Fully Characterizing Axially Symmetric Szekeres Models with Three Data Sets
NASA Astrophysics Data System (ADS)
Célérier, Marie-Nöelle Mishra, Priti; Singh, Tejinder P.
2015-01-01
Inhomogeneous exact solutions of General Relativity with zero cosmological constant have been used in the literature to challenge the ΛCDM model. From one patch Lemaître-Tolman-Bondi (LTB) models to axially symmetric quasi-spherical Szekeres (QSS) Swiss-cheese models, some of them are able to reproduce to a good accuracy the cosmological data. It has been shown in the literature that a zero Λ LTB model with a central observer can be fully determined by two data sets. We demonstrate that an axially symmetric zero Λ QSS model with an observer located at the origin can be fully reconstructed from three data sets, number counts, luminosity distance and redshift drift. This is a first step towards a future demonstration involving five data sets and the most general Szekeres model.
Redshift drift in axially symmetric quasispherical Szekeres models
NASA Astrophysics Data System (ADS)
Mishra, Priti; Célérier, Marie-Noëlle; Singh, Tejinder P.
2012-10-01
Models of inhomogeneous universes constructed with exact solutions of Einstein’s general relativity have been proposed in the literature with the aim of reproducing the cosmological data without any need for a dark energy component. Besides large scale inhomogeneity models spherically symmetric around the observer, Swiss-cheese models have also been studied. Among them, Swiss cheeses where the inhomogeneous patches are modeled by different particular Szekeres solutions have been used for reproducing the apparent dimming of the type Ia supernovae. However, the problem of fitting such models to the type Ia supernovae data is completely degenerate and we need other constraints to fully characterize them. One of the tests which is known to be able to discriminate between different cosmological models is the redshift drift. This drift has already been calculated by different authors for Lemaître-Tolman-Bondi models. We compute it here for one particular axially symmetric quasispherical Szekeres Swiss cheese which has previously been shown to reproduce to a good accuracy the type Ia supernovae data, and we compare the results to the drift in the ΛCDM model and in some Lemaître-Tolman-Bondi models that can be found in the literature. We show that it is a good discriminator between them. Then, we discuss our model’s remaining degrees of freedom and propose a recipe to fully constrain them.
Axially symmetric multi-baryon solutions and their quantization in the chiral quark soliton model
NASA Astrophysics Data System (ADS)
Komori, S.; Sawado, N.; Shiiki, N.
2004-05-01
We study axially symmetric solutions with B=2-5 in the chiral quark soliton model. In the background of axially symmetric chiral fields, the quark eigenstates and profile functions of the chiral fields are computed self-consistently. The resultant quark bound spectrum are doubly degenerate due to the symmetry of the chiral field. Upon quantization, various observable spectra of the chiral solitons are obtained. Taking account of the Finkelstein-Rubinstein constraints, we show that the quantum numbers of our solitons coincide with the physical observations for B=2 and 4 while B=3 and 5 do not.
Axially Symmetric Cosmological Model with Bulk Stress in Saez-Ballester Theory of Gravitation
NASA Astrophysics Data System (ADS)
Mete, V. G.; Nimkar, A. S.; Elkar, V. D.
2016-01-01
An Axially symmetric non-static space time is considered in presence of bulk stress in scalar tensor theory formulated by Saez and Ballester (Phys. Lett. A113, 467 1985). For solving the field equations, relation between metric potential and shear velocity is proportional to scale expansion are used. Also various physical and geometrical properties of the model have been discussed.
Achromatic axially symmetric wave plate.
Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru
2012-12-31
An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751
Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
1987-01-01
A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.
Kinetic models of two-dimensional plane and axially symmetric current sheets: Group theory approach
Vasko, I. Y.; Artemyev, A. V.; Popov, V. Y.; Malova, H. V.
2013-02-15
In this paper, we present new class of solutions of Grad-Shafranov-like (GS-like) equations, describing kinetic plane and axially symmetric 2D current sheets. We show that these equations admit symmetry groups only for Maxwellian and {kappa}-distributions of charged particles. The admissible symmetry groups are used to reduce GS-like equations to ordinary differential equations for invariant solutions. We derive asymptotes of invariant solutions, while invariant solutions are found analytically for the {kappa}-distribution with {kappa}=7/2. We discuss the difference of obtained solutions from equilibria widely used in other studies. We show that {kappa} regulates the decrease rate of plasma characteristics along the current sheet and determines the spatial distribution of magnetic field components. The presented class of plane and axially symmetric (disk-like) current sheets includes solutions with the inclined neutral plane.
Fluid-structure interaction in axially symmetric models of abdominal aortic aneurysms.
Fraser, K H; Li, M-X; Lee, W T; Easson, W J; Hoskins, P R
2009-02-01
Abdominal aortic aneurysm disease progression is probably influenced by tissue stresses and blood flow conditions and so accurate estimation of these will increase understanding of the disease and may lead to improved clinical practice. In this work the blood flow and tissue stresses in axially symmetric aneurysms are calculated using a complete fluid-structure interaction as a benchmark for calculating the error introduced by simpler calculations: rigid walled for the blood flow, homogeneous pressure for the tissue stress, as well as one-way-coupled interactions. The error in the peak von Mises stress in a homogeneous pressure calculation compared with a fluid-structure interaction calculation was less than 3.5 per cent for aneurysm diameters up to 7 cm. The error in the mean wall shear stress, in a rigid-walled calculation compared with a fluid-structure interaction calculation, varied from 30 per cent to 60 per cent with increasing aneurysm diameter. These results suggest that incorporation of the fluid-structure interaction is unnecessary for purely mechanical modelling, with the aim of evaluating the current rupture probability. However, for more complex biological modelling, perhaps with the aim of predicting the progress of the disease, where accurate estimation of the wall shear stress is essential, some form of fluid-structure interaction is necessary. PMID:19278197
Suspension model blood flow through an inclined tube with an axially non-symmetrical stenosis
NASA Astrophysics Data System (ADS)
Chakraborty, Uday Shankar; Biswas, Devajyoti; Paul, Moumita
2011-03-01
The flow of blood in an inclined artery with an axially non-symmetrical but radially symmetrical mild stenosis has been presented in this study. To account for the slip at stenotic wall, hematocrit and inclination of the artery, blood has been represented by a particle-fluid suspension. The expression for the flow characteristics, namely, the impedance (resistance to flow), the wall shear stress and the shear stress at the throat of the stenosis have been derived and represented graphically with respect to different flow parameters. The impedance increases with the hematocrit and stenosis size but decreases with slip at wall and angle of inclination of the artery. The shear stress at the maximum stenosis height increases with the inclination of the artery but possess the characteristics similar to that of impedance with respect to other parameters. As an application, theoretical values of effective viscosity computed with the help of the present analysis are compared with experimental results and found that they are in reasonable agreement for low hematocrit values in small blood carrying vessels.
Quasi-axially symmetric stellarators
Garabedian, Paul R.
1998-01-01
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
Quasi-axially symmetric stellarators.
Garabedian, P R
1998-08-18
Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544
Polarization converters based on axially symmetric twisted nematic liquid crystal.
Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien
2010-02-15
An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369
Zampolli, Mario; Tesei, Alessandra; Jensen, Finn B; Malm, Nils; Blottman, John B
2007-09-01
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation. PMID:17927408
NASA Astrophysics Data System (ADS)
Cubarsi, Rafael
2014-07-01
Under a common potential, a finite mixture of ellipsoidal velocity distributions satisfying the Boltzmann collisionless equation provides a set of integrability conditions that may constrain the population kinematics. They are referred to as conditions of consistency and were discussed in a previous paper on mixtures of axisymmetric populations. As a corollary, these conditions are now extended to point-axial symmetry, that is, point symmetry around the rotation axis or bisymmetry, by determining which potentials are connected with a more flexible superposition of stellar populations. Under point-axial symmetry, the potential is still axisymmetric, but the velocity and mass distributions are not necessarily. A point-axial stellar system is, in a natural way, consistent with a flat velocity distribution of a disc population. Therefore, no additional integrability conditions are required to solve the Boltzmann collisionless equation for such a population. For other populations, if the potential is additively separable in cylindrical coordinates, the populations are not kinematically constrained, although under point-axial symmetry, the potential is reduced to the harmonic function, which, for the Galaxy, is proven to be non-realistic. In contrast, a non-separable potential provides additional conditions of consistency. When mean velocities for the populations are unconstrained, the potential becomes quasi-stationary, being a particular case of the axisymmetric model. Then, the radial and vertical mean velocities of the populations can differ and produce an apparent vertex deviation of the whole velocity distribution. However, single population velocity ellipsoids still have no vertex deviation in the Galactic plane and no tilt in their intersection with a meridional Galactic plane. If the thick disc and halo ellipsoids actually have non-vanishing tilt, as the surveys of the solar neighbourhood that include RAdial Velocity Experiment (RAVE) data seem to show, the
Stationary axially symmetric solutions in Brans-Dicke theory
NASA Astrophysics Data System (ADS)
Kirezli, Pınar; Delice, Özgür
2015-11-01
Stationary, axially symmetric Brans-Dicke-Maxwell solutions are reexamined in the framework of the Brans-Dicke (BD) theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electrovacuum spacetimes for this theory. This analysis also permits us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for BD theory from a seed solution of general relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e., the Kinnersley solution and general magnetized Kerr-Newman-type solutions. Some physical properties and the circular motion of test particles for a particular subclass of Kinnersley solution, i.e., a Kerr-Newman-NUT-type solution for BD theory, are also investigated in some detail.
STED microscopy based on axially symmetric polarized vortex beams
NASA Astrophysics Data System (ADS)
Zhehai, Zhou; Lianqing, Zhu
2016-03-01
A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).
Stationary axially symmetric relativistic thin discs with nonzero radial pressure
NASA Astrophysics Data System (ADS)
González, Guillermo A.; Gutiérrez-Piñeres, Antonio C.
2012-07-01
A detailed analysis of the surface energy-momentum (SEMT) tensor of stationary axially symmetric relativistic thin discs with nonzero radial pressure is presented. The physical content of the SEMT is analysed and expressions for the velocity vector, energy density, principal stresses and heat flow are obtained. We also present the counter-rotating model interpretation for these discs by considering the SEMT as the superposition of two counter-rotating perfect fluids. We analyse the possibility of counter-rotation along geodesics as well as counter-rotation with equal and opposite tangential velocities, and explicit expressions for the velocities are obtained in both the cases. By assuming a given choice for the counter-rotating velocities, explicit expressions for the energy densities and pressures of the counter-rotating fluids are then obtained. Some simple thin disc models obtained from the Kerr solution are also presented.
Axially symmetric shapes with minimum wave drag
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Fuller, Franklyn B
1956-01-01
The external wave drag of bodies of revolution moving at supersonic speeds can be expressed either in terms of the geometry of the body, or in terms of the body-simulating axial source distribution. For purposes of deriving optimum bodies under various given conditions, it is found that the second of the methods mentioned is the more tractable. By use of a quasi-cylindrical theory, that is, the boundary conditions are applied on the surface of a cylinder rather than on the body itself, the variational problems of the optimum bodies having prescribed volume or caliber are solved. The streamline variations of cross-sectional area and drags of the bodies are exhibited, and some numerical results are given.
Electromagnetic fields in axial symmetric waveguides with variable cross section
Kheifets, S.
1980-02-15
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed. 6 refs., 10 figs.
Perturbation approximation for orbits in axially symmetric funnels
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2014-11-01
A perturbation method that can be traced back to Isaac Newton is applied to obtain approximate analytic solutions for objects sliding in axially symmetric funnels in near circular orbits. Some experimental observations are presented for balls rolling in inverted cones with different opening angles, and in a funnel with a hyperbolic surface that approximately simulates the gravitational force.
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Dain, Sergio; Ortiz, Omar E.
2009-07-15
We present numerical evidences for the validity of the inequality between the total mass and the total angular momentum for multiple axially symmetric (nonstationary) black holes. We use a parabolic heat flow to solve numerically the stationary axially symmetric Einstein equations. As a by-product of our method, we also give numerical evidences that there are no regular solutions of Einstein equations that describe two extreme, axially symmetric black holes in equilibrium.
Three-dimensional equilibria in axially symmetric tokamaks.
Garabedian, Paul R
2006-12-19
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of alpha particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Three-dimensional equilibria in axially symmetric tokamaks
Garabedian, Paul R.
2006-01-01
The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158
Axially symmetric dissipative fluids in the quasi-static approximation
NASA Astrophysics Data System (ADS)
Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J.
2016-01-01
Using a framework based on the 1 + 3 formalism, we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi-static regime. We first derive a set of invariantly defined “velocities”, which allow for an inambiguous definition of the quasi-static approximation. Next, we rewrite all the relevant equations in this approximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular, we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of “velocities” change their sign within the fluid distribution with respect to their sign on the boundary surface. It is shown that states of gravitational radiation are not a priori incompatible with the quasi-static regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.
Method of characteristics for three-dimensional axially symmetrical supersonic flows.
NASA Technical Reports Server (NTRS)
Sauer, R
1947-01-01
An approximation method for three-dimensional axially symmetrical supersonic flows is developed; it is based on the characteristics theory (represented partly graphically, partly analytically). Thereafter this method is applied to the construction of rotationally symmetrical nozzles. (author)
Neoclassical transport in quasi-axially symmetric stellarators
Mynick, H.E.
1997-04-01
The author presents a numerical and analytic assessment of the transport in two quasi-axially symmetric stellarators, including one variant of the MHH2 class of such devices, and a configuration they refer to as NHH2, closely related to MHH2. Monte Carlo simulation results are compared with expectations from established stellarator neoclassical theory, and with some empirical stellarator scalings, used as an estimate of the turbulent transport which might be expected. From the standpoint of transport, these may be viewed as either tokamaks with large ({delta} {approximately} 1%) but low-n ripple, or as stellarators with small ripple. For NHH2, numerical results are reasonably well explained by analytic neoclassical theory. MHH2 adheres less to assumptions made in most analytic theory, and its numerical results agree less well with theory than those for NHH2. However, for both, the non-axisymmetric contribution to the heat flux is comparable with the symmetric neoclassical contribution, and also falls into the range of the expected anomalous (turbulent) contribution. Thus, it appears effort to further optimize the thermal transport beyond the particular incarnations studied here would be of at most modest utility. However, the favorable thermal confinement relies heavily on the radial electric field. Thus, the present configurations will have a loss cone for trapped energetic ions, so that further optimization may be indicated for large devices of this type.
An inverse problem design method for branched and unbranched axially symmetrical ducts
NASA Technical Reports Server (NTRS)
Nelson, C. D.; Yang, T.
1976-01-01
This paper concerns the potential flow design of axially symmetrical ducts of both circular and annular cross section with or without wall suction or blowing slots. The objective of the work was to develop a method by which such ducts could be designed with directly prescribed wall pressure variation. Previous axially symmetrical design methods applied only to circular cross sectional ducts and required that the pressure distribution be prescribed along the duct centerline and not along the duct wall. The present method uses an inverse problem approach which extends the method of Stanitz to the axially symmetrical case, and an approximation is used to account for the stagnation point in branched duct designs. Two examples of successful designs of diffusers with suction slots are presented.
Gapless excitations of axially symmetric vortices in systems with tensorial order parameter
Peterson, Adam J.; Shifman, Mikhail
2014-09-15
We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1){sub P}×SO(3){sub S}×SO(3){sub L} symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3){sub S+L} vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.
NASA Technical Reports Server (NTRS)
Page, R. J.; Childs, M. E.
1974-01-01
An experimental investigation at Mach 4 of shock-induced turbulent boundary layer separation at the walls of axially symmetric flow passages is discussed, with particular emphasis placed on determining the shock strengths required for incipient separation. The shock waves were produced by interchangeable sting-mounted cones placed on the axes of the flow passages and aligned with the freestream flow. The interactions under study simulate those encountered in axially symmetric engine inlets of supersonic aircraft. Knowledges of the shock strengths required for boundary layer separation in inlets is important since for shocks of somewhat greater strength rather drastic alterations in the inlet flow field may occur.
NASA Technical Reports Server (NTRS)
Ye, Gang; Voigt, Gerd-Hannes
1989-01-01
A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.
Shearing and geodesic axially symmetric perfect fluids that do not produce gravitational radiation
NASA Astrophysics Data System (ADS)
Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J.
2015-01-01
Using a framework based on the 1 +3 formalism we carry out a study on axially and reflection symmetric perfect and geodesic fluids, looking for possible models of sources radiating gravitational waves. Therefore, the fluid should be necessarily shearing, for otherwise the magnetic part of the Weyl tensor vanishes, leading to a vanishing of the super-Poynting vector. However, for the family of perfect, geodesic fluids considered here, it appears that all possible cases reduce to conformally flat, shear-free, vorticity-free fluids, i.e., Friedman-Robertson-Walker. The super-Poynting vector vanishes and therefore no gravitational radiation is expected to be produced. The physical meaning of the obtained result is discussed.
Axially symmetric loop phase-conjugation scheme with broadband longitudinally dispersed light beams
Odintsov, Vladimir I
2004-07-31
A loop phase-conjugation scheme based on an axially symmetric four-wave interaction of focused light beams is proposed. It is shown that, when a longitudinal dispersion is introduced into the light beams, this scheme allows a phase conjugation of spatially coherent broadband radiation. The region of coherent interaction of focused longitudinally dispersed light beams is estimated. (nonlinear optical phenomena)
Electromagnetic fields in an axial symmetric waveguide with variable cross section
Kheifets, S.
1980-07-01
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed.
Investigation of Flow in an Axially Symmetrical Heated Jet of Air
NASA Technical Reports Server (NTRS)
Corrsin, Stanley
1943-01-01
The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)
Space charge field in a FEL with axially symmetric electron beam
Goncharov, I.A.; Belyavskiy, E.D.
1995-12-31
Nonlinear two-dimensional theory of the space charge of an axially symmetric electron beam propagating in combined right-hand polarized wiggler and uniform axial guide fields in a presence of high-frequency electromagnetic wave is presented. The well-known TE{sub 01} mode in a cylindrical waveguide for the model of radiation fields and paraxial approximation for the wiggler field are used. Space charge field components are written in the Lagrange coordinates by the twice averaged Green`s functions of two equally charged infinitely thin discs. For that {open_quotes}compensating charges{close_quotes} method is applied in which an electron ring model is substituted by one with two different radii and signs discs. On this approach the initial Green`s functions peculiarities are eliminated and all calculations are considerably simplified. Coefficients of a twice averaged Green`s function expansion into a Fourier series are obtained by use of corresponding expansion coefficients of longitudinal Green`s functions of equal radii discs and identical rings known from the one-dimensional theory of super HF devices taking into account electron bunches periodicity. This approach permit the space charge field components for an arbitrary stratified stream to be expressed in a simple and strict enough form. The expressions obtained can be employed in a nonlinear two-dimensional FEL theory in order to investigate beam dynamical defocusing and electrons failing on the waveguide walls in the high gain regime. This is especially important for FEL operation in mm and submm.
Electromagnetic torque and force in axially symmetric liquid-crystal droplets.
Jánossy, István
2008-10-15
Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angular momentum conservation of light [Phys. Rev. Lett.96, 163905 (2006)]. PMID:18923626
NASA Astrophysics Data System (ADS)
Romano, Marcello
2010-04-01
A new method is introduced to control and analyze the rotational motion of an axially symmetric rigid-body spacecraft. In particular, this motion is seen as the combination of the rotation of a virtual sphere with respect to the inertial frame, and the rotation of the body, about its symmetry axis, with respect to this sphere. Two new exact solutions are introduced for the motion of axially symmetric rigid bodies subjected to a constant external torque in the following cases: (1) torque parallel to the angular momentum and (2) torque parallel to the vectorial component of the angular momentum on the plane perpendicular to the symmetry axis. By building upon these results, two rotational maneuvers are proposed for axially symmetric spacecraft: a detumbling maneuver and a nutation canceling maneuver. The two maneuvers are the minimum time maneuvers for spherically constrained maximum torque. These maneuvers are simple and elegant, as they reduce the control of the three degrees-of-freedom nonlinear rotational motion to a single degree-of-freedom linear problem. Furthermore, the complete (both for the dynamics and for the kinematics) and exact analytic solutions are found for the two maneuvers. An extended survey is reported in the introduction of the paper of the few cases where the rotation of a rigid body is fully reduced to an exact analytic solution in closed form.
Computation of the viscous supersonic flow over symmetrical and asymmetrical external axial corners
NASA Technical Reports Server (NTRS)
Kutler, P.; Pulliam, T. H.; Vigneron, Y. C.
1978-01-01
The primary objective of the reported investigation is the computational verification of the experimental results obtained by Salas and Daywitt (1978). Two existing computer codes were used to compute the supersonic flow field surrounding the external axial corner. For the inviscid and turbulent flow results, the unsteady, three-dimensional implicit code of Pulliam and Steger (1978) was used. For the laminar flow results, the unsteady two-dimensional explicit procedure of Vigneron et al. (1977) was employed. Inviscid solutions for a symmetric configuration with a rounded corner resulted in either single or triple surface crossflow stagnation point flows, depending on the corner radius. Numerical results obtained for the same symmetric configuration tested experimentally show the crossflow in the vicinity of the corner to be away from the corner and thus in agreement with the experimental oil flow results.
A cylindrical shell with an axial crack under skew-symmetric loading.
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
The harmonic-map structure of the axially symmetric stationary Einstein equations
NASA Astrophysics Data System (ADS)
Whitman, Andrew P.; Stoeger, William R.
1992-06-01
We systematically review the solutions of the vacuum Einstein equations for the axially symmetric stationary case which are harmonic maps. In particular, we show that the interesting part of the Kerr solution is a composition of a harmonic map intoH {1/2} with a totally geodesic map fromH {1/2} into SS(1,1). We also point out, relying on Sanchez' results, that there is an analogous structure for the Lorentz-domain cases involving cylindrical gravitational waves and colliding plane waves.
Off-axis reflecting telescope with axially-symmetric optical property and its applications
NASA Astrophysics Data System (ADS)
Chang, Seunghyuk
2006-06-01
The basic concept and fundamental result of a recently developed geometric aberration theory for classical off-axis reflecting telescopes and imaging systems are presented. It is shown that a classical off-axis reflecting telescope can be designed to have practically axially-symmetric optical property by eliminating the dominant aberration (linear astigmatism) caused by the asymmetric geometry. A simple closed-form equation for elimination of linear astigmatism is presented. Also, to show how the developed aberration theory can be applied to current and future telescopes, several off-axis reflecting telescopes and imaging systems are designed and analyzed.
Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate.
Fan, Fan; Du, Tao; Srivastava, Abhishek Kumar; Lu, Wang; Chigrinov, Vladimir; Kwok, Hoi Sing
2012-10-01
We present a method to fabricate a radially and azimuthally polarized light converter by deploying a patterned liquid crystal (LC) quarter-wave plates (QWP). The patterned QWP has been fabricated by providing the axially symmetric alignment to the LC layer by mean of photo-alignment. When the left handed circularly (LHC) or right handed circularly (RHC) polarized light passes through these patterned QWPs, the emergent light becomes radially or azimuthally polarized. Moreover, the proposed polarization converters are characterized by the fast response time, thus could find application in various fast photonic devices. PMID:23188267
Carbon-13 and tin-119 relaxation studies of some axially symmetrical organotin compounds
NASA Astrophysics Data System (ADS)
Chapelle, S.; Granger, P.
We have studied a variety of axially symmetrical tin compounds by 119Sn and 13C NMR. Tin was observed at two field strengths and, except for Ph 3SnCl, T1 is field independent and governed mainly by spin-rotation. A chemical-shift anisotropy of 136 ppm is observed for 119Sn in Ph 3SnCl. Deverell's relationship provides a good estimate of the values of the spin-rotational constants and the theory of Woessner, Snowden, and Huntress leads to the values of the rotational diffusion constants.
NASA Technical Reports Server (NTRS)
Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.
1974-01-01
This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.
EBQ code: transport of space-charge beams in axially symmetric devices
Paul, A.C.
1982-11-01
Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1986-01-01
Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.
Absence of saturation for finite injected currents in axially symmetric cavity diode
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Kumar, Raghwendra; Puri, R. R.
2003-11-01
The Child-Langmuir law is investigated numerically using a fully electromagnetic particle-in-cell code for a closed axially symmetric diode. It is found that the average current transmitted to the anode (JTR) increases with the injected current (JIN) even after the formation of virtual cathode in both the nonrelativistic and relativistic cases. The increase is found to be a power law, JTR˜JIN1-β. In other words, the time averaged fraction f of electrons reaching the anode varies with the input current as, f˜JIN-β, where β<1. In contrast, for an infinite parallel plate diode, f˜JIN-1. The possibility of asymptotic saturation is also discussed.
NASA Astrophysics Data System (ADS)
Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J.
2014-04-01
We carry out a general study on the collapse of axially (and reflection-)symmetric sources in the context of general relativity. All basic equations and concepts required to perform such a general study are deployed. These equations are written down for a general anisotropic dissipative fluid. The proposed approach allows for analytical studies as well as for numerical applications. A causal transport equation derived from the Israel-Stewart theory is applied, to discuss some thermodynamic aspects of the problem. A set of scalar functions (the structure scalars) derived from the orthogonal splitting of the Riemann tensor are calculated and their role in the dynamics of the source is clearly exhibited. The characterization of the gravitational radiation emitted by the source is discussed.
A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.
2016-01-01
Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.
Octupolar approximation for the excluded volume of axially symmetric convex bodies
NASA Astrophysics Data System (ADS)
Piastra, Marco; Virga, Epifanio G.
2013-09-01
We propose a simply computable formula for the excluded volume of convex, axially symmetric bodies, based on the classical Brunn-Minkoski theory for convex bodies, which is briefly outlined in an Appendix written in a modern mathematical language. This formula is applied to cones and spherocones, which are regularized cones; a shape-reconstruction algorithm is able to generate the region in space inaccessible to them and to compute their excluded volume, which is found to be in good agreement with our approximate analytical formula. Finally, for spherocones with an appropriately tuned amplitude, we predict the occurrence of a relative deep minimum of the excluded volume in a configuration lying between the parallel alignment (where the excluded volume is maximum) and the antiparallel alignment (where the excluded volume is minimum).
Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei
Martini, M.; Goriely, S.; Péru, S.
2014-06-15
In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Nonlinear resonance and envelope instability of intense beam in axial symmetric periodic channel
NASA Astrophysics Data System (ADS)
Li, Chao; Liu, Zhicong; Zhao, Yaliang; Qin, Qing
2016-03-01
When an intense charged particle beam propagates through a given periodic focusing channel, it will experience the phenomena of nonlinear resonance, collective instability or chaotic motion with different conditions. In this paper, the collective envelope instability mechanisms are studied for symmetric beam propagation in an axially symmetric periodic channel. The beam is characterized as collectively stable if there exists a stable fixed point (SFP) located at the matched beam condition (rm , 0) in (r ,pr) phase space. It is found that the well-known collective envelope instability is dynamically related to the period-two orbits bifurcation of the matched SFP, meanwhile the unique stable SFP turns into an unstable saddle-node, surrounded by 1/2 resonance islands. However, higher orders of resonance (l / n, n > 2) coming from period-n bifurcation will not lead to collective beam instability because a new SFP emerges immediately upon the bifurcation process. The orders of SFP bifurcation is numerically depicted by the envelope tune ν=ϕ/360, where ϕ is the eigenphase of the Poincar e ´ tangent map T(s) in one focusing period at SFP, as functions of depressed phase advance. With strong space charge, due to these resonances from SFP bifurcation could be overlapped, mismatched beam would even show chaotic motion. For specific parameters, regular orbits, resonance islands, chaotic regions formed by resonance overlapping are clearly depicted with frequency analysis and Lyapunov spectral exponents, a method that may prove useful when extended to higher phase-space dimensions.
NASA Astrophysics Data System (ADS)
Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.
2016-07-01
We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
1997-01-01
A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates that are subjected to linearly varying edge loads, uniform shear loads, or combinations of these loads is presented. The study focuses on the effects of the shape of linearly varying edge load distribution, plate orthotropy, and plate flexural anisotropy on plate buckling behavior. In addition, the study exmines the interaction of linearly varying edge loads and uniform shear loads with plate flexural anisotropy and orthotropy. Results obtained by using a special purpose nondimensional analysis that is well suited for parametric studies of clamped and simply supported plates are presented for [+/- theta](sub s), thin graphite-epoxy laminates that are representative of spacecraft structural components. Also, numerous generic buckling-design charts are presented for a wide range of nondimensional parameters that are applicable to a broad class of laminate constructions. These charts show explicitly the effects of flexural orthotropy and flexural anisotropy on plate buckling behavior for linearly varying edge loads, uniform shear loads, or combinations of these loads. The most important finding of the present study is that specially orthotropic and flexurally anisotropic plates that are subjected to an axial edge load distribution that is tension dominated can support shear loads that are larger in magnitude than the shear buckling load.
NASA Astrophysics Data System (ADS)
Roque, Kristine Faith J.; Tapang, Giovanni A.; Saloma, Caesar A.
2015-07-01
We present the parametric investigation of the axial trapping forces generated by the interaction of an ellipsoidal dielectric and a focused, randomly polarized Gaussian beam in the geometrical optics regime. We show that particle elongation along the optical axis results to a more unstable axial trap compared to that of a reference sphere due to the more positive axial forces for positive axial displacements. Decreasing the refractive index difference between the particle and the surrounding medium (Δn = 0.09) decreases the magnitude of the axial force for positive particle displacements; and for a narrow range of axial displacements an axial trap can be achieved. Increasing the beam wavelength increases the magnitude of the axial force and for 1060 nm an axial trap can be achieved.
Modelling non-symmetric collagen fibre dispersion in arterial walls
Holzapfel, Gerhard A.; Niestrawska, Justyna A.; Ogden, Ray W.; Reinisch, Andreas J.; Schriefl, Andreas J.
2015-01-01
New experimental results on collagen fibre dispersion in human arterial layers have shown that the dispersion in the tangential plane is more significant than that out of plane. A rotationally symmetric dispersion model is not able to capture this distinction. For this reason, we introduce a new non-symmetric dispersion model, based on the bivariate von Mises distribution, which is used to construct a new structure tensor. The latter is incorporated in a strain-energy function that accommodates both the mechanical and structural features of the material, extending our rotationally symmetric dispersion model (Gasser et al. 2006 J. R. Soc. Interface 3, 15–35. (doi:10.1098/rsif.2005.0073)). We provide specific ranges for the dispersion parameters and show how previous models can be deduced as special cases. We also provide explicit expressions for the stress and elasticity tensors in the Lagrangian description that are needed for a finite-element implementation. Material and structural parameters were obtained by fitting predictions of the model to experimental data obtained from human abdominal aortic adventitia. In a finite-element example, we analyse the influence of the fibre dispersion on the homogeneous biaxial mechanical response of aortic strips, and in a final example the non-homogeneous stress distribution is obtained for circumferential and axial strips under fixed extension. It has recently become apparent that this more general model is needed for describing the mechanical behaviour of a variety of fibrous tissues. PMID:25878125
Axial Symmetric Solutions to Einstein's Field Equations for Deformed Neutron Stars
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2016-03-01
Traditional models of neutron stars are constructed under of assumption that they are perfect spheres. This is not correct, however, if the matter inside of neutron stars is described by an non-isotropic model for the equation of state. Examples of such stars are magnetars and neutron stars that would contain color-superconducting quark matter. In this work, we derive the stellar structure equations which describe the properties of non-isotropic neutron stars. The equations are solved numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure and density profiles and investigate any changes from conventional spherically symmetric neutron stars. This work was supported through the National Science Foundation under Grants PHYS-1411708 and DUE-1259951. Additional computing resources were provided by the CSRC at SDSU and the Department of Sciences at Wentworth Institute of Technology.
NASA Technical Reports Server (NTRS)
Warsi, Z. U. A.; Weed, R. A.; Thompson, J. F.
1980-01-01
A formulation of the complete Navier-Stokes problem for a viscous hypersonic flow in general curvilinear coordinates is presented. This formulation is applicable to both the axially symmetric and three dimensional flows past bodies of revolution. The equations for the case of zero angle of attack were solved past a circular cylinder with hemispherical caps by point SOR finite difference approximation. The free stream Mach number and the Reynolds number for the test case are respectively 22.04 and 168883. The whole algorithm is presented in detail along with the preliminary results for pressure, temperature, density and velocity distributions along the stagnation line.
Flow Separation Ahead of a Blunt Axially Symmetric Body at Mach Numbers 1.76 to 2.10
NASA Technical Reports Server (NTRS)
Moeckel, W E
1951-01-01
The pressure distribution and drag were determined for a spherical-nosed axially symmetric body with thin projecting rods at Mach numbers of 1.76, 1.93, and 2.10. The upstream projection distance of the rods was varied over a wide range to study changes in the character of the flow separation and to determine the variation of drag and pressure distribution with tip projection. Drag coefficients between 0.18 and 0.30 were obtained for most tip projections at each Mach number.
Modelling larval transport in a axial convergence front
NASA Astrophysics Data System (ADS)
Robins, P.
2010-12-01
Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval
NASA Astrophysics Data System (ADS)
Nam-Il, Kim; Moon-Young, Kim
2005-06-01
An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.
Scaling model for symmetric star polymers
NASA Astrophysics Data System (ADS)
Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory
2010-03-01
Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-08-01
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2003-01-01
The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.
NASA Technical Reports Server (NTRS)
Hood, L. L.
1987-01-01
Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos.
Hood, L.L.
1987-07-01
Saturn's main rings exist within a zone of negligible magnetospheric losses and surface alteration effects, substantially due to the solid-body absorption of inwardly diffusing magnetospheric particles. This process is presently shown to be especially efficient in the inner magnetosphere of Saturn, due to the near-axial symmetry of the planetary magnetic field relative to the equatorial rotation plane; under the assumption of comparable diffusion rates, the inward magnetospheric particle transport is far more inhibited in the inner Saturnian magnetosphere than in the same regions of Jupiter and Uranus, even when only rings of comparable widths and depths are considered. In light of this, ring particle surface exposure to the ion fluxes of the radiation belt remains a prepossessing rationale for low Uranian ring albedos. 86 references.
Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
NASA Astrophysics Data System (ADS)
Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful
Staudhammer, Karl P.
2004-01-01
The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.
Höhne, Christian; Prager, Jens; Gravenkamp, Hauke
2015-12-01
In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given. PMID:26126952
A non-thermal axially symmetric radio wake towards the Galactic centre
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, Farhad; Bally, John
1987-01-01
A highly unusual radio source lying within 1 deg of the Galactic center has been discovered whose 'cometary' morphology suggests that it is a wake produced by a radio source moving supersonically with respect to the ambient interstellar medium. Maps of the source are shown, and its characteristics are discussed. Two possible models which might explain the wake are suggested.
NASA Astrophysics Data System (ADS)
Rusanov, Andrey; Rusanov, Roman; Lampart, Piotr
2015-10-01
The paper describes an algorithm for the design of axial and radial-axial type turbines. The algorithm is based on using mathematical models of various levels of complexity - from 1D to 3D. Flow path geometry is described by means of analytical methods of profiling using a limited number of parameters. 3D turbulent flow model is realised in the program complex IPMFlow, developed based on the earlier codes FlowER and FlowER-U. Examples of developed or modernized turbines for differentpurpose power machines are presented. They are: an expansion turbine, ORC turbine and cogeneration mediumpressure turbine.
Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Witek, Helvi; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea
2010-04-01
The numerical evolution of Einstein’s field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.
NASA Astrophysics Data System (ADS)
Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.
1982-01-01
The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
NASA Technical Reports Server (NTRS)
Bilharz, Herbert; Hoelder, Ernst
1947-01-01
The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.
A Model for Axial Magnetic Bearings Including Eddy Currents
NASA Technical Reports Server (NTRS)
Kucera, Ladislav; Ahrens, Markus
1996-01-01
This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
A nonspherically symmetric model for the peculiar A star Alpha-2
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Van Dyk, Schuyler D.
1987-01-01
Observations show that in the optical region the peculiar A star Alpha-2 CVn has a flatter energy distribution during maximum light than during minimum light. This indicates that during maximum light a lower-temperature region, but necessarily larger surface area, than during minimum light is seen. This suggests a nonspherically symmetric star, which is oblate with respect to the magnetic axis and which is cooler at the magnetic poles than at the magnetic equator. The light variations of such nonspherically symmetric oblique rotator models have been studied. It is found that, for an oblate ellipsoid with an axial ratio of 0.92 and a temperature difference of about 1000 K between the poles and the equator, the overall variations of the optical and the ultraviolet energy distributions can be well understood.
Wakayama, Toshitaka Yonemura, Motoki; Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke; Dinh, Thanh-Hung; Otani, Yukitoshi; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Miura, Taisuke; Takahashi, Akihiko; Nakamura, Daisuke; Okada, Tatsuo
2015-08-24
We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
NASA Astrophysics Data System (ADS)
Pimshtein, V. G.
2016-07-01
The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.
Exactly solvable PT -symmetric models in two dimensions
NASA Astrophysics Data System (ADS)
Agarwal, Kaustubh S.; Pathak, Rajeev K.; Joglekar, Yogesh N.
2015-11-01
Non-Hermitian, PT -symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, PT potentials for a non-relativistic particle confined in a circular geometry. We show that the PT -symmetry threshold can be tuned by introducing a second gain-loss potential or its Hermitian counterpart. Our results explicitly demonstrate that PT breaking in two dimensions has a rich phase diagram, with multiple re-entrant PT -symmetric phases.
Radiative seesaw in left-right symmetric model
Gu Peihong; Sarkar, Utpal
2008-10-01
There are some radiative origins for the neutrino masses in the conventional left-right symmetric models with the usual bidoublet and triplet Higgs scalars. These radiative contributions could dominate over the tree-level seesaw and could explain the observed neutrino masses.
Alton, Gerald D.
1996-01-01
An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.
NASA Technical Reports Server (NTRS)
McAlister, K. W.; Huang, S. S.; Abrego, A. I.
2001-01-01
A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.
Target space pseudoduality in supersymmetric sigma models on symmetric spaces
NASA Astrophysics Data System (ADS)
Sarisaman, Mustafa
We discuss the target space pseudoduality in supersymmetric sigma models on symmetric spaces. We first consider the case where sigma models based on real compact connected Lie groups of the same dimensionality and give examples using three dimensional models on target spaces. We show explicit construction of nonlocal conserved currents on the pseudodual manifold. We then switch the Lie group valued pseudoduality equations to Lie algebra valued ones, which leads to an infinite number of pseudoduality equations. We obtain an infinite number of conserved currents on the tangent bundle of the pseudo-dual manifold. Since pseudoduality imposes the condition that sigma models pseudodual to each other are based on symmetric spaces with opposite curvatures (i.e. dual symmetric spaces), we investigate pseudoduality transformation on the symmetric space sigma models in the third chapter. We see that there can be mixing of decomposed spaces with each other, which leads to mixings of the following expressions. We obtain the pseudodual conserved currents which are viewed as the orthonormal frame on the pullback bundle of the tangent space of G˜ which is the Lie group on which the pseudodual model based. Hence we obtain the mixing forms of curvature relations and one loop renormalization group beta function by means of these currents. In chapter four, we generalize the classical construction of pseudoduality transformation to supersymmetric case. We perform this both by component expansion method on manifold M and by orthonormal coframe method on manifold SO( M). The component method produces the result that pseudoduality transformation is not invertible at all points and occurs from all points on one manifold to only one point where riemann normal coordinates valid on the second manifold. Torsion of the sigma model on M must vanish while it is nonvanishing on M˜, and curvatures of the manifolds must be constant and the same because of anticommuting grassmann numbers. We obtain
Petrova, T; Benova, E; Petrov, G; Zhelyazkov, I
1999-07-01
A model for description of the axial structure of a surface-wave-produced and -sustained plasma based on numerical calculation of a complete set of electrodynamic and kinetic equations is presented. The model includes a self-consistent solution to the electron Boltzmann equation, a set of particle balance equations for electrons, excited atoms, atomic and molecular ions, as well as Maxwell's equations with appropriate boundary conditions. A gas thermal balance equation is used to predict the neutral gas temperature self-consistently. Precise calculations of discharge characteristics of an argon plasma column sustained by an azimuthally symmetric surface wave at low and intermediate gas pressures have been performed. A comparison with available experimental data is done in order to test the validity of the model. PMID:11969832
The symmetric orbifold of {N}=2 minimal models
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Kelm, Maximilian
2016-07-01
cThe large level limit of the {N}=2 minimal models that appear in the duality with the {N}=2 supersymmetric higher spin theory on AdS3 is shown to be a natural subsector of a certain symmetric orbifold theory. We study the relevant decompositions in both the untwisted and the twisted sector, and analyse the structure of the higher spin representations in the twisted sector in some detail. These results should help to identify the string background of which the higher spin theory is expected to describe the leading Regge trajectory in the tensionless limit.
A Symmetrized Basis for Transitions in the Heisenberg Model
NASA Astrophysics Data System (ADS)
Haydock, Roger; Nex, C. M. M.
2013-03-01
The spin-S Heisenberg model has 2S+1 states on each site, for which there are (2S+1)2 possible transitions between these states. For N sites there are (2S+1)N states and (2S+1)2N transitions between states. This rapid increase in the number of transitions with sites appears to limit calculations to just a few sites. However for transitions induced by spin-spin interactions, we construct a symmetrized basis which only grows as 2N-3, making possible computations for much larger systems. Supported by the Richmond F. Snyder Fund.
Spectra of sigma models on semi-symmetric spaces
NASA Astrophysics Data System (ADS)
Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav
2016-05-01
Sigma models on semi-symmetric spaces provide the central building block for string theories on AdS backgrounds. Under certain conditions on the global supersymmetry group they can be made one-loop conformal by adding an appropriate fermionic Wess-Zumino term. We determine the full one-loop dilation operator of the theory. It involves an interesting new XXZ-like interaction term. Eigenvalues of our dilation operator, i.e. the one-loop anomalous dimensions, are computed for a few examples.
Active Inference for Binary Symmetric Hidden Markov Models
NASA Astrophysics Data System (ADS)
Allahverdyan, Armen E.; Galstyan, Aram
2015-10-01
We consider active maximum a posteriori (MAP) inference problem for hidden Markov models (HMM), where, given an initial MAP estimate of the hidden sequence, we select to label certain states in the sequence to improve the estimation accuracy of the remaining states. We focus on the binary symmetric HMM, and employ its known mapping to 1d Ising model in random fields. From the statistical physics viewpoint, the active MAP inference problem reduces to analyzing the ground state of the 1d Ising model under modified external fields. We develop an analytical approach and obtain a closed form solution that relates the expected error reduction to model parameters under the specified active inference scheme. We then use this solution to determine most optimal active inference scheme in terms of error reduction, and examine the relation of those schemes to heuristic principles of uncertainty reduction and solution unicity.
Mixed dark matter in left-right symmetric models
NASA Astrophysics Data System (ADS)
Berlin, Asher; Fox, Patrick J.; Hooper, Dan; Mohlabeng, Gopolang
2016-06-01
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W' boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.
Mixed dark matter in left-right symmetric models
Berlin, Asher; Fox, Patrick J.; Hooper, Dan; Mohlabeng, Gopolang
2016-06-08
Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal darkmore » matter. Decays of the heavy charged W(') boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, gR = gL. Furthermore, this region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.« less
Heterotic free fermionic and symmetric toroidal orbifold models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Nibbelink, S. Groot; Mehta, V. M.
2016-04-01
Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for Z_2× Z_2 orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all Z_2× Z_2 orbifold geometries in six dimensions.
Left-right symmetric model with SU(2)-triplet fermions
Gu Peihong
2011-11-01
We consider an SU(3){sub c} x SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} left-right symmetric model with three Higgs scalars including an SU(2){sub L} doublet, an SU(2){sub R} doublet and an SU(2){sub L} x SU(2){sub R} bidoublet. In addition to usual SU(2)-doublet fermions, our model contains SU(2)-triplet fermions with Majorana masses. The neutral components of the left-handed triplets can contribute a canonical seesaw while the neutral components of the right-handed triplets associated with the right-handed neutrinos can contribute a double/inverse-type seesaw. Our model can be embedded into an SO(10) grand unification theory where the triplets belong to the 45=(1,3,1,0)+(1,1,3,0)+... representations.
Modeling the aeroacoustics of axial fans from CFD calculations
NASA Astrophysics Data System (ADS)
Salesky, Alexandre; Hennemand, Vincent; Kouidri, Smaine; Berthelot, Yves
2002-11-01
The main source of aeroacoustic noise in axial fans is the distribution of the fluctuating, unsteady, aerodynamic forces on the blades. Numerical simulations were carried out with the CFD code (NUMECA), first with steady flow conditions to validate the aerolic performances (pressure drop as a function of flow rate) of the simulated six-bladed axial fans. Simulations were then made with unsteady flows to compute the fluctuating force distributions on the blades. The turbulence was modeled either with the Baldwin-Lomax model or with the K-epsilon model (extended wall function). The numerical results were satisfactory both in terms of numerical convergence and in terms of the physical characteristic of the forces acting on the blades. The numerical results were then coupled into an in-house aeroacoustics code that computes the farfield radiated noise spectrum and directivity, based on the Ffowcs-Williams Hawkings formulation, or alternatively, on the simpler Lowson model. Results compared favorably with data obtained under nonanechoic conditions, based upon ISO 5801 and ISO 5136 standards.
HTS axial flux induction motor with analytic and FEA modeling
NASA Astrophysics Data System (ADS)
Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J. H.
2013-11-01
This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.
Finite difference seismic modeling of axial magma chambers
Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )
1990-11-01
The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.
New mixing angles in the left-right symmetric model
NASA Astrophysics Data System (ADS)
Kokado, Akira; Saito, Takesi
2015-12-01
In the left-right symmetric model neutral gauge fields are characterized by three mixing angles θ12,θ23,θ13 between three gauge fields Bμ,WLμ 3,WRμ 3, which produce mass eigenstates Aμ,Zμ,Zμ', when G =S U (2 )L×S U (2 )R×U (1 )B-L×D is spontaneously broken down until U (1 )em . We find a new mixing angle θ', which corresponds to the Weinberg angle θW in the standard model with the S U (2 )L×U (1 )Y gauge symmetry, from these mixing angles. It is then shown that any mixing angle θi j can be expressed by ɛ and θ', where ɛ =gL/gR is a ratio of running left-right gauge coupling strengths. We observe that light gauge bosons are described by θ' only, whereas heavy gauge bosons are described by two parameters ɛ and θ'.
A left-right symmetric flavor symmetry model
NASA Astrophysics Data System (ADS)
Rodejohann, Werner; Xu, Xun-Jie
2016-03-01
We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a different environment for flavor symmetry model building compared to the usually considered cases. This does not only concern the need to obey the enlarged gauge structure, but also more subtle issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should be taken care of. In our predictive model based on A_4 we analyze the correlations between the smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet.
Spherically symmetric Einstein-aether perfect fluid models
NASA Astrophysics Data System (ADS)
Coley, Alan A.; Leon, Genly; Sandin, Patrik; Latta, Joey
2015-12-01
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β-) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.
Left-right symmetric heterotic-string derived models
Cleaver, Gerald B.; Faraggi, Alon E.; Savage, Christopher
2001-03-15
Recently it was demonstrated that free fermionic heterotic strings can produce models with solely the minimal supersymmetric standard model states in the low energy spectrum. This unprecedented result provides further strong evidence for the possibility that the true string vacuum shares some of the properties of the free fermionic models. Past free fermionic models have focused on several possible unbroken observable SO(10) subgroups at the string scale, which include the flipped SU(5) (FSU5), the Pati-Salam (PS) string models, and the string standard-like models (SLM). We extend this study to include the case in which the SO(10) symmetry is broken to the left-right symmetric (LRS) gauge group, SO(10){yields}SU(3){sub C}xU(1){sub B-L}xSU(2){sub L}xSU(2){sub R}. We present several models of this type and discuss their phenomenological features. The most striking new outcome of the LRS string models, in contrast with the case of the FSU5, the PS, and the SLM string models, is that they can produce effective field theories that are free of Abelian anomalies. We discuss the distinction between the two types of free fermionic models which result in the presence, or absence, of an anomalous U(1). As a counterexample we also present a LRS model that does contain an anomalous U(1). Additionally, we discuss how in string models the standard model spectrum may arise from the three 16 representations of SO(10), while the weak hypercharge does not have the canonical SO(10) embedding.
Cardiac electrophysiology numerical models using symmetric multiprocessing (SMP).
Petsios, Stefanos Konstantinos D; Fotiadis, Dimitrios I
2009-01-01
Multi-dimensional electrophysiological models have been introduced to investigate electrical propagation in tissue level, based on cell-dynamics models. The models include a set of non-linear differential equations which describe the dynamics of cell and tissue excitation. However, as models evolve, it is inevitable that proper and powerful tools need to be introduced in order to reproduce the detailed and thus computationally intensive simulations. To build such tools, several computational methodologies need to be adopted regarding efficiency and reliability. On the other hand improvements apply to the hardware too. State of the art computers, even personal computers, tend to make use of multiple core Central Processing Units. Unfortunately the aforementioned methodologies follow sequential logic, resulting to low efficiency of the working platform. In this work we present the performance bottleneck in symmetric multiprocessing (SMP) for simulations of propagation phenomena in cardiac tissue electrophysiological models. We demonstrate the scalability and efficacy of the different methodologies used in the discretisation scheme and message passing in SMP. PMID:19965052
Modeling shrouded stator cavity flows in axial-flow compressors
Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.
2000-01-01
Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.
Modeling scattering from azimuthally symmetric bathymetric features using wavefield superposition.
Fawcett, John A
2007-12-01
In this paper, an approach for modeling the scattering from azimuthally symmetric bathymetric features is described. These features are useful models for small mounds and indentations on the seafloor at high frequencies and seamounts, shoals, and basins at low frequencies. A bathymetric feature can be considered as a compact closed region, with the same sound speed and density as one of the surrounding media. Using this approach, a number of numerical methods appropriate for a partially buried target or facet problem can be applied. This paper considers the use of wavefield superposition and because of the azimuthal symmetry, the three-dimensional solution to the scattering problem can be expressed as a Fourier sum of solutions to a set of two-dimensional scattering problems. In the case where the surrounding two half spaces have only a density contrast, a semianalytic coupled mode solution is derived. This provides a benchmark solution to scattering from a class of penetrable hemispherical bosses or indentations. The details and problems of the numerical implementation of the wavefield superposition method are described. Example computations using the method for a simple scattering feature on a seabed are presented for a wide band of frequencies. PMID:18247740
Dynamically Scaled Glottal Flow Through Symmetrically Oscillating Vocal Fold Models
NASA Astrophysics Data System (ADS)
Halvorson, Lori; Baitinger, Andrew; Sherman, Erica; Krane, Michael; Zhang, Lucy; Wei, Timothy
2011-11-01
Experimental results derived from DPIV measurements in a scaled up dynamic human vocal fold model are presented. The 10x scale vocal fold model is a new design that incorporates key features of vocal fold oscillatory motion. This includes coupling of down/upstream rocking as well as the oscillatory open/close motions. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data will be shown. In this talk, effects associated with paralysis of one vocal fold will be discussed. This talk provides the baseline fluid dynamics for the vocal fold paralysis study presented in Sherman, et al. Supported by the NIH.
Spherically symmetric model atmospheres for late-type giant stars
NASA Astrophysics Data System (ADS)
Bennett, Philip Desmond
The ATHENA computer code was developed to model the extended atmospheres of late-type giant and supergiant stars. The atmospheres are assumed to be static, spherically symmetric and in radiative and hydrostatic equilibrium. Molecular line blanketing (for now) is handled using the simplifying assumption of mean opacity. The complete linearization method of Auer and Mihalas, adapted to spherical geometry, is used to solve the model system. The radiative transfer is solved by using variable Eddington factors to close the system of moment transfer equations, and the entire system of transfer equations plus constraints is solved efficiently by arrangement into the Rybicki block matrix form. The variable Eddington factors are calculated from the full angle-dependent formal solution of the radiative transfer problem using the impact parameter method of Hummer, Kunas. We were guided by the work of Mihalas and Hummer in their development of extended models of O stars, but our method differs in the choice of the independent variable. The radius depth scale used by Mihals and Hummer was found to fail because of the strongly temperature-dependent opacities of late-type atmospheres. Instead, we were able to achieve an exact linearization of the radius. This permitted the use of the numerically well-behaved column mass or optical depth scales. The resulting formulation is analogous to the plane-parallel complete linearization method and reduces to this method in the compact atmosphere limit. Models of M giants were calculated for Teff = 3000K and 3500K with opacities of the CN, TiO, and H2O molecules included, and the results were in general agreement with other published spherical models. These models were calculated assuming radiative equilibrium. The importance of convective energy transport was estimated by calculating the convective flux that would result from the temperature structure of the models. The standard local mixing length theory was used for this purpose
Chirally symmetric O(1/N{sub c}) corrections to the Nambu-Jona-Lasinio model
Dmitrasinovic, V.; Schulze, H.J.; Tegen, R.
1995-03-01
We develop an extended chirally symmetric self-consistent approximation scheme to the Nambu-Jona-Lasinio model, that corresponds to O(1/N{sub c}) corrections to the usual Hartree + random phase approximations. This scheme amounts to adding {open_quotes}meson cloud{close_quotes} contributions self-consistently to the quark self-energy and the meson polarization functions in a manner suggested by the weakly interacting nature of the quark and collective meson degrees of freedom of the NJL model in the large N{sub c} limit. We demonstrate explicitly that this scheme fulfills all the chiral symmetry theorems, namely the Goldstone theorem, the Goldberger-Treiman relation, and the conservation of the quark axial current. We explore the corrections to the quark self-energy and scalar condensate, as well as to the pion polarization function and the weak decay constant N{sub n}. The numerical evaluation of these corrections is presented and discussed. 23 refs., 14 figs., 2 tabs.
An analytical model of axial compressor off-design performance
Camp, T.R.; Horlock, J.H. . Whittle Lab.)
1994-07-01
An analysis is presented of the off-design performance of multistage axial-flow compressors. It is based on an analytical solution, valid for small perturbations in operating conditions from the design point, and provides an insight into the effects of choices made during the compressor design process on performance and off-design stage matching. It is shown that the mean design value of stage loading coefficient ([psi] = [Delta]h[sub 0]/U[sup 2]) has a dominant effect on off-design performance, whereas the stage-wise distribution of stage loading coefficient and the design value of flow coefficient have little influence. The powerful effects of variable stator vanes on stage-matching are also demonstrated and these results are shown to agree well with previous work. The slope of the working line of a gas turbine engine, overlaid on overall compressor characteristics, is shown to have a strong effect on the off-design stage-matching through the compressor. The model is also used to analyze design changes to the compressor geometry and to show how errors in estimates of annulus blockage, decided during the design process, have less effect on compressor performance than has previously been thought.
Charge radii in macroscopic-microscopic mass models of axial asymmetry
Iimura, H.; Buchinger, F.
2007-11-15
We show that the charge radii of axially asymmetric nuclei calculated in the frame of the finite-range droplet model are in better agreement with measured charge radii when axial asymmetry is taken into account. This improvement is mainly the result of a new set of ground-state quadrupole deformations {beta}{sub 2}, generated when masses are calculated including axial asymmetry, and to a much lesser degree due to the inclusion of the axial asymmetry in the calculation of the charge radii itself.
Symmetric bursting behaviors in the generalized FitzHugh-Nagumo model.
Abbasian, A H; Fallah, H; Razvan, M R
2013-08-01
In the current paper, we have investigated the generalized FitzHugh-Nagumo model. We have shown that symmetric bursting behaviors of different types could be observed in this model with an appropriate recovery term. A modified version of this system is used to construct bursting activities. Furthermore, we have shown some numerical examples of delayed Hopf bifurcation and canard phenomenon in the symmetric bursting of super-Hopf/homoclinic type near its super-Hopf and homoclinic bifurcations, respectively. PMID:23801268
A dimer PT -symmetric model simulated in GaAs/AlGaAs quantum wells
NASA Astrophysics Data System (ADS)
Meng, Li-Chen; Zhang, Wen-Jing; Liu, Jibing; Xie, Xiao-Tao
2016-05-01
We perform the possibility to generate a dimer PT -symmetric model based on a double lambda four-level system in GaAs/AlGaAs quantum wells with biexcitonic transitions. By presenting the detuning management and modulating the Rabi frequencies of the two strong coupling laser fields, we show that the PT -symmetric model can be realized by the spatial evolution of the weak probe laser and four-wave mixing (FWM)-generated field along the propagation direction. The two weak fields in our model may be used to simulate two laser propagating in two PT -symmetric parallel waveguides. The diffraction effect also can be studied in some conditions. Our scheme offers two advantages: the complex refractive index is controlled by the strong coupling fields; the symmetry energy exchange between a dimer PT -symmetric structure is guaranteed by the four-wave mixing process. The present investigation may provide research opportunities in optical experiments.
NASA Technical Reports Server (NTRS)
Holland, D. B.; Virgin, L. N.; Belvin, W. K.
2003-01-01
This paper presents a parameter study of the effect of boom axial loading on the global dynamics of a 2-meter solar sail scale model. The experimental model used is meant for building expertise in finite element analysis and experimental execution, not as a predecessor to any planned flight mission or particular design concept. The results here are to demonstrate the ability to predict and measure structural dynamics and mode shapes in the presence of axial loading.
Model-size reduction for the non-linear dynamic analysis of quasi-symmetric structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
A numerical technique is developed to reduce the size of models describing the nonlinear dynamic response of quasi-symmetric structures (i.e., structures with unsymmetric geometry). The response vectors of the structure are approximated by a linear combination of the symmetric and antisymmetric vectors at each time step. The mathematical formulation and numerical implementation of the method are described in detail, and results for a shallow laminated anisotropic panel of quadrilateral planform are presented in graphs and normalized contour plots.
Chiral quark model of nucleon spin-flavor structure with SU(3) and axial-U(1) breakings
Cheng, T.P.; Li, L.
1998-01-01
The chiral quark model with a nonet of Goldstone bosons can yield an adequate description of the observed proton flavor and spin structure. In a previous publication we have compared the results of an SU(3) symmetric calculation with the phenomenological findings based on experimental measurements and SU(3) symmetry relations. In this paper we discuss their SU(3) and axial U(1) breaking corrections. Our result demonstrates the broad consistency of the chiral quark model with the experimental observations of the proton spin-flavor structure. With two parameters, we obtain a very satifactory fit to the F/D ratios for the octet baryon masses and for their axial vector couplings, as well as the different quark flavor contributions to the proton spin. The result also can account for not only the light quark asymmetry {bar u}{minus}{bar d} but also the strange quark content {bar s} of the proton sea. SU(3) breaking is the key in reconciling the {bar s} value as measured in the neutrino charm production and that as deduced from the pion nucleon {sigma} term. {copyright} {ital 1997} {ital The American Physical Society}
Implementation of the manifest left-right symmetric model in FeynRules
NASA Astrophysics Data System (ADS)
Roitgrund, Aviad; Eilam, Gad; Bar-Shalom, Shaouly
2016-06-01
We present an implementation of the manifest left-right symmetric model in FeynRules. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily translated to matrix element generators such as MadGraph5_aMC@NLO,CalcHEP, and Sherpa. The implementation of the left-right symmetric model is a useful step for studying new physics signals with the data generated at the LHC.
Model-size reduction for the analysis of symmetric structures with asymmetric boundary conditions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Whitworth, Sandra L.
1987-01-01
A simple computational procedure is presented for reducing the size of the analysis model for a symmetric structure with asymmetric boundary conditions to that of the corresponding structure with symmetric boundary conditions. The procedure is based on approximating the asymmetric response of the structure by a linear combination of symmetric and antisymmetric global approximation vectors (or modes). The key elements of the procedure are (1) restructuring the governing finite-element equations to delineate the contributions to the symmetric and antisymmetric components of the asymmetric response, (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate a few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The effectiveness of the computational procedure is demonstrated by means of numerical examples of linear static problems of shells, and its potential for solving nonlinear problems is discussed.
The Thirring interaction in the two-dimensional axial-current-pseudoscalar derivative coupling model
Belvedere, L.V. . E-mail: armflavio@if.uff.br
2006-12-15
We reexamine the two-dimensional model of massive fermions interacting with a massless pseudoscalar field via axial-current derivative coupling. The hidden Thirring interaction in the axial-derivative coupling model is exhibited compactly by performing a canonical field transformation on the Bose field algebra and the model is mapped into the Thirring model with an additional vector-current-scalar derivative interaction (Schroer-Thirring model). The Fermi field operator is rewritten in terms of the Mandelstam soliton operator coupled to a free massless scalar field. The charge sectors of the axial-derivative model are mapped into the charge sectors of the massive Thirring model. The complete bosonized version of the model is presented. The bosonized composite operators of the quantum Hamiltonian are obtained as the leading operators in the Wilson short distance expansions.
Stochastic modeling of cell growth with symmetric or asymmetric division
NASA Astrophysics Data System (ADS)
Marantan, Andrew; Amir, Ariel
2016-07-01
We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.
Stochastic modeling of cell growth with symmetric or asymmetric division.
Marantan, Andrew; Amir, Ariel
2016-07-01
We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies. PMID:27575162
Duck, I. )
1993-04-01
Second-order radiative corrections to the nucleon axial vector coupling constant from gluon, pion, and sigma meson exchange are calculated in the chiral soliton quark model. Many apparent processes are found not to contribute. The soliton is elastically decoupled from meson radiative corrections which are dominated by a gluon exchange contribution equivalent to a gluonic hybrid component of the nucleon. A 30% radiative reduction of the axial coupling strength is indicated.
State variable model for unsteady two dimensional axial vortex flow with pressure relaxation
NASA Astrophysics Data System (ADS)
Abuharaz, Mazin Mohammed Elbakri
This research has utilized a state variable model for unsteady two dimensional axial vortex flows experiencing non-equilibrium pressure gradient forces. The model was developed successfully using perturbed radial and azimuthal momentum equations and a pressure Poisson's equations. Three main regions of the axial vortex flow were highlighted in this study including: a laminar core region, a non-equilibrium pressure envelope, and an outer potential vortex. Linear stability theory was utilized to formulate the model and the perturbation functions were assumed to be of the Fourier type. The flow parameters considered were the Reynolds numbers, ranging between 6,000 and 14,000, and a new non-equilibrium swirl parameter, Np determining the area of significant non-equilibrium pressure forces. Two other state variable parameters were imposed-complex frequency and associated azimuthal mode number. Perturbation outputs included primary Reynolds stress, radial and azimuthal velocity amplitudes, and radial pressure gradient amplitudes. Maximum perturbation growth occurred inside the non-equilibrium pressure zone between one and five core radii from the rotational axis, while the inner core remained laminar. The maximum amplitudes and critical radii depended on the four physical and state variable parameters. Increases in Np resulted in lower perturbation pressure gradient amplitudes, moving the critical radius closer to the vortex core, and expanding the non-equilibrium pressure zone. Increasing the frequency resulted in steady increases in the perturbation amplitudes until a particular dimensionless frequency was reached. Beyond that frequency, additional perturbation growth was insignificant or the amplitude decayed because of a high damping factor. Two types of azimuthal modes were unstable, the +/-½ modes inside the non-equilibrium pressure zone, causing the pressure gradient amplitudes to peak even though the azimuthal velocity profile remained stable, and +/- 1 helical
Axial form factors of the octet baryons in a covariant quark model
NASA Astrophysics Data System (ADS)
Ramalho, G.; Tsushima, K.
2016-07-01
We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q2. In our model the axial form factors GA(Q2) (axial-vector form factor) and GP(Q2) (induced pseudoscalar form factor) are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor gAq(Q2), and the induced pseudoscalar form factor gPq(Q2). The baryon wave functions are composed of a dominant S -state and a P -state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor gAq(Q2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P -state mixture and the Q2 dependence of gPq(Q2), are determined by a fit to the nucleon axial form factor data obtained by lattice QCD simulations with large pion masses. In this lattice QCD regime the meson cloud effects are small, and the physics associated with the valence quarks can be better calibrated. Once the valence quark model is calibrated, we extend the model to the physical regime and use the low Q2 experimental data to estimate the meson cloud contributions for GA(Q2) and GP(Q2). Using the calibrated quark axial form factors and the generalization of the nucleon wave function for the other octet baryon members, we make predictions for all the possible weak interaction axial form factors GA(Q2) and GP(Q2) of the octet baryons. The results are compared with the corresponding experimental data for GA(0 ) and with the estimates of baryon-meson models based on S U (6 ) symmetry.
Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Grebe, Heather
2013-10-01
Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.
Interaction of axial and oblique astigmatism in theoretical and physical eye models.
Liu, Tao; Thibos, Larry N
2016-09-01
The interaction between oblique and axial astigmatism was investigated analytically (generalized Coddington's equations) and numerically (ray tracing) for a theoretical eye model with a single refracting surface. A linear vector-summation rule for power vector descriptions of axial and oblique astigmatism was found to account for their interaction over the central 90° diameter of the visual field. This linear summation rule was further validated experimentally using a physical eye model measured with a laboratory scanning aberrometer. We then used the linear summation rule to evaluate the relative contributions of axial and oblique astigmatism to the total astigmatism measured across the central visual field. In the central visual field, axial astigmatism dominates because the oblique astigmatism is negligible near the optical axis. At intermediate eccentricities, axial and oblique astigmatism may have equal magnitude but orthogonal axes, which nullifies total astigmatism at two locations in the visual field. At more peripheral locations, oblique astigmatism dominates axial astigmatism, and the axes of total astigmatism become radially oriented, which is a trait of oblique astigmatism. When eccentricity is specified relative to a foveal line-of-sight that is displaced from the eye's optical axis, asymmetries in the visual field map of total astigmatism can be used to locate the optical axis empirically and to estimate the relative contributions of axial and oblique astigmatism at any retinal location, including the fovea. We anticipate the linear summation rule will benefit many topics in vision science (e.g., peripheral correction, emmetropization, meridional amblyopia) by providing improved understanding of how axial and oblique astigmatism interact to produce net astigmatism. PMID:27607493
Inflation in minimal left-right symmetric model with spontaneous D-parity breaking
Gong, Jinn-Ouk; Sahu, Narendra
2008-01-15
We present a simplest inflationary scenario in the minimal left-right symmetric model with spontaneous D-parity breaking, which is a well-motivated particle physics model for neutrino masses. This leads us to connect the observed anisotropies in the cosmic microwave background to the sub-eV neutrino masses. The baryon asymmetry via the leptogenesis route is also discussed briefly.
Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.; Novak, Joseph
2008-12-01
Starting with the projective-superspace off-shell formulation for four-dimensional Script N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of Script N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkähler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of Script N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kähler potential of an arbitrary Hermitian symmetric space in Kähler normal coordinates.
A Symmetric Time-Varying Cluster Rate of Descent Model
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2015-01-01
A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.
Effects of axial nonuniformity in modeling Q-switched lasers
Stone, D.H. )
1992-10-01
Generic Q-switched laser pulses are calculated using a point model and a traveling wave model. Results indicate that the point model approach commonly used in rate equation modeling is inadequate for large initial inversions, large internal losses, or large fractional outcoupling. The point model typically overestimates peak power and energy and distorts the pulse shape. A simple traveling wave model is developed which easily describes these cases. The optimum outcoupling to maximize peak power varies significantly between the two models. 9 refs.
Bhattacharya, Bhubanjyoti; Hill, Richard J.; Paz, Gil
2011-10-01
Quasielastic neutrino-nucleon scattering is a basic signal process for neutrino oscillation studies. At accelerator energies, the corresponding cross section is subject to significant uncertainty due to the poorly constrained axial-vector form factor of the nucleon. A model-independent description of the axial-vector form factor is presented. Data from the MiniBooNE experiment for quasielastic neutrino scattering on {sup 12}C are analyzed under the assumption of a definite nuclear model. The value of the axial mass parameter, m{sub A}=0.85{sub -0.07}{sup +0.22}{+-}0.09 GeV, is found to differ significantly from extractions based on traditional form factor models. Implications for future neutrino scattering and pion electroproduction measurements are discussed.
FAST Mast Structural Response to Axial Loading: Modeling and Verification
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Elliott, Kenny B.; Templeton, Justin D.; Song, Kyongchan; Rayburn, Jeffery T.
2012-01-01
The International Space Station s solar array wing mast shadowing problem is the focus of this paper. A building-block approach to modeling and analysis is pursued for the primary structural components of the solar array wing mast structure. Starting with an ANSYS (Registered Trademark) finite element model, a verified MSC.Nastran (Trademark) model is established for a single longeron. This finite element model translation requires the conversion of several modeling and analysis features for the two structural analysis tools to produce comparable results for the single-longeron configuration. The model is then reconciled using test data. The resulting MSC.Nastran (Trademark) model is then extended to a single-bay configuration and verified using single-bay test data. Conversion of the MSC. Nastran (Trademark) single-bay model to Abaqus (Trademark) is also performed to simulate the elastic-plastic longeron buckling response of the single bay prior to folding.
NASA Astrophysics Data System (ADS)
Sahoo, Sharmistha; Zhang, Zhao; Teo, Jeffrey
Time reversal symmetric topological superconductors in three spatial dimensions carry gapless surface Majorana fermions. They are robust against any time reversal symmetric single-body perturbation weaker than the bulk energy gap. We mimic the massless surface Majorana's by coupled wire models in two spatial dimensions. We introduce explicit many-body interwire interactions that preserve time reversal symmetry and give energy gaps to all low energy degrees of freedom. The gapping 4-fermion interactions are constructed by interwire Kac-Moody current backscattering and rely on the fractionalization or conformal embedding of the Majorana wires.
Effects of f(R) Model on Dynamics of Axial Shear-Free Dissipative Fluids
NASA Astrophysics Data System (ADS)
Sharif, M.; Zunaira, Nasir
2016-04-01
We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model. We study the effects of dissipation on the dynamics of geodesic matter distribution. This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition. It is found that the system preserves its symmetry in both cases. For the rotation-free case, when there is no dissipation and Ricci scalar is constant, the axial system reduces to FRW universe model. This is exactly the same result obtained in general relativity.
Symmetric model of compressible granular mixtures with permeable interfaces
NASA Astrophysics Data System (ADS)
Saurel, Richard; Le Martelot, Sébastien; Tosello, Robert; Lapébie, Emmanuel
2014-12-01
Compressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, "Discrete equations for physical and numerical compressible multiphase mixtures," J. Comput. Phys. 186(2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, "Intragranular stress, particle-wall friction and speed of sound in granular propellant beds," J. Ballist. 4(1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, "Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues," Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. ["Modelling dynamic and irreversible powder compaction," J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato ["A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are
A symmetric approach to the massive nonlinear sigma model
Ferrari, Ruggero
2011-09-28
In the present study we extend to the massive case the procedure of divergences subtraction, previously introduced for the massless nonlinear sigma model (D = 4). Perturbative expansion in the number of loops is successfully constructed. The resulting theory depends on the Spontaneous Symmetry Breaking parameter v, on the mass m and on the radiative correction parameter Λ. Fermions are not considered in the present work. SU(2) Ⓧ SU(2) is the group used.
Modeling of recrystallization texture of aluminium: symmetric and asymmetric rolling
NASA Astrophysics Data System (ADS)
Wierzbanowski, K.; Kotra, M.; Wronski, M.; Sztwiertnia, K.; Wronski, S.; Lodini, A.
2015-04-01
In some metallic materials the dominating recrystallization mechanism can be described by the oriented growth behaviour. Phenomenological laws state that in selected materials only these nuclei grow intensively which have a given misorientation relation with the deformed matrix. This description is frequently verified in f.c.c. metals and generally reported misorientations correspond approximately to 400 rotation around the <111> axis. Basing on the above ideas the recrystallization model, including the compromise condition, was formulated and applied to the study of recrystallization textures of rolled polycrystalline aluminium.
A zonally symmetric model for volcanic influence upon atmospheric circulation
NASA Technical Reports Server (NTRS)
Schatten, K. H.; Mayr, H. G.; Harris, I.; Taylor, H. A., Jr.
1984-01-01
The effects of volcanic activity upon zonal wind flow in a model atmosphere are considered. A low latitude volcanic eruption could lower the tropospheric pole to equator temperature difference and thereby affect the atmospheric motions. When the temperature contrast decreases, the zonal wind velocities at high altitudes are reduced. To conserve angular momentum, the velocities in the lower atmosphere near the surface must increase, thus providing a momentum source for ocean currents. It is suggested that this momentum source may have played a role as a trigger for inducing the 1982-83 anomalous El Nino and possibly other climate changes.
Critical collapse in the spherically symmetric Einstein-Vlasov model
NASA Astrophysics Data System (ADS)
Akbarian, Arman; Choptuik, Matthew W.
2014-11-01
We solve the coupled Einstein-Vlasov system in spherical symmetry using direct numerical integration of the Vlasov equation in phase space. Focusing on the case of massless particles we study critical phenomena in the model, finding strong evidence for generic type I behavior at the black hole threshold that parallels what has previously been observed in the massive sector. For differing families of initial data we find distinct critical solutions, so there is no universality of the critical configuration itself. However we find indications of at least a weak universality in the lifetime scaling exponent, which is yet to be understood. Additionally, we clarify the role that angular momentum plays in the critical behavior in the massless case.
A new model for spherically symmetric anisotropic compact star
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Ray, Saibal
2016-05-01
In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star.
Kumaresan, S; Yoganandan, N; Pintar, F A; Maiman, D J
1999-12-01
An anatomically accurate, three-dimensional, nonlinear finite element model of the human cervical spine was developed using computed tomography images and cryomicrotome sections. The detailed model included the cortical bone, cancellous core, endplate, lamina, pedicle, transverse processes and spinous processes of the vertebrae; the annulus fibrosus and nucleus pulposus of the intervertebral discs; the uncovertebral joints; the articular cartilage, the synovial fluid and synovial membrane of the facet joints; and the anterior and posterior longitudinal ligaments, interspinous ligaments, capsular ligaments and ligamentum flavum. The finite element model was validated with experimental results: force-displacement and localized strain responses of the vertebral body and lateral masses under pure compression, and varying eccentric anterior-compression and posterior-compression loading modes. This experimentally validated finite element model was used to study the biomechanics of the cervical spine intervertebral disc by quantifying the internal axial and shear forces resisted by the ventral, middle, and dorsal regions of the disc under the above axial and eccentric loading modes. Results indicated that higher axial forces (compared to shear forces) were transmitted through different regions of the disc under all loading modes. While the ventral region of the disc resisted higher variations in axial force, the dorsal region transmitted higher shear forces under all loading modes. These findings may offer an insight to better understand the biomechanical role of the human cervical spine intervertebral disc. PMID:10717549
Low-frequency intraseasonal variability in a zonally symmetric aquaplanet model
NASA Astrophysics Data System (ADS)
Das, Surajit; Sengupta, Debasis; Chakraborty, A.; Sukhatme, Jai; Murtugudde, Raghu
2016-04-01
We use the aquaplanet version of the community atmospheric model, with perpetual spring equinox forcing and zonally symmetric sea surface temperature (SST), to study tropical intraseasonal oscillations (ISOs). In the first two experiments, we specify zonally symmetric SST profiles that mimic observed climatological July and January SSTs as surface boundary conditions. In the January SST simulation, we find a zonal wavenumber 1 mode with dominant period of 60 days, moving east at about 6 m s-1. This mode, which resembles the Madden-Julian oscillation (MJO), is absent in the July SST case, although convectively coupled Kelvin waves are prominent in both experiments. To further investigate the influence of tropical SST on ISO and convectively coupled equatorial waves, we conduct experiments with idealised symmetric SST profiles having different widths of warm ocean centered at the equator. In the narrowest SST experiment, the variance of moist activity is predominantly in weather-scale Kelvin waves. When the latitudinal extent of warm SST is comparable to or larger than the equatorial Rossby radius, we find a dominant low frequency (50-80 days) eastward mode that resembles the MJO, as in the January SST experiment. We also find westward propagating waves with intraseasonal (30-120 days) periods and zonal wavenumber 1-3; the structure of these signals projects onto equatorially trapped Rossby waves with meridional mode numbers 1, 3 and 5, associated with convection that is symmetric about the equator. In addition, the model generates 30-80 days westward moving signals with zonal wavenumber 4-7, particularly in the narrow SST experiment. Although these waves are seen in the wavenumber-frequency spectra in the equatorial region, they have largest amplitude in the middle and high latitudes. Thus, our study shows that wider, meridionally symmetric SST profiles support a strong MJO-like eastward propagation, and even in an aquaplanet setting, westward propagating Rossby
Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel
2013-01-01
The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. PMID:24183810
Baryogenesis and asymmetric dark matter from the left-right mirror symmetric model
NASA Astrophysics Data System (ADS)
Yang, Wei-Min
2014-08-01
The paper suggests a left-right mirror symmetric model to account for the baryogenesis and asymmetric dark matter. The model can simultaneously accommodate the standard model, neutrino physics, matter-antimatter asymmetry and dark matter. In particular, it naturally and elegantly explains the origin of the baryon and dark matter asymmetries, and clearly gives the close interrelations of them. In addition, the model predicts a number of interesting results, e.g. that the cold dark matter neutrino mass is 3.1 times the proton mass. It is also feasible and promising to test the model in future experiments.
Bowsher, J E; Tornai, M P; Peter, J; González Trotter, D E; Krol, A; Gilland, D R; Jaszczak, R J
2002-03-01
Reconstruction algorithms for transmission tomography have generally assumed that the photons reaching a particular detector bin at a particular angle originate from a single point source. In this paper, we highlight several cases of extended transmission sources, in which it may be useful to approach the estimation of attenuation coefficients as a problem involving multiple transmission point sources. Examined in detail is the case of a fixed transmission line source with a fan-beam collimator. This geometry can result in attenuation images that have significant axial blur. Herein it is also shown, empirically, that extended transmission sources can result in biased estimates of the average attenuation, and an explanation is proposed. The finite axial resolution of the transmission line source configuration is modeled within iterative reconstruction using an expectation-maximization algorithm that was previously derived for estimating attenuation coefficients from single photon emission computed tomography (SPECT) emission data. The same algorithm is applicable to both problems because both can be thought of as involving multiple transmission sources. It is shown that modeling axial blur within reconstruction removes the bias in the average estimated attenuation and substantially improves the axial resolution of attenuation images. PMID:11989845
Three-dimensional model and simulation of vacuum arcs under axial magnetic fields
Wang Lijun; Jia Shenli; Zhou Xin; Wang Haijing; Shi Zongqian
2012-01-15
In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). PMID:25910551
Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model
NASA Astrophysics Data System (ADS)
Gendiar, A.; Nishino, T.
2005-01-01
The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product variational approach. A global phase diagram is constructed with numerous commensurate and incommensurate magnetic phases. The devil’s stairs behavior for the model is confirmed. The wavelength of the spin modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commensurate phases are considerably narrower than those calculated by mean-field approximations.
Gradient parameter and axial and field rays in the gradient-index crystalline lens model
NASA Astrophysics Data System (ADS)
Pérez, M. V.; Bao, C.; Flores-Arias, M. T.; Rama, M. A.; Gómez-Reino, C.
2003-09-01
Gradient-index models of the human lens have received wide attention in optometry and vision sciences for considering how changes in the refractive index profile with age and accommodation may affect refractive power. This paper uses the continuous asymmetric bi-elliptical model to determine gradient parameter and axial and field rays of the human lens in order to study the paraxial propagation of light through the crystalline lens of the eye.
Rare top quark decays in Alternative Left-Right Symmetric Models
Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.
2007-06-19
We evaluate the flavor changing neutral currents (FCNC) decay t {yields} H0 + c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t {yields} c + {gamma}, which involves radiative corrections.
An improved computer model for prediction of axial gas turbine performance losses
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1984-01-01
The calculation model performs a rapid preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; and (3) predictions of expected turbine performance. The model uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with an array of seven NASA single-stage axial gas turbine configurations.
Momentos centrados en sistemas estelares a simetria axial.
NASA Astrophysics Data System (ADS)
Sanz Subirana, J.; Juan Zornoza, J. M.; Català Poch, M. A.
Centered moments in the galactic plane have been analytically determined up to the fourth order for a non-stationary stellar system model with a distribution of peculiar velocities of the stars symmetric under point-axial transformations and equatorial plane reflexions. The obtained results explain satisfactorily the peculiar velocities distribution of the considered stellar samples in the solar neighborhood.
Symmetrizing the symmetrization postulate
NASA Astrophysics Data System (ADS)
York, Michael
2000-11-01
Reasonable requirements of (a) physical invariance under particle permutation and (b) physical completeness of state descriptions [1], enable us to deduce a Symmetric Permutation Rule(SPR): that by taking care with our state descriptions, it is always possible to construct state vectors (or wave functions) that are purely symmetric under pure permutation for all particles, regardless of type distinguishability or spin. The conventional exchange antisymmetry for two identical half-integer spin particles is shown to be due to a subtle interdependence in the individual state descriptions arising from an inherent geometrical asymmetry. For three or more such particles, however, antisymmetrization of the state vector for all pairs simultaneously is shown to be impossible and the SPR makes observably different predictions, although the usual pairwise exclusion rules are maintained. The usual caveat of fermion antisymmetrization—that composite integer spin particles (with fermionic constituents) behave only approximately like bosons—is no longer necessary.
Cylindrically symmetric models of gravitational collapse to black holes: A short review
NASA Astrophysics Data System (ADS)
Mena, Filipe C.
2015-07-01
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Dimensional reduction of symmetric gauge fields, Higgs models, and spontaneous compactification
Volobuev, I.P.; Kubyshin, Y.A. ); Mourao, J.M. ); Rudolph, G. )
1989-05-01
Questions relating to the dimensional reduction of symmetric gauge fields in multidimensional spaces of the form {ital E}={ital M}{times}{ital G}/{ital H} are discussed. For such fields a general geometrical method of dimensional reduction and a method for calculating the potentials of the scalar fields of the reduced theory in the case of symmetric spaces {ital G}/{ital H} are presented systematically. The connection between dimensional reduction of gauge fields and the theory of spontaneous compactification and the physical interpretation of the solutions of this theory is traced in detail. Much attention is devoted to the application of the method of dimensional reduction to fermion matter fields and to the construction by this method of realistic models of the interactions of elementary particles in Minkowski space.
X-ray resonance scattering in a spherically symmetric coronal model
NASA Technical Reports Server (NTRS)
Haisch, B. M.; Claflin, E. S.
1985-01-01
In the solar corona the opacities of some of the prominent X-ray emission lines are on the order of tau of about I over typical coronal path lengths. A particular solution of the radiative transfer problem involving an extended, spherically symmetric coronal shell radiating isotropic, homogeneous emission in which single-scattering also takes place is presented and discussed. Within the context of this simplified model, it is found that scattered radiation is an important contribution to the total emergent resonance line flux and that for the He-like family of resonance (r), intercombination (i), and forbidden (f) lines, the ratio G = (f + i)/r would decrease as a function of optical depth for disk-center emission in an extended spherically symmetric corona.
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
NASA Astrophysics Data System (ADS)
Kirschner, O.; Ruprecht, A.; Riedelbauch, S.
2014-03-01
In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.
Plate fin heat exchanger model with axial conduction and variable properites
NASA Astrophysics Data System (ADS)
Hansen, Benjamin Jacob; White, Michael Joseph; Klebaner, Arkadiy
2012-06-01
Future superconduction radio frequency (SRF) cavities, as part of Project X at Fermilab,will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchanger are an effective option. However, at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numberical model that includes the effects of axial guide design decisions on heat exhanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters.
A mathematical model of the controlled axial flow divider for mobile machines
NASA Astrophysics Data System (ADS)
Mulyukin, V. L.; Karelin, D. L.; Belousov, A. M.
2016-06-01
The authors give a mathematical model of the axial adjustable flow divider allowing one to define the parameters of the feed pump and the hydraulic motor-wheels in the multi-circuit hydrostatic transmission of mobile machines, as well as for example built features that allows to clearly evaluate the mutual influence of the values of pressure and flow on all input and output circuits of the system.
The symmetric six-vertex model and the Segre cubic threefold
NASA Astrophysics Data System (ADS)
Martins, M. J.
2015-08-01
In this paper we investigate the mathematical properties of the integrability of the symmetric six-vertex model towards the view of algebraic geometry. We show that the algebraic variety originated from Baxter’s commuting transfer method is birationally isomorphic to a ubiquitous threefold known as Segre cubic primal. This relation makes it possible to present the most generic solution for the Yang-Baxter triple associated to this lattice model. The respective R-matrix and Lax operators are parameterized by three independent affine spectral variables.
Five dimensional spherically symmetric cosmological model in Brans-Dicke theory of gravitation
NASA Astrophysics Data System (ADS)
Rao, V. U. M.; Jaysudha, V.
2015-08-01
In this paper, we consider the spherically symmetric space-time in five dimensions in Brans-Dicke (Phys. Rev. 124:925, 1961) theory of gravitation in the presence of perfect fluid distribution. A determinate solution of the highly non-linear field equations is presented using (i) relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained describes five dimensional radiating model in Brans-Dicke theory. Some physical and kinematical properties of the model are also discussed.
NASA Astrophysics Data System (ADS)
Reddy, D. R. K.; Raju, P.; Sobhanbabu, K.
2016-04-01
Five dimensional spherically symmetric space-time filled with two minimally interacting fields; matter and holographic dark energy components is investigated in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To obtain a determinate solution of the highly non-linear field equations we have used (i) a relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained represents a minimally interacting and radiating holographic dark energy model in five dimensional universe. Some physical and Kinematical properties of the model are, also, studied.
Discrete-vortex model for the symmetric-vortex flow on cones
NASA Technical Reports Server (NTRS)
Gainer, Thomas G.
1990-01-01
A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.
A model of unsteady spatially inhomogeneous flow in a radial-axial blade machine
NASA Astrophysics Data System (ADS)
Ambrozhevich, A. V.; Munshtukov, D. A.
A two-dimensional model of the gasdynamic process in a radial-axial blade machine is proposed which allows for the instantaneous local state of the field of flow parameters, changes in the set angles along the median profile line, profile losses, and centrifugal and Coriolis forces. The model also allows for the injection of cooling air and completion of fuel combustion in the flow. The model is equally applicable to turbines and compressors. The use of the method of singularities provides for a unified and relatively simple description of various factors affecting the flow and, therefore, for computational efficiency.
Double seesaw mechanism in a left-right symmetric model with TeV neutrinos
Almeida, F. M. L. Jr. de; Coutinho, Y. A.; Simoes, J. A. Martins; Ramalho, A. J.; Pinto, L. Ribeiro; Wulck, S.; Vale, M. A. B. do
2010-03-01
A left-right symmetric model is discussed with new mirror fermions and a Higgs sector with two doublets and neutral scalar singlets. The seesaw mechanism is generalized, including not only neutrino masses but also charged fermion masses. The spectrum of heavy neutrinos presents a second seesaw mass matrix and has neutrinos masses naturally in the TeV region. The model has very clear signatures for the new neutral vector gauge bosons. Two classes of models are discussed. New mirror neutrinos can be very light and a new Z{sup '} can be discriminated from other models by a very high invisible branching fraction. The other possibility is that mirror neutrinos can have masses naturally in the TeV region and can be produced through Z{sup '} decays into heavy neutrino pairs. Signatures and production processes for the model at the LHC energy are also presented.
Analysis of Growth and Decay Rates of the Axial Dipole in Geodynamo Models
NASA Astrophysics Data System (ADS)
Avery, M. S.; Constable, C.; Davies, C.; Gubbins, D.
2013-12-01
Observations of the Earth's magnetic field made at the surface reveal temporal variations in the field originating in the outer core. PADM2M is a reconstruction of the 0 to 2 Ma paleomagnetic axial dipole moment. Ziegler & Constable, 2011 showed that for periods longer than 25 kyr the rate of growth of the geomagnetic dipole is greater than its decay rate. This asymmetry is not limited to times when the field is reversing; this may be indicative of a key physical process of secular variation. To investigate the possible core processes underlying this observation we have analyzed a suite of numerical dynamo simulations, specifically the temporal variation of their axial dipole moments. We use the magnetic diffusion time to scale the simulations' nondimensional time, as this is more appropriate for the periods of interest here. An advantage to analyzing simulations is that they do not suffer from the same limitations in spatial and temporal resolution as the data; however, simulations cannot yet run with Earth-like rotational rates or diffusivities. All of our simulations span multiple diffusion times. We have chosen a broad range of simulations with different reversal regimes (dipole-dominated, non-reversing; dipole-dominated, reversing; multipolar, reversing) and with different heating modes (bottom, internal, or a combination of the two). For each simulation we conduct the same analysis that was applied to PADM2M. Families of smoothed axial dipole models are constructed using penalized smoothing splines as an effective low-pass filter to see at what timescales any asymmetry exist. The first derivatives of each axial dipole record are calculated in order to examine the rates of growth and decay. The results vary with the nature of the simulations. Further analysis is needed to determine what dynamo parameters, and related physical properties, determine the relative rates of growth and decay.
Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.
Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir
2013-04-12
Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC. PMID:25167249
Magnetic moment of the majorana neutrino in the left-right symmetric model
Boyarkin, O. M. Boyarkina, G. G.
2013-04-15
Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.
Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph
NASA Astrophysics Data System (ADS)
Korada, Satish Babu; Macris, Nicolas
2009-07-01
We consider a gauge symmetric version of the p-spin glass model on a complete graph. The gauge symmetry guarantees the absence of replica symmetry breaking and allows to fully use the interpolation scheme of Guerra (Fields Inst. Commun. 30:161, 2001) to rigorously compute the free energy. In the case of pairwise interactions ( p=2), where we have a gauge symmetric version of the Sherrington-Kirkpatrick model, we get the free energy and magnetization for all values of external parameters. Our analysis also works for even p≥4 except in a range of parameters surrounding the phase transition line, and for odd p≥3 in a more restricted region. We also obtain concentration estimates for the magnetization and overlap parameter that play a crucial role in the proofs for odd p and justify the absence of replica symmetry breaking. Our initial motivation for considering this model came from problems related to communication over a noisy channel, and is briefly explained.
Next-to-minimal R-symmetric model: Dirac gaugino, Higgs mass and invisible width
NASA Astrophysics Data System (ADS)
Nakano, Hiroaki; Yoshikawa, Masaki
2016-03-01
We study a singlet extension of the minimal {U(1)}_R symmetric model, which shares the nice properties of Dirac gauginos and the R-symmetric Higgs sector. At the same time, a superpotential coupling of an R-charged singlet to the Higgs doublets can make a substantial contribution to the Higgs boson mass. We show that the 125 GeV Higgs boson is consistent with perturbative unification, even if the SUSY scale is as low as 1 TeV and if the D-term Higgs potential is suppressed, as is often the case in Dirac gauginos. The model also contains a light scalar and fermion, a pseudo-modulus and pseudo-goldstino: The former gets its mass mainly from SUSY-breaking soft terms, in addition to a small explicit R-symmetry breaking for the latter. We examine how the Higgs mass and width are affected by these light degrees of freedom. Specifically, we find that, depending on the parameters of R-charged Higgses, a pseudo-moduli lighter than half of the Standard Model Higgs boson mass is still allowed by the constraints from invisible decays of the Z and Higgs bosons. We also find that such a light scalar can reduce the Higgs boson mass, at most by a few percents.
Effects of CDTT model on the dynamical instability of cylindrically symmetric collapsing stars
Kausar, Hafiza Rizwana
2013-01-01
We assume cylindrically symmetric stars which begin collapsing by dissipating energy in the form of heat flux. We wish to study the effects of Carroll-Duvvuri-Trodden-Turner (CDTT) model, f(R) = R+σμ{sup 4}/R, on the range of dynamical instability. For this purpose, perturbation scheme is applied to all the metric functions, material functions and f(R) model to obtain the full set of dynamical equation which control the evolution of the physical variables at the surface of a star. It is found that instability limit involves adiabatic index Γ which depends on the density profile and immense terms of perturbed CDTT model. In addition, model is constrained by some requirement, e.g. positivity of physical quantities. We also reduce our results asymptotically as μ→0, being the GR results in both the Newtonian and post Newtonian regimes.
Hydrogen turbines for space power systems: A simplified axial flow gas turbine model
NASA Technical Reports Server (NTRS)
Hudson, Steven L.
1988-01-01
Hydrogen cooled, turbine powered space weapon systems require a relatively simple, but reasonably accurate hydrogen gas expansion turbine model. Such a simplified turbine model would require little computational time and allow incorporation into system level computer programs while providing reasonably accurate volume/mass estimates. This model would then allow optimization studies to be performed on multiparameter space power systems and provide improved turbine mass and size estimates for the various operating conditions (when compared to empirical and power law approaches). An axial flow gas expansion turbine model was developed for these reasons and is in use as a comparative bench mark in space power system studies at Sandia. The turbine model is based on fluid dynamic, thermodynamic, and material strength considerations, but is considered simplified because it does not account for design details such as boundary layer effects, shock waves, turbulence, stress concentrations, and seal leakage. Although the basic principles presented here apply to any gas or vapor axial flow turbine, hydrogen turbines are discussed because of their immense importance on space burst power platforms.
Study of lepton flavor violation in flavor symmetric models for lepton sector
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Omura, Yuji; Takayama, Fumihiro; Yasuhara, Daiki
2015-10-01
Flavor symmetric model is one of the attractive Beyond Standard Models (BSMs) to reveal the flavor structure of the Standard Model (SM). A lot of efforts have been put into the model building and we find many kinds of flavor symmetries and setups are able to explain the observed fermion mass matrices. In this paper, we look for common predictions of physical observables among the ones in flavor symmetric models, and try to understand how to test flavor symmetry in experiments. Especially, we focus on the BSMs for leptons with extra Higgs SU(2) L doublets charged under flavor symmetry. In many flavor models for leptons, remnant symmetry is partially respected after the flavor symmetry breaking, and it controls well the Flavor Changing Neutral Currents (FCNCs) and suggests some crucial predictions against the flavor changing process, although the remnant symmetry is not respected in the full lagrangian. In fact, we see that τ - → e + μ - μ - ( μ + e - e -) and e + e - → τ + τ - ( μ - μ +) processes are the most important in the flavor models that the extra Higgs doublets belong to triplet representation of flavor symmetry. For instance, the stringent constraint from the μ → eγ process could be evaded according to the partial remnant symmetry. We also investigate the breaking effect of the remnant symmetry mediated by the Higgs scalars, and investigate the constraints from the flavor physics: the flavor violating τ and μ decays, the electric dipole moments, and the muon anomalous magnetic moment. We also discuss the correlation between FCNCs and nonzero θ 13, and point out the physical observables in the charged lepton sector to test the BSMs for the neutrino mixing.
Axially Symmetric Brans-Dicke-Maxwell Solutions
NASA Astrophysics Data System (ADS)
Chatterjee, S.
1981-05-01
Following a method of John and Goswami new solutions of coupled Brans-Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and prolate spheroidal coordinates for source-free gravitational field. All these solutions become Euclidean at infinity. The asymptotic behavior and the singularity of the solutions are discussed and a comparative study made with the corresponding Einstein-Maxwell solutions. The possibility of a very large red shift from the boundary of the spheroids is also discussed.
Model-size reduction technique for the analysis of symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, A. K.; Peters, J. M.
1985-01-01
A two-step computational procedure is presented for reducing the size of the analysis model for an anisotropic symmetric structure to that of the corresponding orthotropic structure. The key elements of the procedure are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic (anisotropic) parts; and (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The global approximation vectors are selected to be the solution corresponding to zero nonorthotropic matrix and its various-order derivatives with respect to an anisotropic tracing parameter (identifying the nonorthotropic material coefficients). The size of the analysis model used in generating the global approximation vectors is identical to that of the corresponding orthotropic structure. The effectiveness of the proposed technique is demonstrated by means of numerical examples and its potential for solving other quasi-symmetric problems is discussed.
Axial and diffusion models of the laser pulse propagation in a highly-scattering medium
Tereshchenko, Sergei A; Danilov, Arsenii A; Podgaetskii, Vitalii M; Vorob'ev, Nikolai S
2004-06-30
The propagation of laser radiation through a layer of a highly-scattering medium (HSM) is considered on the basis of two theoretical models: a nonstationary axial (two-flux) model and a nonstationary diffusion model. Analytic expressions for the temporal distributions of the photons of an ultrashort laser pulse transmitted through the HSM are presented. Experimental temporal distributions are used to obtain the parameters of models corresponding to an HSM, to determine the theoretical temporal distributions, and to compare them with the experimental curves. These two theoretical models are compared quantitatively for the first time. Their advantages and drawbacks that must be considered in the development of HSM transmission optical tomography are pointed out. (light scattering)
Relaxed singular vectors, Jack symmetric functions and fractional level sl ˆ (2) models
NASA Astrophysics Data System (ADS)
Ridout, David; Wood, Simon
2015-05-01
The fractional level models are (logarithmic) conformal field theories associated with affine Kac-Moody (super)algebras at certain levels k ∈ Q. They are particularly noteworthy because of several longstanding difficulties that have only recently been resolved. Here, Wakimoto's free field realisation is combined with the theory of Jack symmetric functions to analyse the fractional level sl ˆ (2) models. The first main results are explicit formulae for the singular vectors of minimal grade in relaxed Wakimoto modules. These are closely related to the minimal grade singular vectors in relaxed (parabolic) Verma modules. Further results include an explicit presentation of Zhu's algebra and an elegant new proof of the classification of simple relaxed highest weight modules over the corresponding vertex operator algebra. These results suggest that generalisations to higher rank fractional level models are now within reach.
Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway.
Zhao, Y; Brunskill, C T; Lieber, B B
1997-02-01
Steady inspiratory and expiratory flow in a symmetrically bifurcating airway model was studied numerically using the finite element method (FIDAP). Flows of Reynolds number of 500 and 1000 during inspiration and a flow of Reynolds number of 500 during expiration were analyzed. Since the geometry of the bifurcation model used in this study is exactly the same as the model used in the experimental studies, the computed results were compared to the experimental findings. Results show that most of the important flow features that were observed in the experiment, such as the skewed velocity profiles in the daughter branches during inspiration and velocity peak in the parent tube during expiration, were captured in the numerical simulation. Quantitatively, the computed velocity profiles are in good agreement with the measured profiles. This comparison validates the computational simulations. PMID:9083849
Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model
Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo
2012-01-01
Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.
Analytical modeling of the buffeting of a rod in axial flow. [PWR; BWR
Lin, W.H.; Wamsganss, M.W.
1981-12-01
Turbulent buffeting of a circular, flexible rod in axial flows is reported. The main excitation mechanisms are turbulent wall-pressure fluctuations and the motion-dependent force field caused by the rod motion. On the assumption that the turbulent wall-pressure fluctuations are independent of rod motion, a linear forced vibration model is proposed to compute the buffeting displacement of the rod with the aid of empirical constants determined from experimental measurements of wall-pressure fluctuations. Predicted and measured values of the root-mean-square rod displacement are shown to be in reasonably good agreement.
Scalar mesons in a linear sigma model with (axial-)vector mesons
Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.
2013-03-25
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.
Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1994-01-01
An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.
GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions
NASA Technical Reports Server (NTRS)
Axelrad, Penina; Reeh, Lisa
2002-01-01
This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.
3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model
Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah
2016-01-01
Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third
NASA Astrophysics Data System (ADS)
Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob
2016-08-01
Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different
Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions.
Sutton, Catherine C R; Franks, George V; da Silva, Gabriel
2015-01-01
The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution. PMID:25048288
Spectral and transport properties of the PT-symmetric dimer model
NASA Astrophysics Data System (ADS)
Vázquez-Candanedo, O.; Izrailev, F. M.; Christodoulides, D. N.
2015-08-01
We study the scattering properties of the PT-symmetric tight-binding model with balanced gain and loss parameters. Our main interest is to establish the link between the spectral properties of scattering states and transport characteristics for the case of non-equal couplings between gain/loss sites. The analytical approach we have used allows one to reveal a quite unexpected role of this set-up in comparison with that of equal couplings. In particular, we demonstrate that for the exceptional points characterized by equal eigenvalues of the transfer matrix, the transmission coefficient can be different from one in contrast with the model with equal couplings. The analytical results are complemented by the numerical data.
Lepton flavor violating τ decays in the left-right symmetric model
NASA Astrophysics Data System (ADS)
Akeroyd, A. G.; Aoki, Mayumi; Okada, Yasuhiro
2007-07-01
The left-right symmetric extension of the standard model with Higgs isospin triplets can provide neutrino masses via a TeV scale seesaw mechanism. The doubly charged Higgs bosons HL±± and HR±± induce lepton flavor violating decays τ±→lll at tree level via a coupling which is related to the Maki-Nakagawa-Sakata matrix (VMNS). We study the magnitude and correlation of τ±→lll and μ→eγ with specific assumptions for the origin of the large mixing in VMNS while respecting the stringent bound for μ→eee. It is also shown that an angular asymmetry for τ±→lll is sensitive to the relative strength of the HL±± and HR±± mediated contributions and provides a means of distinguishing models with doubly charged Higgs bosons.
A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster
Coche, P.; Garrigues, L.
2014-02-15
We have developed a two-dimensional Particle-In-Cell model in the azimuthal and axial directions of the Hall thruster. A scaling method that consists to work at a lower plasma density to overcome constraints on time-step and grid-spacing is used. Calculations are able to reproduce the breathing mode due to a periodic depletion of neutral atoms without the introduction of a supplementary anomalous mechanism, as in fluid and hybrid models. Results show that during the increase of the discharge current, an electron-cyclotron drift instability (frequency in the range of MHz and wave number on the order of 3000 rad s{sup −1}) is formed in the region of the negative gradient of magnetic field. During the current decrease, an axial electric wave propagates from the channel toward the exhaust (whose frequency is on the order of 400 kHz) leading to a broadening of the ion energy distribution function. A discussion about the influence of the scaling method on the calculation results is also proposed.
Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model
Sugiharto; Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Abidin, Zainal
2010-12-23
Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.
NASA Astrophysics Data System (ADS)
Cifra, M.; Havelka, D.; Deriu, M. A.
2011-12-01
Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.
Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model
NASA Astrophysics Data System (ADS)
Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Abidin, Zainal
2010-12-01
Radioactive tracer 82Br in the form of KBr-82 with activity ± 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.
Interpretation of the Palumbo model of two axial rotators in the microscopic approach
Filippov, G.F.; Dotsenko, I.S.
1994-12-01
The nuclear model of two axial rotators is interpreted as a generalization of the Elliott SU{sub 3} model. The basis of the latter is extended to the basis of the tensor product SU{sub 3} x SU{sub 3}. For this purpose, the second-order Casimir operator of the SU{sub 3} group is constructed, and its eigenfunctions are found in the explicit form. The probabilities of the isoscalar and isovector M1 and E2 electromagnetic transitions between nuclear states with the quantum numbers ({lambda},{mu}) = (2n,0) and ({lambda},{mu}) = (2n-2,1) are calculated using the microscopic wave functions of the model. The calculated values of the transition probabilities and widths of levels for {sup 8}Be and {sup 20}Ne nuclei are compared with the experimental data. 17 refs., 5 tabs.
Physically-based reduced order modelling of a uni-axial polysilicon MEMS accelerometer.
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties
Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab
2011-06-10
Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger
Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van
2015-08-14
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.
Comparative analysis of Bouc-Wen and Jiles-Atherton models under symmetric excitations
NASA Astrophysics Data System (ADS)
Laudani, Antonino; Fulginei, Francesco Riganti; Salvini, Alessandro
2014-02-01
The aim of the present paper is to validate the Bouc-Wen (BW) hysteresis model when it is applied to predict dynamic ferromagnetic loops. Indeed, although the Bouc-Wen model has had an increasing interest in last few years, it is usually adopted in mechanical and structural systems and very rarely for magnetic applications. Thus, for addressing this goal the Bouc-Wen model is compared with the dynamic Jiles-Atherton model that, instead, was ideated exactly for simulating magnetic hysteresis. The comparative analysis has involved saturated and symmetric hysteresis loops in ferromagnetic materials. In addition in order to identify the Bouc-Wen parameters a very effective recent heuristic, called Metric-Topological and Evolutionary Optimization (MeTEO) has been utilized. It is based on a hybridization of three meta-heuristics: the Flock-of-Starlings Optimization, the Particle Swarm Optimization and the Bacterial Chemotaxis Algorithm. Thanks to the specific properties of these heuristic, MeTEO allow us to achieve effective identification of such kind of models. Several hysteresis loops have been utilized for final validation tests with the aim to investigate if the BW model can follow the different hysteresis behaviors of both static (quasi-static) and dynamic cases.
Flow field visualization about external axial corners
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1978-01-01
An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.
NASA Astrophysics Data System (ADS)
Fraternali, Fernando; Carpentieri, Gerardo; Amendola, Ada
2015-01-01
We study the geometrically nonlinear behavior of uniformly compressed tensegrity prisms through fully elastic and rigid-elastic models. The given models predict a variety of mechanical behaviors in the regime of large displacements, including an extreme stiffening-type response, already known in the literature, and a newly discovered, extreme softening behavior. The latter may lead to a snap buckling event producing an axial collapse of the structure. The switching from one mechanical regime to another depends on the aspect ratio of the structure, the magnitude of the applied prestress, and the material properties of the constituent elements. We discuss potential mechanical and acoustic applications of such behaviors, which are related to the design and manufacture of tensegrity lattices and innovative metamaterials.
Modelling of stiffness degradation due to cracking in laminates subjected to multi-axial loading.
Kashtalyan, M; Soutis, C
2016-07-13
The paper presents an analytical approach to predicting the effect of intra- and interlaminar cracking on residual stiffness properties of the laminate, which can be used in the post-initial failure analysis, taking full account of damage mode interaction. The approach is based on a two-dimensional shear lag stress analysis and the equivalent constraint model of the laminate with multiple damaged plies. The application of the approach to predicting degraded stiffness properties of multidirectional laminates under multi-axial loading is demonstrated on cross-ply glass/epoxy and carbon/epoxy laminates with transverse and longitudinal matrix cracks and crack-induced transverse and longitudinal delaminations. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242290
Critical dynamics of the O(n)-symmetric relaxational models below the transition temperature
NASA Astrophysics Data System (ADS)
Täuber, U. C.; Schwabl, F.
1992-08-01
The critical dynamics of the O(n)-symmetric relaxational models with either nonconserved (model A) or conserved order parameter (model B) are studied below the transition temperature. As a consequence of Goldstone's theorem, the transverse modes are massless, implying infrared divergences in the theory along the entire coexistence curve. These Goldstone singularities can be treated within the field-theoretical formulation of the dynamical renormalization group by using the generalized regularization scheme as introduced by Amit and Goldschmidt, which has already been applied on the statics of the φ4 model below Tc by Lawrie. We extend the formalism in several respects: (i) we generalize it to dynamical phenomena, (ii) taking advantage of the fact that the theory is exactly treatable in the coexistence limit, we do not use the ɛ expansion; (iii) the flow equations are solved numerically, thus allowing for a detailed description of the crossover from the critical isotropic Heisenberg fixed point to the infrared-stable coexistence fixed point. We calculate the static susceptibilities as well as the dynamical correlation functions for models A and B within the complete crossover region, identifying the asymptotic coexistence anomalies and also a pronounced intermediate minimum of the effective critical exponents. Furthermore, the longitudinal dynamical correlation function GL(q,ω) displays an anomalous line shape.
A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses
NASA Astrophysics Data System (ADS)
Hristov, Dimitre; Maltz, Jonathan
2008-02-01
A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy.
The Effect of Cumulus Momentum Mixing on the Development of a Symmetric Model Hurricane.
NASA Astrophysics Data System (ADS)
Challa, Malakondayya; Pfeffer, Richard L.
1984-04-01
The effect of the vertical transport of horizontal momentum by cumulus clouds on the development of a symmetric model hurricane is investigated. This is accomplished by using Sundqvist's symmetric hurricane model with parameterized cumulus friction. The scheme used to include cumulus friction in the model is essentially the same as that given by Stevens and Lindzen in 1978 and Lindzen in 1981. The results of two sets of numerical integrations are presented. In one, the initial wind and moisture distributions were derived from atmospheric observations in Atlantic intensifying cyclones as composited by McBride. In the other, the initial vortex was specified as that which corresponds to the linearly most unstable mode in Mak's 1980 linear analysis of the effect of cumulus friction on hurricane formation. Given each initial wind, temperature and moisture distribution, numerical integrations were performed with and without cumulus friction present in the model.With cumulus friction included, the growth rates of the initial disturbances and their final intensities are smaller than those obtained in the absence of cumulus friction. The Atlantic intensifying cyclone with cumulus friction reaches storm strength, whereas without cumulus friction it develops into a hurricane. In the second pair of numerical integrations with the initial vortex specified as described above, the model develops hurricanes with and without cumulus frictions, but the rate of intensification and final strength of the vortex are significantly smaller when cumulus friction is included. The damping effect of cumulus friction is attributed to the fact that the angular momentum transported from the lower into the upper troposphere by cumulus mixing is not fully replenished in the lower troposphere by the cumulus induced secondary (radial) circulation. This contrasts with the effect of the inward eddy flux of momentum, reported on previously, which was found to enhance the intensification of hurricanes
Botelho, L.C.L.
1985-03-15
We study a two-dimensional quantum field model with axial-vector-current--pseudoscalar derivative interaction using path-integral methods. We construct an effective Lagrangian by performing a chiral change in the fermionic variables leading to an exact solution of the model.
Effects of fluid viscoelasticity on the performance of an axial blood pump model.
Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan
2012-01-01
An aqueous Xanthan gum solution (XGS) was used as blood analog fluid to explore the influence of fluid viscoelasticity on the performance of an axial blood pump model. For comparison, a 39 wt% Newtonian aqueous glycerin solution (GS), the common fluid in blood pump tests, was also used as a working fluid. The experimental results showed that a higher head curve was obtained using XGS in the pump than using GS. The heads of the XGS that were computed using the viscoelastic turbulence model agreed well with the measured data. In contrast, the standard k-ε turbulence model failed to provide satisfactory predictions for the XGS. The computational results revealed that in most parts of the pump model flow fields, the Reynolds shear stress values and turbulent dissipation rates of the XGS were all lower than those of the GS. The hemolysis index of the pump model using the XGS was calculated to be only one-third of that using the GS. PMID:22210649
Viscous throughflow modeling of axial compressor bladerows using a tangential blade force hypothesis
Gallimore, S.J.
1998-10-01
This paper describes the modeling of axial compressor blade rows in an axisymmetric viscous throughflow method. The basic method, which has been reported previously, includes the effects of spanwise mixing, using a turbulent diffusion model, and endwall shear within the throughflow calculation. The blades are modeled using a combination of existing two-dimensional blade performance predictions for loss and deviation away from the annulus walls and a novel approach using tangential blade forces in the endwall regions. Relatively simple assumptions about the behavior of the tangential static pressure force imposed by the blades allow the secondary deviations produced by tip clearance flows and the boundary layer flows at fixed blade ends to be calculated in the axisymmetric model. Additional losses are assigned in these regions based on the calculated deviations. The resulting method gives realistic radial distributions of loss and deviation across the whole span at both design and off-design operating conditions, providing a quick method of estimating the magnitudes of these effects in the preliminary design process. Results from the method are compared to measured data in low and high-speed compressors and multistage three-dimensional viscous CFD predictions.
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Salvail, J. R.
1984-01-01
A generalized model for short period comets is developed which integrates in a fairly rigorous manner the isolation history of regions on rotating comets with specified axial orientation and the complex feedback processes involving heat, gas and dust transport, dust mantle development and coma opacity. Attention is focused on development, reconfiguration and partial or complete launching of dust mantles and the reciprocal effects of these three processes on ice surface temperature and gas and dust production. The dust mantle controls the H2O flux not only by its effect on the temperature at the ice interface but (dominantly) by its dynamic stability which strongly influences vapor diffusivity. The model includes the effects of latitude, rotation and spin axis orientation are included and applied to an initially homogeneous sphere of H2O ice and silicate using the orbital parameters of comet Encke. Numerous variations of the model, using combinations of grain size distribution, dust-to-ice ratio, latitude and spin axis orientation, are presented and discussed. Resulted for a similar nonrotating, constant Sun orientation models are also included.
Jarvis, Peter D; Sumner, Jeremy G
2016-08-01
We consider the continuous-time presentation of the strand symmetric phylogenetic substitution model (in which rate parameters are unchanged under nucleotide permutations given by Watson-Crick base conjugation). Algebraic analysis of the model's underlying structure as a matrix group leads to a change of basis where the rate generator matrix is given by a two-part block decomposition. We apply representation theoretic techniques and, for any (fixed) number of phylogenetic taxa L and polynomial degree D of interest, provide the means to classify and enumerate the associated Markov invariants. In particular, in the quadratic and cubic cases we prove there are precisely [Formula: see text] and [Formula: see text] linearly independent Markov invariants, respectively. Additionally, we give the explicit polynomial forms of the Markov invariants for (i) the quadratic case with any number of taxa L, and (ii) the cubic case in the special case of a three-taxon phylogenetic tree. We close by showing our results are of practical interest since the quadratic Markov invariants provide independent estimates of phylogenetic distances based on (i) substitution rates within Watson-Crick conjugate pairs, and (ii) substitution rates across conjugate base pairs. PMID:26660305
Flavor constraints on the Two Higgs Doublet Models of Z 2 symmetric and aligned types
NASA Astrophysics Data System (ADS)
Enomoto, Tetsuya; Watanabe, Ryoutaro
2016-05-01
We give a comprehensive study from flavor observables of π, K, D ( s), and B ( s) mesons for limiting the Two Higgs Doublet Models (2HDMs) with natural flavor conservation, namely, Z 2 symmetric (type I, II, X, Y) and aligned types of models. With use of updated theoretical predictions and experimental analyses of B → τν, D → μν, D s → τν, D s → μν, K → μν, π → μν, B s 0 → μ + μ -, B d 0 → μ + μ -, τ → Kν, τ → π ν, overline{B}to {X}_sγ , K- overline{K} mixing, {B}_d^0- {overline{B}}_d^0 mixing, and {B}_s^0- {overline{B}}_s^0 mixing, we obtain constraints on the parameters in the 2HDMs. To calculate the constraints, we pay attention to a determination of CKM matrix elements and re-fit them to experimental data so that new contributions from additional Higgs bosons do not affect the determination. As a result, we find that the charged Higgs boson mass less than around 490 GeV is ruled out from overline{B}to {X}_sγ in the type II and Y models, whereas large tan β is excluded from B s 0 → μ + μ - in the type II. We also see that severe constraints on the mass and couplings are put from overline{B}to {X}_sγ , B s 0 → μ + μ -, and {B}_s^0- {overline{B}}_s^0 in the aligned model. In addition, we discuss excesses of observables in the muon anomalous magnetic moment and the semi-tauonic B meson decays in the context of the 2HDM, and find that the aligned model can explain part of the excesses, compatible with the other constraints.
Ramond, P. . Dept. of Physics)
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Ramond, P.
1993-04-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Parametric modeling and stagger angle optimization of an axial flow fan
NASA Astrophysics Data System (ADS)
Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.
2013-12-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389
Alvarez, R.; Alves, L. L.
2007-05-15
This paper presents a two-dimensional electromagnetic model for a microwave (2.45 GHz) plasma reactor operated by an axial injection torch. The model solves Maxwell's equations, adopting a harmonic time description and considering the collision dispersion features of the plasma. Perfect-conductor boundary conditions are satisfied at the reactor walls, and absorbing boundary conditions are used at the open end of the coaxial waveguide powering the system. Simulations yield the distribution of the electromagnetic fields and the average power absorbed by the system for a given spatial profile of the plasma density (tailored from previous experimental measurements), with maximum values in the range 10{sup 14}-10{sup 15} cm{sup -3}. Model results reveal that the system exhibits features similar to those of an air-filled, one-end-shorted circular metal waveguide, supporting evanescent or oscillatory solutions for radial dimensions below or above a critical radius, respectively. Results also show that the fractional average power absorbed by the plasma is strongly influenced by the system dimensions, which play a major role in defining the geometry pattern of the electromagnetic field distribution. Simulations are used to provide general guidelines for device optimization.
Khan, Usman; Falconi, Christian
2014-01-01
Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214
An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates
Khan, Usman; Falconi, Christian
2014-01-01
Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h). The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature) and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication. PMID:24763214
NASA Astrophysics Data System (ADS)
Xu, Limei; Buldyrev, Sergey V.; Angell, C. Austen; Stanley, H. Eugene
2006-09-01
Using molecular dynamics simulations, we study the Jagla model of a liquid which consists of particles interacting via a spherically symmetric two-scale potential with both repulsive and attractive ramps. This potential displays anomalies similar to those found in liquid water, namely expansion upon cooling and an increase of diffusivity upon compression, as well as a liquid-liquid (LL) phase transition in the region of the phase diagram accessible to simulations. The LL coexistence line, unlike in tetrahedrally coordinated liquids, has a positive slope, because of the Clapeyron relation, corresponding to the fact that the high density phase (HDL) is more ordered than low density phase (LDL). When we cool the system at constant pressure above the critical pressure, the thermodynamic properties rapidly change from those of LDL-like to those of HDL-like upon crossing the Widom line. The temperature dependence of the diffusivity also changes rapidly in the vicinity of the Widom line, namely the slope of the Arrhenius plot sharply increases upon entering the HDL domain. The properties of the glass transition are different in the two phases, suggesting that the less ordered phase is fragile, while the more ordered phase is strong, which is consistent with the behavior of tetrahedrally coordinated liquids such as water silica, silicon, and BeF2 .
Explaining the diphoton excess in alternative left-right symmetric model
NASA Astrophysics Data System (ADS)
Hati, Chandan
2016-04-01
We propose a possible explanation for the recent diphoton excess reported by ATLAS and CMS Collaborations at around a 750 GeV diphoton invariant mass within the framework of the E6-motivated alternative left-right symmetric model, which is capable of addressing the B decay anomalies in the flavor sector, the e e j j and e pTj j excesses reported by CMS in run 1 of the LHC, and high-scale leptogenesis. We find that gluon-gluon fusion can give the observed production rate of the 750 GeV resonance, n ˜, through a loop of scalar leptoquarks (h˜(c )) with a mass below a few TeV range, while n ˜ can subsequently decay into a γ γ final state via loops of h˜(c ) and E˜(c ). Interestingly, the slepton (E˜ (c )) loop can enhance the diphoton branching ratio significantly to successfully explain the observed cross section of the diphoton signal.
Theoretical constraints on masses of heavy particles in Left-Right symmetric models
NASA Astrophysics Data System (ADS)
Chakrabortty, J.; Gluza, J.; Jeliński, T.; Srivastava, T.
2016-08-01
Left-Right symmetric models with general gL ≠gR gauge couplings which include bidoublet and triplet scalar multiplets are studied. Possible scalar mass spectra are outlined by imposing Tree-Unitarity, and Vacuum Stability criteria and also using the bounds on neutral scalar masses MHFCNC which assure the absence of Flavour Changing Neutral Currents (FCNC). We are focusing on mass spectra relevant for the LHC analysis, i.e., the scalar masses are around TeV scale. As all non-standard heavy particle masses are related to the vacuum expectation value (VEV) of the right-handed triplet (vR), the combined effects of relevant Higgs potential parameters and MHFCNC regulate the lower limits of heavy gauge boson masses. The complete set of Renormalization Group Evolutions for all couplings are provided at the 1-loop level, including the mixing effects in the Yukawa sector. Most of the scalar couplings suffer from the Landau poles at the intermediate scale Q ∼106.5 GeV, which in general coincides with violation of the Tree-Unitarity bounds.
Higgs mass, superconnections, and the TeV-scale left-right symmetric model
NASA Astrophysics Data System (ADS)
Aydemir, Ufuk; Minic, Djordje; Sun, Chen; Takeuchi, Tatsu
2015-02-01
We discuss the physical implications of formulating the Standard Model (SM) in terms of the superconnection formalism involving the superalgebra s u (2 /1 ). In particular, we discuss the prediction of the Higgs mass according to the formalism and point out that it is ˜170 GeV , in clear disagreement with experiment. To remedy this problem, we extend the formalism to the superalgebra s u (2 /2 ), which extends the SM to the left-right symmetric model (LRSM) and accommodates a ˜126 GeV Higgs boson. Both the SM in the s u (2 /1 ) case and the LRSM in the s u (2 /2 ) case are argued to emerge at ˜4 TeV from an underlying theory in which the spacetime geometry is modified by the addition of a discrete extra dimension. The formulation of the exterior derivative in this model space suggests a deep connection between the modified geometry, which can be described in the language of noncommutative geometry, and the spontaneous breaking of the gauge symmetries. The implication is that spontaneous symmetry breaking could actually be geometric/quantum gravitational in nature. The nondecoupling phenomenon seen in the Higgs sector can then be reinterpreted in a new light as due to the mixing of low energy (SM) physics and high energy physics associated with quantum gravity, such as string theory. The phenomenology of a TeV scale LRSM is also discussed, and we argue that some exciting discoveries may await us at the LHC, and other near-future experiments.
NASA Technical Reports Server (NTRS)
Ratkiewicz, R.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
Large-scale fluctuations in the solar wind plasma upstream of the heliospheric termination shock (TS) will cause inward and outward motions of the shock. Using numerical techniques, we extend an earlier strictly one-dimensional (planar) analytic gas dynamic model to spherical symmetry to investigate the features of global behavior of shock motion. Our starting point is to establish a steady numerical solution of the gasdynamic equations describing the interaction between the solar wind and the interstellar medium. We then introduce disturbances of the solar wind dynamic pressure at an inner boundary, and follow the subsequent evolution of the system, especially the motion of the termination shock. Our model solves spherically symmetric gasdynamic equations as an initial-boundary value problem. The equations in conservative form are solved using a fully implicit Total Variation Diminishing (TVD) upwind scheme with Roe-type Riemann solver. Boundary conditions are given by the solar wind parameters on an inner spherical boundary, where they are allowed to vary with time for unsteady calculations, and by a constant pressure (roughly simulating the effect of the local interstellar medium) on an outer boundary. We find that immediately after the interaction, the shock moves with speeds given by the earlier analogous analytic models. However, as the termination shock propagates it begins to slow down, seeking a new equilibrium position. In addition, the disturbance transmitted through the TS, either a shock or rarefaction wave, will encounter the heliopause boundary and be reflected back. The reflected signal will encounter the TS, causing it to oscillate. The phenomenon may be repeated for a number of reflections, resulting in a "ringing" of the outer heliosphere.
Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators
NASA Astrophysics Data System (ADS)
Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.
2015-04-01
The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.
Finite element modelling of process-integrated powder coating by radial axial rolling of rings
Frischkorn, J.; Kebriaei, R.; Reese, S.; Moll, H.; Theisen, W.; Husmann, T.; Meier, H.
2011-05-04
The process-integrated powder coating by radial axial rolling of rings represents a new hybrid production technique applied in the manufacturing of large ring-shaped work pieces with functional layers. It is thought to break some limitations that come along with the hot isostatic pressing (HIP) which is used nowadays to apply the powdery layer material onto the rolled substrate ring. Within the new process the compaction of the layer material is integrated into the ring rolling and HIP becomes dispensable. Following this approach the rolling of such compound rings brings up some new challenges. The volume of a solid ring stays nearly constant during the rolling. This behaviour can be exploited to determine the infeed of the rollers needed to reach the desired ring shape. Since volume consistency cannot be guaranteed for the rolling of a compound ring the choice of appropriate infeed of the rollers is still an open question. This paper deals with the finite element (FE) simulation of this new process. First, the material model that is used to describe the compaction of the layer material is shortly reviewed. The main focus of the paper is then put on a parameterized FE ring rolling model that incorporates a control system in order to stabilize the process. Also the differences in the behaviour during the rolling stage between a compound and a solid ring will be discussed by means of simulation results.
NASA Astrophysics Data System (ADS)
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
NASA Astrophysics Data System (ADS)
Lozowski, E. P.; D'Amours, R.
1980-08-01
A model of spherical hailstone growth thermodynamics is presented, and used to examine the validity of the continuous growth and heat balance assumptions frequently employed in the `classical' hail growth models. The model is similar to the spherically symmetric model formulated by Macklin and Payne (1969), but solutions to the model equations are obtained by means of finite-difference numerical methods. In the model, we do not try to simulate the discrete accretion process of individual drops. Instead, we attempt to identify the implications of the discrete, time-dependent nature of the icing process, by examining the accretion of a thin uniform layer of supercooled water over the entire surface of the sphere. The heat transfer equations both with the air and within the hailstone axe then solved assuming radial symmetry. By the addition of several such layers, the finite growth of a spherical hailstone can be simulated. In the present paper, only growth in constant ambient conditions is considered. It is shown that there are large internal heat fluxes during the interval between the accretion of successive layers (typically 1 s), which cause the temperatures near the surface to oscillate several degrees above and below their time-mean value. Nevertheless, the time-averaged temperature over an accretion cycle is almost uniform throughout the hailstone and, when the environmental conditions are constant, is approximately equal to the equilibrium surface temperature predicted by the `classical' models. As the hailstone grows under constant environmental conditions, it continually adapts to the classical equilibrium temperature, warming up almost uniformly throughout. The time scale for this adjustment to a quasi-equilibrium state is found to be of the order of the internal diffusive time scale R2/k. It is speculated therefore that if the environmental conditions change slowly (over time scales large compared with R2/k) the hailstone thermodynamics will be adequately
Magné, Joëlle; Huneau, Jean-François; Borderie, Didier; Mathé, Véronique; Bos, Cécile; Mariotti, François
2015-09-01
Hyperhomocysteinemia induces vascular endothelial dysfunction, an early hallmark of atherogenesis. While higher levels of circulating asymmetric dimethylarginine (ADMA) and symmetric dimethyl arginine (SDMA), endogenous inhibitors of nitric oxide synthesis, have been associated with increased cardiovascular risk, the role that ADMA and SDMA play in the initiation of hyperhomocysteinemia-induced endothelial dysfunction remains still controversial. In the present study, we studied the changes of circulating ADMA and SDMA in a rat model of acutely hyperhomocysteinemia-induced endothelial dysfunction. In healthy rats, endothelium-related vascular reactivity (measured as acetylcholine-induced transient decrease in mean arterial blood pressure), plasma ADMA and SDMA, total plasma homocysteine (tHcy), cysteine and glutathione were measured before and 2, 4 and 6 h after methionine loading or vehicle. mRNA expression of hepatic dimethylarginine dimethylaminohydrolase-1 (DDAH1), a key protein responsible for ADMA metabolism, was measured 6 h after the methionine loading or the vehicle. Expectedly, methionine load induced a sustained increase in tHcy (up to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reactivity compared to the baseline values. Plasma ADMA and SDMA decreased transiently after the methionine load. Hepatic mRNA expression of DDAH1, cathepsin D, and ubiquitin were significantly lower 6 h after the methionine load than after the vehicle. The absence of an elevation of circulating ADMA and SDMA in this model suggests that endothelial dysfunction induced by acute hyperhomocysteinemia cannot be explained by an up-regulation of protein arginine methyltransferases or a down-regulation of DDAH1. In experimental endothelial dysfunction induced by acute hyperhomocysteinemia, down-regulation of the proteasome is likely to dampen the release of ADMA and SDMA in the circulation. PMID:25792109
NASA Astrophysics Data System (ADS)
Kaneko, Y.; Shearer, P. M.
2014-12-01
Earthquake stress drops are often estimated from far-field body-wave spectra using measurements of seismic moment, corner frequency, and a specific theoretical model of rupture behavior. Perhaps, the most widely-used model is from Madariaga (1976), who performed finite-difference calculations for a singular crack radially expanding at a constant speed and showed that fc=kβ/afc = k beta/a, where fcfc is spherically averaged corner frequency, βbeta is the shear-wave speed, aa is the radius of the circular source, and kk = 0.32 and 0.21 for P and S waves, respectively, assuming the rupture speed VrVr = 0.9βbeta. Since stress in the Madariaga model is singular at the rupture front, the finite mesh size and smoothing procedures may have affected the resulting corner frequencies. Here we investigate the behavior of source spectra derived from dynamic models of radially expanding rupture with a cohesive zone that prevents a stress singularity at the rupture front. We find that in the small-scale yielding limit where the cohesive-zone size becomes much smaller than the source dimension, P- and S-wave corner frequencies of far-field body-wave spectra are systematically larger than those predicted by Madariaga (1976). In particular, the model with rupture speed VrVr = 0.9βbeta shows that kk = 0.38 for P waves and kk = 0.26 for S waves, which are 19 and 24 percent larger, respectively, than those of Madariaga (1976). Thus for these ruptures, the application of the Madariaga model overestimates stress drops by a factor of 1.7. We further address the validity of a standard assumption on a symmetrical circular source applied to real earthquakes. Our results suggest that up to a factor of two differences in the spherical average of corner frequencies are expected simply from the variability in source geometry and rupture styles, translating into a factor of eight differences in estimated stress drops. In addition, the large dependence of corner frequency on take-off angle
... Site-specific Modules Resources Archived Modules Updates Axial Skeleton (80 bones) Skull (28) Cranial Bones Parietal (2) ... Sternum (1) Ribs (24) « Previous (Divisions of the Skeleton) Next (Appendicular Skeleton (126 bones)) » Contact Us | Privacy ...
NASA Astrophysics Data System (ADS)
Rama, María. Angeles; Pérez, María. Victoria; Bao, Carmen; Flores-Arias, María. Teresa; Gómez-Reino, Carlos
2005-05-01
Gradient-index (GRIN) models of the human lens have received wide attention in optometry and vision sciences for considering the effect of inhomogeneity of the refractive index on the optical properties of the lens. This paper uses the continuous asymmetric bi-elliptical model to determine analytically cardinal elements, magnifications and refractive power of the lens by the axial and field rays in order to study the paraxial light propagation through the human lens from its GRIN nature.
Critical exponents for a three-dimensional O([ital n])-symmetric model with [ital n][gt]3
Antonenko, S.A.; Sokolov, A.I. )
1995-03-01
Critical exponents for the three-dimensional O([ital n])-symmetric model with [ital n][gt]3 are estimated on the basis of six-loop renormalization-group (RG) expansions. A simple Pade-Borel technique is used for the resummation of the RG series and the Pade approximants [[ital L]/1] are shown to give rather good numerical results for all calculated quantities. For large [ital n], the fixed point location [ital g][sub [ital c
NASA Astrophysics Data System (ADS)
Magnucka-Blandzi, Ewa
2016-06-01
The study is devoted to stability of simply supported beam under axial compression. The beam is subjected to an axial load located at any point along the axis of the beam. The buckling problem has been desribed and solved mathematically. Critical loads have been calculated. In the particular case, the Euler's buckling load is obtained. Explicit solutions are given. The values of critical loads are collected in tables and shown in figure. The relation between the point of the load application and the critical load is presented.
A simple model simulating a fan as a source of axial and circumferential body forces
Energy Science and Technology Software Center (ESTSC)
2002-07-01
This software can be used in a computational fluids dynamics (CFD) code to represent a fan as a source of axial and circumferential body forces. The combined software can be used effectively in car design analyses that involve many underhood thermal management simulations. FANMOD uses as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades, and predicts the body forces generated by the fan inmore » the axial and circumferential directions. These forces can be used as momentum forces in a CFD code to simulate the effect of the fan in an underhood thermal management simulation.« less
Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations.
Bimurzaev, Seitkerim B; Serikbaeva, Gulnur S; Yakushev, Evgeniy M
2003-01-01
Computational formulae for the coefficients of the third-order spherical aberration and the second-order axial chromatic aberration are presented for an axially symmetric electrostatic electron mirror. A technique for eliminating the high-order derivatives of the potential axial distribution in mirror systems from the integrands is described. Conditions for elimination of spherical and axial chromatic aberrations, either separately or simultaneously, are found for a three-electrode axially symmetric mirror composed of coaxial cylinders of the same diameter. A principal scheme of the transmission electron microscope, where an electrostatic electron mirror serves as its objective, is presented. PMID:14599097
Reactive control of subsonic axial fan noise in a duct.
Liu, Y; Choy, Y S; Huang, L; Cheng, L
2014-10-01
Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical. PMID:25324066
NASA Technical Reports Server (NTRS)
Chin, S.; Lan, C. Edward
1988-01-01
An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.
NASA Astrophysics Data System (ADS)
Penotti, Fabio E.; Cooper, David L.
2015-07-01
We examine the symmetry properties of spin-coupled (or full generalised valence bond) wavefunctions for C2H2 and N2. The symmetry-separated (σ,π) and bent-bond (ω) solutions are totally symmetric only in the D4h and D3h subgroups of D∞h, respectively. Two fairly different strategies are explored for imposing full cylindrical symmetry, with one of them (small nonorthogonal configuration interaction calculations involving rotated versions of the wavefunction) turning out to be somewhat preferable on energetic grounds to the other one (application of additional spin constraints to a single spatial configuration). It is also shown that mixing together the cylindrically symmetric symmetry-separated and bent-bond spin-coupled models leads to relatively small energy improvements unless the valence orbitals in each type of configuration are reoptimised.
Molecular Modeling of the Axial and Circumferential Elastic Moduli of Tubulin
Zeiger, A. S.; Layton, B. E.
2008-01-01
Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α- and β-bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for α- and 460 MPa for β-structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 ± 0.14 GPa for α-tubulin structures and 1.39 ± 0.68 GPa for β-tubulin. Circumferentially the α- and β-moduli were 936 ± 216 MPa and 658 ± 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components. PMID:18621829
Users manual and modeling improvements for axial turbine design and performance computer code TD2-2
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.
Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir; Sharif-Kashani, Shervin
2016-08-01
Clarifying the complex interaction between mechanical and biological processes in healthy and diseased conditions requires constitutive models for arterial walls. In this study, a mathematical model for the displacement of the carotid artery wall in the longitudinal direction is defined providing a satisfactory representation of the axial stress applied to the arterial wall. The proposed model was applied to the carotid artery wall motion estimated from ultrasound image sequences of 10 healthy adults, and the axial stress waveform exerted on the artery wall was extracted. Consecutive ultrasonic images (30 frames per second) of the common carotid artery of 10 healthy subjects (age 44 ± 4 year) were recorded and transferred to a personal computer. Longitudinal displacement and acceleration were extracted from ultrasonic image processing using a block-matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation for thin-walled tubes. Performance of the proposed model was evaluated using goodness of fit between approximated and measured longitudinal displacement statistics. Values of goodness-of-fit statistics indicated high quality of fit for all investigated subjects with the mean adjusted R-square (0.86 ± 0.08) and root mean squared error (0.08 ± 0.04 mm). According to the results of the present study, maximum and minimum axial stresses exerted on the arterial wall are 1.7 ± 0.6 and -1.5 ± 0.5 kPa, respectively. These results reveal the potential of this technique to provide a new method to assess arterial stress from ultrasound images, overcoming the limitations of the finite element and other simulation techniques. PMID:26563198
Chai, Jee Won; Lee, Joon Woo; Kim, Su-Jin; Hong, Sung Hwan
2016-01-01
Objective To evaluate T2 relaxation time change using axial T2 mapping in a rabbit degenerated disc model and determine the most correlated variable with histologic score among T2 relaxation time, disc height index, and Pfirrmann grade. Materials and Methods Degenerated disc model was made in 4 lumbar discs of 11 rabbits (n = 44) by percutaneous annular puncture with various severities of an injury. Lumbar spine lateral radiograph, MR T2 sagittal scan and MR axial T2 mapping were obtained at baseline and 2 weeks and 4 weeks after the injury in 7 rabbits and at baseline and 2 weeks, 4 weeks, and 6 weeks after the injury in 4 rabbits. Generalized estimating equations were used for a longitudinal analysis of changes in T2 relaxation time in degenerated disc model. T2 relaxation time, disc height index and Pfirrmann grade were correlated with the histologic scoring of disc degeneration using Spearman's rho test. Results There was a significant difference in T2 relaxation time between uninjured and injured discs after annular puncture. Progressive decrease in T2 relaxation time was observed in injured discs throughout the study period. Lower T2 relaxation time was observed in the more severely injured discs. T2 relaxation time showed the strongest inverse correlation with the histologic score among the variables investigated (r = -0.811, p < 0.001). Conclusion T2 relaxation time measured with axial T2 mapping in degenerated discs is a potential method to assess disc degeneration. PMID:26798222
Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu
2014-11-07
A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulation results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.
NASA Astrophysics Data System (ADS)
Radons, Günter
2008-06-01
The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.
Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli
2015-01-01
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention. PMID:25266627
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Technical Reports Server (NTRS)
Betz, A
1944-01-01
Improvements, however, have been attained which permit a shortening of the structure without any impairment of the efficiency. The axial supercharger has a better efficiency and a simpler design than the radial supercharger. The relatively narrow range in which it operates satisfactorily should not be a very disturbing factor for practical flight problems. The length of this type of supercharger may be reduced considerably if some impairment in the efficiency is permitted.
NASA Astrophysics Data System (ADS)
Algar, C. K.
2015-12-01
Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.
NASA Astrophysics Data System (ADS)
Wang, Xiaojuan; Tse, Peter W.; Dordjevich, Alexandar
2011-02-01
The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert-Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Rega, Giuseppe; Saetta, Eduardo
2012-06-01
Moving from a general plate theory, a modified general classical laminated plate theory (MGCLPT) exhibiting nonlinear curvatures but still allowing for some worth features of linear curvature models (von Karman) is formulated. Starting from MGCLPT partial differential equations, a minimal discretized model suitable for the analysis of resonant finite-amplitude vibrations of symmetric cross-ply laminates, with immovable or movable supports, is obtained via the Galerkin procedure. Periodic responses of a single-mode model and of a 3:1 internally resonant two-mode model excited at primary resonance are obtained via the multiple time scale method. The influence of various system parameters (thickness ratio, plate aspect, number of laminae, kind of material, mode number) is addressed, and the comparison of nonlinear vibration results as obtained with the MGCLPT and the von Karman models for different boundary conditions shows some interesting differences.
Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-04-01
The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed into that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.
NASA Astrophysics Data System (ADS)
Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean
2003-09-01
The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.
Integrability and symmetric spaces
Ferreira, L.A.
1989-01-01
It is shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a Fundamental Poisson bracket Relation, and consequently charges in involution, is that it must be a symmetric space. The conditions, a Hamiltonian, or any functions of the canonical variables, has to satisfy in order to commute with these charges, are studied. It is show that, for the case of the noncompact symmetric spaces, these conditions lead to an algebraic structure which lays an important role in the construction of conserved quantities.
Baran, Timothy M.; Foster, Thomas H.
2011-01-01
We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μs'/μa = 8 in the tissue and 70 to 88% is collected in this region for μs'/μa = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy. PMID:21895311
Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Anisotropic matter in cosmology: locally rotationally symmetric Bianchi I and VII o models
NASA Astrophysics Data System (ADS)
Sloan, David
2016-05-01
We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally rotationally symmetric Bianchi types I and VII o in the presence of anisotropic matter. By finding an appropriate constant of the motion, and transforming the equations of motion we are able to provide exact solutions in the presence of perfect fluids with anisotropic pressures. The solution space covers matter consisting of a single perfect fluid which satisfies the weak energy condition and is rich enough to contain solutions which exhibit behaviour which is qualitatively distinct from the isotropic sector. Thus we find that there is more ‘matter that matters’ close to a homogeneous singularity than the usual stiff fluid. Example metrics are given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic strings and domain walls.
NASA Astrophysics Data System (ADS)
Tereshchenko, Sergei A.; Danilov, Arsenii A.; Podgaetskii, Vitalii M.; Vorob'ev, Nikolai S.
2004-06-01
The propagation of laser radiation through a layer of a highly-scattering medium (HSM) is considered on the basis of two theoretical models: a nonstationary axial (two-flux) model and a nonstationary diffusion model. Analytic expressions for the temporal distributions of the photons of an ultrashort laser pulse transmitted through the HSM are presented. Experimental temporal distributions are used to obtain the parameters of models corresponding to an HSM, to determine the theoretical temporal distributions, and to compare them with the experimental curves. These two theoretical models are compared quantitatively for the first time. Their advantages and drawbacks that must be considered in the development of HSM transmission optical tomography are pointed out.
D6-brane model building on Z2 ×Z6: MSSM-like and left-right symmetric models
NASA Astrophysics Data System (ADS)
Ecker, Jill; Honecker, Gabriele; Staessens, Wieland
2015-12-01
We perform a systematic search for globally defined MSSM-like and left-right symmetric models on D6-branes on the T6 / (Z2 ×Z6 × ΩR) orientifold with discrete torsion. Our search is exhaustive for models that are independent of the value of the one free complex structure modulus. Preliminary investigations suggest that there exists one prototype of visible sector for MSSM-like and another for left-right symmetric models with differences arising from various hidden sector completions to global models. For each prototype, we provide the full matter spectrum, as well as the Yukawa and other three-point couplings needed to render vector-like matter states massive. This provides us with tentative explanations for the mass hierarchies within the quark and lepton sectors. We also observe that the MSSM-like models correspond to explicit realisations of the supersymmetric DFSZ axion model, and that the left-right symmetric models allow for global completions with either completely decoupled hidden sectors or with some messenger states charged under both visible and hidden gauge groups.
NASA Astrophysics Data System (ADS)
Bambhaniya, Gulab; Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala
2016-04-01
We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of mass comparable to or smaller than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio r≲ O(1) is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with both LFV and LNV searches, for which the values of the total effective neutrino mass can be accessible to the next generation ton-scale experiments. Such light triplets can also be directly searched for at the LHC, thus providing a complementary probe of this scenario. Finally, we also study the implications of the triplet contribution for the left-right symmetric model interpretation of the recent diboson anomaly at the LHC.
NASA Technical Reports Server (NTRS)
Converse, G. L.
1981-01-01
This technique is applicable to larger axial flow turbines which may or may not incorporate variable geometry in the first stage stator. A user specified option will also permit the calculation of design point cooling flow levels and the corresponding change in turbine efficiency. The modeling technique was incorporated into a time sharing computer program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual.
Miller, William H. Cotton, Stephen J.
2015-04-07
It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employed in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.
The sensitivity of a lower limb model to axial rotation offsets and muscle bounds at the knee.
Southgate, Dominic F L; Cleather, Daniel J; Weinert-Aplin, Robert A; Bull, Anthony M J
2012-09-01
Soft tissue artifacts during motion capture can lead to errors in kinematics and incorrect estimation of joint angles and segment motion. The aim of this study was to evaluate the effect of shank segment axial rotation and knee rotator muscle bounds on predicted muscle and joint forces in a musculoskeletal model of the lower limb. A maximal height jump for ten subjects was analysed using the original motion data and then modified for different levels of internal and external rotation, and with the upper force bound doubled for five muscles. Both externally rotating the shank and doubling the muscle bounds increased the ability of the model to find a solution in regions of high loading. Muscle force levels in popliteus and tensor fascia latae showed statistically significant differences, but less so in plantaris, sartorius or gracilis. The shear and patellofemoral joint forces were found to be significantly affected by axial rotation during specific phases of the motion and were dependent on the amount of rotation. Fewer differences were observed when doubling the muscle bounds, except for the patellofemoral force and plantaris and sartorius muscle force, which were significantly increased in many of the jump phases. These results give an insight into the behaviour of the model and give an indication of the importance of accurate kinematics and subject-specific geometry. PMID:23025166
Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.; Hanson, J. D.
2014-09-15
The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the
NASA Astrophysics Data System (ADS)
Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid
2016-09-01
The target of this paper is to present an exhaustive study on the small scale effect on vibrational behavior of a rotary tapered axially functionally graded (AFG) microbeam on the basis of Timoshenko and Euler-Bernoulli beam and modified couple stress theories. The variation of the material properties and cross section along the longitudinal direction of the microbeam are taken into consideration as a linear function. Hamilton's principle is used to derive the equations for cantilever and propped cantilever boundary conditions and the generalized differential quadrature method (GDQM) is employed to solve the equations. By parametric study, the effects of small-scale parameter, rates of cross section change of the microbeam and angular velocity on the fundamental and second frequencies of the microbeam are studied. Also, comparison between the frequencies of Timoshenko and Euler-Bernoulli microbeams are presented. The results can be used in many applications such as micro-robots and biomedical microsystems.
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
NASA Astrophysics Data System (ADS)
Mimoso, José P.; Le Delliou, Morgan; Mena, Filipe C.
2013-08-01
We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss the existence and stability of a separating shell dividing expanding and collapsing regions. We resort to a 3+1 splitting and obtain gauge invariant conditions relating intrinsic spacetime quantities to properties of the matter source. We find that the separating shell is defined by a generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition. The latter establishes a balance between the pressure gradients, both isotropic and anisotropic, and the strength of the fields induced by the Misner-Sharp mass inside the separating shell and by the pressure fluxes. This defines a local equilibrium condition, but conveys also a nonlocal character given the definition of the Misner-Sharp mass. By the same token, it is also a generalized thermodynamical equation of state as usually interpreted for the perfect fluid case, which now has the novel feature of involving both the isotropic and the anisotropic stresses. We have cast the governing equations in terms of local, gauge invariant quantities that are revealing of the role played by the anisotropic pressures and inhomogeneous electric part of the Weyl tensor. We analyze a particular solution with dust and radiation that provides an illustration of our conditions. In addition, our gauge invariant formalism not only encompasses the cracking process from Herrera and co-workers but also reveals transparently the interplay and importance of the shear and of the anisotropic stresses.
Reilly, Thomas E.
1984-01-01
A computer program developed to evaluate radial flow of ground water, such as at a pumping well, recharge basin, or injection well, is capable of simulating anisotropic, inhomogenous, confined, or pseudo-unconfined (constant saturated thickness) conditions. Results compare well with those calculated from published analytical and model solutions. The program is based on the Galerkin finite-element technique. A sample model run is presented to illustrate the use of the program; supplementary material provides the program listing as well as a sample problem data set and output. From the text and other material presented, one can use the program to predict drawdowns from pumping and ground-water buildups from recharge in a radially symmetric ground-water system.
NASA Astrophysics Data System (ADS)
Chiang, T. K.; Chen, M. L.
2007-03-01
Based on the fully two-dimensional (2D) Poisson's solution in both silicon film and insulator layer, a compact and analytical threshold voltage model, which accounts for the fringing field effect of the short channel symmetrical double-gate (SDG) MOSFETs, has been developed. Exploiting the new model, a concerned analysis combining FIBL-enhanced short-channel effects and high- k gate dielectrics assess their overall impact on SDG MOSFET's scaling. It is found that for the same equivalent oxide thickness, the gate insulator with high- k dielectric constant which keeps a great characteristic length allows less design space than SiO 2 to sustain the same FIBL induced threshold voltage degradation.
Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity
NASA Astrophysics Data System (ADS)
Chirde, V. R.; Shekh, S. H.
2016-06-01
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.
NASA Astrophysics Data System (ADS)
Klevers, Denis; Taylor, Washington
2016-06-01
We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimen-sion two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g = 3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q = 3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G 2 × SU(2) models with more conventional matter content or SU(2)3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.
A new extended diffusion model for rotational motion of symmetric-top molecules in the liquid phase
NASA Astrophysics Data System (ADS)
Lascombe, J.; Besnard, M.; Maraval, P.
1982-11-01
In this paper, we present first a model called partially relaxed rotation model (PRR), to treat the reorientation motion of a symmetric top which rotates freely around its molecular axis with a tumbling motion relaxed according to a characteristic time τ 1. We show that this model can easily be extended to develop a 2τ model where both tumbling and spinning motion around the molecular axis are relaxed with a second characteristic time τ 2. As limiting cases one can obtain from the 2τ model, the Gordon-McClung and PRR models. Next, we illustrate the PPR and 2τ models by calculating Raman and infrared rotational spectral densities of liquid cyclopropane at room temperature. We also discuss in the PRR model the influence of the characteristic relaxation time τ 1, on the Raman rotational profile Î21( overlineν) Finally, we emphasize on the example of room-temperature liquid cyclopropane, the advantage of the PRR model to treat a E″ degenerated Raman profile with negligible Coriolis vibrational-rotational interaction. bl
Using NASTRAN to solve symmetric structures with nonsymmetric loads
NASA Technical Reports Server (NTRS)
Butler, T. G.
1982-01-01
A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.
Safaei, B; Naseradinmousavi, P; Rahmani, A
2016-04-01
In the present paper, an analytical solution based on a molecular mechanics model is developed to evaluate the elastic critical axial buckling strain of chiral multi-walled carbon nanotubes (MWCNTs). To this end, the total potential energy of the system is calculated with the consideration of the both bond stretching and bond angular variations. Density functional theory (DFT) in the form of generalized gradient approximation (GGA) is implemented to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain elastic surface Young's modulus and Poisson's ratio of the single-walled carbon nanotubes corresponding to different types of chirality. Selected numerical results are presented to indicate the influence of the type of chirality, tube diameter, and number of tube walls in detailed. An excellent agreement is found between the present numerical results and those found in the literature which confirms the validity as well as the accuracy of the present closed-form solution. It is found that the value of critical axial buckling strain exhibit significant dependency on the type of chirality and number of tube walls. PMID:26930445
NASA Astrophysics Data System (ADS)
Morales, L. F. G.; Lloyd, G. E.; Mainprice, D.
2014-12-01
Quartz is a common crustal mineral that deforms plastically in a wide range of temperatures and pressures, leading to the development of different types of crystallographic preferred orientation (CPO) patterns. In this contribution we present the results of an extensive modelling of quartz fabric transitions via visco-plastic self- consistent (VPSC) approach. For that, we have performed systematic simulations using different sets of relative critical resolved shear stress of the main quartz slip systems. We have performed these simulations in axial compression and simple shear regimes under constant Von Mises equivalent strain of 100% (γ=1.73), assuming that the aggregates deformed exclusively by dislocation glide. Some of the predicted CPOs patterns are similar to those observed in naturally and experimentally deformed quartz. Nevertheless, some classical CPO patterns usually interpreted as resulting from dislocation glide (e.g. Y-maxima due to prism slip) are clearly not developed in the simulated conditions. In addition we report potentially new preferred orientation patterns that might develop in high temperature conditions, both in axial compression and simple shear. We have demonstrated that CPOs generated under axial compression are usually stronger that those predicted under simple shear, due to the continuous rotation observed in the later simulations. The fabric strength depends essentially on the dominant active slip system, and normally the stronger CPOs result from dominant basal slip in , followed by rhomb and prism [c] slip, whereas prism slip does not produce strong fabrics. The opening angle of quartz [0001] fabric used as a proxy of temperature seems to be reliable for deformation temperatures of ~400°C, when the main slip systems have similar behaviours.
Fabric transitions in quartz via viscoplastic self-consistent modeling part I: Axial compression and simple shear under constant strain
NASA Astrophysics Data System (ADS)
Morales, Luiz F. G.; Lloyd, Geoffrey E.; Mainprice, David
2014-12-01
Quartz is a common crustal mineral that deforms plastically in a wide range of temperatures and pressures, leading to the development of different types of crystallographic preferred orientation (CPO) patterns. In this contribution we present the results of an extensive modeling of quartz fabric transitions via a viscoplastic self-consistent (VPSC) approach. For that, we have performed systematic simulations using different sets of relative critical resolved shear stress of the main quartz slip systems. We have performed these simulations in axial compression and simple shear regimes under constant Von Mises equivalent strain of 100% (γ = 1.73), assuming that the aggregates deformed exclusively by dislocation glide. Some of the predicted CPOs patterns are similar to those observed in naturally and experimentally deformed quartz. Nevertheless, some classical CPO patterns usually interpreted as result from dislocation glide (e.g. Y-maxima due to prism < a > slip) are clearly not developed in the simulated conditions. In addition we reported new potential preferred orientation patterns that might happen in high temperature conditions, both in axial compression and simple shear. We have demonstrated that CPOs generated under axial compression are usually stronger that those predicted under simple shear, due to the continuous rotation observed in the later simulations. The fabric strength depends essentially on the dominant active slip system, and normally the stronger CPOs result from dominant basal slip in < a >, followed by rhomb < a > and prism [c] slip, whereas prism < a > slip does not produce strong fabrics. The opening angle of quartz [0001] fabric used as a proxy of temperature seems to be reliable for deformation temperatures of ~ 400 °C, when the main slip systems have similar behaviors.
Numerical modeling of a fast-axial-flow CO2 laser with considering viscosity and ambipolar diffusion
NASA Astrophysics Data System (ADS)
Galeev, Ravil S.; Fedosov, A. A.
1996-03-01
A numerical method for analysis of a fast axial flow glow discharge carbon dioxide laser is developed. The method is based on the self-consistent solution to the two-dimensional steady- state Navier-Stokes equations in thin-shear-layer approximation (slender channel equations), the parabolized glow discharge equations, and the vibrational relaxation equations. The discharge equations include the continuity equations for the electrons, the positive and negative ions. The one-mode relaxation model for the vibrational kinetics and the plane-parallel optical resonator model are used. The present model is based on the assumption of the charge neutrality and limited by consideration of the positive column of discharge without taking into account the cathode-fall and anode-fall regions.
Full-scale Testing and Numerical Modeling oF Axial and Lateral Soil Pipe Interaction in Deepwater
NASA Astrophysics Data System (ADS)
Sarraf Joshaghani, M.; M Raheem, A.
2014-12-01
A thorough understanding of the behavior of deep sea pipes is crucial for off-shore oil & gas industry. During the service life, network of oil and gas pipelines that connect the floating platforms to the subsea wells in deepwater undergo significant changes in temperature and pressure resulting in high shears, strains and movement. These pipelines laid on the very soft seabed become susceptible to large movement and lateral buckling resulting in global instability of the entire system. Hence, it is of paramount importance to address the aforementioned issues through combined numerical modeling and experimental study of various conditions in the field. Modeling this behavior needs to take into account the complex interactions between pipe, water, and soil (which, in this case, will be a saturated porous media). Physical experiments can be challenging as the undrained shear strength is very low of the order of 0.01 kPa. In this research, we have performed large-scale experiments as well as numerical modeling. Several full-scale models have been designed and constructed to investigate the behavior of various types of pipes (steel, plastic) on the simulated clayey sea bed (undrained shear strength ranged from 0.01 kPa to 0.11 kPa). Axial and lateral pipe soil interactions have been characterized, and appropriate mitigation solutions for axial walking and lateral buckling have been proposed. On the numerical modeling front, the pipe-soil behavior is simulated using the Coupled Eulerian Lagrangian (CEL) and Arbitrary-Lagrangian-Eulerian (ALE) formulations.
NASA Astrophysics Data System (ADS)
Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.
2016-07-01
The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This study uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random size obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.
NASA Astrophysics Data System (ADS)
Qin, Linjiang; Yang, Changfu
2016-06-01
The rocks in the crust and the upper mantle of the Earth are believed to exhibit electrical anisotropy to some extent. It is beneficial to further understand and recognize the propagation of the electromagnetic waves in the Earth by investigating the magnetotelluric (which is one of the main geophysical techniques to probe the deep structures in the Earth) responses of the media with anisotropic conductivity structures. In this study, we examine the magnetotelluric fields over an idealized 2-D model consisting of two segments with axially anisotropic conductivity structures overlying a perfect conductor basement by a quasi-static analytic approach. The resulting analytic solution could not only contribute to the electromagnetic induction theory in the anisotropic Earth but also serve as at least an initial standard solution which could be used to validate the reliability and accuracy of the numerical algorithms developed for modelling the magnetotelluric responses of the 2-D media with much more general anisotropic conductivity.
NASA Astrophysics Data System (ADS)
Linjiang, QIN; Changfu, YANG
2016-03-01
The rocks in the crust and the upper mantle of the Earth are believed to exhibit electrical anisotropy to some extent. It is beneficial to further understand and recognize the propagation of the electromagnetic waves in the Earth by investigating the magnetotelluric (which is one of the main geophysical techniques to probe the deep structures in the Earth) responses of the media with anisotropic conductivity structures. In the present study, we examine the magnetotelluric fields over an idealized 2-D model consisting of two segments with axially anisotropic conductivity structures overlying a perfect conductor basement by a quasi-static analytic approach. The resulting analytic solution could not only contribute to the electromagnetic induction theory in the anisotropic Earth but also serve as at least an initial standard solution which could be used to validate the reliability and accuracy of the numerical algorithms developed for modeling the magnetotelluric responses of the 2-D media with much more general anisotropic conductivity.
NASA Astrophysics Data System (ADS)
Bossy, Emmanuel; Talmant, Maryline; Laugier, Pascal
2004-05-01
The ultrasonic axial transmission technique, used to assess cortical shells of long bones, is investigated using numerical simulations based on a three-dimensional (3D) finite difference code. We focus our interest on the effects of 3D cortical bone geometry (curvature, cortical thickness), anisotropy, and microporosity on speed of sound (SOS) measurements for different frequencies in the MHz range. We first show that SOS values measured on tubular cortical shells are identical to those measured on cortical plates of equal thickness. Anisotropy of cortical bone is then shown to have a major impact on SOS measurement as a function of cortical thickness. The range of SOS values measured on anisotropic bone is half the range found when bone is considered isotropic. Dependence of thickness occurs for cortical shell thinner than 0.5×λbone in anisotropic bone (λbone: wavelength in bone), whereas it occurs for cortical shell thinner than λbone when anisotropy is neglected. Sensitivity of SOS along the bone axis to intracortical microporosity is shown to be approximately -20 m s-1 per percent of porosity. Using homogenized porous bone, we finally show that the cortical depth that contributes to lateral wave SOS measurement is approximately 1-1.5 mm for frequencies ranging from 500 kHz to 2 MHz under classical in vivo measurement conditions.
Chang Yiren; Hsu Long; Chi Sien
2006-06-01
Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system.
Tao, Chao; Zhang, Yu; Hottinger, Daniel G; Jiang, Jack J
2007-10-01
A model constructed from Navier-Stokes equations and a two-mass vocal fold description is proposed in this study. The composite model not only has the capability to describe the aerodynamics in a vibratory glottis but also can be used to study the vocal fold vibration under the driving of the complex airflow in the glottis. Numerical simulations show that this model can predict self-oscillations of the coupled glottal aerodynamics and vocal fold system. The Coanda effect could occur in the vibratory glottis even though the vocal folds have left-right symmetric prephonatory shape and tissue properties. The Coanda effect causes the asymmetric flow in the glottis and the difference in the driving force on the left and right vocal folds. The different pressures applied to the left and right vocal folds induce their displacement asymmetry. By using various lung pressures (0.6-2.0 kPa) to drive the composite model, it was found that the asymmetry of the vocal fold displacement is increased from 1.87% to 11.2%. These simulation results provide numerical evidence for the presence of asymmetric flow in the vibratory glottis; moreover, they indicate that glottal aerodynamics is an important factor in inducing the asymmetric vibration of the vocal folds. PMID:17902863
NASA Technical Reports Server (NTRS)
Johnson, Steven A.
1992-01-01
The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.
Compact model for short-channel symmetric double-gate junctionless transistors
NASA Astrophysics Data System (ADS)
Ávila-Herrera, F.; Cerdeira, A.; Paz, B. C.; Estrada, M.; Íñiguez, B.; Pavanello, M. A.
2015-09-01
In this work a compact analytical model for short-channel double-gate junctionless transistor is presented, considering variable mobility and the main short-channel effects as threshold voltage roll-off, series resistance, drain saturation voltage, channel shortening and saturation velocity. The threshold voltage shift and subthreshold slope variation is determined through the minimum value of the potential in the channel. Only eight model parameters are used. The model is physically-based, considers the total charge in the Si layer and the operating conditions in both depletion and accumulation. Model is validated by 2D simulations in ATLAS for channel lengths from 25 nm to 500 nm and for doping concentrations of 5 × 1018 and 1 × 1019 cm-3, as well as for Si layer thickness of 10 and 15 nm, in order to guarantee normally-off operation of the transistors. The model provides an accurate continuous description of the transistor behavior in all operating regions.
NASA Astrophysics Data System (ADS)
Wang, Hairen; Lou, Zheng; Qian, Yuan; Zheng, Xianzhong; Zuo, Yingxi
2016-03-01
The optimization of a primary mirror support system is one of the most critical problems in the design of large telescopes. Here, we propose a hybrid optimization methodology of variable densities mesh model (HOMVDMM) for the axial supporting design, which has three key steps: (1) creating a variable densities mesh model, which will partition the mirror into several sparse mesh areas and several dense mesh areas; (2) global optimization based on the zero-order optimization method for the support of primary mirror with a large tolerance; (3) based on the optimization results of the second step, further optimization with first-order optimization method in dense mesh areas by a small tolerance. HOMVDMM exploits the complementary merits of both the zero- and first-order optimizations, with the former in global scale and the latter in small scale. As an application, the axial support of the primary mirror of the 2.5-m wide-field survey telescope (WFST) is optimized by HOMVDMM. These three designs are obtained via a comparative study of different supporting points including 27 supporting points, 39 supporting points, and 54 supporting points. Their residual half-path length errors are 28.78, 9.32, and 5.29 nm. The latter two designs both meet the specification of WFST. In each of the three designs, a global optimization value with high accuracy will be obtained in an hour on an ordinary PC. As the results suggest, the overall performance of HOMVDMM is superior to the first-order optimization method as well as the zero-order optimization method.
NASA Technical Reports Server (NTRS)
Moorcroft, D. R.; Arima, K. S.
1972-01-01
Correlation analysis of three-station observations of satellite amplitude scintillations, recorded at London, Canada during the summer of 1968, have been interpreted to give information on the height, size and shape of the ionospheric irregularities. The irregularities had a mean height of 390 km, and when interpreted in terms of the usual axially-symmetric, field-aligned model, had a mean axial ratio of 6.5, and a mean dimension transverse to the magnetic field of 0.7 km. None of these parameters showed any systematic trend with geomagnetic latitude. The data for one of the passes analyzed were inconsistent with axial symmetry, and when examined in terms of a more general model, 3 of 9 passes showed evidence of irregularities which were elongated both along and transverse to the earth's magnetic field, the elongation transverse to the field tending to lie in a north-south direction.
Photon polarization in the b → sγ processes in the left-right symmetric model
NASA Astrophysics Data System (ADS)
Yu, Fu-Sheng; Kou, Emi; Lü, Cai-Dian
2013-12-01
The circular-polarization of the photon in the radiative B decays is dominantly left-handed in the Standard Model (SM), but the right-handed polarization may be enhanced in some new physics models with right-handed currents, such as the Left-Right Symmetric Model (LRSM). In this article, we investigate how large this wrong polarization could be within the allowed parameter space of the LRSM. We show that in the LRSM, the right-handed polarization of the photon in the b → sγ processes could be largely enhanced by the W L - W R mixing contributions because of the helicity flip on the internal top quark line of the penguin diagrams and the enhancement by the CKM factor . We discuss the sensitivity of the proposed methods to determine the b → sγ photon polarization to the LRSM as well as their complementary role compared to the direct search of right-handed charged gauge bosons at LHC.
NASA Astrophysics Data System (ADS)
Wang, Peng; Yang, Haitang; Ying, Shuxuan
2016-01-01
We compute the black hole horizon entanglement entropy for a massless scalar field in the brick wall model by incorporating the minimal length. Taking the minimal length effects on the occupation number n(ω, l) and the Hawking temperature into consideration, we obtain the leading ultraviolet (UV) divergent term and the subleading logarithmic term in the entropy. The leading divergent term scales with the horizon area. The subleading logarithmic term is the same as that in the usual brick wall model without the minimal length.
A six-dimensional (Z2)3 symmetric model with warped physical space
NASA Astrophysics Data System (ADS)
Sahabandu, Chetiya; Suranyi, Peter; Rohana Wijewardhana, L. C.; Vaz, Cenalo
2008-08-01
The Randall-Sundrum model is studied in six dimension with AdS4 or dS4 metric in the physical four-dimensional space. Two solutions are found, one with induced five-dimensional gravity terms added to the induced cosmological constant terms. We study the graviton modes in both solutions by transforming the mass eigenvalue equation to a Schrodinger equation with a volcano potential. The spectrum of gravitational excitations depends on the input parameters of the theory, the six-dimensional and the effective four-dimensional cosmological constants. The model gives a physically acceptable spectrum if the four-dimensional cosmological constant is sufficiently small.
NASA Astrophysics Data System (ADS)
Raju, P.; Sobhanbabu, K.; Reddy, D. R. K.
2016-02-01
Five-dimensional spherically symmetric space-time filled with two minimally interacting fields, matter and holographic dark energy components, is investigated in a scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986). An explicit solution of the field equations is obtained. Some physical and kinematic properties of the model are also studied.
Tsunoda, N.; Shimizu, N.; Otsuka, T.; Suzuki, T.
2011-05-06
Anti-symmetric spin-orbit force (ALS) in the effective interaction for the shell model and its effect on nuclear structure is discussed. We investigate possible origins of the ALS and the effects on the level schemes of several nuclei.
Symmetric Novikov superalgebras
Ayadi, Imen; Benayadi, Saied
2010-02-15
We study Novikov superalgebras with nondegenerate associative supersymmetric bilinear forms which are called symmetric Novikov superalgebras. We show that Novikov symmetric superalgebras are associative superalgebras with additional condition. Several examples of symmetric Novikov superalgebras are included, in particular, examples of symmetric Novikov superalgebras which are not 2-nilpotent. Finally, we introduce some notions of double extensions in order to give inductive descriptions of symmetric Novikov superalgebras.
Application and comparison of SST model in numerical simulation of the axial compressors
NASA Astrophysics Data System (ADS)
Yin, Song; Jin, Donghai; Gui, Xingmin; Zhu, Fang
2010-08-01
The shear-stress transport (SST) turbulence model is incorporated into Navier-Stokes equations to simulate a turbomachinery flowfield. A staggered finite volume method is used to make the mean flow equations and turbulence model equations strongly coupled and enhance the stability of the numerical computation. The implicit treatment of the source terms is applied to the SST model. A steady state solution is obtained using five-stage Runge-Kutta time-stepping scheme with local time stepping and residual smoothing to accelerate convergence. The wall distance d, a key parameter in the SST model, is solved by a partial differential equation. The validations of the code are conducted on rotor 37, wp11 at design and off-design conditions by comparison with measurements and the Spalart-Allmaras (SA) turbulence model. The flow within the tip is calculated with a multi-block grid.
Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model
NASA Astrophysics Data System (ADS)
Kugel, K. I.; Khomskii, D. I.; Sboychakov, A. O.; Streltsov, S. V.
2015-04-01
Specific features of orbital and spin structure of transition-metal compounds in the case of the face-sharing MO6 octahedra are analyzed. In this geometry, we consider the form of the spin-orbital Hamiltonian for transition-metal ions with double (egσ) or triple (t2 g) orbital degeneracy. Trigonal distortions typical of the structures with face-sharing octahedra lead to splitting of t2 g orbitals into an a1 g singlet and egπ doublet. For both doublets (egσ and egπ), in the case of one electron or hole per site, we arrive at a symmetric model with the orbital and spin interaction of the Heisenberg type and the Hamiltonian of unexpectedly high symmetry: SU(4). Thus, many real materials with this geometry can serve as a testing ground for checking the prediction of this interesting theoretical model. We also compare general trends in the spin-orbital ("Kugel-Khomskii") exchange interaction for three typical situations: those of MO6 octahedra with common corner, common edge, and the present case of common face, which has not been considered yet.
NASA Astrophysics Data System (ADS)
Marcotte, D.
2016-04-01
The turning bands method (TBM) is a commonly used method of simulation for large Gaussian fields, its O(N) complexity being unsurpassed (N denotes the number of points to simulate). TBM can be implemented either in the spatial or the spectral domains. In the multivariate anisotropic case, spatial versions of TBM are currently available only for the linear model of coregionalization (LMC). For anisotropic non-LMC with symmetrical covariances only the spectral version is currently available. The spectral domain approach can be slow in the case of non-differentiable covariances due to the numerous frequencies to sample. Here a derivation of the equations is provided for simulating the anisotropic non-LMC directly in the spatial domain and the method is illustrated with two synthetic examples. The approach allows the specification of many different direct and cross-covariance components, each with possibly different geometric anisotropies and different model types. The complexity of the new multivariate approach remains O(N). Hence, a case of two variables defining an anisotropic non-LMC is simulated over one billion points in less than one hour on a desktop computer. These results help enlarge the scope of application of the TBM. The method can be easily implemented in any existing TBM program.
Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression.
Demers, Sébastien; Nadeau, Sylvie; Bouzid, Abdel-Hakim
2016-04-01
Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models. This paper presents an analytical method based on thin-shell, beam-on-elastic-foundation and composite materials theories to evaluate the stresses in the anulus fibrosus (AF) of an axisymmetric disk composed of multiple thin lamellae. Large deformations of the soft tissues are accounted for using an iterative method and the anisotropic material properties are derived from a published biaxial experiment. The results are compared to those obtained by FE modeling. The results demonstrate the capability of the analytical model to evaluate the stresses at any location of the simplified AF. It also demonstrates that anisotropy reduces stresses in the lamellae. This novel model is a preliminary step in developing valuable analytical models of IVDs, and represents a distinctive groundwork that is able to sustain future refinements. This paper suggests important features that may be included to improve model realism. PMID:26833355
Cotton, Stephen J; Miller, William H
2015-12-17
A recent series of papers has shown that a symmetrical quasi-classical (SQC) windowing procedure applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides a very good treatment of electronically nonadiabatic processes in a variety of benchmark model systems, including systems that exhibit strong quantum coherence effects and some which other approximate approaches have difficulty in describing correctly. In this paper, a different classical electronic Hamiltonian for the treatment of electronically nonadiabatic processes is proposed (and "quantized" via the SQC windowing approach), which maps the dynamics of F coupled electronic states to a set of F spin-(1)/2 degrees of freedom (DOF), similar to the Fermionic spin model described by Miller and White (J. Chem. Phys. 1986, 84, 5059). It is noted that this spin-mapping (SM) Hamiltonian is an exact Hamiltonian if treated as a quantum mechanical (QM) operator-and thus QM'ly equivalent to the MM Hamiltonian-but that an analytically distinct classical analogue is obtained by replacing the QM spin-operators with their classical counterparts. Due to their analytic differences, a practical comparison is then made between the MM and SM Hamiltonians (when quantized with the SQC technique) by applying the latter to many of the same benchmark test problems successfully treated in our recent work with the SQC/MM model. We find that for every benchmark problem the MM model provides (slightly) better agreement with the correct quantum nonadiabatic transition probabilities than does the new SM model. This is despite the fact that one might expect, a priori, a more natural description of electronic state populations (occupied versus unoccupied) to be provided by DOF with only two states, i.e., spin-(1)/2 DOF, rather than by harmonic oscillator DOF which have an infinite manifold of states (though only two of these are ever occupied). PMID:26299361
Order g{sup 2} susceptibilities in the symmetric phase of the Standard Model
Bödeker, D.; Sangel, M.
2015-04-23
Susceptibilities of conserved charges such as baryon minus lepton number enter baryogenesis computations, since they provide the relationship between conserved charges and chemical potentials. Their next-to-leading order corrections are of order g, where g is a generic Standard Model coupling. They are due to soft Higgs boson exchange, and have been calculated recently, together with some order g{sup 2} corrections. Here we compute the complete g{sup 2} contributions. Close to the electroweak crossover the soft Higgs contribution is of order g{sup 2}, and is determined by the non-perturbative physics at the magnetic screening scale.
NASA Technical Reports Server (NTRS)
Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.
1977-01-01
An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.
Symmetric linear systems. [twin-lift helicopter control models for heavy construction use
NASA Technical Reports Server (NTRS)
Lewis, J.; Martin, C.
1983-01-01
Employment as a means of transportation in the civilian construction trades represents one of the many applications of the helicopter. However, a major limitation to its use in heavy construction has been that the mass which can be effectively and safely transported is severely restricted. The construction of the so-called 'heavy lift' helicopter provided one solution to this problem. But it has been found that there are physical and economic limitations to the payload which can be transported. The proposal has been made to overcome these limitations by making use of multiple helicopters to move a single mass. A study of the feasibility of this proposal showed that automatic control would be needed to make the concept successful. The present investigation is concerned with some initial models in regard to the twinlift problem, taking into account the control theoretic problems.
Muon anomalous magnetic moment and positron excess at AMS-02 in a gauged horizontal symmetric model
NASA Astrophysics Data System (ADS)
Tomar, Gaurav; Mohanty, Subhendra
2014-11-01
We studied an extension of the standard model with a fourth generation of fermions to explain the discrepancy in the muon ( g -2) and explain the positron excess seen in the AMS-02 experiment. We introduce a gauged SU(2)HV horizontal symmetry between the muon and the 4th generation lepton families. The 4th generation right-handed neutrino is identified as the dark matter with mass ~ 700GeV. The dark matter annihilates only to ( μ + μ -) and ( ν {/μ C } ν μ ) states via SU(2)HV gauge boson. The SU(2)HV gauge boson with mass ~ 1.4 TeV gives an adequate contribution to the ( g - 2) of muon and fulfill the experimental constraint from BNL measurement. The higgs production constraints from 4th generation fermions is evaded by extending the higgs sector.
Perturbativity and mass scales in the minimal left-right symmetric model
NASA Astrophysics Data System (ADS)
Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio
2016-08-01
The scalar sector of the minimal left-right model at TeV scale is revisited in light of the large quartic coupling needed for a heavy flavor-changing scalar. The stability and perturbativity of the effective potential is discussed and merged with constraints from low-energy processes. Thus, the perturbative level of the left-right scale is sharpened. Lower limits on the triplet scalars are also derived: The left-handed triplet is bounded by oblique parameters, while the doubly charged right-handed component is limited by the h →γ γ , Z γ decays. Current constraints disfavor their detection as long as WR is within the reach of the LHC.
Symmetric structure of field algebra of G-spin models determined by a normal subgroup
Xin, Qiaoling Jiang, Lining
2014-09-15
Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design
NASA Astrophysics Data System (ADS)
Liu, Yucheng; Day, Michael L.
This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.
An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
Hu, Qi-Hui; Li, Jing-Yin; Zhang, Ming-Yuan; Zhu, Xian-Ran
2012-04-01
The head curves of a 1.5:1 new axial blood pump model were measured using five working fluids at five rotational speeds. The working fluids were water, a 39wt% aqueous glycerin solution (GS), and three aqueous xanthan gum solutions (XGSs) with different concentrations. The flow velocities and shear stresses in the mechanical clearance between the casing and rotor were investigated using a laser Doppler velocimeter and hot-film sensor. At every rotational speed, the experiment in which viscous GS was used in the pump model showed a head curve lower than that obtained using water, whereas the head obtained using viscoelastic XGS was higher than that generated using water. A maximum difference of 65.8% between the heads measured in the 0.06% XGS and GS experiments was detected. The higher head produced by the XGS may have originated from the drag-reduction effect of XGS viscoelasticity. The measurements showed that a reverse washout flow at a velocity of 0.05-0.11m/s occurs in the clearance. This reverse washout flow is crucial to preventing flow stagnation and accompanying thrombus formation. The wall shear stress and the Taylor number of the rotating Couette-like flow in the clearance both indicated that it is a turbulent flow. PMID:21995643
Numerical modeling of transition to turbulence in low-pressure axial gas turbines
NASA Astrophysics Data System (ADS)
Flitan, Horia Constantin
2002-09-01
Experimental data from modern turbofan engines indicate that the low-pressure turbine stages experience a significant drop in efficiency as the aircraft reaches its cruise conditions at high altitude. Under these circumstances, the low Reynolds number flow allows the apparition of a boundary layer which is no longer turbulent but transitional in nature. A further decrease in velocity may lead to the separation of the highly unstable laminar portion accompanied by a dramatic growth in aerodynamic losses. The methods for numerically simulating the transitional flows occurring over turbine blades were reviewed. Two large categories were identified as suitable for numerical implementation into a fully-implicit, finite-difference, Navier-Stokes code. The first involved a Baldwin-Lomax turbulence model corrected for attached flow transition with an intermittency factor distribution. The general expression of Solomon, Walker and Gostelow was added to the code, in parallel with the zero-pressure gradient form of Narasimha, used for reference. In both cases transition inception is detected with the Abu-Ghannam Shaw correlation. Whenever laminar separation takes place, Robert's correlation for short bubble transition is activated. The second category comprised the two-equation, low Reynolds number turbulence models of Chien and Launder-Sharma. They have a certain ability to predict bypass transition and seem to better comprehend the physics of wake-induced transition. For the approximate factorization solution algorithm, the implicit part of the Launder-Sharma system was expressed in an original form. Also, the Kato-Launder correction was added to be used as an option. Numerical investigations of attached flow bypass transition and separated flow short bubble transitions were performed on two cascade geometries. The Abu-Ghannam Shaw criterion proved to be inaccurate for curved surfaces. The Solomon, Walker Gostelow distribution did not perform better than Narasimha
Radially excited axial mesons and the enigmatic Zc and Zb in a coupled-channel model
NASA Astrophysics Data System (ADS)
Coito, Susana
2016-07-01
The enigmatic charged states Zc(3900 ), Zc(4020 ), Zc(4050 ), Zb(10610 ), and Zb(10650 ) are studied within a coupled-channel Schrödinger model, where radially excited quark-antiquark pairs, with the same angular momenta and isospin as the a1(1260 ) and b1(1235 ), are strongly coupled to their Okubo-Zweig-Iizuka-allowed decay channels D D¯*+D ¯D* and D*D¯*, or B B¯*+B ¯B* and B*B¯*, in S and D waves. Poles, matching the experimental mass and width of the above states, are found by varying only two free parameters. From the wave-function analysis of each resonance, the probability of each of the components contributing to the coupled system is estimated, and predictions can be made for the relative decay fractions among the coupled open-charm or open-bottom decay channels.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Hsun
2015-02-01
The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.
Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model
Woltering, Joost M.; Duboule, Denis
2015-01-01
The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. PMID:26238020
Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model.
Woltering, Joost M; Duboule, Denis
2015-11-01
The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. PMID:26238020
NASA Astrophysics Data System (ADS)
Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.
2015-12-01
Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.
Arima, T.; Sonoda, T.; Shirotori, M.; Tamura, A.; Kikuchi, K.
1999-01-01
The authors have developed a computer simulation code for three-dimensional viscous flow in turbomachinery based on the time-averaged compressible Navier-Stokes equations and a low-Reynolds-number {kappa}-{epsilon} turbulence model. It is described in detail in this paper. The code is used to compute the flow fields for two types of rotor (a transonic fan NASA Rotor 67 and a transonic axial compressor NASA rotor 37), and numerical results are compared to experimental data based on aerodynamic probe and laser anemometer measurements. In the case of Rotor 67, calculated and experimental results are compared under the design speed to validate the code. The calculated results show good agreement with the experimental data, such as the rotor performance map and the spanwise distribution of total pressure, total temperature, and flow angle downstream of the rotor. In the case of Rotor 37, detailed comparisons between the numerical results and the experimental data are made under the design speed condition to assess the overall quality of the numerical solution. Furthermore, comparisons under the part-speed condition are used to investigate a flow field without passage shock. The results are well predicted qualitatively. However, considerable quantitative discrepancies remain in predicting the flow near the tip. In order to assess the predictive capabilities of the developed code, computed flow structures are presented with the experimental data for each rotor and the cause of the discrepancies is discussed.
A nonstationary axially symmetric electromagnetic field in a moving sphere
NASA Astrophysics Data System (ADS)
Vestyak, V. A.; Tarlakovsky, D. V.
2015-10-01
Integral representations of series coefficients for components of an electromagnetic field with nuclei are formulated in the form of Green's functions. Approximate quasi-static analogs are used as these functions. An example of the translational motion of the sphere is presented. Explicit formulas for the components of the electromagnetic field are derived.
Chaos in axially symmetric potentials with octupole deformation
Heiss, W.D.; Nazmitdinov, R.G.; Radu, S. Departamento de Fisica Teorica C-XI, Universidad Autonoma de Madrid, E-28049, Madrid )
1994-04-11
Classical and quantum mechanical results are reported for the single particle motion in a harmonic oscillator potential which is characterized by a quadrupole deformation and an additional octupole deformation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows strong chaos when the octupole term is turned on.
On axially symmetric incompressible magnetohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Lei, Zhen
2015-10-01
In the short article we study the ideal incompressible magnetohydrodynamic equations in three dimensions in which the Faraday law is inviscid. We prove the global well-posedness of classical solutions for a family of special axisymmetric initial data whose swirl components of the velocity field and magnetic vorticity field are trivial.
Prior Distributions on Symmetric Groups
ERIC Educational Resources Information Center
Gupta, Jayanti; Damien, Paul
2005-01-01
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
NASA Astrophysics Data System (ADS)
Haase, K. M.; Brandl, P. A.; Devey, C. W.; Hauff, F.; Melchert, B.; Garbe-Schönberg, D.; Kokfelt, T. F.; Paulick, H.
2016-01-01
We present geological observations and geochemical data for the youngest volcanic features on the slow spreading Mid-Atlantic Ridge at 8°48'S that shows seismic evidence for a thickened crust and excess magma formation. Young lava flows with high sonar reflectivity cover about 14 km2 in the axial rift and were probably erupted from two axial volcanic ridges each of about 3 km in length. Three different lava units occur along an about 11 km long portion of the ridge, and lavas from the northern axial volcanic ridge differ from those of the southern axial volcanic ridge and surrounding lava flows. Basalts from the axial rift flanks and from a pillow mound within the young flows are more incompatible element depleted than those from the young volcanic field. Lavas from this volcanic area have 226Ra-230Th disequilibria model ages of 1000 and 4000 years whereas the older lavas from the rift flank and the pillow mound, but also some of the lava field, are older than 8000 years. Glasses from the northern and southern ends of the southern lava unit indicate up to 100°C cooler magma temperatures than in the center and increased assimilation of hydrothermally altered material. The compositional heterogeneity on a scale of 3 km suggests small magma batches rising vertically from the mantle to the surface without significant lateral flow and mixing. The observations on the 8°48'S lava field support the model of low-frequency eruptions from single ascending magma batches that has been developed for slow spreading ridges.
NASA Astrophysics Data System (ADS)
Batkovich, D. V.; Chetyrkin, K. G.; Kompaniets, M. V.
2016-05-01
We report on a completely analytical calculation of the field anomalous dimension γφ and the critical exponent η for the O (n)-symmetric φ4 model at the record six loop level. We successfully compare our result for γφ with n = 1 with the predictions based on the method of the Borel resummation combined with a conformal mapping (Kazakov et al., 1979 [40]). Predictions for seven loop contribution to the field anomalous dimensions are given.
Ledwig, Tim; Kim, Hyun-Chul; Goeke, Klaus
2008-09-01
We investigate the axial-vector transition constants of the baryon antidecuplet to the octet and decuplet within the framework of the self-consistent SU(3) chiral quark-soliton model. Taking into account rotational 1/N{sub c} and linear m{sub s} corrections and using the symmetry-conserving quantization, we calculate the axial-vector transition constants. It is found that the leading-order contributions are generally almost canceled by the rotational 1/N{sub c} corrections. Thus, the m{sub s} corrections turn out to be essential contributions to the axial-vector constants. The decay width of the {theta}{sup +}{yields}NK transition is determined to be {gamma}({theta}{yields}NK)=0.71 MeV, based on the result of the axial-vector transition constant g{sub A}*({theta}{yields}NK)=0.05. In addition, other strong decays of the baryon antidecuplet are investigated. The forbidden decays from the baryon antidecuplet to the decuplet are also studied.
NASA Astrophysics Data System (ADS)
Kirschner, O.; Schmidt, H.; Ruprecht, A.; Mader, R.; Meusburger, P.
2010-08-01
The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.
NASA Astrophysics Data System (ADS)
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically
Chavanis, Pierre-Henri
2013-07-23
CDM model for t≫t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=−1. Furthermore, the cosmological constant Λ in the late universe plays a role similar to the Planck constant ℏ in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2013-07-01
evolution of the universe. The early universe is modeled by a polytrope n = + 1 and the late universe by a polytrope n = -1. Furthermore, the cosmological constant Λ in the late universe plays a role similar to the Planck constant ℏ in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the "cosmophysics" just like the Planck constant describes the "microphysics". The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant "problem" may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.
Davila-Guzman, Nancy E; Cerino-Córdova, Felipe J; Soto-Regalado, Eduardo; Loredo-Cancino, Margarita; Loredo-Medrano, José A; García-Reyes, Refugio B
2016-08-01
In this study, amberlite XAD-16 (XAD-16) bed column system was used to remove ferulic acid (FA) from aqueous solutions. Laboratory-scale column experiments were conducted in downflow fixed bed at initial FA concentration of 1 g/L, initial pH 3, and 25°C. The performance of the adsorbent bed under different flow rates (1.3-7.7 mL/min) was studied. The bed utilization efficiency was in the range of 64.64-72.21% at the studied flow rates. A mass transfer model considering both axial dispersion and intraparticle diffusion was developed to predict the breakthrough curves of FA adsorption on XAD-16. This model predicted the experimental data better than Bohart-Adams model and Thomas model, based on the low deviation between predicted and experimental data. The axial dispersion coefficient value varied from 6.45 × 10(-6) to 1.10 × 10(-6) m(2)/s at flow rate from 1.3 to 7.7 mL/min, whereas the intraparticle diffusion coefficient was 1.04 × 10(-10) m(2)/s, being this last resistance the rate-limiting step. In conclusion, axial dispersion and intraparticle diffusion phenomena play the major role in predicting the adsorption of FA onto XAD-16 in fixed-bed columns. PMID:26789835
Furui, Shigeru; Kuwahara, Sadatoshi; Mehta, Dhruv; Kaminaga, Tatsuro; Miyazawa, Akiyoshi; Ueno, Yasunari; Konno, Kumiko
2009-01-01
Objective We wanted to evaluate the performance of prospective electrocardiogram (ECG)-gated axial scans for assessing coronary stents as compared with retrospective ECG-gated helical scans. Materials and Methods As for a vascular model of the coronary artery, a tube of approximately 2.5-mm inner diameter was adopted and as for stents, three (Bx-Velocity, Express2, and Micro Driver) different kinds of stents were inserted into the tube. Both patent and stenotic models of coronary artery were made by instillating different attenuation (396 vs. 79 Hounsfield unit [HU]) of contrast medium within the tube in tube model. The models were scanned with two types of scan methods with a simulated ECG of 60 beats per minute and using display field of views (FOVs) of 9 and 18 cm. We evaluated the in-stent stenosis visually, and we measured the attenuation values and the diameter of the patent stent lumen. Results The visualization of the stent lumen of the vascular models was improved with using the prospective ECG-gated axial scans and a 9-cm FOV. The inner diameters of the vascular models were underestimated with mean measurement errors of -1.10 to -1.36 mm. The measurement errors were smaller with using the prospective ECG-gated axial scans (Bx-Velocity and Express2, p < 0.0001; Micro Driver, p = 0.0004) and a 9-cm FOV (all stents: p < 0.0001), as compared with the other conditions, respectively. The luminal attenuation value was overestimated in each condition. For the luminal attenuation measurement, the use of prospective ECG-gated axial scans provided less measurement error compared with the retrospective ECG-gated helical scans (all stents: p < 0.0001), and the use of a 9-cm FOV tended to decrease the measurement error. Conclusion The visualization of coronary stents is improved by the use of prospective ECG-gated axial scans and using a small FOV with reduced blooming artifacts and increased spatial resolution. PMID:19412509
Cioslowski, Jerzy; Albin, Joanna
2013-09-21
Asymptotic equivalence of the shell-model and local-density (LDA) descriptions of Coulombic systems confined by radially symmetric potentials in two and three dimensions is demonstrated. Tight upper bounds to the numerical constants that enter the LDA expressions for the Madelung energy are derived and found to differ by less than 0.5% from the previously known approximate values. Thanks to the variational nature of the shell-model approximate energies, asymptotic expressions for other properties, such as mean radial positions of the particles and number densities, are also obtained. A conjecture that generalizes the present results to confining potentials with arbitrary symmetries is formulated. PMID:24070281
Cotton, Stephen J; Miller, William H
2016-03-01
In a recent series of papers, it has been illustrated that a symmetrical quasi-classical (SQC) windowing model applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides an excellent description of a variety of electronically non-adiabatic benchmark model systems for which exact quantum results are available for comparison. In this paper, the SQC/MM approach is used to treat energy transfer dynamics in site-exciton models of light-harvesting complexes, and in particular, the well-known 7-state Fenna-Mathews-Olson (FMO) complex. Again, numerically "exact" results are available for comparison, here via the hierarchical equation of motion (HEOM) approach of Ishizaki and Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for describing the non-adiabatic dynamics of photosynthetic pigment complexes. PMID:26761191
Quark mass effect on axial charge dynamics
NASA Astrophysics Data System (ADS)
Guo, Er-dong; Lin, Shu
2016-05-01
We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2001-07-01
We complete our study of non-Abelian gauge theories in the framework of the Epstein-Glaser approach to renormalization theory including in the model an arbitrary number of Dirac fermions. We consider the consistency of the model up to the third order of the perturbation theory. In the second order we obtain pure group theoretical relations expressing a representation property of the numerical coefficients appearing in the left- and right-handed components of the interaction, Lagrangian. In the third order of the perturbation theory we obtain the the condition of cancellation of the axial anomaly.
Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F
2016-07-01
Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. PMID:27107032
NASA Astrophysics Data System (ADS)
Chiang, Te-Kuang; Chen, Mei-Li
2007-06-01
Based on resultant solution of a two-dimensional (2D) Poisson’s equation in the silicon region, a new analytical model for short-channel fully depleted, symmetrical dual-material double-gate (SDMDG) metal-oxide-semiconductor field effect transistors (MOSFETs) has been developed. The SDMDG MOSFET exhibits significantly reduced short-channel effects (SCEs) when compared with the symmetrical double-gate (SDG) MOSFET due to the step potential profile at the interface between different gate materials. It is found that the threshold voltage roll-off can be effectively reduced using both the thin Si film and thin gate oxide. A considerable portion of the large workfunction of metal gate 1 (M1) when laterally merged with the small workfunction of metal gate 2 (M2) can efficiently suppress drain-induced barrier lowering (DIBL) and maintain the low threshold voltage degradation. In this work, not only a precise 2D analytical model of the surface potential and threshold voltage is presented, but also the minimum surface potential in M1 of the shorter channel device that brings about subthreshold swing degradation for the SDMDG MOSFET is discussed. The new model is verified to be in good agreement with numerical simulation results over a wide range of device parameters.
NASA Astrophysics Data System (ADS)
Yan-hui, Xin; Sheng, Yuan; Ming-tang, Liu; Hong-xia, Liu; He-cai, Yuan
2016-03-01
The two-dimensional models for symmetrical double-material double-gate (DM-DG) strained Si (s-Si) metal-oxide semiconductor field effect transistors (MOSFETs) are presented. The surface potential and the surface electric field expressions have been obtained by solving Poisson’s equation. The models of threshold voltage and subthreshold current are obtained based on the surface potential expression. The surface potential and the surface electric field are compared with those of single-material double-gate (SM-DG) MOSFETs. The effects of different device parameters on the threshold voltage and the subthreshold current are demonstrated. The analytical models give deep insight into the device parameters design. The analytical results obtained from the proposed models show good matching with the simulation results using DESSIS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61376099, 11235008, and 61205003).
Dynamics During Thrust Maneuvers of Flexible Spinning Satellites with Axial and Radial Booms
NASA Technical Reports Server (NTRS)
Longman, R. W.; Fedor, J. V.
1986-01-01
The dynamic response to operational maneuvers of spinning symmetric spacecraft with radial and axial booms was analyzed as part of the prelaunch dynamic analysis of the ISEE-3 spacecraft placed in a halo orbit around an Earth-Sun libration point, and later renamed ICE when it was directed to fly-by comet Giacobini-Zinner. The results presented use simple spacecraft models, and frequently give predictions that are good and easily obtained when the results from using a general purpose multibody dynamics program were very time consuming to obtain. Deployment of radial booms, spin-up after partial deployment, stationkeeping, and trajectory changes are analyzed. The latter two can involve both axial thrusting and pulsed radial thrusting once per revolution.
Reciprocal and unidirectional scattering of parity-time symmetric structures
Jin, L.; Zhang, X. Z.; Zhang, G.; Song, Z.
2016-01-01
Parity-time symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in -symmetric system is closely related to the type of symmetry, that is, the axial (reflection) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity and time-reversal symmetry but keep the parity-time symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) -symmetric ring centre. The explorations of symmetry and asymmetry from symmetry may shed light on novel one-way optical devices and application of -symmetric metamaterials. PMID:26876806
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.
2012-12-01
Results are presented from a search for heavy, right-handed muon neutrinos, Nμ, and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WR mass, dependent on the value of MWR. The excluded region in the two-dimensional (MWR, MNμ) mass plane extends to MWR=2.5TeV.
Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat
2010-11-11
Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.
J. Huffer
2004-09-28
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.
Second harmonic generation of off axial vortex beam in the case of walk-off effect
NASA Astrophysics Data System (ADS)
Chen, Shunyi; Ding, Panfeng; Pu, Jixiong
2016-07-01
Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.
Suchoza, B.P.; Becse, I.
1988-11-08
An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.
Suchoza, Bernard P.; Becse, Imre
1988-01-01
An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.
Inducing chaos by breaking axial symmetry in a black hole magnetosphere
Kopáček, O.; Karas, V.
2014-06-01
While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.
Basler, H.; Buballa, M.
2010-11-01
The phase diagram of strongly interacting matter is studied within a three-flavor Nambu-Jona-Lasinio model, which contains the coupling between chiral and diquark condensates through the axial anomaly. Our results show that it is essential to include the two-flavor color superconducting (2SC) phase in the analysis. While this is expected for realistic strange-quark masses, we find that even for equal up, down, and strange bare quark masses 2SC pairing can be favored due to spontaneous flavor symmetry breaking by the axial anomaly. This can lead to a rich phase structure, including BCS- and Bose-Einstein condensate-like 2SC and color-flavor locked phases and new endpoints. On the other hand, the low-temperature critical endpoint, which was found earlier in the same model without 2SC pairing, is almost removed from the phase diagram and cannot be reached from the low-density chirally broken phase without crossing a preceding first-order phase boundary. For physical quark masses no additional critical endpoint is found.
Non-axial muscle stress and stiffness.
Zahalak, G I
1996-09-01
A generalization is developed of the classic two-state Huxley cross-bridge model to account for non-axial active stress and stiffness. The main ingredients of the model are: (i) a relation between the general three-dimensional deformation of an element of muscle and the deformations of the cross-bridges, that assumes macroscopic deformation is transmitted to the myofibrils, (ii) radial as well as axial cross-bridge stiffness, and (iii) variations of the attachment and detachment rates with lateral filament spacing. The theory leads to a generalized Huxley rate equation on the bond-distribution function, n(zeta, theta, t), of the form [equation: see text] where the Dij are the components of the relative velocity gradient and rho and ñ are functions of the polar angle, theta, and time that describe, respectively, the deformation of the myofilament lattice and the distribution of accessible actin sites (both of these functions can be calculated from the macroscopic deformation). Explicit expressions, in terms of n, are derived for the nine components of the active stress tensor, and the 21 non-vanishing components of the active stiffness tensor; the active stress tensor is found to be unsymmetric. The theory predicts that in general non-axial deformations will modify active axial stress and stiffness, and also give rise to non-axial (e.g., shearing) components. Under most circumstances the magnitudes of the non-axial stress and stiffness components will be small compared with the axial and, further, the effects of non-axial deformation rates will be small compared with those of the axial rate. Large transverse deformations may, however, greatly reduce the axial force and stiffness. The theory suggests a significant mechanical role for the non-contractile proteins in muscle, namely that of equilibrating the unsymmetric active stresses. Some simple applications of the theory are provided to illustrate its physical content. PMID:8917737
Axial Halbach Magnetic Bearings
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2008-01-01
Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.
Planned Axial Reorientation Investigation on Sloshsat
NASA Technical Reports Server (NTRS)
Chato, David J.
2000-01-01
This paper details the design and logic of an experimental investigation to study axial reorientation in low gravity. The Sloshsat free-flyer is described. The planned axial reorientation experiments and test matrixes are presented. Existing analytical tools are discussed. Estimates for settling range from 64 to 1127 seconds. The planned experiments are modelled using computational fluid dynamics. These models show promise in reducing settling estimates and demonstrate the ability of pulsed high thrust settling to emulate lower thrust continuous firing.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
An Unbroken Axial-Vector Current Conservation Law
NASA Astrophysics Data System (ADS)
Sharafiddinov, Rasulkhozha S.
2016-03-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.
An Unbroken Axial-Vector Current Conservation Law
NASA Astrophysics Data System (ADS)
Sharafiddinov, Rasulkhozha S.
2016-04-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.
Braids, shuffles and symmetrizers
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Ogievetsky, O. V.
2009-07-01
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.
Novel Integration Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
NASA Astrophysics Data System (ADS)
Crisciani, Fulvio; Badin, Gualtiero
2014-07-01
A classical model of wind-driven ocean circulation is studied in the weakly nonlinear approximation. An asymptotic expansion for small Rossby number is applied to the separate symmetric and asymmetric components of the stream function, where the symmetry refers to a north-south reflection transformation. The asymptotic expansion allows for the formulation of a coupled set of nonlinear partial differential equations for the two components. Results show that the asymmetric component is responsible for the formation of steady cyclones and anticyclones that cause the deformation of the total stream function of the system. Higher-order components of the stream function in the asymptotic expansion are forced by an effective wind stress arising from lower-order entries in the Jacobian term, and these effective stresses act only to redistribute vorticity.
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
Wagner, J.C.; DeHart, M.D.
2000-03-01
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.
Walking dynamics are symmetric (enough)
Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.
2015-01-01
Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.
Origin of symmetric PMNS and CKM matrices
NASA Astrophysics Data System (ADS)
Rodejohann, Werner; Xu, Xun-Jie
2015-03-01
The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .
Reedlunn, Benjamin; Lu, Wei-Yang
2015-01-01
This report details a work in progress. We have attempted to calibrate and validate a Von Mises plasticity model with the Johnson-Cook failure criterion ( Johnson & Cook , 1985 ) against a set of experiments on various specimens of Al 6061-T651. As will be shown, the effort was not successful, despite considerable attention to detail. When the model was com- pared against axial-torsion experiments on tubes, it over predicted failure by 3 x in tension, and never predicted failure in torsion, even when the tube was twisted by 4 x further than the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not well understood. In future work, we will explore whether more sophisticated material mod- els of plasticity and failure will improve the predictions. Selecting the appropriate advanced material model and interpreting the results of said model are not trivial exercises, so it is worthwhile to fully investigate the behavior of a simple plasticity model before moving on to an anisotropic yield surface or a similarly complicated model.
Sethurajan, Athinthra Krishnaswamy; Krachkovskiy, Sergey A; Halalay, Ion C; Goward, Gillian R; Protas, Bartosz
2015-09-17
We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data. PMID:26247105
Altered Axial Skeletal Development
The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Tang, Kewen; Wen, Ping; Zhang, Panliang; Huang, Yan
2015-01-01
The enantioselective liquid-liquid extraction of 4-nitro-D,L-phenylalanine (D,L-Nphy) using PdCl2 {(s)-BINAP} as extractant in dichloroethane was studied experimentally in a countercurrent cascade of 10 centrifugal contactor separators (CCSs) at 5°C, involving flow ratio, extractant concentration, and Cl(-) concentration. The steady-state enantiomeric excess (ee) in both stream exits was 90.86% at a 93.29% yield. The predicted value was modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee and >99% ee. 14 stages and 16 stages are required for 97% ee and 99% ee for both enantiomers, respectively. PMID:25311896
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Multiple symmetric lipomatosis.
Lee, M S; Lee, M H; Hur, K B
1988-12-01
Multiple symmetric lipomatosis (MSL) is an extremely uncommon disorder. In the medical literatures about 200 cases have been reported. MSL is not associated with other generalized lipomatous disorders, nor are these patient to be necessarily obese. The cause of MSL is unknown. The disorder usually occurs in middle-aged males and there is frequently a history of alcoholism. Some instances of familial occurrence have been reported, but the majority of cases are sporadic. Two cases of MSL are presented. PMID:3267365
Axial grading of inert matrix fuels
Recktenwald, G. D.; Deinert, M. R.
2012-07-01
Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)
García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano
2015-01-01
A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611
ERIC Educational Resources Information Center
Lee, Sik-Yum; Xia, Ye-Mao
2006-01-01
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
NASA Technical Reports Server (NTRS)
Charney, J. G.; Kalnay, E.; Schneider, E.; Shukla, J.
1988-01-01
A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Lerrick, Reinner I; Winstanley, Thomas P L; Haggerty, Karen; Wills, Corinne; Clegg, William; Harrington, Ross W; Bultinck, Patrick; Herrebout, Wouter; Benniston, Andrew C; Hall, Michael J
2014-05-11
The synthesis and resolution of a class of chiral organic fluorophores, axially chiral 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (Ax*-BODIPY), is described. Ax*-BODIPYs were prepared through a modular synthesis combined with a late stage Heck functionalisation. Resolution was achieved by preparative chiral HPLC. Absolute stereochemical assignment was performed by comparison of experimental ECD spectra with TD-DFT calculations. PMID:24676233
NASA Astrophysics Data System (ADS)
Awasthi, Ram Lal; Dev, P. S. Bhupal; Mitra, Manimala
2016-01-01
Inspired by the recent diboson excess observed at the LHC and possible interpretation within a TeV-scale left-right symmetric framework, we explore its implications for low-energy experiments searching for lepton number and flavor violation. Assuming a simple type-II seesaw mechanism for neutrino masses, we show that for the right-handed (RH) gauge boson mass and coupling values required to explain the LHC anomalies, the RH contribution to the lepton number violating process of neutrinoless double beta decay (0 ν β β ) is already constrained by current experiments for relatively low-mass (MeV-GeV) RH neutrinos. The future ton-scale 0 ν β β experiments could probe most of the remaining parameter space, irrespective of the neutrino mass hierarchy and uncertainties in the oscillation parameters and nuclear matrix elements. On the other hand, the RH contribution to the lepton flavor violating process of μ →e γ is constrained for relatively heavier (TeV) RH neutrinos, thus providing a complementary probe of the model. Finally, a measurement of the absolute light neutrino mass scale from future precision cosmology could make this scenario completely testable.
Slagter, W.
1982-11-01
A new form of the one-equation turbulence model has been developed and verified by application to fully developed turbulent flow in smooth, bare rod bundles. The present model allows for the effect of anisotropic eddy viscosities on turbulent flow quantities. The finite element method has been used to predict local values of velocity and turbulent kinetic energy right up to the wall. A variational principle is applied to develop the finite element relationships. The resulting set of nonlinear algebraic equations for the nodal parameters is linearized by the successive-substitution scheme and solved by the frontal solution technique. The numerical results are shown to be in good agreement with available experimental data.
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.
NASA Astrophysics Data System (ADS)
Sterbentz, Dane M.; Prasai, Sujan; Hofle, Mary M.; Walters, Thomas; Lin, Feng; Li, Ji-chao; Bosworth, Ken; Schoen, Marco P.
2016-04-01
In recent years, the correlation coefficient of pressure data from the same blade passage in an axial compressor unit has been used to characterize the state of flow in the blade passage. In addition, the correlation coefficient has been successfully used as an indicator for active control action using air injection. In this work, the correlation coefficient approach is extended to incorporate system identification algorithms in order to extract a mathematical model of the dynamics of the flows within a blade passage. The dynamics analyzed in this research focus on the flow streams and pressure along the rotor blades as well as on the unsteady tip leakage flow from the rotor tip gaps. The system identification results are used to construct a root locus plot for different flow coefficients, starting far away from stall to near stall conditions. As the compressor moves closer to stall, the poles of the identified models move towards the imaginary axis of the complex plane, indicating an impending instability. System frequency data is captured using the proposed correlation based system identification approach. Additionally, an oscillatory tip leakage flow is observed at a flow coefficient away from stall and how this oscillation changes as the compressor approaches stall is an interesting result of this research. Comparative research is analyzed to determine why the oscillatory flow behavior occurs at a specific sensor location within the tip region of the rotor blade.
The Robust Assembly of Small Symmetric Nanoshells
Wagner, Jef; Zandi, Roya
2015-01-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
The Robust Assembly of Small Symmetric Nanoshells.
Wagner, Jef; Zandi, Roya
2015-09-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
NASA Astrophysics Data System (ADS)
Borah, Debasish; Dasgupta, Arnab
2016-07-01
We study the new physics contributions to neutrinoless double beta decay (0 νββ) half-life and lepton flavour violation (LFV) amplitude within the framework of the minimal left-right symmetric model (MLRSM). Considering all possible new physics contributions to 0 νββ and charged lepton flavour violation μ → eγ , μ → 3 e in MLRSM, we constrain the parameter space of the model from the requirement of satisfying existing experimental bounds. Assuming the breaking scale of the left-right symmetry to be O (1) TeV accessible at ongoing and near future collider experiments, we consider the most general type I+II seesaw mechanism for the origin of tiny neutrino masses. Choosing the relative contribution of the type II seesaw term allows us to calculate the right handed neutrino mass matrix as well as Dirac neutrino mass matrix as a function of the model parameters, required for the calculation of 0νββ and LFV amplitudes. We show that such a general type I+II seesaw structure results in more allowed parameter space compared to individual type I or type II seesaw cases considered in earlier works. In particular, we show that the doubly charged scalar masses M Δ are allowed to be smaller than the heaviest right handed neutrino mass M N from the present experimental bounds in these scenarios which is in contrast to earlier results with individual type I or type II seesaw showing M Δ > M N .
Szekeres Swiss-cheese model and supernova observations
Bolejko, Krzysztof; Celerier, Marie-Noeelle
2010-11-15
We use different particular classes of axially symmetric Szekeres Swiss-cheese models for the study of the apparent dimming of the supernovae of type Ia. We compare the results with those obtained in the corresponding Lemaitre-Tolman Swiss-cheese models. Although the quantitative picture is different the qualitative results are comparable, i.e., one cannot fully explain the dimming of the supernovae using small-scale ({approx}50 Mpc) inhomogeneities. To fit successfully the data we need structures of order of 500 Mpc size or larger. However, this result might be an artifact due to the use of axial light rays in axially symmetric models. Anyhow, this work is a first step in trying to use Szekeres Swiss-cheese models in cosmology and it will be followed by the study of more physical models with still less symmetry.
Radially symmetric transmon with long lifetime
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Vissers, Michael; Gao, Jiansong; Pappas, David
2014-03-01
We present a radially symmetric design for a large pad transmon qubit. The symmetry reduces the dipole radiation by orders of magnitude relative to axial large pad qubits that are widely used for 3D-circuit QED experiments. The reduction in radiation allows for the use of large area structures that are needed to reduce the effects of interface losses. This enables long qubit lifetimes without the use of a high-Q cavity resonator. Energy relaxation and coherence times of up to 35 microseconds have been measured. The qubit can be implemented in a microstrip geometry. This gives the advantage of removing discontinuous ground planes that can cause stray resonances. In addition, this geometry is well suited for implementing and exploring circuits with direct qubit-qubit coupling.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Symmetrization for redundant channels
NASA Technical Reports Server (NTRS)
Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)
1988-01-01
A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.
Dworak, Dominik; Woźnicka, Urszula; Zorski, Tomasz; Wiącek, Urszula
2011-01-01
A signal of a spectrometric gamma-gamma density tool in specific borehole conditions has been numerically calculated. Transport of gamma rays, from a point (137)Cs gamma source situated in a borehole tool, through rock media to detectors, has been simulated using a Monte Carlo code. The influence of heterogeneity of the rock medium surrounding the borehole on the signal of the detectors has been examined. This heterogeneity results from the presence of an interface between two different geological layers, parallel to the borehole wall. The above conditions may occur in horizontal logging, when the borehole is drilled along the boundary of geological layers. It is possible to assess the distance from the boundary on the basis of the responses of the gamma-gamma density tool, using the classic interpretation "spine & ribs" procedure. The effect of different densities of the bordered layers on the tool response has been analyzed. The presented calculations show the wide possibilities of numerical modeling of the complex borehole geometry and solving difficult interpretation problems in nuclear well logging. PMID:20850331
All-optical symmetric ternary logic gate
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Symmetric splitting of very light systems
Grotowski, K.; Majka, Z.; Planeta, R.; Szczodrak, M.; Chan, Y.; Guarino, G.; Moretto, L.G.; Morrissey, D.J.; Sobotka, L.G.; Stokstad, R.G.; Tserruya, I.; Wald, S.; Wozniak, G.J.
1984-10-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV /sup 12/C+ /sup 40/Ca, 141 MeV /sup 9/Be+ /sup 40/Ca, and 153 MeV /sup 6/Li+ /sup 40/Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics.
Normal glow discharge in axial magnetic field
NASA Astrophysics Data System (ADS)
Surzhikov, S.; Shang, J.
2014-10-01
Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.
Integrable nonlinear parity-time-symmetric optical oscillator
NASA Astrophysics Data System (ADS)
Hassan, Absar U.; Hodaei, Hossein; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N.
2016-04-01
The nonlinear dynamics of a balanced parity-time-symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain, thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time-symmetric systems. Unlike other saturable parity-time-symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.
5D non-symmetric gravity and geodesic confinement
NASA Astrophysics Data System (ADS)
Ghosh, Suman; Shankaranarayanan, S.
2013-09-01
This work focuses on an unexplored aspect of non-symmetric geometry where only the off-diagonal metric components along the extra dimension, in a 5-dimensional spacetime, are non-symmetric. We show that the energy densities of the stationary non-symmetric models are similar to that of brane models thereby mimicking the thick-brane scenario. We find that the massive test particles are confined near the location of the brane for both growing and decaying warp factors. This feature is unique to the non-symmetric nature of our model. We have also studied the dynamical models where standard 4D FLRW brane is embedded. Our analysis shows that the non-symmetric terms deconfine energy density at the early universe while automatically confine at late times.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-fold symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Analysis of interlaminar stresses in the torsion of symmetric laminates
NASA Astrophysics Data System (ADS)
Whitney, James M.
1994-03-01
In the present paper the effect of transverse (interlaminar) normal strain on the torsional response of symmetrically laminated, anisotropic plates is investigated. The analysis is based on a modified form of the global laminate model developed by Pagano and Soni. In-plane stresses are modified in the boundary zone to satisfy free-edge boundary conditions. For the general case of angle-ply layers, a laminated composite behaves in a manner similar to an anisotropic plate. The existence of the bending-twisting coupling phenomenon found in the case of anisotropic plates leads to two classic problems in conjunction with torsional loading. In the first case, referred to as 'pure torsion,' the torsional axis of the plates does not bend. Thus, an axial bending moment is required in addition to the torsional load to suppress plate bending. In the second case, referred to as 'free torsion,' the only loading is torque in which anisotropy induces bending of the torsional axis. For the purposes of this paper it is sufficient to consider the case of pure torsion only.
Axially grooved heat pipe study
NASA Technical Reports Server (NTRS)
1977-01-01
A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.
PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and
Axial focusing of energy from a hypervelocity impact on earth
Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.
1994-12-01
We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.
Investigations on Experimental Impellers for Axial Blowers
NASA Technical Reports Server (NTRS)
Encke, W.
1947-01-01
A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.
NASA Technical Reports Server (NTRS)
Schmidt, G. K.
1979-01-01
A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.
Conformal cylindrically symmetric spacetimes in modified gravity
NASA Astrophysics Data System (ADS)
Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu
2015-11-01
We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.
Conformally symmetric traversable wormholes
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
NASA Astrophysics Data System (ADS)
Jimenez, Carmen; Kurdyumov, Vadim
2015-11-01
Direct numerical simulations, including detailed chemistry and transport, are used to investigate the structure and stability of freely propagating lean hydrogen flames in planar narrow channels. Depending on the flame burning rate and the wall properties, the flame-wall heat exchange can result in flame extinction. For large heat losses only the fastest burning flames, corresponding to fast reactant flowing rates can propagate. We show that double flame solutions, symmetric and non-symmetric, can coexist for the same set of parameters. The symmetric solutions are calculated imposing symmetric boundary conditions in the channel mid-plane and when this restriction is relaxed non-symmetric solutions develop. This indicates that the symmetric flames are unstable to non-symmetric perturbations, as predicted before within the context of a constant density model. Moreover, the burning rates of the non-symmetric flames are found to be significantly larger than those of the corresponding symmetric solution and therefore the range of conditions for flame extinction and flashback also differ. This shows that assuming in CFD that the flame should reproduce the symmetry of the cold flow can have important safety implications in micro scale combustion devices burning lean hydrogen mixture.
NASA Astrophysics Data System (ADS)
Chemenda, A. I.; Jorand, C.; Petit, J.; Nguyen, S.
2011-12-01
Dilatancy bands were recently obtained in conventional axisymmetric extension tests on a synthetic physical rock analogue (granular, frictional, cohesive and dilatant) material GRAM1 at a relatively low mean stress σ within range σd < σ < σs , where σd and σs are experimentally constrained values (Chemenda et al., JGR, 2011). The walls of the opened bands have plumose morphology defined by the decohesion pattern of the material within the band, which have a complex 3-D structure. At σ < σd , the sample rupture occurs through mode I cracking and results in smooth fracture surfaces. With σ increase at σ > σs , the bands become inclined to σ1 , resulting in dilatant shear and then in compactive shear bands that have an irregular structure and geometry at a micro-scale. Pure compaction bands were not obtained (at least not evidenced) in the extension tests, but they were generated in the GRAM1 compression tests as previously in the porous rocks. At lower pressure in the compression tests were obtained compactive shear and dilatant shear bands as well as axial splitting fractures that could be originated as dilatancy bands. We also present results from poly-axial tests conducted with material GRAM2 that have slightly different properties than GRAM1. The parallelepiped GRAM2 samples are first subject to the isotropic stress σ0 and then to the uniaxial unloading under plane-strain conditions. At some stage of this process, the sample loses stability and is affected by regular networks of localization bands/fractures whose spacing depends on the loading conditions. The band type changes with the initial mean stress σ0 in the same way as in the above axisymmetric tests where normally only one band is formed. The angle ψ between the bands and σ1 direction continuously increases with σ0 . At sufficiently low σ0 , ψ = 0, which corresponds to the dilatancy bands. Their borders bear plumose features very similar to those on natural joint surfaces. Different
Reciprocal and unidirectional scattering of parity-time symmetric structures.
Jin, L; Zhang, X Z; Zhang, G; Song, Z
2016-01-01
Parity-time (PT) symmetry is of great interest. The reciprocal and unidirectional features are intriguing besides the (PT) symmetry phase transition. Recently, the reciprocal transmission, unidirectional reflectionless and invisibility are intensively studied. Here, we show the reciprocal reflection/transmission in (PT)-symmetric system is closely related to the type of (PT) symmetry, that is, the axial (reflection) (PT) symmetry leads to reciprocal reflection (transmission). The results are further elucidated by studying the scattering of rhombic ring form coupled resonators with enclosed synthetic magnetic flux. The nonreciprocal phase shift induced by the magnetic flux and gain/loss break the parity (P) and time-reversal (T) symmetry but keep the parity-time (PT) symmetry. The reciprocal reflection (transmission) and unidirectional transmission (reflection) are found in the axial (reflection) (PT)-symmetric ring centre. The explorations of symmetry and asymmetry from (PT) symmetry may shed light on novel one-way optical devices and application of (PT)-symmetric metamaterials. PMID:26876806
Davis, James H; Komljenović, Ivana
2016-02-01
The location, orientation, order and dynamics of cholesterol in model membranes have been well characterized, therefore cholesterol is an ideal molecule for developing new methods for studying structured molecules undergoing rapid axially symmetric reorientation. The use of (13)C filtering via short contact cross polarization transfer to (1)H allows the recovery of the weak cholesterol (1)H magic angle spinning NMR signals from beneath the strong phospholipid background in bicelles composed of chain perdeuterated dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine/[3,4-(13)C]-cholesterol. Measurements of the nuclear Overhauser enhancement for (1)H nuclei located in the first ring of cholesterol are interpreted in terms of a simple two motion model consisting of axial reorientation, with a correlation time τ∥, and a slower reorientation of the diffusion axis relative to the bilayer normal, with correlation time τ⊥. This approach can be extended to other molecules which undergo rapid axial reorientation such as small membrane associated peptides. PMID:26607012
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Yan, Zhenya
2013-04-28
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report on exact solutions of one- and two-dimensional nonlinear Schrödinger equations (known as the Gross-Pitaevskii equation in Bose-Einstein condensates) with several complex -symmetric potentials. Finally, some complex -symmetric extension principles are used to generate some complex -symmetric nonlinear wave equations starting from both -symmetric (e.g. the KdV equation) and non- -symmetric (e.g. the Burgers equation) nonlinear wave equations. In particular, we discuss exact solutions of some representative ones of the complex -symmetric Burgers equation in detail. PMID:23509385
Matching of planar waveguide T-nodes by symmetrical wedge shaped bulge
NASA Astrophysics Data System (ADS)
Zinenko, I. I.; Onufrienko, L. M.; Chumachenko, V. P.
1994-05-01
Numerical analysis of matching possibility of the H- and E-plane T-nodes including a symmetrical wedge-shaped bulge in the junction space is carried out electrodynamically. The nomograms allowing to choose the nodes' geometrical parameters and assuring their matching in excitation by an axial waveguide are calculated.
Inclination flattening and the geocentric axial dipole hypothesis [rapid communication
NASA Astrophysics Data System (ADS)
Tauxe, Lisa
2005-05-01
William Gilbert first articulated what has come to be known as the geocentric axial dipole hypothesis. The GAD hypothesis is the principle on which paleogeographic reconstructions rely to constrain paleolatitude. For decades, there have been calls for permanent non-dipole contributions to the time-averaged field. Recently, these have demanded large contributions of the axial octupole, which, if valid, would call into question the general utility of the GAD hypothesis. In the process of geological recording of the geomagnetic field, "Earth filters" distort the directions. Many processes, for example, sedimentary inclination flattening and random tilting, can lead to a net shallowing of the observed direction. Therefore, inclinations that are shallower than expected from GAD can be explained by recording biases, northward transport, or non-dipole geomagnetic fields. Using paleomagnetic data from the last 5 million years from well-constrained lava flow data allows the construction of a statistical geomagnetic field model. Such a model can predict not only the average expected direction for a given latitude, but also the shape of the distribution of directions produced by secular variation. The elongation of predicted directions varies as a function of latitude (from significantly elongate in the up/down direction at the equator to circularly symmetric at the poles). Sedimentary inclination flattening also works in a predictable manner producing elongations that are stretched side to side and the degree of flattening depending on the inclination of the applied field and a "flattening factor" f. The twin tools of the predicted elongation/inclination relationship characteristic of the geomagnetic field for the past 5 million years and the distortion of the directions predicted from sedimentary inclination flattening allows us to find the flattening factor that yields corrected directions with an elongation and average inclination consistent with the statistical field
Rapalino, Otto; Smirniotopoulos, James G
2016-01-01
Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671
Bode, Hans R.
2009-01-01
Morphogen gradients play an important role in pattern formation during early stages of embryonic development in many bilaterians. In an adult hydra, axial patterning processes are constantly active because of the tissue dynamics in the adult. These processes include an organizer region in the head, which continuously produces and transmits two signals that are distributed in gradients down the body column. One signal sets up and maintains the head activation gradient, which is a morphogenetic gradient. This gradient confers the capacity of head formation on tissue of the body column, which takes place during bud formation, hydra's mode of asexual reproduction, as well as during head regeneration following bisection of the animal anywhere along the body column. The other signal sets up the head inhibition gradient, which prevents head formation, thereby restricting bud formation to the lower part of the body column in an adult hydra. Little is known about the molecular basis of the two gradients. In contrast, the canonical Wnt pathway plays a central role in setting up and maintaining the head organizer. PMID:20066073
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
This is Volume 3 - Heat Transfer Data Tabulation (65 percent Axial Spacing) of a combined experimental and analytical program which was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approximately 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators.
Cylindrically symmetric electrohydrodynamic patterning.
Deshpande, Paru; Pease, Leonard F; Chen, Lei; Chou, Stephen Y; Russel, William B
2004-10-01
Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining these and other cylindrical structures are presented. These rings represent an additional member of a class of structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10 fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approximately constant within a concentric cluster. The formation rate is proportional to the viscosity and, consequently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike structures. The salient feature of this analysis is the use of perturbations that incorporate their radial dependence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing, gratings, and
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
Integrability of PT-symmetric dimers
NASA Astrophysics Data System (ADS)
Pickton, J.; Susanto, H.
2013-12-01
The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport on dimers with parity-time (PT)-symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT-symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behavior of all solutions of the system, including changes in the topological structure of the phase plane, is then discussed.
Owen, A.K.; Daugherty, A.; Garrard, D.
1999-07-01
A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics, and, thus, quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration result and the results of the trade-off study.
Heat conduction of symmetric lattices
NASA Astrophysics Data System (ADS)
Nie, Linru; Yu, Lilong; Zheng, Zhigang; Shu, Changzheng
2013-06-01
Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated. Through simplifying the model, we derived analytical expression of thermal current of the system in the overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates periodically with d, whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths, dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the implication that the coupling displacement plays a crucial role in the control of heat current.
Axial gap rotating electrical machine
None
2016-02-23
Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.
Rapalino, Otto; Batchelor, Tracy; González, R Gilberto
2016-01-01
There is a wide variety of intra-axial primary and secondary brain neoplasms. Many of them have characteristic imaging features while other tumors can present in a similar fashion. There are peculiar posttreatment imaging phenomena that can present as intra-axial mass-like lesions (such as pseudoprogression or radiation necrosis), further complicating the diagnosis and clinical follow-up of patients with intracerebral tumors. The purpose of this chapter is to present a general overview of the most common intra-axial brain tumors and peculiar posttreatment changes that are very important in the diagnosis and clinical follow-up of patients with brain tumors. PMID:27432670
Chirally symmetric but confining dense, cold matter
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Chirally symmetric but confining dense, cold matter
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Deur, Alexandre P.
2013-11-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
Static black holes with axial symmetry in asymptotically AdS4 spacetime
NASA Astrophysics Data System (ADS)
Kichakova, Olga; Kunz, Jutta; Radu, Eugen; Shnir, Yasha
2016-02-01
The known static electrovacuum black holes in a globally AdS4 background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle φ , which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein-(complex) scalar field and Einstein-Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress tensor. Finally, based on the results obtained in the probe limit, we conjecture the existence in Einstein-Maxwell theory of static black holes with axial symmetry only.
Decay Structure for Symmetric Hyperbolic Systems with Non-Symmetric Relaxation and its Application
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Duan, Renjun; Kawashima, Shuichi
2012-07-01
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima-Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435-457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249-275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler-Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375-413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647-667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001-1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima-Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.
Buckling of Multiwall Carbon Nanotubes under Axial Compression
NASA Astrophysics Data System (ADS)
Akita, Seiji; Nishio, Mitsumasa; Nakayama, Yoshikazu
2006-06-01
We have investigated the axial buckling of multiwall nanotubes under the axial compression using nanomanipulation experiments and molecular dynamics (MD) simulations. Experimentally, Young’s moduli of nanotubes with different inner hollow diameters for the same outer diameters are consistent with the Eulers buckling model based on the continuum analysis. The MD simulations for the buckling behavior of triple- and double-walled nanotubes are also consistent with the continuum analysis. This good agreement indicates that Euler’s buckling model is applicable to the analysis of the axial buckling behavior of the multiwall nanotubes.
Stability analysis of restricted non-static axial symmetry
Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com
2013-11-01
This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.
Symmetric scrolled packings of multilayered carbon nanoribbons
NASA Astrophysics Data System (ADS)
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Asymmetric versus symmetric pulses for cortical microstimulation.
Koivuniemi, Andrew S; Otto, Kevin J
2011-10-01
Intracortical microstimulation (ICMS), which has shown promise in the visual, auditory and somatosensory systems as a platform for sensory prostheses, typically relies on charged balanced, symmetric, biphasic stimulation. However, neural stimulation models as well as experiments conducted in cochlear implant users have suggested that charge balanced asymmetric pulses could generate lower detection thresholds for stimulation in terms of charge per phase. For this study, rats were chronically implanted with microelectrode arrays unilaterally in their right auditory cortex and then trained to detect ICMS delivered through a single electrode site in order to determine their behavioral threshold. This model was used in two experiments. The first experiment addressed the effect of lead phase direction, asymmetry, and phase duration on detection threshold. The second experiment fixed the cathode phase duration at 123 μs and varied only the phase asymmetry and lead phase direction. Taken together, the results of these experiments suggest that, for ICMS, the primary determinant of threshold level is cathode phase duration, and that asymmetry provides no significant advantage when compared to symmetric, cathode leading pulses. However, symmetric anode leading pulses of less than or equal to 205 μs per phase consistently showed higher thresholds when compared to all other pulses of equal cathode phase duration. PMID:21968793
Owen, A.K.; Daugherty, A.; Garrard, D.
1999-07-01
A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six-kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper presents the model calibration results and the results of the trade-off study. A companion paper discusses the model development and describes the test facilities used to obtain the calibration data.
Bandyopadhyay, Sabyasachi; Rana, Atanu; Mittra, Kaustuv; Samanta, Subhra; Sengupta, Kushal; Dey, Abhishek
2014-10-01
Using a combination of self-assembly and synthesis, bioinspired electrodes having dilute iron porphyrin active sites bound to axial thiolate and imidazole axial ligands are created atop self-assembled monolayers (SAMs). Resonance Raman data indicate that a picket fence architecture results in a high-spin (HS) ground state (GS) in these complexes and a hydrogen-bonding triazole architecture results in a low-spin (LS) ground state. The reorganization energies (λ) of these thiolate- and imidazole-bound iron porphyrin sites for both HS and LS states are experimentally determined. The λ of 5C HS imidazole and thiolate-bound iron porphyrin active sites are 10-16 kJ/mol, which are lower than their 6C LS counterparts. Density functional theory (DFT) calculations reproduce these data and indicate that the presence of significant electronic relaxation from the ligand system lowers the geometric relaxation and results in very low λ in these 5C HS active sites. These calculations indicate that loss of one-half a π bond during redox in a LS thiolate bound active site is responsible for its higher λ relative to a σ-donor ligand-like imidazole. Hydrogen bonding to the axial ligand leads to a significant increase in λ irrespective of the spin state of the iron center. The results suggest that while the hydrogen bonding to the thiolate in the 5C HS thiolate bound active site of cytochrome P450 (cyp450) shifts the potential up, resulting in a negative ΔG, it also increases λ resulting in an overall low barrier for the electron transfer process. PMID:25238648
Masi, Alfonse T
2014-01-01
Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated
Wetting on axially-patterned heterogeneous surfaces.
Rodríguez-Valverde, M A; Ruiz-Cabello, F J Montes; Cabrerizo-Vilchez, M A
2008-05-19
Contact angle variability, leading to errors in interpretation, arises from various sources. Contact angle hysteresis (history-dependent wetting) and contact angle multiplicity (corrugation of three-phase contact line) are irrespectively the most frequent causes of this uncertainty. Secondary effects also derived from the distribution of chemical defects on solid surfaces, and so due to the existence of boundaries, are the known "stick/jump-slip" phenomena. Currently, the underlying mechanisms in contact angle hysteresis and their connection to "stick/jump-slip" effects and the prediction of thermodynamic contact angle are not fully understood. In this study, axial models of smooth heterogeneous surface were chosen in order to mitigate contact angle multiplicity. For each axial pattern, advancing, receding and equilibrium contact angles were predicted from the local minima location of the system free energy. A heuristic model, based on the local Young equation for spherical drops on patch-wise axial patterns, was fruitfully tested from the results of free-energy minimization. Despite the very simplistic surface model chosen in this study, it allowed clarifying concepts usually misleading in wetting phenomena. PMID:18279819
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Ma, Qiang; Cui, Junzhi
2016-06-01
The new second-order two-scale (SOTS) finite element algorithm is developed for the dynamic thermo-mechanical coupling problems in axisymmetric and spherical symmetric structures made of composite materials. The axisymmetric structure considered is periodic in both radial and axial directions and homogeneous in circumferential direction. The spherical symmetric structure is only periodic in radial direction. The dynamic thermo-mechanical coupling model is presented and the equivalent compact form is derived. Then, the cell problems, effective material coefficients and the homogenized thermo-mechanical coupling problem are obtained successively by the second-order asymptotic expansion of the temperature increment and displacement. The homogenized material obtained is manifested with the anisotropic property in the circumferential direction. The explicit expressions of the homogenized coefficients in the plane axisymmetric and spherical symmetric cases are given and both the derivation of the analytical solutions of the cell functions and the quasi-static thermoelasticity problems are discussed. Based on the SOTS method, the corresponding finite-element procedure is presented and the unconditionally stable implicit algorithm is established. Some numerical examples are solved and the mutual interaction between the temperature and displacement field is studied under the condition of structural vibration. The computational results demonstrate that the second-order asymptotic analysis finite-element algorithm is feasible and effective in simulating and predicting the dynamic thermo-mechanical behaviors of the composite materials with small periodic configurations in axisymmetric and spherical symmetric structures. This may provide a vital computational tool for analyzing composite material internal temperature distribution and structural deformation induced by the dynamic thermo-mechanical coupling response under strong aerothermodynamic environment.
Description of Axial Detail for ROK Fuel
Trellue, Holly R; Galloway, Jack D
2012-04-20
For the purpose of NDA simulations of the ROK fuel assemblies, we have developed an axial burnup distribution to represent the pins themselves based on gamma scans of rods in the G23 assembly. For the purpose of modeling the G23 assembly (both at ORNL and LANL), the pin-by-pin burnup map as simulated by ROK is being assumed to represent the radial burnup distribution. However, both DA and NDA results indicate that this simulated estimate is not 100% correct. In particular, the burnup obtained from the axial gamma scan of 7 pins does not represent exactly the same 'average' pin burnup as the ROK simulation. Correction for this discrepancy is a goal of the well-characterized assembly task but will take time. For now, I have come up with a correlation for 26 axial points of the burnup as obtained by gamma scans of 7 different rods (C13, G01, G02, J11, K10, L02, and M04, neglecting K02 at this time) to the average burnup given by the simulation for each of the rods individually. The resulting fraction in each axial zone is then averaged for the 7 different rods so that it can represent every fuel pin in the assembly. The burnup in each of the 26 axial zones of rods in all ROK assemblies will then be directly adjusted using this fraction, which is given in Table 1. Note that the gamma scan data given by ROK for assembly G23 included a length of {approx}3686 mm, so the first 12 mm and the last 14 mm were ignored to give an actual rod length of {approx}366 cm. To represent assembly F02 in which no pin-by-pin burnup distribution is given by ROK, we must model it using infinitely-reflected geometry but can look at the effects of measuring in different axial zones by using intermediate burnup files (i.e. smaller burnups than 28 GWd/MTU) and determining which axial zone(s) each burnup represents. Details for assembly F02 are then given in Tables 2 and 3, which is given in Table 1 and has 44 total axial zones to represent the top meter in explicit detail in addition to the
NASA Astrophysics Data System (ADS)
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Looking for symmetric Bell inequalities
NASA Astrophysics Data System (ADS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-09-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Rindler-like Horizon in Spherically Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Yang, Jinbo; He, Tangmei; Zhang, Jingyi
2016-02-01
In this paper, the Rindler-like horizon in a spherically symmetric spacetime is proposed. It is showed that just like the Rindler horizon in Minkowski spacetimes, there is also a Rindler-like horizon to a family of special observers in general spherically symmetric spacetimes. The entropy of this type of horizon is calculated with the thin film brick-wall model. The significance of entropy is discussed. Our results imply some connection between Bekeinstein-Hawking entropy and entanglement entropy.
Rindler-like Horizon in Spherically Symmetric Spacetime
NASA Astrophysics Data System (ADS)
Yang, Jinbo; He, Tangmei; Zhang, Jingyi
2016-07-01
In this paper, the Rindler-like horizon in a spherically symmetric spacetime is proposed. It is showed that just like the Rindler horizon in Minkowski spacetimes, there is also a Rindler-like horizon to a family of special observers in general spherically symmetric spacetimes. The entropy of this type of horizon is calculated with the thin film brick-wall model. The significance of entropy is discussed. Our results imply some connection between Bekeinstein-Hawking entropy and entanglement entropy.
Spherically symmetric thick branes cosmological evolution
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão
2015-01-01
Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).
Compensator configurations for load currents' symmetrization
NASA Astrophysics Data System (ADS)
Rusinaru, D.; Manescu, L. G.; Dinu, R. C.
2016-02-01
This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.
Tri-axial tactile sensing element
NASA Astrophysics Data System (ADS)
Castellanos-Ramos, Julián.; Navas-González, Rafael; Vidal-Verdú, F.
2013-05-01
A 13 x 13 square millimetre tri-axial taxel is presented which is suitable for some medical applications, for instance in assistive robotics that involves contact with humans or in prosthetics. Finite Element Analysis is carried out to determine what structure is the best to obtain a uniform distribution of pressure on the sensing areas underneath the structure. This structure has been fabricated in plastic with a 3D printer and a commercial tactile sensor has been used to implement the sensing areas. A three axis linear motorized translation stage with a tri-axial precision force sensor is used to find the parameters of the linear regression model and characterize the proposed taxel. The results are analysed to see to what extent the goal has been reached in this specific implementation.
Computational analysis of a multistage axial compressor
NASA Astrophysics Data System (ADS)
Mamidoju, Chaithanya
Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.
A non-integral, axial-force measuring element
NASA Astrophysics Data System (ADS)
Ringel, M.; Levin, D.; Seginer, A.
1989-10-01
A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.
Research on axial thrust of the waterjet pump based on CFD under cavitation conditions
NASA Astrophysics Data System (ADS)
Shen, Z. H.; Pan, Z. Y.
2015-01-01
Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.
Spherically Symmetric Gravitational Fields
NASA Astrophysics Data System (ADS)
Vargas Moniz, P.
The purpose of this paper is to investigate the quantum vacua directly implied by the wave function of a gravitational configuration characterized by the presence of an apparent horizon, namely the Vaidya space-time solution. Spherical symmetry is a main feature of this configuration, with a scalar field constituting a source [a Klein-Gordon geon or Berger-Chitre-Moncrief-Nutku (BCMN) type model]. The subsequent analysis requires solving a Wheeler-DeWitt equation near the apparent horizon (following the guidelinesintroduced by A. Tomimatsu,18; M. Pollock, 19 and developed by A. Hosoya and I. Oda20,21) with the scalar field herein expanded in terms of S2 spherical harmonics: midisuperspace quantization. The main results present in this paper are as follows. It is found that the mass function characteristic of the Vaidya metric is positive definite within this quantum approach. Furthermore, the inhomogeneous matter sector determines a descrip-tion in terms of open quantum (sub)systems, namely in the form of an harmonic oscillator whose frequency depends on the mass function. For this open (sub)system, a twofold approach is employed. On the one hand, an exact invariant observable is obtained from the effective Hamiltonian for the inhomogeneous matter modes. It is shown that this invariant admits a set of discrete eigenvalues which depend on the mass function. The corresponding set of eigenstates is constructed from a particular vacuum state. On the other hand, exact solutions are found for the Schrädinger equation associated with the inhomogeneous matter modes. This paper is concluded with a discussion, where two other issues are raised: (i) the possible application to realistic black hole dynamics of the results obtained for a simplified (BCMN) model and (ii) whether such vacuum states could be related with others defined instead within scalar field theories constructed in classical backgrounds.
Bumblebee preference for symmetrical flowers.
Møller, A P
1995-03-14
Fluctuating asymmetry, which represents small random deviations from otherwise bilateral symmetry, is a measure of the phenotypic quality of individuals indicating the ability of controlled development under given environmental and genetic conditions. I tested whether floral symmetry reliably reflects phenotypic quality measured in terms of pollinator rewards and whether pollinators respond to floral symmetry in a series of observations and experiments on Epilobium angustifolium (Onagraceae). Lower petal asymmetry was negatively related to mean lower petal length, whereas asymmetry in leaf width was positively related to mean leaf width. Flowers visited by bumblebees were larger and more symmetrical than the nearest neighboring flower. This relationship between pollinator preference for large and symmetrical flowers was demonstrated to be causal in experiments in which the lower petals were manipulated symmetrically or asymmetrically. Nectar production was larger in symmetrical flowers, and this may explain the bumblebee preference for flower symmetry. Floral symmetry therefore reliably reflects nectar production and hence enhances pollen transport. Extensive embryo abortion has been documented in E. angustifolium and other outcrossing plant species. Floral fluctuating asymmetry, which reflects general developmental homeostasis, may explain such developmental selection in these plants. PMID:11607519
A scheme for symmetrization verification
NASA Astrophysics Data System (ADS)
Sancho, Pedro
2011-08-01
We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.
Intensity-symmetric Airy beams.
Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó
2015-03-01
Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed. PMID:26366655
Noise Suppression Using Symmetric Exchange Gates in Spin Qubits
NASA Astrophysics Data System (ADS)
Martins, Frederico; Malinowski, Filip K.; Nissen, Peter D.; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand
2016-03-01
We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.
Noise Suppression Using Symmetric Exchange Gates in Spin Qubits.
Martins, Frederico; Malinowski, Filip K; Nissen, Peter D; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand
2016-03-18
We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise. PMID:27035316
Watson's theorem and the N Δ (1232 ) axial transition
NASA Astrophysics Data System (ADS)
Alvarez-Ruso, L.; Hernández, E.; Nieves, J.; Vacas, M. J. Vicente
2016-01-01
We present a new determination of the N Δ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C5A(0 ), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.
Limit loads for pipelines with axial surface flaws
Shen, G.; Tyson, W.R.
1996-12-31
The limit loads for pipelines with axial surface flaws have been evaluated by using a strip yield model at levels of ligament yield and ligament collapse. The former was defined as that at which the plastic zone first reaches the back surface, and the later is that at which the plastic zone spreads over the entire ligament. The evaluated collapse load has been used to estimate the failure stress of pipelines containing axial surface flaws. Predictions have been compared with existing experimental data.
Light-front view of the axial anomaly
Ji, Chueng-Ryong |; Rey, Soo-Jong
1995-07-01
Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of the quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit.
Sharif, M.; Yousaf, Z. E-mail: zeeshan.math@pu.edu.pk
2014-06-01
This paper investigates stability regions for a non-static restricted class of axially symmetric geometry filled with anisotropic, heat radiating and shearing viscous fluid that collapses non-adiabatically. In this context, dynamical equations as well as collapse equation are constructed through perturbation scheme with f(R) = R+εR{sup 2} model. We then develop dynamical instability regions at Newtonian and post-Newtonian eras. It is concluded that pressure anisotropy and heat dissipation increases the instability regions of the collapsing system while shearing viscosity as well as f(R) dark sourced terms decrease them during collapse. Finally, we calculate our results under constant curvature condition and GR limit, i.e., f(R)→R.
Bone formation in axial spondyloarthritis.
Lories, Rik J; Haroon, Nigil
2014-10-01
The success of targeted therapies directed against tumor necrosis factor for patients with spondyloarthritis has shifted the focus of physicians and scientists towards the prevention of structural damage to the involved structures, in particular the sacroiliac joints and the spine, to avoid loss of function and disability. Structural damage to the skeleton as witnessed by radiography mainly consists of new bone formation potentially progressively leading to spine or joint ankylosis. This important long-term outcome parameter has been difficult to study, not alone because the time window for change may be long but also because human tissues with direct translational relevance are rarely available. Data from rodent models have identified growth factor signaling pathways as relevant targets. Both human and animal studies have tried to understand the link between inflammation and new bone formation. At the current moment, most evidence points towards a strong link between both but with the question still lingering about the sequence of events, disease triggers, and the interdependence of both features of disease. New discoveries such as a masterswitch T cell population that carries the IL23 receptor and the analysis of auto-antibodies directed again noggin and sclerostin are contributing to innovative insights into the pathophysiology of disease. Long-term data with tumor necrosis factor (TNF) inhibitors also suggest that some window of opportunity may exist to inhibit structural disease progression. All these data provide support for a further critical analysis of the available datasets and boost research in the field. The introduction of novel disease definitions, in particular the characterization of non-radiographic axial spondyloarthritis patients, will likely be instrumental in our further understanding of structural damage. PMID:25488783
Bessel beam CARS of axially structured samples
Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
2015-01-01
We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern. PMID:26046671
Bessel beam CARS of axially structured samples
NASA Astrophysics Data System (ADS)
Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen
2015-06-01
We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.
Andreussi, T.; Morrison, P. J.; Pegoraro, F.
2012-05-15
The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.
Effects of symmetrical foundation on sound radiation from a submarine hull structure.
Li, Chenyang; Su, Jinpeng; Wang, Jian; Hua, Hongxing
2015-11-01
The effects of a passive noise control method for suppressing sound radiation from a submarine hull structure are investigated. The control method is realized by symmetrizing the foundation about the horizontal plane. The coupled finite element method and boundary element method are adopted to compute the acoustic characteristics of the submerged hull. From the numerical results, the symmetrical foundation has advantages in sound radiation reduction when the hull is subjected to the axial load, but has little influences in the vertical and transverse load cases. Using the modal decomposition technique, the contributions of each individual mode to the sound radiation are analyzed to reveal the mechanism of the control method. PMID:26627793
Synthesis of controllers for symmetric systems
NASA Astrophysics Data System (ADS)
Ameur Abid, Chiheb; Zouari, Belhassen
2010-11-01
This article deals with supervisory control problem for coloured Petri (CP) nets. Considering a CP-net, we build a condensed version of the ordinary state-space, namely the symbolic reachability graph (SRG). This latter graph allows to cope with state-space explosion problem for symmetric systems. The control specification can be expressed in terms of either forbidden states or forbidden sequences of transitions. According to these specifications, we derive the controller by applying the theory of regions on the basis of the SRG. Thanks to expressiveness power of CP-nets, the obtained controller to be connected to the plant model is reduced to one single place.
Axial structure of the nucleon
Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner
2002-01-01
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
Axial pumps for propulsion systems
NASA Technical Reports Server (NTRS)
Huppert, M. C.; Rothe, K.
1974-01-01
The development of axial flow hydrogen pumps is examined. The design features and the performance data obtained during the course of the development programs are discussed. The problems created by the pump characteristics are analyzed. Graphs of four stage pump performance for various turbine blade configurations are developed. The characteristics and performance of a variety of pumps are included.
Burns, M L; Kaleps, I; Kazarian, L E
1984-01-01
The creep response phenomena observed on 47 human intervertebral discs subjected to a constant axial compressive stress was analytically studied by two-, three- and four-parameter-solid models employing the Burns- Kaleps 'exact analysis scheme'. The mechanical properties (Young's moduli and viscosity coefficients) associated with each model were calculated for each of the 47 disks, with superior results obtained for the latter two models. Results for the two-parameter-solid model suggest its possible usefulness in simulating creep response that is characteristic of disk degeneration. Results for the three- and four-parameter-solid models were excellent, with an average error for the model predicted strain, epsilon(ti)cal, values from the experimentally measured, epsilon(ti)exp, values of 2.314% for the former model and 4.446% for the latter model on the 47 human spinal segments analyzed. The three-parameter-solid model was most sensitive in its predictability of strain behavior for ti greater than 1 min; whereas the four-parameter-solid model demonstrated greater simulation sensitivity in the 0 less than ti less than or equal to 1 min range. PMID:6725291
Axial field shaping under high-numerical-aperture focusing
NASA Astrophysics Data System (ADS)
Jabbour, Toufic G.; Kuebler, Stephen M.
2007-03-01
Kant reported [J. Mod. Optics47, 905 (2000)] a formulation for solving the inverse problem of vector diffraction, which accurately models high-NA focusing. Here, Kant's formulation is adapted to the method of generalized projections to obtain an algorithm for designing diffractive optical elements (DOEs) that reshape the axial point-spread function (PSF). The algorithm is applied to design a binary phase-only DOE that superresolves the axial PSF with controlled increase in axial sidelobes. An 11-zone DOE is identified that axially narrows the PSF central lobe by 29% while maintaining the sidelobe intensity at or below 52% of the peak intensity. This DOE could improve the resolution achievable in several applications without significantly complicating the optical system.
Spherically Symmetric Solutions of Light Galileon
NASA Astrophysics Data System (ADS)
Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.
2016-02-01
We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.
Whispering gallery resonators with broken axial symmetry: Theory and experiment.
Fürst, J; Sturman, B; Buse, K; Breunig, I
2016-09-01
Axial symmetry is the cornerstone for theory and applications of high-Q optical whispering gallery resonators (WGRs). Nevertheless, research on birefringent crystalline material persistently pushes towards breaking this symmetry. We show theoretically and experimentally that the effect of broken axial symmetry, caused by optical anisotropy, is modest for the resonant frequencies and Q-factors of the WGR modes. Thus, the most important equatorial whispering gallery modes can be quantitatively described and experimentally identified. At the same time, the effect of broken axial symmetry on the light field distribution of the whispering gallery modes is typically very strong. This qualitatively modifies the phase-matching for the χ^{(2)} nonlinear processes and enables broad-band second harmonic generation and optical parametric oscillation. The effect of weak geometric ellipticity in nominally symmetric WGRs is also considered. Altogether our findings pave the way for an extensive use of numerous birefringent (uniaxial and biaxial) crystals with broad transparency window and large χ^{(2)} coefficients in nonlinear optics with WGRs. PMID:27607622
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1983-01-01
A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
Viscosity in spherically symmetric accretion
NASA Astrophysics Data System (ADS)
Ray, Arnab K.
2003-10-01
The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.
Symmetric Discrete Orthonormal Stockwell Transform
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Orchard, Jeff
2008-09-01
The Stockwell Transform (ST) is a time-frequency signal decomposition that is gaining in popularity, likely because of its direct relation with the Fourier Transform (FT). A discrete and non-redundant version of the ST, denoted the Discrete Orthonormal Stockwell Transform (DOST), has made the use of the ST more feasible. However, the matrix multiplication required by the DOST can still be a formidable computation, especially for high-dimensional data. Moreover, the symmetric property of the ST and FT is not present in the DOST. In this paper, we investigate a new Symmetric Discrete Orthonormal Stockwell Transform (SDOST) that still keeps the non-redundant multiresolution features of the DOST, while maintaining a symmetry property similar to that of the FT. First, we give a brief introduction for the ST and the DOST. Then we analyze the DOST coefficients and modify the transform to get a symmetric version. A small experiment shows that the SDOST has kept the abilities of the DOST and demonstrates the advantage of symmetry when applying the SDOST.
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Optical design for amateur reflecting telescopes based on tilted axial-symmetrical planoidal mirror
NASA Astrophysics Data System (ADS)
Chuprakov, Sergey A.
2012-09-01
Two-mirrors aplanatic optical design for amateur telescopes up to 0.5m class is described. The optical system is low cost, easy for adjusting, fast and large field of view can be used for visual and astrophotography. The method for calculation of baffles for straight light protection is described. The optical performances and sample shots for the builted device are presented. Keywords: two-mirrors system, all-reflecting schmidt system, aplanatic system, protection from straight light, baffles, obscuration, wide-field, telescopes for amateurs.
The design of optical module of LED street lamp with non-axial symmetrical reflector
NASA Astrophysics Data System (ADS)
Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei
2010-05-01
In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.
An offset-fed reflector antenna with an axially symmetric main reflector
NASA Astrophysics Data System (ADS)
Chang, D.-C.; Rusch, W. V. T.
1984-11-01
A design method for an offset-fed, dual reflector antenna (Cassegrain type or Gregorian type) system with an axisymmetric main reflector is presented. Geometrical optics (GO) and the geometrical theory of diffraction (GTD) are used to find the surface-current density on the main reflector. A modified Jacobi-Bessel series (JBS) method is used to find the far-field pattern for the physical optics (PO) integral. In the defocused mode of operation, a new technique is developed to find the reflection point on the subreflector corresponding to the defocused feed and a general field point on the main reflector. Two sample systems are designed.
Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid
NASA Technical Reports Server (NTRS)
Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.
2001-01-01
The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.
Acoustic-emissive memory effect in coal samples under triaxial axial-symmetric compression
Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.
2006-05-15
The experimental data are presented for production and manifestation of the Kaiser effect in coal samples subjected to triaxial loading by the Karman scheme in the first cycle and to various loading modes in the second cycle. The Kaiser effect is identified with the help of a deformation memory effect.
Forced axial segregation in axially inhomogeneous rotating systems
NASA Astrophysics Data System (ADS)
González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.
2015-08-01
Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.
NASA Technical Reports Server (NTRS)
Herzog, J.
1974-01-01
A method of calculating stage parameters and flow distribution of axial turbines is described. The governing equations apply to space between the blade rows and are based on the assumption of rotationally symmetrical, compressible, adiabatic flow conditions. Results are presented for stage design and flow analysis calculations. Theoretical results from the calculation system are compared with experimental data from low pressure steam turbine tests.
Anisotropic symmetric exchange as a new mechanism for multiferroicity
NASA Astrophysics Data System (ADS)
Feng, J. S.; Xiang, H. J.
2016-05-01
Discovering new magnetoelectric multiferroics is an exciting research area. Very recently, a collinear antiferromagnetic spin order was found to induce a ferroelectric polarization in a highly symmetric cubic perovskite LaMn3Cr4O12 . This spin-driven ferroelectricity could not be explained by any of the existing multiferroic models. Here, we put forward a new model, i.e., anisotropic symmetric exchange, to understand this phenomenon, which was confirmed by density functional calculations and tight-binding simulations. Furthermore, our perturbation analysis shows that the anisotropic symmetric exchange term can be even stronger than the conventional contributions in some 5 d systems. Our multiferroic model can not only explain the experimental results, but also may open a new avenue for exploring exotic magnetoelectric coupling effects.
The discrete dynamics of symmetric competition in the plane.
Jiang, H; Rogers, T D
1987-01-01
We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model. PMID:3437226
Water ingestion into jet engine axial compressors
NASA Technical Reports Server (NTRS)
Tsuchiya, T.; Murthy, S. N. B.
1982-01-01
An axial flow compressor has been tested with water droplet ingestion under a variety of conditions. The results illustrate the manner in which the compressor pressure ratio, efficiency and surging characteristics are affected. A model for estimating the performance of a compressor during water ingestion has been developed and the predictions obtained compare favorably with the test results. It is then shown that with respect to five droplet-associated nonlinearly-interacting processes (namely, droplet-blade interactions, blade performance changes, centrifugal action, heat and mass transfer processes and droplet break-up), the initial water content and centrifugal action play the most dominant roles.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
A symmetric inhibitor binds HIV-1 protease asymmetrically.
Dreyer, G B; Boehm, J C; Chenera, B; DesJarlais, R L; Hassell, A M; Meek, T D; Tomaszek, T A; Lewis, M
1993-01-26
Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules. PMID:8422397
NASA Technical Reports Server (NTRS)
Yahsi, O. S.; Erdogan, F.
1985-01-01
In this paper a cylindrical shell having a very stiff end plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flow which may be modeled as a part-through surface crack or through crack. The primary objective is to study the effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the mode I stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built-in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part-through crack problem is treated by using a line-spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equation of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem. Even though the problem is formulated for a general surface crack profile and arbitrary crack surface tractions, the numerical results are obtained only for a semielliptic part-through axial crack located at the inside or outside surface of the cylinder and for internal pressure acting on the cylinder. The stress intensity factors are calculated and presented for a relatively wide range of dimensionless length parameters of the problem.
Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators
S.R. Hudson; C.C. Hegna; R. Torasso; A. Ware
2003-12-05
By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation.
Kaleps, I; Kazarian, L E; Burns, M L
1984-01-01
The simulation of long-term creep response behavior, observed on 54 Rhesus monkey intervertebral joints subjected to a constant axial compressive stress, is attempted by two- and three-parameter-solid models utilizing the Burns- Kaleps 'exact analysis scheme'. Model parameters identified by the analysis of each specimen's experimental strain data were optimized via a computer program and the mechanical properties (Young's moduli and the viscosity coefficient) appropriate to each model were calculated for individual spinal segments. Simulation results for the two-parameter-solid (one- Kelvin -unit) model demonstrate its general ineptness in predicting the observed strain-time behavior of normal spinal sements . The three-parameter-solid model yielded excellent results in the simulation of observed spinal segment compressive creep phenomena. It produced an average error between the model predicted and experimental strain values that ranged from a low of 0.4000% to a high of 3.290% for the 54 Rhesus monkey intervertebral joints, with a collective average error for all specimens of only 1.363%. PMID:6725292
Symmetric spaces of exceptional groups
Boya, L. J.
2010-02-15
We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.
NASA Astrophysics Data System (ADS)
Chen, Yi; Cartmell, Matthew
2010-03-01
A specialised hybrid controller is applied to the control of a motorised space tether spin-up space coupled with an axial and a torsional oscillation phenomenon. A seven-degree-of-freedom (7-DOF) dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial and torsional elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the 7-DOF motorised momentum exchange tether system using the specialised hybrid controller.
Cracked shells under skew-symmetric loading. [Reissner theory
NASA Technical Reports Server (NTRS)
Delale, F.
1981-01-01
The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Vilela Pereira, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Autermann, C; Beranek, S; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flügge, G
2012-12-28
Results are presented from a search for heavy, right-handed muon neutrinos, N(μ), and right-handed W(R) bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb(-1) sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the W(R) mass, dependent on the value of M(W(R)). The excluded region in the two-dimensional (M(W(R)), M(N(μ)) mass plane extends to M(W(R))=2.5 TeV. PMID:23368549
Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields
NASA Astrophysics Data System (ADS)
Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.
2016-05-01
A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
NASA Astrophysics Data System (ADS)
Fernández, Francisco M.
2016-06-01
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit.
Possible origin of transition from symmetric to asymmetric fission
NASA Astrophysics Data System (ADS)
Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.
2016-09-01
The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.
Exploring plane-symmetric solutions in f( R) gravity
NASA Astrophysics Data System (ADS)
Shamir, M. F.
2016-02-01
The modified theories of gravity, especially the f( R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f( R) gravity. We extend the work on static plane-symmetric vacuum solutions in f( R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f( R) models.
Skyrmions and vector mesons: a symmetric approach
Caldi, D.G.
1984-01-01
We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references.
SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code
Hua, D; Fowler, T
2004-06-15
A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.
Perceptual organization in schizophrenia: the processing of symmetrical configurations.
Knight, R A; Manoach, D S; Elliott, D S; Hershenson, M
2000-11-01
The hypothesis that the perceptual organization dysfunction of patients with poor premorbid schizophrenia is due to a deficit in global visual sensory store processing was tested by assessing their ability to process symmetrical configurations that develop early and have strong prepotent structures. Two same-different judgment tasks in which performance varies as a function of the symmetrical organization and task demands were administered to participants with good and poor premorbid schizophrenia, those with mood disorders, and normal controls. Like the other groups, poor premorbid schizophrenics' latency and error response patterns closely paralled the a priori model of adequate processing. The results support their competence in perceptually processing symmetrical configurations and disconfirm the hypothesis that their input deficiencies represent a general deficiency in all forms of perceptual organization. The implications for specifying their early input dysfunction are discussed. PMID:11195981
The MST of Symmetric Disk Graphs Is Light
NASA Astrophysics Data System (ADS)
Abu-Affash, A. Karim; Aschner, Rom; Carmi, Paz; Katz, Matthew J.
Symmetric disk graphs are often used to model wireless communication networks. Given a set S of n points in ℝ d (representing n transceivers) and a transmission range assignment r: S →ℝ, the symmetric disk graph of S (denoted SDG(S)) is the undirected graph over S whose set of edges is E = {(u,v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where |uv| denotes the Euclidean distance between points u and v. We prove that the weight of the MST of any connected symmetric disk graph over a set S of n points in the plane, is only O(logn) times the weight of the MST of the complete Euclidean graph over S. We then show that this bound is tight, even for points on a line.
NASA Astrophysics Data System (ADS)
Monsalve-Cano, J. F.; Darío Aristizábal-Ochoa, J.
2009-12-01
The stability and free vibration analyses (i.e., buckling, natural frequencies and modal shapes) of an orthotropic singly symmetric 3D Timoshenko beam-column with generalized boundary conditions (i.e., with bending and torsional semirigid restraints and lateral bracings as well as lumped masses at both ends) subjected to an eccentric end axial load are presented in a classical manner. The five governing equations of dynamic equilibrium (i.e., two transverse shear equations, two bending moment equations and pure torsional moment equation) are sufficient to determine the natural frequencies and the corresponding modal shapes of the beam-column in the two principal planes of bending and torsion about its longitudinal axis. The proposed model includes the coupling effects among: (1) the deformations due to bending, shear and pure torsion; (2) inertias (translational, rotational and torsional) of all masses considered; (3) eccentric axial loads applied at the ends, and (4) restraints at the supports (bending, torsional and lateral bracings at both ends of the member). However, the effects of axial deformations and warping torsion produced by the axial load are not included; consequently the proposed model is not capable of capturing the phenomena of torsional buckling or combined lateral bending-torsional buckling. The proposed analytical model indicates that the stability and dynamic response of beam-columns are highly sensitive to the coupling effects, particularly in members with both ends free to rotate. The natural frequencies and modal shapes can be determined from the eigenvalues of a full 4×4 matrix for vibration in the plane of symmetry (using the uncoupled equations of transverse force and moment equilibrium at both ends) and from a full 6×6 matrix for the coupled shear-bending-torsional vibration (using the coupled equations of transverse shear, bending and torsional moment equilibrium at both ends). Also, it is shown that the proposed method reproduces the
Axial and torsional fatigue behavior of a cobalt-base alloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1991-01-01
In order to develop elevated temperature multiaxial fatigue life prediction models for the wrought cobalt-base alloy, Haynes 188, a multiaxial fatigue data base is required. To satisfy this need, an elevated temperature experimental program on Haynes 188 consisting of axial, torsional, inphase and out of phase axial-torsional fatigue experiments was designed. Elevated temperature axial and torsional fatigue experiments were conducted under strain control on thin wall tubular specimens of Haynes 188 in air. Test results are given.
NASA Astrophysics Data System (ADS)
Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.
2016-04-01
A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.
Probabilistic cloning of three symmetric states
Jimenez, O.; Bergou, J.; Delgado, A.
2010-12-15
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.