Science.gov

Sample records for axisymmetric hydrodynamical model

  1. Hydrodynamic analysis of the displacement conditions of formation fluids using an axisymmetric model

    NASA Astrophysics Data System (ADS)

    Chernoshchuk, I. B.

    2008-03-01

    The axisymmetric problem of the displacement of formation fluids by a drilling mud filtrate with filter cake formation is considered. An analysis is made of the distribution and variation of the main parameters of the process: filtrate volume, filter cake thickness, oil saturation, and pressure. The positions of the water-saturation and salt-concentration fronts are determined. The results are compared with the geophysical logging data for straight-hole drilling.

  2. An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.

  3. Magneto-hydrodynamically stable axisymmetric mirrors

    NASA Astrophysics Data System (ADS)

    Ryutov, Dmitri

    2010-11-01

    The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  5. An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2008-01-01

    We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.

  6. OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION

    SciTech Connect

    Van Eerten, Hendrik; Zhang Weiqun; MacFadyen, Andrew

    2010-10-10

    Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.

  7. A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Wang, J. X.

    2007-05-01

    More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric α2-Ω dynamo model is derived to explore the characteristics of the axisymmetric (m = 0) and the first non-axisymmetric (m = 1) modes and to provide a theoretical basis with which to explain the `active longitude', `flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the α2-Ω and the α-Ω models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.

  8. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Long, C. C.; Akkerman, I.; Benson, D. J.; Shashkov, M. J.

    2014-04-01

    A recent Isogeometric Analysis (IGA) formulation of Lagrangian shock hydrodynamics [4] is extended to the 3D axisymmetric case. The Euler equations of compressible hydrodynamics are formulated using the rz-cylindrical coordinates, and are discretized in the weak form using NURBS-based IGA. Artificial shock viscosity and internal energy projection are added to stabilize the formulation. The resulting discretization exhibits good accuracy and robustness properties. It also gives exact symmetry preservation on the appropriately constructed meshes. Several benchmark examples are computed to examine the performance of the proposed formulation.

  9. Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction

    NASA Astrophysics Data System (ADS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-03-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  10. Aeroacoustic power generated by multiple compact axisymmetric cavities: Effect of hydrodynamic interference on the sound production

    NASA Astrophysics Data System (ADS)

    Nakiboǧlu, G.; Hirschberg, A.

    2012-06-01

    Aeroacoustic sound generation due to self-sustained oscillations by a series of compact axisymmetric cavities exposed to a grazing flow is studied both experimentally and numerically. The driving feedback is produced by the velocity fluctuations resulting from a coupling of vortex sheddings at the upstream cavity edges with acoustic standing waves in the coaxial pipe. When the cavities are separated sufficiently from each other, the whistling behavior of the complete system can be determined from the individual contribution of each cavity. When the cavities are placed close to each other there is a strong hydrodynamic interference between the cavities which affects both the peak amplitude attained during whistling and the corresponding Strouhal number. This hydrodynamic interference is captured successfully by the proposed numerical method.

  11. Preferential axisymmetric field growth in kinematic geodynamo models

    NASA Astrophysics Data System (ADS)

    Livermore, Philip W.; Jackson, Andrew

    2004-11-01

    Earth's magnetic field, generated by fluid motion and inductive processes in Earth's core, has a predominantly axisymmetric dipolar component. Yet indefinite self-excitation of purely axisymmetric fields through any dynamo mechanism is specifically disallowed, begging the question of why the geodynamo sustains this dominant axisymmetric component. By considering a number of different fluid flow models modified from existing studies, we show that axisymmetric fields are consistently the most easily regenerated magnetic fields on short timescales, despite the fact that on long timescales they must die away. We argue that this transient field generation may play an important role in generating Earth's magnetic field, especially in the recovery after reversals.

  12. Non-axisymmetric magneto- hydrodynamic equilibrium in the presence of internal magnetic islands and external magnetic perturbation coils

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Austin, M. E.; Classen, I. G. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, J.-K.; Paz-Soldan, C.; Turnbull, A. D.; Yu, L.; the DIII-D Team

    2013-12-01

    Non-axisymmetric equilibria arise in DIII-D discharges that are subjected to magnetic perturbation by 3D magnetic coils. But, 3D shaping of the entire plasma, including the boundary, also occurs in the rotating fluid frame of saturated internal magnetic islands (Tobias et al 2013 Plasma Phys. Control. Fusion 55 095006). This is advantageous since internal islands and kink responses that rotate near the fluid velocity of the plasma are easily diagnosed, while static perturbations in the laboratory frame are not. The helicity of the perturbed shape is the same in both rotational frames of reference, making one mode a diagnostic proxy for the other and allowing internal modes to be used as a source of data for comparison to models typically applied to understanding the effect of static perturbations. Discrepancies with ideal magneto-hydrodynamic equilibrium obtained by the IPEC (Park et al 2007 Phys. Plasmas 14 052110) method brings attention to the treatment of plasma displacements near rational surfaces and their relationship to the accessibility of equilibrium states.

  13. Recent development of hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  14. Study of axisymmetric flow problems by Hele-Shaw models

    NASA Astrophysics Data System (ADS)

    Rao, P. V.; Sachan, J. S.

    1980-05-01

    Hele-Shaw models have been applied for solving two-dimensional, irrotational flow problems such as flow past bodies or radial seepage flow. The gap between the two plates is varied as a cubic parabola in the radial direction. Results are presented for seven axisymmetric models, including a cylindrical body with 60-deg conical head forms, an axisymmetric sluice entrance with a compound elliptical transition and radial flow to a well with a free surface. Pressure distributions were computed and compared with water-tunnel data, wind-tunnel data, finite-differential solutions and exact solutions.

  15. Modeling the Orion nebula as an axisymmetric blister

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    The ionized gas in the Orion nebula is examined by means of axisymmetric modeling that is based on observational data from the ionized, neutral, and molecular regions. Nonsymmetrical features are omitted, radial dependence from the Trapezium is assumed, and azimuthal symmetry in the plane of the sky is used. Stellar properties and abundances of certain elements are described, and these data are used to compare the present axisymmetric-blister model to a previous spherical model. Strong singly-ionized emission that are visible near the Trapezium are found to originate in the ionization-bounded region in the dense Trapezium zone. The model can be more tightly constrained by adding near-IR data on noncentral zones for (Ar II), (AR III), (Ne II), and (S IV). The quadrant with the 'bar' creates an nonsymmetry that influences the observational data, and the model can therefore be improved with the additional data.

  16. Application of the PTT model to axisymmetric free surface flows

    NASA Astrophysics Data System (ADS)

    Merejolli, R.; Paulo, G. S.; Tomé, M. F.

    2013-10-01

    This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.

  17. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  18. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  19. Hydrodynamic model for drying emulsions

    NASA Astrophysics Data System (ADS)

    Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper

    2015-08-01

    We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.

  20. Modeling and simulation of axisymmetric coating growth on nanofibers

    SciTech Connect

    Moore, K.; Clemons, C. B.; Kreider, K. L.; Young, G. W.

    2007-03-15

    This work is a modeling and simulation extension of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level, and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface. This equation was previously derived and solved under a single-valued assumption in a polar geometry to determine the coating morphology as a function of operating conditions. The present work considers the axisymmetric geometry and solves the evolution equation without the single-valued assumption and under less restrictive assumptions on the concentration field than the previous work.

  1. Modeling of non-axisymmetric magnetic perturbations in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Liang, Y.; Qian, J.; Shen, B.; Wan, B.

    2015-04-01

    A numerical model to evaluate the effects of the non-axisymmetric magnetic perturbations on magnetic topology and magnetic field ripple in tokamaks is presented in this paper. It is illustrated by using an example magnetic field perturbation induced by a coil system on the EAST tokamak. The influence of the choice of the coordinates on the spectrum is presented. The amplitude of resonant components of the spectrum are found to be independent of the coordinates system, while that of the non-resonant components are not. A better way to describe the edge topology by using the Chirikov parameter profile is proposed and checked by the numerical Poincaré plot results. The contribution of the magnetic perturbation on local toroidal field ripple can be significant. One approximate method to model the helical ripple on the perturbed flux surface induced by a given non-axisymmetric magnetic field perturbation is presented. All of the spectrum analysis is applicable in case the plasma response is taken into account in the input of perturbed magnetic field.

  2. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  3. Averaged implicit hydrodynamic model of semiflexible filaments.

    PubMed

    Chandran, Preethi L; Mofrad, Mohammad R K

    2010-03-01

    We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783

  4. Axisymmetric curvature-driven instability in a model divertor geometry

    SciTech Connect

    Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 ; Ryutov, D. D.

    2013-09-15

    A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.

  5. Hydrodynamics of bacterial colonies: A model

    NASA Astrophysics Data System (ADS)

    Lega, J.; Passot, T.

    2003-03-01

    We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.

  6. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  7. The quantum hydrodynamic model for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Gardner, Carl L.

    1995-02-01

    Quantum semiconductor devices are playing an increasingly important role in advanced microelectronic applications, including multiple-state logic and memory devices. To model quantum devices, the classical hydrodynamic model for semiconductor devices can be extended to include O(h(2)) quantum corrections. This proposal focused on theoretical and computational investigations of the flow of electrons in semiconductor devices based on the quantum hydrodynamic model. The development of efficient, robots numerical methods for the QHD model in one and two spatial dimensions we also emphasized.

  8. MODELING MID-INFRARED VARIABILITY OF CIRCUMSTELLAR DISKS WITH NON-AXISYMMETRIC STRUCTURE

    SciTech Connect

    Flaherty, K. M.; Muzerolle, J.

    2010-08-20

    Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produces negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.

  9. Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, Mario

    2016-06-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.

  10. Dynamic coupling of three hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.

    2008-12-01

    The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The

  11. Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.

    2004-01-01

    The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.

  12. Modeling Reef Hydrodynamics to Predict Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Bird, James; Steinberg, Craig; Hardy, Tom

    2005-11-01

    The aim of this study is to use environmental physics to predict water temperatures around and within coral reefs. Anomalously warm water is the leading cause for mass coral bleaching; thus a clearer understanding of the oceanographic mechanisms that control reef water temperatures will enable better reef management. In March 1998 a major coral bleaching event occurred at Scott Reef, a 40 km-wide lagoon 300 km off the northwest coast of Australia. Meteorological and coral cover observations were collected before, during, and after the event. In this study, two hydrodynamic models are applied to Scott Reef and validated against oceanographic data collected between March and June 2003. The models are then used to hindcast the reef hydrodynamics that led up to the 1998 bleaching event. Results show a positive correlation between poorly mixed regions and bleaching severity.

  13. Hydrodynamics of penguin wing models

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Cuong Duong, Nhut; Herpich, Jerome

    2010-11-01

    The three-dimensional kinematics of penguin wings were obtained from movie footage in aquariums. A 1:1 scale model of the penguin wing (with an identical planform but with a flat section profile and a rigid configuration) was actuated with a robotic arm in a water channel. The experiments were performed at a chord Reynolds number of about 10^4 (an order of magnitude lower than for the observed penguin). The dynamics of the wing were analyzed with force and flowfield measurements. The two main results are: 1. a net thrust on both the upstroke and downstroke movement; 2. the occurence of a leading edge vortex (LEV) along the wing span. The effects of section profile, wing flexibility, and a higher Reynolds number will be investigated in the future.

  14. Axisymmetric and three dimensional flow modeling within thermal vapor compressors

    NASA Astrophysics Data System (ADS)

    Sharifi, Navid

    2013-10-01

    Thermal vapor compressor (TVC) is a device for compressing vapor in water-steam cycles and frequently used in desalination systems. Large amounts of useless vapor can be compressed by this device and the efficiency of a desalination unit is effectively enhanced through this process. Motive steam is injected into the TVC through a convergent-divergent nozzle and accelerated to supersonic velocities. The low pressure steam is entrained at the upstream zone and mixed with this highly compressible motive flow within the TVC. In the current study, the flow field of an experimental TVC is scrutinized in both axisymmetric and three-dimensional approaches and compared with experimental measurements. Since the steam collector at the suction surface of the TVC has a curved shape and may undermine the symmetry of the flow on either side of the central axis, the second objective of this study is to reveal the deviation of the symmetric assumption from the real non-symmetric condition of entering steam flow into the TVC. Results show that the presence of a bending at the inlet side has approximately negligible effects on the mixing phenomenon and the flow remains symmetric around the central axis. Hence, there is no need to consider the collector geometry in further simulations and the performance parameters of the TVC would be sufficiently obtained through an axisymmetric method with a substantial reduction in the computational cost and time.

  15. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  16. Fokker-Planck model of hydrodynamics.

    PubMed

    Singh, S K; Ansumali, Santosh

    2015-03-01

    We present a phenomenological description of the hydrodynamics in terms of the Fokker-Planck (FP) equation for one-particle distribution function. Similar to the Boltzmann equation or the Bhatnager-Gross-Krook (BGK) model, this approach is thermodynamically consistent and has the H theorem. In this model, transport coefficients as well as the equation of state can be provided independently. This approach can be used as an alternate to BGK-based methods as well as the direct simulation Monte Carlo method for the gaseous flows. PMID:25871242

  17. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.

    2016-08-01

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  18. Generalized hydrodynamics model for strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, A.; Murillo, M. S.

    2015-07-01

    Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.

  19. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  20. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  1. A simple model of axisymmetric turbulent boundary layers along long thin circular cylinders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen A.

    2014-08-01

    Useful empirical and semi-empirical models of the turbulent boundary layer (TBL) and skin friction evolution along planar geometries are not applicable for axisymmetric thin cylinder flows. Their dissimilarity is readily detectable once the TBL thickness exceeds the cylinder radius (a). Although several recent empirically based axisymmetric models recognize this fact, their acceptable fidelity is either restrictive or deficient for general applicability. Herein, we correct this deficit by building a simple model for the specific canonical class of axisymmetric turbulent flows along long thin cylinders with a zero streamwise pressure gradient. Streamwise growth of the TBL thickness (δ/a), integral scales [displacement (δ*/a) and momentum thicknesses (θ/a)] and skin friction coefficient (Cf) can be estimated along the cylinder length via the respective axial mean velocity profile in wall units. This profile is given by Spalding's formula with algebraic expressions for the two input parameters (κ, κβ) that cover all turbulent Reynolds numbers. The necessary database for empirically tuning Spalding's parameters entails both experimental measurements and new numerical computations. Our present-day understanding of the axisymmetric TBL is replicated by the simple model where δ/a, δ*/a, and θ/a grow slower than the planar-type flow with Cf comparatively elevating once δ/a > O(1). These differences manifest themselves in the radial impact imposed by the thin cylinder transverse curvature. Interestingly, the axial-based Reynolds numbers Rea ≈ 7500 and a+ ≈ 350 at δ/a ≈ 21 mark earliest signs of a homogeneous streamwise state (constant Cf) near the cylinder wall. Owning a simple model of axisymmetric turbulent flows along thin cylinders eliminates expensive and timely experiments and/or computations. Its practicality targets both the Naval and oceanographic communities.

  2. Hydrodynamic models of AGN feedback in cooling core clusters

    NASA Astrophysics Data System (ADS)

    Vernaleo, John C.

    X-ray observations show that the Intra Cluster Medium (ICM) in many galaxy clusters is cooling at a rapid rate, often to the point that it should have radiated away all of its energy in less than the age of the cluster. There is however a very clear lack of enough cool end products of this gas in the centers of the clusters. Energetic arguments indicate that Active Galactic Nuclei (AGN) should be capable of heating the inner regions of clusters enough to offset the radiative cooling; truncating massive galaxy formation and solving the cooling flow problem. We present three sets of high resolution, ideal hydrodynamic simulations with the ZEUS code to test this AGN heating paradigm. For the first set of simulations, we study the dependence of the interaction between the AGN jets and the ICM on the parameters of the jets themselves. We present a parameter survey of two-dimensional (axisymmetric) models of back-to-back jets injected into a cluster atmosphere. We follow the passive evolution of the resulting structures. These simulations fall into roughly two classes, cocoon-bounded and non-cocoon bounded. We find that the cocoon-bounded sources inject significantly more entropy into the core regions of the ICM atmosphere, even though the efficiency with which the energy is thermalized is independent of the morphological class. In all cases, a large fraction of the energy injected by the jet ends up as gravitational potential energy due to the expansion of the atmosphere. For the second set, we present three-dimensional simulations of jetted AGN that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low density channel through which the jet can freely flow, carrying its energy out of the cooling core. Finally, we

  3. An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus.

    PubMed

    Wirth, Benedikt; Sobey, Ian

    2006-12-01

    We formulate in general terms the equations for axisymmetric and fully 3D models of a hydrocephalic brain. The model is developed using small strain poroelasticity that includes non-linear permeability. The axisymmetric model is solved for four ventricle shapes, an ellipsoid, a 'peanut' shape, a 'cross' shape and a 'bone' shape. The distribution of fluid pressure, velocity and content in the deformed parenchyma for a blocked aqueduct provides new qualitative insight into hydrocepahlus. Some observations are offered for two forms of cerebrospinal fluid flow abnormality, normal pressure hydrocephalus and idiopathic intracranial hypertension. The model is extended to include a gravitational term in the governing equations and the effect of hydrostatic pressure variation is considered. Results of a fully 3D simulations are described for two horn-like lateral ventricles and one case with two lateral ventricles and a third ventricle. PMID:16740629

  4. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Dimitri Gidaspow

    1996-10-01

    The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.

  5. A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen A.

    2013-07-01

    Only a few engineering design models are presently available that adequately depict the axisymmetric skin friction (Cf) maturity along long thin turbulent cylinders. This deficit rests essentially on the experimental and numerical difficulties of measuring (or computing) the spatial evolution of the thin cylinder turbulence. Consequently, the present axisymmetric Cf models have questionable accuracy. Herein, we attempt to formulate a more robust Cf model that owns acceptable error. The formulation is founded on triple integration of the governing equation system that represents a thin cylinder turbulent boundary layer (TBL) at statistical steady-state in appropriate dimensionless units. The final model requires only the radius-based Reynolds number (Rea) and transverse curvature (δ/a) as input parameters. We tuned the accompanying coefficients empirically via an expanded statistical database (over 60 data points) that house new Cf values from large-eddy simulations (LES). The LES computations employed a turbulence inflow generation procedure that permits spatial resolution of the TBL at low-high Reynolds numbers and transverse curvatures. Compared to the new skin friction database, the Cf model revealed averaged predictive errors under 5% with a 3.5% standard deviation. Apart from owning higher values than the flat plate TBL, the most distinguishing characteristic of the axisymmetric skin friction is its rising levels when the boundary layer thickness exceeds the cylinder radius. All Cf levels diminish with increasing Reynolds number. These unique features differentiate the axisymmetric TBL along thin cylinders as a separate canonical flow when compared to the turbulent wall shear-layers of channels, pipes, and planar-type geometries.

  6. Chemical and Hydrodynamical Models of Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2012-01-01

    Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.

  7. Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Nore, C.; Stefani, F.; Gerbeth, G.; Léorat, J.; Herreman, W.; Luddens, F.; Guermond, J.-L.

    2012-05-01

    Numerical simulations of the kinematic induction equation are performed on a model configuration of the Cadarache von-Kármán-sodium dynamo experiment. The effect of a localized axisymmetric distribution of relative permeability μr that represents soft iron material within the conducting fluid flow is investigated. The critical magnetic Reynolds number Rmc for dynamo action of the first non-axisymmetric mode roughly scales like Rmcμr - Rmc∞∝μ-1/2r, i.e. the threshold decreases as μr increases. This scaling law suggests a skin effect mechanism in the soft iron discs. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high-permeability discs which becomes dominant for large μr. In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this effect by paramagnetic pumping at the fluid/disc interface and propose a simplified model that quantitatively reproduces numerical results. The crucial role of the high-permeability discs in the mode selection in the Cadarache dynamo experiment cannot be inferred from computations using idealized pseudo-vacuum boundary conditions (H × n = 0).

  8. Radiative modelling by the zonal method and WSGG model in inhomogeneous axisymmetric cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Méchi, Rachid; Farhat, Habib; Said, Rachid

    2016-01-01

    Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO2-H2O- N2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces.

  9. An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1992-01-01

    We extend Kennel and Coroniti's (1984) spherical magnetohydrodynamic models for the Crab Nebula to include the pinching effect of the toroidal magnetic field. Since the bulk nebular flow is likely to be very submagnetosonic, a quasi-static treatment is possible. We show that the pinching effect can be responsible for the observed elongation of the pulsar wind bubble, as indicated by the surface brightness contours of optical synchrotron radiation. From the observed elongation we estimate a value for sigma, the ratio of Poynting flux to plasma kinetic energy flux in the free pulsar wind, which is consistent with previous results from spherical models. Using the inferred magnetic field configuration inside the pulsar wind bubble, combined with the observed dimensions of the X-ray nebula, we are able to constrain the particle distribution function. We conclude that, for a power-law injection function, the maximum energy has to be much larger in the pulsar equatorial region than in the polar region.

  10. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  11. Modeling Early Galaxies Using Radiation Hydrodynamics

    SciTech Connect

    2011-01-01

    This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  12. DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS

    SciTech Connect

    Peng, Chien Y.; Ho, Luis C.; Impey, Chris D.; Rix, Hans-Walter E-mail: lho@obs.carnegiescience.ed E-mail: rix@mpia-hd.mpg.d

    2010-06-15

    We present a two-dimensional (2D) fitting algorithm (GALFIT, ver. 3) with new capabilities to study the structural components of galaxies and other astronomical objects in digital images. Our technique improves on previous 2D fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring, and truncated shapes in otherwise traditional parametric functions like the Sersic, Moffat, King, Ferrer, etc., profiles. One can mix and match these new shape features freely, with or without constraints, and apply them to an arbitrary number of model components of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the potential for extreme complexity, the meaning of the key parameters like the Sersic index, effective radius, or luminosity remains intuitive and essentially unchanged. The new features have an interesting potential for use to quantify the degree of asymmetry of galaxies, to quantify low surface brightness tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the uncertainties when decomposing galaxy subcomponents. We illustrate these new features by way of several case studies that display various levels of complexity.

  13. Potential of the Galaxy from the Besançon galaxy model including non-axisymmetric components: Preliminary results

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.

    2014-07-01

    In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.

  14. Axisymmetric model of drop spreading on a horizontal surface

    NASA Astrophysics Data System (ADS)

    Mistry, Aashutosh; Muralidhar, K.

    2015-09-01

    Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.

  15. Kinetic theory model predictions compared with low-thrust axisymmetric nozzle plume data

    NASA Technical Reports Server (NTRS)

    Riley, B. R.; Fuhrman, S. J.; Penko, P. F.

    1993-01-01

    A system of nonlinear integral equations equivalent to the steady-state Krook kinetic equation was used to model the flow from a low-thrust axisymmetric nozzle. The mathematical model was used to numerically calculate the number density, temperature, and velocity of a simple gas as it expands into a near vacuum. With these quantities the gas pressure and flow directions of the gas near the exit plane were calculated and compared with experimental values for a low-thrust nozzle of the same geometry and mass flow rate.

  16. Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.

    2015-01-01

    Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.

  17. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.

    PubMed

    López, I; Borzacconi, L

    2010-05-01

    The hydrodynamic behaviour of UASB (Up Flow Anaerobic Sludge Blanket) reactors based on residence time distribution curves allows the implementation of global models, including the kinetic aspects of biological reactions. The most relevant hydrodynamic models proposed in the literature are discussed and compared with the extended tanks in series (ETIS) model. Although derived from the tanks in series model, the ETIS model's parameter is not an integer. The ETIS model can be easily solved in the Laplace domain and applied to a two-stage anaerobic digestion linear model. Experimental data from a 250 m3 UASB reactor treating malting wastewater are used to calibrate and validate the proposed model. PMID:20540420

  18. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model

    PubMed Central

    Bertram, John M; Yang, Deshan; Converse, Mark C; Webster, John G; Mahvi, David M

    2006-01-01

    Background An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution. PMID:16504153

  19. Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary

    NASA Astrophysics Data System (ADS)

    Haron, N. F.; Tahir, W.

    2016-07-01

    A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.

  20. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  1. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  2. Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models

    NASA Astrophysics Data System (ADS)

    Haddar, Houssem; Jiang, Zixian

    2015-11-01

    Thin copper deposits covering the steam generator tubes can blind eddy current probes in non-destructive testings of problematic faults and it is therefore important that they are identified. Existing methods based on shape reconstruction using eddy current signals encounter difficulties of high numerical costs due to the layer’s small thickness and high conductivity. In this article, we approximate the axisymmetric eddy current problem with some appropriate asymptotic models using effective transmission conditions representing the thin deposits. In these models, the geometrical information related to the deposit is transformed into parameter coefficients on a fictitious interface. A standard iterative inversion algorithm is then applied to the asymptotic models to reconstruct the thickness of the thin copper layers. Numerical tests both validating the asymptotic model and showing the benefits of the inversion procedure are provided.

  3. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    PubMed Central

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  4. Modelling Hydrodynamic Stability in Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Pontes, J.; Mangiavacchi, N.; Rabello dos Anjos, G.; Barcia, O. E.; Mattos, O. R.; Tribollet, B.

    2008-10-01

    We review the key points concerning the linear stability of the classical von Kármán's solution of rotating disk flow, modified by the coupling, through the fluid viscosity, with concentration field of a chemical species. The results were recently published by Mangiavacchi et al. (Phys. Fluids, 19: 114109, 2007) and refer to electrochemical cells employing iron rotating disk electrodes, which dissolve in the 1 M H2SO4 solution of the electrolyte. Polarization curves obtained in such cells present a current instability at the beginning of the region where the current is controlled by the the hydrodynamics. The onset of the instability occurs in a range of potentials applied to the cell and disappear above and below this range. Dissolution of the iron electrode gives rise to a thin concentration boundary layer, with thickness of about 4% of the thickness of the hydrodynamic boundary layer. The concentration boundary layer increases the interfacial fluid viscosity, diminishes the diffusion coefficient and couples both fields, with a net result of affecting the hydrodynamic of the problem. Since the current is proportional to the interfacial concentration gradient of the chemical species responsible by the ions transport, the instability of the coupled fields can lead to the current instability observed in the experimental setups. This work presents the results of the linear stability analysis of the coupled fields and the first results concerning the Direct Numerical Simulation, currently undertaken in our group. The results show that small increases of the interfacial viscosity result in a significant reduction of the stability of modes existing in similar configurations, but with constant viscosity fluids. Upon increasing the interfacial viscosity, a new unstable region emerges, in a range of Reynolds numbers much smaller than the lower limit of the unstable region previously known. Though the growth rate of modes in the previously known region is larger than the

  5. Pattern formation in flocking models: A hydrodynamic description.

    PubMed

    Solon, Alexandre P; Caussin, Jean-Baptiste; Bartolo, Denis; Chaté, Hugues; Tailleur, Julien

    2015-12-01

    We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models. PMID:26764636

  6. Pattern formation in flocking models: A hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Caussin, Jean-Baptiste; Bartolo, Denis; Chaté, Hugues; Tailleur, Julien

    2015-12-01

    We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.

  7. Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model

    NASA Technical Reports Server (NTRS)

    Martin, J. E.; Meiburg, E.

    1996-01-01

    The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.

  8. USER GUIDE FOR THE ENHANCED HYDRODYNAMICAL-NUMERICAL MODEL

    EPA Science Inventory

    This guide provides the documentation required for used of the Enhanced Hydrodynamical-Numerical Model on operational problems. The enhanced model is a multilayer Hansen type model extended to handle near-shore processes by including: Non-linear term extension to facilitate small...

  9. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  10. Conduction Modelling Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul W.; Monaghan, Joseph J.

    1999-01-01

    Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.

  11. Multidimensional hydrodynamic convection in full amplitude RR Lyrae models

    NASA Astrophysics Data System (ADS)

    Deupree, R.; Geroux, C.

    2016-05-01

    Multidimensional (both 2D and 3D) hydrodynamic calculations have been performed to compute full amplitude RR Lyrae models. The multi- dimensional nature allows convection to be treated in a more realistic way than simple 1D formulations such as the local mixing length theory. We focus on some aspects of multidimensional calculations and on the model for treating convection.

  12. Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2015-01-01

    Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.

  13. Modeling and analysis of unsteady axisymmetric squeezing fluid flow through porous medium channel with slip boundary.

    PubMed

    Qayyum, Mubashir; Khan, Hamid; Rahim, M Tariq; Ullah, Inayat

    2015-01-01

    The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbation Method (HPM) and fourth order Explicit Runge Kutta Method (RK4). Convergence of HPM solution is verified by obtaining various order approximate solutions along with absolute residuals. Validity of HPM solution is confirmed by comparing analytical and numerical solutions. Furthermore, the effects of various dimensionless parameters on the longitudinal and normal velocity profiles are studied graphically. PMID:25738864

  14. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbationsa)

    NASA Astrophysics Data System (ADS)

    Turnbull, A. D.; Ferraro, N. M.; Izzo, V. A.; Lazarus, E. A.; Park, J.-K.; Cooper, W. A.; Hirshman, S. P.; Lao, L. L.; Lanctot, M. J.; Lazerson, S.; Liu, Y. Q.; Reiman, A.; Turco, F.

    2013-05-01

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10-3 relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  15. Integrated modeling and parallel computation of laser-induced axisymmetric rod growth

    NASA Astrophysics Data System (ADS)

    Lan, Hong

    2005-07-01

    To fully investigate a pyrolytic Laser-induced chemical vapor deposition (LCVD) system for growing an axisymmetric rod, a novel integrated three-dimensional mathematical model was developed not only to describe the heat transport in the deposit and substrate, but also to simulate the gas-phase in the heated reaction zone and its effect on growth rate. The integrated model consists of three components: the substrate, rod, and gas-phase domains. Each component is a separate model and the three components are dynamically integrated into one model for simulating the iterative and complex process of rod deposition. The gas-phase reaction is modeled by the gas-phase component, an adaptive domain attached on the top part of the rod. Its size and mesh decomposition is dynamically determined by the rod temperature distribution and the chosen threshold. The temperature and molar ratio are predicted and used to adjust the growth rate, by taking into account the diffusion limited growth regime, and to improve the simulation of entire deposition process. The substrate component describes the heat flow into the substrate, and the substrate surface temperature can be used to predict the initial rod growth which may affect the successive growth of the rod. The rod growth process is simulated using a layer-by-layer axisymmetric model. For each layer, the rod grows along the outward normal direction at each point on the rod surface. This simplified model makes the process more predictable and easier to control by specifying the height of the rod and the number of total iterations. Finite difference schemes, iterative numerical methods, and parallel algorithms were developed for solving the model. The numerical computation is stable, convergent, and efficient. The model and numerical methods are implemented sequentially and in parallel using a standard C++ code and Message Passing Interface (MPI). The program can be easily installed and executed on different platforms, such as Unix

  16. Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor

    NASA Astrophysics Data System (ADS)

    Alireza Shirvanian, Pezhman; Calo, Joseph

    2002-08-01

    An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.

  17. The control method for the lattice hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Ge, Hong-Xia; Cui, Yu; Zhu, Ke-Qiang; Cheng, Rong-Jun

    2015-05-01

    The delayed-feedback control method is applied for lattice hydrodynamic model of traffic flow. The linear stability condition with and without control signal are derived through linear and nonlinear analysis. Numerical simulation is carried out and the results confirm that the traffic congested can be suppressed efficiently by considering the control signal.

  18. HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY

    EPA Science Inventory

    This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...

  19. ENHANCED HYDRODYNAMICAL-NUMERICAL MODEL FOR NEAR-SHORE PROCESSES

    EPA Science Inventory

    An optimized version of a multilayer Hansen type Hydrodynamical-Numerical (HN) model is presented and discussed here as the basis for the following experimental extensions and enhancements developed to more appropriately handle near-shore processes: Non-linear term extension to f...

  20. Nested contour-dynamic models for axisymmetric vortex rings and vortex wakes

    NASA Astrophysics Data System (ADS)

    O'Farrell, Clara; Dabiri, John O.

    2013-11-01

    Jetting swimmers, such as squid and jellyfish, propel themselves by forming vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. Previously, the Norbury family of vortices has been used as a model for axisymmetric vortex rings, and the response of this family to shape perturbations has been characterized. We improve upon the Norbury models, using nested patches of vorticity to construct a family of models for vortex rings generated by a piston-cylinder apparatus at different stroke ratios. The perturbation response of this family is considered by the introduction of a small region of vorticity at the rear of the vortex, which mimics the addition of circulation to a growing vortex ring by a feeding shear layer. Model vortex rings are found to either accept the additional circulation or shed it into a tail, depending on the perturbation size. A change in the behavior of the model vortex rings is identified at a stroke ratio of three. We hypothesize that this change in response is analogous to pinch-off, and that pinch-off might be understood and predicted based on the perturbation responses of model vortex rings.

  1. New Equation of State Models for Hydrodynamic Applications

    NASA Astrophysics Data System (ADS)

    Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.

    1997-07-01

    Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.

  2. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  3. Constant-fractional-lag model for axisymmetric two-phase flow

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Chow; Fendell, Francis; Brent, David

    1991-10-01

    The suitability of the constant-fractional-lag model for axisymmetric two-phase flow with small particle loading is examined for an inviscid incompressible counterflow. A counterflow is a low-order approximation for the flow within a solid-rocket motor with a long bore of constant radius. In the model, each component of the particle-phase velocity is expressed as a certain multiple of the corresponding component of the gas-phase velocity. A different lag constant is required for the radial and the axial components of the particle-velocity field. For light particle loading, the constant-fractional-lag model yields mathematically accurate solutions (of the formulation) for both small and finite values of the interphase-velocity-slip parameter. Comparisons with results from the Lagrangian-particle-tracking method show excellent agreement at sites outside the Stokes layer holding in that portion of the two-phase flow immediately contiguous to the gas-grain interface; i.e., the agreement holds independently of the initial particle velocity at the solid-gas interface. The constant-fractional-lag model is easier to apply than the Lagrangian-particle-tracking method, and results are conveniently obtained in Eulerian form.

  4. Google Earth as a tool in 2-D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Chien, Nguyen Quang; Keat Tan, Soon

    2011-01-01

    A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.

  5. One-dimensional XY model: Ergodic properties and hydrodynamic limit

    NASA Astrophysics Data System (ADS)

    Shuhov, A. G.; Suhov, Yu. M.

    1986-11-01

    We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.

  6. Hydrodynamic models of the Cartwheel ring galaxy

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Higdon, James L.

    1993-01-01

    A series of increasingly sophisticated models of the Cartwheel ring galaxy is studied in order to test the collisional model for the galaxy formation and examine the star formation processes in this unique environment, using new data acquired in the last decade. The simulations provided some possible answers to a number of questions about the Cartwheel. First, an explanation for the wide spacing between inner and outer rings is suggested by the simple epicyclic kinematics within the dark matter-dominated potential implied by H I rotation curve. These models and the kinematic model of Struck-Marcell and Lotan (1990) also predict that the outer ring should be relatively weak, while the second inner ring should be stronger, with a dense orbit-crossing region of significant width bounded by sharp, caustic edges. The collisional model is given support by the agreement between the observations and the morphological and kinematic properties of the numerical simulations presented.

  7. Modeling tidal hydrodynamics of San Diego Bay, California

    USGS Publications Warehouse

    Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.

    1998-01-01

    In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in San Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for San Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into San Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.

  8. Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas I.; Powell, Kenneth G.; De Zeeuw, Darren L.

    1994-01-01

    The first results of an axisymmetric magnetohydrodynamic (MHD) model of the interaction of an expanding cometary atmosphere with the solar wind are presented. The model assumes that far upstream the plasma flow lines are parallel to the magnetic field vector. The effects of mass loading and ion-neutral friction are taken into account by the governing equations, whcih are solved on an adaptively refined unstructured grid using a Monotone Upstream Centered Schemes for Conservative Laws (MUSCL)-type numerical technique. The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the near nucleus of the comet. The main findingsare the following: (1) A shock is formed approximately = 0.45 Mkm upstream of the comet (its location is controlled by the sonic and Alfvenic Mach numbers of the ambient solar wind flow and by the cometary mass addition rate). (2) A contact surface is formed approximately = 5,600 km upstream of the nucleus separating an outward expanding cometary ionosphere from the nearly stagnating solar wind flow. The location of the contact surface is controlled by the upstream flow conditions, the mass loading rate and the ion-neutral drag. The contact surface is also the boundary of the diamagnetic cavity. (3) A closed inner shock terminates the supersonic expansion of the cometary ionosphere. This inner shock is closer to the nucleus on dayside than on the nightside.

  9. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-05-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  10. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-09-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  11. Hydrodynamic modeling for river delta salt marshes using lidar topography

    NASA Astrophysics Data System (ADS)

    Hodges, Ben R.

    2014-05-01

    Topographic data from lidar and multi-beam sonar create new challenges for hydrodynamic models of estuaries, tidelands, and river deltas. We now can readily obtain detailed elevation data on 1 m scales and finer, but solving hydrodynamics with model grid cells at these small scales remains computationally prohibitive (primarily because of the small time step required for small grid cells). Practical estuarine models for the next decade or so will likely have grid scales in the range of 5 to 15 m. So how should we handle known subgrid-scale features? Simply throwing out known data does not seem like a good idea, but there is no consensus on how best to incorporate knowledge of subgrid topography into either hydrodynamic or turbulence models. This presentation discusses both the theoretical foundations for modeling subgrid-scale features and the challenges in applying these ideas in the salt marshes of a river delta. The subgrid problem highlights some important areas for field and laboratory research to provide calibration parameters for new models that upscale the effects of known subgrid features.

  12. Hydrodynamic modelling of small upland lakes under strong wind forcing

    NASA Astrophysics Data System (ADS)

    Morales, L.; French, J.; Burningham, H.

    2012-04-01

    Small lakes (Area < 1 km2) represent 46.3% of the total lake surface globally and constitute an important source of water supply. Lakes also provide an important sedimentary archive of environmental and climate changes and ecosystem function. Hydrodynamic controls on the transport and distribution of lake sediments, and also seasonal variations in thermal structure due to solar radiation, precipitation, evaporation and mixing and the complex vertical and horizontal circulation patterns induced by the action of wind are not very well understood. The work presented here analyses hydrodynamic motions present in small upland lakes due to circulation and internal scale waves, and their linkages with the distribution of bottom sediment accumulation in the lake. For purpose, a 3D hydrodynamic is calibrated and implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. The model, based around the FVCOM open source community model code, resolves the Navier-Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small

  13. Assimilation of measurement data in hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Romanowicz, Renata J.

    2016-04-01

    This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.

  14. Radiation Hydrodynamics Modeling of Hohlraum Energetics

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.

    2015-11-01

    Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Hydrodynamic Model for Conductivity in Graphene

    PubMed Central

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277

  16. Modeling of Hydrodynamic Chromatography for Colloid Migration in Fractured Rock

    SciTech Connect

    Li Shihhai; Jen, C.-P

    2001-02-15

    The role of colloids in the migration of radionuclides in the geosphere has been emphasized in the performance assessment of high-level radioactive waste disposal. The literature indicates that the colloid velocity may not be equal to the velocity of groundwater owing to hydrodynamic chromatography. A theoretical model for hydrodynamic chromatography of colloid migration in the fracture is proposed in the present work. In this model, the colloids are treated as nonreactive and the external forces acting on colloidal particles are considered including the inertial force, the van der Waals attractive force, and the electrical double-layer repulsive force, as well as the gravitational force. A fully developed concentration profile for colloids is obtained to elucidate migration behavior for colloids in the fracture. The effects of parameters governing these forces and the aperture of the fracture are determined using a theoretical model.

  17. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  18. A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus

    NASA Technical Reports Server (NTRS)

    DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.

    1996-01-01

    A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.

  19. A three-dimensional axisymmetric photochemical flow model of the cometary 'inner' shock layer

    NASA Technical Reports Server (NTRS)

    Damas, M. C.; Mendis, D. A.

    1992-01-01

    Assuming the Newtonian thin layer approximation to describe the structure of the shock layer between the cometary 'ionopause' and the inner shock, a 3D axisymmetric photochemical flow model of this layer is constructed. While sources of ions in this layer are the flow across the inner shock and photoionization of neutrals within it, the sinks are the flow into the flanks and dissociative recombination, the latter being the dominant one. For Halley's comet at the time of the Giotto encounter, the calculated thickness of the layer is very small, typically about 100 km for expected values of the dissociative-recombination coefficient. This is not inconsistent with the observations. The lateral flow speed near the point of encounter (inbound) is about 0.9 km/s, while the sonic line is at an angle of about 50 deg to the sun-comet line. Testing the validity of this model will have to await a cometary rendezvous mission such as the proposed CRAF/Cassini mission.

  20. Current SPE Hydrodynamic Modeling and Path Forward

    SciTech Connect

    Knight, Earl E.; Rougier, Esteban

    2012-08-14

    Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.

  1. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries

    NASA Astrophysics Data System (ADS)

    Opdyke, Daniel

    2008-09-01

    The modeling of lakes, rivers, and estuaries is a fascinating subject that combines interesting facets of mathematics, statistics, physics, chemistry, and biology. Because of the complexity of natural systems, such modeling is always an approximation of the real world-and sometimes not a very good one. It is for this reason that modeling is not just science but also art. It is also for this reason that there are few good texts offering practical advice on modeling. Hydrodynamics and Water Quality makes a valiant attempt but is only partially successful because of the book's narrow focus on one family of models and an inconsistent presentation.

  2. Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.

    PubMed

    Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A

    2014-11-01

    Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality. PMID:25096643

  3. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  4. Modeling Spitsbergen fjords by hydrodynamic MIKE engine.

    NASA Astrophysics Data System (ADS)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir

    2013-04-01

    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  5. Hydrodynamic model for a vibrofluidized granular bed

    NASA Astrophysics Data System (ADS)

    Martin, T. W.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Equations relating the energy flux, energy dissipation rate, and pressure within a three-dimensional vibrofluidized bed are derived and solved numerically, using only observable system properties, such as particle number, size, mass and coefficient of restitution, to give the granular temperature and packing fraction distributions within the bed. These are compared with results obtained from positron emission particle tracking experiments and the two are found to be in good agreement, without using fitting parameters, except at high altitudes when using a modified heat law including a packing fraction gradient term. Criteria for the onset of the Knudsen regime are proposed and the resulting temperature profiles are found to agree more closely with the experimental distributions. The model is then used to predict the scaling relationship between the height of the centre of mass and mean weighted bed temperature with the number of particles in the system and the excitation level.

  6. Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body

    NASA Astrophysics Data System (ADS)

    Sahu, Jubaraj; Heavey, Karen R.

    2006-06-01

    This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier Stokes computational technique has been used to obtain numerical solutions for the unsteady micro-jet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach=0.11 and 0.24 and angles of attack, 0 4°. Numerical solutions have been obtained using both Reynolds-Averaged Navier Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional (3D), time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions.

  7. Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation

    SciTech Connect

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin

    2006-06-30

    A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.

  8. Numerical modeling of hydrodynamic in southwestern Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul

    2014-09-01

    Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.

  9. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  10. New York Bight Study. Report 1. Hydrodynamic modeling. Technical report

    SciTech Connect

    Scheffner, N.W.; Vemulakonda, S.R.; Mark, D.J.; Butler, H.L.; Kim, K.W.

    1994-08-01

    As a part of the New York (NY) Bight Feasibility Study, a three-dimensional hydrodynamic model of the NY Bight was developed and applied by the Coastal Engineering R h Center of the U.S. Army Engineer Waterways Experiment Station. The study used the three-dimensional hydrodynamic model CH3D-WES for this purpose. A 76 x 45 cell boundary-fitted curvilinear grid was employed in the horizontal and five to ten sigma layers were used in the vertical. Steady-state and diagnostic tests were initially performed, using M, and mixed tides, cross-shelf gradients, winds, and freshwater flows in the Hudson River. All of the tests were successful in reproducing known circulation patterns of the NY Bight system. The model was next successfully calibrated and verified against prototype tidal elevations and currents measured during April and May 1976. As a demonstration of the feasibility of long-term modeling, the hydrodynamics, including salinity and temperature, were simulated for the period April-October 1976. Model results compared favorably with available prototype temperature measurements. Model output was furnished to a water quality model of the NY Bight, which successfully reproduced the hypoxic event of 1976. Model results also were used successfully to run particle tracking and oil spill models of the NY Bight. Finally, the model was demonstrated for the Long Island Sound and East River areas, for the period of May-July 1990. Computed results for elevation, velocity, salinity, and temperature in the Sound as well as net flux in the East River matched measurements reasonably.

  11. Modeling of Magma Dynamics Based on Two-Fluid Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K.

    2012-12-01

    Multi-velocity multi-porous models are often used as a hydrodynamic basis to describe dynamics of fluid-magma systems. These models cover such problems as fast acoustic processes or large-scaled dynamics of magma systems having non-compressible magma. Nonlinear dynamics of magma as multiphase compressible medium has not been studied sufficiently. In this work we study nonlinear thermodynamically consistent two-liquid model of magma system dynamics, based on conservation law method. The model is restricted by short times of local heat balance between phases. Pressure balance between phases is absent. Two-fluid magma model have various rheological properties of the composing phases: viscous liquid and viscoelastic Maxwell medium. The dynamics of magna flows have been studied for two types of magma systems: magma channels and intraplate intermediate magma chambers. Numerical problem of the dynamics for such media is solved using the control volume method ensuring physical correctness of the solution. The solutions are successfully verified for benchmark one-velocity models. In this work we give the results of numerical modeling using CVM for a number of non-stationary problems of nonlinear liquid filtering through granulated medium in magma channels and problems two-liquid system convection in intraplate magma chambers for various parameters. In the last case the convection regimes vary depending on non-dimensional Rayleigh and Darcy numbers and the parameter field, where compressibility effects appear, is located. The given model can be used as a hydrodynamic basis to model the evolution of magma, fluid-magma systems to study thermo-acoustic influence on hydrodynamic flows in such systems. This work was financially supported by the Russian Foundation for Basic Research, Grant #12-05-00625.

  12. Experimental Investigation and Computational Modeling of Hydrodynamics in Bifurcating Microchannels

    PubMed Central

    Janakiraman, Vijayakumar; Sastry, Sudeep; Kadambi, Jaikrishnan R.; Baskaran, Harihara

    2008-01-01

    Methods involving microfluidics have been used in several chemical, biological and medical applications. In particular, a network of bifurcating microchannels can be used to distribute flow in a large space. In this work, we carried out experiments to determine hydrodynamic characteristics of bifurcating microfluidic networks. We measured pressure drop across bifurcating networks of various complexities for various flow rates. We also measured planar velocity fields in these networks by using particle image velocimetry. We further analyzed hydrodynamics in these networks using mathematical and computational modeling. Our results show that the experimental frictional resistances of complex bifurcating microchannels are about 30% greater than that predicted by Navier-Stokes’ equations. Experimentally measured velocity profiles indicate that flow distributes equally at a bifurcation regardless of the complexity of the network. Flow division other than bifurcation such as trifurcation or quadruplication can lead to heterogeneities. These findings were verified by the results from the numerical simulations. PMID:18175219

  13. HYDRODYNAMIC AND MORPHOLOGIC MODELING AT CAPE FEAR INLET, NC

    NASA Astrophysics Data System (ADS)

    Kashlan, L. R.; Dennis, W. A.; Wutkowski, M. J.

    2009-12-01

    The Coastal Modeling System (CMS) was applied to compute tidal hydrodynamics, wave transformation, sediment transport and morphology change in the Cape Fear Inlet area. Measured water level, current and wave data in the Cape Fear area were collected from gauges maintained by Wilmington Harbor Monitoring Program. The models were calibrated by comparing simulated and measured water level, current and wave data. Numerical simulations of coupled circulation, wave and sediment transport models were used to estimate the morphology change for a surveyed area during a three month period. The agreement between predicted and measured topographic changes were acceptable. Morphology change analysis will be used in the future to examine different channel alignment scenarios.

  14. Hydrodynamic instabilities in swirl-stabilized combustion: experimental assessment and theoretical modelling

    NASA Astrophysics Data System (ADS)

    Oberleithner, Kilian; Stöhr, Michael; Terhaar, Steffen; Paschereit, Oliver

    2014-11-01

    In gas turbine industry, it is common practice to implement swirling jets and associated vortex breakdown to stabilize the flame and to enhance turbulent mixing. The flow field of such swirl-stabilized combustors features a wide range of flow instabilities that promote the formation of large-scale flow structure. This talk presents recent experimental studies at the Technical University Berlin and the German Aerospace Center (DLR) targeting the impact of these instabilities on the combustion performance. Particular focus is placed on two types of instability: (i) a self-excited helical instability, typically known as the precessing vortex core, which crucially affects mixing and flame anchoring; (ii) the axisymmetric Kelvin-Helmholtz instability, which crucially affects the flame dynamics at thermo-acoustic oscillations. All experimental observations are correlated with analytic flow models utilizing linear hydrodynamic stability theory. This mathematical framework reveals the driving mechanisms that lead to the formation, saturation, and suppression of large-scale flow structures and how these mechanisms interact with the combustion process. The authors kindly acknowledge the financial support of the German Research Foundation (DFG) and the Research Association for Combustion Engines (FVV).

  15. Modelling the Hydrodynamics and Transport in Multiphase Microreactors

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs

    2015-11-01

    Multiphase flow is prevalent in a variety of industrial applications, but the extent of these processes is often limited by the innate mass transfer resistance across phase boundaries. Microscale multiphase systems, owing to their reduced characteristic length scales, increase specific interfacial areas and unique hydrodynamic patterns, can significantly enhance the rate of mass transfer, thereby improving the efficiency of multiphase processes. However, many uncertainties still remain in the prediction of multiphase hydrodynamics and scalar transport on the microscale, primarily due to the complex nature of the multiphase flow. In this work, to elucidate the mechanism of mass transfer enhancement in microscale multiphase flows, a computational fluid dynamic (CFD) model using the volume-of-fluid (VOF) method is developed, and the method is validated with experiments. By introducing a scalar transport equation with sink/source terms using the one-fluid formulation, we enable the simultaneous capturing of multi-phase hydrodynamics, mass transfer and reactions. In tandem with the numerical simulations, we also perform mass transfer analysis of multiphase flows based on the penetration theory and a two-stage theory, which further examines the mechanism of mixing enhancement in multiphase flow, and reveals a two-fold increase in mass transfer coefficients in the microreactors compared to conventional multiphase contactors.

  16. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    USGS Publications Warehouse

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  17. Hydrodynamic model for particle size segregation in granular media

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Herrmann, Hans J.

    2003-12-01

    We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.

  18. Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.

    2015-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.

  19. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  20. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    SciTech Connect

    Weatherby, J.R.

    1987-09-01

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs.

  1. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    SciTech Connect

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-04-10

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  2. Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Velasco, Ali Mauricio; Muñoz, José Daniel

    2015-10-01

    Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.

  3. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect

    Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  4. New equation of state models for hydrodynamic applications

    NASA Astrophysics Data System (ADS)

    Young, David A.; Barbee, Troy W.; Rogers, Forrest J.

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  5. New equation of state model for hydrodynamic applications

    SciTech Connect

    Young, D.A.; Barbee, T.W. III; Rogers, F.J.

    1997-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  6. Two dimensional hydrodynamic modeling of a high latitude braided river

    NASA Astrophysics Data System (ADS)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  7. A Generalized Hydrodynamics Model for Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael Sean

    2015-11-01

    Starting with the equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum and stress tensor-moment equations. The closure proceeds in two steps. The first that guarantees an equilibrium state is given by density functional theory. It ensures self consistency in the equation-of-state properties of the plasma. The second involves modifying the two-body distribution function to include collisions in the relaxation of the stress tensor. The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasi-localized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  8. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    NASA Astrophysics Data System (ADS)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  9. Implementation of a hydrodynamic model for the upper Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.

    1989-01-01

    A vertically integrated, two-dimensional hydrodynamic/transport model has been implemented for the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. The model computes water-surface elevations, flow velocities, and time-varying constituent concentrations by numerically integrating finite-difference forms of the equations of mass and momentum conservation in conjunction with transport equations for heat, salt, and dissolved constituents. Previous, preliminary calibration efforts have been extended and validity of the model implementation improved. Field-measured and model-computed water levels compare within ?? 2 cm and maximum computed flood and ebb flow discharges are within 3% of measured values. Indications are that further improvements can be effected.

  10. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    NASA Astrophysics Data System (ADS)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  11. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  12. A two-dimensional hydrodynamic model of a tidal estuary

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1979-01-01

    A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.

  13. Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling

    USGS Publications Warehouse

    George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.

    2006-01-01

    - Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.

  14. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.

    2015-05-01

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.

  15. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  16. Hydrodynamic ram modeling with the immersed boundary method

    SciTech Connect

    Lewis, M.W.; Kashiwa, B.A.; Rauenzahn, R.M.

    1998-03-01

    The authors have modeled a hydrodynamic ram experiment conducted at Wright-Patterson Air Force Base. In the experiment, a projectile traveling at 200 ft/sec impacted and penetrated a simulated airplane wing containing water. The structure consisted of composite panels with stiffeners and rivets, and an aluminum panel. The test included instrumentation to measure strains, accelerations, and pressures. The technique used for modeling this experiment was a multifluid compressible finite volume approach. The solid fields, namely the projectile and the plates which comprised the structure, were represented by a set of discrete, Lagrangian-frame, mass points. These mass points were followed throughout the computation. The contribution of the stress state at each mass point was applied on the grid to determine the stress divergence contribution to the equations of motion and resulting grid based accelerations. This approach has been defined as the immersed boundary method. The immersed boundary method allows the modeling of fluid-structure interaction problems involving material failure. The authors implemented a plate theory to allow the representation of each plate by a surface of mass points. This theory includes bending terms and transverse shear. Arbitrary constitutive models may be used for each plate. Here they describe the immersed boundary method as they have implemented. They then describe the plate theory and its implementation. They discuss the hydrodynamic ram experiment and describe how they modeled it. They compare computed results with test data. They finally conclude with a discussion of benefits and difficulties associated with this modeling approach and possible improvement to it.

  17. Kinetic theory model for the flow of a simple gas from a three-dimensional axisymmetric nozzle

    NASA Technical Reports Server (NTRS)

    Riley, B. R.

    1991-01-01

    A system of nonlinear integral equations equivalent to the Krook kinetic equations for the steady state is the mathematical basis used to develop a computer code to model the flowfields for low-thrust three-dimensional axisymmetric nozzles. The method of characteristics is used to solve numerically by an iteration process the approximated Boltzmann equation for the number density, temperature, and velocity profiles of a simple gas as it expands into a vacuum. Results predict backscatter and show the effect of the nozzle wall boundary layer on the external flowfields.

  18. Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    2015-12-01

    We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.

  19. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  20. Spectral Differentiation Operators for Solving Hydrodynamic PSE Models

    NASA Astrophysics Data System (ADS)

    Alina Bistrian, Diana; Ioana Dragomirescu, Florica; Savii, George; Monica Stoica, Diana

    2010-09-01

    This paper explores the use of spectral methods in the numerical investigation of the eigenvalue problem governing the linear stability of the mechanical equilibria of the flow motion. Parabolized stability equations are used as a new approach to investigate the stability of the swirling flow ingested by the conical diffuser in the Francis hydropower turbine which determines the behavior and the performances of the draft tube. For the cases of sophisticated boundary conditions, the study involves a new mathematical model in spectral operators formulation and a simulation algorithm that translates the hydrodynamic PSE model into computer code instructions immediately following problem formulations. A two-dimensional stability analysis is performed and the frequency ranges of the most unstable modes are provided together with the perturbation amplitudes.

  1. CNO abundances and hydrodynamic models of the nova outburst.

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J. W.; Sparks, W. M.; Kutter, G. S.

    1972-01-01

    We have used a fully implicit, Lagrangian, hydrodynamic computer code incorporating a nuclear reaction network to follow thermonuclear runaways in the hydrogen-rich envelopes of white dwarfs in order to produce a nova outburst. Because of the short time-scales and the high nuclear burning rates produced in our models, the nuclear reactions are far out of equilibrium and the beta-plus unstable nuclei become the most abundant nuclei in the envelope except for hydrogen and helium. Our models have ejected 1.00017 solar mass with kinetic energies of 8 times 10 to the 44-th power ergs, a value that agrees quite closely with the observed values for novae.

  2. Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Kuruvila, G.

    1989-01-01

    The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.

  3. Modeling shallow-water hydrodynamics: Rotations, rips, and rivers

    NASA Astrophysics Data System (ADS)

    Long, Joseph W.

    Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously

  4. Fluctuating hydrodynamics of nematics for models of liquid-crystal based biosensors via lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Guzman, Orlando; Velez, Jose Antonio; Castañeda, David

    2008-03-01

    Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.

  5. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as

  6. Characteristics from a hydrodynamic model of a trapezoidal artificial reef

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoyang; Liang, Zhenlin; Huang, Liuyi; Liu, Yang; Tang, Yanli

    2014-11-01

    Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef. Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices; and forces for the reef model were measured by load cell. The results of flume experiments agree well with the numerical data. In addition, the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes, showing a more complicated flow structure than that of a stand-alone reef. Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef. The role of the reef in water flow is to reduce flow velocity and generate turbulence.

  7. Modeling of cast systems using smoothed-particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John

    2004-03-01

    To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.

  8. Calculations of the stability of some axisymmetric flows proposed as a model of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Mhuiris, N. M. G.

    1986-01-01

    The term vortex breakdown refers to the abrupt and drastic changes of structure that can sometimes occur in swirling flows. It was conjectured that the bubble type of breakdown can be viewed as an axisymmetric wave traveling upstream in a primarily columnar vortex flow. In this scenario the wave's upstream progress is impeded only when it reaches a critical amplitude and it loses stability to some nonaxisymmetric disturbance. The stability of some axisymmetric wavy flows to three dimensional disturbances, viewing the amplitude of the wave as a bifurcation parameter is examined. The stability of a set of related columnar vortex flows, constructed by taking the two dimensional flow at a single axial location and extending it throughout the domain without variation, is investigated. The method used will be to expand the perturbation velocity in a series of divergence free vectors which ensures that the continuity equation for the incompressible fluid is satisfied exactly by the computed velocity field. Projections of the stability equation onto the space of inviscid vector fields eliminated the pressure term from the equation and reduces the differential eigen problem to a generalized matrix eigen problem. Results are presented both for the one dimensional, columnar vortex flows and also for the wavy bubble flow.

  9. Transient Structural Analysis of a 20-m Diameter, Hyper-Energetic Lightcraft: Part 1 Axisymmetric Model

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.; Cassenti, Brice N.

    2005-04-01

    An axisymmetric finite element (FEM) structural analysis has been performed on a 20-m diameter hyper-energetic lightcraft designed to transport 6-12 occupants around the planet or directly to low Earth orbit — without resorting to refueling or staging. As proposed, the lenticular double-hull of this super-pressure, balloon-type craft is fabricated from microwave-transparent silicon carbide films of superior strength, inflated with 2-atm of helium. A perimeter toriodal tube, serving as the primary structural `backbone,' is pressurized to 25-atm. The remote beam-energized MHD propulsion system (with directed-energy airspike) is intimately integrated with the craft's tensile-type structure and is not distinguishable as an item separate from the vehicle, as in conventional spacecraft. The design assumption of liquid immersion G-suits, individualized escape pods, and (optional) partial liquid ventilation, assures super-human levels of crew survivability, enabling accelerations of 25 to 50 Gs, or more. The vehicle dry mass is 1200-kg; payload is 1200-kg (crew and escape pods); expendable coolant is 2400-kg of ultra-pure, deionized water (for waste heat rejection from rectenna arrays, during orbital boosts). For simplicity, payload is assumed `distributed' as a thin circular disc directly below the central rectenna. Preliminary findings of this axisymmetric FEM structural analysis are encouraging, and suggest that such craft may indeed be feasible within a generation — perhaps by 2025.

  10. Modeling and Prediction of the Noise from Non-Axisymmetric Jets

    NASA Technical Reports Server (NTRS)

    Leib, Stewart J.

    2014-01-01

    mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant

  11. Hydrodynamical modeling of laser drilling with short and ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Ruf, Andreas; Breitling, Detlef; Berger, Peter; Dausinger, Friedrich; Huegel, Helmut

    2003-11-01

    This contribution examines the basic concepts and results of two laser ablation models based on commercially available hydrodynamical codes. In both cases the different material phases are described continuously by a single numerical algorithm. The first approach uses a finite-element model for the simultaneous description of solid and melt. It is thereby particularly suited for the description of melt formation and ejection. The results indicate a slow acceleration of the melt during the laser pulse up to velocities of some 10m/s followed by a rather steady-going ejection which is finally cut off by the resolidification. Although it was possible to examine this expulsion process, the model showed considerable numerical stability problems for higher intensities and the ultrasonic vapor expansion cannot be included. To overcome these shortages another model is proposed which is based on an equation of state for the target material in combination with a special pressure-based solver. Besides the continuous description of the material states, it also includes a continuous treatment of the beam propagation and energy coupling by solving Maxwell's equations. Although the work on this model is still going on, some of its basic prospects and limitations can already be discussed.

  12. Numerical modeling of the conditions for realization of flow regimes in supersonic axisymmetric conical inlets of internal compression

    NASA Astrophysics Data System (ADS)

    Gounko, Yu. P.; Mazhul, I. I.

    2015-09-01

    The results of the numerical investigation of flow regimes in the axisymmetric inlets of internal compression at a supersonic flow around them are presented in the work. The main attention is paid to the determination of the ranges of the duct geometric convergence, in which a supersonic inflow in the inlet realizes. The investigation has been carried out at high supersonic freestream velocities corresponding to the Mach numbers M = 2-8 by the example of the frontal conical (funnel-shaped) inlets with the angles of the internal cone wall inclination δ w = 7.5-15° under the variation of the relative area of the throat cross section. The flow structure alteration was studied and the critical relative areas of the inlet throat were determined, at which either there is no starting of the inlet in the process of flow steadying at the initial subsonic flow in it or a flow breakdown occurs in the process of flow steadying at an initial supersonic inflow. Numerical computations of the axisymmetric flow were done on the basis of the solution of the Navier-Stokes equations and the k-ω SST turbulence model.

  13. A Nanoscale Hydrodynamical Model for Transport of Water

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.

    2015-11-01

    We present here a one-dimensional isothermal hydrodynamic transport model for SPC/E water. Two separate mechanisms of flow, viz. viscous and slip are incorporated in the present formulation. Spatially varying viscosity is modeled using the local average density method. Slip velocity is provided as a form of the boundary condition which in turn depends upon the macroscopic interfacial friction coefficient. The friction coefficient bridges the atomistic and continuum descriptions of the problem. The value of this friction coefficient is computed using particle-based wall-fluid force autocorrelations and wall-fluid force-velocity cross correlations, where the particle trajectory is generated using a Generalized Langevin Equation formulation. To test the accuracy of the model, gravity driven flow of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. Furthermore, we demonstrate that the slip length is constant for different channel widths for a fixed thermodynamic state under the linear response regime.

  14. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  15. Hydrodynamic modeling of tsunamis from the Currituck landslide

    USGS Publications Warehouse

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  16. Hydrodynamics of explosion: models and software for modeling explosions and estimation of their consequences

    NASA Astrophysics Data System (ADS)

    Stepanov, K. L.; Stankevich, Y. A.; Smetannikov, A. S.

    2012-11-01

    Physical and hydrodynamic processes accompanying explosions of condensed explosives and fuel-air mixtures have been considered. Wide-range equations of state of explosion products and air have been used. A physical model and a program code based on the gas dynamics equations in the Lagrangian form have been developed for modeling one-dimensional hydrodynamic processes in the near zone of explosion. This firmware forms the basis for estimation of explosion consequences. The described model has shown its working efficiency within a wide range of explosion energies and environmental conditions.

  17. Accuracy of an estuarine hydrodynamic model using smooth elements

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1980-01-01

    A finite element model which uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and linear basis functions for water surface elevation is used in the computation of shallow water wave motions. Specifically addressed are two common uncertainties in this class of two-dimensional hydrodynamic models: the treatment of the boundary conditions at open boundaries and the treatment of lateral boundary conditions. The accuracy of the models is tested with a set of numerical experiments in rectangular and curvilinear channels with constant and variable depth. The results indicate that errors in velocity at the open boundary can be significant when boundary conditions for water surface elevation are specified. Methods are suggested for minimizing these errors. The results also show that continuity is better maintained within the spatial domain of interest when ‘smooth’ curve-sided elements are used at shoreline boundaries than when piecewise linear boundaries are used. Finally, a method for network development is described which is based upon a continuity criterion to gauge accuracy. A finite element network for San Francisco Bay, California, is used as an example.

  18. Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption

    NASA Astrophysics Data System (ADS)

    Alexander, R. D.; Wynn, G. A.; Mohammed, H.; Nichols, J. D.; Ercolano, B.

    2016-03-01

    We present hydrodynamic simulations of stellar wind-magnetosphere interactions in hot Jupiters such as WASP-12b. For fiducial stellar wind rates, we find that a planetary magnetic field of a few G produces a large magnetospheric cavity, which is typically 6-9 planetary radii in size. A bow shock invariably forms ahead of the magnetosphere, but the pre-shock gas is only mildly supersonic (with typical Mach numbers of ≃1.6-1.8) so the shock is weak. This results in a characteristic signature in the ultraviolet (UV) light curve: a broad absorption feature that leads the optical transit by 10-20 per cent in orbital phase. The shapes of our synthetic light curves are consistent with existing observations of WASP-12b, but the required near-UV optical depth (τ ˜ 0.1) can only be achieved if the shocked gas cools rapidly. We further show that radiative cooling is inefficient, so we deem it unlikely that a magnetospheric bow shock is responsible for the observed near-UV absorption. Finally, we apply our model to two other well-studied hot Jupiters (WASP-18b and HD 209458b), and suggest that UV observations of more massive short-period planets (such as WASP-18b) will provide a straightforward test to distinguish between different models of circumplanetary absorption.

  19. A hydrodynamic model of an outer hair cell

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1982-01-01

    On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.

  20. Computational modeling and analysis of the hydrodynamics of human swimming

    NASA Astrophysics Data System (ADS)

    von Loebbecke, Alfred

    Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand

  1. Axisymmetric multiwormholes revisited

    NASA Astrophysics Data System (ADS)

    Clément, Gérard

    2016-06-01

    The construction of stationary axisymmetric multiwormhole solutions to gravitating field theories admitting toroidal reductions to three-dimensional gravitating sigma models is reviewed. We show that, as in the multi-black hole case, strut singularities always appear in this construction, except for very special configurations with an odd number of centers. We also review the analytical continuation of the multicenter solution across the n cuts associated with the wormhole mouths. The resulting Riemann manifold has 2^n sheets interconnected by 2^{n-1}n wormholes. We find that the maximally extended multicenter solution can never be asymptotically locally flat in all the Riemann sheets.

  2. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydrodynamical Models

    NASA Astrophysics Data System (ADS)

    Baron, E.; Bongard, Sebastien; Branch, David; Hauschildt, Peter H.

    2006-07-01

    We have performed detailed non-local thermodynamic equilibrium (NLTE) spectral synthesis modeling of two types of one-dimensional hydrodynamical models: the very highly parameterized deflagration model W7, and two delayed-detonation models. We find that, overall, both models do about equally well at fitting well-observed SNe Ia near maximum light. However, the Si II λ6150 feature of W7 is systematically too fast, whereas for the delayed-detonation models it is also somewhat too fast but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II λ6150 line near maximum light, and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydrodynamical model to fit the spectra of observed SNe Ia near maximum light.

  4. Modeling Relativistic Jets Using the Athena Hydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Pauls, David; Pollack, Maxwell; Wiita, Paul

    2014-11-01

    We used the Athena hydrodynamics code (Beckwith & Stone 2011) to model early-stage two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei. We analyzed variability of the radio emission by calculating fluxes from a vertical strip of zones behind a standing shock, as discussed in the accompanying poster. We found the advance speed of the jet bow shock for various input jet velocities and jet-to-ambient density ratios. Faster jets and higher jet densities produce faster shock advances. We investigated the effects of parameters such as the Courant-Friedrichs-Lewy number, the input jet velocity, and the density ratio on the stability of the simulated jet, finding that numerical instabilities grow rapidly when the CFL number is above 0.1. We found that greater jet input velocities and higher density ratios lengthen the time the jet remains stable. We also examined the effects of the boundary conditions, the CFL number, the input jet velocity, the grid resolution, and the density ratio on the premature termination of Athena code. We found that a grid of 1200 by 1000 zones allows the code to run with minimal errors, while still maintaining an adequate resolution. This work is supported by the Mentored Undergraduate Summer Experience program at TCNJ.

  5. Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description

    NASA Astrophysics Data System (ADS)

    Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio

    2016-07-01

    A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.

  6. Quantum hydrodynamic model by moment closure of Wigner equation

    NASA Astrophysics Data System (ADS)

    Cai, Zhenning; Fan, Yuwei; Li, Ruo; Lu, Tiao; Wang, Yanli

    2012-10-01

    In this paper, we derive the quantum hydrodynamics models based on the moment closure of the Wigner equation. The moment expansion adopted is of the Grad type first proposed by Grad ["On the kinetic theory of rarefied gases," Commun. Pure Appl. Math. 2(4), 331-407 (1949), 10.1002/cpa.3160020403]. The Grad's moment method was originally developed for the Boltzmann equation. Recently, a regularization method for the Grad's moment system of the Boltzmann equation was proposed by Cai et al. [Commun. Pure Appl. Math. "Globally hyperbolic regularization of Grad's moment system" (in press)] to achieve the global hyperbolicity so that the local well-posedness of the moment system is attained. With the moment expansion of the Wigner function, the drift term in the Wigner equation has exactly the same moment representation as in the Boltzmann equation, thus the regularization applies. The moment expansion of the nonlocal Wigner potential term in the Wigner equation turns out to be a linear source term, which can only induce very mild growth of the solution. As a result, the local well-posedness of the regularized moment system for the Wigner equation remains as for the Boltzmann equation.

  7. Visualization and modeling of the hydrodynamics of an impinging microjet.

    PubMed

    Bitziou, Eleni; Rudd, Nicola C; Edwards, Martin A; Unwin, Patrick R

    2006-03-01

    The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable. PMID:16503591

  8. 3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Mackey, J.; Langer, N.

    2013-05-01

    Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our models in light of the recent Herschel, GALEX and VLA observations. If the mass in the bow shock shell is low (~few × 10-3 M⊙), as seems to be implied by the AKARI and Herschel observations, then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular, smooth bow shock shell is consistent with this conclusion. We further discuss the implications of our results, in particular, the possibility that Betelgeuse may have only recently entered the RSG phase.

  9. Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description

    NASA Astrophysics Data System (ADS)

    Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio

    2016-08-01

    A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.

  10. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    NASA Astrophysics Data System (ADS)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  11. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    PubMed

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed. PMID:20727741

  12. Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes

    NASA Astrophysics Data System (ADS)

    Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.

    2012-04-01

    with the help of QQ-downscaled time series. Results of water-quality and ecological modeling using data from VG is contributed by Marieke Anna Frassl under the title "Simulating the effect of meteorological variability on a lake ecosystem". Maria Magdalena Eder contributes three dimensional hydrodynamic lake simulations using VG data in a poster entitled "Advances in estimating the climate sensibility of a large lake using scenario simulations". Both posters can be found in the Session "Lakes and Inland Seas" (HS10.1).

  13. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  14. Smoothed particle hydrodynamics modelling for failure in metals

    NASA Astrophysics Data System (ADS)

    Strand, Russell K.

    It is generally regarded to be a difficult task to model multiple fractures leading to fragmentation in metals subjected to high strain rates using numerical methods. Meshless methods such as Smoothed Particle Hydrodynamics (SPH) are well suited to the application of fracture mechanics, since they are not prone to the problems associated with mesh tangling. This research demonstrates and validates a numerical inter-particle fracture model for the initiation, growth and subsequent failure in metals at high strain rate, applicable within a Total Lagrangian SPH scheme. Total Lagrangian SPH performs calculations in the reference state of a material and therefore the neighbourhoods remain fixed throughout the computation; this allows the inter-particle bonds to be stored and tracked as material history parameters. Swegle (2000) showed that the SPH momentum equation can be rearranged in terms of a particle-particle interaction area. By reducing this area to zero via an inter-particle damage parameter, the principles of continuum damage mechanics can be observed without the need for an effective stress term, held at the individual particles.. This research makes use of the Cochran-Banner damage growth model which has been updated for 3D damage and makes the appropriate modifications for inter-particle damage growth. The fracture model was tested on simulations of a 1D flyer plate impact test and the results were compared to experimental data. Some limited modelling was also conducted in 2 and 3 dimensions and promising results were observed. Research was also performed into the mesh sensitivity of the explosively driven Mock- Holt experiment. 3D simulations using the Eulerian SPH formulation were conducted and the best results were observed with a radial packing arrangement. An in-depth assessment of the Monaghan repulsive force correction was also conducted in attempt to eliminate the presence of the SPH tensile instability and stabilise the available Eulerian SPH code

  15. Flux limiters in the coupling of radiation and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seaid, M.; Klar, A.; Dubroca, B.

    2004-07-01

    Two numerical approximations to radiative heat transfer problem based on asymptotic and entropy approaches are proposed for hydrodynamics radiation coupling. We compare the radiative fluxes between the two approaches and we show that the coupling based on the entropy approach is flux limited, while the other approach does not preserve this condition. Relaxation schemes are considered for the hydrodynamic part, and an iterative procedure is used for radiation. The new splitting algorithm avoids the use of Riemann solvers and Newton iterations. Numerical examples are carried out on two and three dimensional problems.

  16. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

    2010-11-30

    The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

  17. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  18. Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model

    NASA Astrophysics Data System (ADS)

    Teryaev, Oleg; Usubov, Rahim

    2015-07-01

    The hydrodynamic helicity separation effect in noncentral heavy-ion collisions is investigated using the hadron-string dynamics (HSD) model. Computer simulations are done to calculate velocity and hydrodynamic helicity on a mesh in a small volume around the center of the reaction. The time dependence of hydrodynamic helicity is observed for various impact parameters and different calculation methods. Comparison with a similar earlier work is carried out. A new quantity related to jet handedness is used to probe for p -odd effects in the final state.

  19. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  20. An axisymmetric numerical elastic contact model for application to the transmission of ultrasound across a rough interface

    NASA Astrophysics Data System (ADS)

    Long, R.; Lowe, M.; Cawley, P.

    2000-05-01

    Ultrasonic pulse velocity measurements are a useful indicator of certain kinds of problems in concrete. A number of tests are often performed on a grid so as to construct a contour map of the velocity of sound which aids the recognition of problem areas. The application of a viscous couplant at each grid point, to enable ultrasonic coupling to the rough surface, proves both time consuming and inconvenient. As an alternative, coupling via a compliant solid is being researched. Two designs which are being investigated are a rubber disk which is simply attached to the face of the transducer, and a membrane which encapsulates a liquid volume. Axi-symmetric contact models have been derived to predict the deformation of the contact surfaces of such devices when pressed onto a rigid rough surface, and thereby to estimate the strength of the transmission of the signal into the concrete. The option of wetting the surfaces of the rubber with a thin film of water is also considered. Experimental measurements of transmission have been made and have been found to compare favorably with the predictions. The poster shows the basis of the designs, how the models are derived and summary results.

  1. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.

    1991-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  2. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    PubMed

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties. PMID:25215734

  3. Hydrodynamic models for slurry bubble column reactors. Fifth technical progress report

    SciTech Connect

    Gidaspow, D.

    1995-10-01

    The objective of this work is to convert our `learning gas-solid-liquid` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values.

  4. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  5. Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.

    PubMed

    Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo

    2016-07-15

    We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days. PMID:27140393

  6. Interface-tracking electro-hydrodynamic model for droplet coalescence

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Noble, David

    2012-11-01

    Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. micro-fluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. We present a conformal decomposition finite element (CDFEM) interface-tracking method for two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface. The electro-hydrodynamic equations solved allow for convection of charge and charge accumulation at the interface, both of which may be important factors for the pinch-off dynamics in this parameter regime.

  7. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  8. Flexural models of trench/outer rise topography of coronae on Venus with axisymmetric spherical shell elastic plates

    NASA Technical Reports Server (NTRS)

    Moore, W.; Schubert, Gerald; Sandwell, David T.

    1992-01-01

    Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.

  9. Comparison of hydrodynamic model of graphene with recent experiment on measuring the Casimir interaction

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2015-01-01

    We obtain the reflection coefficients from a graphene sheet deposited on a material substrate under a condition that graphene is described by the hydrodynamic model. Using these coefficients, the gradient of the Casimir force in the configuration of a recent experiment is calculated in the framework of the Lifshitz theory. It is shown that the hydrodynamic model is excluded by the measurement data at a 99% confidence level over a wide range of separations. From the fact that the same data are in very good agreement with theoretical predictions of the Dirac model of graphene, the low-energy character of the Casimir interaction is confirmed.

  10. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    SciTech Connect

    Mark, J.W.K.; Krafft, G.A.; Wang, T.S.F.

    1981-12-01

    A hydrodynamic model is used to help isolate possible three dimensional space charge instabilities in beam plasmas of concern in designing heavy ion accelerators for inertial confinement fusion energy applications. The model provides an economic means for searching the large parameter space relevant to problems in which coupling of longitudinal and transverse motions is allowed. It is shown that the equilibrium axial hydrodynamic pressure of the beam plasma has a significant effect on the stability boundaries of a two-rotating-stream instability. When considering the resistive wall effect, this model shows a kink instability. The growth rate of some modes could be enhanced by increasing the equilibrium axial pressure.

  11. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    PubMed

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces. PMID:27007293

  12. Design of Airborne Surface Water Elevation Observation Campaigns for Improved Hydrodynamic Modeling of Deltas

    NASA Astrophysics Data System (ADS)

    Michailovsky, C.; Rodriguez, E.; Andreadis, K.

    2014-12-01

    Traditional hydrological monitoring relies on frequent water level measurements at discrete locations, and in complex environments this type of measurement may not be able to capture the spatial variability of the hydrodynamic processes. While remote sensing, whether air-or-spaceborne, has made spatially distributed measurements of surface waters possible, the frequency of data acquisition is typically too low for most hydrological applications and the data is often used in conjunction with hydrological or hydrodynamic models. The new AirSWOT instrument provides spatially distributed measurements of water surface elevation from an airborne platform and the Sacramento-San Joaquin Delta is one of its test areas. Our objective was to assess the value of such measurements to hydrodynamic modeling in the Delta and to evaluate the necessary spatial and temporal coverage needed for the data to improve on current monitoring capabilities. To achieve this, a synthetic data assimilation experiment was designed: a hydrodynamic model of the Delta was built and run using in situ observations to produce a "true" run and sets of synthetic AirSWOT measurements, covering different locations and at different times, were generated using an instrument simulator. An ensemble of perturbed runs was then generated by perturbing the boundary conditions and the synthetic data sets were assimilated using the ensemble Kalman Filter. The impact of the assimilation on the hydrodynamic model performance was studied for the different sets of synthetic data in order to identify the most sensitive measurement times and locations and help improve the design of future measurement campaigns.

  13. Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles

    NASA Astrophysics Data System (ADS)

    Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.

    2016-05-01

    We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.

  14. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.

    2000-10-01

    Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.

  15. On the Possibility of a Hydrodynamic Model of the Electron

    PubMed Central

    Pekeris, C. L.

    1975-01-01

    We explore the possibility that the mutual repulsive forces of a uniformly charged sphere could be kept in balance dynamically by a steady circulation of the material, which is assumed to be a nonconducting perfect fluid of uniform density. An exact solution is obtained of Maxwell's equations and of the hydrodynamic equations in the nonrelativistic approximation, which satisfies the boundary conditions on the surface of the sphere. In this solution all the components of the velocity and of the magnetic field are found to vanish on the surface, but not the electric field. The pressure can also be made to vanish on the surface, but in the interior it turns out to be negative, which makes the present solution unacceptable. PMID:16592245

  16. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  17. A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation

    NASA Astrophysics Data System (ADS)

    Hooper, Russell; Toose, Matthijs; Macosko, Christopher W.; Derby, Jeffrey J.

    2001-12-01

    A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation. Copyright

  18. Field line reconstruction for edge transport modeling in non-axisymmetric tokamaks configurations

    NASA Astrophysics Data System (ADS)

    Frerichs, Heinke; Schmitz, Oliver; Waters, Ian; Evans, Todd; Feng, Yuhe; Soukhanovskii, Vlad

    2015-11-01

    Symmetry breaking effects such as resonant magnetic perturbations (RMPs) present a challenge for the numerical analysis of divertor operation, because they require three dimensional models. One such model is provided by the EMC3-EIRENE code, which is based on a finite flux tube grid for field line reconstruction that allows to account for realistic, three dimensional configurations. We present the Field Line Analysis and Reconstruction Environment (FLARE) - a collection of tools for the analysis of the magnetic field structure. It includes a flexible grid generator which allows to set up plasma transport simulations for single and double null configurations (both disconnected and connected). This includes the ``snowflake minus'' topology, and we present an application for a ``near-exact snowflake'' configuration at NSTX-U. Recent edge plasma simulations for DIII-D and ITER include plasma response effects as calculated by the M3D-C1 code, and it is found that these configurations require a local adjustment of radial/poloidal resolution in order to maintain a reasonable level of magnetic flux conservation. This work is supported in part by the U.S. Department of Energy under DE-SC0012315 and DE-FC02-04ER54698, and by Start-Up Funds of the University of Wisconsin - Madison.

  19. WASP4, a hydrodynamic and water-quality model - model theory, user's manual, and programmer's guide

    SciTech Connect

    Ambrose, R.B.; Wool, T.A.; Connolly, J.P.; Schanz, R.W.

    1988-01-01

    The Water Quality Analysis Simulation Program Version 4 (WASP4) is a dynamic compartment-modeling system that can be used to analyze a variety of water-quality problems in a diverse set of water bodies. WASP4 simulates the transport and transformation of conventional and toxic pollutants in the water column and benthos of ponds, streams, lakes, reservoirs, rivers, estuaries, and coastal waters. The WASP4 modeling system covers four major subjects--hydrodynamics, conservative mass transport, eutrophication-dissolved oxygen kinetics, and toxic chemical-sediment dynamics. The WASP4 modeling system consists of two stand-alone computer programs, DYNHYD4 and WASP4, that can be run in conjunction or separately. The hydrodynamic program, DYNHYD4, simulates the movement of water and the water quality program, WASP4, simulates the movement and interaction of pollutants within the water. The latter program is supplied with two kinetic submodels to simulate two of the major classes of water-quality problems--conventional pollution (dissolved oxygen, biochemical oxygen demand, nutrients, and eutrophication) and toxic pollution (organic chemicals, heavy metals, and sediment). The substitution of either sub-model constitutes the models EUTRO4 and TOXI4, respectively.

  20. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  1. USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)

    EPA Science Inventory

    Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...

  2. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations.

    PubMed

    Kurihara, Eru; Hay, Todd A; Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hamilton, Mark F

    2011-11-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  3. Discretizations of axisymmetric systems

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2002-11-01

    In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.

  4. A New Hydrodynamic Model for Numerical Simulation of Interacting Galaxies on Intel Xeon Phi Supercomputers

    NASA Astrophysics Data System (ADS)

    Kulikov, Igor; Chernykh, Igor; Tutukov, Alexander

    2016-05-01

    This paper presents a new hydrodynamic model of interacting galaxies based on the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible to formulate a unified numerical method for solving hyperbolic equations. This numerical method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The collision of spiral and disk galaxies considering the star formation process, supernova feedback and molecular hydrogen formation is shown as a simulation result.

  5. Hydrodynamic interaction between two trapped swimming model micro-organisms.

    PubMed

    Matas Navarro, R; Pagonabarraga, I

    2010-09-01

    We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations. PMID:20862597

  6. Interfacial dynamics of a liposome deforming in an axisymmetric extensional flow

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mancera, Andres; Eggleton, Charles D.

    2007-03-01

    Liposomes are self-enclosed structures composed of curved lipid bilayer membranes which entrap part of the solvent in which they freely float. They are predominantly made from amphiphilic molecules, a special class of surface-active molecules. Liposomes have various applications in science and technology including drug delivery systems, medical diagnostics and they can also be used as simple cellular models for basic research. We simulated the deformation of a liposome in an axisymmetric extensional flow using the boundary integral method. The liposome deforms due to hydrodynamic loading on the interface. The dynamics of the system are characterized by the competition between the hydrodynamic and interfacial forces. The lipid bilayer membrane can be modeled as a hyperelastic continuous material or a liquid-liquid interface with a highly packed surfactant layer. We compare the deformation behavior of liposomes with both types of interfaces and identify similarities and differences between the two models.

  7. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  8. Modified Eulerian-Lagrangian formulation for hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Sorek, Shaul; Borisov, Vyacheslav

    2012-04-01

    We present the modified Eulerian-Lagrangian (MEL) formulation, based on non-divergent forms of partial differential balance equations, for simulating transport of extensive quantities in a porous medium. Hydrodynamic derivatives are written in terms of modified velocities for particles propagating phase and component quantities along their respective paths. The particles physically interpreted velocities also address the heterogeneity of the matrix and fluid properties. The MEL formulation is also implemented to parabolic Partial Differential Equations (PDE's) as these are shown to be interchangeable with equivalent PDE's having hyperbolic - parabolic characteristics, without violating the same physical concepts. We prove that the MEL schemes provide a convergent and monotone approximation also to PDE's with discontinuous coefficients. An extension to the Peclet number is presented that also accounts for advective dominant PDE's with no reference to the fluid velocity or even when this velocity is not introduced. In Sorek et al. [27], a mathematical analysis for a linear system of coupled PDE's and an example of nonlinear PDE's, proved that the finite difference MEL, unlike an Eulerian scheme, guaranties the absence of spurious oscillations. Currently, we present notions of monotone interpolation associated with the MEL particle tracking procedure and prove the convergence of the MEL schemes to the original balance equation also for discontinuous coefficients on the basis of difference schemes approximating PDE's. We provide numerical examples, also with highly random fields of permeabilities and/or dispersivities, suggesting that the MEL scheme produces resolutions that are more consistent with the physical phenomenon in comparison to the Eulerian and the Eulerian-Lagrangian (EL) schemes.

  9. Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light.

    PubMed

    Morandi, Omar; Zamanian, Jens; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-07-01

    We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source. PMID:25122397

  10. Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas.

    PubMed

    Brey, J Javier; Buzón, V; García de Soria, M I; Maynar, P

    2016-06-01

    The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of particles. The conclusion is that the system is always stable. The relevance of the results for describing the instabilities of confined granular gases observed experimentally is discussed. PMID:27415347

  11. Hydrodynamic modeling of an X-ray flare on Proxima Centauri observed by the Einstein telescope

    SciTech Connect

    Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt, J.H.M.M.

    1988-05-01

    Hydrodynamic numerical calculations of a flare which occurred on Proxima Centauri and was observed by the Einstein satellite on August 20, 1980 at 12:50 UT are presented. The highlights of the hydrodynamic code are reviewed, and the physical and geometrical parameters necessary for the calculations are derived and compared with observations. The results are consistent with the stellar flare being caused by the rapid dissipation of 5.9 x 10 to the 31st ergs, within a magnetic loop structure whose semilength is 7 x 10 to the 9th cm and cross-sectional radius is 7.3 x 10 to the 8th cm. The results provide evidence that flares on late-type stars can be described by a hydrodynamic model with a relatively simple geometry, similar to solar compact flares. 39 references.

  12. HOW TO MODEL HYDRODYNAMICS AND RESIDENCE TIMES OF 27 ESTUARIES IN 4 MONTHS

    EPA Science Inventory

    The hydrodynamics and residence times of 27 embayments were modeled during the first year of a project whose goal is to define the relation between nitrogen loadings and ecological responses of 44 systems that range from small to the size of Narragansett Bay and Buzzards Bay. The...

  13. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    EPA Science Inventory

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:

    EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  14. Axisymmetric magnetic gauges

    SciTech Connect

    Wright, B.L.; Alrick, K.R.; Fritz, J.N.

    1994-05-01

    Axisymmetric magnetic (ASM) gauges are useful diagnostic tools in the study of the conversion of energy from underground explosions to distant seismic signals. Requiring no external power, they measure the strength (particle velocity) of the emerging shock wave under conditions that would destroy most instrumentation. Shock pins are included with each gauge to determine the angle of the shock front. For the Non-Proliferation Experiment, two ASM gauges were installed in the ANFO mixture to monitor the detonation wave and 10 were grouted into boreholes at various ranges in the surrounding rock (10 to 64 m from the center of explosion). These gauges were of a standard 3.8-inch-diameter design. In addition, two unique Jumbo ASM gauges (3-ft by 3-ft in cross section) were grouted to the wall of a drift at a range of 65 m. We discuss issues encountered in data analysis, present the results of our measurements, and compare these results with those of model simulations of the experiment.

  15. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more

  16. Three-dimensional hydrodynamic modeling of a bubbling fluidized bed

    SciTech Connect

    Gamwo, I.K.; Soong, Y.; Gidaspow, D.; Lyczkowski, R.W.

    1995-12-31

    A well-posed three-dimensional model for bed dynamics was developed starting from an ill-posed model. The new model has predicted a roughly-spheroidal bubble shape and computed porosity distributions consistent with experimental observations with no disturbing ``fountain`` as predicted by the earlier model. The model can be applied to a variety of gas-solids flows of practical interest such as fluidization, pneumatic conveying, and two-phase jets, as well as liquid-solids flows.

  17. Scaling tree-level hydrodynamics to plot-level hydrology using novel model and measurements

    NASA Astrophysics Data System (ADS)

    Bohrer, Gil; Matheny, Ashley; Mirfendersgi, Golnaz; Morin, Timothy; Fatichi, Simone

    2016-04-01

    Hydrodynamic limitations are driven by the water availability to leave of the individual tree crowns, and are known to control transpiration in forest ecosystems under both wet and dry conditions. Current land-surface models do not represent tree-level processes, nor do they represent the above-ground storage in trees. As the intra-daily dynamics of soil moisture are slower and very different than the faster dynamics of water storage in the tree xylem, the current approach that do not incorporate tree-water storage leads to deviations from the observed dynamics of transpiration. We propose a framework to resolve such tree hydrodynamics. The FETCH2 model resolves the water flow, water potential, and water storage in the tree stem and realistically links stomatal conductance to the water potential in the xylem, while water availability in the soil provides a bottom boundary condition for the hydrodynamic system. We use data from a large scale ecological disturbance experiment at a forest in Michigan to validate this approach. We use a very large array of sap-flow sensors in a plot with eddy-covariance measurements to parameterize the model at both tree-scale and plot scale. We demonstrate novel approaches to continuously measure tree water storage, and to evaluate tree-level hydrodynamic traits that control the ecohydrological response of the plot to water stress and disturbance.

  18. Critical perspectives on the validation of complex numerical models of estuary hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    French, J.; Cea Gómez, L.

    2009-12-01

    Numerical hydrodynamic and sediment transport models provide a means of extending inferences from direct observation and for advancing understanding of estuarine processes, but the parametric complexity of 2D and 3D schemes invites questions concerning the extent to which model output can be evaluated against real-world data. In particular, conventional performance statistics invoke restrictive assumptions about the nature of the errors and offer little insight into the origin of poor performance. We show that the validation of tidal hydrodynamic models is more effective when widely-used metrics of predictive accuracy and model efficiency are combined with harmonic measures that are more diagnostic of the interactions between tidal propagation, bottom friction and bathymetry. Bathymetric data errors are often overlooked in a conventional validation process that has traditionally placed more emphasis on the adjustment of turbulence and bottom friction parameterisations. Yet systematic survey or datum errors can significantly impact model performance, especially where the model domain includes intertidal areas subject to wetting and drying. Accordingly, we present a set of objective adjustment relations that allow sensitivity of modelled hydrodynamics to likely bathymetric survey areas to be included in the validation process. In comparison with hydrodynamic models, sediment transport models rely on a less complete conceptualisation of a broader set of processes and have a parametric complexity that is not matched by the quantity and quality of observational data. Sediment model performance as measured by conventional objective functions is invariably weaker and it is important to match the structural complexity of their model errors with analyses that can localise the scales and times of poor performance. We show that wavelet scalograms provide a useful tool for semi-quantitatively visualising data, model and error series and for identifying particular frequencies

  19. A comparison of two finite element models of tidal hydrodynamics using a North Sea data set

    USGS Publications Warehouse

    Walters, R.A.; Werner, F.E.

    1989-01-01

    Using the region of the English Channel and the southern bight of the North Sea, we systematically compare the results of two independent finite element models of tidal hydrodynamics. The model intercomparison provides a means for increasing our understanding of the relevant physical processes in the region in question as well as a means for the evaluation of certain algorithmic procedures of the two models. ?? 1989.

  20. Implementation/validation of a low Reynolds number two-equation turbulence model in the Proteus Navier-Stokes code: Two-dimensional/axisymmetric

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1992-01-01

    The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.

  1. Development of a Hydrodynamic Model for Skagit River Estuary for Estuarine Restoration Feasibility Assessment

    SciTech Connect

    Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.

    2006-08-03

    The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.

  2. A linked hydrodynamic and water quality model for the Salton Sea

    USGS Publications Warehouse

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, D.M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  3. Modeling partially coupled objects with smooth particle hydrodynamics

    SciTech Connect

    Wingate, C.A.

    1996-10-01

    A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.

  4. Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Ardani, S.; Kaihatu, J. M.

    2012-12-01

    Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques

  5. A Hydrodynamic Model of The Human Leg Circulation.

    ERIC Educational Resources Information Center

    Klabunde, Richard E.; McDowell, Donald E.

    1984-01-01

    Describes the construction and use of a life-size model which shows blood flow under normal and pathological conditions. Four experimental procedures (single vessel occlusion, dilation of distal vascular bed, single artery stenosis, and multiple artery stenoses) typical of those demonstrated by the model are discussed and diagrammed. (DH)

  6. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  7. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  8. The effect of damping on the stability of a finite element model of a flexible non-axisymmetric rotor on tilting pad bearings

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony G.; Craggs, Anthony

    1995-09-01

    A finite element model of a rotor-bearing system with non-axisymmetric stiffness and mass properties was analyzed in a previous study. In this paper the model is extended to include the effects of external damping due to symmetrical tilting-pad bearings. The same instability mechanisms, due to the lack of axisymmetry and shear deflection occurred in the damped case as for the undamped case, but within the normal operating speed of typical industrial rotor systems, a quite high degree of asymmetry is necessary. A ratio of the difference in a diametral second moments of area to mean diametral second moment of area, greater than 0.3 is necessary for instability for the configuration modelled. The instabilities involving antisymmetric modes in the undamped case are not present in the damped case. The first backward mode is involved in the instabilities of most practical interest. The effect of internal damping is also examined for an axisymmetric rotor and the behaviour, involving instability of the first forward mode, compares well with purely analytical methods for simple rotors.

  9. The Hydrodynamical Models of the Cometary Compact HII Region

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi

    2015-10-01

    We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M⊙ star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm-3) molecular material with a stellar velocity of 15 km s-1. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H2 S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.

  10. Hydrodynamic modeling of laser interaction with micro-structured targets

    NASA Astrophysics Data System (ADS)

    Velechovsky, J.; Limpouch, J.; Liska, R.; Tikhonchuk, V.

    2016-09-01

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. The numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  11. One-dimensional hydrodynamic model generating a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  12. Hydrodynamic modeling of laser interaction with micro-structured targets

    DOE PAGESBeta

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir

    2016-08-03

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  13. Development and evaluation of a coupled hydrodynamic (FVCOM) and water quality model (CE-QUAL-ICM)

    SciTech Connect

    Kim, Taeyun; Labiosa, Rochelle G.; Khangaonkar, Tarang; Yang, Zhaoqing; Chen, Changsheng; Qi, Jianhua; Cerco, Carl

    2010-01-08

    Recent and frequent fish-kills in waters otherwise known for their pristine high quality, created increased awareness and urgent concern regarding potential for degradation of water quality in Puget Sound through coastal eutrophication caused by increased nutrient loading. Following a detailed review of leading models and tools available in public domain, FVCOM and CE-QUAL-ICM models were selected to conduct hydrodynamic and water quality simulations for the fjordal waters of Puget Sound.

  14. Fractal hydrodynamic model of high-fluence laser ablation plasma expansion

    SciTech Connect

    Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.

    2010-10-08

    Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.

  15. A Modeling Study of Hydrodynamic Circulation in a Fjord of the Pacific Northwest

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing

    2012-10-01

    Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO) in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.

  16. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  17. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)

    1998-01-01

    The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast

  18. Lattice Boltzmann Hydrodynamic and Transport Modeling of Everglades Mangrove Estuaries

    NASA Astrophysics Data System (ADS)

    Sukop, M. C.; Engel, V.

    2010-12-01

    Lattice Boltzmann methods are being developed and applied to simulate groundwater and surface water flows, and heat, solute, and particle transport. Their ability to solve Navier-Stokes, St. Venant, or Darcy equations with closely coupled solute transport and density-dependent flow effects in geometrically complex domains is attractive for inverse modeling of tracer release data and forward modeling of carbon transport in mangrove estuaries under various future conditions. Key physical processes to be simulated include tidal cycles, storm surge, sea level change, variable upstream stage, subsurface groundwater inputs, and precipitation/recharge and their effects on estuary salinity and carbon transport in the estuaries and groundwater beneath the mangroves. Carbon sources and storage in the aquifer and exchanges at the mangrove-estuary interface and carbon transformations in the water column also need to be simulated. Everglades tidal mangrove estuaries are characterized by relatively high velocity (approaching 1 m s-1) tidal flows. The channels are generally less than 2 m in depth. Tidal fluctuations approach 2 m leading to significant areas of periodic inundation and emergence of oyster beds, shell beaches, mangrove root masses, and sandy beaches. Initial models are two-dimensional, although a three-dimensional model explicitly incorporating bathymetry, density-dependent flow, and wind-driven circulation could be developed. Preliminary work highlights some of the abilities of early models. A satellite image of a 64-km2 area surrounding a CO2 flux tower is used to provide the model geometry. Model resolution is 15 m per grid node. A sinusoidal tidal stage variation and constant, high salinity are applied to the Gulf side of the model while a constant stage (corresponding to mean tide), zero salinity boundary is applied on the inland side. The Navier-Stokes equations coupled with the advection-diffusion equation are solved in the open channels. The mangrove areas

  19. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.

    PubMed

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N R

    2015-11-01

    In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. PMID:26547177

  20. Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity

    SciTech Connect

    Mishra, Sudib; Deymier, Pierre; Muralidharan, Krishna; Frantziskonis, G.; Pannala, Sreekanth; Simunovic, Srdjan

    2010-01-01

    We introduce a model of cavitation based on the multiphase Lattice Boltzmann method (LBM) that allows for coupling between the hydrodynamics of a collapsing cavity and supported solute chemical species. We demonstrate that this model can also be coupled to deterministic or stochastic chemical reactions. In a two-species model of chemical reactions (with a major and a minor specie), the major difference observed between the deterministic and stochastic reactions takes the form of random fluctuations in concentration of the minor species. We demonstrate that advection associated with the hydrodynamics of a collapsing cavity leads to highly inhomogeneous concentration of solutes. In turn these inhomogeneities in concentration may lead to significant increase in concentration-dependent reaction rates and can result in a local enhancement in the production of minor species.

  1. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.

    2015-11-01

    In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations.

  2. Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks

    NASA Astrophysics Data System (ADS)

    Kablou, Yashar

    Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.

  3. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  4. Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  5. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  6. Coupling of an individual-based model of anchovy with lower trophic level and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Wang, Yuheng; Wei, Hao; Kishi, Michio J.

    2013-03-01

    Anchovy ( Engraulis japonicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources. Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO), an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation. Seasonal variations of circulation, water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model. Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them. Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model. The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.

  7. A simple hydrodynamic model of tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2015-05-01

    Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.

  8. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.

    PubMed

    Buchanan, Cara; Rylander, Marissa Nichole

    2013-08-01

    The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment. PMID:23616255

  9. A general method for generating bathymetric data for hydrodynamic computer models

    USGS Publications Warehouse

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  10. Iceberg capsize hydrodynamics: a comparison of laboratory experiments and numerical modeling

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Cathles, L. M.; Correa-Legisos, S.; Ellowitz, J.; Darnell, K.; Zhang, W. W.; MacAyeal, D. R.

    2013-12-01

    Large icebergs are often observed to capsize in open water near fjords. During capsize, large amounts of gravitational potential energy are released which can lead to coastal tsunamis, mixing of the water column, and possibly lead to further calving at the glacier terminus. This process is rarely studied; in nature the scale and irregular timing of the events makes observations exceedingly difficult. Here we compare laboratory experiments and numerical modeling of the capsize process to better understand the coupling of the hydrodynamic forces to the solid iceberg. Although the characteristic Reynolds number is much lower for both the laboratory model and the numerical simulations, the comparison provides a starting point to quantify and identify generic features that can be estimated in the field, such as hydrodynamic pressure, water flow velocities, vertical mixing, and elastic stresses on the iceberg itself, which could lead to fracture.

  11. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    SciTech Connect

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2015-03-01

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.

  12. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  13. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual

    USGS Publications Warehouse

    Torak, L.J.

    1993-01-01

    A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or bead-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration. The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.

  14. Experimental study of the hydrodynamics in a model crystal growth crucible

    SciTech Connect

    Ruiz, X.; Massons, J.; Aguilo, M.; Diaz, F. . Dept. of Tecnico Quimica)

    1989-05-01

    In this paper, image processing techniques are applied to the meridional visualizations of the bulk flow generated under different boundary conditions in a model crystal growth crucible. The steady forced convective patterns obtained by means of tracer particles are digitized and processed in order to characterize its hydrodynamic behaviour. This characterization is carried out based on the analysis of the resulting meridional velocity, streamfunction and vorticity distributions. Some comparisons between the present results and other available data are also made.

  15. Vertical structures induced by propeller moonlets: Comparison of hydrodynamical model and N-body box simulations

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Seiß, M.; Salo, H.; Spahn, F.

    2014-04-01

    Small moonlets in Saturn's rings induce propeller called structures into the surrounding ring material. Images of Saturn's rings, taken by the Cassini spacecraft near Saturn's equinox in 2009, show shadows cast by these propellers [1], offering the opportunity to study their vertical structure. We compare results from an extended hydrodynamical propeller model with results from local N-body box simulations of propeller structures. In the hydrodynamical model, maximal propeller heights are determined from the gravitational scattering of the ring particles by the moonlet. Afterwards the disturbed balance of viscous heating and collisional cooling is considered as main mechanism of the propeller height relaxation [2]. For the N-body box simulations we use the code by Salo [3], which was also applied in the propeller simulations of [4] and [5]. We find that the exponential height relaxation predicted by the hydrodynamical modelling is confirmed by N-body simulations of non-self gravitating ring particles. By projecting the propeller height evolution of the hydrodynamical model into observations of the shadows cast by the Earhart propeller, we determine the exponential cooling constant of the height relaxation. With this cooling constant we estimate collision frequencies of about 6 collisions per particle per orbit in the propeller gap region or about 11 collisions per particle per orbit in the propeller wake region of the Earhart propeller. The N-body simulations lead to maximal propeller heights between 60 to 70 percent of the Hill radius of the corresponding moonlet. Moonlet sizes estimated by this relation are in fair agreement with size estimates from radial propeller scalings [5, 6] for propeller structures with observed shadows.

  16. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.

    PubMed

    Lin, Yuan

    2013-03-01

    The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. PMID:23161380

  17. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  18. Development of a Hydrodynamic Model of Puget Sound and Northwest Straits

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2007-12-10

    The hydrodynamic model used in this study is the Finite Volume Coastal Ocean Model (FVCOM) developed by the University of Massachusetts at Dartmouth. The unstructured grid and finite volume framework, as well as the capability of wetting/drying simulation and baroclinic simulation, makes FVCOM a good fit to the modeling needs for nearshore restoration in Puget Sound. The model domain covers the entire Puget Sound, Strait of Juan de Fuca, San Juan Passages, and Georgia Strait at the United States-Canada Border. The model is driven by tide, freshwater discharge, and surface wind. Preliminary model validation was conducted for tides at various locations in the straits and Puget Sound using National Oceanic and Atmospheric Administration (NOAA) tide data. The hydrodynamic model was successfully linked to the NOAA oil spill model General NOAA Operational Modeling Environment model (GNOME) to predict particle trajectories at various locations in Puget Sound. Model results demonstrated that the Puget Sound GNOME model is a useful tool to obtain first-hand information for emergency response such as oil spill and fish migration pathways.

  19. Hydrodynamic models for slurry bubble column reactors. Fourth technical progress report

    SciTech Connect

    Gidaspow, D.

    1995-07-01

    The objective of this investigation is to convert our ``learning gas-solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. The simulation of Air Product methanol reactors described in this paper are continuing. Granular temperatures and viscosities have been computed. Preliminary measurements of granular temperatures using the Air Product catalysts were obtained using our CCD camera.

  20. Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc

    2009-11-01

    Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.

  1. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    PubMed Central

    Zhu, Changjun; Liang, Qinag; Yan, Feng; Hao, Wenlong

    2013-01-01

    In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake. PMID:23997684

  2. Modelling Hydrodynamics, Sediment Transport and Provenance in the South San Francisco Bay Salt Ponds

    NASA Astrophysics Data System (ADS)

    Holleman, R. C.; Gross, E. S.; MacVean, L. J.; Stacey, M. T.; Fringer, O. B.

    2012-12-01

    Restoration of the South San Francisco Bay Salt Ponds is an immense and ongoing project with potentially far-reaching ramifications related to sediment supply, resuspension of contaminants, salt intrusion dynamics, tidal propagation and morphologic change. The rate of accretion in breached ponds depends on many factors, and the source of deposited material may be local or from other embayments. We present a high resolution hydrodynamic model of San Francisco Bay which resolves a broad range of spatial scales ranging from tens of kilometers in the coastal ocean, down to meters in a series of breached levees located in the Island Ponds. Complexities of the hydrodynamic model include both the generation of intertidal bathymetry and the numerical stability of wetting and drying when grid resolution is at the meter scale. Tides and currents show good validation against observed flows near the breaches. Hydrodynamic results are used to drive a particle-tracking based sediment model, allowing for detailed sediment provenance studies. Results demonstrate the viability of pond-deposited sediments sourced from beyond Calaveras Point even over short time periods.

  3. A hydrodynamic modeling study to estimate the flushing rate in a large coastal embayment.

    PubMed

    Lee, Hye Won; Park, Seok Soon

    2013-01-30

    A three-dimensional hydrodynamics model was applied to a coastal embayment on the west coast of the Korean Peninsula to examine the potential effects of a large reclamation project (the Saemangeum Project). To understand and analyze the impacts of the coastal structures associated with the Project on the hydrodynamics, as well as the composition ratio of the saltwater to freshwater, the seasonal distribution of the residence time and flushing rate were examined using the salinity and tracer simulation as dilution indicators. The calibrated and verified model was used to examine changes in the tidal elevation, salinity, residence time and flushing rate. The results indicate that the completion of the fourth sea dike will limit circulation, and that the salinity inside the dike would be dominated by rainfall and runoff. The flushing rate was estimated to decrease after the construction of the dike, such that biogeochemical changes could occur in the sea water and sediment. From this study, it was concluded that the three-dimensional hydrodynamic model can successfully simulate the changes in elevation, residence time and flushing rate in the Saemangeum Embayment and become a useful tool for determining a management plan to maintain the water quality of coastal embayments. PMID:23291376

  4. Modeling the tidal and sub-tidal hydrodynamics in a shallow, micro-tidal estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Fringer, Oliver B.

    2015-05-01

    The three-dimensional hydrodynamics of Galveston Bay were simulated in two periods of several month duration. The physical setting of Galveston Bay is described by synthesis of long-term observations. Several processes in addition to tidal hydrodynamics and baroclinic circulation processes contribute substantially to the observed variability of currents, water level and salinity. The model was therefore forced with realistic water levels, river discharges, winds, coastal buoyancy currents (due to the Mississippi River plume) and surface heat fluxes. Quantitative metrics were used to evaluate model performance against observations and both spatial and temporal variability in tidal and sub-tidal hydrodynamics were generally well represented by the model. Three different unstructured meshes were tested, a triangular mesh that under-resolved the shipping channel, a triangular mesh that resolved it, and a mixed quadrilateral-triangular grid with approximately equivalent resolution. It is shown that salinity and sub-tidal velocity are better predicted when the important topographic features, such as the shipping channel, are resolved. It was necessary to increase the seabed drag roughness in the mixed quadrilateral-triangular grid simulation to attain similar performance to the equivalent triangular mesh.

  5. An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Schwab, David J.; Hu, Song

    2015-07-01

    Lake Superior, the largest lake in the world by surface area and third largest by volume, features strong spatiotemporal thermal variability due to its immense size and complex bathymetry. The objectives of this study are to document our recent modeling experiences on the simulation of the lake thermal structure and to explore underlying dynamic explanations of the observed modeling success. In this study, we use a three-dimensional hydrodynamic model (FVCOM—Finite Volume Community Ocean Model) and an assimilative weather forecasting model (WRF—Weather Research and Forecasting Model) to study the annual heating and cooling cycle of Lake Superior. Model experiments are carried out with meteorological forcing based on interpolation of surface weather observations, on WRF and on Climate Forecast System Reanalysis (CFSR) reanalysis data, respectively. Model performance is assessed through comparison with satellite products and in situ measurements. Accurate simulations of the lake thermal structure are achieved through (1) adapting the COARE algorithm in the hydrodynamic model to derive instantaneous estimates of latent/sensible heat fluxes and upward longwave radiation based on prognostic surface water temperature simulated within the model as opposed to precomputing them with an assumed surface water temperature; (2) estimating incoming solar radiation and downward longwave radiation based on meteorological measurements as opposed to meteorological model-based estimates; (3) using the weather forecasting model to provide high-resolution dynamically constrained wind fields as opposed to wind fields interpolated from station observations. Analysis reveals that the key to the modeling success is to resolve the lake-atmosphere interactions and apply appropriate representations of different meteorological forcing fields, based on the nature of their spatiotemporal variability. The close agreement between model simulation and observations also suggests that the 3-D

  6. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p << 1. In addition to the classical cellular form of hydrodynamic stability, there exists a pulsating form corresponding to the loss of stability of steady, planar burning to time-dependent perturbations. This occurs for negative values of the parameter A(sub p), and is thus absent from the original Landau/Levich models. In the extended model, however, there exists a stable band of negative pressure sensitivities bounded above by the Landau type of instability, and below by this pulsating form of hydrodynamic

  7. Effect of longitudinal ridges on the hydrodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2014-11-01

    Leatherback sea turtles (Dermochelys coriacea) known as the fastest swimmer and the deepest diver among marine turtles have five longitudinal ridges on their carapace, and these ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the effect of these ridges on the hydrodynamic performance of the leatherback turtle, we model a carapace with and without ridges using a stuffed leatherback turtle in the National Science Museum, Korea. We measure the drag and lift forces on the ridged model in the ranges of real leatherback turtles' Reynolds number (Re) and angle of attack (α), and compare them with those of non-ridged model. At α < 6°, longitudinal ridges decrease drag on the ridged model by up to 32% compared to non-ridged model. On the other hand, at α > 6°, the drag and lift coefficients of the ridged model are higher than those of the non-ridged model, and the lift-to-drag ratio of the ridged model is higher by about 7% than that of the non-ridged model. We also measure the velocity field around both models using a particle image velocimetry and explain the hydrodynamic role of ridges in relation to diving behaviors of leatherback sea turtles. Supported by the NRF Program (2011-0028032).

  8. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal

    USGS Publications Warehouse

    Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J.

    2007-01-01

    A habitat suitability index (HSI) model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). An ArcGIS?? model was created for pre- and post-dam removal scenarios. Inputs to the HSI model consist of substrate distributions from river surveys, and water level and velocity time series, outputs from a hydrodynamic model. The ArcGIS?? model predicted habitat suitability indices at 45 river cross-sections in the hydrodynamic model. The model was programmed to produce polygon layers, using graphical user interfaces that were displayed in the ArcGIS?? environment. The results of the model clearly show an increase of habitat suitability from pre- to post-dam removal periods and in the former reservoir. The change in suitability of the model is attributed mostly to the change in depth in the river following the dam removal for both the fish and invertebrate species. The results of the invertebrate model followed the same positive trend as species enumerations from the river basin. ?? 2007 Elsevier B.V. All rights reserved.

  9. Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1974-01-01

    A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.

  10. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.

    PubMed

    Ley, Mikkel W H; Bruus, Henrik

    2016-03-23

    A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles. PMID:26948344

  11. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

    PubMed

    Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu

    2014-10-14

    The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications. PMID:25080889

  12. Comparison of two methods of mathematical modeling in hydrodynamic sealing gap

    NASA Astrophysics Data System (ADS)

    Krutil, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš

    2015-05-01

    The aim of work is to compare two possible methods of mathematical modeling of hydrodynamic instabilities. This comparison is performed by monitoring the formation and evolution of Taylor vortices in hydrodynamic sealing gap. Sealing gaps are a part of the hydraulic machines with the impeller, such as turbines and pumps, and they have an effect on the volumetric efficiency of these devices. This work presents two examples of sealing gaps. These examples are closed sealing gap and modified sealing gap with expansion chamber. On these two examples are applied procedures of solution contained in CFD software (ANSYS Fluent 14.5). In ANSYS Fluent is two possible basic approaches of solution this task: the moving wall method and the sliding mesh method. The result of work is monitoring the impact of the expansion chamber on the formation of hydrodynamic instabilities in the sealing gap. Another result is comparison of two used methods of mathematical modeling, which shows that both methods can be used for similar tasks.

  13. High-energy particle transport in three-dimensional hydrodynamic models of colliding-wind binaries

    SciTech Connect

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.

    2014-02-20

    Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

  14. High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries

    NASA Astrophysics Data System (ADS)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.

    2014-02-01

    Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

  15. An approximate theoretical method for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    1995-01-01

    An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.

  16. Multiscale molecular dynamics/hydrodynamics implementation of two dimensional "Mercedes Benz" water model

    NASA Astrophysics Data System (ADS)

    Scukins, A.; Nerukh, D.; Pavlov, E.; Karabasov, S.; Markesteijn, A.

    2015-09-01

    A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

  17. Assimilation of CryoSat-2 altimetry to a hydrodynamic model of the Brahmaputra river

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Ridler, Marc-Etienne; Madsen, Henrik; Bauer-Gottwein, Peter

    2016-04-01

    Remote sensing provides valuable data for parameterization and updating of hydrological models, for example water level measurements of inland water bodies from satellite radar altimeters. Satellite altimetry data from repeat-orbit missions such as Envisat, ERS or Jason has been used in many studies, also synthetic wide-swath altimetry data as expected from the SWOT mission. This study is one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, namely CryoSat-2. CryoSat-2 is equipped with the SIRAL instrument, a new type of radar altimeter similar to SRAL on Sentinel-3. CryoSat-2 SARIn level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra river basin in South Asia set up in the DHI MIKE 11 software. CryoSat-2 water levels were extracted over river masks derived from Landsat imagery. After discharge calibration, simulated water levels were fitted to the CryoSat-2 data along the Assam valley by adapting cross section shapes and datums. The resulting hydrodynamic model shows accurate spatio-temporal representation of water levels, which is a prerequisite for real-time model updating by assimilation of CryoSat-2 altimetry or multi-mission data in general. For this task, a data assimilation framework has been developed and linked with the MIKE 11 model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. Different types of error models, data assimilation methods, etc. can easily be used and tested. Furthermore, it is not only possible to update the water level of the hydrodynamic model, but also the states of the rainfall-runoff models providing the forcing of the hydrodynamic model. The setup has been used to assimilate CryoSat-2 observations over the Assam valley for the years 2010 to 2013. Different data assimilation methods and localizations were tested, together with different model error representations. Furthermore, the impact of

  18. Hydrodynamic, Heat and Acoustic Processes Modelling in Tranport of Rheologically Complex Viscous Media Technology in Pipelines

    NASA Astrophysics Data System (ADS)

    Kharlamov, Sergey N.; Kudelin, Nikita S.; Dedeyev, Pavel O.

    2014-08-01

    The paper describes the results of mathematical modelling of acoustic processes, hydrodynamics and heat exchange in case of oil products transportation in pipelines with constant and variable cross-section. The turbulence model features of RANS approach and intensification of heat exchange in substances with anomalous rheology are reviewed. It is shown that statistic second order models are appropriate to use for forecasting details of the pulsating flows. The paper states the numerical integration features of determining equations. The properties of vibratory effect influence are determined. Vortex and heat perturbations, rheological changes impact on resistance regularities and intensity of heat exchange are analyzed.

  19. Explicit 2-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (ESTSC)

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  20. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  1. Influence of elevation modelling on hydrodynamic simulations of a tidally-dominated estuary

    NASA Astrophysics Data System (ADS)

    Falcão, Ana Paula; Mazzolari, Andrea; Gonçalves, Alexandre B.; Araújo, Maria Amélia V. C.; Trigo-Teixeira, António

    2013-08-01

    Hydrodynamic simulation of estuaries requires a single digital elevation model (DEM) resulting from merging of both topographic and bathymetric data. These two datasets are usually produced using different technologies, co-ordinate systems and datums. Intertidal data in particular are often lacking due to the difficulty of data acquisition using conventional survey techniques. This paper presents a fast, accurate and low-cost methodology to fill this gap and highlights the effect of the digital elevation model characteristics, such as the interpolation method and spatial resolution, on modelled water levels and flooded areas. The Lima river estuary, located in North-western Portugal, is used as a case study. Validation tests for commonly available spatial interpolators showed ordinary kriging to be the most adequate interpolator. Digital elevation models with regular grids of 5 m and 50 m resolution were used, together with the original (not interpolated) elevation dataset, as input to a finite element hydrodynamic model for astronomic tide simulation. Results indicate that the larger differences between using different elevation models occur at low tide during spring tide, marginally impacting the flood modelling. The effect of a vertical offset of the chart datum with respect to a part of the digital elevation model was finally investigated, showing a limited influence in the determination of the water levels.

  2. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1; The Numerical Model

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Petrosian, Vahe; Mariska, John T.

    2009-01-01

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

  3. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary

    NASA Astrophysics Data System (ADS)

    Ji, Zhen-Gang; Hu, Guangdou; Shen, Jian; Wan, Yongshan

    2007-06-01

    Comparing with the studies on large estuarine systems, such as the Chesapeake Bay and the San Francisco Bay, the processes of stratification and transport in small and shallow estuaries are relatively less studied. The St. Lucie Estuary (SLE) is a riverine estuary located on the east coast of south Florida. It is small and shallow, with mean depth of 2.4 m. To study the estuarine processes in the SLE, a hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC) [Hamrick, J.M., 1992. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. The College of William and Mary, Virginia Institute of Marine Science, Special Report 317, 63 pp.]. The model was calibrated and verified using observational data obtained in 1999 and 2000, respectively. The model variables used for model data-comparisons are water elevation, velocity, temperature, and salinity. The model is then applied to study the hydrodynamic processes in the SLE. It is found that freshwater inflow plays a major role in the stratification and net flushing of the SLE. Stratification generally increases with freshwater inflow. But when the inflow is persistently large for a relatively long period, the estuary can suddenly change from very stratified to well mixed within a few tidal cycles and the stratification collapses. This finding suggests that large and persistent freshwater inflows do not always increase estuarine stratification. Instead, it may cause the stratification to collapse within a short period of time. In addition to gauged tributaries, ungauged lateral inflows can also be important to small and shallow estuaries like the SLE. Although small individually, the ungauged streams and surface runoffs can be a significant portion of the total inflow and affect salinity distribution significantly. Flushing time affects a wide range of hydrodynamic and water quality processes in the estuary. The model results indicate that commonly

  4. On the consistency of the drag between air and water in meteorological, hydrodynamic and wave models

    NASA Astrophysics Data System (ADS)

    van Nieuwkoop, Joana; Baas, Peter; Caires, Sofia; Groeneweg, Jacco

    2015-07-01

    For the design, assessment and flood control of water defences, hydraulic loads in terms of water levels and wave conditions are required and often obtained from numerical models. For these hydraulic loads to be reliable, accurate atmospheric forcing is required. Waves and surges are typically forced by surface stress. However, in most cases, the input for these models consists of 10-m wind velocities that are internally converted to surface stress by applying a particular drag relation. This procedure generally leads to inconsistencies, since the hydrodynamic, wave and atmospheric models often apply different drag relations. By means of a case study, we explored the consequences of this inconsistency in the drag formulation for a North Sea storm wave and surge hindcast. This was done by forcing the hydrodynamic and wave models using both the 10-m wind velocity and the surface stress fields computed by the atmospheric model. Our study results show significant differences between the wave parameter values and water levels computed with surface stress input and 10-m wind velocity input. Our goal is not to assess different drag parameterizations but to raise awareness for this issue and to plea for the use of a consistent drag relation in meteorological and hydrodynamic/wave models. The consistent use of one drag formulation facilitates the identification of problems and the eventual improvement of the drag formulation. Furthermore, we suggest using the so-called pseudo-wind, which is a translation of the surface stress to the 10-m wind speed using a reference drag relation.

  5. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  6. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  7. Nuclear subsurface explosion modeling and hydrodynamic fragmentation simulation of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Premaratne, Pavithra Dhanuka

    Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.

  8. MODELING OF FRICTION STIR WELDING (FSW) PROCESS USING SMOOTH PARTICLE HYDRODYNAMICS (SPH)

    SciTech Connect

    Tartakovsky, Alexandre M.; Grant, Glenn J.; Sun, Xin; Khaleel, Mohammad A.

    2006-06-14

    We present a novel modeling approach to simulate FSW process that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian particle method that can simulate the dynamics of interfaces, large material deformations, void formations and material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional simulations for different tool designs are presented. Preliminary numerical results are in good qualitative agreement with experimental observations.

  9. Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.

    NASA Astrophysics Data System (ADS)

    Trigg, M. A.; Bates, P. B.; Michaelides, K.

    2012-04-01

    The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means

  10. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2015-02-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of urbanisation of flood-prone areas and ongoing urban densification. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise how the effect of space and time aggregation on rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions ranging from 100 to 2000 m and from 1 to 10 min. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm characteristics and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show that for rainfall resolution lower than half the catchment size, rainfall volumes mean and standard deviations decrease as a result of smoothing of rainfall gradients. Moreover, deviations in maximum water depths, from 10 to 30% depending on the storm, occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model results also showed that modelled runoff peaks are more sensitive to rainfall resolution than maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level variations. Temporal resolution aggregation of rainfall inputs led to

  11. Investigation of axisymmetric and nonaxisymmetric nozzles installed on a 0.10 scale F-18 prototype airplane model. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Berrier, B. L.

    1980-01-01

    The Langley 16 foot transonic tunnel was used to investigate the afterbody/nozzle longitudinal aerodynamic characteristics of three different two dimensional nozzles and a base-line axisymmetric nozzle installed on a 0.10 scale model of the F-18 airplane. The effects of thrust vectoring and in-flight thrust reversing were also studied. Horizontal-tail deflections of 0 deg, -2 deg, and -5 deg were tested. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -2 deg to 10 deg. Nozzle pressure ratio was varied from jet off to about 10.

  12. Implications for the electron distribution from the stationary hydrodynamic model of a one-dimensional plasma expansion into vacuum

    SciTech Connect

    Kiefer, Thomas; Schlegel, Theodor

    2012-10-15

    It is shown that the hydrodynamic model of a one-dimensional collisionless plasma expansion is contained in the kinetic description as a special case. This belongs to a specific choice for the electron distribution function. Moreover, the consequences of the use of the hydrodynamic approach regarding the temporal evolution of the electron phase space density are investigated. It turns out that only the case of a hydrodynamic description with the adiabatic constant {kappa}=3 is physically self-consistent. Numerical simulations confirm this argumentation. The analysis for the case {kappa}=3 is extended to the kinetics of a relativistic electron gas.

  13. Linking near- and far-field hydrodynamic models for simulation of desalination plant brine discharges.

    PubMed

    Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D

    2013-01-01

    A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine

  14. On the hydrodynamic model of thermal escape from planetary atmospheres and its comparison with kinetic simulations

    NASA Astrophysics Data System (ADS)

    Volkov, A. N.

    2016-06-01

    Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.

  15. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  16. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  17. The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells

    NASA Astrophysics Data System (ADS)

    Fischer, Lukas P.; Peter, Toni; Holm, Christian; de Graaf, Joost

    2015-08-01

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy this problem by adding internal coupling points. Finally, we examine a non-convex shape, namely, a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in de Graaf et al. [J. Chem. Phys. 143, 084108 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates.

  18. Smoothed Particle Hydrodynamics Stochastic Model for Flow and Transport in Porous Media

    SciTech Connect

    Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.; Meakin, Paul

    2008-11-03

    A meso-scale stochastic Lagrangian particle model was developed and used to simulate conservative and reactive transport in porous media. In the stochastic model, the fluid flow in a porous continuum is governed by a combination of a Langevin equation and continuity equation. Pore-scale velocity fluctuations, the source of hydrodynamic dispersion, are represented by the white noise. A smoothed particle hydrodynamics method was used to solve the governing equations. Changes in the properties of the fluid particles (e.g., the solute concentration) are governed by the advection-diffusion equation. The separate treatment of advective and diffusive mixing in the stochastic transport model is more realistic than the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion coefficient) to describe both types of mixing leading to over-prediction of mixing induced effective reaction rates. The stochastic model predicts much lower reaction product concentrations in mixing induced reactions. In addition, the dispersion theory predicts more stable fronts (with a higher effective fractal dimension) than the stochastic model during the growth of Rayleigh-Taylor instabilities.

  19. Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Recchi, Simone; Hensler, Gerhard

    2015-07-01

    Context. In spite of enormous progress and brilliant achievements in cosmological simulations, they still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient detail. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. Aims: We aim to improve available numerical techniques to simulate individual dwarf galaxies. In particular, we aim to (i) study in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach; and (ii) study for the first time the chemodynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. Methods: We present a novel chemodynamical code for studying the evolution of individual dwarf galaxies. In this code, the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which facilitates an accurate calculation of the stellar feedback depending on the stellar age. The code has been accurately benchmarked, allowing us to provide a recipe for improving the code performance on the Sedov test problem. Results: We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support (and hence high degrees of flattening) develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. Models that start from non

  20. Note on the hydrodynamic description of thin nematic films: Strong anchoring model

    NASA Astrophysics Data System (ADS)

    Lin, Te-Sheng; Cummings, Linda J.; Archer, Andrew J.; Kondic, Lou; Thiele, Uwe

    2013-08-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion.

  1. The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Peter, Toni; Fischer, Lukas P.; Holm, Christian

    2015-08-01

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing.

  2. Linked Hydrologic-Hydrodynamic Model Framework to Forecast Impacts of Rivers on Beach Water Quality

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Fry, L. M.; Kramer, E.; Ritzenthaler, A.

    2014-12-01

    The goal of NOAA's beach quality forecasting program is to use a multi-faceted approach to aid in detection and prediction of bacteria in recreational waters. In particular, our focus has been on the connection between tributary loads and bacteria concentrations at nearby beaches. While there is a clear link between stormwater runoff and beach water quality, quantifying the contribution of river loadings to nearshore bacterial concentrations is complicated due to multiple processes that drive bacterial concentrations in rivers as well as those processes affecting the fate and transport of bacteria upon exiting the rivers. In order to forecast potential impacts of rivers on beach water quality, we developed a linked hydrologic-hydrodynamic water quality framework that simulates accumulation and washoff of bacteria from the landscape, and then predicts the fate and transport of washed off bacteria from the watershed to the coastal zone. The framework includes a watershed model (IHACRES) to predict fecal indicator bacteria (FIB) loadings to the coastal environment (accumulation, wash-off, die-off) as a function of effective rainfall. These loadings are input into a coastal hydrodynamic model (FVCOM), including a bacteria transport model (Lagrangian particle), to simulate 3D bacteria transport within the coastal environment. This modeling system provides predictive tools to assist local managers in decision-making to reduce human health threats.

  3. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (ESTSC)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  4. Modeling of liquid-vapor phase change using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Das, P. K.

    2015-12-01

    A model has been proposed based on smoothed particle hydrodynamics to describe gas liquid phase change. Pseudo particles of zero mass are initially placed to locate the interface. Mass generated due to phase change is assigned to the pseudo particles and their positions are updated at intervals to track the mobility of the interface. The developed algorithm has been used to simulate vapor formation around solid spheres both in the absence of gravity and in the normal gravitational field. Finally, bubble growth over a hot horizontal surface due to boiling has been simulated. Simulated results showed good matching with the reported literature.

  5. Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences.

    PubMed

    Cleary, Paul W; Prakash, Mahesh

    2004-09-15

    Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed. PMID:15306427

  6. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of

  7. Combining Envisat type and CryoSat-2 altimetry to inform hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter

    2015-04-01

    Hydrological models are developed and used for flood forecasting and water resources management. Such models rely on a variety of input and calibration data. In general, and especially in data scarce areas, remote sensing provides valuable data for the parameterization and updating of such models. Satellite radar altimeters provide water level measurements of inland water bodies. So far, many studies making use of satellite altimeters have been based on data from repeat-orbit missions such as Envisat, ERS or Jason or on synthetic wide-swath altimetry data as expected from the SWOT mission. This work represents one of the first hydrologic applications of altimetry data from a drifting orbit satellite mission, using data from CryoSat-2. We present an application where CryoSat-2 data is used to improve a hydrodynamic model of the Ganges and Brahmaputra river basins in South Asia set up in the DHI MIKE 11 software. The model's parameterization and forcing is mainly based on remote sensing data, for example the TRMM 3B42 precipitation product and the SRTM DEM for river and subcatchment delineation. CryoSat-2 water levels were extracted over a river mask derived from Landsat 7 and 8 imagery. After calibrating the hydrological-hydrodynamic model against observed discharge, simulated water levels were fitted to the CryoSat-2 data, with a focus on the Brahmaputra river in the Assam valley: The average simulated water level in the hydrodynamic model was fitted to the average water level along the river's course as observed by CryoSat-2 over the years 2011-2013 by adjusting the river bed elevation. In a second step, the cross section shapes were adjusted so that the simulated water level dynamics matched those obtained from Envisat virtual station time series. The discharge calibration resulted in Nash-Sutcliffe coefficients of 0.86 and 0.94 for the Ganges and Brahmaputra. Using the Landsat river mask, the CryoSat-2 water levels show consistency along the river and are in

  8. Can hydrodynamic models be implemented and calibrated on the basis of remotely sensed data only?

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio

    2015-04-01

    The implementation and calibration of hydrodynamic models are often constrained by the amount of available data (such as topographic and hydraulic data) which may be absent (e.g. in remote areas) or not sufficient to build accurate and trustable models. Nevertheless, the greater availability of remote sensing data (e.g. altimetry data, radar imageries, etc.) stimulates the scientific community to resort to these new data sources for overcoming these limits. The present study analyzes the potential of remotely sensed data, i.e. (i) Shuttle Radar Topography Mission (SRTM; a freely available global Digital Elevation Model with a resolution of 90 m) and (ii) satellite altimetry data (i.e. ERS and ENVISAT data), for a complete implementation and calibration of a one-dimensional (1D) hydrodynamic model. The test site is represented by ~140 km stretch of the Po river (the longest Italian river) where both traditional and remotely sensed topographical and hydrometric data are available. Adopting the SRTM data for representing the riverbed and floodplain morphology, the study investigates the performances of different 1D models in which the geometry of the main channel, which is generally submerged and cannot be remotely surveyed, is reconstructed on the basis of different approaches. The model calibrations are performed referring to long satellite altimetry timeseries (~16 years of observations), while the simulation results are compared with those obtained by means of a quasi-2D model implemented with detailed topographical data (i.e. airborne LiDAR available on the study area). The results of the study are encouraging and show the possibility to implement and calibrate a reliable 1D model referring exclusively to low-resolution DEM (e.g. SRTM) and remotely sensed water surface data (i.e. ERS and ENVISAT). The 1D model is particularly accurate for describing high-flow and flood events (i.e. root mean square error equal to 0.11 m) and comparable with traditionally

  9. The optimization of high resolution topographic data for 1D hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  10. Hydrodynamic effects in the symmetron and f(R)-gravity models

    NASA Astrophysics Data System (ADS)

    Hammami, Amir; Llinares, Claudio; Mota, David F.; Winther, Hans A.

    2015-06-01

    In this paper, we present the first results from implementing two scalar-tensor modified gravity theories, the symmetron and the Hu-Sawicki f(R)-gravity model, into a hydrodynamic N-body code with dark matter particles and a baryonic ideal gas. The study is a continuation of previous work where the symmetron and f(R) have been successfully implemented in the RAMSES code, but for dark matter only. By running simulations, we show that the deviation from Λ cold dark matter (ΛCDM) in these models for the gas density profiles are significantly lower than the dark matter equivalents. When it comes to the matter power spectrum, we find that hydrodynamic simulations agree very well with dark matter only simulations as long as we consider scales larger than k ˜ 0.5 h Mpc-1. In general the effects of modified gravity on the baryonic gas is found to not always mirror the effects it has on the dark matter, but when it does, it does it to a lesser extent. The largest signature is found when considering temperature profiles. We find that the gas temperatures in the modified gravity model studied here show deviations, when compared to ΛCDM, that can be a factor of a few larger than the deviations found in density profiles and power spectra.

  11. Regional scale hydrodynamic modelling of offshore wind farm development areas off the east coast of Scotland

    NASA Astrophysics Data System (ADS)

    O'Hara Murray, Rory; Gallego, Alejandro

    2013-04-01

    There is considerable interest in Scotland, supported by the Scottish Government, in the expansion of renewable energy production. In particular, significant offshore wind energy developments are already planned in coastal waters to the east of the Forth and Tay estuaries. It is important to understand the local and cumulative environmental impact of such developments within this region, to aid licensing decisions but also to inform marine spatial planning in general. Substantial wind farm developments may affect physical processes within the region, such as tidal-, wind-, and wave-driven circulation, as well as coastal sediment transport and more complex estuarine dynamics. Such physical impacts could have ecological and, ultimately, socio-economic consequences. The Firth of Forth and Tay areas both exhibit complex estuarine characteristics due to fresh water input, complex bathymetry and coastline, and tidal mixing. Our goal is to construct an unstructured grid hydrodynamic model of the wider Firth of Forth and Tay region using the Finite-Volume Coastal Ocean Model (FVCOM), resolving the complex estuarine hydrography of the area and representing offshore wind developments. Hydrodynamic modelling will provide an accurate baseline of the hydrography in this region but also allow the assessment of the effect on the physical environment of multiple wind farm development scenarios.

  12. Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Lazar, Karbunar; Duško, Borka; Ivan, Radović; Zoran, L. Mišković

    2016-04-01

    We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle–Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential. Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.

  13. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    NASA Astrophysics Data System (ADS)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  14. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    de Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Collischonn, Walter; Bonnet, Marie-Paule; Frappart, FréDéRic; Calmant, Stephane; Bulhões Mendes, Carlos André

    2013-03-01

    In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin is presented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGB-IPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain storage model. River-floodplain geometry parameters were extracted from the SRTM digital elevation model, and the model was forced using satellite-derived rainfall from TRMM3B42. Model results agree with observed in situ daily river discharges and water levels and with three complementary satellite-based products: (1) water levels derived from ENVISAT altimetry data; (2) a global data set of monthly inundation extent; and (3) monthly terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experimental mission. However, the model is sensitive to precipitation forcing and river-floodplain parameters. Most of the errors occur in westerly regions, possibly due to the poor quality of TRMM 3B42 rainfall data set in these mountainous and/or poorly monitored areas. In addition, uncertainty in river-floodplain geometry causes errors in simulated water levels and inundation extent, suggesting the need for improvement of parameter estimation methods. Finally, analyses of Amazon hydrological processes demonstrate that surface waters govern most of the Amazon TWS changes (56%), followed by soil water (27%) and ground water (8%). Moreover, floodplains play a major role in stream flow routing, although backwater effects are also important to delay and attenuate flood waves.

  15. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    PubMed

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. PMID:27095292

  16. Tools and Algorithms to Link Horizontal Hydrologic and Vertical Hydrodynamic Models and Provide a Stochastic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Salah, Ahmad M.; Nelson, E. James; Williams, Gustavious P.

    2010-04-01

    We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS) which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.

  17. Improved tsunami impact assessments: validation, comparison and the integration of hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Tarbotton, C.; Walters, R. A.; Goff, J. R.; Dominey-Howes, D.; Turner, I. L.

    2012-12-01

    As communities become increasingly aware of the risks posed by tsunamis, it is important to develop methods for predicting the damage they can cause to the built environment. This will provide the information needed to make informed decisions regarding land-use, building codes, and evacuation. At present, a number of tsunami-building vulnerability assessment models are available, however, the relative infrequency and destructive nature of tsunamis has long made it difficult to obtain the data necessary to adequately validate and compare them. Further complicating matters is that the inundation of a tsunami in the built environment is very difficult model, as is the response of a building to the hydraulic forces that a tsunami generates. Variations in building design and condition will significantly affect a building's susceptibility to damage. Likewise, factors affecting the flow conditions at a building (i.e. surrounding structures and topography), will greatly affect its exposure. This presents significant challenges for practitioners, as they are often left in the dark on how to use hazard modeling and vulnerability assessment techniques together to conduct the community-scale impact studies required for tsunami planning. This paper presents the results of an in-depth case study of Yuriage, Miyagi Prefecture - a coastal city in Japan that was badly damaged by the 2011 Tohoku tsunami. The aim of the study was twofold: 1) To test and compare existing tsunami vulnerability assessment models and 2) To more effectively utilize hydrodynamic models in the context of tsunami impact studies. Following the 2011 Tohoku event, an unprecedented quantity of field data, imagery and video emerged. Yuriage in particular, features a comprehensive set of street level Google Street View imagery, available both before and after the event. This has enabled the collection of a large dataset describing the characteristics of the buildings existing before the event as well the

  18. Generation and Properties of Large-Scale Non-axisymmetric Magnetic Fields by Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    Large-scale non-axisymmetric magnetic fields generated by the solar dynamo, and presumably responsible for the phenomenon of "active longitudes", play an important role in the distribution of solar activity and flares. By calculating 3D mean-field dynamo models, we show that nonlinear coupling between axisymmetric and non-axisymmetric modes, e.g. due to the magnetic feedback on the alpha-effect (see, e.g., [1]), can maintain a large-scale non-axisymmetric dynamo process. Non-axisymmetric random fluctuations of dynamo parameters can be another source for the non-axisymmetric magnetic fields on the Sun. Such fluctuations can provide a mechanism of the magnetic energy transfer from the global field to the non-axisymmetric modes. It is shown that the rotational periods of the non-axisymmetric field correspond to the dynamo process operating in the subsurface shear layer which is located in the range of depths 0.85-0.95R. We find that the magnetic helicity conservation quenches generation of the non-axisymmetric dynamo modes as well as it does for the axisymmetric dynamo. It is concluded that the 3D mean-field non-axisymmetric dynamo models can potentially explain the observed distribution of the solar magnetic activity.1. Moss, D.,Non-axisymmetric solar magnetic fields, 1999, MNRAS, 306, 300On 3/18/2015 2:29 PM, Valery Pipin wrote:

  19. 3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs

    SciTech Connect

    Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.

    2007-07-01

    The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)

  20. Hydrodynamic model for ultra-short pulse ablation of hard dental tissue

    SciTech Connect

    London, R.A.; Bailey, D.S.; Young, D.A.; Alley, W.E.; Feit, M.D.; Rubenchik, A.M.; Neev, J.

    1996-02-29

    A computational model for the ablation of tooth enamel by ultra-short laser pulses is presented. The role of simulations using this model in designing and understanding laser drilling systems is discussed. Pulses of duration 300 fsec and intensity greater than 10{sup 12} W/cm{sup 2} are considered. Laser absorption proceeds via multi-photon initiated plasma mechanism. The hydrodynamic response is calculated with a finite difference method, using an equation of state constructed from thermodynamic functions including electronic, ion motion, and chemical binding terms. Results for the ablation efficiency are presented. An analytic model describing the ablation threshold and ablation depth is presented. Thermal coupling to the remaining tissue and long-time thermal conduction are calculated. Simulation results are compared to experimental measurements of the ablation efficiency. Desired improvements in the model are presented.

  1. Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research

    PubMed Central

    Chen, Xin; Calvisi, Diego F.

    2015-01-01

    Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty–mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer. PMID:24480331

  2. Hollow conical jet models for SS 433 - A paradigm lost?

    NASA Technical Reports Server (NTRS)

    Kochanek, Christopher S.; Hawley, John F.

    1990-01-01

    A precessing jet such as that in SS 433 may be approximated as an axisymmetric flow, if the precession time is short by comparison to the propagation time. A series of simulations has been conducted for precessing jets using an axisymmetric finite-difference hydrodynamics code. Examinations are made of hollow cylindrical jets, which lack the complication of a growing interior volume, and conical jets, which model the behavior of a precessing jet propagating on the surface of its precession cone.

  3. Transient pressure changes in the vertebral canal during whiplash motion--A hydrodynamic modeling approach.

    PubMed

    Yao, Hua-Dong; Svensson, Mats Y; Nilsson, Håkan

    2016-02-01

    In vehicle collisions, the occupant's torso is accelerated in a given direction while the unsupported head tends to lag behind. This mechanism results in whiplash motion to the neck. In whiplash experiments conducted for animals, pressure transients have been recorded in the spinal canal. It was hypothesized that the transients caused dorsal root ganglion dysfunction. Neck motion introduces volume changes inside the vertebral canal. The changes require an adaptation which is likely achieved by redistribution of blood volume in the internal vertebral venous plexus (IVVP). Pressure transients then arise from the rapid redistribution. The present study aimed to explore the hypothesis theoretically and analytically. Further, the objectives were to quantify the effect of the neck motion on the pressure generation and to identify the physical factors involved. We developed a hydrodynamic system of tubes that represent the IVVP and its lateral intervertebral vein connections. An analytical model was developed for an anatomical geometrical relation that the venous blood volume changes with respect to the vertebral angular displacement. This model was adopted in the hydrodynamic tube system so that the system can predict the pressure transients on the basis of the neck vertebral motion data from a whiplash experiment. The predicted pressure transients were in good agreement with the earlier experimental data. A parametric study was conducted and showed that the system can be used to assess the influences of anatomical geometrical properties and vehicle collision severity on the pressure generation. PMID:26827171

  4. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  5. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    NASA Astrophysics Data System (ADS)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  6. Three-dimensional model of a plasma railgun using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Jackson, Lloyd M.

    Pulsed plasma accelerators are utilized for in-space propulsion and drivers for inertial fusion concepts. Theoretical models are necessary to assist in diagnostic analysis and for developing scaling laws. SPFMax is a new 3D code which uses smoothed particle hydrodynamics (SPH) to simulate fluid flow, and has been designed specifically for modeling plasmas produced by these pulsed devices. A set of gasdynamic test cases were established and utilized to verify the accuracy of SPFMax for modeling the gas dynamics in a railgun. The free expansion confirmed that the gas expands supersonically without exceeding the predicted maximum value. With the square wave test, SPFMax advected the waves with floating point accuracy. Shocks, expansion waves, and contact surfaces were resolved in both 1D and 3D tests with a relatively low number of particles.

  7. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.

    PubMed

    Długosz, Maciej; Antosiewicz, Jan M

    2015-07-01

    Proper treatment of hydrodynamic interactions is of importance in evaluation of rigid-body mobility tensors of biomolecules in Stokes flow and in simulations of their folding and solution conformation, as well as in simulations of the translational and rotational dynamics of either flexible or rigid molecules in biological systems at low Reynolds numbers. With macromolecules conveniently modeled in calculations or in dynamic simulations as ensembles of spherical frictional elements, various approximations to hydrodynamic interactions, such as the two-body, far-field Rotne-Prager approach, are commonly used, either without concern or as a compromise between the accuracy and the numerical complexity. Strikingly, even though the analytical Rotne-Prager approach fails to describe (both in the qualitative and quantitative sense) mobilities in the simplest system consisting of two spheres, when the distance between their surfaces is of the order of their size, it is commonly applied to model hydrodynamic effects in macromolecular systems. Here, we closely investigate hydrodynamic effects in two and three-body systems, consisting of bead-shell molecular models, using either the analytical Rotne-Prager approach, or an accurate numerical scheme that correctly accounts for the many-body character of hydrodynamic interactions and their short-range behavior. We analyze mobilities, and translational and rotational velocities of bodies resulting from direct forces acting on them. We show, that with the sufficient number of frictional elements in hydrodynamic models of interacting bodies, the far-field approximation is able to provide a description of hydrodynamic effects that is in a reasonable qualitative as well as quantitative agreement with the description resulting from the application of the virtually exact numerical scheme, even for small separations between bodies. PMID:26068580

  8. A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Risaliti, G.; Elvis, M.

    2010-06-01

    Context. Radiation driven winds are the likely origin of AGN outflows, and are believed to be a fundamental component of the inner structure of AGNs. Several hydrodynamical models have been developed, showing that these winds can be effectively launched from AGN accretion disks. Aims: Here we want to study the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions required for the existence of such winds for a wide variety of initial conditions. Methods: We built a simple and fast non-hydrodynamic model QWIND, where we assume that a wind is launched from the accretion disk at supersonic velocities of a few 100 km s-1, and we concentrated on the subsequent supersonic phase, when the wind is accelerated to final velocities up to 104 km s-1. Results: We show that, with a set of initial parameters in agreement with observations in AGNs, this model can produce a wind with terminal velocities on the order of 104 km s-1. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force, which is not effective in accelerating gas. This inner “failed wind” is important for shielding the next zone by lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin (about 100 gravitational radii). The outer, third zone is shielded from the UV radiation by the central wind zone, so does not achieve a high enough acceleration to reach escape velocity. We also describe a simple analytic approximation of our model, in which we neglect the effects of gravity during the acceleration phase. This analytic approach agrees with the results of the numerical code, and is a powerful way to check whether a radiation driven wind can be accelerated with a given set of initial parameters. Conclusions: Our

  9. Simulating pH effects in an algal-growth hydrodynamics model(1).

    PubMed

    James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T

    2013-06-01

    Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. PMID:27007048

  10. Hydrodynamic Modeling of the Near-Source Environment at a Jointed Site

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Bradley, C. R.; Steedman, D. W.; Rougier, E.

    2014-12-01

    We perform near source hydrodynamic modeling of an explosive event in granite: the first Source Physics Experiment (SPE-1). The effort includes constitutive material behavior of the rock, the optimal means for representing the granite joint response, and the best modeling approach for including both the high-deformation source region and the complex material response in the near field. Each of these factors contributes to better estimates of explosion to seismic phenomena to help the verification community. We illustrate the transition of results from increasing modeling fidelity from one-dimensional (1-D) modeling which simplifies both the source geometry and the geologic character to full, detailed three-dimensional (3-D) modeling. Both levels of modeling include an accepted explosive source model and a laboratory test-based constitutive mode for the intact granite. But the full 3-D model also explicitly models the cylindrically-shaped explosive in a grout filled borehole as well as explicit representation of rock joints as contact surfaces. These modeling attributes provide for an excellent match to recorded velocity measurements in both amplitude and character. But as explicit modeling of joints is currently impractical for a large rock volume, we modify the laboratory intact properties to implicitly include the effects of joints such as in the method of Hoek and Brown to develop a credible predictive methodology for a large region.

  11. The Size and Shape of Caldesmon and Its Fragments in Solution Studied by Dynamic Light Scattering and Hydrodynamic Model Calculations

    PubMed Central

    Czuryło, Edward A.; Hellweg, Thomas; Eimer, Wolfgang; Da̧browska, Renata

    1997-01-01

    The size and the shape of caldesmon as well as its 50-kDa central and 19-kDa C-terminal fragments were investigated by photon correlation spectroscopy. The hydrodynamic radii, which have been calculated from the experimentally obtained translational diffusion coefficients, are 9.8 nm, 6.0 nm, and 2.9 nm, respectively. Moreover, the experimental values for the translational diffusion coefficients are compared with results obtained from hydrodynamic model calculations. Detailed models for the structure of caldesmon in solution are derived. The contour length is about 64 nm for all of the models used for caldesmon. ImagesFIGURE 3FIGURE 4 PMID:9017208

  12. From Landau`s hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter...

    SciTech Connect

    Cooper, F.

    1996-12-31

    We review the assumptions and domain of applicability of Landau`s Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear {sigma} model, we demonstrate that many of Landau`s ideas are verified in explicit field theory calculations.

  13. [Modeling formation of aerobic granule and influence of hydrodynamic shear forces on granule diameter].

    PubMed

    Dong, Feng; Zhang, Han-Min; Yang, Feng-Lin

    2012-01-01

    A one-dimension aerobic granule mathematical model was established, basing on mathematical biofilm model and activated sludge model. The model was used to simulate simple aerobic granule process such as nutrients removal, granule diameter evolution, cycle performance as well as depth profiles of DO and biomass. The effluent NH4(+) -N concentration decreased as the modeling processed. The simulation effluent NO3(-)-N concentration decreased to 3 mg x L(-1) as the granules grew. While the granule diameter increased from 1.1 mm on day 30 to 2.5 mm on day 100, the TN removal efficiency increased from less than 10% to 91%. The denitrification capacity was believed to enhance because the anoxic zone would be enlarged with the increasing granule diameter. The simultaneous nitrification and denitrification occurred inside the big aerobic granules. The oxygen permeating depth increased with the consumption of substrate. It was about 100-200 microm at the beginning of the aeration phase, and it turned to near 800 microm at the end of reaction. The autotrophs (AOB and NOB) were mostly located at the out layer where the DO concentration was high. The heterotrophic bacteria were distributed through the whole granule. As hydrodynamic shear coefficient k(de) increased from 0.25 (m x d)(-1) to 5 (m x d)(-1), the granule diameter under steady state decreased form 3.5 mm to 1.8 mm. The granule size under the dynamic steady-state decreased with the increasing hydrodynamic shear force. The granule size could be controlled by adjusting aeration intensity. PMID:22452208

  14. Numerical Modeling of Tsunami Bore Attenuation and Extreme Hydrodynamic Impact Forces Using the SPH Method

    NASA Astrophysics Data System (ADS)

    Piche, Steffanie

    Understanding the impact of coastal forests on the propagation of rapidly advancing onshore tsunami bores is difficult due to complexity of this phenomenon and the large amount of parameters which must be considered. The research presented in the thesis focuses on understanding the protective effect of the coastal forest on the forces generated by the tsunami and its ability to reduce the propagation and velocity of the incoming tsunami bore. Concern for this method of protecting the coast from tsunamis is based on the effectiveness of the forest and its ability to withstand the impact forces caused by both the bore and the debris carried along by it. The devastation caused by the tsunami has been investigated in recent examples such as the 2011 Tohoku Tsunami in Japan and the Indian Ocean Tsunami which occurred in 2004. This research examines the reduction of the spatial extent of the tsunami bore inundation and runup due to the presence of the coastal forest, and attempts to quantify the impact forces induced by the tsunami bores and debris impact on the structures. This research work was performed using a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method which is a single-phase three-dimensional model. The simulations performed in this study were separated into three sections. The first section focused on the reduction of the extent of the tsunami inundation and the magnitude of the bore velocity by the coastal forest. This section included the analysis of the hydrodynamic forces acting on the individual trees. The second section involved the numerical modeling of some of the physical laboratory experiments performed by researchers at the University of Ottawa, in cooperation with colleagues from the Ocean, Coastal and River Engineering Lab at the National Research Council, Ottawa, in an attempt to validate the movement and impact forces of floating driftwood on a column. The final section modeled the movement and impact of floating debris

  15. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  16. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  17. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    NASA Astrophysics Data System (ADS)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  18. Hydrodynamic model calibration from pattern recognition of non-orthorectified terrestrial photographs

    NASA Astrophysics Data System (ADS)

    Pasquale, N.; Perona, P.; Wombacher, A.; Burlando, P.

    2014-01-01

    This paper presents a remote sensing technique for calibrating hydrodynamics models, which is particularly useful when access to the riverbed for a direct measure of flow variables may be precluded. The proposed technique uses terrestrial photography and automatic pattern recognition analysis together with digital mapping and does not require image ortho-rectification. Compared to others invasive or remote sensing calibration, this method is relatively cheap and can be repeated over time, thus allowing calibration over multiple flow rates . We applied this technique to a sequence of high-resolution photographs of the restored reach of the river Thur, near Niederneunforn, Switzerland. In order to calibrate the roughness coefficient, the actual exposed areas of the gravel bar are first computed using the pattern recognition algorithm, and then compared to the ones obtained from numerical hydrodynamic simulations over the entire range of observed flows. Analysis of the minimum error between the observed and the computed exposed areas show that the optimum roughness coefficient is discharge dependent; particularly it decreases as flow rate increases, as expected. The study is completed with an analysis of the root mean square error (RMSE) and mean absolute error (MEA), which allow finding the best fitting roughness coefficient that can be used over a wide range of flow rates, including large floods.

  19. DNA translocation through small channels and pores from molecular models. Hydrodynamic, electrostatic, and hybridization considerations.

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan

    2009-03-01

    The flow and translocation of long DNA molecules are of considerable applied and fundamental interest. Design of effective genomic devices requires control of molecular shape and positioning at the level of microns and nanometers, and understanding the manner in which DNA is packaged into small channels and cavities is of interest to biology and medicine. This presentation will present an overview of hierarchical models and computational approaches developed by our research group to investigate the effects of confinement, hydrodynamic interactions, and salt concentration, on the structure and properties of DNA, both at equilibrium and beyond equilibrium. The talk will include a discussion of coarse grain descriptions of the flow of DNA in microfluidic and nanofluidic channels over multiple length and time scales, and a discussion of emerging, detailed models that are capable of describing melting and rehybridization at the single nucleotide level, as well as the packaging of DNA into viral capsids and small pores.

  20. Hydrodynamic model for sum and difference frequency generation at metal surfaces

    NASA Astrophysics Data System (ADS)

    Maytorena, Jesús A.; Mochán, W. Luis; Mendoza, Bernardo S.

    1998-01-01

    We develop a hydrodynamic model for the calculation of sum and difference frequency generation (SFG/DFG) at the surface of nonlocal conductors with arbitrary equilibrium electronic density profiles n0. We apply our model to simple profiles and calculate the nonlinear surface susceptibility tensor χszzz(ω1,ω2) and the radiated efficiency R(ω3=ω1+/-ω2) as a function of the pump frequencies ω1 and ω2. R is strongly enhanced due to the excitation of the dipolar surface plasmon characterized by a resonant frequency ωd it displays ridges whenever ω1, ω2, or ω3~ωd, an additional ridge at the bulk plasma frequency ω3~ωb, and very large double resonance peaks whenever two ridges cross each other. These results suggest that SFG/DFG spectroscopy might be a useful probe of surface collective modes.

  1. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Jerome, Joseph; Osher, Stanley

    1989-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  2. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  3. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGESBeta

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  4. Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics.

    PubMed

    Olivieri, Giuseppe; Gargiulo, Luigi; Lettieri, Paola; Mazzei, Luca; Salatino, Piero; Marzocchella, Antonio

    2015-01-01

    Closed photobioreactors have to be optimized in terms of light utilization and overall photosynthesis rate. A simple model coupling the hydrodynamics and the photosynthesis kinetics has been proposed to analyze the photosynthesis dynamics due to the continuous shuttle of microalgae between dark and lighted zones of the photobioreactor. Microalgal motion has been described according to a stochastic Lagrangian approach adopting the turbulence model suitable for the photobioreactor configuration (single vs. two-phase flows). Effects of light path, biomass concentration, turbulence level and irradiance have been reported in terms of overall photosynthesis rate. Different irradiation strategies (internal, lateral and rounding) and several photobioreactor configurations (flat, tubular, bubble column, airlift) have been investigated. Photobioreactor configurations and the operating conditions to maximize the photosynthesis rate have been pointed out. Results confirmed and explained the common experimental observation that high concentrated cultures are not photoinhibited at high irradiance level. PMID:26148307

  5. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew

    2008-10-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.

  6. Effect of forward looking sites on a multi-phase lattice hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Redhu, Poonam; Gupta, Arvind Kumar

    2016-03-01

    A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.

  7. The hydrodynamic part of the 3D CEMBS model for the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a hydrodynamic part of the coupled ice-ocean model 3D CEMBS designed for the Baltic Sea. It is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research). It was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The models are linked through the coupler (CPL7) based on the Model Coupling Toolkit library. The ocean model has 21 vertical levels and horizontal grid of 600x640 cells. Horizontal resolution is approximately 2km. It is forced by atmospheric fields from European Centre for Medium-Range Weather Forecasts and in operational mode from 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdansk.

  8. Role of different types of solid models in hydrodynamic modeling and their effects on groundwater protection processes

    NASA Astrophysics Data System (ADS)

    Bódi, Erika; Buday, Tamás; McIntosh, Richard William

    2013-04-01

    Defining extraction-modified flow patterns with hydrodynamic models is a pivotal question in preserving groundwater resources regarding both quality and quantity. Modeling is the first step in groundwater protection the main result of which is the determination of the protective area depending on the amount of extracted water. Solid models have significant effects on hydrodynamic models as they are based on the solid models. Due to the legislative regulations, on protection areas certain restrictions must be applied which has firm consequences on economic activities. In Hungarian regulations there are no clear instructions for the establishment of either geological or hydrodynamic modeling, however, modeling itself is an obligation. Choosing the modeling method is a key consideration for further numerical calculations and it is decisive regarding the shape and size of the groundwater protection area. The geometry of hydrodynamic model layers is derived from the solid model. There are different geological approaches including lithological and sequence stratigraphic classifications furthermore in the case of regional models, formation-based hydrostratigraphic units are also applicable. Lithological classification is based on assigning and mapping of lithotypes. When the geometry (e.g. tectonic characteristics) of the research area is not known, horizontal bedding is assumed the probability of which can not be assessed based on only lithology. If the geological correlation is based on sequence stratigraphic studies, the cyclicity of sediment deposition is also considered. This method is more integrated thus numerous parameters (e.g. electrofacies) are taken into consideration studying the geological conditions ensuring more reliable modeling. Layers of sequence stratigraphic models can be either lithologically homogeneous or they may include greater cycles of sediments containing therefore several lithological units. The advantage of this is that the modeling can

  9. Coupled 1D-3D hydrodynamic modelling, with application to the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Zijl, Firmijn; Schwanenberg, Dirk; Chiu, Alex Y. W.

    2009-12-01

    Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving

  10. hydrological and hydrodynamic modeling on la plata river basin using mgb-iph

    NASA Astrophysics Data System (ADS)

    Pontes, Paulo; Collischonn, Walter; Paiva, Rodrigo; Fan, Fernando

    2015-04-01

    In this paper, we present an improving of Large Scale Hydrological Model (MGB-IPH). The improving consists in implementing a new hydrodynamic model (Inertial) and considering of flooded areas. The Inertial model, which is a simplification of Saint-Venant equations, replaced the Muskingum-Cunge flow routing model. The Inertial equation allows represent the flow in low slope rivers, the backwater, and the tide effects. We tested the model on La Plata River Basin (3,100,000 km²) which is a complex hydrological system located on South America. The aim of this paper is assess the MGB-IPH with the Inertial model and identify regions where is required new modification on model to represent others hydrological process. Furthermore, we developed an algorithm to extract of the Digital Elevation Model the required information about unit catchment, river length and river slope, flooded areas and cross section information. For this, we used available global data, as DEM of Shuttle Radar Topography Mission and HYDROSHEDS flow direction map. We used climate data available on Climate Research Unit and satellite precipitation (MERGE). The results show that this new version of MGB-IPH can reproduce the flow on La Plata river Basin.

  11. Axisymmetric Plume Simulations with NASA's DSMC Analysis Code

    NASA Technical Reports Server (NTRS)

    Stewart, B. D.; Lumpkin, F. E., III

    2012-01-01

    A comparison of axisymmetric Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) results to analytic and Computational Fluid Dynamics (CFD) solutions in the near continuum regime and to 3D DAC solutions in the rarefied regime for expansion plumes into a vacuum is performed to investigate the validity of the newest DAC axisymmetric implementation. This new implementation, based on the standard DSMC axisymmetric approach where the representative molecules are allowed to move in all three dimensions but are rotated back to the plane of symmetry by the end of the move step, has been fully integrated into the 3D-based DAC code and therefore retains all of DAC s features, such as being able to compute flow over complex geometries and to model chemistry. Axisymmetric DAC results for a spherically symmetric isentropic expansion are in very good agreement with a source flow analytic solution in the continuum regime and show departure from equilibrium downstream of the estimated breakdown location. Axisymmetric density contours also compare favorably against CFD results for the R1E thruster while temperature contours depart from equilibrium very rapidly away from the estimated breakdown surface. Finally, axisymmetric and 3D DAC results are in very good agreement over the entire plume region and, as expected, this new axisymmetric implementation shows a significant reduction in computer resources required to achieve accurate simulations for this problem over the 3D simulations.

  12. From mode I cracking to dilatancy, shear, and compaction banding: Constraints from axisymmetric and poly-axial experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Chemenda, A. I.; Jorand, C.; Petit, J.; Nguyen, S.

    2011-12-01

    -type tests thus show generally similar change of failure/localization structure with pressure, but under axisymmetric conditions some end-member structures are missing (the compaction bands in the extension tests and the dilatancy bands/mode I fractures in the compression tests). Deformation bifurcation is commonly used to explain the formation of shear bands. The initiation of compaction and dilatancy bands can also be viewed as resulting from a similar process. This requires assuming large absolute values of the dilatancy factor β. Finite-difference simulations suggest that |β| should rapidly reduce with inelastic deformation, which is confirmed by the experimental data. The numerical models suggest also that the failure structures observed in the experiments correspond to the unstable post-bifurcation evolution of the deformation bands that is largely defined by the evolution of β and other constitutive parameters with deformation.

  13. Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach

    PubMed Central

    Brennan, Georgina; Kregting, Louise; Beatty, Gemma E.; Cole, Claudia; Elsäßer, Björn; Savidge, Graham; Provan, Jim

    2014-01-01

    Gene flow in macroalgal populations can be strongly influenced by spore or gamete dispersal. This, in turn, is influenced by a convolution of the effects of current flow and specific plant reproductive strategies. Although several studies have demonstrated genetic variability in macroalgal populations over a wide range of spatial scales, the associated current data have generally been poorly resolved spatially and temporally. In this study, we used a combination of population genetic analyses and high-resolution hydrodynamic modelling to investigate potential connectivity between populations of the kelp Laminaria digitata in the Strangford Narrows, a narrow channel characterized by strong currents linking the large semi-enclosed sea lough, Strangford Lough, to the Irish Sea. Levels of genetic structuring based on six microsatellite markers were very low, indicating high levels of gene flow and a pattern of isolation-by-distance, where populations are more likely to exchange migrants with geographically proximal populations, but with occasional long-distance dispersal. This was confirmed by the particle tracking model, which showed that, while the majority of spores settle near the release site, there is potential for dispersal over several kilometres. This combined population genetic and modelling approach suggests that the complex hydrodynamic environment at the entrance to Strangford Lough can facilitate dispersal on a scale exceeding that proposed for L. digitata in particular, and the majority of macroalgae in general. The study demonstrates the potential of integrated physical–biological approaches for the prediction of ecological changes resulting from factors such as anthropogenically induced coastal zone changes. PMID:24671941

  14. Wind forcing of upland lake hydrodynamics: implementation and validation of a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Morales, L.; French, J.; Burningham, H.; Evans, C.; Battarbee, R.

    2010-12-01

    Upland lakes act as important archives of environmental change, yet inferences based on the analysis of sediment cores are frequently compromised by an incomplete understanding of the hydrodynamic processes controlling the distribution and completeness of lake sediment sequences and their linkages to wider environmental factors. Many upland lakes are characterized by complex vertical and horizontal circulation patterns induced by the action of wind on the water surface. Wind forcing is important not only for the resuspension of bottom sediments in shallow marginal areas, but may also control the broader distribution of sediment accumulation. The work presented here represents the first stage of a project aimed at elucidating the linkages between wind forcing and the distribution of bottom sediments in upland lakes and the extent to which simple 'sediment focusing' models provide an adequate basis for predicting optimal locations for the acquisition of core samples for palaeolimnological analysis. As a first step, a 3D numerical hydrodynamic model is implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. This utilises the community ocean model, FVCOM, that solves the Navier-Stokes equations in 3D on an unstructured triangular mesh using the finite volume method. A new graphical user interface has been developed for FVCOM to facilitate pre- and post-processing of lake modelling problems. At Llyn Conwy, the model is forced using local meteorological data and validated against vertical temperature profiles recorded by a long-term buoy deployment and short-term observations of vertical current structure measured using an upward-looking acoustic doppler profiler and surface circulation obtained from GPS drifters. Challenges in the application of FVCOM to a small lake include the design of a mesh that ensures numerical stability whilst resolving a complex bathymetry, and the need for careful treatment of model 'spin-up'. Once calibrated, the

  15. Medium term modelling of coupled hydrodynamics, turbulence and sediment pathways in a region of freshwater influence.

    NASA Astrophysics Data System (ADS)

    Amoudry, Laurent; Brown, Jenny; Souza, Alex; Norman, Danielle; Olsen, Karine

    2014-05-01

    Liverpool Bay, in the northwest of the UK, is a shallow, hypertidal region of freshwater influence. In this region, baroclinic processes significantly affect the residual circulation, which in turn influences the long term transport of sediment. A nested modelling system is implemented to simulate the coupled hydro and sediment dynamics in the bay. We use the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), which is based on a three-dimensional baroclinic numerical model formulated in spherical polar terrain-following coordinates. The hydrodynamic model solves the three-dimensional, hydrostatic, Boussinesq equations of motion separated into depth-varying and depth-independent parts to allow time splitting between barotropic and baroclinic components. This model is coupled to the General Ocean Turbulence Model (GOTM), to the WAve Model (WAM), and includes state-of-the-art Eulerian and Lagrangian sediment transport models. We implement POLCOMS to Liverpool Bay at a horizontal resolution of approximately 180 m. The bathymetry consists of digitized hydrographic charts combined with LIDAR and multibeam data. Three-dimensional baroclinic effects, river inputs, surface heating and offshore density structure are all considered. Liverpool Bay is subjected to a spring tidal range in excess of 10 m and thus intertidal areas are significant. Wetting and drying algorithms are therefore also implemented. A nesting approach is employed to prescribe offshore boundary conditions for elevations, currents, temperature and salinity. Boundary values are obtained from numerical simulations for the entire Irish and are then used to force the three-dimensional hydrodynamics in the Liverpool Bay domain. Atmospheric forcing consists of hourly wind velocity and atmospheric pressure, and three-hourly cloud cover, humidity and air temperature. We focus here on numerical simulations for a full year, 2008, which is considered to be a typical year for atmospheric

  16. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  17. Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay

    SciTech Connect

    Dimitrijevic, D. R.; Maluckov, A. A.

    2010-01-21

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  18. Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches

    SciTech Connect

    Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.

    2009-01-21

    Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.

  19. Effect of mouthrinses on Aggregatibacter actinomycetemcomitans biofilms in a hydrodynamic model.

    PubMed

    Sliepen, Isabelle; Van Essche, Mark; Quirynen, Marc; Teughels, Wim

    2010-06-01

    The aim of the study was to evaluate the effects of Listerine, Meridol, and Perioaid on the viability and total number of bacteria in established biofilms using an in vitro model under hydrodynamic conditions. Biofilms of Aggregatibacter actinomycetemcomitans were placed in a modified Robbins device and rinsed twice daily during 4 days. Bacteria were quantified by culture and quantitative polymerase chain reaction. Visualization of the samples was performed by scanning electron and confocal laser scanning microscopy, combined with a fluorescent vital staining. All three mouthrinses caused a significant reduction in the number of cultivable A. actinomycetemcomitans in a biofilm. Perioaid was significantly the most powerful in killing the biofilm-protected bacteria and also in counteracting the development of thick dense microbial communities. The total amount of bacteria was not significantly affected by Listerine and Meridol. PMID:19462186

  20. Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Asplund, M.; Collet, R.; Leenaarts, J.

    2016-02-01

    The O I 777 nm lines are among the most commonly used diagnostics for the oxygen abundances in the atmospheres of FGK-type stars. However, they form in conditions that are far from local thermodynamic equilibrium (LTE). We explore the departures from LTE of atomic oxygen, and their impact on O I lines, across the STAGGER-grid of three-dimensional hydrodynamic model atmospheres. For the O I 777 nm triplet, we find significant departures from LTE. These departures are larger in stars with larger effective temperatures, smaller surface gravities, and larger oxygen abundances. We present grids of predicted 3D non-LTE based equivalent widths for the O I 616 nm, [O I] 630 nm, [O I] 636 nm, and O I 777 nm lines, as well as abundance corrections to 1D LTE based results.

  1. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.

    PubMed

    Weng, Huei Chu

    2013-03-01

    Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction. PMID:24231820

  2. Hydrodynamics of rotating stars and close binary interactions: Compressible ellipsoid models

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We develop a new formalism to study the dynamics of fluid polytropes in three dimensions. The stars are modeled as compressible ellipsoids, and the hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. Both viscous dissipation and the gravitational radiation reaction are incorporated. We establish the validity of our approximations and demonstrate the simplicity and power of the method by rederiving a number of known results concerning the stability and dynamical oscillations of rapidly rotating polytropes. In particular, we present a generalization to compressible fluids of Chandrasekhar's classical results for the secular and dynamical instabilities of incompressible Maclaurin spheroids. We also present several applications of our method to astrophysical problems of great current interest, such as the tidal disruption of a star by a massive black hole, the coalescence of compact binaries driven by the emission of gravitational waves, and the development of instabilities in close binary systems.

  3. Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna

    2015-03-01

    In this paper, a new two-lane lattice hydrodynamic traffic flow model is proposed by considering the aggressive or timid characteristics of driver's behavior. The effect of driver's characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of lane changing or without lane changing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. The effect of anticipation parameter with more aggressive (timid) drivers is also investigated and found that it has a positive (negative) effect on the stability of two-lane traffic flow dynamics. Simulation results are found consistent with the theoretical findings which confirm that the driver's characteristics play a significant role in a two-lane traffic system.

  4. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    PubMed

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way. PMID:25061791

  5. Axisymmetric, Nonstationary Black Hole Magnetospheres: Revisited

    NASA Astrophysics Data System (ADS)

    Song, Yoo Geun; Park, Seok Jae

    2015-10-01

    An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park & Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.

  6. Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations

    NASA Astrophysics Data System (ADS)

    Winter, Henry Degraffenried, III

    Solar flares remain a subject of intense study in the solar physics community. These huge releases of energy on the Sun have direct consequences for humans on Earth and in space. The processes that impart tremendous amounts of energy are not well understood. In order to test theoretical models of flare formation and evolution, state of the art, numerical codes must be created that can accurately simulate the wide range of electromagnetic radiation emitted by flares. A direct comparison of simulated radiation to increasingly detailed observations will allow scientists to test the validity of theoretical models. To accomplish this task, numerical codes were developed that can simulate both the thermal and nonthermal components of a flaring plasma, their interactions, and their emissions. The HYLOOP code combines a hydrodynamic equation solver with a nonthermal particle tracking code in order to simulate the thermal and nonthermal aspects of a flare. A solar flare was simulated using this new code with a static atmosphere and with a dynamic atmosphere, to illustrate the importance of considering hydrodynamic effects on nonthermal beam evolution. The importance of density gradients in the evolution of nonthermal electron beams was investigated by studying their effects in isolation. The importance of the initial pitch-angle cosine distribution to flare dynamics was investigated. Emission in XRT filters were calculated and analyzed to see if there were soft X-ray signatures that could give clues to the nonthermal particle distributions. Finally the HXR source motions that appeared in the simulations were compared to real observations of this phenomena.

  7. Hydrodynamic modeling and ecohydrological analysis of river inflow effects on Apalachicola Bay, Florida, USA

    NASA Astrophysics Data System (ADS)

    Huang, Wenrui

    2010-02-01

    This paper presents an integrated hydrodynamic modeling and probability analysis approach to assess the long-term effects of changing river inflows on the estuarine ecosystem. The probability analysis method, which is popularly used in advanced hydrological frequency analysis of river flows and rainfalls, has been applied to analyze the effects of changing inflow on salinity and thus on oyster ecology in Apalachicola Bay. Long-term salinity data were predicted through the application of a calibrated 3D hydrodynamic model under two river inflow conditions over a 10-year period. The first flow represents the historic flow. The 2nd flow condition, called Scenario-1, represents a regulated flow scenario to account for the potential increasing upstream water demands. Two stations, Mid Bay and Dry Bar, in the bay were selected to examine the estuarine responses. Under the historic flow condition, the maximum probability salinity at Dry Bar in the rich oyster reef is near 24 ppt, within the optimal salinity range for oyster growth of 16-26 ppt (Harned et al., 1996); the maximum probability salinity at Mid Bay station is 27 ppt, beyond the optimal salinity for oyster growth in mid-bay area where there is no oyster reef around. While it is difficult to examine the difference between two scenarios by conventional time series analysis of river flows and salinity, probability analysis reasonably characterizes and quantifies the changes of river flow and salinity patterns over the 10-year period. The Scenario-1 has caused the increase of the probability in low flows. Higher probability of low flows for the regulated flow scenario shortens the period of optimal salinity in the oyster reef, and cause substantial increase of exceedance probability of higher salinity in the oyster reef to the level beyond the optimal salinity range for oyster growth. The probability analysis approach has demonstrated its advantage for the risk assessments of the long-term estuarine ecohydrological

  8. Hydrodynamic Modeling Analysis of Tidal Wetland Restoration in Snohomish River, Washington

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2012-03-07

    To re-establish the intertidal wetlands with full tidal interaction and improve salmonid rearing habitat in the Lower Snohomish River estuary, a diked wetland along Union Slough of the Snohomish River was restored by breaching the existing dike and constructing bridges across the breaches. However, post-restoration monitoring indicated that the restored project site could not drain as efficiently as desired. To improve the drainage conditions at the restoration site during low tides, a modeling study was conducted to evaluate additional restoration scenarios and to provide recommendations for finish-grade ground elevations to achieve the desired drainage. To accurately simulate the drainage of the project site, an unstructured-grid hydrodynamic model with fine-grid resolution down to a few meters was used in this study. The model was first validated with observed water level data collected in the project site and then applied to assess the feasibility of different proposed restoration scenarios. A spatial varying bottom roughness option in the model is also implemented to better represent the high roughness due to the presence of dense vegetation in the project site. The methodology, error statistics of model validation and uncertainty of the modeling analysis are presented and discussed.

  9. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    PubMed

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy. PMID:19924947

  10. MULTIFLUID EULERIAN MODELLING OF DENSE GAS-SOLID FLUIDIZED BED HYDRODYNAMICS: INFLUENCE OF THE DISSIPATION PARAMETERS

    SciTech Connect

    Reuge, N; Cadoret, L.; Pannala, Sreekanth; Syamlal, M; Coufort, C; Caussat, B

    2008-01-01

    Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with confidence for designing fluidized bed reactors. In this study, validation data were collected from a fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations, and frequency of fluctuations were measured from a videos of the fluidized bed. The Eulerian-Eulerian two fluid model MFIX was then used to simulate the experiments. Two different models for the particle stresses - Schaeffer (Syamlal et al., (1993), Schaeffer (1987)) and Princeton (Srivastava and Sundaresan (2003)) models - and different values of the restitution coefficient and internal angle of friction were evaluated. 3-D simulations are required for getting quantitative and qualitative agreement with experimental data. The results from the Princeton model are in better agreement with data than from the Schaeffer model. Both free-slip and Johnson-Jackson boundary conditions give nearly identical results. An increase in e from 0.8 to 1 leads to larger bed expansions and lower heights of fluctuations in the bubbling regime whereas it leads to unchanged bed expansion and to a massive reduction in the height of fluctuations in the slugging regime. The angle of internal friction (φ) in the range 10 -40 does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations.

  11. Hydrodynamic models for slurry bubble column reactors. Third technical progress report, January 1995--March 1995

    SciTech Connect

    Gidaspow, D.

    1995-04-01

    The objective of this investigation is to convert our {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. After a discussion of our research with the DOE-Air Products team in January, we decided to concentrate on the slurry configuration of interest to DOE-Air Products which has no recirculation of liquid. In such a system the gas is the continuous phase, rather than the liquid that we had used in our model in the past. We have built such a cold flow two dimensional plastic model. We have also changed our computer code. At the request of Air Products and DOE we have started a simulation of LaPorte RUN E-8.1 (1991) for production of methanol as described in the Air Products report sent to us. For isothermal operation, there is good mixing, and the preliminary results shown in this report indicate that we should obtain an agreement between the experiment and the simulations. A final report will be prepared upon completion of the simulation.

  12. Hydrodynamic Modeling of Flood Dynamics and Restoration Potential of Lower Missouri River Floodplains

    NASA Astrophysics Data System (ADS)

    Lindner, G. A.

    2012-12-01

    Lower Missouri River floodplains have the potential to provide multiple ecosystem services including agricultural production, floodwater storage, nutrient processing, and provision of habitats. In this research, a 2-dimensional hydrodynamic model of a representative looped floodplain bottom of approximately 20 km is utilized to explore how floodplain inundation contributes to ecosystem benefits and costs. High resolution 2-dimensional hydrodynamic modeling provides insights into the way velocities, flood stages, residence times, and transported constituents (sediment, nutrients, and fish larvae, for example) are affected by levee geometry, floodplain vegetation patterns, and flood magnitude and duration. The utility of 2-dimensional numerical hydraulic models to represent the channel and floodplain are demonstrated at a scale relevant to understanding processes that control channel/floodplain dynamics. The sensitivity of model response to alternative land use scenarios, including levee setbacks and variable overbank roughness, is quantified using hydraulic parameters such as velocity, water level, conveyance, and residence time. The 2-dimensional models are calibrated to existing 1-dimensional modeling solutions and field measurements of water surface from 1993 and 2007 for the 2-year, 5-year, and 10-year recurrence intervals. Calibration runs with current levee configurations are matched to approximately ±0.1 meters. Simulations of alternative land use scenarios demonstrate the tradeoffs between ecological restoration and flood risk reductions. Levee setbacks with low hydraulic roughness associated with traditional row crop agriculture on the floodplains have the greatest potential for flood stage reductions, while native plant communities with higher roughness can negate the effects of the setbacks by increasing water levels due to enhanced frictional resistance. Residence times, which are presumed to be related to ecosystem services, demonstrate increasingly

  13. Mathematical modeling of the thermal and hydrodynamic structure of the cooling reservoir

    NASA Astrophysics Data System (ADS)

    Saminskiy, G.; Debolskaya, E.

    2012-04-01

    is used as a cooling reservoir for Konakovskaya power plant. It dumps the heated water in the Moshkovichevsky bay. Thermal and hydrodynamic structure of the Moshkovichevsky Bay is particular interest as the object of direct influence of heated water discharge. To study the effect of thermal discharge into the Ivankovskoe reservoir the model of the Moshkovichevsky Bay was built, which is subject to the largest thermal pollution. Step of the calculation grid is 25 meters. For further verification of the model field investigations were conducted in August-September 2011. The modeling results satisfactorily describe the thermal and hydrodynamic structure of the Moshkovichevsky Bay.

  14. Hydrodynamic supercontinuum.

    PubMed

    Chabchoub, A; Hoffmann, N; Onorato, M; Genty, G; Dudley, J M; Akhmediev, N

    2013-08-01

    We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrödinger equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions with N=2, 3 are studied in detail and shown to be associated with self-focusing in the wave group dynamics and the generation of a steep localized carrier wave underneath the group envelope. We also show that for larger input soliton numbers, the wave group experiences irreversible spectral broadening, which we refer to as a hydrodynamic supercontinuum by analogy with optics. This process is shown to be associated with the fission of the initial multisoliton into individual fundamental solitons due to higher-order nonlinear perturbations to the NLS. Numerical simulations using an extended NLS model described by the modified nonlinear Schrödinger equation, show excellent agreement with experiment and highlight the universal role that higher-order nonlinear perturbations to the NLS play in supercontinuum generation. PMID:23952405

  15. Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models.

    PubMed

    Witt, William C; Wen, Li; Lauder, George V

    2015-10-01

    One of the most-studied unsteady locomotor behaviors exhibited by fishes is the c-start escape response. Although the kinematics of these responses have been studied extensively and two well-defined kinematic stages have been documented, only a few studies have focused on hydrodynamic patterns generated by fishes executing escape behaviors. Previous work has shown that escape responses by bluegill sunfish generate three distinct vortex rings, each with central orthogonal jet flows, and here we extend this conclusion to two other species: stickleback and mosquitofish. Jet #1 is formed by the tail during Stage 1, and moves in the same direction as Stage-2 movement of the fish, thereby reducing final escape-velocity but also rotating the fish. Jet #2, in contrast, moves approximately opposite to the final direction of the fish's motion and contains the bulk of the total fluid-momentum powering the escape response. Jet #3 forms during Stage 2 in the mid-body region and moves in a direction approximately perpendicular to jets 1 and 2, across the direction of movement of the body. In this study, we used a mechanical controller to impulsively move passively flexible plastic panels of three different stiffnesses in heave, pitch, and heave + pitch motions to study the effects of stiffness on unsteady hydrodynamics of escape. We were able to produce kinematics very similar to those of fish c-starts and also to reproduce the 3-jet hydrodynamic pattern of the c-start using a panel of medium flexural stiffness and the combined heave + pitch motion. This medium-stiffness panel matched the measured stiffness of the near-tail region of fish bodies. This motion also produced positive power when the panel straightened during stage 2 of the escape response. More flexible and stiffer panels resulted in non-biological kinematics and patterns of flow for all motions. The use of simple flexible models with a mechanical controller and program of fish-like motion is a promising approach

  16. Iterative adaption of the bidimensional wall of the French T2 wind tunnel around a C5 axisymmetrical model: Infinite variation of the Mach number at zero incidence and a test at increased incidence

    NASA Technical Reports Server (NTRS)

    Archambaud, J. P.; Dor, J. B.; Payry, M. J.; Lamarche, L.

    1986-01-01

    The top and bottom two-dimensional walls of the T2 wind tunnel are adapted through an iterative process. The adaptation calculation takes into account the flow three-dimensionally. This method makes it possible to start with any shape of walls. The tests were performed with a C5 axisymmetric model at ambient temperature. Comparisons are made with the results of a true three-dimensional adaptation.

  17. Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Komatsu, Eiichiro; Nelson, Kaylea; Nagai, Daisuke

    2015-03-01

    Turbulent gas motion inside galaxy clusters provides a non-negligible non-thermal pressure support to the intracluster gas. If not corrected, it leads to a systematic bias in the estimation of cluster masses from X-ray and Sunyaev-Zel'dovich (SZ) observations assuming hydrostatic equilibrium, and affects interpretation of measurements of the SZ power spectrum and observations of cluster outskirts from ongoing and upcoming large cluster surveys. Recently, Shi & Komatsu developed an analytical model for predicting the radius, mass, and redshift dependence of the non-thermal pressure contributed by the kinetic random motions of intracluster gas sourced by the cluster mass growth. In this paper, we compare the predictions of this analytical model to a state-of-the-art cosmological hydrodynamics simulation. As different mass growth histories result in different non-thermal pressure, we perform the comparison on 65 simulated galaxy clusters on a cluster-by-cluster basis. We find an excellent agreement between the modelled and simulated non-thermal pressure profiles. Our results open up the possibility of using the analytical model to correct the systematic bias in the mass estimation of galaxy clusters. We also discuss tests of the physical picture underlying the evolution of intracluster non-thermal gas motions, as well as a way to further improve the analytical modelling, which may help achieve a unified understanding of non-thermal phenomena in galaxy clusters.

  18. The clustering of baryonic matter. II: halo model and hydrodynamic simulations

    SciTech Connect

    Fedeli, C.; Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H. E-mail: sembolon@strw.leidenuniv.nl E-mail: daalen@strw.leidenuniv.nl E-mail: hoekstra@strw.leidenuniv.nl

    2014-08-01

    We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.

  19. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    SciTech Connect

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  20. A High Resolution Hydrodynamic Model of Puget Sound to Support Nearshore Restoration Feasibility Analysis and Design

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing

    2011-01-01

    Estuarine and coastal hydrodynamic processes are sometimes neglected in the design and planning of nearshore restoration actions. Despite best intentions, efforts to restore nearshore habitats can result in poor outcomes if circulation and transport which also affect freshwater-saltwater interactions are not properly addressed. Limitations due to current land use can lead to selection of sub-optimal restoration alternatives that may result in undesirable consequences, such as flooding, deterioration of water quality, and erosion, requiring immediate remedies and costly repairs. Uncertainty with achieving restoration goals, such as recovery of tidal exchange, supply of sediment and nutrients, and establishment of fish migration pathways, may be minimized by using numerical models designed for application to the nearshore environment. A high resolution circulation and transport model of the Puget Sound, in the state of Washington, was developed to assist with nearshore habitat restoration design and analysis, and to answer the question “can we achieve beneficial restoration outcomes at small local scale, as well as at a large estuary-wide scale?” The Puget Sound model is based on an unstructured grid framework to define the complex Puget Sound shoreline using a finite volume coastal ocean model (FVCOM). The capability of the model for simulating the important nearshore processes, such as circulation in complex multiple tidal channels, wetting and drying of tide flats, and water quality and sediment transport as part of restoration feasibility, are illustrated through examples of restoration projects in Puget Sound.

  1. Hydrodynamical simulations of coupled and uncoupled quintessence models - I. Halo properties and the cosmic web

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo

    2014-04-01

    We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.

  2. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  3. East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model

    NASA Astrophysics Data System (ADS)

    Grashorn, Sebastian; Lettmann, Karsten A.; Wolff, Jörg-Olaf; Badewien, Thomas H.; Stanev, Emil V.

    2015-03-01

    An unstructured-grid model (FVCOM) coupled to a surface wave model (FVCOM-SWAVE) with two different setups is used to investigate the hydrodynamic and wave energy conditions during a moderate wind and a storm situation in the southern North Sea. One setup covers the whole North Sea with moderately increased grid resolution at the coast, whereas the other is a very high-resolution Wadden Sea setup that is one-way coupled to the coarser North Sea model. The results of both model setups are validated, compared to each other and analysed with a focus on longshore currents and wave energy. The numerical results show that during storm conditions, strong wave-induced longshore currents occur in front of the East Frisian Wadden Sea islands with current speeds up to 1 m/s. The model setup with the higher resolution around the islands shows even stronger currents than the coarser setup. The wave-current interaction also influences the surface elevation by raising the water level in the tidal basins. The calculated wave energies show large differences between moderate wind and storm conditions with time-averaged values up to 200 kW/m.

  4. RADIATION-HYDRODYNAMIC MODELS OF THE EVOLVING CIRCUMSTELLAR MEDIUM AROUND MASSIVE STARS

    SciTech Connect

    Toala, J. A.; Arthur, S. J.

    2011-08-20

    We study the evolution of the interstellar and circumstellar media around massive stars (M {>=} 40 M{sub sun}) from the main sequence (MS) through to the Wolf-Rayet (WR) stage by means of radiation-hydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around WR stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the WR wind bubbles are the duration of the red supergiant (or luminous blue variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that MS bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-MS bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the WR bubbles S 308, NGC 6888, and RCW 58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.

  5. Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis

    2008-10-01

    Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.

  6. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia

    2015-04-01

    observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.

  7. Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data.

    PubMed Central

    Byron, O

    1997-01-01

    Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627

  8. Modeling of textural changes in beef loins subjected to hydrodynamic pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High hydrodynamic pressure has been considered as a new novel food processing technique to impart favorable textural changes in meat. It is believed that a hydrodynamic pressure wave could be used to tenderize otherwise unacceptably tough cuts of beef, and allow them to be used in more valuable prod...

  9. Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events.

    PubMed

    Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Myrmel, Mette; Robertson, Lucy; Heistad, Arve

    2016-04-01

    This study investigated the public health risk from exposure to infectious microorganisms at Sandvika recreational beaches, Norway and dose-response relationships by combining hydrodynamic modelling with Quantitative Microbial Risk Assessment (QMRA). Meteorological and hydrological data were collected to produce a calibrated hydrodynamic model using Escherichia coli as an indicator of faecal contamination. Based on average concentrations of reference pathogens (norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium) relative to E. coli in Norwegian sewage from previous studies, the hydrodynamic model was used for simulating the concentrations of pathogens at the local beaches during and after a heavy rainfall event, using three different decay rates. The simulated concentrations were used as input for QMRA and the public health risk was estimated as probability of infection from a single exposure of bathers during the three consecutive days after the rainfall event. The level of risk on the first day after the rainfall event was acceptable for the bacterial and parasitic reference pathogens, but high for the viral reference pathogen at all beaches, and severe at Kalvøya-small and Kalvøya-big beaches, supporting the advice of avoiding swimming in the day(s) after heavy rainfall. The study demonstrates the potential of combining discharge-based hydrodynamic modelling with QMRA in the context of bathing water as a tool to evaluate public health risk and support beach management decisions. PMID:26802355

  10. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  11. Attitude stability criteria of axisymmetric solar sail

    NASA Astrophysics Data System (ADS)

    Hu, Xiaosai; Gong, Shengping; Li, Junfeng

    2014-07-01

    Passive attitude stability criteria of a solar sail whose membrane surface is axisymmetric are studied in this paper under a general SRP model. This paper proves that arbitrary attitude equilibrium position can be designed through adjusting the deviation between the pressure center and the mass center of the sail. The linearized method is applied to inspect analytically the stability of the equilibrium point from two different points of views. The results show that the attitude stability depends on the membrane surface shape and area. The results of simulation with full dynamic equations confirm that the two stability criteria are effective in judging the attitude stability for axisymmetric solar sail. Several possible applications of the study are also mentioned.

  12. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  13. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    SciTech Connect

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid active materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.

  14. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team

    2014-11-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.

  15. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.

  16. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  17. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2014-07-01

    We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. PMID:25122383

  18. Field evaluation of a two-dimensinal hydrodynamic model near boulders for habitat calculation

    USGS Publications Warehouse

    Waddle, Terry

    2010-01-01

    Two-dimensional hydrodynamic models are now widely used in aquatic habitat studies. To test the sensitivity of calculated habitat outcomes to limitations of such a model and of typical field data, bathymetry, depth and velocity data were collected for three discharges in the vicinity of two large boulders in the South Platte River (Colorado) and used in the River2D model. Simulated depth and velocity were compared with observed values at 204 locations and the differences in habitat numbers produced by observed and simulated conditions were calculated. The bulk of the differences between simulated and observed depth and velocity values were found to lie within the likely error of measurement. However, the effect of flow simulation outliers on potential habitat outcomes must be considered when using 2D models for habitat simulation. Furthermore, the shape of the habitat suitability relation can influence the effects of simulation errors. Habitat relations with steep slopes in the velocity ranges found in similar study areas are expected to be sensitive to the magnitude of error found here. Comparison of habitat values derived from simulated and observed depth and velocity revealed a small tendency to under-predict habitat values.

  19. Field evaluation of a two-dimensional hydrodynamic model near boulders for habitat calculation

    USGS Publications Warehouse

    Waddle, Terry

    2009-01-01

    Two-dimensional hydrodynamic models are now widely used in aquatic habitat studies. To test the sensitivity of calculated habitat outcomes to limitations of such a model and of typical field data, bathmetry, depth and velocity data were collected for three discharges in the vicinity of two large boulders in the South Platte River (Colorado) and used in the River2D model. Simulated depth and velocity were compared with observed values at 204 locations and the differences in habitat numbers produced by observed and simulated conditions were calculated. The bulk of the differences between simulated and observed depth and velocity values were found to lie within the likely error of measurement. However, the effect of flow simulation outliers on potential habitat outcomes must be considered when using 2D models for habitat simulation. Furthermore, the shape of the habitat suitability relation can influence the effects of simulation errors. Habitat relations with steep slopes in the velocity ranges found in similar study areas are expected to be sensitive to the magnitude of error found here. Comparison of habitat values derived from simulated and observed depth and velocity revealed a small tendency to under-predict habitat values.

  20. Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model.

    PubMed

    Wynne, Timothy T; Stumpf, Richard P; Tomlinson, Michelle C; Schwab, David J; Watabayashi, Glen Y; Christensen, John D

    2011-10-01

    The ability to forecast the transport of harmful cyanobacterial blooms in the Laurentian Great Lakes is beneficial to natural resource managers concerned with public health. This manuscript describes a method that improves the prediction of cyanobacterial bloom transport with the use of a preoperational hydrodynamic model and high temporal resolution satellite imagery. Two scenarios were examined from separate cyanobacterial blooms in western Lake Erie, USA. The first scenario modeled bloom position and extent over the span of 13 days. A geographic center, or centroid, was calculated and assigned to the bloom from observed satellite imagery. The bloom centroid was projected forward in time, and the projected position was compared to the final observed bloom centroid. Image pixels flagged as cyanobacterial bloom were compared between the initial image and the final image, and this was assumed as persistence. The second bloom scenario was modeled for a period of 12 days, and the results were framed in an ecological context in an effort to gain further understanding of cyanobacterial bloom dynamics. These modeling techniques can be incorporated into an operational forecasting system. PMID:22073654

  1. Radiation-hydrodynamic Model of High-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Čechura, J.; Hadrava, P.

    2014-10-01

    The topic of circumstellar matter in the X-ray binaries and its spectroscopic diagnostics is addressed by method of generating synthetic Dopplerograms for direct comparison with observations. The presented results were obtained using our improved three-dimensional radiation-hydrodynamic model of the stellar wind in HMXBs. We use the model to simulate dynamics, anisotropy and other characteristics of the wind, e.g. the density distribution and ionization structure. We adopt parameters of Cygnus X-1 in our simulations and use the Doppler tomography to probe the structure of radiation-emitting material in the system. We introduce a data interpretation method of observed Doppler tomograms via direct comparison with synthetic Dopplerograms obtained from our model. We test the reliability of the model as well as set constrains on various physical parameters and processes, e.g. the accretion rate. We take into account the Coriolis force, the ionization structure of the medium, the gravity darkening, and we investigate the effects these phenomena have on the accretion process. E.g. the Coriolis force substantially influences the mass-loss of the donor and by that the accretion rate of the compact companion. Additionally, focusing of the stellar wind by the gravitational field of the compact companion leads to the formation of an unstable gaseous tail behind the companion. This tail shows signs of quasi-periodic oscillations and its existence presents us with other means to explain the switching mechanism among the various X-ray states.

  2. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    USGS Publications Warehouse

    2014-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hs are examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  3. Hydrodynamic effects on coalescence.

    SciTech Connect

    Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael; Gorby, Allen D.; Brooks, Carlton, F.

    2006-10-01

    The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

  4. Establishment of drug-resistant HBV small-animal models by hydrodynamic injection

    PubMed Central

    Cheng, Junjun; Han, Yanxing; Jiang, Jian-Dong

    2014-01-01

    In antiviral therapy of hepatitis B virus (HBV) infection, drug resistance remains a huge obstacle to the long-term effectiveness of nucleoside/tide analogs (NAs). Primary resistance mutation (rtM204V) contributes to lamivudine (LAM)-resistance, and compensatory mutations (rtL180M and rtV173L) restore viral fitness and increase replication efficiency. The evaluation of new anti-viral agents against drug-resistant HBV is limited by the lack of available small-animal models. We established LAM-resistance HBV replication mice models based on clinical LAM-resistant HBV mutants. Double (rtM204V+rtL180M) or triple (rtM204V+rtL180M+rtV173L) lamivudine-resistant mutations were introduced into HBV expression vector, followed by hydrodynamic injection into tail vein of NOD/SCID mice. Viremia was detected on days 5, 9, 13 and 17 and liver HBV DNA was detected on day 17 after injection. The serum and liver HBV DNA levels in LAM-resistant model carrying triple mutations are the highest among the models. Two NAs, LAM and entecavir (ETV), were used to test the availability of the models. LAM and ETV inhibited viral replication on wild-type model. LAM was no longer effective on LAM-resistant models, but ETV retains a strong activity. Therefore, these models can be used to evaluate anti-viral agents against lamivudine-resistance, affording new opportunities to establish other drug-resistant HBV small-animal models. PMID:26579395

  5. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff

    2015-04-01

    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore

  6. Axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2012-06-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.

  7. Radiation hydrodynamics

    SciTech Connect

    Pomraning, G.C.

    1982-12-31

    This course was intended to provide the participant with an introduction to the theory of radiative transfer, and an understanding of the coupling of radiative processes to the equations describing compressible flow. At moderate temperatures (thousands of degrees), the role of the radiation is primarily one of transporting energy by radiative processes. At higher temperatures (millions of degrees), the energy and momentum densities of the radiation field may become comparable to or even dominate the corresponding fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid, and it is the description of this regime which is generally the charter of radiation hydrodynamics. The course provided a discussion of the relevant physics and a derivation of the corresponding equations, as well as an examination of several simplified models. Practical applications include astrophysics and nuclear weapons effects phenomena.

  8. Using a Hydrodynamic Lake Model to Predict the Impact of Avalanche Events at Lake Palcacocha, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; Somos-Valenzuela, M. A.; McKinney, D. C.; Hodges, B. R.

    2013-12-01

    Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. Many of the processes influencing GLOF risk are still poorly understood. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has posed a threat to citizens living in the watershed below, including the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level with a tunnel and reinforced dyke, but the lake has since grown to the point where the lake is once again dangerous. Overhanging ice from the Palcaraju glacier and a relatively low freeboard level make the lake vulnerable to avalanches and landslides. A siphon system has been put in place to lower the lake below the level of the tunnel, but this system is temporary and the potential reduction in the water level is limited. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics and the ensuing flood hydrograph. Empirical equations are used to determine the initial wave characteristics of an impulse wave created by three different avalanche scenarios that represent small, medium and large events. The characteristics of the initial impulse wave are used as inputs to a three-dimensional hydrodynamic model to predict the wave propagation across the lake and the moraine overtopping volume. The results from this model will be used as inputs to a downstream GLOF model to predict the impact from an outburst flood event. Additionally several scenarios are considered to evaluate the downstream impact from avalanche events with a reduction in the lake level. Use of a robust three-dimensional hydrodynamic lake model enables more

  9. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation.

    PubMed

    Colaïtis, A; Duchateau, G; Ribeyre, X; Maheut, Y; Boutoux, G; Antonelli, L; Nicolaï, Ph; Batani, D; Tikhonchuk, V

    2015-10-01

    We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure. PMID:26565161

  10. Coupled hydrodynamic model for laser-plasma interaction and hot electron generation

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Duchateau, G.; Ribeyre, X.; Maheut, Y.; Boutoux, G.; Antonelli, L.; Nicolaï, Ph.; Batani, D.; Tikhonchuk, V.

    2015-10-01

    We present a formulation of the model of laser-plasma interaction (LPI) at hydrodynamical scales that couples the plasma dynamics with linear and nonlinear LPI processes, including the creation and propagation of high-energy electrons excited by parametric instabilities and collective effects. This formulation accounts for laser beam refraction and diffraction, energy absorption due to collisional and resonant processes, and hot electron generation due to the stimulated Raman scattering, two-plasmon decay, and resonant absorption processes. Hot electron (HE) transport and absorption are described within the multigroup angular scattering approximation, adapted for transversally Gaussian electron beams. This multiscale inline LPI-HE model is used to interpret several shock ignition experiments, highlighting the importance of target preheating by HEs and the shortcomings of standard geometrical optics when modeling the propagation and absorption of intense laser pulses. It is found that HEs from parametric instabilities significantly increase the shock pressure and velocity in the target, while decreasing its strength and the overall ablation pressure.

  11. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    NASA Astrophysics Data System (ADS)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  12. Numerical modeling of debris flow runout for a case in southwestern China with Smooth Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Braun, Anika; Cuomo, Sabatino; Wang, Xueliang; Zhang, Luqing

    2016-04-01

    Debris flows and landslide dams are a major natural hazard causing high socioeconomic risk in inhabited mountainous areas. This is also true for vast parts of southwestern China, which are highly prone to slope failures due to several factors, such as a humid climate with high precipitation in the summer months, geological predisposing factors with highly weathered sedimentary rocks and a high seismicity. Not only do the landslides and flooding related to landslide dams threaten residents, buildings and transportation structures, but also do flooding conditions endanger power supply, which relies in this region partly on hydropower. In order to assess the potential of landslides to block rivers, it is crucial to understand which factors influence possible run-out distances and how they can be quantified. In the study we are presenting a numerical modeling analysis for a particular case of a complex landslide in Ningnan county, southwestern China, which transformed into a debris flow and blocked the river and the major road leading through the valley after heavy rainfall. For this purpose a quasi-3D Smooth Particle Hydrodynamics (SPH) model was implemented that can account for geotechnical slope parameters, run-out distance, velocities and deposition heights. A digital terrain model and the geometry information of the landslide were used as input data in order to estimate the relevant geotechnical parameters by back-analysis. The results of the analysis can be used for the prediction of run-out distances for future events at this site and other similar sites.

  13. Two-dimensional hydrodynamic flood modelling for populated valley areas of Russian rivers

    NASA Astrophysics Data System (ADS)

    Belikov, V. V.; Krylenko, I. N.; Alabyan, A. M.; Sazonov, A. A.; Glotko, A. V.

    2015-06-01

    Results of flood modelling for three cities located in different parts of Russia: (1) Veliky Ustyug at the Northern Dvina river (Europe); (2) Mezhdurechensk at the Tom river (Siberia); and (3) Blagoveschensk at the Amur river (Far East) are presented. The two-dimensional hydrodynamic model of flow in channels and on floodplain STREAM_2D on the basis of the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh was used for the simulations. Verification of the model through a comparison of simulated inundated areas with outlines of flooded zones from satellite images for known hydrologic situations demonstrate close correspondence (relative errors of 7-12% in terms of the area for peaks of the analysed floods). Analyses of embankment influence of large-scale levees on the water flow demonstrate that, in some cases, water levels could rise by more than 1 m and the patterns of the flooding zones could significantly differ.

  14. Measurement-derived heat-budget approaches for simulating coastal wetland temperature with a hydrodynamic model

    USGS Publications Warehouse

    Swain, Eric; Decker, Jeremy

    2010-01-01

    Numerical modeling is needed to predict environmental temperatures, which affect a number of biota in southern Florida, U.S.A., such as the West Indian manatee (Trichechus manatus), which uses thermal basins for refuge from lethal winter cold fronts. To numerically simulate heat-transport through a dynamic coastal wetland region, an algorithm was developed for the FTLOADDS coupled hydrodynamic surface-water/ground-water model that uses formulations and coefficients suited to the coastal wetland thermal environment. In this study, two field sites provided atmospheric data to develop coefficients for the heat flux terms representing this particular study area. Several methods were examined to represent the heat-flux components used to compute temperature. A Dalton equation was compared with a Penman formulation for latent heat computations, producing similar daily-average temperatures. Simulation of heat-transport in the southern Everglades indicates that the model represents the daily fluctuation in coastal temperatures better than at inland locations; possibly due to the lack of information on the spatial variations in heat-transport parameters such as soil heat capacity and surface albedo. These simulation results indicate that the new formulation is suitable for defining the existing thermohydrologic system and evaluating the ecological effect of proposed restoration efforts in the southern Everglades of Florida.

  15. THE INFLUENCE OF NUMERICAL RESOLUTION ON CORONAL DENSITY IN HYDRODYNAMIC MODELS OF IMPULSIVE HEATING

    SciTech Connect

    Bradshaw, S. J.; Cargill, P. J. E-mail: p.cargill@imperial.ac.uk

    2013-06-10

    The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not 'bottle up' the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux 'jumps across' the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.

  16. Can satellite-derived water surface changes be used to calibrate a hydrodynamic model?

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Beck, Hylke; Salamon, Peter; Burek, Peter; de Roo, Ad; Thielen, Jutta

    2015-04-01

    The limited availability of recent ground observational data is one of the main challenges for validation of hydrodynamic models. This is especially relevant for real-time global applications such as flood forecasting models. In this study, we aim to use remotely-sensed data from the Global Flood Detection System (GFDS) as a proxy of river discharge time series and test its value through calibration of the hydrological model LISFLOOD. This was carried out for the time period 1998-2010 at 40 sites in Africa, Europe, North America and South America by calibrating the parameters that control the flow routing and groundwater processes. We compared the performance of the calibrated simulated discharge time series that used satellite-derived data with the ground discharge time series. Furthermore, we compared it with the independent calibrated run that used ground data and also, to the non-calibrated simulated discharge time series. The non-calibrated set up used a set of parameters which values were predefined by expert-knowledge. This is currently being used by the LISFLOOD set up model embedded in the pre-operational Global Flood Awareness System (GloFAS). The results of this study showed that the satellite surface water changes from the Global Flood Detection System can be used as a proxy of river discharge data, through the demonstration of its added value for model calibration and validation. Using satellite-derived data, the skill scores obtained by the calibrated simulated model discharge improved when comparing to non-calibrated simulated time series. Calibration, post-processing and data assimilation strategies of satellite data as a proxy for streamflow data within the global hydrological model are outlined and discussed.

  17. Verification of the two-dimensional hydrodynamic model based on remote sensing

    NASA Astrophysics Data System (ADS)

    Sazonov, Alexey; Mikhailukova, Polina; Krylenko, Inna; Frolova, Natalya; Kireeva, Mariya

    2016-04-01

    Mathematical modeling methods are used more and more actively to evaluate possible damage, identify potential flood zone and the influence of individual factors affecting the river during the passage of the flood. Calculations were performed by means of domestic software complex «STREAM-2D» which is based on the numerical solution of two-dimensional St. Venant equations. One of the major challenges in mathematical modeling is the verification of the model. This is usually made using data on water levels from hydrological stations: the smaller the difference of the actual level and the simulated one, the better the quality of the model used. Data from hydrological stations are not always available, so alternative sources of verification, such as remote sensing, are increasingly used. The aim of this work is to develop a method of verification of hydrodynamic model based on a comparison of actual flood zone area, which in turn is determined on the basis of the automated satellite image interpretation methods for different imaging systems and flooded area obtained in the course of the model. The study areas are Lena River, The North Dvina River, Amur River near Blagoveshchensk. We used satellite images made by optical and radar sensors: SPOT-5/HRG, Resurs-F, Radarsat-2. Flooded area were calculated using unsupervised classification (ISODATA and K-mean) for optical images and segmentation for Radarsat-2. Knowing the flow rate and the water level at a given date for the upper and lower limits of the model, respectively, it is possible to calculate flooded area by means of program STREAM-2D and GIS technology. All the existing vector layers with the boundaries of flooding are included in a GIS project for flood area calculation. This study was supported by the Russian Science Foundation, project no. 14-17-00155.

  18. Study of the plankton ecosystem variability using a coupled hydrodynamics biogeochemical modelling in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kessouri, Fayçal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick

    2015-04-01

    The Mediterranean Sea presents a wide variety of trophic regimes since the large and intense spring bloom of the North-Western Mediterranean Sea (NWMS) that follows winter convection to the extreme oligotrophic regions of the South-eastern basin. The Mediterranean Sea displays a strong time variability revealing its high sensitivity to climate and anthropic pressures. In this context, it is crucial to develop tools allowing to understand the evolution of the Mediterranean hydrology and marine ecosystem as a response to external forcing. Numerical coupled hydrodynamic and biogeochemical modelling carefully calibrated in the different regions of the basin is the only tool that can answer this question. However, this important step of calibration is particularly difficult because of the lack of coherent sets of data describing the seasonal evolution of the main parameters characterizing the physical and biogeochemical environment in the different sub-basins. The chlorophyll satellite data from 4km MODIS products, a multiple in situ data from MerMEX MOOSE and DEWEX cruises and Bio-Argo floats from NAOS project are believed to be an opportunity to strongly improve the realism of ecosystem models. The model is a 3D coupled simulation using NemoMed12 for hydrodynamics and ECO 3MS for biogeochemistry and covers the whole Mediterranean Sea and runs at 1/12°. The relevant variables mentioned are phytoplankton, organic and inorganic matters faced to water masses dynamics, over ten years since summer 2003. After a short validation, we will expose two topics: First, through this coupling we quantify the nutrients fluxes across the Mediterranean straits over the years. For example, we found an annual net average around 150 Giga moles NO3 per year at Gibraltar, where we expect low annual fluctuations. In contrast, the Strait of Sicily shows greater annual variability going from 70 to 92 Giga moles NO3 per year. All the fluxes are resumed in a detailed diagram of the transport

  19. Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases.

    PubMed

    Brey, J Javier; García de Soria, M I; Maynar, P

    2010-08-01

    Both the right and left eigenfunctions and eigenvalues of the linearized homogeneous Boltzmann equation for inelastic Maxwell molecules corresponding to the hydrodynamic modes are calculated. Also, some nonhydrodynamic modes are identified. It is shown that below a critical value of the parameter characterizing the inelasticity, one of the kinetic modes decays slower than one of the hydrodynamic ones. As a consequence, a closed hydrodynamic description does not exist in that regime. Some implications of this behavior on the formally computed Navier-Stokes transport coefficients are discussed. PMID:20866802

  20. Dam-Break Flooding and Structural Damage in a Residential Neighborhood: Performance of a coupled hydrodynamic-damage model

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.

    2011-12-01

    The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.

  1. An Integrated Model for Evaluating Hydrology, Hydrodynamics, Water Quality and Ecology in a Coastal Desert Wetland

    NASA Astrophysics Data System (ADS)

    Huckelbridge, K. H.; Stacey, M. T.; Glenn, E. P.; Dracup, J. A.

    2007-05-01

    An integrated model describing hydrology, hydrodynamics, salt dynamics and vegetation was developed to predict the evolution of the Cienega de Santa Clara ("Cienega"), a non-tidal wetland located in the Colorado River Delta. The Cienega was created in 1977 when water intended for treatment at the Yuma Desalting Plant in Arizona was bypassed to a salt flat in the Delta. The continued delivery of this water is uncertain and thus, this model was developed to predict the effects of changes in the quantity and quality of inflow to the wetland over seasonal and annual timescales. The model is divided into four modules that run in sequence for each timestep, in which the results from one module are used to produce results in successive modules. The four modules are: (1) evapotranspiration, (2) water balance, (3) mixing/salt balance, and (4) vegetation response. Over the calibration period, 1993-2002, modeled results of wetland surface area, the fraction of the wetland covered in vegetation and salinity concentrations compare well to actual data. The model was used to run nine hypothetical scenarios, representing the range of inflow quantity and quality to the Cienega that could occur if the source of the inflow is altered, including the possible re-opening of the Yuma Desalting plant. Model results show that the Cienega ecosystem is more sensitive to changes in salinity than to changes in flow. However, in almost all cases, an increase in salinity and/or a decrease in flow would cause a significant decrease in wetland size and vegetation cover, compromising a large portion of the habitat currently available to wildlife at the Cienega.

  2. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  3. Exploring spiral galaxy potentials with hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Slyz, Adrianne D.; Kranz, Thilo; Rix, Hans-Walter

    2003-12-01

    We study how well the complex gas velocity fields induced by massive spiral arms are modelled by the hydrodynamical simulations that we used recently to constrain the dark matter fraction in nearby spiral galaxies. More specifically, we explore the dependence of the positions and amplitudes of features in the gas flow on the temperature of the interstellar medium (assumed to behave as a one-component isothermal fluid), the non-axisymmetric disc contribution to the galactic potential, the pattern speed Ωp, and finally the numerical resolution of the simulation. We argue that, after constraining the pattern speed reasonably well by matching the simulations to the observed spiral arm morphology, the amplitude of the non-axisymmetric perturbation (the disc fraction) is left as the primary parameter determining the gas dynamics. However, owing to the sensitivity of the positions of the shocks to modelling parameters, one has to be cautious when quantitatively comparing the simulations to observations. In particular, we show that a global least-squares analysis is not the optimal method for distinguishing different models, as it tends to slightly favour low disc fraction models. Nevertheless, we conclude that, given observational data of reasonably high spatial resolution and an accurate shock-resolving hydro-code, this method tightly constrains the dark matter content within spiral galaxies. We further argue that, even if the perturbations induced by spiral arms are weaker than those of strong bars, they are better suited for this kind of analysis because the spiral arms extend to larger radii where effects like inflows due to numerical viscosity and morphological dependence on gas sound speed are less of a concern than they are in the centres of discs.

  4. The Assesement of Rip Current at Kerachut Beach Using Hydrodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Azhary, W. A. H. W.; Awang, N. A.; Hamid, M. R. A.

    2016-07-01

    KerachutBeach is a beautiful beach in Penang National Park (PNP). However this beach is categorisedas one of dangerous beach for swimming activities in Malaysia due to the drowning incidents reported almost every year. The steep beach slope and rip current were among the factors that lead to this incident. Using bathymetry profile, current, tidal and sediment data collected at site incorporated with UKMO wave data analysis,the hydrodynamic pattern was simulated using Mike 21 modelling software. Result from the model showed the evidence of rip current existence along the coastline. It showed that this rip current eventsoccurred during spring tide phase when the flow change from Flood to Ebb. During this period, the current tend to move parallel to the shoreline with maximum speed of 0.3m/s which is capable to swipe away a swimmer. The bathymetry profile at Kerachutis very steep and dangerous to swimmers since there is a 4 meter sudden plunge just meters away from the shoreline.

  5. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces

    SciTech Connect

    Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias

    2013-09-01

    Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow on rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.

  6. Hydrodynamic Modeling Analysis for Leque Island and zis a ba Restoration Feasibility Study

    SciTech Connect

    Whiting, Jonathan M.; Khangaonkar, Tarang

    2015-01-31

    Ducks Unlimited, Inc. in collaboration with Washington State Department of Fish and Wildlife (WDFW), and Stillaguamish Tribe of Indians have proposed the restoration of Leque Island and zis a ba (formerly Matterand) sites near the mouth of Old Stillaguamish River Channel in Port Susan Bay, Washington. The Leque Island site, which is owned by WDFW, consists of nearly 253 acres of land south of Highway 532 that is currently behind a perimeter dike. The 90-acres zis a ba site, also shielded by dikes along the shoreline, is located just upstream of Leque Island and is owned by Stillaguamish Tribes. The proposed actions consider the removal or modification of perimeter dikes at both locations to allow estuarine functions to be restored. The overall objective of the proposed projects is to remove the dike barriers to 1) provide connectivity and access between the tidal river channel and the restoration site for use by juvenile migrating salmon and 2) create a self-sustaining tidal marsh habitat. Ducks Unlimited engaged Pacific Northwest National Laboratory (PNNL) to develop a three-dimensional hydrodynamic model of the Port Susan Bay, Skagit Bay, and the interconnecting Leque Island region for use in support of the feasibility assessment for the Leque Island and zis a ba restoration projects. The objective of this modeling-based feasibility assessment is to evaluate the performance of proposed restoration actions in terms of achieving habitat goals while assessing the potential hydraulic and sediment transport impacts to the site and surrounding parcels of land.

  7. Emergence of polar order and cooperativity in hydrodynamically coupled model cilia

    PubMed Central

    Bruot, Nicolas; Cicuta, Pietro

    2013-01-01

    As a model of ciliary beat, we use two-state oscillators that have a defined direction of oscillation and have strong synchronization properties. By allowing the direction of oscillation to vary according to the interaction with the fluid, with a timescale longer than the timescale of synchronization, we show in simulations that several oscillators can align in a direction set by the geometrical configuration of the system. In this system, the alignment depends on the state of synchronization of the system, and is therefore linked to the beat pattern of the model cilia. By testing various configurations from two to 64 oscillators, we deduce empirically that, when the synchronization state of neighbouring oscillators is in phase, the angles of the oscillators align in a configuration of high hydrodynamic coupling. In arrays of oscillators that break the planar symmetry, a global direction of alignment emerges reflecting this polarity. In symmetric configurations, where several directions are geometrically equivalent, the array still displays strong internal cooperative behaviour. It also appears that the shape of the array is more important than the lattice type and orientation in determining the preferred direction. PMID:23883957

  8. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Liu, Moubin; Peng, Shiliu

    2014-12-01

    This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U 4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes.

  9. Period-doubling bifurcation and high-order resonances in RR Lyrae hydrodynamical models

    NASA Astrophysics Data System (ADS)

    Kolláth, Z.; Molnár, L.; Szabó, R.

    2011-06-01

    We investigated period doubling, a well-known phenomenon in dynamical systems, for the first time in RR Lyrae models. These studies provide theoretical background for the recent discovery of period doubling in some Blazhko RR Lyrae stars with the Kepler space telescope. Since period doubling has been observed only in Blazhko-modulated stars so far, the phenomenon can help in understanding the modulation as well. Utilizing the Florida-Budapest turbulent convective hydrodynamical code, we have identified the phenomenon in both radiative and convective models. A period-doubling cascade was also followed up to an eight-period solution, confirming that destabilization of the limit cycle is indeed the underlying phenomenon. Floquet stability roots were calculated to investigate the possible causes and occurrences of the phenomenon. A two-dimensional diagnostic diagram was constructed to illustrate the various resonances between the fundamental mode and the different overtones. Combining the two tools, we confirmed that the period-doubling instability is caused by a 9:2 resonance between the ninth overtone and the fundamental mode. Destabilization of the limit cycle by a resonance of a high-order mode is possible because the overtone is a strange mode. The resonance is found to be strong enough to shift the period of overtone by up to 10 per cent. Our investigations suggest that a more complex interplay of radial (and presumably non-radial) modes could happen in RR Lyrae stars that might have connections with the Blazhko effect as well.

  10. Numerical modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta building diversion

    NASA Astrophysics Data System (ADS)

    Meselhe, Ehab A.; Georgiou, Ioannis; Allison, Mead A.; McCorquodale, John A.

    2012-11-01

    SummaryThe Mississippi River Delta of south Louisiana USA is a highly engineered system with extensive levees, flood control, and diversion structures. This region is experiencing a high rate of coastal wetland loss. Solutions to divert or re-direct a portion of the River's sediment to benefit wetlands and reduce coastal land-loss are considered. The question that must be answered, regarding the impact and feasibility of sediment diversions is: What is the sediment-water ratio at a diversion? To help answer this question a numerical model of hydrodynamics and sediment transport supported by extensive field data is used to analyze a proposed sediment diversion near Myrtle Grove, Louisiana. This location is at a River Kilometer 90 above the Head of Passes - exit of the Mississippi River to the Gulf of Mexico. The numerical model showed that the location of the diversion, the size and the alignment of the diversion channel are critical parameters affecting the sediment-water ratio captured by the diversion. The analysis shows that locating the intake near a lateral sandbar increases the sediment-water ratio in the diversion. Further, the analysis shows that a larger diversion channel with a favorable alignment orientation to the flow direction in the river results in higher sediment-water ratio.

  11. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    NASA Astrophysics Data System (ADS)

    Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.

    2016-05-01

    Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.

  12. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  13. Efficient Calculation of Dewatered and Entrapped Areas Using Hydrodynamic Modeling and GIS

    SciTech Connect

    Richmond, Marshall C.; Perkins, William A.

    2009-12-01

    River waters downstream of a hydroelectric project are often subject to rapidly changing discharge. Abrupt decreases in discharge can quickly dewater and expose some areas and isolate other areas from the main river channel, potentially stranding or entrapping fish, which often results in mortality. A methodology is described to estimate the areas dewatered or entrapped by a specific reduction in upstream discharge. A one-dimensional hydrodynamic model was used to simulate steady flows. Using flow simulation results from the model and a geographic information system (GIS), estimates of dewatered and entrapped areas were made for a wide discharge range. The methodology was applied to the Hanford Reach of the Columbia River in central Washington State. Results showed that a 280 m$^3$/s discharge reduction affected the most area at discharges less than 3400 m$^3$/s. At flows above 3400 m$^3$/s, the affected area by a 280 m$^3$/s discharge reduction (about 25 ha) was relatively constant. A 280 m$^3$/s discharge reduction at lower flows affected about twice as much area. The methodology and resulting area estimates were, at the time of writing, being used to identify discharge regimes, and associated water surface elevations, that might be expected to minimize adverse impacts on juvenile fall chinook salmon (\\emph{Oncorhynchus tshawytscha}) that rear in the shallow near-shore areas in the Hanford Reach.

  14. HYDRODYNAMIC MODELS OF RADIO GALAXY MORPHOLOGY: WINGED AND X-SHAPED SOURCES

    SciTech Connect

    Hodges-Kluck, Edmund J.; Reynolds, Christopher S.

    2011-05-20

    We present three-dimensional hydrodynamic models of radio galaxies interacting with initially relaxed hot atmospheres and explore the significant off-axis radio lobe structures that result under certain conditions. With a focus on the 'winged' and 'X-shaped' radio galaxy population, we confirm the importance of observed trends such as the connection of wing formation with jets co-aligned with the major axis of the surrounding atmosphere. These wings are formed substantially by the deflection of lobe plasma flowing back from the hot spots (backflow) and develop in two stages: supersonic expansion of an overpressured cocoon at early times followed by buoyant expansion at later times. We explore a limited parameter space of jet and atmosphere properties and find that the most prominent wings are produced when a decaying jet is injected into a small, dense, highly elliptical atmosphere. On the basis of this search, we argue that the deflection of backflow by gradients in the hot atmosphere is a strong candidate for forming observed wings but must work in tandem with some other mechanism for forming the initial wing channels. Our models indicate that lobe interaction with the hot atmosphere may play a dominant role in shaping the morphology of radio galaxies.

  15. Coupling of a hydrodynamic numerical model, extreme value analysis and climate change for a flooding assessment.

    NASA Astrophysics Data System (ADS)

    Luna, Byron Quan; Garrè, Luca

    2015-04-01

    The effects of climate change for future flooding events are one of the most debated issues for risk managers and spatial planners today. It is essential to incorporate the expected impacts of climate change and information of past events in order to assess the flood hazard where long term infrastructure has been planned or has been installed. In this study, an integrated procedure for detailed analysis of river flooding in a localized area was developed and applied. This was achieved by coupling hydrodynamic (using LIDAR data) and statistical (extreme values) modeling, that allowed to obtain flood probabilities for the near and distant future. This was done via a regression line which allowed the inclusion of genuinely recorded flooding measurements together with model-generated flooding occurrences. A better reproduction of the flooding behavior in the tail of the extreme distribution was achieved, and by virtue of this, some shortcomings of extreme value extrapolation encountered in the present application were surpassed. The procedure was applied to measurements of flooding in the Rhine river in The Netherlands and provides useful flooding information for the development of hazard maps and future adaptation measures.

  16. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids.

    PubMed

    Yang, Xiufeng; Liu, Moubin; Peng, Shiliu

    2014-12-01

    This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes. PMID:25615191

  17. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    NASA Astrophysics Data System (ADS)

    Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.

    2016-04-01

    Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.

  18. Implementation of a simple model for linear and nonlinear mixing at unstable fluid interfaces in hydrodynamics codes

    SciTech Connect

    Ramshaw, J D

    2000-10-01

    A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.

  19. Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Ge, Ji; Liu, Hong-Gang; Su, Yong-Bo; Cao, Yu-Xiong; Jin, Zhi

    2012-05-01

    A physical model for scaling and optimizing InGaAs/InP double heterojunction bipolar transistors (DHBTs) based on hydrodynamic simulation is developed. The model is based on the hydrodynamic equation, which can accurately describe non-equilibrium conditions such as quasi-ballistic transport in the thin base and the velocity overshoot effect in the depleted collector. In addition, the model accounts for several physical effects such as bandgap narrowing, variable effective mass, and doping-dependent mobility at high fields. Good agreement between the measured and simulated values of cutoff frequency, ft, and maximum oscillation frequency, fmax, are achieved for lateral and vertical device scalings. It is shown that the model in this paper is appropriate for downscaling and designing InGaAs/InP DHBTs.

  20. Hydrodynamic and water quality modeling of lower Green Bay, Wisconsin. Volume 1. Main text and appendixes A - E. Final report

    SciTech Connect

    Mark, D.J.; Scheffner, N.W.; Butler, H.L.; Bunch, B.W.; Dortch, M.S.

    1993-09-01

    A confined disposal facility (CDF) for dredged material presently exists in lower Green Bay, Wisconsin. A planned expansion of the CDF was studied to assess its impact on current patterns and subsequent redistribution of dissolved oxygen in the immediate vicinity of the proposed expansion. The redistribution is, in part, dependent on the magnitude and direction of currents generated by storm-induced seiches occurring in Lake Michigan and within the bay itself. Two-dimensional, vertically averaged hydrodynamic and water quality models were applied to make this assessment by investigating the spatial and temporal variations in dissolved oxygen concentrations for existing and proposed configurations. Field data collected over three summers were used for calibrating and validating the hydrodynamic model. The water quality model was calibrated with field data collected over one summer. Results and conclusions of the modeling effort are summarized in this report. Circulation, Green Bay, Dissolved oxygen, Seiche, Great Lakes, Water quality.

  1. Phase Transitions and the Korteweg-De Vries Equation in the Density Difference Lattice Hydrodynamic Model of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Tian, Jun-Fang; Yuan, Zhen-Zhou; Jia, Bin; Fan, Hong-Qiang

    2013-03-01

    We investigate the phase transitions and the Korteweg-de Vries (KdV) equation in the density difference lattice hydrodynamic (DDLM) model, which shows a close connection with the gas-kinetic-based model and the microscopic car following model. The KdV equation near the neutral stability line is derived and the corresponding soliton solution describing the density waves is obtained. Numerical simulations are conducted in two aspects. On the one hand, under periodic conditions perturbations are applied to demonstrate the nonlinear analysis result. On the other hand, the open boundary condition with random fluctuations is designed to explore the empirical congested traffic patterns. The phase transitions among the free traffic (FT), widening synchronized flow pattern (WSP), moving localized cluster (MLC), oscillatory congested traffic (OCT) and homogeneous congested traffic (HCT) occur by varying the amplitude of the fluctuations. To our knowledge, it is the first research showing that the lattice hydrodynamic model could reproduce so many congested traffic patterns.

  2. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China.

    PubMed

    Zhao, Lei; Zhang, Xiaoling; Liu, Yong; He, Bin; Zhu, Xiang; Zou, Rui; Zhu, Yuanguan

    2012-01-01

    Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making. PMID:23513675

  3. Comprehensive Radiation-Hydrodynamic Models for Wolf-Rayet Galaxy Spectra

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2012-10-01

    We propose to compute a grid of radiation-hydrodynamic models of Wolf-Rayet star spectra for implementation in population synthesis models. Guided by stellar evolutionary tracks, we will calculate the wind density structure and iteratively solve the radiative transfer using a modified version of the CMFGEN code. The deliverables are stellar spectra at 0.5 A resolution covering 912 to 3000 A for super-solar to near-zero metallicity. The models will be tested by comparison with ultraviolet archival data. By virtue of their luminosities, strong mass loss and peculiar chemical abundances, Wolf-Rayet stars can make a significant - sometimes the dominant - contribution to the line spectra of star-forming galaxies, in particular in the ultraviolet. The new models will provide synthetic ultraviolet spectra of these stars, with parameters optimized for the population synthesis code Starburst99. The parameter range will cover that encountered in local Wolf-Rayet galaxies, in Lyman-break galaxies at redshift 3 - 5, and in primeval galaxies expected to be observed with JWST. Since Wolf-Rayet stars are related to the most massive stars, calibrating and understanding their tell-tale spectral features is a prerequsite for using them as population probes.Our suite of models will allow us and the astronomical community to tackle a diverse set of astrophysical issues: How do the final stages of massive-star evolution differ in different environments? How important are WR stars for the ionization of the ISM and the primordial IGM? Does the anomalous strength of He II 1640 indicate an IMF enriched in massive stars? Are galaxies with WR features preferred hosts of Type Ib SNe and long GRBs?

  4. Hydrodynamic model of Kepler's supernova remnant constrained by EINSTEIN and EXOSAT X-ray spectra

    NASA Astrophysics Data System (ADS)

    Rothenflug, R.; Magne, B.; Chieze, J. P.; Ballet, J.

    1994-11-01

    We have used the EXOSAT spectrum of Kepler's supernova remnant (including the Fe K line and the high-energy continuum) to further constrain its models. On the basis of the large abundances of Si, S and Fe required by a Sedov model, we have focused on models of young supernova remnants in which the reverse shock (propagating into the stellar ejecta) is still active. We have built a relatively simple hydrodynamic code (assuming adiabatic expansion and ion-electron equilibrium) and coupled it to the ionization equations. The assumption of an SN II remnant with 5 solar mass ejecta dominated by hydrogen was tested. The simplest density structure (uniform ejecta and uniform ambient medium) fits the X-ray data fairly well when the ambient density and explosion energy are adjusted at 0.74/cu.cm and 1051 ergs, respectively. Small overabundances (2 to 3 times solar) of Si, S and Ar in the ejecta are enough to account for the observed line intensities. However the temperature is too low in the shocked ejecta to produce the Fe K line without exceeding the observed Fe L intensity. The shocked ambient medium is hot enough but a large overabundance of iron (4.6 times solar) is necessary. As such an overabundance is hard to justify, we conclude that the model will have to be refined in order to get over this last stumbling block. Other models were also tested: with Mej = 5 solar mass and ejecta of pure helium, Mej = 10 solar mass, and with Coulomb heated electrons. None is able to produce the Fe K line in the ejecta.

  5. Simulating Sediment Transport Processes in San Francisco Bay Using Coupled Hydrodynamic, Wave, and Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; MacWilliams, M.

    2012-12-01

    Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.

  6. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data

    SciTech Connect

    Kiryukhin, Alexey; Xu, Tianfu; Pruess, Karsten; Apps, John; Slovtsov, Igor

    2002-01-01

    Data on fluid chemistry and rock mineralogy are evaluated for a number of geothermal fields located in the volcanic arc of Japan and Kamchatka, Russia, Common chemical characteristics are identified and used to define scenarios for detailed numerical modeling of coupled thermal hydrodynamic chemical (THC) processes. The following scenarios of parental geothermal fluid upflow were studied: (1) single-phase conditions, 260 C at the bottom ( Ogiri type); (2) two-phase conditions, 300 C at the bottom ( Hatchobaru type); and (3) heat pipe conditions, 260 C at the bottom ( Matsukawa type). THC modeling for the single-phase upflow scenario shows wairakite, quartz, K-feld spar and chlorite formed as the principal secondary minerals in the production zone, and illite-smectite formed below 230 C. THC modeling of the two-phase upflow shows that quartz, K-feldspar (microcline), wairakite and calcite precipitate in the model as principal secondary minerals in the production zone. THC modeling of heat pipe conditions shows no significant secondary deposition of minerals (quartz, K-feldspar, zeolites) in the production zone. The influence of thermodynamic and kinetic parameters of chemical interaction, and of mass fluxes on mineral phase changes, was found to be significant, depending on the upflow regime. It was found that no parental geothermal fluid inflow is needed for zeolite precipitation, which occurs above 140 C in saturated andesite, provided that the porosity is greater than 0.001. In contrast, quartz and K-feldspar precipitation may result in a significant porosity reduction over a hundred-year time scale under mass flux conditions, and complete fracture sealing will occur given sufficient time under either single-phase or two-phase upflow scenarios. A heat pipe scenario shows no significant porosity reduction due to lack of secondary mineral phase deposition.

  7. Hydrodynamic Model of Inundation Event at Confluence of Ohio and Mississippi Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, B. A.; Luke, A.; Shlaes, M.; Lant, J.; Alsdorf, D. E.

    2012-12-01

    The goal of this project is to produce an accurate 2-D hydrodynamic model of an inundation event that occurred at the confluence of the Ohio and Mississippi River. The inundation occurred in the months of April and May 2011, with the city of interest being Cairo, Illinois. In order to relieve flooding within Cairo, a levee was detonated by the Army Corps of Engineers. Cairo is a small city of 2,800 people, and is prone to flooding due to its proximity to the confluence of the Ohio and Mississippi River. Cairo is also the only city in the U.S. completely surrounded by levees. The advantage of a 2-D modeling approach compared to a 1-D approach is that the floodplain geomorphological processes are more accurately represented. Understanding non-channelized flow that occurs during inundation events is a subject of growing interest, and is being addressed in other projects such as the NASA-SWOT mission scheduled for launch in 2019. The 2-D model utilized in this study is LISFLOOD-FP. LISFLOOD-FP is a 2-D finite-difference flood inundation model that has been proven to accurately simulate flood inundation for urban, coastal, and fluvial environments. LISFLOOD-FP operates using known hydraulic principles along with continuity and momentum equations to describe the flow of water through channels and floodplains. The digital elevation model used to represent the area's topography was obtained from the USGS National Elevation Data set, and our model uses input data from USGS stream gauges located upstream of the confluence of the Ohio and Mississippi River. The gauging station located in Cairo will be used for model validation. Currently, the steady state conditions of the Ohio and the Mississippi River are being modeled. In situ cross sectional data is being used to represent the channel. We have found that using averages of the cross sectional data do not accurately represent the river channels, so future model runs will incorporate interpolation between measurements. Once

  8. Using two-dimensional hydrodynamic models at scales of ecological importance

    NASA Astrophysics Data System (ADS)

    Crowder, D. W.; Diplas, P.

    2000-05-01

    Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modeling practices consider relatively long channel sections with their bathymetry represented in terms of large, macro-scale, topographic features. Meso-scale topographic features, such as boulders, root-wads and other obstructions are typically not considered in the modeling process. Instead, the overall effects of these flow obstructions are captured through increased values in the channel roughness parameters. Such an approach to 2-D modeling allows one to accurately predict average depth and velocity values; however, it is not capable of providing any information about the flow patterns in the vicinity of these obstructions. Biologists though have known that such meso-scale features and the complex velocity patterns generated by their presence, play an important role in the ecology of streams, and thus cannot be ignored. It is therefore evident that there is a need to develop better tools, capable of modeling flow characteristics at scales of ecological importance. The purpose of this study is to expand the utility of 2-D hydraulic models to capture these flow features that are critical for characterizing stream habitat conditions. There exists a paucity of research addressing what types of topographic features should be included in 2-D model studies and to what extent a boulder or series of exposed boulders can influence predicted flow conditions and traditional useable habitat computations. Moreover, little research has been performed to evaluate the impact mesh refinement has on model results in natural streams. Numerical simulations, based on a natural river channel containing several large boulders, indicate that explicitly modeling local obstructions/boulders can significantly impact

  9. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures - Part I: Idealized Axisymmetric Swirling Flow.

    PubMed

    Vasquez, Paula A; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M Gregory

    2016-08-01

    A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700

  10. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures – Part I: Idealized Axisymmetric Swirling Flow

    PubMed Central

    Vasquez, Paula A.; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M. Gregory

    2016-01-01

    A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700

  11. Hydrodynamic Model of Inundation Event at Confluence of Ohio and Mississippi Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, B. A.; Luke, A.; Alsdorf, D. E.

    2013-12-01

    The goal of this project is to produce an accurate 2-D hydrodynamic model of an inundation event that occurred at the confluence of the Ohio and Mississippi River. The inundation occurred in the months of April and May 2011, with the city of interest being Cairo, Illinois. In order to relieve flooding within Cairo, a Bird's Point Levee was detonated by the Army Corps of Engineers. Cairo is a small city of 2,800 people, and is prone to flooding due to its proximity to the confluence of the Ohio and Mississippi River. Cairo is also the only city in the U.S. completely surrounded by levees. The advantage of a 2-D modeling approach compared to a 1-D approach is that the floodplain geomorphological processes are more accurately represented. Understanding non-channelized flow that occurs during inundation events is a subject of growing interest, and is being addressed in other projects such as the NASA-SWOT mission scheduled for launch in 2019. The 2-D model utilized in this study is LISFLOOD-FP. LISFLOOD-FP is a 2-D finite-difference flood inundation model that has been proven to accurately simulate flood inundation for urban, coastal, and fluvial environments. LISFLOOD-FP operates using known hydraulic principles along with continuity and momentum equations to describe the flow of water through channels and floodplains. The digital elevation model used to represent the area's topography was obtained from the USGS National Elevation Data set, and our model uses input data from USGS stream gauges located upstream of the confluence of the Ohio and Mississippi River. The gauging station located in Cairo will be used for model validation. Currently, many flood simulations are being modeled with varying conditions and input files. In situ cross sectional data is being used to represent the channel. We have found that using averages of the cross sectional data do not accurately represent the river channels, so future model runs will incorporate interpolation between

  12. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  13. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  14. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    PubMed

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing. PMID:25980801

  15. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting

  16. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  17. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time.

    PubMed

    Korotkin, Ivan; Karabasov, Sergey; Nerukh, Dmitry; Markesteijn, Anton; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen

    2015-07-01

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported. PMID:26156468

  18. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and time

    SciTech Connect

    Korotkin, Ivan Karabasov, Sergey; Markesteijn, Anton; Nerukh, Dmitry; Scukins, Arturs; Farafonov, Vladimir; Pavlov, Evgen

    2015-07-07

    A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single “zoom-in” user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

  19. A model for inertial particle trapping locations in hydrodynamic tweezers arrays

    NASA Astrophysics Data System (ADS)

    House, Tyler A.; Lieu, Valerie H.; Schwartz, Daniel T.

    2014-04-01

    We present a model for the trapping of particles with finite inertia in the microscale viscous steady streaming flow of hydrodynamic tweezers. Devices containing a square array and an offset array of cylindrical posts of radius 25 µm were fabricated. As water is oscillated at small amplitude (s < 5 µm) and audible frequency (5000 Hz), highly symmetric microeddies form causing the fluid and particles suspended in the fluid to transport through the device. We image the flows by using 0.5 µm radius fluorescent polystyrene particles, and demonstrate trapping with larger 5 µm radius polystyrene particles. The streaming flow fields are simulated numerically using a fast analytic-numeric approach, and inertial particle motion is determined using the well-known Maxey-Riley equation for small Stokes number (St) particle motion. The St-dependent period-averaged particle velocity is used to describe the effects of inertia on particle trapping locations. We find the St-dependence of trapping location depends on the underlying symmetry of the flow. Only traps located near eddy centers are affected by particle inertia.

  20. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  1. Numerical study of a two-fluid hydrodynamical model of interstellar medium and population 1 stars

    NASA Astrophysics Data System (ADS)

    Chiang, W. H.

    A numercial study is presented of a hydrodynamic model for a system of stars and gas which are coupled in the following way: (1) stars form out of gas; (2) stars release gas; (3) stars heat up the gas; and (4) gas cools in the absence of heating. All simulations start with the unstable equilibrium solution, in which star formation is balanced by mass loss, heating balanced by cooling, and stars and gas have the same mean velocity. In all cases the gas evolves into a multi-component structure in an approximate pressure equilibrium, in which the most dilute component occupies a large fraction of the volume. This result is not in contradiction to the observed interstellar medium. In the two dimensional simulation, filament-condensation structures occur frequently. Many of their properties are similar to the observed filaments associated with the giant molecular complexes in Orion and in Monoceros. This suggests that large scale interactions studied here may be responsible for producing these features.

  2. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model

    PubMed Central

    Dietze, Kirsten K.; Schimmer, Simone; Kretzmer, Freya; Wang, Junzhong; Lin, Yong; Huang, Xuan; Wu, Weimin; Wang, Baoju; Lu, Mengji

    2016-01-01

    Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance. PMID:26986976

  3. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  4. EXPOSED LONG-LIFETIME FIRST CORE: A NEW MODEL OF FIRST CORES BASED ON RADIATION HYDRODYNAMICS

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Machida, Masahiro N.; Saigo, Kazuya; Matsumoto, Tomoaki E-mail: tomisaka@th.nao.ac.j E-mail: saigo.kazuya@nao.ac.j

    2010-12-20

    A first adiabatic core is a transient object formed in the early phase of star formation. The observation of a first core is believed to be difficult because of its short lifetime and low luminosity. On the basis of radiation hydrodynamic simulations, we propose a novel theoretical model of first cores, the Exposed Long-lifetime First core (ELF). In the very low-mass molecular core, the first core evolves slowly and lives longer than 10,000 years because the accretion rate is considerably low. The evolution of ELFs is different from that of ordinary first cores because radiation cooling has a significant effect there. We also carry out a radiation-transfer calculation of dust-continuum emission from ELFs to predict their observational properties. ELFs have slightly fainter but similar spectral energy distributions to ordinary first cores in radio wavelengths, therefore they can be observed. Although the probabilities that such low-mass cores become gravitationally unstable and start to collapse are low, we still can expect that a considerable number of ELFs can be formed because there are many low-mass molecular cloud cores in star-forming regions that could be progenitors of ELFs.

  5. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model.

    PubMed

    Dietze, Kirsten K; Schimmer, Simone; Kretzmer, Freya; Wang, Junzhong; Lin, Yong; Huang, Xuan; Wu, Weimin; Wang, Baoju; Lu, Mengji; Dittmer, Ulf; Yang, Dongliang; Liu, Jia

    2016-01-01

    Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance. PMID:26986976

  6. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.

    PubMed

    Kim, Eunjung; Guilak, Farshid; Haider, Mansoor A

    2010-03-01

    The pericellular matrix (PCM) is the narrow tissue region surrounding all chondrocytes in articular cartilage and, together, the chondrocyte(s) and surrounding PCM have been termed the chondron. Previous theoretical and experimental studies suggest that the structure and properties of the PCM significantly influence the biomechanical environment at the microscopic scale of the chondrocytes within cartilage. In the present study, an axisymmetric boundary element method (BEM) was developed for linear elastic domains with internal interfaces. The new BEM was employed in a multiscale continuum model to determine linear elastic properties of the PCM in situ, via inverse analysis of previously reported experimental data for the three-dimensional morphological changes of chondrons within a cartilage explant in equilibrium unconfined compression (Choi, et al., 2007, "Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage," J. Biomech., 40, pp. 2596-2603). The microscale geometry of the chondron (cell and PCM) within the cartilage extracellular matrix (ECM) was represented as a three-zone equilibrated biphasic region comprised of an ellipsoidal chondrocyte with encapsulating PCM that was embedded within a spherical ECM subjected to boundary conditions for unconfined compression at its outer boundary. Accuracy of the three-zone BEM model was evaluated and compared with analytical finite element solutions. The model was then integrated with a nonlinear optimization technique (Nelder-Mead) to determine PCM elastic properties within the cartilage explant by solving an inverse problem associated with the in situ experimental data for chondron deformation. Depending on the assumed material properties of the ECM and the choice of cost function in the optimization, estimates of the PCM Young's modulus ranged from approximately 24 kPa to 59 k

  7. Understanding how hydrodynamics affects particle transport in saturated fractures using modelling and experimental results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2013-12-01

    Approximately 35% of Canadians and Americans utilize groundwater for drinking water and as such, it is essential to understand the mechanisms which may jeopardize this resource. Porous media aquifers typically provide significant removal of particulate contaminants (eg. viruses, bacteria); however, fractures in fractured rock aquifers and aquitards often provide pathways for particles to move in greater numbers and speed than in porous media. Thus, understanding flow and transport in fractures is important for the preservation and use of groundwater sources. Models based on coupling flow and transport equations can be used in understanding transport in fractures. Both experiments and simulations have shown that there are inconsistencies in current transport, attachment and detachment theory, particularly when particle size is varied. The assumption that hydrodynamic effects do not significantly affect transport of particles is likely untrue. As well, it has been shown that preferential flow paths occur in fractures, but the effects of path specific properties such as fracture geometry have yet to be thoroughly explored. It has been observed that eddies caused by local changes in geometry exist in fractures in the environment and models have demonstrated that such eddies will retard the flow of particles. In this work, two 2D fractures were randomly generated with a mean aperture of approximately 2mm. Finite element software, COMSOL Multiphysics, generated flow fields through the fractures by numerically solving the steady-state Navier-Stokes equation for varied flow rates. Eddies were observed in one of the fractures at both low (~1 m/day) and high (>100 m/day) velocities. A program was written using random walk particle tracking to simulate transport. Theories of attachment, detachment and matrix flow are not included in this model in order to isolate hydrodynamic forces. In combination with the modelling procedure, the two fractures were inscribed into pieces of

  8. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  9. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  10. A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents

    SciTech Connect

    Shapiro, A. )

    1992-12-01

    Vertically sheared airflow over semi-infinite barriers is investigated with a simple hydrodynamical model. The idealized flow is steady, two-dimensional, neutrally buoyant, and inviscid, bounded on the bottom by a semi-infinite impermeable barrier and on the top by a rigid tropopause lid. With attention further restricted to an exponentially decreasing wind shear, the equations of motion (Euler's equations) reduce, without approximation, to a modified Poisson equation for a pseudo streamfunction and a formula for the Exner function. The free parameters characterizing the model's environment are the tropopause height, the density scale height, the wind speed at ground level, and the wind speed at tropopause level. Additional parameters characterize the barrier geometry. Exact solutions of the equations of motion are obtained for semi-infinite plateau barriers and for a barrier qualitatively resembling the shallow density current associated with some thunderstorm outflows. These solutions are noteworthy in that the reduction of a certain nondimensional shear parameter (through negative values) results in greater vertical parcel displacements over the barrier despite a corresponding reduction in the vertical velocity. This steepening tendency culminates in overturning motions associated with both upstream and down-stream steering levels. In this latter case the low-level inflow impinging on the barrier participates in a mixed jump and overturning updraft reminiscent of updrafts simulated in numerical convective models. Conversely, for large values of the nondimensional shear parameter, parcels undergo small vertical parcel displacements over the barrier despite large vertical velocities. This latter behavior may account for the finding that strong convergence along the leading edge of storm outflows does not always trigger deep convection even in unstable environments.

  11. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model

    NASA Astrophysics Data System (ADS)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.

    2015-06-01

    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  12. Hydrodynamics Flow and Transport Characterization of a Karstified Physical Model Using Temporal Moment Analysis

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2013-12-01

    High productivity of karst groundwater systems is often associated with conduit flow and high matrix permeability. Spatial heterogeneities and anisotropy, among others factors, result in highly complex flow patterns in these systems. The same characteristics that make these aquifers very productive also make them highly vulnerable to contamination and a likely for contaminant exposure. The understanding of contamination fate and transport processes in these complex aquifers demand different statistical and numerical approaches, such as the Temporal Moment Analysis (TMA). TMA of solute breakthrough curves provide qualitative and quantitative results to characterize hydrodynamic variables that affect the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems. The general objective of this work is to characterize flow and transport processes in conduit and diffusion-dominated flow under low and high flow conditions using TMA in a karstified physical model. A multidimensional, laboratory-scale, Geo-Hydrobed model (GHM) containing a karstified limestone block collected from the karst aquifer formation of northern Puerto Rico are used for this purpose. Experimental work entails injecting dissolved CaCl2 and trichloroethene (TCE) in the upstream boundary of the GHM while monitoring their concentrations spatially and temporally in the limestone under different groundwater flow regimes. Results from the TMA show a highly heterogeneous system resulting in large preferential flow components and specific mass-transfer limitations zones especially in diffuse flow areas. Flow variables like velocity and Reynolds number indicates defined preferential flow paths increasing spatially as flow rate increase. TMA results show to be qualitatively consistent with a previous statistical novel approach developed using mixed models. Comparison between the dissolved CaCl2 tracer and TCE show implications for reactive contaminants in the karst

  13. Hydrodynamics of a shallow coastal lagoon with submarine groundwater discharge: a numerical modeling exercise

    NASA Astrophysics Data System (ADS)

    Casares, R.; Marino-Tapia, I.

    2013-05-01

    Coastal lagoons are subjected to physical forces that make them vulnerable to climate change and human intervention. The karstic geology along the coastal zone of Yucatan Peninsula, Mexico, forces groundwater to discharge in the sea and coastal lagoons through underground conduits that can form small but numerous and scattered underwater springs. These freshwater inputs, along with other physical forces like ocean tides and meteorological events, can have a significant effect on the circulation and residence times in coastal lagoons. Climate change consequences such as sea level rise and changing rain patterns, as well as the increasing human impact, can cause or aggravate certain environmental effects. Since coastal lagoons provide important environmental services there is a need to understand and have predictive capability to simulate the transport processes and the forces acting on them. The present study was carried out in the coastal lagoon of Celestun, located at NW Yucatan Peninsula, a region of karstic geology. The aim of this research is to understand the barotropic hydrodynamic functioning of this shallow system, taking into account the oceanographical, meteorological and hydrological forcing. Emphasis is made on the residence times in different parts of the lagoon, and the effects of freshwater inputs. For the detailed understanding of the processes the hydrodynamic numerical model DELFT3D was implemented. The model was validated with data gathered on the field during two intensive oceanographic campaigns, which included installation of CTDs and acoustic current meters at strategic sites distributed in the system, and detailed bathymetric measurements using an echosounder coupled with a differential GPS on board of a motorboat. In order to improve model performance a sensitivity analysis to the main variables involved in the model was carried out, among them: the size of the grid cells, grid depth, time step, friction coefficients, boundary conditions

  14. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.

    2008-12-01

    Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that

  15. The thermal structure and the location of the snow line in the protosolar nebula: Axisymmetric models with full 3-D radiative transfer

    NASA Astrophysics Data System (ADS)

    Min, M.; Dullemond, C. P.; Kama, M.; Dominik, C.

    2011-03-01

    The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.

  16. Compartment-based hydrodynamics and water quality modeling of a northern Everglades wetland, Florida, USA

    USGS Publications Warehouse

    Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang

    2012-01-01

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for

  17. Validation of 2DH hydrodynamic and morphological mathematical models. A methodology based on SAR imaging

    NASA Astrophysics Data System (ADS)

    Canelas, Ricardo; Heleno, Sandra; Pestana, Rita; Ferreira, Rui M. L.

    2014-05-01

    The objective of the present work is to devise a methodology to validate 2DH shallow-water models suitable to simulate flow hydrodynamics and channel morphology. For this purpose, a 2DH mathematical model, assembled at CEHIDRO, IST, is employed to model Tagus river floods over a 70 km reach and Synthetic Aperture Radar (SAR) images are collected to retrieve planar inundation extents. The model is suited for highly unsteady discontinuous flows over complex, time-evolving geometries, employing a finite-volume discretization scheme, based on a flux-splitting technique incorporating a reviewed version of the Roe Riemann solver. Novel closure terms for the non-equilibrium sediment transport model are included. New boundary conditions are employed, based on the Riemann variables associated the outgoing characteristic fields, coping with the provided hydrographs in a mathematically coherent manner. A high resolution Digital Elevation Model (DEM) is used and levee structures are considered as fully erodible elements. Spatially heterogeneous roughness characteristics are derived from land-use databases such as CORINE LandCover 2006. SAR satellite imagery of the floods is available and is used to validate the simulation results, with particular emphasis on the 2000/2001 flood. The delimited areas from the satellite and simulations are superimposed. The quality of the adjustment depends on the calibration of roughness coefficients and the spatial discretization of with small structures, with lengths at the order of the spatial discretization. Flow depths and registered discharges are recovered from the simulation and compared with data from a measuring station in the domain, with the comparison revealing remarkably high accuracy, both in terms of amplitudes and phase. Further inclusion of topographical detail should improve the comparison of flood extents regarding satellite data. The validated model was then employed to simulate 100-year floods in the same reach. The

  18. Simulating hydrodynamics in a spring-fed estuary using a three-dimensional unstructured Cartesian grid model

    NASA Astrophysics Data System (ADS)

    Chen, XinJian

    2012-12-01

    This paper presents an application of a three-dimensional unstructured Cartesian grid model (Chen, 2011) to a real-world case, namely the Crystal River/Kings Bay system located on the Gulf coast of the Florida peninsula of the United States. Crystal River/Kings Bay is a spring-fed estuarine system which is believed to be the largest natural refuge in the United States for manatees during the coldest days in winter because of the existence of a large amount of discharge out of numerous spring vents at the bottom of Kings Bay. The unstructured Cartesian grid model was used to simulate hydrodynamics, including salinity transport processes and thermodynamics, in the estuary during a 34-month period from April 2007 to February 2010. Although there are some unidentified uncertainties in quantifying flow rates from the spring vents and salinity variations in spring flows, simulated water elevations, salinities, temperatures, and cross-sectional flux all match well or very well with measured real-time field data. This suggests that the unstructured Cartesian grid model can adequately simulate hydrodynamics in a complex shallow water system such as Crystal River/Kings Bay and the numerical theory for the unstructured Cartesian grid model works properly. The successful simulation of hydrodynamics in the estuarine system also suggests that an empirical formula that relates the spring discharge with the water level in Kings Bay and the groundwater level measured in a nearby well is reasonable.

  19. An Electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation

    PubMed Central

    Luan, Binquan; Stolovitzky, Gustavo

    2013-01-01

    A solid-state nanopore can be used to sense DNA (or other macromolecules) by monitoring ion-current changes that result from translocation of the molecule through the pore. When transiting a nanopore, the highly negatively charged DNA interacts with a nanopore both electrically and hydrodynamically, causing a current blockage or a current enhancement at different ion concentrations. This effect was previously characterized using a phenomenological model that can be considered as the limit of the electro-hydrodynamics model presented here. We show theoretically that the effect of surface charge of a nanopore (or electroosmotic effect) can be equivalently treated as modifications of electrophoretic mobilities of ions in the pore, providing an improved physical understanding of the current blockage (or enhancement). PMID:23579206

  20. Applications of 3D hydrodynamic and particle tracking models in the San Francisco bay-delta estuary

    USGS Publications Warehouse

    Smith, P.E.; Donovan, J.M.; Wong, H.F.N.

    2005-01-01

    Three applications of three-dimensional hydrodynamic and particle-tracking models are currently underway by the United States Geological Survey in the San Francisco Bay-Delta Estuary. The first application is to the San Francisco Bay and a portion of the coastal ocean. The second application is to an important, gated control channel called the Delta Cross Channel, located within the northern portion of the Sacramento-San Joaquin River Delta. The third application is to a reach of the San Joaquin River near Stockton, California where a significant dissolved oxygen problem exists due, in part, to conditions associated with the deep-water ship channel for the Port of Stockton, California. This paper briefly discusses the hydrodynamic and particle tracking models being used and the three applications. Copyright ASCE 2005.

  1. Smoothed particle hydrodynamics model for Landau-Lifshitz Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre M.

    2014-12-14

    We propose a novel Smoothed Particle Hydrodynamics (SPH) discretization of the fully-coupled Landau-Lifshitz-Navier-Stokes (LLNS) and advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations are found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for the coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study the formation of the so-called giant fluctuations of the front between light and heavy fluids with and without gravity, where the light fluid lays on the top of the heavy fluid. We find that the power spectra of the simulated concentration field is in good agreement with the experiments and analytical solutions. In the absence of gravity the the power spectra decays as the power -4 of the wave number except for small wave numbers which diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations resulting in the much weaker dependence of the power spectra on the wave number. Finally the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  2. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-01

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  3. SPIRALING OUT OF CONTROL: THREE-DIMENSIONAL HYDRODYNAMICAL MODELING OF THE COLLIDING WINDS IN {eta} CARINAE

    SciTech Connect

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-10

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star {eta} Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  4. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations

    SciTech Connect

    Kordilla, Jannes; Pan, Wenxiao Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called “giant fluctuations” of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power −4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  5. Proposed Hydrodynamic Model Increases the Ability of Land-Surface Models to Capture Intra-Daily Dynamics of Transpiration and Canopy Structure Effects

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.; Mirfenderesgi, G.; Schafer, K. V.; Ivanov, V. Y.

    2014-12-01

    Hydraulic limitations are known to control transpiration in forest ecosystems when the soil is drying or when the vapor pressure deficit between the air and stomata is very large, but they can also impact stomatal apertures under conditions of adequate soil moisture and lower evaporative demand. We use the NACP dataset of latent heat flux measurements and model observations for multiple sites and models to demonstrate models' difficulties in capturing intra-daily hysteresis. We hypothesize that this is a result of un-resolved afternoon stomata closure due to hydrodynamic stresses. The current formulations for stomatal conductance and the empirical coupling between stomatal conductance and soil moisture used by these models does not resolve the hydrodynamic process of water movement from the soil to the leaves. This approach does not take advantage of advances in our understanding of water flow and storage in the trees, or of tree and canopy structure. A more thorough representation of the tree-hydrodynamic processes could potentially remedy this significant source of model error. In a forest plot at the University of Michigan Biological Station, we use measurements of sap flux and leaf water potential to demonstrate that trees of similar type - late successional deciduous trees - have very different hydrodynamic strategies that lead to differences in their temporal patterns of stomatal conductance and thus hysteretic cycles of transpiration. These differences will lead to large differences in conductance and water use based on the species composition of the forest. We also demonstrate that the size and shape of the tree branching system leads to differences in extent of hydrodynamic stress, which may change the forest respiration patterns as the forest grows and ages. We propose a framework to resolve tree hydrodynamics in global and regional models based on the Finite-Elements Tree-Crown Hydrodynamics model (FETCH) -a hydrodynamic model that can resolve the fast

  6. The core helium flash revisited. II. Two and three-dimensional hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Mocák, M.; Müller, E.; Weiss, A.; Kifonidis, K.

    2009-07-01

    Context: We study turbulent convection during the core helium flash close to its peak by comparing the results of two and three-dimensional hydrodynamic simulations. Aims: In a previous study we found that the temporal evolution and the properties of the convection inferred from two-dimensional hydrodynamic studies are similar to those predicted by quasi-hydrostatic stellar evolutionary calculations. However, as vorticity is conserved in axisymmetric flows, two-dimensional simulations of convection are characterized by incorrect dominant spatial scales and exaggerated velocities. Here, we present three-dimensional simulations that eliminate the restrictions and flaws of two-dimensional models and that provide a geometrically unbiased insight into the hydrodynamics of the core helium flash. In particular, we study whether the assumptions and predictions of stellar evolutionary calculations based on the mixing-length theory can be confirmed by hydrodynamic simulations. Methods: We used a multidimensional Eulerian hydrodynamics code based on state-of-the-art numerical techniques to simulate the evolution of the helium core of a 1.25 M⊙ Pop I star. Results: Our three-dimensional hydrodynamic simulations of the evolution of a star during the peak of the core helium flash do not show any explosive behavior. The convective flow patterns developing in the three-dimensional models are structurally different from those of the corresponding two-dimensional models, and the typical convective velocities are lower than those found in their two-dimensional counterparts. Three-dimensional models also tend to agree more closely with the predictions of mixing length theory. Our hydrodynamic simulations show the turbulent entrainment that leads to a growth of the convection zone on a dynamic time scale. In contrast to mixing length theory, the outer part of the convection zone is characterized by a subadiabatic temperature gradient.

  7. Neumann and Robin boundary conditions for heat conduction modeling using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Esmaili Sikarudi, M. A.; Nikseresht, A. H.

    2016-01-01

    Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.

  8. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mišković, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  9. Application of CFD modeling to hydrodynamics of CycloBio fluidized sand bed in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Song, Xiefa; Liang, Zhenlin; Peng, Lei

    2013-11-01

    To improve the efficiency of a CycloBio fluidized sand bed (CB FSB) in removal of dissolved wastes in recirculating aquaculture systems, the hydrodynamics of solid-liquid flow was investigated using computational fluid dynamics (CFD) modeling tools. The dynamic characteristics of silica sand within the CB FSB were determined using three-dimensional, unsteady-state simulations with the granular Eulerian multiphase approach and the RNG k-ɛ turbulence model, and the simulation results were validated using available lab-scale measurements. The bed expansion of CB FSB increased with the increase in water inflow rate in numerical simulations. Upon validation, the simulation involving 0.55 mm particles, the Gidaspow correlation for drag coefficient model and the Syamlal-O'Brien correlation for kinetic granular viscosity showed the closest match to the experimental results. The volume fraction of numerical simulations peaked as the wall was approached. The hydrodynamics of a pilot-scale CB FSB was simulated in order to predict the range of water flow to avoid the silica sand overflowing. The numerical simulations were in agreement with the experimental results qualitatively and quantitatively, and thus can be used to study the hydrodynamics of solid-liquid multiphase flow in CB FSB, which is of importance to the design, optimization, and amplification of CB FSBs.

  10. Hydrodynamic modelling of coastal seas: the role of tidal dynamics in the Messina Strait, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Cucco, Andrea; Quattrocchi, Giovanni; Olita, Antonio; Fazioli, Leopoldo; Ribotti, Alberto; Sinerchia, Matteo; Tedesco, Costanza; Sorgente, Roberto

    2016-07-01

    This work explores the importance of considering tidal dynamics when modelling the general circulation in the Messina Strait, a narrow passage connecting the Tyrrhenian and the Ionian subbasins in the Western Mediterranean Sea. The tides and the induced water circulation in this Strait are among the most intense oceanographic processes in the Mediterranean Sea. The quantification of these effects can be particularly relevant for operational oceanographic systems aimed to provide short-term predictions of the main hydrodynamics in the Western Mediterranean subbasins. A numerical approach based on the use of a high-resolution hydrodynamic model was followed to reproduce the tides propagation and the wind-induced and thermohaline water circulation within the Strait and in surrounding areas. A set of numerical simulations was carried out to quantify the role of the Strait dynamics on the larger-scale water circulation. The obtained results confirmed the importance of a correct representation of the hydrodynamics in the Messina Strait even when focusing on predicting the water circulation in the external sea traits. In fact, model results show that tidal dynamics deeply impact the reproduction of the instantaneous and residual circulation pattern, waters thermohaline properties and transport dynamics both inside the Messina Strait and in the surrounding coastal and open waters.

  11. Performance of a process-based hydrodynamic model in predicting shoreline change

    NASA Astrophysics Data System (ADS)

    Safak, I.; Warner, J. C.; List, J. H.

    2012-12-01

    Shoreline change is controlled by a complex combination of processes that include waves, currents, sediment characteristics and availability, geologic framework, human interventions, and sea level rise. A comprehensive data set of shoreline position (14 shorelines between 1978-2002) along the continuous and relatively non-interrupted North Carolina Coast from Oregon Inlet to Cape Hatteras (65 km) reveals a spatial pattern of alternating erosion and accretion, with an erosional average shoreline change rate of -1.6 m/yr and up to -8 m/yr in some locations. This data set gives a unique opportunity to study long-term shoreline change in an area hit by frequent storm events while relatively uninfluenced by human interventions and the effects of tidal inlets. Accurate predictions of long-term shoreline change may require a model that accurately resolves surf zone processes and sediment transport patterns. Conventional methods for predicting shoreline change such as one-line models and regression of shoreline positions have been designed for computational efficiency. These methods, however, not only have several underlying restrictions (validity for small angle of wave approach, assuming bottom contours and shoreline to be parallel, depth of closure, etc.) but also their empirical estimates of sediment transport rates in the surf zone have been shown to vary greatly from the calculations of process-based hydrodynamic models. We focus on hind-casting long-term shoreline change using components of the process-based, three-dimensional coupled-ocean-atmosphere-wave-sediment transport modeling system (COAWST). COAWST is forced with historical predictions of atmospheric and oceanographic data from public-domain global models. Through a method of coupled concurrent grid-refinement approach in COAWST, the finest grid with resolution of O(10 m) that covers the surf zone along the section of interest is forced at its spatial boundaries with waves and currents computed on the grids

  12. Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium

    NASA Astrophysics Data System (ADS)

    Daly, E.; Grimaldi, S.; Bui, H.

    2014-12-01

    Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approa