Science.gov

Sample records for axis tidal turbines

  1. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  2. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  3. Development of a model counter-rotating type horizontal-axis tidal turbine

    NASA Astrophysics Data System (ADS)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  4. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  5. Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin

    2016-03-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  6. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  7. Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade

    NASA Astrophysics Data System (ADS)

    Singh, P. M.; Choi, Y. D.

    2013-12-01

    This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.

  8. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  9. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (ESTSC)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  10. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  11. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  12. Finite element based damage assessment of composite tidal turbine blades

    NASA Astrophysics Data System (ADS)

    Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie

    2015-07-01

    With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.

  13. Vertical Axis Wind Turbine Foundation parameter study

    SciTech Connect

    Lodde, P.F.

    1980-07-01

    The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

  14. Optimal design of a tidal turbine

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lalande, T.; Herou, J. J.; Terme, L.

    2012-11-01

    An optimal design procedure has been applied to improve the design of an open-center tidal turbine. A specific software developed in C++ enables to generate the geometry adapted to the specific constraints imposed to this machine. Automatic scripts based on the AUTOGRID, IGG, FINE/TURBO and CFView software of the NUMECA CFD suite are used to evaluate all the candidate geometries. This package is coupled with the optimization software EASY, which is based on an evolutionary strategy completed by an artificial neural network. A new technique is proposed to guarantee the robustness of the mesh in the whole range of the design parameters. An important improvement of the initial geometry has been obtained. To limit the whole CPU time necessary for this optimization process, the geometry of the tidal turbine has been considered as axisymmetric, with a uniform upstream velocity. A more complete model (12 M nodes) has been built in order to analyze the effects related to the sea bed boundary layer, the proximity of the sea surface, the presence of an important triangular basement supporting the turbine and a possible incidence of the upstream velocity.

  15. Turbulence in vertical axis wind turbine canopies

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  16. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  17. Nation's tallest VAWT (Vertical Axis Wind Turbine) turning out the watts. [Vertical Axis Wind Turbine

    SciTech Connect

    Miller, S.

    1988-05-01

    This article describes the development of the tallest and most powerful windmill of its kind in the U.S. Known as a Vertical Axis Wind Turbine (VAWT), the machine is meant for testing new concepts in vertical axis turbine design. As part of its overall testing program, the turbine will supply electricity to automated water pumps used in irrigation research at the Research Laboratory in Bushland, Texas. Excess power will go to the Southwestern Public Service Company for the area power system.

  18. Large horizontal axis wind turbine development

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1979-01-01

    The paper presents an overview of the NASA activities in large horizontal axis wind turbine development. First generation technology large wind turbines (Mod-0A, Mod-1) have been designed and are in operation at selected utility sites. Second generation machines (Mod-2) are scheduled to begin operations on a utility site in 1980. These machines are estimated to generate electricity at less than 4 cents/kWh when manufactured in modest production rates. Meanwhile, plans are being made to continue developing wind turbines which can meet the cost goals of 2 to 3 cents/kWh.

  19. Tailored airfoils for vertical axis wind turbines

    SciTech Connect

    Klimas, P.C.

    1984-01-01

    The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system costs-of-energy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.

  20. Tailored airfoils for Vertical Axis Wind Turbines*

    SciTech Connect

    Klimas, P.C.

    1984-08-01

    The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system cost-ofenergy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.

  1. Tailored airfoils for vertical axis wind turbines

    SciTech Connect

    Klimas, P.C.

    1984-11-01

    The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system costs-of-energy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.

  2. Vertical axis wind turbine control strategy

    SciTech Connect

    McNerney, G.M.

    1981-08-01

    Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

  3. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors.

    PubMed

    Stallard, T; Collings, R; Feng, T; Whelan, J

    2013-02-28

    It is well known that a wake will develop downstream of a tidal stream turbine owing to extraction of axial momentum across the rotor plane. To select a suitable layout for an array of horizontal axis tidal stream turbines, it is important to understand the extent and structure of the wakes of each turbine. Studies of wind turbines and isolated tidal stream turbines have shown that the velocity reduction in the wake of a single device is a function of the rotor operating state (specifically thrust), and that the rate of recovery of wake velocity is dependent on mixing between the wake and the surrounding flow. For an unbounded flow, the velocity of the surrounding flow is similar to that of the incident flow. However, the velocity of the surrounding flow will be increased by the presence of bounding surfaces formed by the bed and free surface, and by the wake of adjacent devices. This paper presents the results of an experimental study investigating the influence of such bounding surfaces on the structure of the wake of tidal stream turbines. PMID:23319702

  4. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    NASA Astrophysics Data System (ADS)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  5. Airfoil treatments for vertical axis wind turbines

    SciTech Connect

    Klimas, P.C.

    1985-01-01

    Sandia National Laboratories (SNL) has taken three airfoil related approaches to decreasing the cost of energy of vertical axis wind turbine (VAWT) systems; airfoil sections designed specifically for VAWTs, vortex generators (VGs), and ''pumped spoiling.'' SNL's blade element airfoil section design effort has led to three promising natural laminar flow (NLF) sections. One section is presently being run on the SNL 17-m turbine. Increases in peak efficiency and more desirable dynamic stall regulation characteristics have been observed. Vane-type VGs were fitted on one DOE/Alcoa 100 kW VAWT. With approximately 12% of span having VGs, annual energy production increased by 5%. Pumped spoiling utilizes the centrifugal pumping capabilities of hollow blades. With the addition of small perforations in the surface of the blades and valves controlled by windspeed at the ends of each blade, lift spoiling jets may be generated inducing premature stall and permitting lower capacity, lower cost drivetrain components. SNL has demonstrated this concept on its 5-m turbine and has wind tunnel tested perforation geometries on one NLF section.

  6. Evaluation of the durability of composite tidal turbine blades.

    PubMed

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models. PMID:23319705

  7. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (ESTSC)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  8. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  9. Aeroelastically coupled blades for vertical axis wind turbines

    DOEpatents

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  10. Computational studies of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Xu, Guanpeng

    A numerical technique has been developed for efficiently simulating fully three-dimensional viscous fluid flow around horizontal axis wind turbines (HAWT) using a zonal approach. The flow field is viewed as a combination of viscous regions, inviscid regions and vortices. The method solves the costly unsteady Reynolds averaged Navier-Stokes (RANS) equations only in the viscous region around the turbine blades. It solves the full potential equation in the inviscid region where flow is irrotational and isentropic. The tip vortices are simulated using a Lagrangean approach, thus removing the need to accurately resolve them on a fine grid. The hybrid method is shown to provide good results with modest CPU resources. A full Navier-Stokes based methodology has also been developed for modeling wind turbines at high wind conditions where extensive stall may occur. An overset grid based version that can model rotor-tower interactions has been developed. Finally, a blade element theory based methodology has been developed for the purpose of developing improved tip loss models and stall delay models. The effects of turbulence are simulated using a zero equation eddy viscosity model, or a one equation Spalart-Allmaras model. Two transition models, one based on the Eppler's criterion, and the other based on Michel's criterion, have been developed and tested. The hybrid method has been extensively validated for axial wind conditions for three rotors---NREL Phase II, Phase III, and Phase VI configurations. A limited set of calculations has been done for rotors operating under yaw conditions. Preliminary simulations have also been carried out to assess the effects of the tower wake on the rotor. In most of these cases, satisfactory agreement has been obtained with measurements. Using the numerical results from present methodologies as a guide, Prandtl's tip loss model and Corrigan's stall delay model were correlated with present calculations. An improved tip loss model has been

  11. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  12. Yaw dynamics of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw-controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they know they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  13. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  14. A new vertical axis wind turbine design for urban areas

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan

    2016-06-01

    In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.

  15. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  16. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  17. Device for passive flow control around vertical axis marine turbine

    NASA Astrophysics Data System (ADS)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  18. Impact of Tidal-Stream Turbines on the Generation of the Higher Tidal Harmonics

    NASA Astrophysics Data System (ADS)

    Potter, Daniel; Ilic, Suzana; Folkard, Andrew

    2016-04-01

    The higher tidal harmonics result from the interaction of the astronomic tides with both themselves and each other through non-linear processes. In shallower waters such as those near the coast these non-linear processes become more significant and thus, so too do the higher tidal harmonics become more significant. The interaction of the tide with tidal-stream turbines (TSTs), through thrust and drag processes will be non-linear and as such will contribute to the generation of higher tidal harmonics, thus changing the nature of the tide downstream of the turbines. The change to the tide may potentially impact on the downstream energy resource (Robins et al. 2015) and sediment transport processes (Pingree & Griffiths 1979). This paper will present analytical results, which suggest that TSTs will impact on the generation of all higher harmonics but with odd overtides being impacted more than even overtides, the most important examples of which are the M6 and M4 tides respectively, which are the first odd and even overtides of the M2 tide. Change in phase and amplitude of the M6 tide by TSTs will distort the tide but will not cause an asymmetry between the flood and ebb of the tide. Change in the phase and amplitude of the M4 can not only distort the tide but also cause asymmetry. Hence any change to the M4 tide by the turbines is more significant, despite the magnitude of change to the M6 being greater. In order to gain a fuller understanding of the way in which TSTs change the tide downstream and the significance of any change for transport processes or energy resource, a numerical modelling study will be carried out, which will be presented in a future paper. Robins, P.E., Neill, S.P., Lewis, M. & Ward, S.L., 2015. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Applied Energy, 147: 510-522. Pingree, R.D. & Griffiths, D.K., 1979. Sand transport paths around the British Isles resulting

  19. Large horizontal axis wind turbine development

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1979-01-01

    An overview of the NASA activities concerning ongoing wind systems oriented toward utility application is presented. First-generation-technology large wind turbines were designed and are in operation at selected utility sites. In order to make a significant energy impact, costs of 2 to 3 cents per kilowatt hour must be achieved. The federal program continues to fund the development by industry of wind turbines which can meet the cost goals of 2 to 3 cents per kilowatt hour. Lower costs are achieved through the incorporation of new technology and innovative system design to reduce weight and increase energy capture.

  20. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  1. Effects of structure flexibility on horizontal axis wind turbine performances

    NASA Astrophysics Data System (ADS)

    Coiro, D. P.; Daniele, E.; Scherillo, F.

    2013-10-01

    This work illustrates the effects of flexibility of rotor blades and turbine tower on the performances of an horizontal axis wind turbine (HAWT) designed by our ADAG research group, by means of several example applied on a recent project for a active pitch controlled upwind 60 kW HAWT. The influence of structural flexibility for blade only, tower only and blade coupled with tower configuration is investigated using an aero-elastic computer-aided engineering (CAE) tool for horizontal axis wind turbines named FAST developed at National Renewable Energy Laboratory (NREL) of USA. For unsteady inflow conditions in front of the isolated HAWT the performances in rigid and flexible operation mode are computed and compared in order to illustrate the limitation included within a classical rigid body approach to wind turbine simulation.

  2. Estimation of power in low velocity vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  3. Modeling stochastic wind loads on vertical axis wind turbines

    SciTech Connect

    Veers, P.S.

    1984-01-01

    The Vertical Axis Wind Turbine (VAWT) is a machine which extracts energy from the wind. Since random turbulence is always present, the effect of this turbulence on the wind turbine fatigue life must be evaluated. This problem is approached by numerically simulating the turbulence and calculating, in the time domain, the aerodynamic loads on the turbine blades. These loads are reduced to the form of power and cross spectral densities which can be used in standard linear structural analysis codes. The relative importance of the turbulence on blade loads is determined.

  4. Modeling stochastic wind loads on vertical axis wind turbines

    SciTech Connect

    Veers, P.S.

    1984-09-01

    The Vertical Axis Wind Turbine (VAWT) is a machine which extracts energy from the wind. Since random turbulence is always present, the effect of this turbulence on the wind turbine fatigue life must be evaluated. This problem is approached by numerically simulating the turbulence and calculating, in the time domain, the aerodynamic loads on the turbine blades. These loads are reduced to the form of power and cross spectral densities which can be used in standard linear structural analysis codes. The relative importance of the turbulence on blade loads is determined.

  5. Vertical axis wind turbine drive train transient dynamics

    NASA Technical Reports Server (NTRS)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  6. Guy cable design and damping for vertical axis wind turbines

    SciTech Connect

    Carne, T.G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed in this paper, and a technique for damping cable vibrations is mathematically analyzed and demonstrated with experimental data.

  7. Guy cable design and damping for vertical axis wind turbines

    NASA Technical Reports Server (NTRS)

    Carne, T. G.

    1981-01-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.

  8. Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.

    2010-09-01

    We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

  9. Fixed geometry self starting transverse axis wind turbine

    SciTech Connect

    Dereng, V.G.

    1981-04-28

    This invention relates to a fixed geometry self starting wind turbine having a blade rotatable about a vertical axis. The blade is of a wide streamlined cambered airfoil shape and has a forward portion that includes a well rounded leading edge and thickness distribution that is conducive to high lift to drag ratios and having a high drag characteristic in reversed flows. The concave curvature of this camber line of said airfoil is directed to the rotational axis. The wide blade in combination with the well rounded leading edge, camber and airfoil thickness gives the turbine improved self-starting characteristics and causes the turbine to have improved acceleration characteristics through the intermediate speed range and up to full operating speed.

  10. A Framework for Optimizing the Placement of Tidal Turbines

    NASA Astrophysics Data System (ADS)

    Nelson, K. S.; Roberts, J.; Jones, C.; James, S. C.

    2013-12-01

    Power generation with marine hydrokinetic (MHK) current energy converters (CECs), often in the form of underwater turbines, is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. However, little is known about the potential environmental effects of CEC operation in coastal embayments, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems over years or decades of operation. There is an urgent need for practical, accessible tools and peer-reviewed publications to help industry and regulators evaluate environmental impacts and mitigation measures, while establishing best sitting and design practices. Sandia National Laboratories (SNL) and Sea Engineering, Inc. (SEI) have investigated the potential environmental impacts and performance of individual tidal energy converters (TECs) in Cobscook Bay, ME; TECs are a subset of CECs that are specifically deployed in tidal channels. Cobscook Bay is the first deployment location of Ocean Renewable Power Company's (ORPC) TidGenTM unit. One unit is currently in place with four more to follow. Together, SNL and SEI built a coarse-grid, regional-scale model that included Cobscook Bay and all other landward embayments using the modeling platform SNL-EFDC. Within SNL-EFDC tidal turbines are represented using a unique set of momentum extraction, turbulence generation, and turbulence dissipation equations at TEC locations. The global model was then coupled to a local-scale model that was centered on the proposed TEC deployment locations. An optimization frame work was developed that used the refined model to determine optimal device placement locations that maximized array performance. Within the

  11. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

    PubMed

    Batten, W M J; Harrison, M E; Bahaj, A S

    2013-02-28

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence. PMID:23319711

  12. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  13. Electric power from vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  14. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect

    Reuter, R.C. Jr.

    1980-01-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

  15. Design of Bi-Directional Hydrofoils for Tidal Current Turbines

    NASA Astrophysics Data System (ADS)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2015-11-01

    Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.

  16. The Wake of a Single Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle

    Vertical axis wind turbines (VAWTs) pose various advantages over traditional horizontal axis wind turbines (HAWTs), including their smaller size and footprint, quiet operation, and ability to produce power under a greater variety of wind directions and wind speeds. To determine the optimal spacing of an array of VAWTs for maximum power output, an understanding of the fundamental wake structure of a single VAWT is needed. This study is among the first attempts to experimentally visualize the wake of a VAWT using stereo particle image velocimetry (PIV). A scale VAWT is placed inside a wind tunnel and a motor rotates the scale model at a constant rotational speed. Wake data at several Reynolds numbers and tip speed ratios indicate that vortices are shed by each blade of the spinning VAWT, demonstrating significant differences between the wake of a VAWT and a spinning cylinder.

  17. Downwind rotor horizontal axis wind turbine noise prediction

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Klatte, R. J.

    1981-01-01

    NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.

  18. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  19. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  20. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1998-05-01

    In a continuing effort to enhance the performance of small wind energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1--5 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  1. An operating 200 kW horizontal axis wind turbine

    NASA Technical Reports Server (NTRS)

    Hunnicutt, C. L.; Linscott, B.; Wolf, R. A.

    1978-01-01

    Output from the 200-kilowatt machine will be enough to meet the power requirements of about 60 families. The experimental wind turbine generator (WTG) is a two-bladed, horizontal-axis, rotor system driving a synchronous electric generator through a step-up gear box located within a nacelle. The nacelle is mounted on top of a 100-foot tower with the rotor located downwind from the tower. The 200-kilowatt rated power output of the wind turbine is achieved at a turbine rotor speed of 40 rpm and a rated wind speed of 18.3 mph. The rated wind speed is defined as the lowest wind speed at which full power is achieved. Attention is given to operational details, aspects of blade design, blade fabrication, the use of strain gages, questions of aeroelastic stability, and an early analysis of test data.

  2. Vertical axis wind turbine drive train transient dynamics

    SciTech Connect

    Clauss, D.B.; Carne, T.G.

    1981-01-01

    Start-up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one-half times the rated torque of the turbine. These peak torques are of sufficient magnitude to possibly damage the drive train; safe and reliable operation requires that mechanical components be overdesigned to carry the peak torques caused by transient events. A computer code, based on a lumped parameter model of the drive train, has been developed and tested for the Low Cost 17-Meter turbine; the results show excellent agreement with field data. The code has subsequently been used to predict the effect of a slip clutch on transient torque oscillations.

  3. Start-up dynamics of vertical axis turbines

    NASA Astrophysics Data System (ADS)

    Taylor, Katherine; Dabiri, John

    2012-11-01

    We present an experimental study of the self-starting behavior of vertical axis turbines, in order to guide the design of systems that operate in unsteady flows. The torque, angular velocity, and power generation of a scale model turbine were measured in a free surface water tunnel for different starting angles of the rotor blades and for different flow speeds. The starting behavior of the turbine was found to be sensitively dependent on the initial angle of the rotor at low flow speeds. A conceptual model was developed in order to explain the observed behavior in terms of the instantaneous lift and drag on the rotor blades. Funding provided by the Gordon and Betty Moore Foundation.

  4. The wake of a single vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Barsky, Danielle A.; Leftwich, Megan C.

    2013-11-01

    The purpose of this study is to measure the wake of a Windspire vertical axis wind turbine (VAWT). In recent years, research on VAWTs has increased due to various potential advantages over the more common horizontal axis wind turbines (HAWTs). Unlike very large HAWTs, moderately sized-and virtually silent-VAWTs can be placed in urban and suburban regions where land space is limited. To date, many VAWT studies have assumed that the turbine has the same aerodynamic structure as a spinning cylinder despite a significant increase in geometric complexity. This experiment attempts to understand the fundamental wake structure of a single VAWT (and compare it to the wake structure of a spinning cylinder). In this experiment, a scaled-down VAWT is placed inside a wind tunnel under a controlled laboratory setting. A motor rotates the scale model at a constant angular speed. Stereo particle image velocimetry (PIV) is used to visualize the wake of the turbine and image processing techniques are used to quantify the velocity and vorticity of the wake.

  5. Computational analysis of vertical axis wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Bremseth, J.; Duraisamy, K.

    2016-03-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  6. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel.

    PubMed

    Daly, T; Myers, L E; Bahaj, A S

    2013-02-28

    The modelling of tidal turbines and the hydrodynamic effects of tidal power extraction represents a relatively new challenge in the field of computational fluid dynamics. Many different methods of defining flow and boundary conditions have been postulated and examined to determine how accurately they replicate the many parameters associated with tidal power extraction. This paper outlines the results of numerical modelling analysis carried out to investigate different methods of defining the inflow velocity boundary condition. This work is part of a wider research programme investigating flow effects in tidal turbine arrays. Results of this numerical analysis were benchmarked against previous experimental work conducted at the University of Southampton Chilworth hydraulics laboratory. Results show significant differences between certain methods of defining inflow velocities. However, certain methods do show good correlation with experimental results. This correlation would appear to justify the use of these velocity inflow definition methods in future numerical modelling of the far-field flow effects of tidal turbine arrays. PMID:23319708

  7. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  8. Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Laks, Jason H.

    This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.

  9. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model

  10. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1978-01-01

    The coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine blade are formulated. Quasi-steady blade-element strip theory was applied to derive the aerodynamic operator which includes boundary layer type gradient winds. The final equations which have periodic coefficients were solved in order to obtain the aeroelastic response and stability of large horizontal axis wind turbine blade. A new method of generating an appropriate time-dependent equilibrium position (required for the stability analysis) has been implemented. Representative steady-state responses and stability boundaries, applicable mainly to an existing blade design (NASA/-ERDA MOD-0), are presented. The results indicate that the MOD-0 configuration is a basically stable design and that blade stability is not sensitive to offsets between blade elastic axis and aerodynamic center. Blade stability appears to be sensitive to precone. The tower shadow (or wake) has a considerable effect on the flap response but leaves blade stability unchanged. Finally, it was found that non linear terms in the equations of motion can significantly affect the linearized stability boundaries, however, these terms have a negligible effect on blade response at operating conditions.

  11. Aerodynamic performance prediction of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Jeng, D. R.; Keith, T. G.; Aliakbarkhanafjeh, A.

    1981-01-01

    A new method for calculating the aerodynamic performance of horizontal axis wind turbines is described. The method, entitled the helical vortex method, directly calculates the local induced velocity due to helical vortices that originate at the rotor blade. Furthermore, the method does not require a specified circulation distribution. Results of the method are compared to similar results obtained from Wilson PROP code methods as well as to existing experimental data taken from a Mod-O wind turbine. It is shown that results of the proposed method agree well with experimental values of the power output both near cut-in and at rated wind speeds. Further, it is found that the method does not experience some of the numerical difficulties encountered by the PROP code when run at low wind velocities.

  12. Dual-axis resonance testing of wind turbine blades

    DOEpatents

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  13. Dynamic stall occurrence on a horizontal axis wind turbine blade

    SciTech Connect

    Shipley, D.E.; Miller, M.S.; Robinson, M.C.

    1995-09-01

    Surface pressure data from the National Renewable Energy Laboratory`s ``Combined Experiment`` were analyzed to provide a statistical representation of dynamic stall occurrence on a downwind horizontal axis wind turbine (HAWT). Over twenty thousand blade rotational cycles were each characterized at four span locations by the maximum leading edge suction pressure and by the azimuth, velocity, and yaw at which it occurred. Peak suction values at least twice that seen in static wind tunnel tests were taken to be indicative of dynamic stall. The occurrence of dynamic stall at all but the inboard station (30% span) shows good quantitative agreement with the theoretical limits on inflow velocity and yaw that should yield dynamic stall. Two hypotheses were developed to explain the discrepancy at 30% span. Estimates are also given for the frequency of dynamic stall occurrence on upwind turbines. Operational regimes were identified which minimize the occurrence of dynamic stall events.

  14. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  15. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  16. Wake Development of a Model Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kadum, Hawwa; Friedman, Sasha; Camp, Elizabeth; Cal, Rau'l.

    2015-11-01

    At the Portland State University wind tunnel facility, an experiment is conducted to observe the downstream development of the wake past a model vertical axis wind turbine (VAWT). The flow domain is composed of streamwise-spanwise planes at mid-height of the VAWT rotor and data is obtained via particle image velocimetry (PIV). The flow field is assessed by analyzing contours of mean velocities and the full Reynolds stress tensor. Furthermore, profiles of the aforementioned quantities and flow parameters are discussed in the context of downstream evolution/flow development.

  17. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  18. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    SciTech Connect

    Ashwill, T.D.; Berg, D.E.; Dodd, H.M.; Rumsey, M.A.; Sutherland, H.J.; Veers, P.S.

    1991-01-01

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s. 11 refs., 12 figs., 4 tabs.

  19. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization. PMID:25618090

  20. Airfoil design for variable RPM horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Bjoerck, Anders

    1990-01-01

    The design criteria for new airfoils for a variable speed horizontal axis wind turbine are described. The two series of airfoils developed are characterized by high design lift coefficients in order to achieve small blade chords, high lift drag ratios for the airfoil sections designed for the outer part of the blade, performance insensitivity to surface roughness, and a gentle stall at an angle of attack in order to reduce excessive loads. Each series consists of airfoils with varying thickness to chord ratios for different radial stations. Interpolation between the two series is possible.

  1. Aerodynamic Performance of Wind Turbine with Horizontal Axis

    NASA Astrophysics Data System (ADS)

    Liu, P. Q.; Zhu, J. Y.; Zhao, W. L.

    2011-09-01

    In this paper, the blade arodynamic outline of a 100 kW horizontal axis wind turbine is designed based on the strip theory using low Reynolds number and high lift airfoils. A 1/34 scale model is used to investigate the aerodynamic performance of the prototype by means of wind tunnel test. Based on some similitude criterion and reasonable correction of arodynamic coefficient, the data of prototype can be deduced from the experimente data. Comparared with the theory analysis, the power output can reach the design performance.

  2. Flow-blade interaction in a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Dominguez, Roberto; Piedra, Saul; Ramos, Eduardo

    2014-11-01

    We present an analysis of the interaction between an incoming wind and three airfoils symmetrically located, and free to rotate around a common axis. The geometrical configuration considered is a two dimensional model of Vertical Axis Wind Turbine. The model is based in the conservation equations of the fluid coupled with the Newton-Lagrange equations for the interaction with the airfoils. The presence of the rigid body in the fluid is simulated using immersed boundary conditions. The interaction of the wind with the airfoil located further upstream generates a force on the airfoil and vortices that are swept downstream and collide with the other airfoils. This effect generates a complex interplay of dynamical forces whose resultant is a torque that sets the system in motion. We describe the flow around the airfoils and examine the efficiency of the system as a function of geometric variables. Our conclusions are potentially useful for the design of VAWT's.

  3. Numerical study on small scale vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  4. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  5. Dynamic Stall on Vertical Axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve

    In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a simple model with five modes, including the first two harmonics of the pitch/surge frequency identified using the dynamic mode decomposition. Analysis of these modes identified vortical structures corresponding to both frequencies that led the separation and reattachment processes, while their phase relationship determined the evolution of the flow. Detailed analysis of the leading edge vortex found multiple regimes of vortex development coupled to the time-varying flow field on the airfoil. The vortex was shown to grow on the airfoil for four convection times, before shedding and causing dynamic stall in agreement with 'optimal' vortex formation theory. Vortex shedding from the trailing edge was identified from instantaneous velocity fields prior to separation. This shedding was found to be in agreement with classical Strouhal frequency scaling and was removed by phase averaging, which indicates that it is not exactly coupled to the phase of the airfoil motion. The flow field over an airfoil undergoing solely pitch motion was shown to develop similarly to the pitch/surge motion; however, flow separation took place earlier, corresponding to the earlier formation of the leading edge vortex. A similar reduced-order model to the pitch/surge case was developed, with similar vortical structures leading separation and reattachment; however, the relative phase lead of the separation mode

  6. Model for simulation of turbulence at a point rotating as on a horizontal-axis wind turbine or a vertical-axis wind turbine blade

    SciTech Connect

    Powell, D.C.; Connell, J.R.

    1985-11-01

    Previous theoretical work has examined turbulence at a point rotating in a vertical plane, as in a horizontal-axis wind turbine (HAWT). The present paper extends the theoretical model to apply to the vertical-axis wind turbine (VAWT). The model's results, as simulated by computer, are compared with corresponding results obtained by analyzing field data, confirming the model's usefulness. Finally, suggestions are made for future applications of the model.

  7. Active Circulation Control for Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  8. Control of dynamic stall phenomenon for vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Frunzulicǎ, Florin; Dumitrescu, Horia; Dumitrache, Alexandru; Suatean, Bogdan

    2013-10-01

    In the last years the wind turbine with vertical axis (VAWT) began to be more attractive due benefits in exploitation, the power range covering usually the domain 2 kW-20 kW. But, VAWTs suffer from many complicated aerodynamically problems, of which dynamic stall is an inherent phenomenon when they are operating at low values of tip speed ratio (TSR < 4), and this has a significant impact on vibration, noise, and power output of the VAWTs. For this reason, in the present work we perform a computational investigation of a two-dimensional dynamic stall phenomenon around a NACA0012 airfoil in oscillating motion at relative low Reynolds number (˜105). The unsteady flow is investigated numerically using RANS approach with two turbulence models (k-ω SST and transition SST). The same analysis was performed to evaluate three flow control methods: two passive and one active.

  9. Aerodynamic performance of vertical and horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  10. On the theory of the horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    de Vries, O.

    The fluid mechanical theory of horizontal axis wind turbines (HAWT) in homogeneous, steady flows is presented. HAWT aerodynamic performance is governed by rotor torque and drag, the angular velocity, and power output, with governing equations for momentum, mass, and energy. The lift force and profile drag acting on the airfoil blades depend on the flow velocity, the chord length, the angle of attack, and the lift and drag coefficients. Single streamtube and multiple-stream tube and angular momentum analyses are employed to quantify the maximum wind turbine performance. Optimization studies for HAWT blades have indicated that a considerable amount of blade twist and taper enhances HAWT performance. Blade-element and vortex theory combined with panel methods are used to study optimum blade shapes. Techniques for assuring that wind tunnel studies of scale models are valid for full scale machines are defined. Sample runs have shown the accuracy of the blade element theory and the inaccuracies of two-dimensional analyses when stall is reached. The acquisition of more aerodynamic data on HAWT performance is indicated.

  11. Morping blade design for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Macphee, David; Beyene, Asfaw

    2015-11-01

    Wind turbines operate at peak efficiency at a certain set of operational conditions. Away from these conditions, conversion efficiency drops significantly, requiring pitch and yaw control schemes to mitigate these losses. These efforts are an example of geometric variability, allowing for increased power production but with an unfortunate increase in investment cost to the energy conversion system. In Vertical-Axis Wind Turbines (VAWTs), the concept of pitch control is especially complicated due to a dependence of attack angle on armature azimuth. As a result, VAWT pitch control schemes, both active and passive, are as of yet unfeasible. This study investigates a low-cost, passive pitch control system, in which VAWT blades are constructed of a flexible material, allowing for continuous shape-morphing in response to local aerodynamic loading. This design is analyzed computationally using a finite-volume fluid-structure interaction routine and compared to a geometrically identical rigid rotor. The results indicate that the flexible blade increases conversion efficiency by reducing the severity of vortex shedding, allowing for greater average torque over a complete revolution.

  12. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Wendell, J. H.

    1982-09-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  13. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  14. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  15. Design of h-Darrieus vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  16. Comparison of aerodynamic models for Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C.; Aagaard Madsen, H.; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I.

    2014-06-01

    Multi-megawatt Vertical Axis Wind Turbines (VAWTs) are experiencing an increased interest for floating offshore applications. However, VAWT development is hindered by the lack of fast, accurate and validated simulation models. This work compares six different numerical models for VAWTS: a multiple streamtube model, a double-multiple streamtube model, the actuator cylinder model, a 2D potential flow panel model, a 3D unsteady lifting line model, and a 2D conformal mapping unsteady vortex model. The comparison covers rotor configurations with two NACA0015 blades, for several tip speed ratios, rotor solidity and fixed pitch angle, included heavily loaded rotors, in inviscid flow. The results show that the streamtube models are inaccurate, and that correct predictions of rotor power and rotor thrust are an effect of error cancellation which only occurs at specific configurations. The other four models, which explicitly model the wake as a system of vorticity, show mostly differences due to the instantaneous or time averaged formulation of the loading and flow, for which further research is needed.

  17. Aeroelastic stability and response of horizontal axis wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  18. Investigation of implementation of stators on vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Alexander, Aaron; Santhanakrishnan, Arvind

    2014-11-01

    Vertical Axis Wind Turbines (VAWT) have historically suffered from an inability to self-start and, especially on Savonius rotors, low efficiencies due to drag on the returning blade. A few VAWT studies have examined the use of stators to direct the flow onto the power producing side of the rotor thus preventing drag on the returning side, yet all of the designs studied allow the air to exit on the downstream side of the entering flow. This study investigates an alternative stator design for extracting more wind energy by trapping the incoming flow into a rising vortex within the stator enclosure. The flow is then allowed to exit above the stator. The current study compared the performance of a generic Savonius rotor in a 7 m/s free stream flow with the same rotor in two different stator designs. The first stator design allows the flow to escape in the downstream direction. The second stator design utilizes the same stator shape, but forces the air to remain trapped until it can exit above the stators. The initial evaluation of the results was conducted using Computational Fluid Dynamics (CFD) package Star-CCM + set up with an unsteady k- ɛ model at a Reynolds number of about 1,400,000. Experimental comparisons with scale models will be presented.

  19. Experimental Test Plan DOE Tidal and River Reference Turbines

    SciTech Connect

    Neary, Vincent S; Hill, Craig; Chamorro, Leonardo; Gunawan, Budi

    2012-09-01

    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

  20. The development and testing of a novel cross axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  1. Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine

    NASA Astrophysics Data System (ADS)

    Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho

    2010-06-01

    The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.

  2. Fixed pitch rotor performance of large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Corrigan, R. D.

    1982-01-01

    Experimental fixed pitch wind turbine performance data is presented for both the DOE/NASA Mod-0 and the Danish Gedser wind turbines. Furthermore, a method for calculating the output power from large fixed pitch wind turbines is presented. Modifications to classical blade element momentum theory are given that improve correlation with measured data. Improvement is particularly evident in high winds (low tip speed ratios) where aerodynamic stall occurs as the blade experiences high angles of attack.

  3. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  4. Large HAWT (Horizontal-Axis Wind Turbine) wake measurement and analysis

    NASA Astrophysics Data System (ADS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1984-05-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine was defined and described, and numerical models of wake behavior were developed. Wind tunnel studies of single turbine wakes and turbine array wakes were used to verify the theory and further refine the numerical models. The effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain.

  5. Experimental study on hydrodynamic characteristics of vertical-axis floating tidal current energy power generation device

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Li, Teng-fei; Zhang, Liang; Sheng, Qi-hu; Zhang, Xue-wei; Jiang, Jin

    2016-01-01

    To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.

  6. Forced vibration analysis of rotating structures with application to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Lobitz, D. W.

    Predictive methods for the dynamic analysis of wind turbine systems are important for assessing overall structural integrity and fatigue life. For the former, the identification of resonance points (spectral analysis) is of primary concern. For the latter forced vibration analysis is necessary. These analyses are complicated by the fact that, for a spinning turbine, the stress-producing deformations take place in both fixed and rotating reference systems simultaneously. As an example, the tower of a horizontal axis wind turbine (HAWT) must be analyzed in a fixed frame, and the rotor in a rotating one. Forced vibration analysis is further complicated in that accurate models need to be developed for aeroload prediction. Methods which are available for forced vibration analysis of both horizontal and vertical axis machines are identified and the method which was developed for vertical axis wind turbines is emphasized, with some comparisons of the predictions to experimental data.

  7. Flow Analysis of Straight Wing Vertical Axis Type Wind Turbine for Power Generation

    NASA Astrophysics Data System (ADS)

    Horiuchi, Kenji; Seki, Kazuichi

    Researches about the aerodynamics of wind turbine with straight wing vertical axis(SW-VAWT)are very limited, in spite of a number of advantages such as low dependence on wind direction variation and easy constructible straight blades. For these reasons, we are researching the lift type SW-VAWT for many years. The elucidation of the behavior of the flow inside and neighborhood of the wind turbine during the rotation is very important because of the performance improvement of the vertical axis wind turbine. This research examined to the aerofoil characters by using the numerical simulation technique and the precision of the prediction technique was confirmed as this result. Furthermore, we estimated flow behavior during the wind turbine rotation by using this numerical simulation technique, and evaluated the flow around the wind turbine. This paper presents outline and results of these calculations and evaluations.

  8. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  9. Development of a stereo-optical camera system for monitoring tidal turbines

    NASA Astrophysics Data System (ADS)

    Joslin, James; Polagye, Brian; Parker-Stetter, Sandra

    2014-01-01

    The development, implementation, and testing of a stereo-optical imaging system suitable for environmental monitoring of a tidal turbine is described. This monitoring system is intended to provide real-time stereographic imagery in the near-field (<10 m) of tidal turbines proposed for deployment in Admiralty Inlet, Puget Sound, Washington. Postdeployment observations will provide the necessary information about the frequency and type of interactions between marine animals and the turbine. A method for optimizing the stereo camera arrangement is given, along with a quantitative assessment of the system's ability to measure and track targets in three-dimensional space. Optical camera effectiveness is qualitatively evaluated under realistic field conditions to determine the range within which detection, discrimination, and classification of targets is possible. These field evaluations inform optimal system placement relative to the turbine rotor. Tests suggest that the stereographic cameras will likely be able to discriminate and classify targets at ranges up to 3.5 m and detect targets at ranges up to, and potentially beyond, 4.5 m. Future system testing will include the use of an imaging sonar ("acoustical camera") to evaluate behavioral disturbances associated with artificial lighting.

  10. The Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    SciTech Connect

    Ashwill, T.D.; Berg, D.E.; Gallo, L.R.; Grover, R.D.; Klimas, P.C.; Ralph, M.E.; Rumsey, M.A.; Stephenson, W.A.; Sutherland, H.J.

    1987-10-01

    The Wind Energy Research Division of Sandia National Laboratories has been funded by the Wind/Ocean Technology Division of the Department of Energy (DOE) to design and build a 34-meter diameter Vertical Axis Wind Turbine (VAWT) incorporating the results of recent research in VAWT aerodynamics and structural dynamics. The design and fabrication of all turbine parts has been completed, and construction of the turbine is now nearing completion, with preliminary testing underway. Turbine design and construction are reviewed and the major components of the system are summarized in this paper. 12 refs., 7 figs.

  11. Wind response characteristics of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W.; Holley, W. E.; Jafarey, N.

    1981-01-01

    It was the objective of the work reported here, and in the companion paper 1 . A broader examination of wind turbine dynamic response to turbulence, and attempts to ascertain the features of turbulence that wind turbines are most sensitive to were made. A statistical description of the wind input including all three wind components and allowing linear wind gradients across the rotor disk, was used together with quasi-static aerodynamic theory and an elementary structural model involving only a few degrees of freedom. The idea was to keep the turbine model simple and show the benefits of this type of statistical wind representation before attempting to use a more complex turbine model. As far as possible, the analysis was kept in the simplest form, while still preserving key physical responses.

  12. Low frequency acoustic emissions from large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1989-01-01

    Available test data and theoretical predictions of LF noise from large wind turbines of the type to be used for energy generation are briefly summarized. The main LF noise sources are identified as tower-wake/blade interactions and rotor-plane inflow gradients. Sound-pressure time histories, measured and calculated narrow-band and rotational noise spectra, and noise radiation patterns for the WTS-4 and WWG-0600 wind turbines are presented graphically.

  13. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs. PMID:20729568

  14. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    NASA Astrophysics Data System (ADS)

    Chougule, Prasad; Nielsen, Søren

    2014-06-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent problem of self-start inability and has low power coefficient as compare to the horizontal axis wind turbine. These two problems can be eliminated by incorporating the blade pitching mechanism. So, in this paper overview of various pitch control systems is discussed and design of self-acting pitch mechanism is given. A pitch control linkage mechanism for vertical axis wind turbine is modeled by multi-body approach using MSC Software. Aerodynamic loads are predicted from a mathematical model based on double multiple stream tube method. An appropriate airfoil which works at low Reynolds number is selected for blade design. It is also focused on commercialization of the vertical axis wind turbine which incorporates the self-acting pitch control system. These aerodynamic load model will be coupled with the multi-body model in future work for optimization of the pitch control linkage mechanism. A 500 Watt vertical axis wind turbine is designed and it is planned to implement the self-acting pitch control mechanism in real model.

  15. Numerical Simulation of Admiralty Inlet, WA, with Tidal Hydrokinetic Turbine Siting Application

    NASA Astrophysics Data System (ADS)

    Thyng, Kristen M.

    Tidal hydrokinetic energy has been recognized as a potential source of sustainable, renewable energy. In order to properly site turbines for commercial-scale development, the complex flow conditions in a potential deployment region must be understood. Viable locations for turbines are limited by many factors, including underwater space that is above the bottom boundary layer, below shipping traffic, within areas of strong currents, and yet avoids additional fatiguing stresses. The primary area of interest in the Puget Sound for commercial tidal energy development is Admiralty Inlet, which includes potentially disruptive flow features such as vortices and strong turbulence. This dissertation seeks to increase the body of knowledge of these features both from an oceanographic perspective and as they pertain to turbine site characterization. The primary means of studying Admiralty Inlet in this document is through numerical simulation of the region using the Regional Ocean Modeling System (ROMS). The model output is found to compare well with field data, capturing eddy fields, turbulence properties, relative tidal phases, and illuminating many flow features. Horizontal velocities in the simulation are, on average, approximately 75% the size of those found in the data. This speed deficiency is inherited from the forcing model in which the Admiralty Inlet simulation is nested. The model output also shows that the flow field of this fjord-like estuary is largely affected by a headland on the northeast side of the Inlet. Vortices generated by this headland, Admiralty Head, are found to vary considerably depending on the tidal cycle. The eddies can persist beyond the half-cycle of generation to significantly affect the horizontal speed and other flow field properties in the subsequent half-cycle. Detailed analysis of the vertical vorticity governing equation shows that advection, tilting, stretching, and boundary generation are the most significant processes dictating the

  16. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  17. United States Air Force Academy (USAFA) Vertical Axis Wind Turbine. Final report May 77-Sep 80

    SciTech Connect

    Kullgren, T.E.; Wiedemeier, D.W.

    1980-09-01

    This report describes the design, fabrication, installation and testing of a small variable-speed vertical axis wind turbine (VAWT). This VAWT is unique in its installation using hand tools only; unconventional and simple support system; and variable speed operation under microprocessor control. Initial testing confirmed that the turbine can be controlled by commanded alternator field modulation. Further studies will be directed toward determination of an optimum control algorithm.

  18. Flow structure in the near wake of a horizontal axis marine current turbine under steady and unsteady inflow conditions

    NASA Astrophysics Data System (ADS)

    Luznik, Luksa; Lust, Ethan; Flack, Karen

    2015-11-01

    Near wake flow field results are presented for a 1/25 scale, 0.8 m diameter (D) two bladed horizontal axis tidal turbine. The 2D PIV measurements were obtained in the USNA 380 ft tow tank for two inflow conditions. The first case had steady inflow conditions, i.e. the turbine was towed at a constant carriage speed (Utow = 1.68 m/s) and the second case had a constant carriage speed and incoming regular waves with a period of 2.3 seconds and 0.18 m wave height. The underwater PIV system is comprised of two submersible housings with forward looking submersible containing laser sheet forming optics, and the side looking submersible includes a camera and remote focus/aperture electronics. The resulting individual field of view for this experiment was nominally 30x30 cm2. Near wake mapping is accomplished by ``tiling'' individual fields of view with approximately 5 cm overlap. All measurements were performed at the nominal tip speed ratio (TSR) of 7. The mapping is accomplished in a vertical streamwise plane (x-z plane) centered on the turbine nacelle and the image pair captures were phase locked to two phases: reference blade horizontal and reference blade vertical. Results presented include distribution of mean velocities, Reynolds stresses, 2D turbulent kinetic energy. The discussion will focus on comparisons between steady and unsteady case. Further discussion will include comparisons between the current high resolution PIV measurements and the previous point measurements with the same turbine at different lateral planes in the same flow conditions.

  19. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-05-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  20. Aerodynamic study of a stall regulated horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Constantinescu, S. G.; Crunteanu, D. E.; Niculescu, M. L.

    2013-10-01

    The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbines will play a vital role in the urban environment. Unfortunately, the complexity and the price of pitch regulated small horizontal-axis wind turbines represent ones of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of small stall regulated wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. During the running stall regulated wind turbines, due to the extremely broad range of the wind velocity, the angle of attack can reach high values and some regions of the blade will show stall and post-stall behavior. This paper deals with stall and post-stall regimes because they can induce significant vibrations, fatigue and even the wind turbine failure.

  1. Structural design and fabrication of the Sandia 34-meter Vertical Axis Wind Turbine

    SciTech Connect

    Ashwill, T.D.

    1987-01-01

    The Wind Energy Research Division of Sandia National Laboratories has been funded by the Wind/Ocean Technology Division of the Department of Energy (DOE) to design and build a 34-meter diameter Vertical Axis Wind Turbine (VAWT). The turbine design incorporates the results of recent VAWT research in aerodynamics and structural dynamics. Initial system concept studies identified several blade options that met the required power rating of 500 kW. The final blade and rotor configurations were chosen based on finite element calculations that determined the turbine modes of response, their frequency of vibration, and stress levels. For parked survival turbine components were designed to with stand the loading of a 150 mph (67.0 m/s) wind coupled with maximum cable tensions. Specific areas of design discussed include the rotor, cables, bearings, brakes, and foundations. Construction of the turbine is in progress at this time and anticipated completion of the project is late spring of 1987.

  2. Guy-cable design and damping for vertical-axis wind turbines

    SciTech Connect

    Carne, T.G.

    1981-05-01

    Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibration of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed in this paper, and a technique for damping cable vibrations is mathematically analyzed and demonstrated with experimental data.

  3. Wind ripple in vertical-axis wind turbines

    SciTech Connect

    Akins, R.E.

    1981-01-01

    The aerodynamically induced fluctuations in the output of a VAWT have often been considered a disadvantage of such systems. The fluctuations observed in the output of a VAWT are composed of contributions due to aerodynamic effects, incident turbulence, and in some cases, mechanical resonances. In order to quantitatively assess these effects, experimental techniques have been developed which allow analysis of full-scale performance of wind turbines with particular emphasis on the effects caused by turbulence in the incident wind. These methods have been used to monitor the performance of the DOE/Sandia 17-m VAWT. Results are presented which provide an indication of the effects of incident turbulence intensity on the fluctuations in output of the turbine. Trends which relate the fluctuations in output to the fluctuations in incident wind are identified and discussed.

  4. Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    NASA Astrophysics Data System (ADS)

    Bachant, Peter; Wosnik, Martin

    2011-11-01

    A new test bed for hydrokinetic turbines was used to evaluate different cross-flow axis turbines, and investigate effects of waves and turbulence. Turbine thrust (drag) and mechanical power were measured in a tow tank with cross section 3.7 x 2.4m at speeds of 0.6-1.5 m/s for a Gorlov Helical Turbine (GHT) and a Lucid spherical helical turbine (LST). GHT performance was also measured in progressive waves of various periods, grid turbulence, and in a cylinder wake. Overall, the GHT performs with higher power and thrust coefficients than the LST. A 2nd law, or kinetic exergy efficiency, defined as the fraction of kinetic energy removed from the flow that is converted to usable shaft work, was measured. The distribution of energy into shaft work and turbulent kinetic energy in the wake can affect environmental transport processes and performance of turbines arrays. Progressive waves generally enhance performance of the GHT, but can lead to stall at higher tip speed ratios compared to the steady case. Grid turbulence delays dynamic stall and enables operation at lower tip speed ratios, while not decreasing maximum power coefficient. Performance in a cylinder wake is highly dependent on the cylinder's cross-stream location, ranging from benign to detrimental. The experimental observations provide insight into the physical principles of operation of cross-flow axis turbines.

  5. Marine Hydrokinetic (MHK) Energy Conversion Research at UNH: From Fundamental Studies of Hydrofoil Sections, to Moderate Reynolds Number Turbine Tests in a Tow Tank, to Open Water Deployments at Tidal Energy Test Sites (Invited)

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.

    2013-12-01

    tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.

  6. Large-eddy simulations of a single vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rahromostaqim, Mahsa; Posa, Antonio; Balaras, Elias; Leftwich, Megan

    2013-11-01

    Recently vertical axis wind turbines (VAWTs) have been receiving increased attention due to various potential advantages over the more common horizontal axis wind turbines. They can be placed for example in urban areas where space is limited, since they are moderately sized and virtually silent. In this study we will report large-eddy simulations (LES) of a Windspire VAWT. Computations will be conducted using an immersed boundary formulation, where the equations of motion are solved on a fixed Cartesian grid and the turbine blades rotate with a fixed tip speed ratio. The primary objective of this first series of LES is to understand the interaction between the wakes generated by the individual airfoils. To keep the computational cost low and increase the parametric regime we can examine, we will consider only part of the turbine hight and utilize periodic boundary conditions along the turbine axis. The computations will exactly mimic the conditions of closely coordinated experiments of a scaled down VAWT, which will enable us to access the impact of features that will not be captured, such as the tip vortices for example, on the results. Preliminary results reveal a complex interaction of the wakes created by the rotating airfoils and the boundary layer on the airfoils.

  7. Review of wind simulation methods for horizontal-axis wind turbine analysis

    NASA Astrophysics Data System (ADS)

    Powell, D. C.; Connell, J. R.

    1986-06-01

    This report reviews three reports on simulation of winds for use in wind turbine fatigue analysis. The three reports are presumed to represent the state of the art. The Purdue and Sandia methods simulate correlated wind data at two points rotating as on the rotor of a horizontal-axis wind turbine. The PNL method at present simulates only one point, which rotates either as on a horizontal-axis wind turbine blade or as on a vertical-axis wind turbine blade. The spectra of simulated data are presented from the Sandia and PNL models under comparable input conditions, and the energy calculated in the rotational spikes in the spectra by the two models is compared. Although agreement between the two methods is not impressive at this time, improvement of the Sandia and PNL methods is recommended as the best way to advance the state of the art. Physical deficiencies of the models are cited in the report and technical recommendations are made for improvement. The report also reviews two general methods for simulating single-point data, called the harmonic method and the white noise method. The harmonic method, which is the basis of all three specific methods reviewed, is recommended over the white noise method in simulating winds for wind turbine analysis.

  8. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  9. Meandering patterns in the wake of horizontal-axis wind and river turbines

    NASA Astrophysics Data System (ADS)

    Guala, Michele; Howard, Kevin; Singh, Arvind; Hill, Craig; Musa, Mirko; Feist, Christopher; Sotiropoulos, Fotis

    2014-11-01

    Energy harvesting devices with rotor axis oriented with the flow generate a wake which is unstable due to the complex interactions among turbulent structures from the incoming flow, root, hub and tip vortices (see Foti et al. APS/DFD 2014). Experiments in wind tunnel and open-channel flow with erodible surface show similar meandering patterns in the velocity field, which are responsible for the far wake expansion and the incoming turbulence experienced by down-wind/stream units. Wake meandering statistics were observed to depend on the operating turbine conditions (tip speed ratio), upstream device siting (turbine - turbine interaction) or specific turbine kinematics (floating turbine under waves). In addition, for wall boundary conditions defined by an erodible surface, where sand grains respond to local shear stress by moving (erosion) or settling (deposition), turbines were observed to induce dynamic topographic perturbations also exhibiting meandering patterns. This occurred in limited mobility conditions and under migrating bedforms, with large scale topographic features amplified under specific asymmetric turbine configurations. The work opens up the possibility to place turbines in complex flows optimizing their performance while maintaining, or reshaping, the surrounding topography by specific control or siting strategies. Resarch supported by NSF CAREER: CBET-1351303, IREE early career UMN, DOE Grant DE-EE0005482, NSF PFI Grant IIP-1318201.

  10. Developments in blade shape design for a Darrieus vertical axis wind turbine

    SciTech Connect

    Ashwill, T.D.; Leonard, T.M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a ''buildable'' blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  11. Recent Darrieus vertical-axis wind turbine aerodynamical experiments at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  12. Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas

    SciTech Connect

    Stephenson, W.A.

    1986-12-01

    A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

  13. Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klimas, P. C.

    1981-01-01

    Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

  14. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.

    2015-03-01

    The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  15. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. PMID:25583856

  16. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    NASA Technical Reports Server (NTRS)

    Tangler, James L.; Ostowari, Cyrus

    1995-01-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.

  17. Horizontal axis wind turbine post stall airfoil characteristics synthesization

    SciTech Connect

    Tangler, J.L. . Wind Energy Research Center); Ostowari, C. )

    1991-06-01

    Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction. 5 refs., 3 figs.

  18. Computational aeroelasticity study of horizontal axis wind turbines with coupled bending - torsion blade dynamics

    NASA Astrophysics Data System (ADS)

    Alexeev, Timur

    With the increasing size of wind turbines and the use of flexible and light materials in aerodynamic applications, aeroelastic tailoring for power generation and blade stability has become an important subject in the study of wind turbine dynamics. To this day, coupling of bending and torsion in wind turbine rotor blades has been studied primarily as an elastic mechanism due to a coupling laminate construction. In this report, inertial coupling of bending and torsion, due to offset of axis of elasticity and axis of center of mass, is investigated and numerical simulations are performed to test the validity of the constructed model using an in-house developed aeroelastic numerical tool. A computationally efficient aeroelastic numerical tool, based on Goldstein's helicoidal vortex model with a prescribed wake model and modal coupling of bending and torsion in the blades, is developed for 2-bladed horizontal axis wind turbines and a conceptual study is performed in order to argue the validity of the proposed formulation and numerical construction. The aeroelastic numerical tool, without bending-torsion coupling, was validated (Chattot 2007) using NREL Phase VI wind turbine data, which has become the baseline model in the wind turbine community. Due to novelty of the proposed inertial bending-torsion coupling in the aeroelastic model of the rotor and lack of field data, as well as, other numerical tools available for code to code comparison studies, a thorough numerical investigation of the proposed formulation is performed in order to validate the aeroelastic numerical tool Finally, formulations of geometrically nonlinear beams, elastically nonlinear plates and shells, and a piecewise linear, two degree of freedom, quasi steady, aerodynamic model are presented as an extension for nonlinear wind turbine aeroelastic simulations. Preliminary results of nonlinear beams, plates, shells, and 2 DOF NACA0012 aeroelastic model are presented.

  19. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined. PMID:23319713

  20. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  1. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  2. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-08-01

    In an effort to define the desirable airfoil characteristics for large variable-speed wind turbines, a systematic study was performed using a series of airfoils designed to have similar aerodynamic properties, except for the amount of lift, which varied over a wide range. For several airfoil combinations, blade shapes were designed for a 750-kW wind turbine with a 48.8-m diameter rotor using the optimization code PROPGA together with PROPID, which is an inverse design method for horizontal-axis wind turbines. Roughness effects, including the consideration of dirty-blade performance in the blade-shape optimization process, were also considered and are discussed. The results and conclusions reveal practical design implications that should aid in the aerodynamic blade design of not only large but also other sizes of variable-speed wind turbines.

  3. Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms

    NASA Astrophysics Data System (ADS)

    Wenlong, Tian; Baowei, Song; Zhaoyong, Mao

    2013-12-01

    Energy is a direct restriction to the working life of an underwater mooring platform (UMP). In this paper, a vertical axis water turbine (VAWT) is designed to supply energy for UMPs. The VAWT has several controlled blades, which can be opened or closed by inside plunger pumps. Two-dimensional transient numerical studies are presented to determine the operating performance and power output of the turbine under low ocean current velocity. A standard k-ɛ turbulence model is used to perform the transient simulations. The influence of structural parameters, including foil section profile, foil chord length and rotor diameter, on the turbine performance are investigated over a range of tipspeed- ratios ( TSRs ). It was found that turbine with three unit length NACA0015 foils generated a maximum averaged coefficient of power, 0.1, at TSR = 2.

  4. Numerical investigation for design and critical performance evaluation of a horizontal axis hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Subhra Mukherji, Suchi; Banerjee, Arindam

    2010-11-01

    We will discuss findings from our numerical investigation on the hydrodynamic performance of horizontal axis hydrokinetic turbines (HAHkT) under different turbine geometries and flow conditions. Hydrokinetic turbines are a class of zero-head hydropower systems which utilizes kinetic energy of flowing water to drive a generator. However, such turbines very often suffer from low efficiency which is primarily controlled by tip-speed ratio, solidity, angle of attack and number of blades. A detailed CFD study was performed using two-dimensional and three dimensional numerical models to examine the effect of each of these parameters on the performance of small HAHkTs having power capacities <= 10 kW. The two-dimensional numerical results provide an optimum angle of attack that maximizes the lift as well as lift to drag ratio yielding maximum power output. However three-dimensional numerical studies estimate optimum turbine solidity and blade numbers that produces maximum power coefficient at a given tip speed ratio. In addition, simulations were also performed to observe the axial velocity deficit at the turbine rotor downstream for different tip-speed ratios to obtain both qualitative and quantitative details about stall delay phenomena and the energy loss suffered by the turbine under ambient flow condition.

  5. Comparison between Vertical-Axis Wind Turbine Arrays and Plant Canopies

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2014-11-01

    We present experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions. One array consists of a row of four single turbines while the other two are made up of nine counter rotating turbine pairs. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. Furthermore, the power output of each turbine is measured simultaneously with the free stream wind velocity and direction. These measurements yield detailed understanding of the aerodynamics inside the VAWT arrays and the resulting power productions. Quadrant hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT array. Results comparing the energy transport and the responsible mechanisms between the larger turbine arrays and the four single turbines configuration will be presented. Furthermore, results are compared to the flow in urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric surface layer to a canopy flow. This project is funded by the Gordon and Betty Moore Foundation through Grant 2645.

  6. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  7. Experimental Investigation of Cross-Flow Axis Marine Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2011-12-01

    A new test bed for Marine Hydrokinetic (MHK) turbines at the Center for Ocean Renewable Energy at the University of New Hampshire (UNH-CORE) was used to evaluate the performance of different cross-flow axis hydrokinetic turbines, and investigate the effects of waves and turbulence on these devices. The test bed was designed and built to operate in the UNH tow and wave tank, which has a cross section of 3.67m (width) x 2.44m (depth). In the present configuration, tow speeds of up to 3 m/s can be achieved for smaller turbine models, and up to 1.5 m/s for large turbine models with low gear ratio. It features a flap style wave maker at one end that is capable of producing waves with 1-5 s periods up to 0.4 m wave height. Turbine thrust (drag) and mechanical power output (torque, angular velocity) were measured at tow speeds of 0.6-1.5 m/s for two cross-flow axis MHK turbines: a Gorlov Helical Turbine (GHT) and a Lucid spherical turbine (LST). Both were provided by Lucid Energy Technologies, LLP, and have frontal areas of 1.3 (GHT) and 1.0 (LST) square meters, respectively. GHT performance was also measured in progressive waves of various periods, grid turbulence, and in the wake of a cylinder, installed upstream at various cross-stream locations. Overall, the GHT performs with higher power and thrust (drag) coefficients than the LST. A 2nd law efficiency, or kinetic exergy efficiency, was defined to calculate what fraction of the kinetic energy removed from the flow is converted to usable shaft work by each turbine. The exergy efficiency varies with tip speed ratio but approaches 90% for the optimum operating conditions for each turbine. The fraction of kinetic energy removed from the fluid that is not converted to shaft work is redistributed into turbulent kinetic energy in the wake. Quantifying the kinetic energy flowing out of the turbine is important for modeling of environmental transport processes and for predicting performance when turbines are used in arrays

  8. Sound propagation studies for a large horizontal axis wind turbine

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1985-01-01

    Systematic noise measurements in three directions with respect to the wind vector, over a range of distances to 1050 m, over a range of frequencies from 8 Hz to 2000 Hz, and for a stable wind turbine noise source (WTS-4) in windy conditions (V = 9.4 to 13.0 m/s) are presented. At frequencies above 63 Hz in the downwind and crosswind directions the sound pressure levels decay with distance according to predictions based on atmospheric absorption and spherical spreading, assuming no excess attenuation due to ground effects. In the upwind direction there is excess attenuation due to an acoustic shadow zone. The assumption of a distributed noise source leads to better noise estimates in the upwind direction. For very low frequencies 8 to 16 Hz no excess attenuation was observed in the upwind direction at distances up to 1050 m and a sound pressure level decay rate of approximately 3 dB per doubling of distance was observed in the downwind direction.

  9. A numerical investigation of the wake structure of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Balaras, Elias; Posa, Antonio; Leftwich, Megan

    2014-11-01

    Recent field-testing has shown that vertical axis wind turbines (VAWT) in wind farm configurations have the potential to reach higher power densities, when compared to the more widespread horizontal axis turbines. A critical component in achieving this goal is a good understanding of the wake structure and how it is influenced by operating conditions. In the present study the Large-Eddy Simulation technique is adopted to characterize the wake of a small vertical axis wind turbine and to explore its dependence on the value of its Tip Speed Ratio (TSR). It will be shown that its wake significantly differs from that of a spinning cylinder, often adopted to model this typology of machines: the displacement of the momentum deficit towards the windward side follows the same behavior, but turbulence is higher on the leeward side. An initial increase of the momentum deficit is observed moving downstream, with central peaks in the core of the near wake for both momentum and turbulent kinetic energy, especially at lower TSRs. No back-flow is produced downstream of the turbine. The interaction between blades is stronger at higher values of the TSR, while the production of coherent structures is enhanced at lower TSRs, with large rollers populating the leeward side of the wake.

  10. SNL-EFDC Simulations of Tidal Turbine-Related Changes to Hydrodynamics and Flushing

    NASA Astrophysics Data System (ADS)

    Roberts, J. D.; Johnson, E.; James, S. C.; Barco, J.; Jones, C.

    2012-12-01

    The marine and hydrokinetic (MHK) industry in the United States faces challenges associated with siting, permitting, construction, and operation of pilot- and full-scale facilities that must be addressed to accelerate environmentally sound deployment of these renewable energy technologies. Little is known about the potential effects of MHK device operation in coastal areas, estuaries, or rivers, or of the cumulative impacts of these devices on aquatic ecosystems. This lack of knowledge affects the actions of regulatory agencies, the opinions of stakeholder groups, and the commitment of energy project developers and investors. Two particularly important factors that can be used as a precursor for MHK-driven environmental changes in estuaries are the effect of decreased tidal range and flushing. For example, tidal-range changes could affect wetland systems that are only wetted under the highest of tides. Significant changes in tidal range could completely change the character of the wetlands through long-term drying. Changes to flushing must also be understood, especially when municipal wastewater and other pollutant sources are discharged into a bay. When MHK operation alters flow rates, decreased flushing of an embayment could yield increased residence times, decreased nutrient and contaminant dispersion, and even the possibility of algal blooms. Small changes to the flow could manifest as noticeable changes to sediment transport and water quality. This work provides example assessments of changes to the physical environment (i.e. currents, tidal ranges, water age, and e-folding time) potentially imposed by the operation of MHK turbine arrays in marine estuary environments using the modeling platform SNL-EFDC. Comparing model results with and without an MHK array facilitates an understanding of how an array of turbines might alter the environment. By using models to simulate water circulation, commensurate changes in water quality, benthic habitat quality, and

  11. Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Min, Seung Yong; Jeong, In Oh; Lee, Yun Han; Kim, Seung Jo

    2006-03-01

    In this paper, a research for the performance improvement of the straight-bladed vertical axis wind turbine is described. To improve the performance of the power generation system, which consists of several blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control system are adopted, respectively. Both methods are variable pitch system. For cycloidal wind turbine, aerodynamic analysis is carried out by changing pitch angle and phase angle based on the cycloidal motion according to the change of wind speed and wind direction, and control mechanism using the cycloidal blade system is realized for 1kw class wind turbine. By this method, electrical power is generated about 30% higher than wind turbine using fixed pitch angle method. And for more efficient wind turbine, individual pitch angle control of each blade is studied. By maximizing the tangential force in each rotating blade at the specific rotating position, optimal pitch angle variation is obtained. And several airfoil shapes of NACA 4-digit and NACA 6-series are studied. Aerodynamic analysis shows performance improvement of 60%. To realize this motion, sensing and actuating system is designed.

  12. Three-dimensional velocity measurements around a rotating vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Coletti, Filippo; Ryan, Kevin; Dabiri, John; Eaton, John

    2013-11-01

    Vertical axis wind turbines (VAWT) can be more closely spaced than conventional horizontal axis wind turbines (HAWT), which points to a potentially greater power that can be extracted from a given wind farm footprint. In order to optimize the inter-turbine spacing and to investigate the potential for constructive aerodynamic interactions, the complex dynamics of VAWT wakes need to be analyzed. To date, only single-point or at best two-dimensional measurements of such wakes have been documented. We have measured the full three-component mean velocity field around and downstream the scaled-down model of a rotating VAWT by Magnetic Resonance Velocimetry (MRV). The high spatial resolution allows to quantitatively explore the structure of the wake, its interaction with the floor, and its development. The flow is shown to be highly three-dimensional and asymmetric for the whole investigated region (up to 7 diameters downstream of the turbine). These results can inform low-order models to predict the performance of turbine arrays.

  13. Wake Studies at the Flowind Vertical Axis Wind Turbine Generator Site.

    SciTech Connect

    Baker, Robert W.; Walker, Stel Nathan; Katen, Paul C.

    1984-03-01

    In a continuing effort to study and characterize various types and sizes of wind turbine generator wakes a test program was conducted at the FloWind 170 kW vertical axis wind turbine (VAWT) near Ellensburg, Washington. Oregon State University (OSU) scientists measured the wake behind the 90 ft. tall Darrieus VAWT using fixed place and portable kite anemometers. Downwind velocity deficits were measured from 3-9 diameters along the wake centerline at rotor midpoint (55 ft.) and perpendicular to the wake. Wake turbulence characteristics were also measured. The measured velocity deficits were compared to wake model calculations.

  14. Predictions and experiments of the VAWT viscous flow field. [Vertical Axis Wind Turbine

    SciTech Connect

    Paraschivoiu, I.; Rajagopalan, R.G.; Masson, C.

    1987-06-01

    The first objective of the work was to compare the aerodynamic loads and performance predicted by the double-multiple-streamtube model with the viscous-flow-field analysis of a vertical-axis wind turbine. Second, to check the validity of the two performance/load models, their predictions were compared with available experimental data. When the dynamic effects at low tip-speed ratios (dynamic stall) and added mass and circulatory effects at high tip-speed ratios were included, significant improvement was obtained in the prediction of the aerodynamic characteristics of the turbine, such as induced velocities and instantaneous blade forces. 11 references.

  15. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa

  16. Dislocation Configurations and Stress Distribution Along the Transverse Axis of Turbine Blade Body

    NASA Astrophysics Data System (ADS)

    Lv, Xianzi; Sun, Fei; Tong, Jinyan; Zhang, Shu; Feng, Qiang; Zhang, Jianxin

    2015-12-01

    The characteristics of microstructural evolution along the transverse axis of the 1/3 position of turbine blade body have been investigated with the help of transmission electron microscopy. Dislocation configurations change with the evolution of local stress from the leading edge to the trailing edge: slip bands → dislocations → only γ/γ' structure → dislocations → slip bands. The formation mechanism of slip bands illustrates that dislocations are generated in pairs and glide on the same plane continuously. Finite element analysis is made to assess the stress distribution along the transverse axis of turbine blade body. The instantaneous and inhomogeneous stress at the leading and trailing edges of blade body becomes the driving force for the formation of slip bands.

  17. Nonlinear Aeroelastic Equations of Motion of Twisted, Nonuniform, Flexible Horizontal-Axis Wind Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1980-01-01

    The second-degree nonlinear equations of motion for a flexible, twisted, nonuniform, horizontal axis wind turbine blade were developed using Hamilton's principle. A mathematical ordering scheme which was consistent with the assumption of a slender beam was used to discard some higher-order elastic and inertial terms in the second-degree nonlinear equations. The blade aerodynamic loading which was employed accounted for both wind shear and tower shadow and was obtained from strip theory based on a quasi-steady approximation of two-dimensional, incompressible, unsteady, airfoil theory. The resulting equations had periodic coefficients and were suitable for determining the aeroelastic stability and response of large horizontal-axis wind turbine blades.

  18. Vertical axis wind turbine with automatic speed control for home builders. Final report

    SciTech Connect

    Loth, J.L.; Fanucci, J.B.

    1981-09-01

    The object of this contract was to design, construct and test the hardware of a simple and reliable vertical axis wind turbine. The result of this program has been the development of a simple vertical axis wind turbine with a 6 meter rotor diameter and three blades, each 3 meters high. Each blade support arm streamline cuff ends in a 0.66 meter long drag type flap which is rotated under the action of centrifugal force when the adjustable design feathering rpm is reached. Each flap is actuated independently of the other two. Under normal conditions anyone of the three drag flaps can provide sufficient aerodynamic braking to prevent overspeeding and rotor damage. The reliability of this overspeed control system is obtained by having three drag flaps, two of which function as back up. The feathering rpm is made adjustable by varying the air pressure in three automotive pneumatic shock absorbers.

  19. Increasing power generation in horizontal axis wind turbines using optimized flow control

    NASA Astrophysics Data System (ADS)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  20. Aerodynamic design and analysis of small horizontal axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tang, Xinzi

    This work investigates the aerodynamic design and analysis of small horizontal axis wind turbine blades via the blade element momentum (BEM) based approach and the computational fluid dynamics (CFD) based approach. From this research, it is possible to draw a series of detailed guidelines on small wind turbine blade design and analysis. The research also provides a platform for further comprehensive study using these two approaches. The wake induction corrections and stall corrections of the BEM method were examined through a case study of the NREL/NASA Phase VI wind turbine. A hybrid stall correction model was proposed to analyse wind turbine power performance. The proposed model shows improvement in power prediction for the validation case, compared with the existing stall correction models. The effects of the key rotor parameters of a small wind turbine as well as the blade chord and twist angle distributions on power performance were investigated through two typical wind turbines, i.e. a fixed-pitch variable-speed (FPVS) wind turbine and a fixed-pitch fixed-speed (FPFS) wind turbine. An engineering blade design and analysis code was developed in MATLAB to accommodate aerodynamic design and analysis of the blades.. The linearisation for radial profiles of blade chord and twist angle for the FPFS wind turbine blade design was discussed. Results show that, the proposed linearisation approach leads to reduced manufacturing cost and higher annual energy production (AEP), with minimal effects on the low wind speed performance. Comparative studies of mesh and turbulence models in 2D and 3D CFD modelling were conducted. The CFD predicted lift and drag coefficients of the airfoil S809 were compared with wind tunnel test data and the 3D CFD modelling method of the NREL/NASA Phase VI wind turbine were validated against measurements. Airfoil aerodynamic characterisation and wind turbine power performance as well as 3D flow details were studied. The detailed flow

  1. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  2. The Development of Duct for a Horizontal Axis Turbine Using CFD

    NASA Astrophysics Data System (ADS)

    Ghani, Mohamad Pauzi Abdul; Yaacob, Omar; Aziz, Azliza Abdul

    2010-06-01

    Malaysia is heavily dependent on the fossil fuels to satisfy its energy demand. Nowadays, renewable energy which has attracted great interest is marine current energy, which extracted by a device called a device called marine current turbine. This energy resource has agreat potential to be exploited on a large scale because of its predictability and intensity. This paper will focus on developing a Horizontal Axis Marine Current Turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian sea conditions. This work incorporates the characteristic of Malaysia's ocean of shallow water and low speed current in developing the turbines. The HAMCT rotor will be developed and simulated using CAD and CFD software for various combination of inlet and oulet duct design. The computer simulation results of the HAMCT being developed will be presented.

  3. Update on the structural design of the Sandia 34-M Vertical Axis Wind Turbine

    SciTech Connect

    Berg, D.F.; Ashwill, T.D.

    1986-01-01

    Sandia National Laboratories, as lead Department of Energy (DOE) laboratory for Vertical Axis Wind Turbine (VWAT) technology development in the USA, has been funded by the Wind/Oceans Technologies Division of the DOE to design and build a 34-M research-oriented VAWT. The machine will incorporate step-tapered blades with natural laminar flow blade sections, and will be capable of operating as either a constant rpm or a continuously-variable rpm machine. Design changes in the last year have reduced the predicted blade flatwise mean stresses by 56% and have reduced the rotor weight by 10,400 kg (23,000 lbs.). Flutter and aeroelastic damping analyses have been completed, instrumentation defined, and initial testing plans developed. The long lead time components of the turbine have been ordered, with deliveries to start in March, 1986. First turn of the turbine is planned for October, 1986.

  4. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    SciTech Connect

    Berg, D.E.

    1985-01-01

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. This paper describes the analytic tools we are using, summarizes the conceptual design procedure and presents portions of our detailed design as it exists in September 1984.

  5. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  6. In Situ Measurements of the Flow around a Single Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Araya, Daniel; Kinzel, Matthias; Dabiri, John

    2014-11-01

    Laboratory studies of model vertical-axis wind turbines (VAWTs) are typically unable to match both the Reynolds number (Re) and tip speed ratio (TSR) of full-scale wind turbines. In order to match both relevant parameters, a quantitative flow visualization method was developed to take in situ measurements of the flow around full-scale VAWTs. An apparatus was constructed to deploy a horizontal sheet of smoke upstream of the turbine at the mid-span of the rotor. Quantitative results were obtained by tracking the evolution of this smoke sheet using a PIV algorithm. This method will be demonstrated through a comparative study of three- and five-bladed VAWTs at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. Additionally, results will be presented in comparison with previous laboratory studies to help determine the dependence of the flow physics on Re and TSR.

  7. Vertical-axis wind-turbine drive-train transient dynamics

    SciTech Connect

    Clauss, D.B.; Carne, T.G.

    1981-03-01

    Start-up of a vertical-axis wind-turbine causes transient torque oscillations in the drivek-train with peak torques which may be over two and one-half times the rated torque of the turbine. These peak torques are of sufficient magnitude to possibly damage the drive train; safe and reliable operation requires that mechanical components be overdesigned to carry the peak torques caused by transient events. A computer code, based on a lumped parameter model of the drive train, has been developed and tested for the Low Cost 17-Meter turbine; the results show excellent agreement with field data. The code has subsequently been used to predict the effect of a slip clutch on transient torque oscillations. It has been demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty-eight percent.

  8. Theoretical and experimental power from large horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Janetzke, D. C.

    1982-01-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  9. Double-multiple streamtube model for studying vertical-axis wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor. 32 references.

  10. Double-multiple streamtube model for studying vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Ion

    1988-08-01

    This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.

  11. Comparison of measured and calculated sound pressure levels around a large horizontal axis wind turbine generator

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Willshire, William L., Jr.; Hubbard, Harvey H.

    1989-01-01

    Results are reported from a large number of simultaneous acoustic measurements around a large horizontal axis downwind configuration wind turbine generator. In addition, comparisons are made between measurements and calculations of both the discrete frequency rotational harmonics and the broad band noise components. Sound pressure time histories and noise radiation patterns as well as narrow band and broadband noise spectra are presented for a range of operating conditions. The data are useful for purposes of environmental impact assessment.

  12. On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Cosse, Julia Theresa

    Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

  13. Large eddy simulations of vertical axis wind turbines to optimize farm design

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie

    2013-11-01

    Wind energy production, and research have expanded considerably in the past decade. These efforts aim to reduce dependence on fossil fuels and the greenhouse gas emissions associated with current modes of energy production. However, with expanding wind farms, the land areas occupied by such farms become a limitation. Recently, interest in vertical axis wind turbines (VAWTs) has increased due to key advantages of this technology: compared to horizontal axis turbines, VAWTs can be built with larger scales, their performance is not sensitive to wind direction, and the ability to place their generators at the bottom of the mast can make them more stable offshore. In this study, we focus on how the Aspheric Boundary Layer (ABL) will react to the presence of large VAWT farms. We present a state-of-art representation of VAWTs using an actuator line model in a Large Eddy Simulations code for the ABL. Validations are made against several experimental datasets, which include flow details and power coefficient curves, the wake of an individual turbine is visualized and analyzed, and the interaction of adjacent turbines is investigated in view of optimizing their interactions and the configuration of VAWT farms.

  14. Kinetic Energy Transport in a Vertical-Axis Wind Turbine Array

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2013-11-01

    We present experimental results from a full scale array of vertical-axis wind turbines (VAWTs) under natural wind conditions. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield detailed insight into the turbine wakes and the recovery of the flow velocity behind the turbines. Quadrant hole analysis is employed to gain a better understanding of the energy transport at the top and the bottom of the VAWT array. The results are compared to the flow in horizontal-axis wind farms as well as urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric boundary layer to a canopy flow. The authors gratefully acknowledge funding from the Gordon and Betty Moore Foundation through Grant 2645, the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Office of Naval Research (Grant No. N000141211047).

  15. Unsteady loading of a vertical-axis turbine in the interaction with an upstream deflector

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2014-01-01

    Torque generation and flow distribution of a lift-based vertical-axis turbine with an upstream deflecting plate are investigated in water tunnel experiments. The deployment of a deflector in front of a lift-based turbine is a promising approach to increase local flow velocity and enhance energy conversion efficiency without consideration for complicated control. For the turbine with the deflector, the phase during which the blade passes near the front end of the turbine has a major contribution to torque increase from the case without the deflector. Meanwhile, the deflector can have a negative effect in torque generation at the phase when the blade moves upstream against free stream if the turbine is placed close to the deflector in a crosswise direction. The change of nearby flow distribution by the deflector is also examined to find its correlation with torque generation. When the blade rotates through the near-wake region of the deflector, the blade can collides with the vortical structure shed from the deflector. This interaction causes significant torque fluctuation.

  16. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Viterna, L. A.

    1982-01-01

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  17. Free yaw performance of the Mod-0 large horizontal axis 100 kW wind turbine

    NASA Astrophysics Data System (ADS)

    Corrigan, R. D.; Viterna, L. A.

    The NASA Mod-0 Large Horizontal Axis 100 kW Wind Turbine was operated in free yaw with an unconed teetered, downwind rotor mounted on a nacelle having 8-1/2 deg tilt. Two series of tests were run, the first series with 19 meter twisted aluminum blades and the second series with 19 meter untwisted steel spar blades with tip control. Rotor speed were nominally 20, 26 and 31 rpm. It was found the nacelle stabilized in free yaw at a yaw angle of between -55 deg to -45 deg was relatively independent of wind speed and was well damped to short term variations in wind direction. Power output of the wind turbine in free yaw, aligned at a large yaw angle, was considerably less than that if the wind turbine were aligned with the wind. For the Mod-0 wind turbine at 26 rpm, the MOSTAB computer code calculations of the free yaw alignment angle and power output compare reasonably well with experimental data. MOSTAB calculations indicate that elimination of tilt and adding coning will improve wind turbine alignment with the wind and that wind shear has a slight detrimental effect on the free yaw alignment angle.

  18. A Study on the Matching between the Straight Wing Non-articulated Vertical Axis Wind Turbine and the New Wind Turbine Generator

    NASA Astrophysics Data System (ADS)

    Siota, Takasi; Isaka, Tsutomu; Sano, Takashi; Seki, Kazuichi

    In the current wind turbine generation system, there are substantial problems such as the maximum power of the wind turbine cannot be obtained under the fluctuating wind speed, high in cost and low in annual net electricity production (due to mismatch between a generator and a wind turbine). A new wind turbine generator optimized for the wind turbine output is presented in order to solve such problems. This wind turbine generator consists of a permanent magnet generator, a reactor and a rectifier, and uses neither a control circuit which requires standby electricity nor a PWM converter having a switching element. By selecting most appropriate combination of the permanent magnet generator having multiple windings and the reactor connected in series with each winding, the maximum output of the wind turbine can be obtained without using a control circuit. The new wind turbine generator was directly coupled with the straight wing non-articulated vertical axis wind turbine (SW-VAWT), and matching of the generator with the wind turbine was examined through field tests. From the test result and review, it has been confirmed that the new wind turbine generator is highly matched with the wind turbine under the fluctuating wind speed.

  19. Numerical investigations of passive flow control elements for vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Dumitrache, Alexandru; Suatean, Bogdan

    2014-12-01

    In this paper we numerically investigate the possibilities to control the dynamic stall phenomenon, with application to vertical axis wind turbines. The dynamic stall appears at low tip speed ratio (TSR<4) and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a CFD 2D analysis of the dynamic stall phenomenon around NACA 0012 airfoil equipped with a passive flow control device, in pitching motion at relative low Reynolds number (˜105). Three passive flow control devices are numerically investigated: a turbulence promoter mounted on the leading edge, a thin channel and a step on the upper surface of the airfoil. For the present studies, the unsteady Reynolds averaged Navier-Stokes (RANS) model is the suitable approach to perform the dynamic stall simulations with an acceptable computational cost and reasonable accuracy. The results are compared to those of an existing experimental case test for unmodified NACA 0012 airfoil. The capability of this device was investigated numerically on a vertical axis wind turbine (2D model), where blades are generated with NACA 0018 airfoil.

  20. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  1. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  2. The horizontal planar structure of kinetic energy in a model vertical-axis wind turbine array

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Zeller, Robert; Zarama, Francisco; Weitzman, Joel; Dabiri, John; Koseff, Jeffrey

    2013-11-01

    Recent studies have indicated that arrays of vertical axis wind turbines (VAWTs) could potentially harvest significantly more power per unit land area than arrays composed of conventional horizontal axis wind turbines. However, to design VAWT arrays for optimal power conversion, a more comprehensive understanding of inter-turbine energy transfer is needed. In the presented study, a geometrically scaled array of rotating circular cylinders is used to model a VAWT array. The horizontal inter-cylinder mean fluid velocities and Reynolds stresses are measured on several cross-sections using 2D particle image velocimetry in a flume. Two orientations of the array relative to the incoming flow are tested. The results indicate that cylinder rotation drives asymmetric mean flow patterns within and above the array, resulting in non-uniform distributions of turbulent kinetic energy. The variability is observed to be directly related to the ratio of the cylinder rotation speed to the streamwise water velocity. Emphasis is placed on the implications of the asymmetries for power production. Work supported by a Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the Environmental Fluid Mechanics Laboratory, Stanford University.

  3. Evaluation of drag forcing models for vertical axis wind turbine farms

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Moin, Parviz; Dabiri, John

    2013-11-01

    Vertical axis wind turbines (VAWTs) have the potential to produce more power per unit area than horizontal axis wind turbines (HAWTs) in a wind farm setting (Kinzel et al. J. Turb. [2012]), but further understanding of the flow physics is required to design such farms. In this study we will model a large wind farm of VAWTs as an array of 100 circular cylinders which will allow a comparison with a laboratory experiment (Craig et al. DFD 2013). The geometric complexity and high Reynolds numbers necessitate phenomenological modeling of the interaction of the turbine with the fluid, which is done through point drag models similar to those found in canopy flow simulations (e.g. Dupont et al. J. Fluid Mech. [2010]). We will present a detailed study of the point drag model performance for flow over one cylinder, providing an evaluation of the model's fidelity as it relates to quantities of interest for the VAWT farm. Next we will present results for flow through the cylinder array, emphasizing validation of the model and insight into VAWT wind farm dynamics. We will also discuss the effect of wall modeling on the calculations, as the Reynolds number of the problem requires the application of wall modeling of the turbulent boundary layer above the ground to keep the cost manageable. Brian Pierce acknowledges support from the Stanford Graduate Fellowship.

  4. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  5. Improved double-multiple streamtube model for the Darrieus-type vertical-axis wind turbine

    SciTech Connect

    Berg, D.E.

    1983-01-01

    Double streamtube codes model the curved blade (Darrieus-type) vertical-axis wind turbine (VAWT) as a double actuator-disk arrangement (one disk for the upwind half of the rotor and a second disk for the downwind half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. These models differentiate between the upwind and downwind sections of the rotor and are capable of determining blade loading more accurately than the widely-used single-actuator-disk streamtube models. Additional accuracy may be obtained by representing the turbine as a collection of several streamtubes, each of which is modeled as a double actuator disk. This is referred to as the double-multiple-streamtube model. Sandia National Laboratories has developed a double-multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. This paper presents the theory underlying this VAWT model and describes the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double-multiple-streamtube and a vortex-filament code. The effects of neglecting dynamic stall and horizontal wind-velocity distribution are also illustrated.

  6. Performance Optimization and Analysis of Variable-Pitch Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Rempfer, Dietmar; Kozak, Peter

    2013-11-01

    The blades of conventional vertical-axis wind turbines (VAWT) operate in a complex unsteady environment, characterized by periodically changing relative flow velocity and angle of attack, accentuated by passage through the wake of preceding blades. For many operating regimes, in particular for operation at low tip-speed ratio which is of interest in order to reduce mechanical loads, the blades experience dynamic stall, reducing overall efficiency and leading to significant torque fluctuations. Periodic pitch variation of the turbine blades may therefore be considered in order to avoid stall and increase efficiency. In this presentation we will discuss gains in operating characteristics and efficiency that can be obtained by such a strategy. We will describe a full optimization of turbine efficiency based on double-multiple streamtube models. In addition, we will compare these results, and discuss the physics of the associated flows using data obtained from two-dimensional Navier-Stokes simulations of such turbines. It will be shown that, while peak efficiency of a variable-pitch VAWT is only moderately higher than the one of a conventional fixed-pitch VAWT, we can achieve a much broader maximum, leading to significantly improved performance in practical use.

  7. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.

    PubMed

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  8. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis

    PubMed Central

    Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina

    2015-01-01

    Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524

  9. Prediction of broadband noise from large horizontal axis wind turbine generators

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1984-01-01

    A method is presented for predicting the broadband noise spectra of large horizontal axis wind turbine generators. It includes contributions from such noise sources as the inflow turbulence to the rotor, the interactions between the turbulent boundary layers on the blade surfaces with their trailing edges and the wake due to a blunt trailing edge. The method is partly empirical and is based on acoustic measurements of large wind turbines and airfoil models. The predicted frequency spectra are compared with measured data from several machines including the MOD-OA, the MOD-2, the WTS-4 and the U.S. Wind-power Inc. machine. Also included is a broadband noise prediction for the proposed MOD-5B. The significance of the effects of machine size, power output, trailing edge bluntness and distance to the receiver is illustrated. Good agreement is obtained between the predicted and measured far field noise spectra.

  10. Efficiency and flow structure of vertical-axis turbines with an upstream deflecting plate

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2012-11-01

    The power generation and flow structure of straight-bladed vertical-axis turbines with an upstream deflector are investigated experimentally in tunnel facilities. When an upstream deflecting plate is normal to flow direction, a region of low velocity is formed in its near-wake. However, the flow speed outside the near-wake region becomes higher than the free-stream speed. Since blades outside the wake encounter higher flow velocity, they can rotate with higher torque and rotating speed compared to the case without an upstream deflector, which results in power output increase. Here, we study the effect of deflector position and width on the efficiency of vertical turbines. We also discuss the flow structure generated by the deflector system. This research is supported by the Gordon and Betty Moore foundation.

  11. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    SciTech Connect

    Klimas, P.C.; Sladky, J.F. Jr.

    1985-01-01

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  12. A numerical investigation of the stall-delay phenomenon for horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Frunzulica, Florin; Mahu, Razvan; Dumitrescu, Horia

    2012-11-01

    The flow characteristics and stall delay phenomenon of a stall regulated wind turbine rotor due to blade rotation in steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out the separate flow cases at high wind speeds from 11 m/s to 25 m/s with an interval of 2 m/s. The objective of the present research effort is to validate a first-principles based approach for modeling horizontal axis wind turbines (HAWT) under stalled flow conditions using NREL/ Phase VI rotor data. The computational results are compared with the experimental data and predicted values derived by a new stall-delay model.

  13. Design and wind tunnel experimentation of a variable blade drag type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Mays, Samuel; Bahr, Behnam

    2012-04-01

    The primary purpose of this research effort is to propose a novel efficiency boosting design feature in a drag type vertical axis wind turbine (VAWT), explore practicality through design and fabrication, and test the viability of the design through wind tunnel experiments. Using adaptive control surface design and an improved blade shape can be very useful in harnessing the wind's energy in low wind speed areas. The new design is based on a series of smaller blade elements to make any shape, which changes to reduce a negative resistance as it rotates and thus maximizing the useful torque. As such, these blades were designed into a modified Savonius wind turbine with the goal of improving upon the power coefficient produced by a more conventional design. The experiment yielded some positive observations with regard to starting characteristics. Torque and angular velocity data was recorded for both the conventional configuration and the newly built configuration and the torque and power coefficient results were compared.

  14. Noise and vibration measurements of 50 kW Vertical Axis Wind Turbine gear box

    NASA Astrophysics Data System (ADS)

    Krishnappa, G.

    1984-02-01

    An analysis of noise and vibration measurements was carried out for the gear box and the power house panels of the 50 kW Vertical Axis Wind Turbine (V.A.W.T.) operating at Christopher Point on Vancouver Island, B.C. The spectra of noise and vibration signals show strong peaks at the gear mesh frequency and its harmonics even under light load conditions. The sound power radiated from the power house panels is significantly higher than that radiated by the gear box casing. The analysis also indicates misalignment of the pinion shaft or eccentricity of the pinion and errors in the gear tooth profiles.

  15. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.; Stephenson, William A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.

  16. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    SciTech Connect

    Sutherland, H.J.; Stephenson, W.A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed. 16 refs., 8 figs., 7 tabs.

  17. Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry

    SciTech Connect

    Johnston, S.F. Jr.

    1980-08-01

    The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

  18. The Influence of Rotor Configurations on the Energy Production in an Array of Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2012-11-01

    We analyze the flow field within an array of 18 vertical-axis wind turbines (VAWTs) at full-scale and under natural wind conditions. The emphasis is on the energy flux into the turbine array and the energy extraction by the turbines. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield a detailed insight into the turbine wakes and the recovery of the flow. A high planform kinetic energy flux is detected, which enables the flow velocities to return to 95% of the upwind value within six rotor diameters downwind from a turbine row. This is significantly faster than the recovery behind a typical horizontal-axis wind turbine (HAWT). The Presentation will compare the results for different rotor configurations. Conclusions will be drawn about the influence of these configurations on the power production of the individual turbines as well as the turbine array as a whole. The authors gratefully acknowledge funding from the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Gordon and Betty Moore Foundation.

  19. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    SciTech Connect

    Miller, M.S.; Shipley, D.E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  20. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Miller, M. S.; Shipley, D. E.

    1994-08-01

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  1. Stability of large horizontal-axis axisymmetric wind turbines. Ph.D. Thesis - Delaware Univ.

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.; Young, M. I.

    1980-01-01

    The stability of large horizontal axis, axi-symmetric, power producing wind turbines was examined. The analytical model used included the dynamic coupling of the rotor, tower and power generating system. The aerodynamic loading was derived from blade element theory. Each rotor blade was permitted tow principal elastic bending degrees of freedom, one degree of freedom in torsion and controlled pitch as a rigid body. The rotor hub was mounted in a rigid nacelle which may yaw freely or in a controlled manner. The tower can bend in two principal directions and may twist. Also, the rotor speed can vary and may induce perturbation reactions within the power generating equipment. Stability was determined by the eigenvalues of a set of linearized constant coefficient differential equations. All results presented are based on a 3 bladed, 300 ft. diameter, 2.5 megawatt wind turbine. Some of the parameters varied were; wind speed, rotor speed structural stiffness and damping, the effective stiffness and damping of the power generating system and the principal bending directions of the rotor blades. Unstable or weakly stable behavior can be caused by aerodynamic forces due to motion of the rotor blades and tower in the plane of rotation or by mechanical coupling between the rotor system and the tower.

  2. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  3. Development of passive-controlled HUB (teetered brake & damper mechanism) of horizontal axis wind turbine

    SciTech Connect

    Shimizu, Yukimaru; Kamada, Yasunari; Maeda, Takao

    1997-12-31

    For the purpose of the improvement of reliability of the Mega-Watt wind turbine, this paper indicates the development of an original mechanism for the passive-controlled hub, which has the effects of braking and damping on aerodynamic forces. This mechanism is useful for variable speed control of the large wind turbine. The passive-controlled hub is the combination of two mechanisms. One is the passive-teetered and damping mechanism, and the other is the passive-variable-pitch mechanism. These mechanism are carried out by the combination of the teetering and feathering motions. When the wind speed exceeds the rated wind speed, the blade is passively teetered in a downwind direction and, simultaneously, a feathering mechanism, which is linked to the teetering mechanism through a connecting rods, is activated. Testing of the model horizontal axis wind turbine in a wind tunnel showed that the passive-controlled hub mechanism can suppress the over-rotational speed of the rotor. By the application of the passive-controlled hub mechanism, the maximum rotor speed is reduced to about 60%.

  4. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  5. Kalman filter based data fusion for neutral axis tracking in wind turbine towers

    NASA Astrophysics Data System (ADS)

    Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.

    2015-03-01

    Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.

  6. Analysis of aerodynamic load on straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Kawabata, Toshiaki; Furukawa, Kazuma

    2014-08-01

    This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine (VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil (NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.

  7. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  8. Development and testing of vortex generators for small horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.

    1986-01-01

    Vortex generators (VGs) for a small (32 ft diameter) horizontal axis wind turbine, the Carter Model 25, have been developed and tested. Arrays of VGs in a counterrotating arrangement were tested on the inbound half-span, outboard half-span, and on the entire blade. VG pairs had their centerlines spaced at a distance of 15% of blade chord, with a spanwise width of 10% of blade chord. Each VG had a length/height ratio of 4, with a height of between 0.5% and 1.0% of the blade chord. Tests were made with roughness strips to determine whether VGs alleviated the sensitivity of some turbines to an accumulation of bugs and dirt on the leading edge. Field test data showed that VGs increased power output up to 20% at wind speeds above 10 m/s with only a small (less than 4%) performance penalty at lower speeds. The VGs on the outboard span of the blade were more effective than those on inner sections. For the case of full span coverage, the energy yearly output increased almost 6% at a site with a mean wind speed of 16 mph. The VGs did reduce the performance loss caused by leading edge roughness. An increase in blade pitch angle has an effect on the power curve similar to the addition of VGs. VGs alleviate the sensitivity of wind turbine rotors to leading edge roughness caused by bugs and drift.

  9. Transition to bluff body dynamics in the wake of vertical axis turbines

    NASA Astrophysics Data System (ADS)

    Araya, Daniel; Dabiri, John

    2015-11-01

    A unifying characteristic among bluff bodies is a similar wake structure independent of the shape of the body. We present experimental data to demonstrate that the wake of a vertical axis wind/water turbine (VAWT) shares similar features to that of a bluff body, namely a circular cylinder. For a fixed Reynolds number (Re ~ 104) and variable tip-speed ratio, 2D particle image velocimetry (PIV) is used to measure the velocity field in the wake of three different laboratory-scale turbines: a 2-bladed, 3-bladed, and 5-bladed VAWT, each with similar geometry. From the PIV measurements, the time-averaged and dynamic characteristics of the wake are evaluated. In all cases, we observe three distinct regions in the VAWT wake: (1) the near wake, where periodic blade shedding dominates; (2) a transition region, where blade vortices decay and growth of a shear layer instability occurs; (3) the far wake, where bluff body wake oscillations dominate. We further characterize this wake transition with regard to turbine solidity and examine its relation to the mean flow, an important metric for power production within a wind farm.

  10. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  11. Numerical investigation of the aerodynamic performance for the newly designed cavity vane type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Suffer, K. H.; Usubamatov, R.; Quadir, G. A.; Ismail, K. A.

    2015-05-01

    Research and development activities in the field of renewable energy, especially wind and solar, have been considerably increased, due to the worldwide energy crisis and high global emission. However, the available technical designs are not yet adequate to develop a reliable distributed wind energy converter for low wind speed conditions. The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. The power generated by vertical axis wind turbines is strongly dependent on the aerodynamic performance of the turbines. The main goal of this current research is to investigate numerically the aerodynamic performance of a newly designed cavity type vertical axis wind turbine. In the current new design the power generated depends on the drag force generated by the individual blades and interactions between them in a rotating configuration. For numerical investigation, commercially available computational fluid dynamic (CFD) software GAMBIT and FLUENT were used. In this numerical analysis the Shear Stress Transport (SST) k-ω turbulence model is used which is better than the other turbulence models available as suggested by some researchers. The computed results show good agreement with published experimental results.

  12. Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation

    NASA Astrophysics Data System (ADS)

    Grant, I.; Parkin, P.; Wang, X.

    Experimental studies have been conducted on a 0.9 m diameter, horizontal axis wind turbine (HAWT) placed in the open jet of a closed return wind tunnel. The turbine was tested in a three blade and a two blade configuration. The power coefficient of the turbine was measured and wake flow studies conducted for a range of yawed flows by tilting the rotor plane at various angles up to 30° to the incident wind direction. The motion of the shed vorticity was followed using laser-sheet flow visualisation with the overall wake deflection being measured. The results were compared with theoretical predictions and with studies conducted elsewhere.

  13. Field investigation of a wake structure downwind of a VAWT (vertical-axis wind turbine) in a wind farm array

    SciTech Connect

    Liu, H.T.; Buck, J.W.; Germain, A.C.; Hinchee, M.E.; Solt, T.S.; LeRoy, G.M.; Srnsky, R.A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management. 17 refs., 66 figs., 6 tabs.

  14. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  15. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  16. Customized airfoils and their impact on VAWT (Vertical-Axis Wind Turbine) cost of energy

    SciTech Connect

    Berg, D.E.

    1990-01-01

    Sandia National Laboratories has developed a family of airfoils specifically designed for use in the equatorial portion of a Vertical-Axis Wind Turbine (VAWT) blade. An airfoil of that family has been incorporated into the rotor blades of the DOE/Sandia 34-m diameter VAWT Test Bed. The airfoil and rotor design process is reviewed. Comparisons with data recently acquired from flow visualization tests and from the DOE/Sandia 34-m diameter VAWT Test Bed illustrate the success that was achieved in the design. The economic optimization model used in the design is described and used to evaluate the effect of modifications to the current Test Bed blade. 1 tab., 11 figs., 13 refs.

  17. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Li, C.

    2013-12-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT.

  18. The status of the vertical axis wind turbine research test bed

    SciTech Connect

    Dodd, H.M. Jr.

    1987-01-01

    The Sandia National Laboratories has designed, procured, and is presently erecting in Bushland, Texas, a Vertical Axis Wind Turbine (VAWT) research Test Bed in order to develop and demonstrate the improved technologies necessary for the next generation of commercial VAWTs. Of particular interest are the significant improvements predicted by analytical models in the areas of aerodynamic performance, structural dynamics, fatigue life and control strategies. The Test Bed is specifically designed to be a modular research tool rather than a commercial prototype unit; however, the research seeks to directly impact the cost of energy through increased energy capture, more efficient structures (i.e., lower initial cost), increased component lifetimes and improved operating procedures. As is befitting research hardware, the Test Bed is heavily instrumented in order to precisely define its performance and to accurately record the impact of various hardware and operational changes.

  19. Initial structural response measurements for the Sandia 34-meter VAWT (vertical axis wind turbine) Test Bed

    SciTech Connect

    Ashwill, T.D.

    1988-01-01

    Sandia National Laboratories (SNL) has designed and constructed a 34-meter diameter vertical axis wind turbine (VAWT) Test Bed. The machine will be used to advance research in aerodynamics and structural dynamics, improve fatigue life prediction capabilities, and investigate control algorithms and systems concepts. The Test Bed has extensive instrumentation including 70 strain gauges to measure blade and tower response. Immediately after the blades were mounted, blade gravity stresses were measured and a modal analysis on the stationary rotor was performed to determine zero rpm modal frequencies. Assembly and start-up tests have been completed, and testing is in the machine characterization phase. Resonance surveys are underway to fully characterize the modal frequencies and mode shapes of the rotor, drive train and support cables. Measured gravity stresses, centrifugal stresses, and modal frequencies are compared to predicted values. 11 refs., 12 figs., 1 tab.

  20. The LIFE computer code: Fatigue life prediction for vertical axis wind turbine components

    SciTech Connect

    Sutherland, H.J.; Ashwill, T.D.; Slack, N.

    1987-08-01

    The LIFE computer code was originally written by Veers to analyze the fatigue life of a vertical axis wind turbine (VAWT) blade. The basic assumptions built into this analysis tool are: the fatigue life of a blade component is independent of the mean stress; the frequency distribution of the vibratory stresses may be described adequately by a Rayleigh probability density function; and damage accumulates linearly (Miner's Rule). Further, the yearly distribution of wind is assumed to follow a Rayleigh distribution. The original program has been updated to run in an interactive mode on a personal computer with a BASIC interpreter and 256K RAM. Additional capabilities included in this update include: the generalization of the Rayleigh function for the wind speed distribution to a Weibull function; the addition of two constitutive rules for the evaluation of the effects of mean stress on fatigue life; interactive data input; and the inclusion of a stress concentration factor into the analysis.

  1. Aeroelastic effects in the structural dynamic analysis of vertical axis wind turbines

    SciTech Connect

    Lobitz, D.W.; Ashwill, T.D.

    1985-01-01

    Aeroelastic effects impact the structural dynamic behavior of vertical axis wind turbines (VAWTs) in two major ways. First the stability phenomena of flutter and divergence are direct results of the aeroelasticity of the structure. Secondly, aerodynamic damping can be important for predicting response levels particularly near resonance but also for off resonance conditions. The inclusion of the aeroelasticity is carried out by modifying the damping and stiffness matrices in the NASTRAN finite element code. Through the use of a specially designed preprocessor which reads the usual NASTRAN input deck and adds appropriate cards to it the incorporation of the aeroelastic effects has been made relatively transparent to the user NASTRAN flutter predictions are validated using field measurements and the effect of aerodynamic damping is demonstrated through an application to the Test Bed VAWT being designed at Sandia.

  2. Visualization study on the static flow field around a straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tagawa, Kotaro

    2010-03-01

    Visual experiments based on the smoke wire way were carried out on a small model of Straight-blade Vertical Axis Wind Turbine (SB-VAWT) to invest the relationship between the static flow field characteristics and the rotor azimuth angle. The test rotor had 3 blades with NACA0018 aerofoil. The rotor diameter and blade chord were 0.3m and 0.07m, respectively. Visual photos of the static flow path lines in and around the rotor were obtained at every 5 degrees of the azimuth angle. Further, numerical computations of the static flow filed were also carried out for comparison with the same situation as the visual tests and the static torques at different azimuth angles were calculated. According to the results of visual tests and computations, the dependence of the starting performance on the azimuth angle was discussed. The solidity is an important factor affecting the starting performance of the SB-VAWT.

  3. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  4. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    NASA Astrophysics Data System (ADS)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  5. Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    SciTech Connect

    Sullivan, W.N.

    1982-01-01

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major strucural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  6. Aeroelastic effects in the structural dynamic analysis of vertical axis wind turbines

    SciTech Connect

    Lobitz, D.W.; Ashwill, T.D.

    1986-04-01

    Aeroelastic effects impact the structural dynamic behavior of vertical axis wind turbines (VAWRs) in two major ways. First, the stability phenomena of flutter and divergence are direct results of the aeroelasticity of the structure. Secondly, aerodynamic damping can be important for predicting response levels, particularly near resonance, but also for off-resonance conditions. The inclusion of the aeroelasticity is carried out by modifying the damping and stiffness matrices in the NASTRAN finite element code. Through the use of a specially designed preprocessor, which reads the usual NASTRAN input deck and adds appropriate cards to it, the incorporation of the aeroelastic effects has been made relatively transparent to the user. NASTRAN flutter predictions are validated using field measurements and the effect of aerodynamic damping is demonstrated through an application to the Test Bed VAWT being designed at Sandia.

  7. VAWT (Vertical-Axis Wind Turbine) stochastic loads produced by atmospheric turbulence

    SciTech Connect

    Homicz, G.F.

    1987-01-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This paper discusses the development of a model for the simulation of these stochastic loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Streamtube analysis is employed, which includes the effects of wind shear. Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. Calculations are presented for the VAWT 34-m Test Bed currently being assembled at Bushland, Texas. Time histories of the loads, as well as their Fourier spectra, are presented and discussed. An unexpected finding is that the average output power is predicted to be more sensitive to turbulence level than had previously been thought. 24 refs., 11 figs.

  8. Visualization study on the static flow field around a straight-bladed vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tagawa, Kotaro

    2009-12-01

    Visual experiments based on the smoke wire way were carried out on a small model of Straight-blade Vertical Axis Wind Turbine (SB-VAWT) to invest the relationship between the static flow field characteristics and the rotor azimuth angle. The test rotor had 3 blades with NACA0018 aerofoil. The rotor diameter and blade chord were 0.3m and 0.07m, respectively. Visual photos of the static flow path lines in and around the rotor were obtained at every 5 degrees of the azimuth angle. Further, numerical computations of the static flow filed were also carried out for comparison with the same situation as the visual tests and the static torques at different azimuth angles were calculated. According to the results of visual tests and computations, the dependence of the starting performance on the azimuth angle was discussed. The solidity is an important factor affecting the starting performance of the SB-VAWT.

  9. Strain gauge validation experiments for the Sandia 34-meter VAWT (vertical axis wind turbine) Test Bed

    SciTech Connect

    Sutherland, H.J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to ''equivalent'' gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system. 8 refs., 20 figs., 3 tabs.

  10. Structural-dynamic-response characteristics of Darrieus vertical-axis wind turbines

    SciTech Connect

    Sullivan, W.N.

    1981-01-01

    Operational experience at Sandia National Laboratories (SNL) with Darrieus-type vertical axis wind turbines (VAWTs) has indicated that a variety of dynamic issues can affect structural performance of the system. The observation and analysis of structural dynamic responses in the VAWT have been divided among three major aspects of the system; namely rotor vibrations, torsional response of the drive train, and transverse vibrations of the cables. This division is not arbitrary, but is rather because the response of these subsystems can be accurately decoupled from each other in most circumstances. This paper will present only a brief summary of the efforts now underway at SNL in the area of structural dynamics. The emphasis will be on discussing the status of our analytical tools, the quantity and quality of existing experimental confirmation data, and the implications structural dynamic issues have on rotor design.

  11. VAWT (Vertical-Axis Wind Turbines) stochastic loads using a 3-D turbulence simulation

    SciTech Connect

    Homicz, G.F.

    1988-01-01

    The stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence are thought to be a primary cause of premature blade fatigue in Vertical-Axis Wind Turbines (VAWTs). This paper describes a computer program for the prediction of these stochastic loads, based on a full 3-D simulation of the turbulence field. Computed results using this model are compared with the deterministic (periodic) loads which occur in the absence of turbulence, and with the predictions of an earlier model which employed a 1-D simulation of the turbulence. The results show that not only are instantaneous loads significantly influenced by turbulence, but that load distributions averaged over numerous revolutions are affected as well. A particularly interesting finding is that, for the same mean wind speed, the average output power is altered by turbulence. 16 refs., 6 figs., 1 tab.

  12. Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance

    NASA Astrophysics Data System (ADS)

    Yang, C. X.; Li, S. T.

    2013-12-01

    The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia.

  13. VAWT (Vertical-Axis Wind Turbines) stochastic loads using a 3-D turbulence simulation

    NASA Astrophysics Data System (ADS)

    Homicz, Gregory F.

    The stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence are thought to be a primary cause of premature blade fatigue in Vertical-Axis Wind Turbines (VAWTs). This paper describes a computer program for the prediction of these stochastic loads, based on a full 3-D simulation of the turbulence field. Computed results using this model are compared with the deterministic (periodic) loads which occur in the absence of turbulence, and with the predictions of an earlier model which employed a 1-D simulation of the turbulence. The results show that not only are instantaneous loads significantly influenced by turbulence, but that load distributions averaged over numerous revolutions are affected as well. A particularly interesting finding is that, for the same mean wind speed, the average output power is altered by turbulence.

  14. Torque Characteristics Simulation on Small Scale Combined Type Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Feng, Fang; Li, Shengmao; Li, Yan; Xu, Dan

    The straight-bladed vertical axis wind turbine (SB-VAWT) receives more attentions recently for its goodness of simple design, low cost and good maintenance. However, its starting performance is poor. To increase its starting torque, Savonius rotor was combined on the SB-VAWT in this study because Savonius rotor has good starting torque coefficient. Based on the wind tunnel tests data, a small scaled combined type SB-VAWT (CSB-VAWT) which has 50W rated power output was designed. The starting torque coefficient, dynamic torque and power performance were analyzed. Both the starting and dynamic torque performance of the CSB-VAWT have been greatly improved according to the simulation results.

  15. Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Menon, Ashwin; Tran, Steven; Sahni, Onkar

    2013-11-01

    Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.

  16. Vortex shedding from vertical axis wind turbine blades under linear motion

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley

    2014-11-01

    A NACA 0018 airfoil was pitched and surged sinusoidally in in a mean free stream flow at Rec = 100 , 000 to simulate the flow over vertical axis wind turbine (VAWT) blades. Angle of attack variations between α = +/-30° and velocity variation of Umax/-Umin Umean = . 80 at a reduced frequency k =Ωc/2U∞ = . 12 result in strong dynamic stall on the blade. Multiple flow regimes occur during the airfoil motion resulting in vortex shedding over a large range of frequencies. A model of the phase averaged (based on airfoil angle of attack and velocity) flow developed using dynamic mode decomposition highlights the evolution of the leading edge or dynamic stall vortex at the airfoil frequency. Instantaneous results show vortex shedding at frequencies up to 100 times higher than the frequency of the pitch/surge motion and smeared out by the phase averaging process. The implications for forcing on the blade (and associated wind turbine) are described. This research is funded by the Gordon and Betty Moore Foundation through Grant GBMF #2645 to the California Institute of Technology.

  17. Experimental investigation of the leading edge vortex on vertical axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Dunne, Reeve; McKeon, Beverley

    2012-11-01

    A NACA 0018 airfoil is pitched about the leading edge over a large angle of attack range (+/- ~40°) at a chord Reynolds number of 110,000 to simulate the flow over a single blade in a vertical axis wind turbine (VAWT). Particle image velocimetry (PIV) measurements are made to investigate the effects of pitching on leading edge vortex (LEV) development and separation. Time resolved experiments are performed to track vortex formation and convection over the airfoil for sinusoidal pitching motions corresponding to a VAWT trajectory as well as impulsive pitch up and pitch down motions. These results are compared to the wake of steady, post stall, high angle of attack airfoils (α =20° -30°). The characteristics of the leading edge vortex development and subsequent separation from the airfoil are discussed, with a view to characterizing its effect on power generation with VAWTs and future flow control strategies for turbine performance improvement. Funding from the Gordon and Betty Moore Foundation is gratefully acknowledged.

  18. An overview of the DOE/SANDIA/USDA vertical axis wind turbine Test Bed project

    SciTech Connect

    Klimas, P.C.; Dodd, H.M.; Clark, R.N.

    1987-01-01

    Sandia National Laboratories (SNL) is presently erecting its Department of Energy (DOE) funded 34-m diameter vertical axis wind turbine (VAWT) Test Bed on a Department of Agriculture (USDA) site near Amarillo, Texas. This versatile VAWT, rated at 500 kW in a 12.5 m/s (28 mph) wind, has been designed to demonstrate aerodynamic, structural dynamic, and control strategies intended to improve the effectiveness of VAWT systems. The paper addresses all aspects of this major wind energy project. The need for a turbine in this general physical size range, the choice of a modular fabrication scheme, and the reasons for component materials and subsystems are all discussed. The selection of the Bushland, Texas, site and the motivation behind the involvement of the USDA Agricultural Research Service is described. The SNL organization and management plan assembled to design, procure, erect, and operate the Test Bed is detailed. The technical features in the areas of aerodynamics, structures, power systems, control philosophies, instrumentation, data acquisition, and data analysis are highlighted. 1 ref., 5 figs.

  19. Visualization by PIV of dynamic stall on a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, Carlos; van Kuik, Gijs; van Bussel, Gerard; Scarano, Fulvio

    2009-01-01

    The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle θ of the blade’s sections’ angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component.

  20. Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    NASA Astrophysics Data System (ADS)

    Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.

    1980-05-01

    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

  1. Wind Tunnel Investigation of the Near-wake Flow Dynamics of a Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Hashemi-Tari, P.; Siddiqui, K.; Refan, M.; Hangan, H.

    2014-06-01

    Experiments conducted in a large wind tunnel set-up investigate the 3D flow dynamics within the near-wake region of a horizontal axis wind turbine. Particle Image Velocimetry (PIV) measurements quantify the mean and turbulent components of the flow field. Measurements are performed in multiple adjacent horizontal planes in order to cover the area behind the rotor in a large radial interval, at several locations downstream of the rotor. The measurements were phase-locked in order to facilitate the re-construction of the threedimensional flow field. The mean velocity and turbulence characteristics clearly correlate with the near-wake vortex dynamics and in particular with the helical structure of the flow, formed immediately behind the turbine rotor. Due to the tip and root vortices, the mean and turbulent characteristics of the flow are highly dependent on the azimuth angle in regions close to the rotor and close to the blade tip and root. Further from the rotor, the characteristics of the flow become phase independent. This can be attributed to the breakdown of the vortical structure of the flow, resulting from the turbulent diffusion. In general, the highest levels of turbulence are observed in shear layer around the tip of the blades, which decrease rapidly downstream. The shear zone grows in the radial direction as the wake moves axially, resulting in velocity recovery toward the centre of the rotor due to momentum transport.

  2. Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Snyder, M. H.; Calhoun, J. T.

    1980-01-01

    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure.

  3. Development and testing of tip devices for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Gyatt, G. W.; Lissaman, P. B. S.

    1985-01-01

    A theoretical and field experimental program has been carried out to investigate the use of tip devices on horizontal axis wind turbine rotors. The objective was to improve performance by the reduction of tip losses. While power output can always be increased by a simple radial tip extension, such a modification also results in an increased gale load both because of the extra projected area and longer moment arm. Tip devices have the potential to increase power output without such a structural penalty. A vortex lattice computer model was used to optimize three basic tip configuration types for a 25 kW stall limited commercial wind turbine. The types were a change in tip planform, and a single-element and double-element nonplanar tip extension (winglets). A complete data acquisition system was developed which recorded three wind speed components, ambient pressure, temperature, and turbine output. The system operated unattended and could perform real-time processing of the data, displaying the measured power curve as data accumulated in either a bin sort mode or polynomial curve fit. Approximately 270 hr of perormance data were collected over a three-month period. The sampling interval was 2.4 sec; thrus over 400,000 raw data points were logged. Results for each of the three new tip devices, compared with the original tip, showed a small decrease (of the order of 1 kW) in power output over the measured range of wind speeds from cut-in at about 4 m/s to over 20 m/s, well into the stall limiting region. Changes in orientation and angle-of-attack of the winglets were not made. For aircraft wing tip devices, favorable tip shapes have been reported and it is likely that the tip devices tested in this program did not improve rotor performance because they were not optimally adjusted.

  4. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Chougule, Prasad; Nielsen, Søren R. K.

    2014-06-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

  5. Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Ryan, Kevin J.; Coletti, Filippo; Elkins, Christopher J.; Dabiri, John O.; Eaton, John K.

    2016-03-01

    Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

  6. An investigation on the aerodynamic performance of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Vaishnav, Etesh

    Scope and Method of Study. The two dimensional unsteady flow around a vertical axis wind turbine (VAWT) comprising three rotating symmetric airfoils (NACA0018) was studied numerically with the consideration of the near wake. The flow around the wind turbine was simulated using ANSYS FLUENT 12.0.16 at Reynolds number of 106. ICEM CFD was used as a pre-processor to generate hexahedral grid and arbitrary sliding mesh technique was implemented to create a moving mesh. SST k-o turbulence model was employed for the analysis and simulation was set to run at several tip speed ratios ranging from 1 to 5. The variation of the performance coefficient (Cp) as a function of tip speed ratio (lambda) was investigated by plotting a graph between them. A validation was made by comparing CFD results with experimental results. Maximum Cp of 0.34 was obtained at lambda of 3.8. In addition, the effect of the rotor diameter on the VAWT's performance was investigated. In this regard, rotor diameter was halved and the angular velocity was doubled to keep the tip speed ratio constant. Furthermore, the effect of laminar boundary layer separation on Cp of a VAWT was studied by comparing the results of Laminar viscous model and RANS turbulence model. Apart from that, the effect of solidity on Cp was investigated by comparing the Cp obtained from six bladed turbine with the three bladed turbine. Findings and Conclusions. Influence of rotor diameter on the aerodynamic performance of a VAWT was investigated and found that Cp remained almost constant at the same value of lambda ranging from 1 to 5. This was due to the fact that the ratio of the chord length and the rotor radius were kept the same in both cases. For Laminar flow at low Reynolds number, Cp was found to be low due to the presence of leading edge separation bubble and reduced lift-to-drag ratio. Therefore, in order to increase Cp of a VAWT at low Reynolds numbers (e.g. small VAWT), different blade geometry (e.g. cambered) and

  7. Dynamics modeling and periodic control of horizontal-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Stol, Karl Alexander

    2001-07-01

    The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that

  8. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    SciTech Connect

    Berg, D.E.; Klimas, P.C.; Stephenson, W.A. )

    1989-01-01

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed. 12 refs., 10 figs.

  9. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  10. Aerodynamic design and initial performance measurements for the SANDIA 34-metre diameter vertical-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, Dale E.; Klimas, Paul C.; Stephenson, William A.

    The DOE/Sandia 34-m diameter Vertical-Axis Wind turbine (VAWT) utilizes a step-tapered, multiple-airfoil section blade. One of the airfoil sections is a natural laminar flow profile, the SAND 0018/50, designed specifically for use on VAWTs. The turbine has now been fully operational for more than a year, and extensive turbine aerodynamic performance data have been obtained. This paper reviews the design and fabrication of the rotor blade, with emphasis on the SAND 0018/50 airfoil, and compares the performance measurements to date with the performance predictions. Possible sources of the discrepancies between measured and predicted performance are identified, and plans for additional aerodynamic testing on the turbine are briefly discussed.