, Chengde; Song, Zhiyi; Zhang, Lu
2012-04-01
Due to the advantage of high power density compared with the conventional radial flux machines, the axial flux permanent-magnet synchronous machines (PMSMs) are very suitable candidates for the power train of electric vehicles (EVs). In this paper, a new axial flux PMSM adopting radially sliding permanent magnets (PMs) to fulfill field-weakening control and to improve the operating speed range is investigated. The field-weakening structure and principle of the axial flux PMSM with radially sliding PMs are proposed and analyzed. The influence of radially sliding PMs on electromagnetic performances and parameters is analyzed based on FEM. The field-weakening method with radially sliding PMs, which is a mechanical method, is compared and combined with traditional electrical method. Due to the optimized combination of the two methods, the field-weakening capability of the machine is much improved and the maximum speed can reach up to six times of the base speed with constant power, which is very satisfying for EV drive application.
NASA Astrophysics Data System (ADS)
Ma, Jie; Wen, Guang-Dong; Su, Bao-Gen; Yang, Yi-Wen; Ren, Qi-Long
2015-06-01
Current-voltage (I-V) characteristics of hydrogen DC plasma torches with different sizes in an external axial magnetic field under atmospheric pressure are reported. Three anodes with different diameters are adopted in a 50-kW torch: 25 mm, 30 mm, and 35 mm, respectively. Two different diameters of anodes, that is, 100 mm and 130 mm, are adopted in a 1-MW plasma torch. The arc voltage shows a negative trend with the increase of arc current under the operating regimes. On the contrary, arc voltage shows a positive trend as the flow rate of carrier gas increases, and a similar trend is found with increasing the external magnetic flux density. A similarity formula is constructed to correlate the experimental data of the torches mentioned above. Linear fitting shows that the Pearson correlation coefficient is 0.9958. Project supported by the Special Fund for Basic Scientific Research of Central Colleges, China (Grant No. 2012FZA4023).
Symmetrizing the symmetrization postulate
NASA Astrophysics Data System (ADS)
York, Michael
2000-11-01
Reasonable requirements of (a) physical invariance under particle permutation and (b) physical completeness of state descriptions [1], enable us to deduce a Symmetric Permutation Rule(SPR): that by taking care with our state descriptions, it is always possible to construct state vectors (or wave functions) that are purely symmetric under pure permutation for all particles, regardless of type distinguishability or spin. The conventional exchange antisymmetry for two identical half-integer spin particles is shown to be due to a subtle interdependence in the individual state descriptions arising from an inherent geometrical asymmetry. For three or more such particles, however, antisymmetrization of the state vector for all pairs simultaneously is shown to be impossible and the SPR makes observably different predictions, although the usual pairwise exclusion rules are maintained. The usual caveat of fermion antisymmetrization—that composite integer spin particles (with fermionic constituents) behave only approximately like bosons—is no longer necessary.
Wang, Hai-Yi; Wang, Jia; Tang, Ye-Huan; Ye, Hui-Yi; Ma, Lin
2015-01-01
Background: Coronal diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values have gradually become applied (following conventional axial DW-MRI) in the renal analysis. To explore whether data obtained using coronal DW-MRI are comparable with those derived using axial DW-MRI, this preliminary study sought to assess the agreement in renal ADC values between coronal DW-MRI and axial DW-MRI. Methods: Thirty-four healthy volunteers were enrolled in the study; written consents were obtained. All subjects underwent respiratory-triggered axial and coronal DW-MRI using a 1.5-MR system with b values of 0 and 800 s/mm2. The signal-to-noise ratios (SNRs) of the two DW-MRI sequences were measured and statistically compared using the paired t-test. The extent of agreement of ADC values of the upper pole, mid-pole, and lower pole of the kidney; the mean ADC values of the left kidney and right kidney; and the mean ADC values of the bilateral kidneys were evaluated via calculation of intraclass correlation coefficients (ICCs) or Bland–Altman method between the two DW-MRI sequences. Results: The SNR of coronal DW-MR images was statistically inferior to that of axial DW-MR images (P < 0.001). The ICCs of the ADC values of each region of interest, and the mean ADC values of bilateral kidneys, between the two sequences, were greater than 0.5, and the mean ADCs of the bilateral kidneys demonstrated the highest ICC (0.869; 95% confidence interval: 0.739–0.935). In addition, 94.1% (32/34), 94.1% (32/34), and 97.1% (31/34) of the ADC bias was inside the limits of agreement in terms of the mean ADC values of the left kidneys, right kidneys, and bilateral kidneys when coronal and axial DWI-MRI were compared. Conclusions: ADC values derived using coronal DW-MRI exhibited moderate-to-good agreement to those of axial DW-MRI, rendering the former an additional useful DW-MRI method, and causing the ADC values derived using the two types of DW
Herchel, Radovan; Váhovská, Lucia; Potočňák, Ivan; Trávníček, Zdeněk
2014-06-16
Pseudooctahedral mononuclear cobat(II) complex [Co(abpt)2(tcm)2] (1), where abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole and tcm = tricyanomethanide anion, shows field-induced slow relaxation of magnetization with U = 86.2 K and large axial and rhombic single-ion zero-field-splitting parameters, D = +48(2) cm(-1) and E/D = 0.27(2) (D = +53.7 cm(-1) and E/D = 0.29 from ab initio CASSCF/NEVPT2 calculations), thus presenting a new example of a field-induced single-ion magnet with transversal magnetic anisotropy. PMID:24853769
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.
2014-10-01
Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Munaretto, S.; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S.
2016-05-01
The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude br/B ˜ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.
Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density
NASA Astrophysics Data System (ADS)
Espejel-Morales, R.; Murguía-Romero, G.; Calles, A.; Cabrera-Bravo, E.; Morán-López, J. L.
2016-07-01
We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell-like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder.
NASA Astrophysics Data System (ADS)
Nguyen, Thoa; Sederman, Andrew; Gladden, Lynn
2007-03-01
Radial and axial segregations are investigated by Magnetic Resonance Imaging (MRI). For the first time, full 3D structures and real-time 2D MRI movies showing the progress of segregation over many hours are reported. Data were acquired with high temporal (74 ms) and in-plane spatial resolutions (1 mm x 1 mm), giving new insights into the underlying mechanisms. The mixture composition can be quantified throughout segregation. The cylinder to be considered is 48 mm in diameter, up to 50 cm long and filled to 50 -- 82% by volume with millet and poppy seeds at a 3:1 ratio. In particular, the effects of filling fraction, cylinder length and rotational speed on segregation are addressed. Radial segregation is found to be driven by both core diffusion and the free surface. The former is dominant in the cylindrical core buried under the avalanche layer in systems over 75% full while the latter is significant at lower filling levels. Axial segregation is characterized by band formation, traveling, and merging. In all cases studied, the formation of poppy-rich bands is observed, after which individual bands start to travel at ˜3 μm s-1 until they are within ˜3 cm of a stationary band. Adjacent bands then merge into a single, enlarged poppy band as millet seeds move out of the merging region.
NASA Astrophysics Data System (ADS)
Pelkner, M.; Blome, M.; Reimund, V.; Thomas, H.-M.; Kreutzbruck, M.
2011-06-01
High-precision magnetic field sensors are of increasing interest in non destructive testing (NDT). In particular GMR-sensors (giant magneto resistance) are qualified because of their high sensitivity, high signal-to-noise ratio and high spatial resolution. With a GMR-gradiometer and a 3D-GMR-magnetometer we performed magnetic flux leakage measurements of artificial cracks and cracks of a depth of ≤50 μm still could be dissolved with a sufficient high signal-to-noise ratio. A semi-analytic magnetic dipole model that allows realistic GMR sensor characteristics to be incorporated is used for swiftly predicting magnetic stray fields. The reliable reconstruction based on measurements of artificial rectangular-shaped defects is demonstrated.
Axial variations in the magnetic field of superconducting dipoles and quadrupoles
Ghosh, A.K.; Robins, K.E.; Sampson, W.B.
1993-09-01
A periodic variation in the magnetic field along the axis has been observed in both quadrupole and dipole magnets made from superconducting cable. This oscillation is present in all components of the field and has a wavelength equal to the transposition length of the cable. In general the amplitude of these variations increases with magnet current and is not reversible. The residual field patten at zero current depends on the energizing cycle and increases with time spent at high field. The decay of the oscillations has a complex time dependence which contains some extremely long time constants. Unbalanced currents in the individual strands of the cable appear to cause these effects and the field variations can only be completely erased by raising the magnet above its critical temperature.
Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman
2012-11-15
Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.
NASA Technical Reports Server (NTRS)
Johnston, S.
1984-01-01
Zachary Phys. Rev. A 29 (6), 3224 (1984) recently analyzed the instability of relativistic-electron helical trajectories in combined uniform axial and helical wiggler magnetic fields when the radial variation of the wiggler field is taken into account. It is shown here that the type 2 instability comprised of secular terms growing linearly in time, identified by Zachary and earlier by Diament Phys. Rev. A 23 (5), 2537 (1981), is an artifact of simple perturbation theory. A multiple-time-scale perturbation analysis reveals a nonsecular evolution on a slower time scale which accommodates an arbitrary initial perturbation. It is shown that, in the absence of exponential instability, the electron seeks a modified helical orbit more appropriate to its perturbed state and oscillates stably about it. Thus, the perturbed motion is oscillatory but nonsecular, and hence the helical orbits are stable.
Nakasuji, M.; Shimizu, H.
1996-07-01
Radial and azimuthal distortion aberrations are increasingly a function of the image side lens bore radius in the range from 1.25 to 5 times as large as the maximum image field radius. This phenomenon is inconsistent with our previous understanding. An assumption is made that these large distortions for the large bore radii come from the influence of the magnetic field of one on the other, thereby destroying the symmetry. This assumption is confirmed from the following simulation. When these distortions are calculated for the ideal case where the magnetic fields are calculated in the condition without the other lens, they are decreased to around 1/10 of those for the case where the magnetic fields are calculated in the real condition with the lenses in proximity. When the object{endash}image distance is 800 mm and the bore radii of lens 1 are 100 and 20 mm, the residual radial and azimuthal distortions are 1.5 and 0.7 nm, the beam blur is smaller than 45 nm for the beam semiangle from 0.05 to 0.7 mrad, where the main-field and subfield sizes in the image plane are 20 mm and 250 {mu}m, respectively, the beam energy is 100 keV, and the space charge effects are neglected. {copyright} {ital 1996 American Vacuum Society}
Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field
NASA Astrophysics Data System (ADS)
Mosallanezhad, Amin; Bu, Defu; Yuan, Feng
2016-03-01
We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the r - θ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical θ angle, θ ˜ 47°, the inflow changes its direction of radial motion and becomes wind. The driving forces are analysed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These analytical results are compared to those obtained by the trajectory analysis based on MHD numerical simulation data and good agreements are found.
NASA Astrophysics Data System (ADS)
Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.
Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.
NASA Astrophysics Data System (ADS)
Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice
2016-06-01
High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.
Axially Symmetric Brans-Dicke-Maxwell Solutions
NASA Astrophysics Data System (ADS)
Chatterjee, S.
1981-05-01
Following a method of John and Goswami new solutions of coupled Brans-Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and prolate spheroidal coordinates for source-free gravitational field. All these solutions become Euclidean at infinity. The asymptotic behavior and the singularity of the solutions are discussed and a comparative study made with the corresponding Einstein-Maxwell solutions. The possibility of a very large red shift from the boundary of the spheroids is also discussed.
Thermal convection in a horizontal duct with strong axial magnetic field
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Zikanov, Oleg
2015-11-01
The work is motivated by design of liquid metal blankets of nuclear fusion reactors. The effect of convection on the flow within a toroidally oriented duct is analyzed. Non-uniform strong heating arising from capture of high-speed neutrons is imposed internally, while the walls are assumed to be isothermal. Very strong heating (the Grashof number up to 1011) and strong magnetic field (the Hartmann number up to 104) corresponding to the realistic fusion reactor conditions are considered. Stability of two-dimensional flow states is analyzed using numerical simulations. The unstable modes at high Hartmann and Grashof number are found to have large wavelengths. The integral properties of developed three-dimensional flows are close to those of two-dimensional flows at the typical parameters of a fusion reactor. We also consider the effect of the weak transverse component of the magnetic field on the flow. Financial support was provided by the US NSF (Grant CBET 1232851).
Turbulent convection in a horizontal duct with strong axial magnetic field
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Zikanov, Oleg
2014-11-01
Convection in a horizontal duct with one heated wall is studied computationally. The work is motivated by the concept of a blanket for fusion reactors, according to which liquid metal slowly flows in toroidal ducts aligned with the main component of the magnetic field. We first assume that the magnetic field is sufficiently strong for the flow to be purely two-dimensional and analyze chaotic flow regimes at very high Grashof numbers. Furthermore, three-dimensional perturbations are considered and the relation between the length of the duct and the critical Hartmann number, below which the flow becomes three-dimensional, is determined. Financial support was provided by the US NSF (Grant CBET 1232851).
Andreussi, T.; Morrison, P. J.; Pegoraro, F.
2012-05-15
The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.
Axial Magnetic Anisotropy from Two Systems Fe2B and Co2B with Planar Anisotropy
NASA Astrophysics Data System (ADS)
Taufour, Valentin; Lamichhane, Tej; Bud'Ko, Sergey L.; Jesche, Anton; Goldman, Alan I.; Dennis, Kevin W.; McCallum, R. William; Antropov, Vladimir; Canfield, Paul C.
2015-03-01
Growth of single crystals of (Fe1-xCox)2B (0 <= x <= 1) and detailed characterization of their magnetic properties will be presented. Despite the fact that both Fe2B and Co2B show a planar anisotropy at room temperature, we observe a uniaxial anisotropy at intermediate doping which makes (Fe,Co)2B a promising system for permanent magnet applications in a system without rare-earth element. Comparison with recent band structure calculations will be presented. The temperature dependence of the anisotropy measured on single crystals from 2 K to 1000 K shows some unusual variations with an increase of the magnetic anisotropy with increasing temperature at some specific substitution. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE and by the Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358.
NASA Astrophysics Data System (ADS)
Wang, Cong; Shi, Zongqian; Wu, Bingzhou; Gao, Zhanpeng; Jia, Shenli; Wang, Lijun
2016-04-01
In this paper, the characteristics of the plasma jet of a low-current vacuum arc with a single cathode spot (CS) in an external axial magnetic field (AMF) up to 150 mT is investigated experimentally, at a constant arc current ranging from 20 A to 60 A. The experiments are conducted with Cu butt contacts in a demountable vacuum chamber. Images of the plasma jets are photographed with a high-speed digital camera with an exposure time of 2 μs. The uniform constant AMF (B n ) within the inter-contacts region is supplied by Nd-Fe-B permanent magnets. The influence of the external AMF on the shape of the jet near the anode surface as well as in the arc column is mainly investigated. A luminous ‘spot’ is observed on the anode surface facing the position of the CS under a relatively strong AMF. The mechanism of the appearance of the luminous ‘spot’ is proposed to be connected to the secondary plasma originating from the anode. Moreover, with the increase in the strength of the AMF, the spreading angle of the cone-shaped plasma jet in the arc-column region decreases gradually. The plasma jet, subjected to a relatively strong AMF (120 mT and 150 mT), becomes cylindrical in shape in the arc-column region and conical in shape in the near-electrode regions. The overall geometry of the plasma jet looks like a dumbbell.
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the prediction of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less
Sun, Pengfei; Wu, Xinjun; Xu, Jiang; Li, Jian
2014-01-01
The non-contact magnetostrictive sensor (MsS) has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2) mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material. PMID:24441769
Trajectories of charged particles in radial electric and uniform axial magnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1979-01-01
Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian
2015-10-01
In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.
Wang, Lijun Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian
2015-10-15
In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.
Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field
Ludu, A.; Van Deun, J.; Cuyt, A.; Milosevic, M. V.; Peeters, F. M.
2010-08-15
We solve the linear Ginzburg-Landau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.
NASA Astrophysics Data System (ADS)
Shen, Yu; Ren, Zhongming; Li, Xi; Ren, Weili; Xi, Yan
2011-12-01
Effect of a low axial magnetic field on the growth behavior of the primary Al 2Cu phase in the Al-40 wt% Cu hypereutectic alloy during directional solidification at a low growth speed has been investigated experimentally. The results show that the application of a low magnetic field (≤1 T) causes the primary Al 2Cu phase to become deformed and irregular opposed to the well developed strip-like primary phase in the absence of the field. The deformation of the primary phase is maximum when a 0.5 T magnetic field is applied. Moreover, it has been found that the magnetic field promotes a transition of the primary phase morphology from faceted growth to irregular cellular structure and makes the primary phase spacing decrease with the increase of the magnetic field intensity. From the macroscopic scale, the magnetic field causes the occurrence of a considerable radial macrosegregation. These experimental results may be attributed to the effects of thermoelectric magnetic force (TEMF) in the solid and thermoelectromagnetic convection (TEMC) in the liquid. Further, the model of these effects is presented and evaluated numerically. The results indicate that the numerical magnitude of the TEMF during directional solidification under a 0.5 T low axial magnetic field can be of the order of 10 3 N/m 3. The force causes TEMC at different scales to modify the distribution of solute at the interface and should be responsible for the deformation, fracture and deflection of the primary phase.
Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.
2013-07-15
We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2014-10-01
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
Auluck, S. K. H.
2014-10-15
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.
Awe, T. J. Jennings, C. A.; McBride, R. D.; Cuneo, M. E.; Lamppa, D. C.; Martin, M. R.; Rovang, D. C.; Sinars, D. B.; Slutz, S. A.; Owen, A. C.; Gomez, M. R.; Hansen, S. B.; Herrmann, M. C.; Jones, M. C.; McKenney, J. L.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Stygar, W. A.; Tomlinson, K.; and others
2014-05-15
Recent experiments at the Sandia National Laboratories Z Facility have, for the first time, studied the implosion dynamics of magnetized liner inertial fusion (MagLIF) style liners that were pre-imposed with a uniform axial magnetic field. As reported [T. J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] when premagnetized with a 7 or 10 T axial field, these liners developed 3D-helix-like hydrodynamic instabilities; such instabilities starkly contrast with the azimuthally correlated magneto-Rayleigh-Taylor (MRT) instabilities that have been consistently observed in many earlier non-premagnetized experiments. The helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner's outer wall for all but the earliest stages of the experiment. Whether this modified instability structure has practical importance for magneto-inertial fusion concepts depends primarily on whether the modified instability structure is more stable than standard azimuthally correlated MRT instabilities. In this manuscript, we discuss the evolution of the helix-like instability observed on premagnetized liners. While a first principles explanation of this observation remains elusive, recent 3D simulations suggest that if a small amplitude helical perturbation can be seeded on the liner's outer surface, no further influence from the axial field is required for the instability to grow.
Mohsenpour, Taghi; Mehrabi, Narges
2013-08-15
The dispersion relation of a two-stream free-electron laser (TSFEL) with a one-dimensional helical wiggler and an axial magnetic field is studied. Also, all relativistic effects on the space-charge wave and radiation are considered. This dispersion relation is solved numerically to find the unstable interaction among the all wave modes. Numerical calculations show that the growth rate is considerably enhanced in comparison with single-stream FEL. The effect of the velocity difference of the two electron beams on the two-stream instability and the FEL resonance is investigated. The maximum growth rate of FEL resonance is investigated numerically as a function of the axial magnetic field.
Reciprocal and unidirectional scattering of parity-time symmetric structures.
Jin, L; Zhang, X Z; Zhang, G; Song, Z
2016-01-01
Parity-time (PT) symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the (PT) symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in (PT)-symmetric system is closely related to the type of (PT) symmetry, that is, the axial (reflection) (PT) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity (P) and time-reversal (T) symmetry but keep the parity-time (PT) symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) (PT)-symmetric ring centre. The explorations of symmetry and asymmetry from (PT) symmetry may shed light on novel one-way optical devices and application of (PT)-symmetric metamaterials. PMID:26876806
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.; Burt, Patricia E.
1989-11-01
Fully developed, viscous liquid-metal velocity profiles and induced magnetic field contours were studied for Hartmann number of M=2 and 10 and for different load currents for a particular rectangular channel configuration (two-dimensional Couette flow). The rectangular channel was assumed to have a homogeneous external (axial) magnetic field parallel to the moving, perfectly conducting top wall and the stationary, perfectly conducting bottom wall. The two stationary side walls were also perfect conductors. The small gap between the moving wall and each side wall was an insulating, free surface. The method of weighted residuals was used to obtain truncated series solutions for the variables of interest. The heavy load currents across the channel were obtained by simulating an external potential to the conducting moving wall. The load currents in each case were opposed by the induced electric field. Since there is no pressure gradient, the flow along the channel is driven by the viscous effects of the moving wall and the Lorentz body force and is retarded by the stationary walls. The circulation is driven by the generator that is due to the axial variation of velocity in an axial magnetic field. The numerical data presented show that the radial gap and the free surface region represent electrical resistances in parallel between the perfectly conducting stationary wall and the perfectly conducting moving wall.
Nonlinear theory of a free electron laser with a helical wiggler and an axial guide magnetic field
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Peskov, N. Yu.
2013-09-01
A 1D nonlinear theory of a free electron laser (FEL) with a helical wiggler and an axial guide magnetic field is developed based on averaged equations of the electron motion. By averaging we separated two different cases of the e-beam/rf-wave interaction. The first one corresponds to the traditional wiggler synchronism (resonance) of rf wave with the electrons moving along stationary helical trajectories. The second one corresponds to combination resonances distinguishing by excitation of oscillation of the electrons near the stationary helical trajectory. Comparative analysis of the FEL operation in different regimes has been studied under the traditional wiggler synchronism condition. It was shown that FELs operated far from cyclotron resonance (including a reversed guide field orientation) possess low sensitivity to the initial velocity spread in the driving beam resulting in high electron efficiency. In contrast, under the weak guide field (the gyrofrequency is less than the bounce frequency) of a conventional orientation, the FEL efficiency is restricted by a significant increase in the transverse velocity of the electrons during the interaction with the rf wave that results in violation of the synchronism conditions and is accompanied by electron current losses. An additional mechanism of FEL efficiency enhancement under the conventional guide field orientation in the conditions when the gyrofrequency is higher than the bounce frequency, based on the dependence of the effective mass of the oscillating electrons on their energy, was demonstrated. Results of the theoretical analysis are compared with the results of experimental studies of FEL oscillators. The specific features of energy extraction from the electron beam under condition of an abnormal Doppler effect in the case of the combination resonance are described. This regime is beneficial to increase radiation frequency keeping wiggler period and electron energies.
Chen, Yan; Naik, Sunil G.; Krzystek, J.; Shin, Sooim; Nelson, William H.; Xue, Shenghui; Yang, Jenny. J.; Davidson, Victor L.; Liu, Aimin
2012-01-01
MauG is a diheme enzyme possessing a five-coordinate high-spin heme with an axial His ligand and a six-coordinate low-spin heme with His-Tyr axial ligation. A Ca2+ ion is linked to the two hemes via hydrogen-bond networks, and the enzyme activity depends on its presence. Removal of Ca2+ alters the EPR signals of each ferric heme such that the intensity of the high-spin heme was decreased and the low-spin heme was significantly broadened. Addition of Ca2+ back to the sample restored the original EPR signals and enzyme activity. The molecular basis for this Ca2+-dependent behavior was studied by magnetic spectroscopy. The results show that in the Ca2+-depleted MauG the high-spin heme was converted to low-spin and the original low-spin heme exhibited a change in relative orientations of its two axial ligands. The properties of these two hemes are each different than in native MauG and are now similar to each other. The EPR spectrum of Ca2+-free MauG appears to describe one set of low-spin ferric heme signals with a large gmax and g-anisotropy and a greatly altered electromagnetic relaxation property. Both EPR and Mössbauer spectroscopic results show that the two hemes are present as unusual highly axial low-spin (HALS)-like hemes in Ca2+-depleted MauG, with a smaller orientation angle between the two axial ligand planes. These findings provide insight into the correlation of the enzyme activity with the orientation of axial heme ligands, and describe a role for the calcium ion in maintaining this structural orientation that is required for activity. PMID:22320333
Ramond, P. . Dept. of Physics)
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Ramond, P.
1993-04-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
NASA Astrophysics Data System (ADS)
Park, Yu-Seop; Jang, Seok-Myeong; Ko, Kyoung-Jin; Choi, Jang-Young; Sung, So-Young
2012-04-01
This paper presents the electromagnetic characteristic analysis of axial flux machines applied to 500(W) class wind power generators. For the dramatic analysis time reduction, analytical method is applied, and comparative analysis is performed according to magnetization patterns of permanent magnets. Due to their structural features, quasi 3-dimensional analysis is employed, and correction function is introduced to consider the flux leakage of the machines. The analysis results are compared with the results by finite element method and experiment to validate the suggested method performed in this paper showing high reliability.
NASA Astrophysics Data System (ADS)
Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.
2016-06-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Jung, Hoechun; Shin, Sang-Ho; Baek, In-Keun; Kim, Seontae; Park, Seunghyuk; Park, Gun-Sik
2016-06-01
An experimental result of a gigawatt-class L-band magnetically insulated transmission line oscillator (MILO) shows the generation of a transient axial mode pertaining to an anode plasma effect in the circuit of the MILO. The transient axial mode between the desired π mode and the 5 π / 6 mode causes the output power to become eccentric. When the electrons impact onto the metallic surface, plasma exists on the surface of the anode due to the electron-impact distortion process. As a result, the anode plasma causes the emitted current to increase the neutralization near the cathode. The increase of the current induces faster and stronger magnetic insulation, which lowers the drift velocity and suppresses the mode earlier during the beam pulse. After the 5 π / 6 mode, which initially interacts with the electron beam, remains as a transient axial mode for a very short time, it shows the capability to convert to the π mode, which is more stable and slowly grows.
... Site-specific Modules Resources Archived Modules Updates Axial Skeleton (80 bones) Skull (28) Cranial Bones Parietal (2) ... Sternum (1) Ribs (24) « Previous (Divisions of the Skeleton) Next (Appendicular Skeleton (126 bones)) » Contact Us | Privacy ...
NASA Astrophysics Data System (ADS)
Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.
2013-12-01
A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the
Xu, Jiang; Wu, Xinjun; Kong, Dongying; Sun, Pengfei
2015-01-01
The magnetostrictive guided wave sensor with a single induced winding cannot distinguish axially symmetric from non-axially symmetric features in a pipe, because it is impossible for the sensor to detect the non-axially symmetric mode waves. When we study the effect of the change of the magnetic field in the air zone for receiving the longitudinal guided wave mode, we find that the change of the magnetic flux in the air zone is almost equivalent to the change of the flux in the pipe wall, but in opposite directions. Based on this phenomenon, we present a sensor that can detect the flexural-mode waves in pipes based on the inverse magnetostrictive effect. The sensor is composed of several coils that are arranged evenly on the outside of pipes. The coils induce a change in magnetic flux in the air to detect the flexural-mode waves. The waves can be determined by adding a phase delay to the induced signals. The symmetric and asymmetric features of a pipe can be distinguished using the sensor. A prototype sensor that can detect F(1,3) and F(2,3) mode waves is presented. The function of the sensor is verified by experiments. PMID:25738769
NASA Technical Reports Server (NTRS)
Moorcroft, D. R.; Arima, K. S.
1972-01-01
Correlation analysis of three-station observations of satellite amplitude scintillations, recorded at London, Canada during the summer of 1968, have been interpreted to give information on the height, size and shape of the ionospheric irregularities. The irregularities had a mean height of 390 km, and when interpreted in terms of the usual axially-symmetric, field-aligned model, had a mean axial ratio of 6.5, and a mean dimension transverse to the magnetic field of 0.7 km. None of these parameters showed any systematic trend with geomagnetic latitude. The data for one of the passes analyzed were inconsistent with axial symmetry, and when examined in terms of a more general model, 3 of 9 passes showed evidence of irregularities which were elongated both along and transverse to the earth's magnetic field, the elongation transverse to the field tending to lie in a north-south direction.
NASA Technical Reports Server (NTRS)
Kimura, S.; Steinbach, G. C.; Watenpaugh, D. E.; Hargens, A. R.
2001-01-01
STUDY DESIGN: Axial load-dependent changes in the lumbar spine of supine healthy volunteers were examined using a compression device compatible with magnetic resonance imaging. OBJECTIVE: To test two hypotheses: Axial loading of 50% body weight from shoulder to feet in supine posture 1) simulates the upright lumbar spine alignment and 2) decreases disc height significantly. SUMMARY OF BACKGROUND DATA: Axial compression on the lumbar spine has significantly narrowed the lumbar dural sac in patients with sciatica, neurogenic claudication or both. METHODS: Using a device compatible with magnetic resonance imaging, the lumbar spine of eight young volunteers, ages 22 to 36 years, was axially compressed with a force equivalent to 50% of body weight, approximating the normal load on the lumbar spine in upright posture. Sagittal lumbar magnetic resonance imaging was performed to measure intervertebral angle and disc height before and during compression. RESULTS: Each intervertebral angle before and during compression was as follows: T12-L1 (-0.8 degrees +/- 2.5 degrees and -1.5 degrees +/- 2.6 degrees ), L1-L2 (0.7 degrees +/- 1.4 degrees and 3.3 degrees +/- 2.9 degrees ), L2-L3 (4.7 degrees +/- 3.5 degrees and 7.3 degrees +/- 6 degrees ), L3-L4 (7.9 degrees +/- 2.4 degrees and 11.1 degrees +/- 4.6 degrees ), L4-L5 (14.3 degrees +/- 3.3 degrees and 14.9 degrees +/- 1.7 degrees ), L5-S1 (25.8 degrees +/- 5.2 degrees and 20.8 degrees +/- 6 degrees ), and L1-S1 (53.4 degrees +/- 11.9 degrees and 57.3 degrees +/- 16.7 degrees ). Negative values reflect kyphosis, and positive values reflect lordosis. A significant difference between values before and during compression was obtained at L3-L4 and L5-S1. There was a significant decrease in disc height only at L4-L5 during compression. CONCLUSIONS: The axial force of 50% body weight in supine posture simulates the upright lumbar spine morphologically. No change in intervertebral angle occurred at L4-L5. However, disc height at L4-L
Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations.
Bimurzaev, Seitkerim B; Serikbaeva, Gulnur S; Yakushev, Evgeniy M
2003-01-01
Computational formulae for the coefficients of the third-order spherical aberration and the second-order axial chromatic aberration are presented for an axially symmetric electrostatic electron mirror. A technique for eliminating the high-order derivatives of the potential axial distribution in mirror systems from the integrands is described. Conditions for elimination of spherical and axial chromatic aberrations, either separately or simultaneously, are found for a three-electrode axially symmetric mirror composed of coaxial cylinders of the same diameter. A principal scheme of the transmission electron microscope, where an electrostatic electron mirror serves as its objective, is presented. PMID:14599097
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.; Burt, Patricia E.
1990-11-01
Fully developed, viscous liquid-metal velocity profiles and induced magnetic field contours were studied for Hartmann numbers of M=2 and 10 and for different load currents for a particular rectangular channel configuration (two-dimensional Couette flow). The rectangular channel was assumed to have a homogeneous external (axial) magnetic field parallel to the moving, perfectly conducting top wall and the stationary, perfectly conducting bottom wall. The two stationary side walls were also perfect conductors. The small gap between the moving wall and each side wall was an insulating, free surface. The method of weighted residuals was used to obtain truncated series solutions for the variables of interest. The heavy load currents across the channel were obtained by simulating an external potential to the conducting moving wall. The load currents in each case were opposed by the induced electric field. Since there is no pressure gradient, the flow along the channel is driven by the viscous effects of the moving wall and the Lorentz body force and is retarded by the stationary walls. In the case where no load current is applied across the channel, the current circulates in the channel. The circulation is driven by the generator that is due to the axial variation of velocity in an axial magnetic field. The numerical results presented show that the radial gap and the free surface region represent electrical resistances in parallel between the perfectly conducting stationary wall and the perfectly conducting moving wall. The numerical results also show that the resistance of the radial gap increases as M2 while that of the free surface increases by M or M1/2. Thus, as M increases, the division of current shifts to the free surface region and the current density in the radial gap decreases as M-1. The theoretical magnetohydrodynamic model presented here was developed to provide numerical parameters to help in the design of liquid-metal current collectors. Numerical results
Metamorphosis of helical magnetorotational instability in the presence of axial electric current
NASA Astrophysics Data System (ADS)
Priede, Jānis
2015-03-01
This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Mohsenpour, Taghi Rezaee Rami, Omme Kolsoum
2014-07-15
Free electron lasers (FEL) play major roles in the Raman Regime, due to the charge and current densities of the beam self-field. The method of perturbation has been applied to study the influence of self-electric and self-magnetic fields. A dispersion relation for two-stream free electron lasers with a helical wiggler and an axial magnetic field has been found. This dispersion relation is solved numerically to investigate the influence of self-fields on the FEL coupling and the two-stream instability. It was found that self-fields can produce very large effects on the FEL coupling, but they have almost negligible effects on two-stream instability.