Hydrodynamic analysis of the displacement conditions of formation fluids using an axisymmetric model
NASA Astrophysics Data System (ADS)
Chernoshchuk, I. B.
2008-03-01
The axisymmetric problem of the displacement of formation fluids by a drilling mud filtrate with filter cake formation is considered. An analysis is made of the distribution and variation of the main parameters of the process: filtrate volume, filter cake thickness, oil saturation, and pressure. The positions of the water-saturation and salt-concentration fronts are determined. The results are compared with the geophysical logging data for straight-hole drilling.
An Axisymmetric, Hydrodynamical Model for the Torus Wind in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We report on time-dependent axisymmetric simulations of an X-ray-excited flow from a parsec-scale, rotating, cold torus around an active galactic nucleus. Our simulations account for radiative heating and cooling and radiation pressure force. The simulations follow the development of a broad biconical outflow induced mainly by X-ray heating. We compute synthetic spectra predicted by our simulations. The wind characteristics and the spectra support the hypothesis that a rotationally supported torus can serve as the source of a wind which is responsible for the warm absorber gas observed in the X-ray spectra of many Seyfert galaxies.
Magneto-hydrodynamically stable axisymmetric mirrors
NASA Astrophysics Data System (ADS)
Ryutov, Dmitri
2010-11-01
The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
An Axisymmetric Hydrodynamical Model for the Torus Wind in AGN. 2; X-ray Excited Funnel Flow
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.; Proga, D.
2008-01-01
We have calculated a series of models of outflows from the obscuring torus in active galactic nuclei (AGN). Our modeling assumes that the inner face of a rotationally supported torus is illuminated and heated by the intense X-rays from the inner accretion disk and black hole. As a result of such heating a strong biconical outflow is observed in our simulations. We calculate 3-dimensional hydrodynamical models, assuming axial symmetry, and including the effects of X-ray heating, ionization, and radiation pressure. We discuss the behavior of a large family of these models, their velocity fields, mass fluxes and temperature, as functions of the torus properties and X-ray flux. Synthetic warm absorber spectra are calculated, assuming pure absorption, for sample models at various inclination angles and observing times. We show that these models have mass fluxes and flow speeds which are comparable to those which have been inferred from observations of Seyfert 1 warm absorbers, and that they can produce rich absorption line spectra.
Van Eerten, Hendrik; Zhang Weiqun; MacFadyen, Andrew
2010-10-10
Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.
A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields
NASA Astrophysics Data System (ADS)
Jiang, J.; Wang, J. X.
2007-05-01
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric α2-Ω dynamo model is derived to explore the characteristics of the axisymmetric (m = 0) and the first non-axisymmetric (m = 1) modes and to provide a theoretical basis with which to explain the `active longitude', `flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the α2-Ω and the α-Ω models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Long, C. C.; Akkerman, I.; Benson, D. J.; Shashkov, M. J.
2014-04-01
A recent Isogeometric Analysis (IGA) formulation of Lagrangian shock hydrodynamics [4] is extended to the 3D axisymmetric case. The Euler equations of compressible hydrodynamics are formulated using the rz-cylindrical coordinates, and are discretized in the weak form using NURBS-based IGA. Artificial shock viscosity and internal energy projection are added to stabilize the formulation. The resulting discretization exhibits good accuracy and robustness properties. It also gives exact symmetry preservation on the appropriately constructed meshes. Several benchmark examples are computed to examine the performance of the proposed formulation.
Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction
NASA Astrophysics Data System (ADS)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-03-01
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.
NASA Astrophysics Data System (ADS)
Nakiboǧlu, G.; Hirschberg, A.
2012-06-01
Aeroacoustic sound generation due to self-sustained oscillations by a series of compact axisymmetric cavities exposed to a grazing flow is studied both experimentally and numerically. The driving feedback is produced by the velocity fluctuations resulting from a coupling of vortex sheddings at the upstream cavity edges with acoustic standing waves in the coaxial pipe. When the cavities are separated sufficiently from each other, the whistling behavior of the complete system can be determined from the individual contribution of each cavity. When the cavities are placed close to each other there is a strong hydrodynamic interference between the cavities which affects both the peak amplitude attained during whistling and the corresponding Strouhal number. This hydrodynamic interference is captured successfully by the proposed numerical method.
Preferential axisymmetric field growth in kinematic geodynamo models
NASA Astrophysics Data System (ADS)
Livermore, Philip W.; Jackson, Andrew
2004-11-01
Earth's magnetic field, generated by fluid motion and inductive processes in Earth's core, has a predominantly axisymmetric dipolar component. Yet indefinite self-excitation of purely axisymmetric fields through any dynamo mechanism is specifically disallowed, begging the question of why the geodynamo sustains this dominant axisymmetric component. By considering a number of different fluid flow models modified from existing studies, we show that axisymmetric fields are consistently the most easily regenerated magnetic fields on short timescales, despite the fact that on long timescales they must die away. We argue that this transient field generation may play an important role in generating Earth's magnetic field, especially in the recovery after reversals.
NASA Astrophysics Data System (ADS)
Tobias, B. J.; Austin, M. E.; Classen, I. G. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, J.-K.; Paz-Soldan, C.; Turnbull, A. D.; Yu, L.; the DIII-D Team
2013-12-01
Non-axisymmetric equilibria arise in DIII-D discharges that are subjected to magnetic perturbation by 3D magnetic coils. But, 3D shaping of the entire plasma, including the boundary, also occurs in the rotating fluid frame of saturated internal magnetic islands (Tobias et al 2013 Plasma Phys. Control. Fusion 55 095006). This is advantageous since internal islands and kink responses that rotate near the fluid velocity of the plasma are easily diagnosed, while static perturbations in the laboratory frame are not. The helicity of the perturbed shape is the same in both rotational frames of reference, making one mode a diagnostic proxy for the other and allowing internal modes to be used as a source of data for comparison to models typically applied to understanding the effect of static perturbations. Discrepancies with ideal magneto-hydrodynamic equilibrium obtained by the IPEC (Park et al 2007 Phys. Plasmas 14 052110) method brings attention to the treatment of plasma displacements near rational surfaces and their relationship to the accessibility of equilibrium states.
Recent development of hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Study of axisymmetric flow problems by Hele-Shaw models
NASA Astrophysics Data System (ADS)
Rao, P. V.; Sachan, J. S.
1980-05-01
Hele-Shaw models have been applied for solving two-dimensional, irrotational flow problems such as flow past bodies or radial seepage flow. The gap between the two plates is varied as a cubic parabola in the radial direction. Results are presented for seven axisymmetric models, including a cylindrical body with 60-deg conical head forms, an axisymmetric sluice entrance with a compound elliptical transition and radial flow to a well with a free surface. Pressure distributions were computed and compared with water-tunnel data, wind-tunnel data, finite-differential solutions and exact solutions.
Modeling the Orion nebula as an axisymmetric blister
NASA Technical Reports Server (NTRS)
Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.
1991-01-01
The ionized gas in the Orion nebula is examined by means of axisymmetric modeling that is based on observational data from the ionized, neutral, and molecular regions. Nonsymmetrical features are omitted, radial dependence from the Trapezium is assumed, and azimuthal symmetry in the plane of the sky is used. Stellar properties and abundances of certain elements are described, and these data are used to compare the present axisymmetric-blister model to a previous spherical model. Strong singly-ionized emission that are visible near the Trapezium are found to originate in the ionization-bounded region in the dense Trapezium zone. The model can be more tightly constrained by adding near-IR data on noncentral zones for (Ar II), (AR III), (Ne II), and (S IV). The quadrant with the 'bar' creates an nonsymmetry that influences the observational data, and the model can therefore be improved with the additional data.
Application of the PTT model to axisymmetric free surface flows
NASA Astrophysics Data System (ADS)
Merejolli, R.; Paulo, G. S.; Tomé, M. F.
2013-10-01
This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.
Axisymmetric model of the ionized gas in the Orion Nebula
NASA Technical Reports Server (NTRS)
Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.
1991-01-01
New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Hydrodynamic model for drying emulsions
NASA Astrophysics Data System (ADS)
Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper
2015-08-01
We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.
Modeling and simulation of axisymmetric coating growth on nanofibers
Moore, K.; Clemons, C. B.; Kreider, K. L.; Young, G. W.
2007-03-15
This work is a modeling and simulation extension of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level, and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface. This equation was previously derived and solved under a single-valued assumption in a polar geometry to determine the coating morphology as a function of operating conditions. The present work considers the axisymmetric geometry and solves the evolution equation without the single-valued assumption and under less restrictive assumptions on the concentration field than the previous work.
Modeling of non-axisymmetric magnetic perturbations in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Y.; Liang, Y.; Qian, J.; Shen, B.; Wan, B.
2015-04-01
A numerical model to evaluate the effects of the non-axisymmetric magnetic perturbations on magnetic topology and magnetic field ripple in tokamaks is presented in this paper. It is illustrated by using an example magnetic field perturbation induced by a coil system on the EAST tokamak. The influence of the choice of the coordinates on the spectrum is presented. The amplitude of resonant components of the spectrum are found to be independent of the coordinates system, while that of the non-resonant components are not. A better way to describe the edge topology by using the Chirikov parameter profile is proposed and checked by the numerical Poincaré plot results. The contribution of the magnetic perturbation on local toroidal field ripple can be significant. One approximate method to model the helical ripple on the perturbed flux surface induced by a given non-axisymmetric magnetic field perturbation is presented. All of the spectrum analysis is applicable in case the plasma response is taken into account in the input of perturbed magnetic field.
Acoustic intensity calculations for axisymmetrically modeled fluid regions
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Everstine, Gordon C.
1992-01-01
An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.
Averaged implicit hydrodynamic model of semiflexible filaments.
Chandran, Preethi L; Mofrad, Mohammad R K
2010-03-01
We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783
Axisymmetric curvature-driven instability in a model divertor geometry
Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 ; Ryutov, D. D.
2013-09-15
A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.
Hydrodynamics of bacterial colonies: A model
NASA Astrophysics Data System (ADS)
Lega, J.; Passot, T.
2003-03-01
We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in numerical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such as the whirls and jets recently observed in wet colonies of Bacillus subtilis. The approach presented here could be extended to different experimental situations and provides a general framework for the use of advection-reaction-diffusion equations in modeling bacterial colonies.
The quantum hydrodynamic model for semiconductor devices
NASA Astrophysics Data System (ADS)
Gardner, Carl L.
1995-02-01
Quantum semiconductor devices are playing an increasingly important role in advanced microelectronic applications, including multiple-state logic and memory devices. To model quantum devices, the classical hydrodynamic model for semiconductor devices can be extended to include O(h(2)) quantum corrections. This proposal focused on theoretical and computational investigations of the flow of electrons in semiconductor devices based on the quantum hydrodynamic model. The development of efficient, robots numerical methods for the QHD model in one and two spatial dimensions we also emphasized.
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
MODELING MID-INFRARED VARIABILITY OF CIRCUMSTELLAR DISKS WITH NON-AXISYMMETRIC STRUCTURE
Flaherty, K. M.; Muzerolle, J.
2010-08-20
Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produces negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.
Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Flock, Mario
2016-06-01
Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The
Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.
2004-01-01
The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.
Modeling Reef Hydrodynamics to Predict Coral Bleaching
NASA Astrophysics Data System (ADS)
Bird, James; Steinberg, Craig; Hardy, Tom
2005-11-01
The aim of this study is to use environmental physics to predict water temperatures around and within coral reefs. Anomalously warm water is the leading cause for mass coral bleaching; thus a clearer understanding of the oceanographic mechanisms that control reef water temperatures will enable better reef management. In March 1998 a major coral bleaching event occurred at Scott Reef, a 40 km-wide lagoon 300 km off the northwest coast of Australia. Meteorological and coral cover observations were collected before, during, and after the event. In this study, two hydrodynamic models are applied to Scott Reef and validated against oceanographic data collected between March and June 2003. The models are then used to hindcast the reef hydrodynamics that led up to the 1998 bleaching event. Results show a positive correlation between poorly mixed regions and bleaching severity.
Hydrodynamics of penguin wing models
NASA Astrophysics Data System (ADS)
Noca, Flavio; Cuong Duong, Nhut; Herpich, Jerome
2010-11-01
The three-dimensional kinematics of penguin wings were obtained from movie footage in aquariums. A 1:1 scale model of the penguin wing (with an identical planform but with a flat section profile and a rigid configuration) was actuated with a robotic arm in a water channel. The experiments were performed at a chord Reynolds number of about 10^4 (an order of magnitude lower than for the observed penguin). The dynamics of the wing were analyzed with force and flowfield measurements. The two main results are: 1. a net thrust on both the upstroke and downstroke movement; 2. the occurence of a leading edge vortex (LEV) along the wing span. The effects of section profile, wing flexibility, and a higher Reynolds number will be investigated in the future.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
Axisymmetric and three dimensional flow modeling within thermal vapor compressors
NASA Astrophysics Data System (ADS)
Sharifi, Navid
2013-10-01
Thermal vapor compressor (TVC) is a device for compressing vapor in water-steam cycles and frequently used in desalination systems. Large amounts of useless vapor can be compressed by this device and the efficiency of a desalination unit is effectively enhanced through this process. Motive steam is injected into the TVC through a convergent-divergent nozzle and accelerated to supersonic velocities. The low pressure steam is entrained at the upstream zone and mixed with this highly compressible motive flow within the TVC. In the current study, the flow field of an experimental TVC is scrutinized in both axisymmetric and three-dimensional approaches and compared with experimental measurements. Since the steam collector at the suction surface of the TVC has a curved shape and may undermine the symmetry of the flow on either side of the central axis, the second objective of this study is to reveal the deviation of the symmetric assumption from the real non-symmetric condition of entering steam flow into the TVC. Results show that the presence of a bending at the inlet side has approximately negligible effects on the mixing phenomenon and the flow remains symmetric around the central axis. Hence, there is no need to consider the collector geometry in further simulations and the performance parameters of the TVC would be sufficiently obtained through an axisymmetric method with a substantial reduction in the computational cost and time.
Fokker-Planck model of hydrodynamics.
Singh, S K; Ansumali, Santosh
2015-03-01
We present a phenomenological description of the hydrodynamics in terms of the Fokker-Planck (FP) equation for one-particle distribution function. Similar to the Boltzmann equation or the Bhatnager-Gross-Krook (BGK) model, this approach is thermodynamically consistent and has the H theorem. In this model, transport coefficients as well as the equation of state can be provided independently. This approach can be used as an alternate to BGK-based methods as well as the direct simulation Monte Carlo method for the gaseous flows. PMID:25871242
Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2016-08-01
Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.
Generalized hydrodynamics model for strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2015-07-01
Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.
Hydrodynamic models for slurry bubble column reactors
Gidaspow, D.
1995-12-31
The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.
Axisymmetric toroidal modes of general relativistic magnetized neutron star models
Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp
2014-07-20
We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.
A simple model of axisymmetric turbulent boundary layers along long thin circular cylinders
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2014-08-01
Useful empirical and semi-empirical models of the turbulent boundary layer (TBL) and skin friction evolution along planar geometries are not applicable for axisymmetric thin cylinder flows. Their dissimilarity is readily detectable once the TBL thickness exceeds the cylinder radius (a). Although several recent empirically based axisymmetric models recognize this fact, their acceptable fidelity is either restrictive or deficient for general applicability. Herein, we correct this deficit by building a simple model for the specific canonical class of axisymmetric turbulent flows along long thin cylinders with a zero streamwise pressure gradient. Streamwise growth of the TBL thickness (δ/a), integral scales [displacement (δ*/a) and momentum thicknesses (θ/a)] and skin friction coefficient (Cf) can be estimated along the cylinder length via the respective axial mean velocity profile in wall units. This profile is given by Spalding's formula with algebraic expressions for the two input parameters (κ, κβ) that cover all turbulent Reynolds numbers. The necessary database for empirically tuning Spalding's parameters entails both experimental measurements and new numerical computations. Our present-day understanding of the axisymmetric TBL is replicated by the simple model where δ/a, δ*/a, and θ/a grow slower than the planar-type flow with Cf comparatively elevating once δ/a > O(1). These differences manifest themselves in the radial impact imposed by the thin cylinder transverse curvature. Interestingly, the axial-based Reynolds numbers Rea ≈ 7500 and a+ ≈ 350 at δ/a ≈ 21 mark earliest signs of a homogeneous streamwise state (constant Cf) near the cylinder wall. Owning a simple model of axisymmetric turbulent flows along thin cylinders eliminates expensive and timely experiments and/or computations. Its practicality targets both the Naval and oceanographic communities.
Hydrodynamic models of AGN feedback in cooling core clusters
NASA Astrophysics Data System (ADS)
Vernaleo, John C.
X-ray observations show that the Intra Cluster Medium (ICM) in many galaxy clusters is cooling at a rapid rate, often to the point that it should have radiated away all of its energy in less than the age of the cluster. There is however a very clear lack of enough cool end products of this gas in the centers of the clusters. Energetic arguments indicate that Active Galactic Nuclei (AGN) should be capable of heating the inner regions of clusters enough to offset the radiative cooling; truncating massive galaxy formation and solving the cooling flow problem. We present three sets of high resolution, ideal hydrodynamic simulations with the ZEUS code to test this AGN heating paradigm. For the first set of simulations, we study the dependence of the interaction between the AGN jets and the ICM on the parameters of the jets themselves. We present a parameter survey of two-dimensional (axisymmetric) models of back-to-back jets injected into a cluster atmosphere. We follow the passive evolution of the resulting structures. These simulations fall into roughly two classes, cocoon-bounded and non-cocoon bounded. We find that the cocoon-bounded sources inject significantly more entropy into the core regions of the ICM atmosphere, even though the efficiency with which the energy is thermalized is independent of the morphological class. In all cases, a large fraction of the energy injected by the jet ends up as gravitational potential energy due to the expansion of the atmosphere. For the second set, we present three-dimensional simulations of jetted AGN that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low density channel through which the jet can freely flow, carrying its energy out of the cooling core. Finally, we
An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus.
Wirth, Benedikt; Sobey, Ian
2006-12-01
We formulate in general terms the equations for axisymmetric and fully 3D models of a hydrocephalic brain. The model is developed using small strain poroelasticity that includes non-linear permeability. The axisymmetric model is solved for four ventricle shapes, an ellipsoid, a 'peanut' shape, a 'cross' shape and a 'bone' shape. The distribution of fluid pressure, velocity and content in the deformed parenchyma for a blocked aqueduct provides new qualitative insight into hydrocepahlus. Some observations are offered for two forms of cerebrospinal fluid flow abnormality, normal pressure hydrocephalus and idiopathic intracranial hypertension. The model is extended to include a gravitational term in the governing equations and the effect of hydrostatic pressure variation is considered. Results of a fully 3D simulations are described for two horn-like lateral ventricles and one case with two lateral ventricles and a third ventricle. PMID:16740629
Hydrodynamic models for slurry bubble column reactors
Dimitri Gidaspow
1996-10-01
The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.
A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2013-07-01
Only a few engineering design models are presently available that adequately depict the axisymmetric skin friction (Cf) maturity along long thin turbulent cylinders. This deficit rests essentially on the experimental and numerical difficulties of measuring (or computing) the spatial evolution of the thin cylinder turbulence. Consequently, the present axisymmetric Cf models have questionable accuracy. Herein, we attempt to formulate a more robust Cf model that owns acceptable error. The formulation is founded on triple integration of the governing equation system that represents a thin cylinder turbulent boundary layer (TBL) at statistical steady-state in appropriate dimensionless units. The final model requires only the radius-based Reynolds number (Rea) and transverse curvature (δ/a) as input parameters. We tuned the accompanying coefficients empirically via an expanded statistical database (over 60 data points) that house new Cf values from large-eddy simulations (LES). The LES computations employed a turbulence inflow generation procedure that permits spatial resolution of the TBL at low-high Reynolds numbers and transverse curvatures. Compared to the new skin friction database, the Cf model revealed averaged predictive errors under 5% with a 3.5% standard deviation. Apart from owning higher values than the flat plate TBL, the most distinguishing characteristic of the axisymmetric skin friction is its rising levels when the boundary layer thickness exceeds the cylinder radius. All Cf levels diminish with increasing Reynolds number. These unique features differentiate the axisymmetric TBL along thin cylinders as a separate canonical flow when compared to the turbulent wall shear-layers of channels, pipes, and planar-type geometries.
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment
NASA Astrophysics Data System (ADS)
Giesecke, A.; Nore, C.; Stefani, F.; Gerbeth, G.; Léorat, J.; Herreman, W.; Luddens, F.; Guermond, J.-L.
2012-05-01
Numerical simulations of the kinematic induction equation are performed on a model configuration of the Cadarache von-Kármán-sodium dynamo experiment. The effect of a localized axisymmetric distribution of relative permeability μr that represents soft iron material within the conducting fluid flow is investigated. The critical magnetic Reynolds number Rmc for dynamo action of the first non-axisymmetric mode roughly scales like Rmcμr - Rmc∞∝μ-1/2r, i.e. the threshold decreases as μr increases. This scaling law suggests a skin effect mechanism in the soft iron discs. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high-permeability discs which becomes dominant for large μr. In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this effect by paramagnetic pumping at the fluid/disc interface and propose a simplified model that quantitatively reproduces numerical results. The crucial role of the high-permeability discs in the mode selection in the Cadarache dynamo experiment cannot be inferred from computations using idealized pseudo-vacuum boundary conditions (H × n = 0).
NASA Astrophysics Data System (ADS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO2-H2O- N2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces.
An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.; Li, Zhi-Yun
1992-01-01
We extend Kennel and Coroniti's (1984) spherical magnetohydrodynamic models for the Crab Nebula to include the pinching effect of the toroidal magnetic field. Since the bulk nebular flow is likely to be very submagnetosonic, a quasi-static treatment is possible. We show that the pinching effect can be responsible for the observed elongation of the pulsar wind bubble, as indicated by the surface brightness contours of optical synchrotron radiation. From the observed elongation we estimate a value for sigma, the ratio of Poynting flux to plasma kinetic energy flux in the free pulsar wind, which is consistent with previous results from spherical models. Using the inferred magnetic field configuration inside the pulsar wind bubble, combined with the observed dimensions of the X-ray nebula, we are able to constrain the particle distribution function. We conclude that, for a power-law injection function, the maximum energy has to be much larger in the pulsar equatorial region than in the polar region.
Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...
Modeling Early Galaxies Using Radiation Hydrodynamics
2011-01-01
This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.
DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS
Peng, Chien Y.; Ho, Luis C.; Impey, Chris D.; Rix, Hans-Walter E-mail: lho@obs.carnegiescience.ed E-mail: rix@mpia-hd.mpg.d
2010-06-15
We present a two-dimensional (2D) fitting algorithm (GALFIT, ver. 3) with new capabilities to study the structural components of galaxies and other astronomical objects in digital images. Our technique improves on previous 2D fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring, and truncated shapes in otherwise traditional parametric functions like the Sersic, Moffat, King, Ferrer, etc., profiles. One can mix and match these new shape features freely, with or without constraints, and apply them to an arbitrary number of model components of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the potential for extreme complexity, the meaning of the key parameters like the Sersic index, effective radius, or luminosity remains intuitive and essentially unchanged. The new features have an interesting potential for use to quantify the degree of asymmetry of galaxies, to quantify low surface brightness tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the uncertainties when decomposing galaxy subcomponents. We illustrate these new features by way of several case studies that display various levels of complexity.
NASA Astrophysics Data System (ADS)
Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.
2014-07-01
In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.
Axisymmetric model of drop spreading on a horizontal surface
NASA Astrophysics Data System (ADS)
Mistry, Aashutosh; Muralidhar, K.
2015-09-01
Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.
Kinetic theory model predictions compared with low-thrust axisymmetric nozzle plume data
NASA Technical Reports Server (NTRS)
Riley, B. R.; Fuhrman, S. J.; Penko, P. F.
1993-01-01
A system of nonlinear integral equations equivalent to the steady-state Krook kinetic equation was used to model the flow from a low-thrust axisymmetric nozzle. The mathematical model was used to numerically calculate the number density, temperature, and velocity of a simple gas as it expands into a near vacuum. With these quantities the gas pressure and flow directions of the gas near the exit plane were calculated and compared with experimental values for a low-thrust nozzle of the same geometry and mass flow rate.
Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.
2015-01-01
Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.
UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.
López, I; Borzacconi, L
2010-05-01
The hydrodynamic behaviour of UASB (Up Flow Anaerobic Sludge Blanket) reactors based on residence time distribution curves allows the implementation of global models, including the kinetic aspects of biological reactions. The most relevant hydrodynamic models proposed in the literature are discussed and compared with the extended tanks in series (ETIS) model. Although derived from the tanks in series model, the ETIS model's parameter is not an integer. The ETIS model can be easily solved in the Laplace domain and applied to a two-stage anaerobic digestion linear model. Experimental data from a 250 m3 UASB reactor treating malting wastewater are used to calibrate and validate the proposed model. PMID:20540420
Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary
NASA Astrophysics Data System (ADS)
Haron, N. F.; Tahir, W.
2016-07-01
A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.
Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model
Bertram, John M; Yang, Deshan; Converse, Mark C; Webster, John G; Mahvi, David M
2006-01-01
Background An axisymmetric finite element method (FEM) model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA). To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR) pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution. PMID:16504153
Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model
NASA Technical Reports Server (NTRS)
Kantelis, J. P.; Widnall, S. E.
1986-01-01
A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models
NASA Astrophysics Data System (ADS)
Haddar, Houssem; Jiang, Zixian
2015-11-01
Thin copper deposits covering the steam generator tubes can blind eddy current probes in non-destructive testings of problematic faults and it is therefore important that they are identified. Existing methods based on shape reconstruction using eddy current signals encounter difficulties of high numerical costs due to the layer’s small thickness and high conductivity. In this article, we approximate the axisymmetric eddy current problem with some appropriate asymptotic models using effective transmission conditions representing the thin deposits. In these models, the geometrical information related to the deposit is transformed into parameter coefficients on a fictitious interface. A standard iterative inversion algorithm is then applied to the asymptotic models to reconstruct the thickness of the thin copper layers. Numerical tests both validating the asymptotic model and showing the benefits of the inversion procedure are provided.
Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids
Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily
2014-01-01
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246
Modelling Hydrodynamic Stability in Electrochemical Cells
NASA Astrophysics Data System (ADS)
Pontes, J.; Mangiavacchi, N.; Rabello dos Anjos, G.; Barcia, O. E.; Mattos, O. R.; Tribollet, B.
2008-10-01
We review the key points concerning the linear stability of the classical von Kármán's solution of rotating disk flow, modified by the coupling, through the fluid viscosity, with concentration field of a chemical species. The results were recently published by Mangiavacchi et al. (Phys. Fluids, 19: 114109, 2007) and refer to electrochemical cells employing iron rotating disk electrodes, which dissolve in the 1 M H2SO4 solution of the electrolyte. Polarization curves obtained in such cells present a current instability at the beginning of the region where the current is controlled by the the hydrodynamics. The onset of the instability occurs in a range of potentials applied to the cell and disappear above and below this range. Dissolution of the iron electrode gives rise to a thin concentration boundary layer, with thickness of about 4% of the thickness of the hydrodynamic boundary layer. The concentration boundary layer increases the interfacial fluid viscosity, diminishes the diffusion coefficient and couples both fields, with a net result of affecting the hydrodynamic of the problem. Since the current is proportional to the interfacial concentration gradient of the chemical species responsible by the ions transport, the instability of the coupled fields can lead to the current instability observed in the experimental setups. This work presents the results of the linear stability analysis of the coupled fields and the first results concerning the Direct Numerical Simulation, currently undertaken in our group. The results show that small increases of the interfacial viscosity result in a significant reduction of the stability of modes existing in similar configurations, but with constant viscosity fluids. Upon increasing the interfacial viscosity, a new unstable region emerges, in a range of Reynolds numbers much smaller than the lower limit of the unstable region previously known. Though the growth rate of modes in the previously known region is larger than the
Pattern formation in flocking models: A hydrodynamic description.
Solon, Alexandre P; Caussin, Jean-Baptiste; Bartolo, Denis; Chaté, Hugues; Tailleur, Julien
2015-12-01
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models. PMID:26764636
Pattern formation in flocking models: A hydrodynamic description
NASA Astrophysics Data System (ADS)
Solon, Alexandre P.; Caussin, Jean-Baptiste; Bartolo, Denis; Chaté, Hugues; Tailleur, Julien
2015-12-01
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.
Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model
NASA Technical Reports Server (NTRS)
Martin, J. E.; Meiburg, E.
1996-01-01
The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.
USER GUIDE FOR THE ENHANCED HYDRODYNAMICAL-NUMERICAL MODEL
This guide provides the documentation required for used of the Enhanced Hydrodynamical-Numerical Model on operational problems. The enhanced model is a multilayer Hansen type model extended to handle near-shore processes by including: Non-linear term extension to facilitate small...
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
Conduction Modelling Using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul W.; Monaghan, Joseph J.
1999-01-01
Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.
Multidimensional hydrodynamic convection in full amplitude RR Lyrae models
NASA Astrophysics Data System (ADS)
Deupree, R.; Geroux, C.
2016-05-01
Multidimensional (both 2D and 3D) hydrodynamic calculations have been performed to compute full amplitude RR Lyrae models. The multi- dimensional nature allows convection to be treated in a more realistic way than simple 1D formulations such as the local mixing length theory. We focus on some aspects of multidimensional calculations and on the model for treating convection.
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Qayyum, Mubashir; Khan, Hamid; Rahim, M Tariq; Ullah, Inayat
2015-01-01
The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbation Method (HPM) and fourth order Explicit Runge Kutta Method (RK4). Convergence of HPM solution is verified by obtaining various order approximate solutions along with absolute residuals. Validity of HPM solution is confirmed by comparing analytical and numerical solutions. Furthermore, the effects of various dimensionless parameters on the longitudinal and normal velocity profiles are studied graphically. PMID:25738864
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbationsa)
NASA Astrophysics Data System (ADS)
Turnbull, A. D.; Ferraro, N. M.; Izzo, V. A.; Lazarus, E. A.; Park, J.-K.; Cooper, W. A.; Hirshman, S. P.; Lao, L. L.; Lanctot, M. J.; Lazerson, S.; Liu, Y. Q.; Reiman, A.; Turco, F.
2013-05-01
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10-3 relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
Integrated modeling and parallel computation of laser-induced axisymmetric rod growth
NASA Astrophysics Data System (ADS)
Lan, Hong
2005-07-01
To fully investigate a pyrolytic Laser-induced chemical vapor deposition (LCVD) system for growing an axisymmetric rod, a novel integrated three-dimensional mathematical model was developed not only to describe the heat transport in the deposit and substrate, but also to simulate the gas-phase in the heated reaction zone and its effect on growth rate. The integrated model consists of three components: the substrate, rod, and gas-phase domains. Each component is a separate model and the three components are dynamically integrated into one model for simulating the iterative and complex process of rod deposition. The gas-phase reaction is modeled by the gas-phase component, an adaptive domain attached on the top part of the rod. Its size and mesh decomposition is dynamically determined by the rod temperature distribution and the chosen threshold. The temperature and molar ratio are predicted and used to adjust the growth rate, by taking into account the diffusion limited growth regime, and to improve the simulation of entire deposition process. The substrate component describes the heat flow into the substrate, and the substrate surface temperature can be used to predict the initial rod growth which may affect the successive growth of the rod. The rod growth process is simulated using a layer-by-layer axisymmetric model. For each layer, the rod grows along the outward normal direction at each point on the rod surface. This simplified model makes the process more predictable and easier to control by specifying the height of the rod and the number of total iterations. Finite difference schemes, iterative numerical methods, and parallel algorithms were developed for solving the model. The numerical computation is stable, convergent, and efficient. The model and numerical methods are implemented sequentially and in parallel using a standard C++ code and Message Passing Interface (MPI). The program can be easily installed and executed on different platforms, such as Unix
Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor
NASA Astrophysics Data System (ADS)
Alireza Shirvanian, Pezhman; Calo, Joseph
2002-08-01
An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.
The control method for the lattice hydrodynamic model
NASA Astrophysics Data System (ADS)
Ge, Hong-Xia; Cui, Yu; Zhu, Ke-Qiang; Cheng, Rong-Jun
2015-05-01
The delayed-feedback control method is applied for lattice hydrodynamic model of traffic flow. The linear stability condition with and without control signal are derived through linear and nonlinear analysis. Numerical simulation is carried out and the results confirm that the traffic congested can be suppressed efficiently by considering the control signal.
ENHANCED HYDRODYNAMICAL-NUMERICAL MODEL FOR NEAR-SHORE PROCESSES
An optimized version of a multilayer Hansen type Hydrodynamical-Numerical (HN) model is presented and discussed here as the basis for the following experimental extensions and enhancements developed to more appropriately handle near-shore processes: Non-linear term extension to f...
HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY
This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...
Nested contour-dynamic models for axisymmetric vortex rings and vortex wakes
NASA Astrophysics Data System (ADS)
O'Farrell, Clara; Dabiri, John O.
2013-11-01
Jetting swimmers, such as squid and jellyfish, propel themselves by forming vortex rings. It is known that vortex rings cannot grow indefinitely, but rather ``pinch off'' once they reach their physical limit, and that a decrease in efficiency of fluid transport is associated with pinch-off. Previously, the Norbury family of vortices has been used as a model for axisymmetric vortex rings, and the response of this family to shape perturbations has been characterized. We improve upon the Norbury models, using nested patches of vorticity to construct a family of models for vortex rings generated by a piston-cylinder apparatus at different stroke ratios. The perturbation response of this family is considered by the introduction of a small region of vorticity at the rear of the vortex, which mimics the addition of circulation to a growing vortex ring by a feeding shear layer. Model vortex rings are found to either accept the additional circulation or shed it into a tail, depending on the perturbation size. A change in the behavior of the model vortex rings is identified at a stroke ratio of three. We hypothesize that this change in response is analogous to pinch-off, and that pinch-off might be understood and predicted based on the perturbation responses of model vortex rings.
New Equation of State Models for Hydrodynamic Applications
NASA Astrophysics Data System (ADS)
Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.
1997-07-01
Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.
Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2013-06-01
Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of
Constant-fractional-lag model for axisymmetric two-phase flow
NASA Astrophysics Data System (ADS)
Ma, Yan-Chow; Fendell, Francis; Brent, David
1991-10-01
The suitability of the constant-fractional-lag model for axisymmetric two-phase flow with small particle loading is examined for an inviscid incompressible counterflow. A counterflow is a low-order approximation for the flow within a solid-rocket motor with a long bore of constant radius. In the model, each component of the particle-phase velocity is expressed as a certain multiple of the corresponding component of the gas-phase velocity. A different lag constant is required for the radial and the axial components of the particle-velocity field. For light particle loading, the constant-fractional-lag model yields mathematically accurate solutions (of the formulation) for both small and finite values of the interphase-velocity-slip parameter. Comparisons with results from the Lagrangian-particle-tracking method show excellent agreement at sites outside the Stokes layer holding in that portion of the two-phase flow immediately contiguous to the gas-grain interface; i.e., the agreement holds independently of the initial particle velocity at the solid-gas interface. The constant-fractional-lag model is easier to apply than the Lagrangian-particle-tracking method, and results are conveniently obtained in Eulerian form.
Google Earth as a tool in 2-D hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Chien, Nguyen Quang; Keat Tan, Soon
2011-01-01
A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.
One-dimensional XY model: Ergodic properties and hydrodynamic limit
NASA Astrophysics Data System (ADS)
Shuhov, A. G.; Suhov, Yu. M.
1986-11-01
We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.
Hydrodynamic models of the Cartwheel ring galaxy
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Higdon, James L.
1993-01-01
A series of increasingly sophisticated models of the Cartwheel ring galaxy is studied in order to test the collisional model for the galaxy formation and examine the star formation processes in this unique environment, using new data acquired in the last decade. The simulations provided some possible answers to a number of questions about the Cartwheel. First, an explanation for the wide spacing between inner and outer rings is suggested by the simple epicyclic kinematics within the dark matter-dominated potential implied by H I rotation curve. These models and the kinematic model of Struck-Marcell and Lotan (1990) also predict that the outer ring should be relatively weak, while the second inner ring should be stronger, with a dense orbit-crossing region of significant width bounded by sharp, caustic edges. The collisional model is given support by the agreement between the observations and the morphological and kinematic properties of the numerical simulations presented.
Modeling tidal hydrodynamics of San Diego Bay, California
Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.
1998-01-01
In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in San Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for San Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into San Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.
Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results
NASA Technical Reports Server (NTRS)
Gombosi, Tamas I.; Powell, Kenneth G.; De Zeeuw, Darren L.
1994-01-01
The first results of an axisymmetric magnetohydrodynamic (MHD) model of the interaction of an expanding cometary atmosphere with the solar wind are presented. The model assumes that far upstream the plasma flow lines are parallel to the magnetic field vector. The effects of mass loading and ion-neutral friction are taken into account by the governing equations, whcih are solved on an adaptively refined unstructured grid using a Monotone Upstream Centered Schemes for Conservative Laws (MUSCL)-type numerical technique. The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the near nucleus of the comet. The main findingsare the following: (1) A shock is formed approximately = 0.45 Mkm upstream of the comet (its location is controlled by the sonic and Alfvenic Mach numbers of the ambient solar wind flow and by the cometary mass addition rate). (2) A contact surface is formed approximately = 5,600 km upstream of the nucleus separating an outward expanding cometary ionosphere from the nearly stagnating solar wind flow. The location of the contact surface is controlled by the upstream flow conditions, the mass loading rate and the ion-neutral drag. The contact surface is also the boundary of the diamagnetic cavity. (3) A closed inner shock terminates the supersonic expansion of the cometary ionosphere. This inner shock is closer to the nucleus on dayside than on the nightside.
Hydrodynamic modeling of semi-planing hulls with air cavities
NASA Astrophysics Data System (ADS)
Matveev, Konstantin I.
2015-05-01
High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.
Hydrodynamic modeling of semi-planing hulls with air cavities
NASA Astrophysics Data System (ADS)
Matveev, Konstantin I.
2015-09-01
High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.
Hydrodynamic modeling for river delta salt marshes using lidar topography
NASA Astrophysics Data System (ADS)
Hodges, Ben R.
2014-05-01
Topographic data from lidar and multi-beam sonar create new challenges for hydrodynamic models of estuaries, tidelands, and river deltas. We now can readily obtain detailed elevation data on 1 m scales and finer, but solving hydrodynamics with model grid cells at these small scales remains computationally prohibitive (primarily because of the small time step required for small grid cells). Practical estuarine models for the next decade or so will likely have grid scales in the range of 5 to 15 m. So how should we handle known subgrid-scale features? Simply throwing out known data does not seem like a good idea, but there is no consensus on how best to incorporate knowledge of subgrid topography into either hydrodynamic or turbulence models. This presentation discusses both the theoretical foundations for modeling subgrid-scale features and the challenges in applying these ideas in the salt marshes of a river delta. The subgrid problem highlights some important areas for field and laboratory research to provide calibration parameters for new models that upscale the effects of known subgrid features.
Hydrodynamic modelling of small upland lakes under strong wind forcing
NASA Astrophysics Data System (ADS)
Morales, L.; French, J.; Burningham, H.
2012-04-01
Small lakes (Area < 1 km2) represent 46.3% of the total lake surface globally and constitute an important source of water supply. Lakes also provide an important sedimentary archive of environmental and climate changes and ecosystem function. Hydrodynamic controls on the transport and distribution of lake sediments, and also seasonal variations in thermal structure due to solar radiation, precipitation, evaporation and mixing and the complex vertical and horizontal circulation patterns induced by the action of wind are not very well understood. The work presented here analyses hydrodynamic motions present in small upland lakes due to circulation and internal scale waves, and their linkages with the distribution of bottom sediment accumulation in the lake. For purpose, a 3D hydrodynamic is calibrated and implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. The model, based around the FVCOM open source community model code, resolves the Navier-Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small
Assimilation of measurement data in hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Karamuz, Emilia; Romanowicz, Renata J.
2016-04-01
This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.
Radiation Hydrodynamics Modeling of Hohlraum Energetics
NASA Astrophysics Data System (ADS)
Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.
2015-11-01
Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.
Hydrodynamic Model for Conductivity in Graphene
Mendoza, M.; Herrmann, H. J.; Succi, S.
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277
Modeling of Hydrodynamic Chromatography for Colloid Migration in Fractured Rock
Li Shihhai; Jen, C.-P
2001-02-15
The role of colloids in the migration of radionuclides in the geosphere has been emphasized in the performance assessment of high-level radioactive waste disposal. The literature indicates that the colloid velocity may not be equal to the velocity of groundwater owing to hydrodynamic chromatography. A theoretical model for hydrodynamic chromatography of colloid migration in the fracture is proposed in the present work. In this model, the colloids are treated as nonreactive and the external forces acting on colloidal particles are considered including the inertial force, the van der Waals attractive force, and the electrical double-layer repulsive force, as well as the gravitational force. A fully developed concentration profile for colloids is obtained to elucidate migration behavior for colloids in the fracture. The effects of parameters governing these forces and the aperture of the fracture are determined using a theoretical model.
A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus
NASA Technical Reports Server (NTRS)
DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.
1996-01-01
A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.
A three-dimensional axisymmetric photochemical flow model of the cometary 'inner' shock layer
NASA Technical Reports Server (NTRS)
Damas, M. C.; Mendis, D. A.
1992-01-01
Assuming the Newtonian thin layer approximation to describe the structure of the shock layer between the cometary 'ionopause' and the inner shock, a 3D axisymmetric photochemical flow model of this layer is constructed. While sources of ions in this layer are the flow across the inner shock and photoionization of neutrals within it, the sinks are the flow into the flanks and dissociative recombination, the latter being the dominant one. For Halley's comet at the time of the Giotto encounter, the calculated thickness of the layer is very small, typically about 100 km for expected values of the dissociative-recombination coefficient. This is not inconsistent with the observations. The lateral flow speed near the point of encounter (inbound) is about 0.9 km/s, while the sonic line is at an angle of about 50 deg to the sun-comet line. Testing the validity of this model will have to await a cometary rendezvous mission such as the proposed CRAF/Cassini mission.
Current SPE Hydrodynamic Modeling and Path Forward
Knight, Earl E.; Rougier, Esteban
2012-08-14
Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.
Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries
NASA Astrophysics Data System (ADS)
Opdyke, Daniel
2008-09-01
The modeling of lakes, rivers, and estuaries is a fascinating subject that combines interesting facets of mathematics, statistics, physics, chemistry, and biology. Because of the complexity of natural systems, such modeling is always an approximation of the real world-and sometimes not a very good one. It is for this reason that modeling is not just science but also art. It is also for this reason that there are few good texts offering practical advice on modeling. Hydrodynamics and Water Quality makes a valiant attempt but is only partially successful because of the book's narrow focus on one family of models and an inconsistent presentation.
Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.
Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A
2014-11-01
Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality. PMID:25096643
Chipman, V D
2011-09-20
Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.
Modeling Spitsbergen fjords by hydrodynamic MIKE engine.
NASA Astrophysics Data System (ADS)
Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir
2013-04-01
Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.
Hydrodynamic model for a vibrofluidized granular bed
NASA Astrophysics Data System (ADS)
Martin, T. W.; Huntley, J. M.; Wildman, R. D.
2005-07-01
Equations relating the energy flux, energy dissipation rate, and pressure within a three-dimensional vibrofluidized bed are derived and solved numerically, using only observable system properties, such as particle number, size, mass and coefficient of restitution, to give the granular temperature and packing fraction distributions within the bed. These are compared with results obtained from positron emission particle tracking experiments and the two are found to be in good agreement, without using fitting parameters, except at high altitudes when using a modified heat law including a packing fraction gradient term. Criteria for the onset of the Knudsen regime are proposed and the resulting temperature profiles are found to agree more closely with the experimental distributions. The model is then used to predict the scaling relationship between the height of the centre of mass and mean weighted bed temperature with the number of particles in the system and the excitation level.
Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body
NASA Astrophysics Data System (ADS)
Sahu, Jubaraj; Heavey, Karen R.
2006-06-01
This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier Stokes computational technique has been used to obtain numerical solutions for the unsteady micro-jet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach=0.11 and 0.24 and angles of attack, 0 4°. Numerical solutions have been obtained using both Reynolds-Averaged Navier Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional (3D), time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions.
Numerical modeling of hydrodynamic in southwestern Johor, Malaysia
NASA Astrophysics Data System (ADS)
Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul
2014-09-01
Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.
Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation
Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin
2006-06-30
A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.
An integrated coastal model for aeolian and hydrodynamic sediment transport
NASA Astrophysics Data System (ADS)
Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.
2012-04-01
Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than
New York Bight Study. Report 1. Hydrodynamic modeling. Technical report
Scheffner, N.W.; Vemulakonda, S.R.; Mark, D.J.; Butler, H.L.; Kim, K.W.
1994-08-01
As a part of the New York (NY) Bight Feasibility Study, a three-dimensional hydrodynamic model of the NY Bight was developed and applied by the Coastal Engineering R h Center of the U.S. Army Engineer Waterways Experiment Station. The study used the three-dimensional hydrodynamic model CH3D-WES for this purpose. A 76 x 45 cell boundary-fitted curvilinear grid was employed in the horizontal and five to ten sigma layers were used in the vertical. Steady-state and diagnostic tests were initially performed, using M, and mixed tides, cross-shelf gradients, winds, and freshwater flows in the Hudson River. All of the tests were successful in reproducing known circulation patterns of the NY Bight system. The model was next successfully calibrated and verified against prototype tidal elevations and currents measured during April and May 1976. As a demonstration of the feasibility of long-term modeling, the hydrodynamics, including salinity and temperature, were simulated for the period April-October 1976. Model results compared favorably with available prototype temperature measurements. Model output was furnished to a water quality model of the NY Bight, which successfully reproduced the hypoxic event of 1976. Model results also were used successfully to run particle tracking and oil spill models of the NY Bight. Finally, the model was demonstrated for the Long Island Sound and East River areas, for the period of May-July 1990. Computed results for elevation, velocity, salinity, and temperature in the Sound as well as net flux in the East River matched measurements reasonably.
Modeling of Magma Dynamics Based on Two-Fluid Hydrodynamics
NASA Astrophysics Data System (ADS)
Perepechko, Y. V.; Sorokin, K.
2012-12-01
Multi-velocity multi-porous models are often used as a hydrodynamic basis to describe dynamics of fluid-magma systems. These models cover such problems as fast acoustic processes or large-scaled dynamics of magma systems having non-compressible magma. Nonlinear dynamics of magma as multiphase compressible medium has not been studied sufficiently. In this work we study nonlinear thermodynamically consistent two-liquid model of magma system dynamics, based on conservation law method. The model is restricted by short times of local heat balance between phases. Pressure balance between phases is absent. Two-fluid magma model have various rheological properties of the composing phases: viscous liquid and viscoelastic Maxwell medium. The dynamics of magna flows have been studied for two types of magma systems: magma channels and intraplate intermediate magma chambers. Numerical problem of the dynamics for such media is solved using the control volume method ensuring physical correctness of the solution. The solutions are successfully verified for benchmark one-velocity models. In this work we give the results of numerical modeling using CVM for a number of non-stationary problems of nonlinear liquid filtering through granulated medium in magma channels and problems two-liquid system convection in intraplate magma chambers for various parameters. In the last case the convection regimes vary depending on non-dimensional Rayleigh and Darcy numbers and the parameter field, where compressibility effects appear, is located. The given model can be used as a hydrodynamic basis to model the evolution of magma, fluid-magma systems to study thermo-acoustic influence on hydrodynamic flows in such systems. This work was financially supported by the Russian Foundation for Basic Research, Grant #12-05-00625.
Experimental Investigation and Computational Modeling of Hydrodynamics in Bifurcating Microchannels
Janakiraman, Vijayakumar; Sastry, Sudeep; Kadambi, Jaikrishnan R.; Baskaran, Harihara
2008-01-01
Methods involving microfluidics have been used in several chemical, biological and medical applications. In particular, a network of bifurcating microchannels can be used to distribute flow in a large space. In this work, we carried out experiments to determine hydrodynamic characteristics of bifurcating microfluidic networks. We measured pressure drop across bifurcating networks of various complexities for various flow rates. We also measured planar velocity fields in these networks by using particle image velocimetry. We further analyzed hydrodynamics in these networks using mathematical and computational modeling. Our results show that the experimental frictional resistances of complex bifurcating microchannels are about 30% greater than that predicted by Navier-Stokes’ equations. Experimentally measured velocity profiles indicate that flow distributes equally at a bifurcation regardless of the complexity of the network. Flow division other than bifurcation such as trifurcation or quadruplication can lead to heterogeneities. These findings were verified by the results from the numerical simulations. PMID:18175219
HYDRODYNAMIC AND MORPHOLOGIC MODELING AT CAPE FEAR INLET, NC
NASA Astrophysics Data System (ADS)
Kashlan, L. R.; Dennis, W. A.; Wutkowski, M. J.
2009-12-01
The Coastal Modeling System (CMS) was applied to compute tidal hydrodynamics, wave transformation, sediment transport and morphology change in the Cape Fear Inlet area. Measured water level, current and wave data in the Cape Fear area were collected from gauges maintained by Wilmington Harbor Monitoring Program. The models were calibrated by comparing simulated and measured water level, current and wave data. Numerical simulations of coupled circulation, wave and sediment transport models were used to estimate the morphology change for a surveyed area during a three month period. The agreement between predicted and measured topographic changes were acceptable. Morphology change analysis will be used in the future to examine different channel alignment scenarios.
NASA Astrophysics Data System (ADS)
Oberleithner, Kilian; Stöhr, Michael; Terhaar, Steffen; Paschereit, Oliver
2014-11-01
In gas turbine industry, it is common practice to implement swirling jets and associated vortex breakdown to stabilize the flame and to enhance turbulent mixing. The flow field of such swirl-stabilized combustors features a wide range of flow instabilities that promote the formation of large-scale flow structure. This talk presents recent experimental studies at the Technical University Berlin and the German Aerospace Center (DLR) targeting the impact of these instabilities on the combustion performance. Particular focus is placed on two types of instability: (i) a self-excited helical instability, typically known as the precessing vortex core, which crucially affects mixing and flame anchoring; (ii) the axisymmetric Kelvin-Helmholtz instability, which crucially affects the flame dynamics at thermo-acoustic oscillations. All experimental observations are correlated with analytic flow models utilizing linear hydrodynamic stability theory. This mathematical framework reveals the driving mechanisms that lead to the formation, saturation, and suppression of large-scale flow structures and how these mechanisms interact with the combustion process. The authors kindly acknowledge the financial support of the German Research Foundation (DFG) and the Research Association for Combustion Engines (FVV).
Modelling the Hydrodynamics and Transport in Multiphase Microreactors
NASA Astrophysics Data System (ADS)
Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs
2015-11-01
Multiphase flow is prevalent in a variety of industrial applications, but the extent of these processes is often limited by the innate mass transfer resistance across phase boundaries. Microscale multiphase systems, owing to their reduced characteristic length scales, increase specific interfacial areas and unique hydrodynamic patterns, can significantly enhance the rate of mass transfer, thereby improving the efficiency of multiphase processes. However, many uncertainties still remain in the prediction of multiphase hydrodynamics and scalar transport on the microscale, primarily due to the complex nature of the multiphase flow. In this work, to elucidate the mechanism of mass transfer enhancement in microscale multiphase flows, a computational fluid dynamic (CFD) model using the volume-of-fluid (VOF) method is developed, and the method is validated with experiments. By introducing a scalar transport equation with sink/source terms using the one-fluid formulation, we enable the simultaneous capturing of multi-phase hydrodynamics, mass transfer and reactions. In tandem with the numerical simulations, we also perform mass transfer analysis of multiphase flows based on the penetration theory and a two-stage theory, which further examines the mechanism of mixing enhancement in multiphase flow, and reveals a two-fold increase in mass transfer coefficients in the microreactors compared to conventional multiphase contactors.
Use of hydrologic and hydrodynamic modeling for ecosystem restoration
Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.
2011-01-01
Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.
Hydrodynamic model for particle size segregation in granular media
NASA Astrophysics Data System (ADS)
Trujillo, Leonardo; Herrmann, Hans J.
2003-12-01
We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.
Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling
NASA Astrophysics Data System (ADS)
Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.
2015-12-01
The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.
Validation of a Global Hydrodynamic Flood Inundation Model
NASA Astrophysics Data System (ADS)
Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.
2014-12-01
In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.
Weatherby, J.R.
1987-09-01
Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs.
Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study
Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger
2010-04-10
Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.
2014-11-07
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Velasco, Ali Mauricio; Muñoz, José Daniel
2015-10-01
Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.
New equation of state model for hydrodynamic applications
Young, D.A.; Barbee, T.W. III; Rogers, F.J.
1997-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
New equation of state models for hydrodynamic applications
NASA Astrophysics Data System (ADS)
Young, David A.; Barbee, Troy W.; Rogers, Forrest J.
1998-07-01
Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.
Two dimensional hydrodynamic modeling of a high latitude braided river
NASA Astrophysics Data System (ADS)
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
A Generalized Hydrodynamics Model for Strongly Coupled Plasmas
NASA Astrophysics Data System (ADS)
Diaw, Abdourahmane; Murillo, Michael Sean
2015-11-01
Starting with the equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum and stress tensor-moment equations. The closure proceeds in two steps. The first that guarantees an equilibrium state is given by density functional theory. It ensures self consistency in the equation-of-state properties of the plasma. The second involves modifying the two-body distribution function to include collisions in the relaxation of the stress tensor. The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasi-localized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).
NASA Astrophysics Data System (ADS)
Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy
2016-04-01
Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling
Implementation of a hydrodynamic model for the upper Potomac Estuary
Schaffranek, Raymond W.; Baltzer, Robert A.
1989-01-01
A vertically integrated, two-dimensional hydrodynamic/transport model has been implemented for the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. The model computes water-surface elevations, flow velocities, and time-varying constituent concentrations by numerically integrating finite-difference forms of the equations of mass and momentum conservation in conjunction with transport equations for heat, salt, and dissolved constituents. Previous, preliminary calibration efforts have been extended and validity of the model implementation improved. Field-measured and model-computed water levels compare within ?? 2 cm and maximum computed flood and ebb flow discharges are within 3% of measured values. Indications are that further improvements can be effected.
Coupling Hydrologic and Hydrodynamic Models to Estimate PMF
NASA Astrophysics Data System (ADS)
Felder, G.; Weingartner, R.
2015-12-01
Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.
Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets
NASA Astrophysics Data System (ADS)
Barringer, Daniel; Zugger, M.; Kasting, J.
2013-01-01
Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling
George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.
2006-01-01
- Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.
2015-05-01
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.
Hydrodynamic ram modeling with the immersed boundary method
Lewis, M.W.; Kashiwa, B.A.; Rauenzahn, R.M.
1998-03-01
The authors have modeled a hydrodynamic ram experiment conducted at Wright-Patterson Air Force Base. In the experiment, a projectile traveling at 200 ft/sec impacted and penetrated a simulated airplane wing containing water. The structure consisted of composite panels with stiffeners and rivets, and an aluminum panel. The test included instrumentation to measure strains, accelerations, and pressures. The technique used for modeling this experiment was a multifluid compressible finite volume approach. The solid fields, namely the projectile and the plates which comprised the structure, were represented by a set of discrete, Lagrangian-frame, mass points. These mass points were followed throughout the computation. The contribution of the stress state at each mass point was applied on the grid to determine the stress divergence contribution to the equations of motion and resulting grid based accelerations. This approach has been defined as the immersed boundary method. The immersed boundary method allows the modeling of fluid-structure interaction problems involving material failure. The authors implemented a plate theory to allow the representation of each plate by a surface of mass points. This theory includes bending terms and transverse shear. Arbitrary constitutive models may be used for each plate. Here they describe the immersed boundary method as they have implemented. They then describe the plate theory and its implementation. They discuss the hydrodynamic ram experiment and describe how they modeled it. They compare computed results with test data. They finally conclude with a discussion of benefits and difficulties associated with this modeling approach and possible improvement to it.
Kinetic theory model for the flow of a simple gas from a three-dimensional axisymmetric nozzle
NASA Technical Reports Server (NTRS)
Riley, B. R.
1991-01-01
A system of nonlinear integral equations equivalent to the Krook kinetic equations for the steady state is the mathematical basis used to develop a computer code to model the flowfields for low-thrust three-dimensional axisymmetric nozzles. The method of characteristics is used to solve numerically by an iteration process the approximated Boltzmann equation for the number density, temperature, and velocity profiles of a simple gas as it expands into a vacuum. Results predict backscatter and show the effect of the nozzle wall boundary layer on the external flowfields.
Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M. J.
2013-01-01
Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.
NASA Astrophysics Data System (ADS)
Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei
2015-12-01
We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.
CNO abundances and hydrodynamic models of the nova outburst.
NASA Technical Reports Server (NTRS)
Starrfield, S.; Truran, J. W.; Sparks, W. M.; Kutter, G. S.
1972-01-01
We have used a fully implicit, Lagrangian, hydrodynamic computer code incorporating a nuclear reaction network to follow thermonuclear runaways in the hydrogen-rich envelopes of white dwarfs in order to produce a nova outburst. Because of the short time-scales and the high nuclear burning rates produced in our models, the nuclear reactions are far out of equilibrium and the beta-plus unstable nuclei become the most abundant nuclei in the envelope except for hydrogen and helium. Our models have ejected 1.00017 solar mass with kinetic energies of 8 times 10 to the 44-th power ergs, a value that agrees quite closely with the observed values for novae.
Spectral Differentiation Operators for Solving Hydrodynamic PSE Models
NASA Astrophysics Data System (ADS)
Alina Bistrian, Diana; Ioana Dragomirescu, Florica; Savii, George; Monica Stoica, Diana
2010-09-01
This paper explores the use of spectral methods in the numerical investigation of the eigenvalue problem governing the linear stability of the mechanical equilibria of the flow motion. Parabolized stability equations are used as a new approach to investigate the stability of the swirling flow ingested by the conical diffuser in the Francis hydropower turbine which determines the behavior and the performances of the draft tube. For the cases of sophisticated boundary conditions, the study involves a new mathematical model in spectral operators formulation and a simulation algorithm that translates the hydrodynamic PSE model into computer code instructions immediately following problem formulations. A two-dimensional stability analysis is performed and the frequency ranges of the most unstable modes are provided together with the perturbation amplitudes.
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
Modeling shallow-water hydrodynamics: Rotations, rips, and rivers
NASA Astrophysics Data System (ADS)
Long, Joseph W.
Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously
NASA Astrophysics Data System (ADS)
Guzman, Orlando; Velez, Jose Antonio; Castañeda, David
2008-03-01
Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as
Modeling of cast systems using smoothed-particle hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John
2004-03-01
To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.
Characteristics from a hydrodynamic model of a trapezoidal artificial reef
NASA Astrophysics Data System (ADS)
Jiang, Zhaoyang; Liang, Zhenlin; Huang, Liuyi; Liu, Yang; Tang, Yanli
2014-11-01
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef. Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices; and forces for the reef model were measured by load cell. The results of flume experiments agree well with the numerical data. In addition, the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes, showing a more complicated flow structure than that of a stand-alone reef. Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef. The role of the reef in water flow is to reduce flow velocity and generate turbulence.
Calculations of the stability of some axisymmetric flows proposed as a model of vortex breakdown
NASA Technical Reports Server (NTRS)
Mhuiris, N. M. G.
1986-01-01
The term vortex breakdown refers to the abrupt and drastic changes of structure that can sometimes occur in swirling flows. It was conjectured that the bubble type of breakdown can be viewed as an axisymmetric wave traveling upstream in a primarily columnar vortex flow. In this scenario the wave's upstream progress is impeded only when it reaches a critical amplitude and it loses stability to some nonaxisymmetric disturbance. The stability of some axisymmetric wavy flows to three dimensional disturbances, viewing the amplitude of the wave as a bifurcation parameter is examined. The stability of a set of related columnar vortex flows, constructed by taking the two dimensional flow at a single axial location and extending it throughout the domain without variation, is investigated. The method used will be to expand the perturbation velocity in a series of divergence free vectors which ensures that the continuity equation for the incompressible fluid is satisfied exactly by the computed velocity field. Projections of the stability equation onto the space of inviscid vector fields eliminated the pressure term from the equation and reduces the differential eigen problem to a generalized matrix eigen problem. Results are presented both for the one dimensional, columnar vortex flows and also for the wavy bubble flow.
NASA Astrophysics Data System (ADS)
Myrabo, Leik N.; Cassenti, Brice N.
2005-04-01
An axisymmetric finite element (FEM) structural analysis has been performed on a 20-m diameter hyper-energetic lightcraft designed to transport 6-12 occupants around the planet or directly to low Earth orbit — without resorting to refueling or staging. As proposed, the lenticular double-hull of this super-pressure, balloon-type craft is fabricated from microwave-transparent silicon carbide films of superior strength, inflated with 2-atm of helium. A perimeter toriodal tube, serving as the primary structural `backbone,' is pressurized to 25-atm. The remote beam-energized MHD propulsion system (with directed-energy airspike) is intimately integrated with the craft's tensile-type structure and is not distinguishable as an item separate from the vehicle, as in conventional spacecraft. The design assumption of liquid immersion G-suits, individualized escape pods, and (optional) partial liquid ventilation, assures super-human levels of crew survivability, enabling accelerations of 25 to 50 Gs, or more. The vehicle dry mass is 1200-kg; payload is 1200-kg (crew and escape pods); expendable coolant is 2400-kg of ultra-pure, deionized water (for waste heat rejection from rectenna arrays, during orbital boosts). For simplicity, payload is assumed `distributed' as a thin circular disc directly below the central rectenna. Preliminary findings of this axisymmetric FEM structural analysis are encouraging, and suggest that such craft may indeed be feasible within a generation — perhaps by 2025.
Modeling and Prediction of the Noise from Non-Axisymmetric Jets
NASA Technical Reports Server (NTRS)
Leib, Stewart J.
2014-01-01
mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant
Hydrodynamical modeling of laser drilling with short and ultrashort pulses
NASA Astrophysics Data System (ADS)
Ruf, Andreas; Breitling, Detlef; Berger, Peter; Dausinger, Friedrich; Huegel, Helmut
2003-11-01
This contribution examines the basic concepts and results of two laser ablation models based on commercially available hydrodynamical codes. In both cases the different material phases are described continuously by a single numerical algorithm. The first approach uses a finite-element model for the simultaneous description of solid and melt. It is thereby particularly suited for the description of melt formation and ejection. The results indicate a slow acceleration of the melt during the laser pulse up to velocities of some 10m/s followed by a rather steady-going ejection which is finally cut off by the resolidification. Although it was possible to examine this expulsion process, the model showed considerable numerical stability problems for higher intensities and the ultrasonic vapor expansion cannot be included. To overcome these shortages another model is proposed which is based on an equation of state for the target material in combination with a special pressure-based solver. Besides the continuous description of the material states, it also includes a continuous treatment of the beam propagation and energy coupling by solving Maxwell's equations. Although the work on this model is still going on, some of its basic prospects and limitations can already be discussed.
NASA Astrophysics Data System (ADS)
Gounko, Yu. P.; Mazhul, I. I.
2015-09-01
The results of the numerical investigation of flow regimes in the axisymmetric inlets of internal compression at a supersonic flow around them are presented in the work. The main attention is paid to the determination of the ranges of the duct geometric convergence, in which a supersonic inflow in the inlet realizes. The investigation has been carried out at high supersonic freestream velocities corresponding to the Mach numbers M = 2-8 by the example of the frontal conical (funnel-shaped) inlets with the angles of the internal cone wall inclination δ w = 7.5-15° under the variation of the relative area of the throat cross section. The flow structure alteration was studied and the critical relative areas of the inlet throat were determined, at which either there is no starting of the inlet in the process of flow steadying at the initial subsonic flow in it or a flow breakdown occurs in the process of flow steadying at an initial supersonic inflow. Numerical computations of the axisymmetric flow were done on the basis of the solution of the Navier-Stokes equations and the k-ω SST turbulence model.
A Nanoscale Hydrodynamical Model for Transport of Water
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.
2015-11-01
We present here a one-dimensional isothermal hydrodynamic transport model for SPC/E water. Two separate mechanisms of flow, viz. viscous and slip are incorporated in the present formulation. Spatially varying viscosity is modeled using the local average density method. Slip velocity is provided as a form of the boundary condition which in turn depends upon the macroscopic interfacial friction coefficient. The friction coefficient bridges the atomistic and continuum descriptions of the problem. The value of this friction coefficient is computed using particle-based wall-fluid force autocorrelations and wall-fluid force-velocity cross correlations, where the particle trajectory is generated using a Generalized Langevin Equation formulation. To test the accuracy of the model, gravity driven flow of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. Furthermore, we demonstrate that the slip length is constant for different channel widths for a fixed thermodynamic state under the linear response regime.
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge
Hydrodynamic modeling of tsunamis from the Currituck landslide
Geist, E.L.; Lynett, P.J.; Chaytor, J.D.
2009-01-01
Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.
NASA Astrophysics Data System (ADS)
Stepanov, K. L.; Stankevich, Y. A.; Smetannikov, A. S.
2012-11-01
Physical and hydrodynamic processes accompanying explosions of condensed explosives and fuel-air mixtures have been considered. Wide-range equations of state of explosion products and air have been used. A physical model and a program code based on the gas dynamics equations in the Lagrangian form have been developed for modeling one-dimensional hydrodynamic processes in the near zone of explosion. This firmware forms the basis for estimation of explosion consequences. The described model has shown its working efficiency within a wide range of explosion energies and environmental conditions.
Accuracy of an estuarine hydrodynamic model using smooth elements
Walters, Roy A.; Cheng, Ralph T.
1980-01-01
A finite element model which uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and linear basis functions for water surface elevation is used in the computation of shallow water wave motions. Specifically addressed are two common uncertainties in this class of two-dimensional hydrodynamic models: the treatment of the boundary conditions at open boundaries and the treatment of lateral boundary conditions. The accuracy of the models is tested with a set of numerical experiments in rectangular and curvilinear channels with constant and variable depth. The results indicate that errors in velocity at the open boundary can be significant when boundary conditions for water surface elevation are specified. Methods are suggested for minimizing these errors. The results also show that continuity is better maintained within the spatial domain of interest when ‘smooth’ curve-sided elements are used at shoreline boundaries than when piecewise linear boundaries are used. Finally, a method for network development is described which is based upon a continuity criterion to gauge accuracy. A finite element network for San Francisco Bay, California, is used as an example.
Magnetospheres of hot Jupiters: hydrodynamic models and ultraviolet absorption
NASA Astrophysics Data System (ADS)
Alexander, R. D.; Wynn, G. A.; Mohammed, H.; Nichols, J. D.; Ercolano, B.
2016-03-01
We present hydrodynamic simulations of stellar wind-magnetosphere interactions in hot Jupiters such as WASP-12b. For fiducial stellar wind rates, we find that a planetary magnetic field of a few G produces a large magnetospheric cavity, which is typically 6-9 planetary radii in size. A bow shock invariably forms ahead of the magnetosphere, but the pre-shock gas is only mildly supersonic (with typical Mach numbers of ≃1.6-1.8) so the shock is weak. This results in a characteristic signature in the ultraviolet (UV) light curve: a broad absorption feature that leads the optical transit by 10-20 per cent in orbital phase. The shapes of our synthetic light curves are consistent with existing observations of WASP-12b, but the required near-UV optical depth (τ ˜ 0.1) can only be achieved if the shocked gas cools rapidly. We further show that radiative cooling is inefficient, so we deem it unlikely that a magnetospheric bow shock is responsible for the observed near-UV absorption. Finally, we apply our model to two other well-studied hot Jupiters (WASP-18b and HD 209458b), and suggest that UV observations of more massive short-period planets (such as WASP-18b) will provide a straightforward test to distinguish between different models of circumplanetary absorption.
A hydrodynamic model of an outer hair cell
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1982-01-01
On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.
Computational modeling and analysis of the hydrodynamics of human swimming
NASA Astrophysics Data System (ADS)
von Loebbecke, Alfred
Computational modeling and simulations are used to investigate the hydrodynamics of competitive human swimming. The simulations employ an immersed boundary (IB) solver that allows us to simulate viscous, incompressible, unsteady flow past complex, moving/deforming three-dimensional bodies on stationary Cartesian grids. This study focuses on the hydrodynamics of the "dolphin kick". Three female and two male Olympic level swimmers are used to develop kinematically accurate models of this stroke for the simulations. A simulation of a dolphin undergoing its natural swimming motion is also presented for comparison. CFD enables the calculation of flow variables throughout the domain and over the swimmer's body surface during the entire kick cycle. The feet are responsible for all thrust generation in the dolphin kick. Moreover, it is found that the down-kick (ventral position) produces more thrust than the up-kick. A quantity of interest to the swimming community is the drag of a swimmer in motion (active drag). Accurate estimates of this quantity have been difficult to obtain in experiments but are easily calculated with CFD simulations. Propulsive efficiencies of the human swimmers are found to be in the range of 11% to 30%. The dolphin simulation case has a much higher efficiency of 55%. Investigation of vortex structures in the wake indicate that the down-kick can produce a vortex ring with a jet of accelerated fluid flowing through its center. This vortex ring and the accompanying jet are the primary thrust generating mechanisms in the human dolphin kick. In an attempt to understand the propulsive mechanisms of surface strokes, we have also conducted a computational analysis of two different styles of arm-pulls in the backstroke and the front crawl. These simulations involve only the arm and no air-water interface is included. Two of the four strokes are specifically designed to take advantage of lift-based propulsion by undergoing lateral motions of the hand
Axisymmetric multiwormholes revisited
NASA Astrophysics Data System (ADS)
Clément, Gérard
2016-06-01
The construction of stationary axisymmetric multiwormhole solutions to gravitating field theories admitting toroidal reductions to three-dimensional gravitating sigma models is reviewed. We show that, as in the multi-black hole case, strut singularities always appear in this construction, except for very special configurations with an odd number of centers. We also review the analytical continuation of the multicenter solution across the n cuts associated with the wormhole mouths. The resulting Riemann manifold has 2^n sheets interconnected by 2^{n-1}n wormholes. We find that the maximally extended multicenter solution can never be asymptotically locally flat in all the Riemann sheets.
Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydrodynamical Models
NASA Astrophysics Data System (ADS)
Baron, E.; Bongard, Sebastien; Branch, David; Hauschildt, Peter H.
2006-07-01
We have performed detailed non-local thermodynamic equilibrium (NLTE) spectral synthesis modeling of two types of one-dimensional hydrodynamical models: the very highly parameterized deflagration model W7, and two delayed-detonation models. We find that, overall, both models do about equally well at fitting well-observed SNe Ia near maximum light. However, the Si II λ6150 feature of W7 is systematically too fast, whereas for the delayed-detonation models it is also somewhat too fast but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II λ6150 line near maximum light, and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydrodynamical model to fit the spectra of observed SNe Ia near maximum light.
2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
NASA Astrophysics Data System (ADS)
Moore, Stan; Moore, Chris; Boerner, Jeremiah
2015-09-01
Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling Relativistic Jets Using the Athena Hydrodynamics Code
NASA Astrophysics Data System (ADS)
Pauls, David; Pollack, Maxwell; Wiita, Paul
2014-11-01
We used the Athena hydrodynamics code (Beckwith & Stone 2011) to model early-stage two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei. We analyzed variability of the radio emission by calculating fluxes from a vertical strip of zones behind a standing shock, as discussed in the accompanying poster. We found the advance speed of the jet bow shock for various input jet velocities and jet-to-ambient density ratios. Faster jets and higher jet densities produce faster shock advances. We investigated the effects of parameters such as the Courant-Friedrichs-Lewy number, the input jet velocity, and the density ratio on the stability of the simulated jet, finding that numerical instabilities grow rapidly when the CFL number is above 0.1. We found that greater jet input velocities and higher density ratios lengthen the time the jet remains stable. We also examined the effects of the boundary conditions, the CFL number, the input jet velocity, the grid resolution, and the density ratio on the premature termination of Athena code. We found that a grid of 1200 by 1000 zones allows the code to run with minimal errors, while still maintaining an adequate resolution. This work is supported by the Mentored Undergraduate Summer Experience program at TCNJ.
Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description
NASA Astrophysics Data System (ADS)
Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio
2016-07-01
A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.
Quantum hydrodynamic model by moment closure of Wigner equation
NASA Astrophysics Data System (ADS)
Cai, Zhenning; Fan, Yuwei; Li, Ruo; Lu, Tiao; Wang, Yanli
2012-10-01
In this paper, we derive the quantum hydrodynamics models based on the moment closure of the Wigner equation. The moment expansion adopted is of the Grad type first proposed by Grad ["On the kinetic theory of rarefied gases," Commun. Pure Appl. Math. 2(4), 331-407 (1949), 10.1002/cpa.3160020403]. The Grad's moment method was originally developed for the Boltzmann equation. Recently, a regularization method for the Grad's moment system of the Boltzmann equation was proposed by Cai et al. [Commun. Pure Appl. Math. "Globally hyperbolic regularization of Grad's moment system" (in press)] to achieve the global hyperbolicity so that the local well-posedness of the moment system is attained. With the moment expansion of the Wigner function, the drift term in the Wigner equation has exactly the same moment representation as in the Boltzmann equation, thus the regularization applies. The moment expansion of the nonlocal Wigner potential term in the Wigner equation turns out to be a linear source term, which can only induce very mild growth of the solution. As a result, the local well-posedness of the regularized moment system for the Wigner equation remains as for the Boltzmann equation.
Visualization and modeling of the hydrodynamics of an impinging microjet.
Bitziou, Eleni; Rudd, Nicola C; Edwards, Martin A; Unwin, Patrick R
2006-03-01
The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable. PMID:16503591
3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock
NASA Astrophysics Data System (ADS)
Mohamed, S.; Mackey, J.; Langer, N.
2013-05-01
Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our models in light of the recent Herschel, GALEX and VLA observations. If the mass in the bow shock shell is low (~few × 10-3 M⊙), as seems to be implied by the AKARI and Herschel observations, then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular, smooth bow shock shell is consistent with this conclusion. We further discuss the implications of our results, in particular, the possibility that Betelgeuse may have only recently entered the RSG phase.
Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description
NASA Astrophysics Data System (ADS)
Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio
2016-08-01
A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.
Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy
NASA Astrophysics Data System (ADS)
Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat
2016-01-01
The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.
Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi
2010-12-01
Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed. PMID:20727741
Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes
NASA Astrophysics Data System (ADS)
Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.
2012-04-01
with the help of QQ-downscaled time series. Results of water-quality and ecological modeling using data from VG is contributed by Marieke Anna Frassl under the title "Simulating the effect of meteorological variability on a lake ecosystem". Maria Magdalena Eder contributes three dimensional hydrodynamic lake simulations using VG data in a poster entitled "Advances in estimating the climate sensibility of a large lake using scenario simulations". Both posters can be found in the Session "Lakes and Inland Seas" (HS10.1).
Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino
2011-11-01
Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.
Smoothed particle hydrodynamics modelling for failure in metals
NASA Astrophysics Data System (ADS)
Strand, Russell K.
It is generally regarded to be a difficult task to model multiple fractures leading to fragmentation in metals subjected to high strain rates using numerical methods. Meshless methods such as Smoothed Particle Hydrodynamics (SPH) are well suited to the application of fracture mechanics, since they are not prone to the problems associated with mesh tangling. This research demonstrates and validates a numerical inter-particle fracture model for the initiation, growth and subsequent failure in metals at high strain rate, applicable within a Total Lagrangian SPH scheme. Total Lagrangian SPH performs calculations in the reference state of a material and therefore the neighbourhoods remain fixed throughout the computation; this allows the inter-particle bonds to be stored and tracked as material history parameters. Swegle (2000) showed that the SPH momentum equation can be rearranged in terms of a particle-particle interaction area. By reducing this area to zero via an inter-particle damage parameter, the principles of continuum damage mechanics can be observed without the need for an effective stress term, held at the individual particles.. This research makes use of the Cochran-Banner damage growth model which has been updated for 3D damage and makes the appropriate modifications for inter-particle damage growth. The fracture model was tested on simulations of a 1D flyer plate impact test and the results were compared to experimental data. Some limited modelling was also conducted in 2 and 3 dimensions and promising results were observed. Research was also performed into the mesh sensitivity of the explosively driven Mock- Holt experiment. 3D simulations using the Eulerian SPH formulation were conducted and the best results were observed with a radial packing arrangement. An in-depth assessment of the Monaghan repulsive force correction was also conducted in attempt to eliminate the presence of the SPH tensile instability and stabilise the available Eulerian SPH code
Flux limiters in the coupling of radiation and hydrodynamic models
NASA Astrophysics Data System (ADS)
Seaid, M.; Klar, A.; Dubroca, B.
2004-07-01
Two numerical approximations to radiative heat transfer problem based on asymptotic and entropy approaches are proposed for hydrodynamics radiation coupling. We compare the radiative fluxes between the two approaches and we show that the coupling based on the entropy approach is flux limited, while the other approach does not preserve this condition. Relaxation schemes are considered for the hydrodynamic part, and an iterative procedure is used for radiation. The new splitting algorithm avoids the use of Riemann solvers and Newton iterations. Numerical examples are carried out on two and three dimensional problems.
Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model
Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun
2010-11-30
The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.
Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.
2015-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.
Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model
NASA Astrophysics Data System (ADS)
Teryaev, Oleg; Usubov, Rahim
2015-07-01
The hydrodynamic helicity separation effect in noncentral heavy-ion collisions is investigated using the hadron-string dynamics (HSD) model. Computer simulations are done to calculate velocity and hydrodynamic helicity on a mesh in a small volume around the center of the reaction. The time dependence of hydrodynamic helicity is observed for various impact parameters and different calculation methods. Comparison with a similar earlier work is carried out. A new quantity related to jet handedness is used to probe for p -odd effects in the final state.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
NASA Astrophysics Data System (ADS)
Long, R.; Lowe, M.; Cawley, P.
2000-05-01
Ultrasonic pulse velocity measurements are a useful indicator of certain kinds of problems in concrete. A number of tests are often performed on a grid so as to construct a contour map of the velocity of sound which aids the recognition of problem areas. The application of a viscous couplant at each grid point, to enable ultrasonic coupling to the rough surface, proves both time consuming and inconvenient. As an alternative, coupling via a compliant solid is being researched. Two designs which are being investigated are a rubber disk which is simply attached to the face of the transducer, and a membrane which encapsulates a liquid volume. Axi-symmetric contact models have been derived to predict the deformation of the contact surfaces of such devices when pressed onto a rigid rough surface, and thereby to estimate the strength of the transmission of the signal into the concrete. The option of wetting the surfaces of the rubber with a thin film of water is also considered. Experimental measurements of transmission have been made and have been found to compare favorably with the predictions. The poster shows the basis of the designs, how the models are derived and summary results.
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.
1991-01-01
The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.
Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E
2014-08-01
Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties. PMID:25215734
Hydrodynamic models for slurry bubble column reactors. Fifth technical progress report
Gidaspow, D.
1995-10-01
The objective of this work is to convert our `learning gas-solid-liquid` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values.
NASA Astrophysics Data System (ADS)
Yamazaki, D.
2015-12-01
Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.
Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.
Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo
2016-07-15
We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days. PMID:27140393
Interface-tracking electro-hydrodynamic model for droplet coalescence
NASA Astrophysics Data System (ADS)
Crowl Erickson, Lindsay; Noble, David
2012-11-01
Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. micro-fluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. We present a conformal decomposition finite element (CDFEM) interface-tracking method for two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface. The electro-hydrodynamic equations solved allow for convection of charge and charge accumulation at the interface, both of which may be important factors for the pinch-off dynamics in this parameter regime.
Jonkman, J. M.; Sclavounos, P. D.
2006-01-01
Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.
NASA Technical Reports Server (NTRS)
Moore, W.; Schubert, Gerald; Sandwell, David T.
1992-01-01
Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.
Mark, J.W.K.; Krafft, G.A.; Wang, T.S.F.
1981-12-01
A hydrodynamic model is used to help isolate possible three dimensional space charge instabilities in beam plasmas of concern in designing heavy ion accelerators for inertial confinement fusion energy applications. The model provides an economic means for searching the large parameter space relevant to problems in which coupling of longitudinal and transverse motions is allowed. It is shown that the equilibrium axial hydrodynamic pressure of the beam plasma has a significant effect on the stability boundaries of a two-rotating-stream instability. When considering the resistive wall effect, this model shows a kink instability. The growth rate of some modes could be enhanced by increasing the equilibrium axial pressure.
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Mostepanenko, V. M.
2015-01-01
We obtain the reflection coefficients from a graphene sheet deposited on a material substrate under a condition that graphene is described by the hydrodynamic model. Using these coefficients, the gradient of the Casimir force in the configuration of a recent experiment is calculated in the framework of the Lifshitz theory. It is shown that the hydrodynamic model is excluded by the measurement data at a 99% confidence level over a wide range of separations. From the fact that the same data are in very good agreement with theoretical predictions of the Dirac model of graphene, the low-energy character of the Casimir interaction is confirmed.
Jin, Chao; Ren, Carolyn L; Emelko, Monica B
2016-04-19
It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces. PMID:27007293
NASA Astrophysics Data System (ADS)
Michailovsky, C.; Rodriguez, E.; Andreadis, K.
2014-12-01
Traditional hydrological monitoring relies on frequent water level measurements at discrete locations, and in complex environments this type of measurement may not be able to capture the spatial variability of the hydrodynamic processes. While remote sensing, whether air-or-spaceborne, has made spatially distributed measurements of surface waters possible, the frequency of data acquisition is typically too low for most hydrological applications and the data is often used in conjunction with hydrological or hydrodynamic models. The new AirSWOT instrument provides spatially distributed measurements of water surface elevation from an airborne platform and the Sacramento-San Joaquin Delta is one of its test areas. Our objective was to assess the value of such measurements to hydrodynamic modeling in the Delta and to evaluate the necessary spatial and temporal coverage needed for the data to improve on current monitoring capabilities. To achieve this, a synthetic data assimilation experiment was designed: a hydrodynamic model of the Delta was built and run using in situ observations to produce a "true" run and sets of synthetic AirSWOT measurements, covering different locations and at different times, were generated using an instrument simulator. An ensemble of perturbed runs was then generated by perturbing the boundary conditions and the synthetic data sets were assimilated using the ensemble Kalman Filter. The impact of the assimilation on the hydrodynamic model performance was studied for the different sets of synthetic data in order to identify the most sensitive measurement times and locations and help improve the design of future measurement campaigns.
Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles
NASA Astrophysics Data System (ADS)
Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.
2016-05-01
We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
NASA Astrophysics Data System (ADS)
Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
2000-10-01
Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.
On the Possibility of a Hydrodynamic Model of the Electron
Pekeris, C. L.
1975-01-01
We explore the possibility that the mutual repulsive forces of a uniformly charged sphere could be kept in balance dynamically by a steady circulation of the material, which is assumed to be a nonconducting perfect fluid of uniform density. An exact solution is obtained of Maxwell's equations and of the hydrodynamic equations in the nonrelativistic approximation, which satisfies the boundary conditions on the surface of the sphere. In this solution all the components of the velocity and of the magnetic field are found to vanish on the surface, but not the electric field. The pressure can also be made to vanish on the surface, but in the interior it turns out to be negative, which makes the present solution unacceptable. PMID:16592245
Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics
Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch
2015-07-28
Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.
NASA Astrophysics Data System (ADS)
Hooper, Russell; Toose, Matthijs; Macosko, Christopher W.; Derby, Jeffrey J.
2001-12-01
A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation. Copyright
Field line reconstruction for edge transport modeling in non-axisymmetric tokamaks configurations
NASA Astrophysics Data System (ADS)
Frerichs, Heinke; Schmitz, Oliver; Waters, Ian; Evans, Todd; Feng, Yuhe; Soukhanovskii, Vlad
2015-11-01
Symmetry breaking effects such as resonant magnetic perturbations (RMPs) present a challenge for the numerical analysis of divertor operation, because they require three dimensional models. One such model is provided by the EMC3-EIRENE code, which is based on a finite flux tube grid for field line reconstruction that allows to account for realistic, three dimensional configurations. We present the Field Line Analysis and Reconstruction Environment (FLARE) - a collection of tools for the analysis of the magnetic field structure. It includes a flexible grid generator which allows to set up plasma transport simulations for single and double null configurations (both disconnected and connected). This includes the ``snowflake minus'' topology, and we present an application for a ``near-exact snowflake'' configuration at NSTX-U. Recent edge plasma simulations for DIII-D and ITER include plasma response effects as calculated by the M3D-C1 code, and it is found that these configurations require a local adjustment of radial/poloidal resolution in order to maintain a reasonable level of magnetic flux conservation. This work is supported in part by the U.S. Department of Energy under DE-SC0012315 and DE-FC02-04ER54698, and by Start-Up Funds of the University of Wisconsin - Madison.
WASP4, a hydrodynamic and water-quality model - model theory, user's manual, and programmer's guide
Ambrose, R.B.; Wool, T.A.; Connolly, J.P.; Schanz, R.W.
1988-01-01
The Water Quality Analysis Simulation Program Version 4 (WASP4) is a dynamic compartment-modeling system that can be used to analyze a variety of water-quality problems in a diverse set of water bodies. WASP4 simulates the transport and transformation of conventional and toxic pollutants in the water column and benthos of ponds, streams, lakes, reservoirs, rivers, estuaries, and coastal waters. The WASP4 modeling system covers four major subjects--hydrodynamics, conservative mass transport, eutrophication-dissolved oxygen kinetics, and toxic chemical-sediment dynamics. The WASP4 modeling system consists of two stand-alone computer programs, DYNHYD4 and WASP4, that can be run in conjunction or separately. The hydrodynamic program, DYNHYD4, simulates the movement of water and the water quality program, WASP4, simulates the movement and interaction of pollutants within the water. The latter program is supplied with two kinetic submodels to simulate two of the major classes of water-quality problems--conventional pollution (dissolved oxygen, biochemical oxygen demand, nutrients, and eutrophication) and toxic pollution (organic chemicals, heavy metals, and sediment). The substitution of either sub-model constitutes the models EUTRO4 and TOXI4, respectively.
Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington
Yang, Zhaoqing; Wang, Taiping
2010-12-20
A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.
USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)
Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...
Kurihara, Eru; Hay, Todd A; Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hamilton, Mark F
2011-11-01
Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009
NASA Astrophysics Data System (ADS)
Kulikov, Igor; Chernykh, Igor; Tutukov, Alexander
2016-05-01
This paper presents a new hydrodynamic model of interacting galaxies based on the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible to formulate a unified numerical method for solving hyperbolic equations. This numerical method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The collision of spiral and disk galaxies considering the star formation process, supernova feedback and molecular hydrogen formation is shown as a simulation result.
Discretizations of axisymmetric systems
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg
2002-11-01
In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.
Hydrodynamic interaction between two trapped swimming model micro-organisms.
Matas Navarro, R; Pagonabarraga, I
2010-09-01
We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations. PMID:20862597
Interfacial dynamics of a liposome deforming in an axisymmetric extensional flow
NASA Astrophysics Data System (ADS)
Gonzalez-Mancera, Andres; Eggleton, Charles D.
2007-03-01
Liposomes are self-enclosed structures composed of curved lipid bilayer membranes which entrap part of the solvent in which they freely float. They are predominantly made from amphiphilic molecules, a special class of surface-active molecules. Liposomes have various applications in science and technology including drug delivery systems, medical diagnostics and they can also be used as simple cellular models for basic research. We simulated the deformation of a liposome in an axisymmetric extensional flow using the boundary integral method. The liposome deforms due to hydrodynamic loading on the interface. The dynamics of the system are characterized by the competition between the hydrodynamic and interfacial forces. The lipid bilayer membrane can be modeled as a hyperelastic continuous material or a liquid-liquid interface with a highly packed surfactant layer. We compare the deformation behavior of liposomes with both types of interfaces and identify similarities and differences between the two models.
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Modified Eulerian-Lagrangian formulation for hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Sorek, Shaul; Borisov, Vyacheslav
2012-04-01
We present the modified Eulerian-Lagrangian (MEL) formulation, based on non-divergent forms of partial differential balance equations, for simulating transport of extensive quantities in a porous medium. Hydrodynamic derivatives are written in terms of modified velocities for particles propagating phase and component quantities along their respective paths. The particles physically interpreted velocities also address the heterogeneity of the matrix and fluid properties. The MEL formulation is also implemented to parabolic Partial Differential Equations (PDE's) as these are shown to be interchangeable with equivalent PDE's having hyperbolic - parabolic characteristics, without violating the same physical concepts. We prove that the MEL schemes provide a convergent and monotone approximation also to PDE's with discontinuous coefficients. An extension to the Peclet number is presented that also accounts for advective dominant PDE's with no reference to the fluid velocity or even when this velocity is not introduced. In Sorek et al. [27], a mathematical analysis for a linear system of coupled PDE's and an example of nonlinear PDE's, proved that the finite difference MEL, unlike an Eulerian scheme, guaranties the absence of spurious oscillations. Currently, we present notions of monotone interpolation associated with the MEL particle tracking procedure and prove the convergence of the MEL schemes to the original balance equation also for discontinuous coefficients on the basis of difference schemes approximating PDE's. We provide numerical examples, also with highly random fields of permeabilities and/or dispersivities, suggesting that the MEL scheme produces resolutions that are more consistent with the physical phenomenon in comparison to the Eulerian and the Eulerian-Lagrangian (EL) schemes.
Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light.
Morandi, Omar; Zamanian, Jens; Manfredi, Giovanni; Hervieux, Paul-Antoine
2014-07-01
We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source. PMID:25122397
Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas.
Brey, J Javier; Buzón, V; García de Soria, M I; Maynar, P
2016-06-01
The linear hydrodynamic stability of a model for confined quasi-two-dimensional granular gases is analyzed. The system exhibits homogeneous hydrodynamics, i.e., there are macroscopic evolution equations for homogeneous states. The stability analysis is carried out around all these states and not only the homogeneous steady state reached eventually by the system. It is shown that in some cases the linear analysis is not enough to reach a definite conclusion on the stability, and molecular dynamics simulation results are presented to elucidate these cases. The analysis shows the relevance of nonlinear hydrodynamic contributions to describe the behavior of spontaneous fluctuations occurring in the system, that lead even to the transitory formation of clusters of particles. The conclusion is that the system is always stable. The relevance of the results for describing the instabilities of confined granular gases observed experimentally is discussed. PMID:27415347
Hydrodynamic modeling of an X-ray flare on Proxima Centauri observed by the Einstein telescope
Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt, J.H.M.M.
1988-05-01
Hydrodynamic numerical calculations of a flare which occurred on Proxima Centauri and was observed by the Einstein satellite on August 20, 1980 at 12:50 UT are presented. The highlights of the hydrodynamic code are reviewed, and the physical and geometrical parameters necessary for the calculations are derived and compared with observations. The results are consistent with the stellar flare being caused by the rapid dissipation of 5.9 x 10 to the 31st ergs, within a magnetic loop structure whose semilength is 7 x 10 to the 9th cm and cross-sectional radius is 7.3 x 10 to the 8th cm. The results provide evidence that flares on late-type stars can be described by a hydrodynamic model with a relatively simple geometry, similar to solar compact flares. 39 references.
HOW TO MODEL HYDRODYNAMICS AND RESIDENCE TIMES OF 27 ESTUARIES IN 4 MONTHS
The hydrodynamics and residence times of 27 embayments were modeled during the first year of a project whose goal is to define the relation between nitrogen loadings and ecological responses of 44 systems that range from small to the size of Narragansett Bay and Buzzards Bay. The...
ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT
This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:
EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...
Wright, B.L.; Alrick, K.R.; Fritz, J.N.
1994-05-01
Axisymmetric magnetic (ASM) gauges are useful diagnostic tools in the study of the conversion of energy from underground explosions to distant seismic signals. Requiring no external power, they measure the strength (particle velocity) of the emerging shock wave under conditions that would destroy most instrumentation. Shock pins are included with each gauge to determine the angle of the shock front. For the Non-Proliferation Experiment, two ASM gauges were installed in the ANFO mixture to monitor the detonation wave and 10 were grouted into boreholes at various ranges in the surrounding rock (10 to 64 m from the center of explosion). These gauges were of a standard 3.8-inch-diameter design. In addition, two unique Jumbo ASM gauges (3-ft by 3-ft in cross section) were grouted to the wall of a drift at a range of 65 m. We discuss issues encountered in data analysis, present the results of our measurements, and compare these results with those of model simulations of the experiment.
Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics
NASA Astrophysics Data System (ADS)
Bellafiore, D.; Bucchignani, E.; Umgiesser, G.
2010-09-01
One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more
Three-dimensional hydrodynamic modeling of a bubbling fluidized bed
Gamwo, I.K.; Soong, Y.; Gidaspow, D.; Lyczkowski, R.W.
1995-12-31
A well-posed three-dimensional model for bed dynamics was developed starting from an ill-posed model. The new model has predicted a roughly-spheroidal bubble shape and computed porosity distributions consistent with experimental observations with no disturbing ``fountain`` as predicted by the earlier model. The model can be applied to a variety of gas-solids flows of practical interest such as fluidization, pneumatic conveying, and two-phase jets, as well as liquid-solids flows.
Scaling tree-level hydrodynamics to plot-level hydrology using novel model and measurements
NASA Astrophysics Data System (ADS)
Bohrer, Gil; Matheny, Ashley; Mirfendersgi, Golnaz; Morin, Timothy; Fatichi, Simone
2016-04-01
Hydrodynamic limitations are driven by the water availability to leave of the individual tree crowns, and are known to control transpiration in forest ecosystems under both wet and dry conditions. Current land-surface models do not represent tree-level processes, nor do they represent the above-ground storage in trees. As the intra-daily dynamics of soil moisture are slower and very different than the faster dynamics of water storage in the tree xylem, the current approach that do not incorporate tree-water storage leads to deviations from the observed dynamics of transpiration. We propose a framework to resolve such tree hydrodynamics. The FETCH2 model resolves the water flow, water potential, and water storage in the tree stem and realistically links stomatal conductance to the water potential in the xylem, while water availability in the soil provides a bottom boundary condition for the hydrodynamic system. We use data from a large scale ecological disturbance experiment at a forest in Michigan to validate this approach. We use a very large array of sap-flow sensors in a plot with eddy-covariance measurements to parameterize the model at both tree-scale and plot scale. We demonstrate novel approaches to continuously measure tree water storage, and to evaluate tree-level hydrodynamic traits that control the ecohydrological response of the plot to water stress and disturbance.
A comparison of two finite element models of tidal hydrodynamics using a North Sea data set
Walters, R.A.; Werner, F.E.
1989-01-01
Using the region of the English Channel and the southern bight of the North Sea, we systematically compare the results of two independent finite element models of tidal hydrodynamics. The model intercomparison provides a means for increasing our understanding of the relevant physical processes in the region in question as well as a means for the evaluation of certain algorithmic procedures of the two models. ?? 1989.
NASA Astrophysics Data System (ADS)
French, J.; Cea Gómez, L.
2009-12-01
Numerical hydrodynamic and sediment transport models provide a means of extending inferences from direct observation and for advancing understanding of estuarine processes, but the parametric complexity of 2D and 3D schemes invites questions concerning the extent to which model output can be evaluated against real-world data. In particular, conventional performance statistics invoke restrictive assumptions about the nature of the errors and offer little insight into the origin of poor performance. We show that the validation of tidal hydrodynamic models is more effective when widely-used metrics of predictive accuracy and model efficiency are combined with harmonic measures that are more diagnostic of the interactions between tidal propagation, bottom friction and bathymetry. Bathymetric data errors are often overlooked in a conventional validation process that has traditionally placed more emphasis on the adjustment of turbulence and bottom friction parameterisations. Yet systematic survey or datum errors can significantly impact model performance, especially where the model domain includes intertidal areas subject to wetting and drying. Accordingly, we present a set of objective adjustment relations that allow sensitivity of modelled hydrodynamics to likely bathymetric survey areas to be included in the validation process. In comparison with hydrodynamic models, sediment transport models rely on a less complete conceptualisation of a broader set of processes and have a parametric complexity that is not matched by the quantity and quality of observational data. Sediment model performance as measured by conventional objective functions is invariably weaker and it is important to match the structural complexity of their model errors with analyses that can localise the scales and times of poor performance. We show that wavelet scalograms provide a useful tool for semi-quantitatively visualising data, model and error series and for identifying particular frequencies
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1992-01-01
The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.
A linked hydrodynamic and water quality model for the Salton Sea
Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, D.M.
2008-01-01
A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.
Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.
2006-08-03
The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
Uncertainty Analysis and Parameter Estimation For Nearshore Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Ardani, S.; Kaihatu, J. M.
2012-12-01
Numerical models represent deterministic approaches used for the relevant physical processes in the nearshore. Complexity of the physics of the model and uncertainty involved in the model inputs compel us to apply a stochastic approach to analyze the robustness of the model. The Bayesian inverse problem is one powerful way to estimate the important input model parameters (determined by apriori sensitivity analysis) and can be used for uncertainty analysis of the outputs. Bayesian techniques can be used to find the range of most probable parameters based on the probability of the observed data and the residual errors. In this study, the effect of input data involving lateral (Neumann) boundary conditions, bathymetry and off-shore wave conditions on nearshore numerical models are considered. Monte Carlo simulation is applied to a deterministic numerical model (the Delft3D modeling suite for coupled waves and flow) for the resulting uncertainty analysis of the outputs (wave height, flow velocity, mean sea level and etc.). Uncertainty analysis of outputs is performed by random sampling from the input probability distribution functions and running the model as required until convergence to the consistent results is achieved. The case study used in this analysis is the Duck94 experiment, which was conducted at the U.S. Army Field Research Facility at Duck, North Carolina, USA in the fall of 1994. The joint probability of model parameters relevant for the Duck94 experiments will be found using the Bayesian approach. We will further show that, by using Bayesian techniques to estimate the optimized model parameters as inputs and applying them for uncertainty analysis, we can obtain more consistent results than using the prior information for input data which means that the variation of the uncertain parameter will be decreased and the probability of the observed data will improve as well. Keywords: Monte Carlo Simulation, Delft3D, uncertainty analysis, Bayesian techniques
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
A Hydrodynamic Model of The Human Leg Circulation.
ERIC Educational Resources Information Center
Klabunde, Richard E.; McDowell, Donald E.
1984-01-01
Describes the construction and use of a life-size model which shows blood flow under normal and pathological conditions. Four experimental procedures (single vessel occlusion, dilation of distal vascular bed, single artery stenosis, and multiple artery stenoses) typical of those demonstrated by the model are discussed and diagrammed. (DH)
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
The Hydrodynamical Models of the Cometary Compact HII Region
NASA Astrophysics Data System (ADS)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi
2015-10-01
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M⊙ star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm-3) molecular material with a stellar velocity of 15 km s-1. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H2 S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
NASA Astrophysics Data System (ADS)
Taylor, Anthony G.; Craggs, Anthony
1995-09-01
A finite element model of a rotor-bearing system with non-axisymmetric stiffness and mass properties was analyzed in a previous study. In this paper the model is extended to include the effects of external damping due to symmetrical tilting-pad bearings. The same instability mechanisms, due to the lack of axisymmetry and shear deflection occurred in the damped case as for the undamped case, but within the normal operating speed of typical industrial rotor systems, a quite high degree of asymmetry is necessary. A ratio of the difference in a diametral second moments of area to mean diametral second moment of area, greater than 0.3 is necessary for instability for the configuration modelled. The instabilities involving antisymmetric modes in the undamped case are not present in the damped case. The first backward mode is involved in the instabilities of most practical interest. The effect of internal damping is also examined for an axisymmetric rotor and the behaviour, involving instability of the first forward mode, compares well with purely analytical methods for simple rotors.
One-dimensional hydrodynamic model generating a turbulent cascade
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Sakajo, Takashi
2016-05-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.
Hydrodynamic modeling of laser interaction with micro-structured targets
NASA Astrophysics Data System (ADS)
Velechovsky, J.; Limpouch, J.; Liska, R.; Tikhonchuk, V.
2016-09-01
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. The numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Development and evaluation of a coupled hydrodynamic (FVCOM) and water quality model (CE-QUAL-ICM)
Kim, Taeyun; Labiosa, Rochelle G.; Khangaonkar, Tarang; Yang, Zhaoqing; Chen, Changsheng; Qi, Jianhua; Cerco, Carl
2010-01-08
Recent and frequent fish-kills in waters otherwise known for their pristine high quality, created increased awareness and urgent concern regarding potential for degradation of water quality in Puget Sound through coastal eutrophication caused by increased nutrient loading. Following a detailed review of leading models and tools available in public domain, FVCOM and CE-QUAL-ICM models were selected to conduct hydrodynamic and water quality simulations for the fjordal waters of Puget Sound.
Fractal hydrodynamic model of high-fluence laser ablation plasma expansion
Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.
2010-10-08
Optical/electrical characterization of transient plasmas generated by high-fluence (up to 1 kJ/cm{sup 2}) laser ablation of various targets revealed as a general feature the splitting of the plume in two structures. In order to account for this behavior, a new fractal hydrodynamic model has been developed in a non-differentiable space-time. The model successfully retrieves the kinetics of the two structures.
A Modeling Study of Hydrodynamic Circulation in a Fjord of the Pacific Northwest
Wang, Taiping; Yang, Zhaoqing
2012-10-01
Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO) in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.
Gidaspow, D.
1996-04-01
The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.
Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)
1998-01-01
The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast
Lattice Boltzmann Hydrodynamic and Transport Modeling of Everglades Mangrove Estuaries
NASA Astrophysics Data System (ADS)
Sukop, M. C.; Engel, V.
2010-12-01
Lattice Boltzmann methods are being developed and applied to simulate groundwater and surface water flows, and heat, solute, and particle transport. Their ability to solve Navier-Stokes, St. Venant, or Darcy equations with closely coupled solute transport and density-dependent flow effects in geometrically complex domains is attractive for inverse modeling of tracer release data and forward modeling of carbon transport in mangrove estuaries under various future conditions. Key physical processes to be simulated include tidal cycles, storm surge, sea level change, variable upstream stage, subsurface groundwater inputs, and precipitation/recharge and their effects on estuary salinity and carbon transport in the estuaries and groundwater beneath the mangroves. Carbon sources and storage in the aquifer and exchanges at the mangrove-estuary interface and carbon transformations in the water column also need to be simulated. Everglades tidal mangrove estuaries are characterized by relatively high velocity (approaching 1 m s-1) tidal flows. The channels are generally less than 2 m in depth. Tidal fluctuations approach 2 m leading to significant areas of periodic inundation and emergence of oyster beds, shell beaches, mangrove root masses, and sandy beaches. Initial models are two-dimensional, although a three-dimensional model explicitly incorporating bathymetry, density-dependent flow, and wind-driven circulation could be developed. Preliminary work highlights some of the abilities of early models. A satellite image of a 64-km2 area surrounding a CO2 flux tower is used to provide the model geometry. Model resolution is 15 m per grid node. A sinusoidal tidal stage variation and constant, high salinity are applied to the Gulf side of the model while a constant stage (corresponding to mean tide), zero salinity boundary is applied on the inland side. The Navier-Stokes equations coupled with the advection-diffusion equation are solved in the open channels. The mangrove areas
Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N R
2015-11-01
In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. PMID:26547177
Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity
Mishra, Sudib; Deymier, Pierre; Muralidharan, Krishna; Frantziskonis, G.; Pannala, Sreekanth; Simunovic, Srdjan
2010-01-01
We introduce a model of cavitation based on the multiphase Lattice Boltzmann method (LBM) that allows for coupling between the hydrodynamics of a collapsing cavity and supported solute chemical species. We demonstrate that this model can also be coupled to deterministic or stochastic chemical reactions. In a two-species model of chemical reactions (with a major and a minor specie), the major difference observed between the deterministic and stochastic reactions takes the form of random fluctuations in concentration of the minor species. We demonstrate that advection associated with the hydrodynamics of a collapsing cavity leads to highly inhomogeneous concentration of solutes. In turn these inhomogeneities in concentration may lead to significant increase in concentration-dependent reaction rates and can result in a local enhancement in the production of minor species.
Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.
2015-11-01
In this work, we formulate a one-dimensional isothermal hydrodynamic transport model for water, which is an extension to our recently proposed hydrodynamic model for Lennard-Jones type fluid [R. Bhadauria and N. R. Aluru, J. Chem. Phys. 139, 074109 (2013)]. Viscosity variations in confinement are incorporated by the local average density method. Dirichlet boundary conditions are provided in the form of slip velocity that depends upon the macroscopic interfacial friction coefficient. The value of this friction coefficient is computed using a novel generalized Langevin equation formulation that eliminates the use of equilibrium molecular dynamics simulation. Gravity driven flows of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations.
Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks
NASA Astrophysics Data System (ADS)
Kablou, Yashar
Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.
Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping
2010-08-01
In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.
Flood hazard maps from SAR data and global hydrodynamic models
NASA Astrophysics Data System (ADS)
Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe
2015-04-01
With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Coupling of an individual-based model of anchovy with lower trophic level and hydrodynamic models
NASA Astrophysics Data System (ADS)
Wang, Yuheng; Wei, Hao; Kishi, Michio J.
2013-03-01
Anchovy ( Engraulis japonicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources. Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO), an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation. Seasonal variations of circulation, water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model. Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them. Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model. The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.
A simple hydrodynamic model of tornado-like vortices
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2015-05-01
Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.
Buchanan, Cara; Rylander, Marissa Nichole
2013-08-01
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment. PMID:23616255
A general method for generating bathymetric data for hydrodynamic computer models
Burau, J.R.; Cheng, R.T.
1989-01-01
To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)
Iceberg capsize hydrodynamics: a comparison of laboratory experiments and numerical modeling
NASA Astrophysics Data System (ADS)
Burton, J. C.; Cathles, L. M.; Correa-Legisos, S.; Ellowitz, J.; Darnell, K.; Zhang, W. W.; MacAyeal, D. R.
2013-12-01
Large icebergs are often observed to capsize in open water near fjords. During capsize, large amounts of gravitational potential energy are released which can lead to coastal tsunamis, mixing of the water column, and possibly lead to further calving at the glacier terminus. This process is rarely studied; in nature the scale and irregular timing of the events makes observations exceedingly difficult. Here we compare laboratory experiments and numerical modeling of the capsize process to better understand the coupling of the hydrodynamic forces to the solid iceberg. Although the characteristic Reynolds number is much lower for both the laboratory model and the numerical simulations, the comparison provides a starting point to quantify and identify generic features that can be estimated in the field, such as hydrodynamic pressure, water flow velocities, vertical mixing, and elastic stresses on the iceberg itself, which could lead to fracture.