Science.gov

Sample records for azimuthally dependent transport

  1. Azimuthal dependence of the heavy quark initiated contributions to DIS

    SciTech Connect

    Ananikyan, L. N.; Ivanov, N. Ya.

    2007-01-01

    We analyze the azimuthal dependence of the heavy-quark-initiated contributions to the lepton-nucleon deep inelastic scattering (DIS). First we derive the relations between the parton-level semi-inclusive structure functions and the helicity {gamma}*Q cross sections in the case of arbitrary values of the heavy quark mass. Then the azimuth-dependent O({alpha}{sub s}) lepton-quark DIS is calculated in the helicity basis. Finally, we investigate numerically the properties of the cos{phi} and cos2{phi} distributions caused by the photon-quark scattering (QS) contribution. It turns out that, contrary to the basic photon-gluon fusion (GF) component, the QS mechanism is practically cos2{phi}-independent. This fact implies that measurements of the azimuthal distributions in charm leptoproduction could directly probe the charm density in the proton.

  2. Azimuthal and Temperature Dependence of Hydrogen on Nickel (111)

    NASA Astrophysics Data System (ADS)

    Nabighian, Edward; Zhu, X. D.

    1998-03-01

    Using a linear optical diffraction technique, we measure the temperature and azimuthal dependence of hydrogen diffusion rate on a nickel (111) surface with a miscut angle of less than 0.1 degrees. In the classical over-barrier hopping regime, the diffusion barrier over flat terraces is found to be 4.5 kcal/mol. From the azimuthal dependence, we found the barrier crossing a step edge is no more than 6.0 kcal/mol. This indicates that the step edge barrier, known as a Schwoebal-Erlich barrier, for hydrogen on nickel (111) is less than 1.5 kcal/mol or 30 percent of the barrier over flat terraces.

  3. Azimuthally-dependent Finite Element Solution to the Cylindrical Resonator

    NASA Technical Reports Server (NTRS)

    Osegueda, R.; Pierluissi, J.; Gil, L.; Revilla, A.; Villalva, G.; Dick, G.; Wang, D. SantiagoR.

    1994-01-01

    The cylindrical cavity resonator loaded with an anisotropic dielectric is analyzed as a two-dimensional problem using a finite element approach that assumes sinusoidal dependence in azimuth. This methodology allows the first finite element treatment of the technically important case of a resonator containing a sapphire element with a cylindrically aligned c axis. Second order trial functions together with quadrilateral elements are adopted in the calculations. The method was validated through comparisons with the analytical solutions for the hollow metal cavity and a coaxial cavity, as well as through measurements on a shielded sapphire resonator.

  4. Azimuthal angle dependence of dijet production in unpolarized hadron scattering

    SciTech Connect

    Lu Zhun; Schmidt, Ivan

    2008-08-01

    We study the azimuthal angular dependence of back-to-back dijet production in unpolarized hadron scattering H{sub A}+H{sub B}{yields}J{sub 1}+J{sub 2}+X, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that when the dijet is of two identical quarks (J{sub q}+J{sub q}) or a quark-antiquark pair (J{sub q}+J{sub q}), there is a cos{delta}{phi} angular dependence of the dijet, with {delta}{phi}={phi}{sub 1}-{phi}{sub 2}, and {phi}{sub 1} and {phi}{sub 2} are the azimuthal angles of the two individual jets. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross section, compared with the result from the standard generalized parton model. We estimate the cos{delta}{phi} asymmetry of dijet production at RHIC, showing that the color factor enhancement in the angular dependence of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  5. Distance and azimuthal dependence of ground-motion variability

    NASA Astrophysics Data System (ADS)

    Vyas, Jagdish Chandra; Mai, Paul Martin; Galis, Martin

    2016-04-01

    We investigate the near-field ground-motion variability by computing the seismic wavefield for five previously published kinematic rupture models of the M 7.3 1992 Landers earthquake, several simplified rupture models based on the Landers event, and a large M 7.8 scenario earthquake in Southern California. The ground motion simulations are accomplished by solving the elasto-dynamic equations of motion using a generalized finite-difference method. The simulated waveforms are calibrated against near-field strong-motion recordings for the Landers earthquake. We then analyze our simulation-based data-set of ground-motions, binned with respect to distance and azimuth to compute mean and standard deviation of peak ground velocity (PGV). We consider different 1D-velocity-density profiles for the Landers simulations, and a 3D heterogeneous Earth structure for the ShakeOut scenario, and for both cases we honor geometrical fault complexity. The ground-motion variability, σln(PGV), estimated from numerical simulations is higher in the near-field (Joyner-Boore distance RJB <20 km) compared to that associated with standard ground-motion prediction equations. We find that σln(PGV)decreases with increasing distance from the fault as a power law. The physical explanation of a large near-field σln(PGV)is the presence of strong directivity and rupture complexity. We also show that intra-event ground-motion variability is high in the rupture-propagation direction (both forward and backward directivity regions), but low in the direction perpendicular to rupture propagation for unilateral ruptures. We observe that the power-law decay of σln(PGV) is primarily controlled by slip heterogeneity. In addition, σln(PGV) as function of azimuth is sensitive to variations in both rupture speed and slip heterogeneity. We also find that the azimuthal dependence of mean, μln(PGV), can be approximated by a Cauchy-Lorentz function, which may potentially help in estimation of ground motion for

  6. Bottlenose dolphins audiogram dependence on azimuth: Evoked potential study

    NASA Astrophysics Data System (ADS)

    Popov, Vladimir

    2005-04-01

    ABR thresholds to tonal pips were measured in two bottlenose dolphins at different azimuthal positions of the sound source. The tested frequency range was from 8 to 128 kHz. Azimuth varied within a limit of 90 degree relative to the animals' longitudinal axis. This experimental paradigm allowed us to obtain ABR audiograms at different locations of the sound source. The zero-azimuth audiogram, at the sound source position in front of the animal, was of a standard appearance (minimum thresholds at frequencies of 38 90 kHz, steep threshold increase at higher frequencies, and shallower increase at lower frequencies). The audiograms at lateralized sound-source positions looked in a different manner. With the azimuth increase, high-frequency thresholds rose much higher than low-frequency ones, so at azimuths of 6090, the threshold versus frequency function was almost monotonous: the lowest threshold was observed at the lowest frequency (8 kHz) and the highest threshold at the highest frequency (128 kHz). With monaural ABR recording, audiograms contralateral to the sound source featured higher thresholds and steeper threshold increase with frequency as compared to the ipsilateral ones. [Work supported by the Russian Foundation for Basic Research.

  7. Azimuthal dependence of the Garton-Tomkins orbit in crossed magnetic and electric fields

    NASA Astrophysics Data System (ADS)

    Bleasdale, C.; Lewis, R. A.; Bruno-Alfonso, A.

    2016-08-01

    Work on classical closed orbits in the diamagnetic Kepler problem is predominately focused on the chaos observed in the polar launch angle as opposed to the azimuthal launch angle. This is due to atomic systems, along with widely studied external-field geometries (parallel magnetic and electric fields or pure magnetic field), being uniform in azimuthal angle, rendering the azimuthal angle unimportant. In the case of crossed magnetic and electric fields, this is no longer the case, and closed orbits do present an azimuthal launch angle dependence. In atomic systems, due to their spherical symmetry, the electric-field orientation in the plane perpendicular to the magnetic field does not affect the spectrum of orbits. However, in shallow n -type donors in anisotropic semiconductors such as silicon, the orientation of the external fields with respect to conduction-band valleys will be important. In this work we examine the Garton-Tomkins orbit in crossed magnetic and electric fields, and analyze how it and its harmonics' azimuthal dependencies behave through variation of the scaled field or scaled energy. At low scaled fields, harmonics have either twofold or fourfold azimuthal dependencies determined by the rotational symmetry of the individual harmonics. As the scaled field or scaled energy is increased, several harmonics undergo significant bifurcations, resulting in large azimuthal angular regions of essentially closed orbits, which will lead to strong resonances in experimental work.

  8. Azimuthal Asymmetries for eA/eN Semi-Inclusive DIS and Its Nuclear Dependence

    NASA Astrophysics Data System (ADS)

    Song, Yu-Kun

    2016-02-01

    We applied collinear expansion to the semi-inclusive deeply inelastic lepton-nucleon (nucleus) scattering process e + N(A) → e + q + X with both polarized beam and polarized target up to twist-3, and unpolarized process up to twist-4. The differential cross section and azimuthal asymmetries are expressed in terms of gauge invariant twist-3 and twist-4 TMD parton distribution/correlation functions. Measurements of such azimuthal asymmetries provide methods to study different spin and transverse momentum aspects of the partonic structure of nucleon. We further study the nuclear dependence of azimuthal asymmetries and adopt Gaussian ansatz for TMD distribution/correlation functions to estimat the semi-quantitive behaviour of the nuclear dependence. We predict the A-dependence of azimuthal asymmetries which can be tested in the planned EIC’s.

  9. Flavor dependent azimuthal asymmetries in unpolarized semi-inclusive DIS at HERMES

    NASA Astrophysics Data System (ADS)

    Giordano, F.

    2014-01-01

    The azimuthal cosϕ h and cos2ϕ h modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the hermes experiment. For the first time these modulations were determined in a 4-Dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  10. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  11. Azimuthal angle dependence of di-jet production in unpolarized hadron scattering

    SciTech Connect

    Lu Zhun; Schmidt, Ivan

    2009-08-04

    We study the azimuthal asymmetry of back-to-back di-jet production in unpolarized hadron scattering, arising from the product of two Boer-Mulders functions, which describe the transverse spin distribution of quarks inside an unpolarized hadron. We find that there is a cos {delta}{phi} angular dependence of the di-jet, with {delta}{phi} the difference of the azimuthal angle of tow jets respectively. In the case of J{sub q}+J{sub q} production, we find that there is a color factor enhancement in the gluonic cross-section due to the multiple initial-/final-state interactions, compared with the result from the standard generalized parton model. We estimate the cos {delta}{phi} asymmetry of the total di-jet production at RHIC, showing that the color factor enhancement in the azimuthal asymmetric cross section of J{sub q}+J{sub q} production will reverse the sign of the asymmetry.

  12. Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Yangbo; Qian, Jing; Bai, Feng; Wang, Zhuo; Wang, Chengwei; Fan, Wenzhong; Zhang, Yang; Zhao, Quanzhong

    2016-04-01

    We report the modification of optical properties of 304 stainless steel surfaces by femtosecond laser direct writing with different scanning pitches. Regularly arranged ripples with a spatial period of ~700 nm were obtained, rendering vivid structural colors when we illuminated the surface with white light. Diffraction spectra were generated to investigate the spectral properties of the structural colors. Results indicate that the diffraction maximum strongly depends on scanning pitch and azimuthal angle, but that the central wavelength is insensitive to both of them. The reflectance properties were also investigated. This study adds a new parameter, the scanning pitch, to the list of parameters in the production of controllable colorized metal, which may find a range of applications in color display, decoration, and so on.

  13. The Azimuthal Dependence of Outflows and Accretion Detected Using O VI Absorption

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2015-12-01

    We report a bimodality in the azimuthal angle (Φ) distribution of gas around galaxies traced by O vi absorption. We present the mean Φ probability distribution function of 29 Hubble Space Telescope-imaged O vi absorbing (EW > 0.1 Å) and 24 non-absorbing (EW < 0.1 Å) isolated galaxies (0.08 \\lt z \\lt 0.67) within ˜200 kpc of background quasars. We show that equivalent width (EW) is anti-correlated with impact parameter and O vi covering fraction decreases from 80% within 50 kpc to 33% at 200 kpc. The presence of O vi absorption is azimuthally dependent and occurs between ±10°-20° of the galaxy projected major axis and within ±30° of the projected minor axis. We find higher EWs along the projected minor axis with weaker EWs along the project major axis. Highly inclined galaxies have the lowest covering fractions due to minimized outflow/inflow cross-section geometry. Absorbing galaxies also have bluer colors while non-absorbers have redder colors, suggesting that star formation is a key driver in the O vi detection rate. O vi surrounding blue galaxies exists primarily along the projected minor axis with wide opening angles while O vi surrounding red galaxies exists primarily along the projected major axis with smaller opening angles, which may explain why absorption around red galaxies is less frequently detected. Our results are consistent with a circumgalactic medium (CGM) originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows. Non-detected O vi occurs between Φ = 20°-60°, suggesting that O vi is not mixed throughout the CGM and remains confined within the outflows and the disk-plane. We find low O vi covering fractions within +/- 10^\\circ of the projected major axis, suggesting that cool dense gas resides in a narrow planer geometry surrounded by diffuse O vi gas.

  14. Azimuth-dependent Auger neutralization of He{sup +} on Ag(111) and (110) surfaces

    SciTech Connect

    Valdes, Diego; Monreal, R. C.; Blanco, J. M.; Esaulov, V. A.

    2007-04-15

    We present a detailed theoretical analysis of the role played by s and d electrons in Auger neutralization processes of He{sup +} at Ag(111) and Ag(110) surfaces. We calculate crystal-lattice-site Auger neutralization rates as a function of the perpendicular distance between ions and surfaces. We find that the rate is very insensitive to the lateral position for large values of the perpendicular distance because the contribution of the delocalized s electrons dominates in this case. In contrast, the contribution of d electrons dominates at short perpendicular distances and the strong spatial localization of these electrons causes a similar strong dependence of the Auger rate with lateral position. We perform molecular dynamic simulations of scattered ion trajectories, which, used together with the Auger neutralization rates, allow us to obtain the theoretical ion fraction that we compare with our measurements. This parameter-free theory is able to reproduce the magnitude of the ion survival probability and its dependence with the azimuthal angle of incidence for both surfaces of Ag, thus showing the important role played by localized electrons in Auger neutralization of He.

  15. Azimuthal anisotropies of reconstructed jets in Pb + Pb collisions at √sNN =2.76 TeV in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Nie, Mao-Wu; Ma, Guo-Liang

    2014-07-01

    Azimuthal anisotropies of reconstructed jets [vnjet(n=2,3)] have been investigated in Pb + Pb collisions at the center of mass energy √sNN =2.76 TeV within a framework of a multiphase transport (AMPT) model. The v2jet is in good agreement with the recent ATLAS data. However, the v3jet shows a smaller magnitude than v2jet, and approaches zero at a larger transverse momentum. It is attributed to the path-length dependence in which the jet energy loss fraction depends on the azimuthal angles with respect to different orders of event planes. The ratio vnjet/εn increases from peripheral to noncentral collisions, and vnjet increases with the initial spatial asymmetry (εn) for a given centrality bin. These behaviors indicate that the vnjet is produced by the strong interactions between jet and the partonic medium with different initial geometry shapes. Therefore, azimuthal anisotropies of reconstructed jet are proposed as a good probe to study the initial spatial fluctuations, which are expected to provide constraints on the path-length dependence of jet quenching models.

  16. Magnetic-azimuth dependence of D-layer radio reflectivity, using lightning sferics as radio transmitters

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Shao, X.; Holzworth, R. H.; Lay, E. H.

    2011-12-01

    The Very Low Frequency (3-30 kHz) and Low-Frequency (30-300 kHz) radiation from lightning strokes provides a convenient intense source for studying radio propagation in the ionospheric D-region [Cheng and Cummer, 2005; Cheng et al., 2006; Cheng et al., 2007; Cummer et al., 1998; Jacobson et al., 2010; Shao and Jacobson, 2009]. In this poster we present a new study of the magnetic-azimuth dependence of D-layer radio reflectivity at relatively short ranges (r < 1000 km). This range regime is poorly adapted to a waveguide approach but is well treated by our discrete-reflection approach [Jacobson et al., 2009]. We use cloud-to-ground strokes, which are ~100X more numerous than the Narrow Bipolar Pulse sferics to which our method had previously been confined. Cheng, Z., and S. A. Cummer (2005), Broadband VLF measurements of lightning-induced ionospheric perturbations, Geophys. Res. Lett., 32, L08804, doi:08810.01029/02004GL022187. Cheng, Z., S. A. Cummer, D. N. Baker, and S. G. Kanekal (2006), Nighttime D region electron density profiles and variabilities inferred from broadband measurements using VLF radio emissions from lightning, J. Geophys. Res., 111, A05302, doi:05310.01029/02005JA011308. Cheng, Z., S. A. Cummer, H.-T. Su, and R.-R. Hsu (2007), Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses, J. Geophys. Res., 112, A06318. Cummer, S. A., U. S. Inan, and T. F. Bell (1998), Ionospheric D region remote sensing using VLF radio atmospherics, Radio Sci., 33, 1781-1792. Jacobson, A. R., X. Shao, and R. H. Holzworth (2009), Full-wave reflection of lightning long-wave radio pulses from the ionospheric D-region: Numerical model, J. Geophys. Res.- Space, 114, A03303, doi:03310.01029/02008JA013642. Jacobson, A. R., R. Holzworth, and X.-M. Shao (2010), Full-wave reflection of lightning long-wave radio pulses from the ionospheric D-region: Comparison with midday observations of broadband lightning signals

  17. Azimuthal inhomogeneity of turbulence structure and its impact on intermittent particle transport in linear magnetized plasmas

    SciTech Connect

    Kobayashi, T.; Inagaki, S.; Sasaki, M.; Nagashima, Y.; Kasuya, N.; Fujisawa, A.; Itoh, S.-I.; Kosuga, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Itoh, K.

    2015-11-15

    Fluctuation component in the turbulence regime is found to be azimuthally localized at a phase of the global coherent modes in a linear magnetized plasma PANTA. Spatial distribution of squared bicoherence is given in the azimuthal cross section as an indicator of nonlinear energy transfer function from the global coherent mode to the turbulence. Squared bicoherence is strong at a phase where the turbulence amplitude is large. As a result of the turbulence localization, time evolution of radial particle flux becomes bursty. Statistical features such as skewness and kurtosis are strongly modified by the localized turbulence component, although contribution to mean particle flux profile is small.

  18. Dependence of planar alignment layer upon enhancement of azimuthal anchoring energy by reactive mesogens

    NASA Astrophysics Data System (ADS)

    Kim, Youngsik; Lee, You-Jin; Baek, Ji-Ho; Yu, Chang-Jae; Kim, Jae-Hoon

    2015-01-01

    Reactive mesogens (RMs) can enhance the azimuthal anchoring energy of planar alignment layers used in liquid crystal (LC) devices; herein, we studied the interactions between the RMs and the planar alignment material that determine whether this enhancement can occur. Two alignment-layer materials were studied: polyamic acid (PA) and polyimide (PI). The addition of RMs to the PI-type alignment layer was effective in enhancing the azimuthal anchoring energy, whereas the addition of RMs to the PA-type alignment layer had little effect. Surface analysis revealed that the RMs adhered well to the PI-type alignment surface only; in the resulting cell, the presence of the RMs enhanced both the rise and decay times in fringe field switching (FFS)-mode operation.

  19. Radiative transfer in cylindrical threads with incident radiation. II. 2D azimuth-dependent case

    NASA Astrophysics Data System (ADS)

    Gouttebroze, P.

    2005-05-01

    A method is proposed for the solution of NLTE radiative transfer equations in long cylinders with an external incident radiation that varies with direction. This method is designed principally for the modelling of elongated structures imbedded in the solar corona (loops, prominence threads). The radiative transfer problem under consideration is a 2D one, since the source functions and absorption coefficients vary with both distance to axis and azimuth. The method is based on the general principles of finite-differences and accelerated Λ-iteration. A Fourier series is used for interpolation in azimuth. The method is applied to a line emitted by a two-level atom with complete frequency redistribution. Convergence properties of the method and influence of the inclination angle on the source function are discussed.

  20. Hadronization scheme dependence of long-range azimuthal harmonics in high energy p + A reactions

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Gyulassy, Miklos

    2015-07-01

    We compare the distortion effects of three popular final-state hadronization schemes. We show how hadronization modifies the initial-state gluon correlations in high energy p + A collisions. The three models considered are (1) LPH: local parton-hadron duality, (2) CPR: collinear parton-hadron resonance independent fragmentation, and (3) LUND: color string hadronization. The strong initial-state azimuthal asymmetries are generated using the GLVB model for non-abelian gluon bremsstrahlung, assuming a saturation scale Qsat = 2 GeV. Long-range elliptic and triangular harmonics for the final hadron pairs are compared based on the three hadronization schemes. Our analysis shows that the process of hadronization causes major distortions of the partonic azimuthal harmonics for transverse momenta at least up to pT = 3 GeV. In particular, they appear to be greatly reduced for pT < 1 ÷ 2 GeV.

  1. Study of Jet Transverse Momentum and Jet Rapidity Dependence on Dijet Azimuthal Decorrelations

    SciTech Connect

    Chakravarthula, Kiran

    2012-01-01

    In a collision experiment involving highly energetic particles such as hadrons, processes at high momentum transfers can provide information useful for many studies involving Quantum Chromodynamics (QCD). One way of analyzing these interactions is through angular distributions. In hadron-hadron collisions, the angular distribution between the two leading jets with the largest transverse momentum (pT ) is affected by the production of additional jets. While soft radiation causes small differences in the azimuthal angular distribution of the two leading jets produced in a collision event, additional hard jets produced in the event have more pronounced influence on the distribution of the two leading jets produced in the collision. Thus, the dijet azimuthal angular distribution can serve as a variable that can be used to study the transition from soft to hard QCD processes in a collision event. This dissertation presents a triple-differential study involving the azimuthal angular distribution and the jet transverse momenta, and jet rapidities of the first two leading jets. The data used for this research are obtained from proton-antiproton (p$\\bar{p}$) collisions occurring at a center of mass energy of 1.96TeV, using the DØ detector in Run II of the Tevatron Collider at the Fermi National Accelerator Laboratory (FNAL) in Illinois, USA. Comparisons are made to perturbative QCD (pQCD) predictions at next-to-leading order (NLO).

  2. Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetisyan, E.; Ball, B.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Bowles, J.; Bryzgalov, V.; Burns, J.; Capiluppi, M.; Capitani, G. P.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Deconinck, W.; Leo, R. De; Nardo, L. De; Sanctis, E. De; Diefenthaler, M.; Nezza, P. Di; Düren, M.; Ehrenfried, M.; Elbakian, G.; Ellinghaus, F.; Fabbri, R.; Fantoni, A.; Felawka, L.; Frullani, S.; Gabbert, D.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Gavrilov, G.; Gharibyan, V.; Giordano, F.; Gliske, S.; Guler, H.; Guzey, V.; Haan, S.; Hadjidakis, C.; Hartig, M.; Hasch, D.; Hill, G.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hristova, I.; Imazu, Y.; Ivanilov, A.; Jackson, H. E.; Jo, H. S.; Joosten, S.; Kaiser, R.; Karyan, G.; Keri, T.; Kinney, E.; Kisselev, A.; Korotkov, V.; Kozlov, V.; Kravchenko, P.; Lagamba, L.; Lamb, R.; Lapikás, L.; Lehmann, I.; Lenisa, P.; López Ruiz, A.; Lorenzon, W.; Lu, X.-G.; Lu, X.-R.; Ma, B.-Q.; Mahon, D.; Makins, N. C. R.; Manaenkov, S. I.; Manfré, L.; Mao, Y.; Marianski, B.; de La Ossa, A. Martinez; Marukyan, H.; Miller, C. A.; Miyachi, Y.; Movsisyan, A.; Muccifora, V.; Murray, M.; Mussgiller, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Pappalardo, L. L.; Perez-Benito, R.; Raithel, M.; Reimer, P. E.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Schäfer, A.; Schnell, G.; Schüler, K. P.; Shanidze, R.; Shibata, T.-A.; Shutov, V.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J. M.; Stewart, J.; Stinzing, F.; Taroian, S.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Haarlem, Y. Van; Hulse, C. Van; Varanda, M.; Veretennikov, D.; Vikhrov, V.; Vilardi, I.; Wang, S.; Yaschenko, S.; Ye, H.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.; Zupranski, P.; sHERMES Collaboration

    2010-03-01

    The nuclear-mass dependence of azimuthal cross-section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and the deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.

  3. Multiplicity dependence of two-particle azimuthal correlations in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdanikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, F.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Czopowicz, T. R.; Dainese, A.; Dang, R.; Danu, A.; Das, I.; Das, S.; Das, D.; Das, K.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G. D.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Elwood, B. G.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; Ferreiro, E. G.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.

    2013-09-01

    We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at = 0 .9, 2.76, and 7 TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators. [Figure not available: see fulltext.

  4. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-03-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .

  5. A Low Temperature Two-Axis Goniometer for Azimuth Dependent Studies

    SciTech Connect

    Yakhou, Flora; Bernard, Pascal; Valade, Jean-Paul; Deen, Pascale P.; Harris, Alistair; Lapertot, Gerard

    2007-01-19

    A novel insert was developed for top-loading liquid helium cryostats that allows a combined {+-}90 deg. sample tilt with a full 360 deg. azimuthal rotation. This sample stick is operational down to 1.5 K and was primarily designed for X-ray scattering in reflecting geometry. The device not being intended for scanning but positioning purposes, motion precision, resolution and repeatability specifications were relaxed to 0.1 deg. and readily achieved. This setup was initially designed for a specific cryostat and implemented at beamline ID20 of the ESRF but it can be easily adapted to similar top loading cryostats including cryomagnets. Initial results on the low temperature phases of CeB6 are presented.

  6. Survival rate of initial azimuthal anisotropy in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Liu, Feng; Wang, Fuqiang

    2015-11-01

    We investigate the survival rate of an initial momentum anisotropy (v2ini), not spatial anisotropy, to the final state in a multiphase transport (AMPT) model in Au+Au collisions at √{sN N}=200 GeV. It is found that both the final-state parton and charged hadron v2 show a linear dependence versus v2ini{PP } with respect to the participant plane (PP). It is found that the slope of this linear dependence (referred to as the survival rate) increases with transverse momentum pT, reaching ˜100 % at pT˜2.5 GeV/c for both parton and charged hadron. The survival rate decreases with collision centrality and energy, indicating decreasing survival rate with increasing interactions. It is further found that a v2ini{Rnd } with respect to a random direction does not survive in v2{PP } but in the two-particle cumulant v2{2 } . The dependence of v2{2 } on v2ini{Rnd } is quadratic rather than linear.

  7. Pennsylvania salient of the Appalachians: A two-azimuth transport model based on new compilations of Piedmont data

    NASA Astrophysics Data System (ADS)

    Wise, Donald U.

    2004-09-01

    New compilations of geometry and tectonic transport in the Pennsylvania salient suggest that these features continue uninterrupted from the Piedmont through the Valley and Ridge provinces. These data are the basis for a new two-azimuth transport model for origin of the curvature. Edge geometry of an Eocambrian craton and a thickened stratigraphy acted as templates for Alleghanian regional décollement, first as Reading Prong ˜N35°W motion, followed by ˜N68°W Blue Ridge motion. Both displacements involved some drag rotation and overprinting in a central zone. This model avoids the problem of minimal tangential stretching, explains the anthracite basins as trailing-edge graben and basin structures against the autochthonous Pocono Plateau, and produces the Nittany-Juniata culmination as an overprinted pileup of duplexes in the central zone. The model of detachment followed by changing azimuth of motion of a megadécollement sheet may apply to other salients throughout the world.

  8. Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54 keV photon energy

    NASA Astrophysics Data System (ADS)

    Akkuş, T.; Şahin, Y.; Yılmaz, D.

    2016-01-01

    The azimuthal and polar angle dependence of L X-ray was investigated in the same experimental setup to remove the existing ambiguity about alignments measurements. We measured Ll, Lα, Lβ and Lγ X-ray differential cross sections of Yb for several different azimuthal angles (30°, 20°, 10°, 0°, -10° and -20°) and polar angles (90°, 100°, 110°, 120°, 130° and 140°) at 59.54 keV photon energy by using a Si(Li) detector. The azimuthal angle dependence of Ll and Lα X-rays were observed. The azimuthal anisotropy of Lβ and Lγ X-rays were not observed. On the other hand, differential cross-sections for Lβ and Lγ X-rays were found independent on the polar angle within experimental error, those for Ll and Lα X-rays depended on the polar angles. Azimuthal and polar angles dependence of L X-ray differential cross-sections contrast with the other experimental and theoretical results, which report evidence of the isotropic emission of Ll and Lα X-rays following photoionization.

  9. A-dependence of the Beam-Spin Azimuthal Asymmetry in Deeply Virtual Compton Scattering

    SciTech Connect

    Guler, Hayg

    2007-06-13

    The nuclear-mass dependence of the beam-spin asymmetry (BSA) in deeply virtual Compton scattering has been measured at HERMES. The BSA ratios of Nuclei to Hydrogen or Deuterium BSAs have been extracted in coherent and incoherent-enriched kinematic regions separately.

  10. Detector-selection technique for Monte Carlo transport in azimuthally symmetric geometries

    SciTech Connect

    Hoffman, T.J.; Tang, J.S.; Parks, C.V.

    1982-01-01

    Many radiation transport problems contain geometric symmetries which are not exploited in obtaining their Monte Carlo solutions. An important class of problems is that in which the geometry is symmetric about an axis. These problems arise in the analyses of a reactor core or shield, spent fuel shipping casks, tanks containing radioactive solutions, radiation transport in the atmosphere (air-over-ground problems), etc. Although amenable to deterministic solution, such problems can often be solved more efficiently and accurately with the Monte Carlo method. For this class of problems, a technique is described in this paper which significantly reduces the variance of the Monte Carlo-calculated effect of interest at point detectors.

  11. Azimuthal velocity profiles in Rayleigh-stable Taylor-Couette flow and implied axial angular momentum transport

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef; Lathrop, Daniel P.

    2015-07-01

    We present azimuthal velocity profiles measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of $\\eta = 0.716$, an aspect-ratio of $\\Gamma = 11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $Re_S \\sim O(10^5) \\,$, both for $\\Omega_i > \\Omega_o > 0$ (quasi-Keplerian regime) and $\\Omega_o > \\Omega_i > 0$ (sub-rotating regime) where $\\Omega_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles matches the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation is approached at fixed $Re_S$. Flow super-rotation, an angular velocity greater than that of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that were larger than the torques for the case of laminar Taylor-Couette flow. The quasi-Keplerian profiles are composed of a well mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor-Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.

  12. The cost of transportation`s oil dependence

    SciTech Connect

    Greene, D.L.

    1995-05-01

    Transportation is critical to the world`s oil dependence problem because of the large share of world oil it consumes and because of its intense dependence on oil. This paper will focus on the economic costs of transportation`s oil dependence.

  13. Dependence of enhanced asymmetry-induced transport on collision frequency

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  14. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p↑+p at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-12-01

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p↑+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η >0.5 , and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p +p collisions.

  15. Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p^{↑}+p at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-12-11

    We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions. PMID:26705627

  16. Spin-dependent energy distribution of B-hadrons from polarized top decays considering the azimuthal correlation rate

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. M.

    2016-04-01

    Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t (↑) →W+ + b (→Xb), is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t (↑) → bW+. Here we present, for the first time, the analytical expressions for the O (αs) radiative corrections to the differential azimuthal decay rates of the partonic process t (↑) → b +W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.

  17. Azimuthal dependence of pion source radii in Pb+Au collisions at 158A GeV/c

    SciTech Connect

    Adamova, D.; Kushpil, V.; Sumbera, M.; Agakichiev, G.; Belaga, V.; Fomenko, K.; Panebrattsev, Y.; Petchenova, O.; Shimansky, S.; Yurevich, V.; Andronic, A.; Braun-Munzinger, P.; Garabatos, C.; Hering, G.; Holeczek, J.; Maas, A.; Marin, A.; Miskowiec, D.; Rak, J.; Sako, H.

    2008-12-15

    We present results of a two-pion correlation analysis performed with the Pb+Au collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the Brookhaven National Laboratory Alternating Gradient Synchrotron and Relativistic Heavy Ion Collider.

  18. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-03-18

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20  GeV. PMID:27035295

  19. Azimuthal anisotropy of direct photons

    SciTech Connect

    Kopeliovich, B. Z.; Pirner, H. J.; Rezaeian, A. H.; Schmidt, Ivan

    2008-02-01

    The electromagnetic bremsstrahlung produced by a quark interacting with nucleons or nuclei is azimuthally asymmetric. In the light-cone dipole approach this effect is related to the orientation dependent dipole cross section. Such a radiation anisotropy is expected to contribute to the azimuthal asymmetry of direct photons in pA and AA collisions, as well as in deep-inelastic scattering and in the production of dileptons.

  20. Dependence of enhanced asymmetry-induced transport on collision frequency

    SciTech Connect

    Eggleston, D. L.

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  1. Tilted pion sources from azimuthally sensitive HBT interferometry

    NASA Astrophysics Data System (ADS)

    Lisa, M. A.; Heinz, U.; Wiedemann, U. A.

    2000-09-01

    Intensity interferometry in noncentral heavy ion collisions provides access to novel information on the geometry of the effective pion-emitting source. We demonstrate analytically that, even for vanishing pair momentum, the cross terms Rol2 and Rsl2 of the HBT correlation function in general show a strong first harmonic in their azimuthal dependence. The strength of this oscillation characterizes the tilt of the major axis of the spatial emission ellipsoid away from the direction of the beam. Event generator studies indicate that this tilt can be large (/>20°) at AGS energies which makes it by far the most significant azimuthally sensitive HBT signal at these energies. Moreover, transport models suggest that for pions this spatial tilt is directed opposite to the tilt of the directed flow ellipsoid in momentum space. A measurement of the azimuthal dependence of the HBT cross terms Rol2 and Rsl2 thus probes directly the physical origin of directed pion flow.

  2. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a {Rho}-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

  3. Particle-type dependence of azimuthal anisotropy and nuclearmodification of particle production in Au+Au collisions at sNN = 200GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman,R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll,J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay,S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gutierrez, T.D.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Drosnick, D.; Guedon, M.; Guertin, S.M.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.K.; et al.

    2003-06-18

    We present STAR measurements of the azimuthal anisotropy parameter v{sub 2} and the binary-collision scaled centrality ratio R{sub CP} for kaons and lambdas ({Lambda} + {bar {Lambda}}) at mid-rapidity in Au+Au collisions at {radical}s{sub NN} = 200 GeV. In combination, the v{sub 2} and R{sub CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p{sub T} {approx} 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K{sub S}{sup 0} and {Lambda} + {bar {Lambda}} v{sub 2} values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

  4. Temperature dependence of fluid transport in nanopores

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Wang, Binglei; Park, Taehyo; Qiao, Yu; Zhou, Qulan; Chen, Xi

    2012-05-01

    Understanding the temperature-dependent nanofluidic transport behavior is critical for developing thermomechanical nanodevices. By using non-equilibrium molecular dynamics simulations, the thermally responsive transport resistance of liquids in model carbon nanotubes is explored as a function of the nanopore size, the transport rate, and the liquid properties. Both the effective shear stress and the nominal viscosity decrease with the increase of temperature, and the temperature effect is coupled with other non-thermal factors. The molecular-level mechanisms are revealed through the study of the radial density profile and hydrogen bonding of confined liquid molecules. The findings are verified qualitatively with an experiment on nanoporous carbon.

  5. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  6. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  7. Temperature Dependent Kinetics DNA Charge Transport

    NASA Astrophysics Data System (ADS)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  8. Azimuthal radiometric temperature measurements of wheat canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    The effects of azimuthal view angle on the radiometric temperature of wheat canopies at various stages of development are investigated. Measurements of plant height, total leaf area index, green leaf area index and Feeks growth stage together with infrared radiometric temperature measurements at 12 azimuth intervals with respect to solar azimuth and at different solar zenith angles were obtained for four wheat canopies at various heights. Results reveal a difference on the order of 2 C between the temperatures measured at azimuths of 0 and 180 deg under calm wind conditions, which is attributed to the time-dependent transfer of heat between canopy component surfaces. The azimuthal dependence must thus be taken into account in the determination of radiometric temperatures.

  9. Klotho-Dependent Cellular Transport Regulation.

    PubMed

    Sopjani, M; Dërmaku-Sopjani, M

    2016-01-01

    Klotho is a transmembrane protein that in humans is encoded by the hKL gene. This protein is known to have aging suppressor effects and is predominantly expressed in the distal convoluted tubule of the kidney, parathyroid glands, and choroid plexus of the brain. The Klotho protein exists in both full-length membrane form and a soluble secreted form, which exerts numerous distinct functions. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it functions as β-glucuronidase and a hormone. Soluble Klotho is a multifunction protein present in the biological fluids including blood, urine, and cerebrospinal fluid of mammals. Klotho deficiency leads to multiple organ failure accompanied by early appearance of multiple age-related disorders and early death, whereas overexpression of Klotho results in the opposite effects. Klotho, an enzyme and hormone, has been reported to participate in the regulation of cellular transport processes across the plasma membrane either indirectly through inhibiting calcitriol (1,25(OH)2D3) formation or other mechanism, or by directly affecting transporter proteins, including ion channels, cellular carriers, and Na(+)/K(+)-ATPase. Accordingly, Klotho protein serves as a powerful regulator of cellular transport across the plasma membrane. Importantly, Klotho-dependent cellular transport regulation implies stimulatory or inhibitory effects. Klotho has been shown to play a key role in the regulation of multiple calcium and potassium ion channels, and various cellular carriers including the Na(+)-coupled cotransporters such as NaPi-IIa, NaPi-IIb, EAAT3, and EAAT4, CreaT1 as well as Na(+)/K(+)-ATPase. These regulations are parts of the antiaging function of Klotho, which will be discussing throughout this chapter. Clearly, further experimental efforts are required to investigate the effect of Klotho on other transport proteins and underlying molecular mechanisms by which Klotho

  10. 32 CFR 718.3 - Transportation of dependents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Transportation of dependents. 718.3 Section 718... PERSONS ACT § 718.3 Transportation of dependents. (a) Whenever a person in active service is officially... and circumstances of the dependents and the destination to which transportation is requested. In...

  11. 32 CFR 718.3 - Transportation of dependents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Transportation of dependents. 718.3 Section 718... PERSONS ACT § 718.3 Transportation of dependents. (a) Whenever a person in active service is officially... and circumstances of the dependents and the destination to which transportation is requested. In...

  12. 32 CFR 718.3 - Transportation of dependents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Transportation of dependents. 718.3 Section 718... PERSONS ACT § 718.3 Transportation of dependents. (a) Whenever a person in active service is officially... and circumstances of the dependents and the destination to which transportation is requested. In...

  13. 32 CFR 718.3 - Transportation of dependents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Transportation of dependents. 718.3 Section 718... PERSONS ACT § 718.3 Transportation of dependents. (a) Whenever a person in active service is officially... and circumstances of the dependents and the destination to which transportation is requested. In...

  14. 32 CFR 718.3 - Transportation of dependents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Transportation of dependents. 718.3 Section 718... PERSONS ACT § 718.3 Transportation of dependents. (a) Whenever a person in active service is officially... and circumstances of the dependents and the destination to which transportation is requested. In...

  15. Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\\sqrt{s_{NN}}=2.76$ TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2012-05-01

    Measurements from the CMS experiment at the LHC of dihadron correlations for charged particles produced in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV are presented. The results are reported as a function of the particle transverse momenta (pt) and collision centrality over a broad range in relative pseudorapidity [Delta(eta)] and the full range of relative azimuthal angle [Delta(phi)]. The observed two-dimensional correlation structure in Delta(eta) and Delta(phi) is characterised by a narrow peak at (Delta(eta), Delta(phi)) approximately (0, 0) from jet-like correlations and a long-range structure that persists up to at least |Delta(eta)| = 4. An enhancement of the magnitude of the short-range jet peak is observed with increasing centrality, especially for particles of pt around 1-2 GeV/c. The long-range azimuthal dihadron correlations are extensively studied using a Fourier decomposition analysis. The extracted Fourier coefficients are found to factorise into a product of single-particle azimuthal anisotropies up to pt approximately 3-3.5 GeV/c for at least one particle from each pair, except for the second-order harmonics in the most central PbPb events. Various orders of the single-particle azimuthal anisotropy harmonics are extracted for associated particle pt of 1-3 GeV/c, as a function of the trigger particle pt up to 20 GeV/c and over the full centrality range.

  16. Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p +Au , d +Au , and 3He+Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Orjuela Koop, J. D.; Adare, A.; McGlinchey, D.; Nagle, J. L.

    2015-11-01

    Recent data from p +p and p +Pb collisions at the Large Hadron Collider (LHC), and d +Au and 3He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) reveal patterns that—when observed in the collision of heavy nuclei—are commonly interpreted as indicators of a locally equilibrated system in collective motion. The comparison of these data sets, including the forthcoming results from p +Au and p +Al collisions at RHIC, will help to elucidate the geometric dependence of such patterns. It has recently been shown that a multiphase transport model (AMPT) can describe some of these features in LHC data with a parton-parton scattering cross section comparable to that required to describe A +A data. In this paper, we extend these studies by incorporating a full wave-function description of the 3He nucleus to calculate elliptical and triangular anisotropy moments v2 and v3 for p +Au , d +Au , and 3He+Au collisions at the RHIC top energy of 200 GeV. We find reasonable agreement with the measured v2 in d +Au and 3He+Au and v3 in 3He+Au for transverse momentum (pT)≲1 GeV /c , but underestimate these measurements for higher values of pT. We predict a pattern of coefficients (v2,v3) for p +Au , dominated by differences in the number of induced local hot spots (i.e., one, two, or three) arising from intrinsic geometry. Additionally, we examine how this substantial azimuthal anisotropy accrues during each individual evolutionary phase of the collision in the AMPT model. The possibility of a simultaneous description of RHIC- and LHC-energy data, the suite of different geometries, and high multiplicity p +p data is an exciting possibility for understanding the underlying physics in these systems.

  17. Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Gang

    2016-08-01

    Normal mode coupling pair 0S26-0T26 and 0S27-0T27 are significantly present at the South Pole station QSPA after the 2011/03/11 Mw9.1 Tohoku earthquake. In an attempt to determine the mechanisms responsible for the coupling pairs, I first investigate mode observations at 43 stations distributed along the polar great-circle path for the earthquake and observations at 32 Antarctic stations. I rule out the effect of Earth's rotation as well as the effect of global large-scale lateral heterogeneity, but argue instead for the effect of small-scale local azimuthal anisotropy in a depth extent about 300 km. The presence of quasi-Love waveform in 2-5 mHz at QSPA and its nearby stations confirms the predication. Secondly, I analyze normal mode observations at the South Pole location after 28 large earthquakes from 1998 to 2015. The result indicates that the presence of the mode coupling is azimuthal dependent, which is related to event azimuths in -46° to -18°. I also make a comparison between the shear-wave splitting measurements of previous studies and the mode coupling observations of this study, suggesting that their difference can be explained by a case that the anisotropy responsible for the mode coupling is not just below the South Pole location but located below region close to the Transantarctic Mountains (TAM). Furthermore, more signals of local azimuthal anisotropy in normal-mode observations at QSPA and SBA, such as coupling of 0S12-0T11 and vertical polarization anomaly for 0T10, confirms the existence of deep anisotropy close to TAM, which may be caused by asthenospheric mantle flow and edge convection around cratonic keel of TAM.

  18. The CU 2-D-MAX-DOAS instrument - Part 1: Retrieval of 3-D distributions of NO2 and azimuth-dependent OVOC ratios

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R.

    2015-06-01

    We present an innovative instrument telescope and describe a retrieval method to probe three-dimensional (3-D) distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two-dimensional (2-D) multi-axis differential optical absorption spectroscopy (CU 2-D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4), and water vapor (H2O); nitrous acid (HONO), bromine monoxide (BrO), and iodine monoxide (IO) are among other gases that can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has three modes of operation: mode 1 measures solar scattered photons from any pair of elevation angle (-20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (-180° < AA < +180°; zero being north); mode 2 measures any set of azimuth angles (AAs) at constant elevation angle (EA) (almucantar scans); and mode 3 tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured and used to estimate mixing layer height (MLH). Horizontal distributions are then derived using MLH and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths and has a diurnal mean effective radius of 7.0 to 25 km around the instrument location; i.e., up to 1960 km2 can be sampled with high time resolution. The instrument was deployed as part of the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany, from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles and MLH of NO2; (b

  19. On the dependence of the efficiency of a 240 GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index

    SciTech Connect

    Dumbrajs, O.; Avramidis, K. A.; Franck, J.; Jelonnek, J.

    2014-01-15

    Two issues in the cavity design for a Megawatt-class, 240 GHz gyrotron are addressed. Those are first, the effect of a misaligned electron beam on the gyrotron efficiency and second, a possible azimuthal instability of the gyrotron. The aforementioned effects are important for any gyrotron operation, but could be more critical in the operation of Megawatt-class gyrotrons at frequencies above 200 GHz, which will be the anticipated requirement of DEMO. The target is to provide some basic trends to be considered during the refinement and optimization of the design. Self-consistent calculations are the base for simulations wherever possible. However, in cases for which self-consistent models were not available, fixed-field results are presented. In those cases, the conservative nature of the results should be kept in mind.

  20. Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to second- and third-order event planes in Au+Au collisions at √[S(NN)]=200  GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2014-06-01

    Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200  GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow. PMID:24949761

  1. The CU 2-dimensional MAX-DOAS instrument - Part 1: Retrieval of NO2 in 3 dimensions and azimuth dependent OVOC ratios

    NASA Astrophysics Data System (ADS)

    Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R.

    2014-11-01

    We present an innovative instrument telescope, and describe a retrieval method to probe 3-D distributions of atmospheric trace gases that are relevant to air pollution and tropospheric chemistry. The University of Colorado (CU) two dimensional (2-D) Multi-AXis-Differential Optical Absorption Spectroscopy (CU 2D-MAX-DOAS) instrument measures nitrogen dioxide (NO2), formaldehyde (HCHO), glyoxal (CHOCHO), oxygen dimer (O2-O2, or O4) and water vapor (H2O); also nitrous acid (HONO), bromine monoxide (BrO), iodine monoxide (IO) among other gases can in principle be measured. Information about aerosols is derived through coupling with a radiative transfer model (RTM). The 2-D telescope has 3 modes of operation: (mode 1) measures solar scattered photons from any pair of elevation angle (-20° < EA < +90° or zenith; zero is to the horizon) and azimuth angle (-180° < AA < +180°; zero being North), (mode 2) measures any set of AA at constant EA (almucantar scans); and (mode 3) tracks the direct solar beam via a separate view port. Vertical profiles of trace gases are measured, and used to estimate planetary boundary layer height (PBL). Horizontal distributions are then derived using PBL and parameterization of RTM (Sinreich et al., 2013). NO2 is evaluated at different wavelengths (350, 450, and 560 nm), exploiting the fact that the effective path length varies systematically with wavelength. The area probed is constrained by O4 observations at nearby wavelengths, and has an effective radius of 7.5 to 20 km around the instrument location; i.e., up to 1250 km2 can be sampled near-instantaneously, and with high time resolution. The instrument was deployed as part of the Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany from 7 June to 6 July 2013. We present first measurements (modes 1 and 2 only) and describe a four-step retrieval to derive (a) boundary layer vertical profiles of NO2 and PBL; (b) near-surface horizontal distributions

  2. [Riboflavin transport in cells of riboflavin-dependent yeast mutants].

    PubMed

    Sibirnyĭ, A A; Shavlovskiĭ, G M; Ksheminskaia, G P; Orlovskaia, A G

    1977-01-01

    Riboflavin was transported at a high rate into yeast cells of Pichia guilliermondii and Schwanniomyces occidentalis mutants capable of growth in a medium containing low concentrations of riboflavin, and having multiple susceptibility to some antibiotics and antimetabolites. Sucrose and sodium azide inhibited transport of riboflavin. Other riboflavin dependent mutants of Pichia guilliermondii, Pichia ohmeri, Torulopsis candida, and Saccharomyces cerevisiae, also growing in media containing low concentrations of riboflavin, were not capable of its active transport. PMID:329070

  3. Sodium-Dependent Phosphate Transporters in Osteoclast Differentiation and Function

    PubMed Central

    Dolder, Silvia; Siegrist, Mark; Wagner, Carsten A.; Biber, Jürg; Hernando, Nati; Hofstetter, Willy

    2015-01-01

    Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies. PMID:25910236

  4. Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-01

    We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination. PMID:14995300

  5. Azimuthal Spoke Propagation in Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Spokes are azimuthally propagating perturbations in the plasma discharge of Hall Effect Thrusters (HETs) that travel in the E x B direction and have been observed in many different systems. The propagation of azimuthal spokes are investigated in a 6 kW HET known as the H6 using ultra-fast imaging and azimuthally spaced probes. A spoke surface is a 2-D plot of azimuthal light intensity evolution over time calculated from 87,500 frames/s videos. The spoke velocity has been determined using three methods with similar results: manual fitting of diagonal lines on the spoke surface, linear cross-correlation between azimuthal locations and an approximated dispersion relation. The spoke velocity for three discharge voltages (300, 400 and 450 V) and three anode mass flow rates (14.7, 19.5 and 25.2 mg/s) yielded spoke velocities between 1500 and 2200 m/s across a range of normalized magnetic field settings. The spoke velocity was inversely dependent on magnetic field strength for low B-field settings and asymptoted at B-field higher values. The velocities and frequencies are compared to standard drifts and plasma waves such as E x B drift, electrostatic ion cyclotron, magnetosonic and various drift waves. The empirically approximated dispersion relation yielded a characteristic velocity that matched the ion acoustic speed for 5 eV electrons that exist in the near-anode and near-field plume regions of the discharge channel based on internal measurements. Thruster performance has been linked to operating mode where thrust-to-power is maximized when azimuthal spokes are present so investigating the underlying mechanism of spokes will benefit thruster operation.

  6. Azimuthally Sensitive Femtoscopy and {nu}2

    SciTech Connect

    Tomasik, Boris

    2006-04-11

    I investigate the correlation between spatial and flow anisotropy in determining the elliptic flow and azimuthal dependence of the HBT correlation radii in non-central nuclear collisions. It is shown that the correlation radii are in most cases dominantly sensitive to the anisotropy in space. In case of {nu}2, the correlation depends strongly on particle species. A procedure for disentangling the spatial and the flow anisotropy is proposed.

  7. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  8. Azimuthal anisotropy of π⁰ production in Au+Au collisions at sqrt((s)NN)=200  GeV: path-length dependence of jet quenching and the role of initial geometry.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hanks, J; Han, R; Hartouni, E P; Haslum, E; Hayano, R; Heffner, M; Hegyi, S; Hemmick, T K; Hester, T; He, X; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E J; Kim, E; Kim, S H; Kim, Y J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Okada, K; Oka, M; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Young, G R; Younus, I; You, Z; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2010-10-01

    We have measured the azimuthal anisotropy of π⁰ production for 1dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data. PMID:21230825

  9. Azimuthal Anisotropy of pi Production in Au+Au Collisions at s_NN = 200 GeV: Path-length Dependence of Jet-Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; PHENIX, Collaboration

    2010-01-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1 < p{sub T} < 18 GeV/c for Au+Au collisions at {radical}s{sub NN} = 200 GeV. The observed anisotropy shows a gradual decrease for 3 {approx}< p {approx}< 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least {approx}10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  10. Azimuthal Anisotropy of {pi}{sup 0} Production in Au+Au Collisions at {radical}(s{sub NN})=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.

    2010-10-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  11. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    PubMed Central

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  12. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    SciTech Connect

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.

  13. Some Exact Solutions in Energy Dependent Transport Theory

    NASA Astrophysics Data System (ADS)

    Williams, M. M. R.

    1980-01-01

    Some exact solutions are obtained for energy dependent slowing down problems with energy dependent cross sections. The transport equation is solved using the backward-forward model of Fermi. Also studied is the energy dependent diffusion equation. Using these models, and a novel technique involving difference equations, it has been possible to find explicit, and numerically useful, solutions for slowing down from a plane, monoenergetic source in an infinite medium. The slowing down density and the energy deposition function are obtained which are of value in reactor physics and radiation damage calculations.

  14. Microfluidic-Enabled Liposomes Elucidate Size-Dependent Transdermal Transport

    PubMed Central

    Junqueira, Mariana; Vreeland, Wyatt N.; Quezado, Zenaide; Finkel, Julia C.; DeVoe, Don L.

    2014-01-01

    Microfluidic synthesis of small and nearly-monodisperse liposomes is used to investigate the size-dependent passive transdermal transport of nanoscale lipid vesicles. While large liposomes with diameters above 105 nm are found to be excluded from deeper skin layers past the stratum corneum, the primary barrier to nanoparticle transport, liposomes with mean diameters between 31–41 nm exhibit significantly enhanced penetration. Furthermore, multicolor fluorescence imaging reveals that the smaller liposomes pass rapidly through the stratum corneum without vesicle rupture. These findings reveal that nanoscale liposomes with well-controlled size and minimal size variance are excellent vehicles for transdermal delivery of functional nanoparticle drugs. PMID:24658111

  15. Temperature dependence of electronic transport property in ferroelectric polymer films

    NASA Astrophysics Data System (ADS)

    Zhao, X. L.; Wang, J. L.; Tian, B. B.; Liu, B. L.; Zou, Y. H.; Wang, X. D.; Sun, S.; Sun, J. L.; Meng, X. J.; Chu, J. H.

    2014-10-01

    The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir-Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel-Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  16. Measurement of the azimuthal angle dependence of inclusive jet yields in Pb+Pb collisions at √(sNN)=2.76 TeV with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahsan, M; Aielli, G; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asbah, N; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Daniells, A C; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'acqua, A; Dell'asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Engelmann, R; Engl, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, Y S; Gaponenko, A; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Haefner, P; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmgren, S O; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M K; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mazzanti, M; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Tuna, A N; Turala, M; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Zeniš, T; Zerwas, D; Zevi della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2013-10-11

    Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Δφ, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Δφ dependence of jet yields in 0.14 nb(-1) of √(s(NN))=2.76 TeV Pb+Pb collisions at the LHC for jet transverse momenta p(T)>45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Δφ was characterized by the parameter, v(2)(jet), and the ratio of out-of-plane (Δφ~π/2) to in-plane (Δφ~0) yields. Nonzero v(2)(jet) values were measured in all centrality bins for p(T)<160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions. PMID:24160592

  17. Substrate-dependent regulation of ascorbate transport in astrocytes

    SciTech Connect

    Wilson, J.X.; Jaworski, E.M.; Kulaga, A.; Dixon, S.J. )

    1990-02-26

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na{sup +}-dependent L-ascorbate transporter in the plasma membrane. The present study examined the effects of ascorbate deprivation and supplementation on the activity of the transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-({sup 14}C)ascorbate for 1 minute at 37C. They observed that the maximal uptake rate, V{sub max}, rapidly (<3 hours) increased when cultured cells were deprived of L-ascorbate. There was no change in the apparent affinity (K{sub m}) of the transport system for ascorbate. V{sub max} returned to normal following addition of L-ascorbate, but not D-isoascorbate, to the medium. The authors conclude that astrocytes adapt ascorbate transport rates to changes in substrate availability. Furthermore, the data suggest that the transport system located in the astroglial plasma membrane regulates intracellular ascorbate concentration, because changes in transport rate may compensate for regional differences and temporal fluctuations in extracellular ascorbate levels.

  18. Microtubule-dependent transport and dynamics of vimentin intermediate filaments

    PubMed Central

    Hookway, Caroline; Ding, Liya; Davidson, Michael W.; Rappoport, Joshua Z.; Danuser, Gaudenz; Gelfand, Vladimir I.

    2015-01-01

    We studied two aspects of vimentin intermediate filament dynamics—transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end–binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance. PMID:25717187

  19. Azimuthal Frustration and Bundling in Columnar DNA Aggregates

    PubMed Central

    Harreis, H. M.; Likos, C. N.; Löwen, H.

    2003-01-01

    The interaction between two stiff parallel DNA molecules is discussed using linear Debye-Hückel screening theory with and without inclusion of the dielectric discontinuity at the DNA surface, taking into account the helical symmetry of DNA. The pair potential furthermore includes the amount and distribution of counterions adsorbed on the DNA surface. The interaction does not only depend on the interaxial separation of two DNA molecules, but also on their azimuthal orientation. The optimal mutual azimuthal angle is a function of the DNA-DNA interaxial separation, which leads to azimuthal frustrations in an aggregate. On the basis of the pair potential, the positional and orientational order in columnar B-DNA assemblies in solution is investigated. Phase diagrams are calculated using lattice sums supplemented with the entropic contributions of the counterions in solution. A variety of positionally and azimuthally ordered phases and bundling transitions is predicted, which strongly depend on the counterion adsorption patterns. PMID:12770870

  20. Chloride transporter KCC2-dependent neuroprotection depends on the N-terminal protein domain

    PubMed Central

    Winkelmann, A; Semtner, M; Meier, J C

    2015-01-01

    Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl− transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases. PMID:26043076

  1. Chloride transporter KCC2-dependent neuroprotection depends on the N-terminal protein domain.

    PubMed

    Winkelmann, A; Semtner, M; Meier, J C

    2015-01-01

    Neurodegeneration is a serious issue of neurodegenerative diseases including epilepsy. Downregulation of the chloride transporter KCC2 in the epileptic tissue may not only affect regulation of the polarity of GABAergic synaptic transmission but also neuronal survival. Here, we addressed the mechanisms of KCC2-dependent neuroprotection by assessing truncated and mutated KCC2 variants in different neurotoxicity models. The results identify a threonine- and tyrosine-phosphorylation-resistant KCC2 variant with increased chloride transport activity, but they also identify the KCC2 N-terminal domain (NTD) as the relevant minimal KCC2 protein domain that is sufficient for neuroprotection. As ectopic expression of the KCC2-NTD works independently of full-length KCC2-dependent regulation of Cl(-) transport or structural KCC2 C-terminus-dependent regulation of synaptogenesis, our study may pave the way for a selective neuroprotective therapeutic strategy that will be applicable to a wide range of neurodegenerative diseases. PMID:26043076

  2. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  3. Strain-modulation of spin-dependent transport in graphene

    SciTech Connect

    Cao, Zhen-Zhou Hou, Jin; Cheng, Yan-Fu; Li, Guan-Qiang

    2014-10-27

    We investigate strain modulation of the spin-dependent electron transport in a graphene junction using the transfer matrix method. As an analogy to optics, we define the modulation depth in the electron optics domain. Additionally, we discuss the transport properties and show that the modulation depth and the conductance depend on the spin-orbit coupling strength, the strain magnitude, the width of the strained area, and the energy of the incident electron. The conductances of the spin-down and spin-up electrons have opposite and symmetrical variations, which results in the analogous features of their modulation depths. The maximum conditions for both the modulation depth and the electron spin upset rate are also analyzed.

  4. Temperature dependent electrical transport of disordered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Muchharla, Baleeswaraiah; Narayanan, T. N.; Balakrishnan, Kaushik; Ajayan, Pulickel M.; Talapatra, Saikat

    2014-06-01

    We report on the simple route for the synthesis of chemically reduced graphene oxide (rGO) using ascorbic acid (a green chemical) as a reducing agent. Temperature-dependent electrical transport properties of rGO thin films have been studied in a wide range (50 K T 400 K) of temperature. Electrical conduction in rGO thin films was displayed in two different temperature regimes. At higher temperatures, Arrhenius-like temperature dependence of resistance was observed indicating a band gap dominating transport behavior. At lower temperatures, the rGO sample showed a conduction mechanism consistent with Mott's two-dimensional variable range hopping (2D-VRH). An unsaturated negative magnetoresistance (MR) was observed up to 3 T field. A decrease in negative MR at high temperatures is attributed to the phonon scattering of charge carriers.

  5. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  6. Moisture dependence of radon transport in concrete: measurements and modeling.

    PubMed

    Cozmuta, I; van der Graaf, E R; de Meijer, R J

    2003-10-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release rate decreases very steeply. It is demonstrated that this dependence can be successfully modeled on basis of the multi-phase radon-transport equation in which values for various input parameters (porosity, diffusion coefficient, emanation factor, etc.) were obtained from independent measurements. Furthermore, a concrete structure development model was used to predict at any moment in time the values of input parameters that depend on the evolution of the concrete microstructure. Information on the concrete manufacturing recipe and curing conditions (temperature, relative humidity) was used as input for the concrete structure model. The combined radon transport and concrete structure model supplied sufficient information to assess the influence of relative humidity on the radon source and barrier aspects of concrete. More specifically, the model has been applied to estimate the relative contributions to the radon exhalation rate of a 20-cm-thick concrete slab of radon produced in the concrete slab itself and due to diffusive transport through the slab of radon from soil gas. PMID:13678285

  7. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  8. Cation-dependent nutrient transport in shrimp digestive tract.

    PubMed

    Simmons, Tamla; Mozo, Julie; Wilson, Jennifer; Ahearn, Gregory A

    2012-02-01

    Purified epithelial brush border membrane vesicles (BBMV) were produced from the hepatopancreas of the Atlantic White shrimp, Litopeneaus setiferus, using standard methods originally developed for mammalian tissues and previously applied to other crustacean and echinoderm epithelia. These vesicles were used to study the cation dependency of sugar and amino acid transport across luminal membranes of hepatopancreatic epithelial cells. (3)H-D: -glucose uptake by BBMV against transient sugar concentration gradients occurred when either transmembrane sodium or potassium gradients were the only driving forces for sugar accumulation, suggesting the presence of a possible coupled transport system capable of using either cation. (3)H-L: -histidine transport was only stimulated by a transmembrane potassium gradient, while (3)H-L: -leucine uptake was enhanced by either a sodium or potassium gradient. These responses suggest the possible presence of a potassium-dependent transporter that accommodates either amino acid and a sodium-dependent system restricted only to L: -leucine. Uptake of (3)H-L: -leucine was significantly stimulated (P < 0.05) by several metallic cations (e.g., Zn(2+), Cu(2+), Mn(2+), Cd(2+), or Co(2+)) at external pH values of 7.0 or 5.0 (internal pH 7.0), suggesting a potential synergistic role of the cations in the transmembrane transfer of amino acids. (3)H-L: -histidine influxes (15 suptakes) were hyperbolic functions of external [zinc] or [manganese], following Michaelis-Menten kinetics. The apparent affinity constant (e.g., K (m)) for manganese was an order of magnitude smaller (K (m) = 0.22 μM Mn) than that for zinc (K (m) = 1.80 μM Zn), while no significant difference (P > 0.05) occurred between their maximal transport velocities (e.g., J (max)). These results suggest that a number of cation-dependent nutrient transport systems occur on the shrimp brush border membrane and aid in the absorption of these important dietary elements. PMID:21983793

  9. Transport of hydrogen in metals with occupancy dependent trap energies

    SciTech Connect

    Schmid, K. Toussaint, U. von; Schwarz-Selinger, T.

    2014-10-07

    Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12 H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

  10. Radial and azimuthal beam parameters.

    PubMed

    Lumer, Yaakov; Moshe, Inon

    2009-02-01

    Global invariant parameters are introduced to characterize the radial and azimuthal content of totally polarized beams. Such parameters are written in terms of the second moments of the optical beam and are invariant in propagation through symmetric first-order optical systems described by the ABCD matrix. Since it was proven in the past that the usual definition for radial polarization is not invariant, such invariance is novel in characterizing the radial and azimuthal polarizations content of optical beams. The possibility of obtaining a pure mode from a given beam using the proposed parameters is discussed. PMID:19183626

  11. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled.

    PubMed

    Singh, Himansha; Velamakanni, Saroj; Deery, Michael J; Howard, Julie; Wei, Shen L; van Veen, Hendrik W

    2016-01-01

    ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter. PMID:27499013

  12. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled

    PubMed Central

    Singh, Himansha; Velamakanni, Saroj; Deery, Michael J.; Howard, Julie; Wei, Shen L.; van Veen, Hendrik W.

    2016-01-01

    ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter. PMID:27499013

  13. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  14. Temperature dependence of angular momentum transport across interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Lin, Weiwei; Chien, C. L.; Zhang, Shufeng

    2016-08-01

    Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasiparticles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among nonmagnetic metals, ferromagnetic insulators, and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient, and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator, and a nonmagnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.

  15. Conformation dependent electronic transport in a DNA double-helix

    SciTech Connect

    Kundu, Sourav Karmakar, S. N.

    2015-10-15

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.

  16. Anisotropic bias dependent transport property of defective phosphorene layer

    PubMed Central

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  17. Time-Dependent, Parallel Neutral Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and themore » Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D

  18. Dimensional dependence of phonon transport in freestanding atomic layer systems

    NASA Astrophysics Data System (ADS)

    Kim, Duckjong; Hwangbo, Yun; Zhu, Lijing; Mag-Isa, Alexander E.; Kim, Kwang-Seop; Kim, Jae-Hyun

    2013-11-01

    Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport property in terms of thermal conduction by using Raman spectroscopy. From the difference in susceptibility to substrate effect, size effect on hot-spot temperature variation and layer number dependence of thermal conductivity, we show that the graphitic membranes with 2 or more layers have characteristics similar to 3-dimensional graphite, which are very different from those of 2-dimensional graphene membranes. This implies that the scattering of out-of-plane phonons by interlayer atomic coupling could be a key mechanism governing the intrinsic thermal property.Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport

  19. Spin-Dependent Transport Phenomena in Ferromagnet/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Geppert, Chad Christopher

    This dissertation examines several aspects of spin-dependent transport phenomena in epitaxially grown ferromagnet/n-GaAs heterostructures. Further maturation of the field of semiconductor-based spintronics is hindered by difficulties in evaluating device performance across materials systems. Using Fe/n-GaAs and Co2MnSi/n-GaAs heterostructures as a test case, the main goal of this work is to demonstrate how such difficulties may be overcome by (1) specifying a more quantitative framework for evaluating transport parameters and (2) the introduction of a new spin-to-charge conversion phenomenon which may be parameterized by bulk semiconductor parameters. In the introductory chapter, this work is placed in the broader context of developing improved methods for the generation, modulation, and detection of spins. The lateral spin-valve geometry is presented as a concrete example of the typical measurement procedures employed. Chapter 2 presents the charge-based transport properties of these samples and establishes the notation and calculation techniques to be employed in subsequent chapters. In particular, we examine in detail the calculation of the electrochemical potential for a given carrier concentration. Chapter 3 provides a full derivation of the equations governing spin-dependent transport in the large polarization regime. This is applied to the case of extracting spin lifetimes and diffusion rates, demonstrating how quantitative agreement with theoretical predictions may be obtained upon properly accounting for both device geometry and material parameters. Further examination of the boundary conditions applicable to the heterojunctions of these samples demonstrates to what extent device performance may be parameterized across materials systems. Chapter 4 presents experimental observations of a new spin-to-charge conversion phenomenon using a non-magnetic probe. In the presence of a large non-equilibrium spin accumulation, the combination of a non-constant density

  20. Time dependent electronic transport in chiral edge channels

    NASA Astrophysics Data System (ADS)

    Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-02-01

    We study time dependent electronic transport along the chiral edge channels of the quantum Hall regime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can be derived from a lumped element description of the circuit. At higher frequencies, the propagation equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Coulomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractionalization process, affects the propagation of a single electron in the circuit. All the above-mentioned topics are illustrated by experimental realizations.

  1. Reprint of : Time dependent electronic transport in chiral edge channels

    NASA Astrophysics Data System (ADS)

    Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-08-01

    We study time dependent electronic transport along the chiral edge channels of the quantum Hall regime, focusing on the role of Coulomb interaction. In the low frequency regime, the a.c. conductance can be derived from a lumped element description of the circuit. At higher frequencies, the propagation equations of the Coulomb coupled edge channels need to be solved. As a consequence of the interchannel coupling, a charge pulse emitted in a given channel fractionalized in several pulses. In particular, Coulomb interaction between channels leads to the fractionalization of a charge pulse emitted in a given channel in several pulses. We finally study how the Coulomb interaction, and in particular the fractionalization process, affects the propagation of a single electron in the circuit. All the above-mentioned topics are illustrated by experimental realizations.

  2. High temperature dependence of thermal transport in graphene foam.

    PubMed

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-13

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ∼0.3 to 1.5 W m(-1) K(-1) and ∼4 × 10(-5) to ∼2 × 10(-4) m(2) s(-1) respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications. PMID:25683178

  3. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

    PubMed Central

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  4. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides.

    PubMed

    Dobritzsch, Melanie; Lübken, Tilo; Eschen-Lippold, Lennart; Gorzolka, Karin; Blum, Elke; Matern, Andreas; Marillonnet, Sylvestre; Böttcher, Christoph; Dräger, Birgit; Rosahl, Sabine

    2016-02-01

    The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface. PMID:26744218

  5. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires.

    PubMed

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  6. Ballistic energy transport along PEG chains: distance dependence of the transport efficiency.

    PubMed

    Lin, Zhiwei; Zhang, Nan; Jayawickramarajah, Janarthanan; Rubtsov, Igor V

    2012-08-14

    Dual-frequency relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy was used to investigate energy transport in polyethylene glycol (PEG) oligomers of different length, having 0, 4, 8, and 12 repeating units and end-labeled with azido and succinimide ester moieties (azPEGn). The energy transport initiated by excitation of the N≡N stretching mode of the azido group in azPEGn in CCl(4) at ca. 2100 cm(-1) was recorded by probing the C=O stretching modes (reporters) of the succinimide ester moiety. Sensitive to the excess energy delivered to the reporter modes, RA 2DIR permits observation of both the through-bond and through-solvent energy transport contributions. The cross-peak data involving the reporter modes with different thermal sensitivity and the data for mixtures of compounds permitted concluding that through-bond energy transport is the dominant mechanism for most cross peaks in all four azPEGn compounds. The through-bond energy transport time, evaluated as the waiting time at which the cross peak maximum is reached, was found to be linearly dependent on the chain length of up to 60 Å, suggesting a ballistic energy transport regime. The through-bond energy transport speed determined from the chain-length dependence of T(max) in CCl(4) is found to be ca. 450 m s(-1). The cross-peak amplitude at the maximum decays exponentially with the chain length; a characteristic decay distance is found to be 15.7 ± 1 Å. The cross-peak amplitude at zero waiting time, determined by the end-to-end distance distribution, is found to decay with the chain length (L) as ∼L(-1.4), which is close to predictions of the free flight chain model. The match indicates that the end-group interaction does not strongly perturb the end-to-end distribution, which is close to the ideal random coil distribution with the Gaussian probability density. PMID:22555778

  7. Temperature dependent transport characteristics of graphene/n-Si diodes

    SciTech Connect

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup −10} A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.

  8. Seismological Detection of Azimuthal Anisotropy in the Transition Zone

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Beghein, C.

    2010-12-01

    The goal of this research is to determine whether azimuthal anisotropy is present in the transition zone. Mineral physics data demonstrate that wadsleyite, which is likely present in the upper transition zone, is intrinsically anisotropy. However, because the detection of seismic anisotropy at these depths is challenging, its existence in the transition zone is still a matter of debate. It is, nevertheless, an important issue since it can give us insight on the style of convection in the mantle. We apply a singular value decomposition inversion method to global azimuthally anisotropic Love wave phase velocity maps in order to constrain azimuthal anisotropy down to ~1000km depth. We use 70 different modes, fundamental and overtones up to order 5, at periods between 35s and ~175s. This gives us unprecedented sensitivity to elastic parameter G, which describes the azimuthal dependence of vertically polarized shear waves. Our preliminary results show that the best data fit is generally obtained for models that display a non-negligible amount of azimuthal anisotropy in the transition zone. Uncertainties remain regarding the amplitude and the fast direction of the anisotropy, but its presence under continents appears independent of the depth parameterization or the damping applied. Under oceans, the results are less stable with respect to damping and parametrization, and display large parameters trade-offs. This could be due to inconsistencies among the data due to a poorer azimuthal data coverage in those regions. We also tested the influence of the crustal model on the local sensitivity kernels and on the resulting models of azimuthal anisotropy. Our results show that the effect of the crust on parameter G is the strongest in the top 200km, but generally negligible at larger depths.

  9. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at

  10. Mode switching in a gyrotron with azimuthally corrugated resonator.

    PubMed

    Nusinovich, G S; Sinitsyn, O V; Antonsen, T M

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators. PMID:17677705

  11. Mode Switching in a Gyrotron with Azimuthally Corrugated Resonator

    SciTech Connect

    Nusinovich, G. S.; Sinitsyn, O. V.; Antonsen, T. M. Jr.

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators.

  12. Topological States in Partially-PT-Symmetric Azimuthal Potentials.

    PubMed

    Kartashov, Yaroslav V; Konotop, Vladimir V; Torner, Lluis

    2015-11-01

    We introduce partially-parity-time (pPT)-symmetric azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully-PT-symmetric potentials. The vortex solitons in the pPT- and PT-symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles. PMID:26588383

  13. Gymnemic acids inhibit sodium-dependent glucose transporter 1.

    PubMed

    Wang, Yu; Dawid, Corinna; Kottra, Gabor; Daniel, Hannelore; Hofmann, Thomas

    2014-06-25

    To evaluate the activity of botanicals used in Chinese Traditional Medicine as hypoglycemic agents for diabetes type II prevention and/or treatment, extracts prepared from 26 medicinal herbs were screened for their inhibitory activity on sodium-dependent glucose transporter 1 (SGLT1) by using two-electrode voltage-clamp recording of glucose uptake in Xenopus laevis oocytes microinjected with cRNA for SGLT1. Showing by far the strongest SGLT1 inhibitory effect, the phytochemicals extracted from Gymnema sylvestre (Retz.) Schult were located by means of activity-guided fractionation and identified as 3-O-β-D-glucuronopyranosyl-21-O-2-tigloyl-22-O-2-tigloyl gymnemagenin (1) and 3-O-β-D-glucuronopyranosyl-21-O-2-methylbutyryl-22-O-2-tigloyl gymnemagenin (2) by means of LC-MS/MS, UPLC-TOF/MS, and 1D/2D-NMR experiments. Both saponins exhibited low IC50 values of 5.97 (1) and 0.17 μM (2), the latter of which was in the same range as found for the high-affinity inhibitor phlorizin (0.21 μM). As SGLT1 is found in high levels in brush-border membranes of intestinal epithelial cells, these findings demonstrate for the first time the potential of these saponins for inhibiting electrogenic glucose uptake in the gastrointestinal tract. PMID:24856809

  14. Temperature Dependence of Lateral Charge Transport in Silicon Nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Sookchoo, Pornsatit; Savage, Donald; Eriksson, Mark; Lagally, Max

    2014-03-01

    Thin sheets of single-crystal silicon (nanomembranes), electrically isolated from a bulk substrate by a dielectric layer, are an exceptional tool for studying the electronic transport properties of surfaces in the absence of an extended bulk. Under UHV, we measure the conductivity, and a back gate allows us to look into the depletion region, where we can determine the minimum conductance. For hydrogen-terminated Si(001) NMs, for which the surface has no conductivity, the minimum conductance decreases with decreasing NM thickness (220-42nm), demonstrating the reduction in carriers for thinner NMs. For the clean Si(2 ×1)surface, mobile charge exists in the π* surface band. For thicknesses below 200nm surface conduction dominates, rendering the thickness independence of the minimum. We determine a surface charge mobility of ~50cm2V-1s-1. We have measured the temperature dependence of the conductance of a 42nm thick HF treated SiNM. The results show that the Fermi level is pinned 0.21 +/- 0 . 01 eV below the conduction band minimum, in agreement with XPS results. Supported by DOE.

  15. Study on temperature-dependent carrier transport for bilayer graphene

    NASA Astrophysics Data System (ADS)

    Liu, Yali; Li, Weilong; Qi, Mei; Li, Xiaojun; Zhou, Yixuan; Ren, Zhaoyu

    2015-05-01

    In order to investigate the temperature-dependent carrier transport property of the bilayer graphene, graphene films were synthesized on Cu foils by a home-built chemical vapor deposition (CVD) with C2H2. Samples regularity, transmittance (T) and layer number were analyzed by transmission electron microscope (TEM) images, transmittance spectra and Raman spectra. Van Der Pauw method was used for resistivity measurements and Hall measurements at different temperatures. The results indicated that the sheet resistance (Rs), carrier density (n), and mobility (μ) were 1096.20 Ω/sq, 0.75×1012 cm-2, and 7579.66 cm2 V-1 s-1 at room temperature, respectively. When the temperature increased from 0 °C to 240 °C, carrier density (n) increased from 0.66×1012 cm-2 to 1.55×1012 cm-2, sheet resistance (Rs) decreased from 1215.55 Ω/sq to 560.77 Ω/sq, and mobility (μ) oscillated around a constant value 7773.99 cm2 V-1 s-1. The decrease of the sheet resistance (Rs) indicated that the conductive capability of the bilayer graphene film increased with the temperature. The significant cause of the increase of carrier density (n) was the thermal activation of carriers from defects and unconscious doping states. Because the main influence on the carrier mobility (μ) was the lattice defect scattering and a small amount of impurity scattering, the carrier mobility (μ) was temperature-independent for the bilayer graphene.

  16. Spin-dependent electron transport in nanoscale samples

    NASA Astrophysics Data System (ADS)

    Wei, Yaguang

    In this thesis, we describe the research in which we use metallic nanoparticles to explore spin-dependent electron transport at nanometer scale. Nanoscale samples were fabricated by using a state of the art electron beam lithography and shadow evaporation technique. We have investigated spin relaxation and decoherence in metallic grains as a function of bias voltage and magnetic field at low temperatures (down to ˜30mK). At low temperatures, the discrete energy levels within a metallic nanoparticle provides a new means to study the physics of the spin-polarized electron tunneling. We describe measurements of spin-polarized tunneling via discrete energy levels of single Aluminum grain. Spin polarized current saturates quickly as a function of bias voltage, which demonstrates that the ground state and the lowest excited states carry spin polarized current. The ratio of electron-spin relaxation time (T1) to the electron-phonon relaxation rate is in quantitative agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is driven by the spin-orbit interaction. The spin-relaxation time of the low-lying excited states is T1 ≈ 0.7 mus and 0.1 mus in two samples, showing that electron spin in a metallic grain could be a potential candidate for quantum information research. We also present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles at low temperature and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization-reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain wall causes an electron wave function-phase shift of ˜5 pi. The phase shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain wall. The dephasing length at low temperatures is only 30 nm, which is attributed to the large magnetocrystalline

  17. “Magnifying-Glass” Azimuthal Map Projections

    USGS Publications Warehouse

    Snyder, John P.

    1987-01-01

    For maps focusing on a region of interest, but including surrounding areas to provide a setting, new azimuthal projections have been developed with a 'magnifying-glass' effect. On two such projections, inside a circle bounding the region of interest is a standard Azimuthal Equidistant or Lambert Azimuthal Equal-Area projection. Between this circle and an outer bounding circle azimuths remain true and the radial or area scale, respectively, remains constant, but at a reduced value. On four other projections, the inner portion is a standard azimuthal projection, which may be Stereographic, Gnomonic, or the above, but beyond this portion, the radial scale is gradually reduced to zero. Equivalents with rectangular boundaries are also available.

  18. Evaluation of Fracture Azimuth by EM Wave and Elastic Wave

    NASA Astrophysics Data System (ADS)

    Feng, X.; Wang, Q.; Liu, C.; Lu, Q.; Zeng, Z.; Liang, W.; Yu, Y.; Ren, Q.

    2013-12-01

    Fracture system plays an important role in the development of underground energy, for example enhanced geothermal system (EGS), oil shale and shale gas, etc. Therefore, it becomes more and more important to detect and evaluate the fracture system. Geophysical prospecting is an useful method to evaluate the characteristics of the subsurface fractures. Currently, micro-seismology, multi-wave seismic exploration, and electromagnetic (EM) survey are reported to be used for the purpose. We are studying a method using both elastic wave and EM wave to detect and evaluate the fracture azimuth in laboratory. First, we build a 3D horizontal transverse isotropy (HTI) model, shown in the figure 1, by dry parallel fractures system, which was constructed by plexiglass plates and papers. Then, we used the ultrasonic system to obtain reflected S-wave data. Depending on the shear wave splitting, we evaluated the fracture azimuth by the algorithm of Pearson correlation coefficient. In addition, we used the full Polarimetric ultra wide band electromagnetic (FP-UWB-EM) wave System, shown in the figure 2, to obtain full polarimetric reflected EM-wave data. Depending on the rotation of the EM wave polarimetry, we evaluated the fracture azimuth by the the ration between maximum amplitude of co-polarimetric EM wave and maximum amplitude of cross-polarimetric EM wave. Finally, we used both EM-wave data and S-wave data to evaluate the fracture azimuth by the method of cross plot and statistical mathematics. To sum up, we found that FP-UWB-EM wave can be used to evaluated the fracture azimuth and is more accurate than ultrasound wave. Also joint evaluation using both data could improve the precision.

  19. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters.

    PubMed

    Bermingham, Daniel P; Blakely, Randy D

    2016-10-01

    Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044

  20. Relative azimuth inversion by way of damped maximum correlation estimates

    USGS Publications Warehouse

    Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.

    2012-01-01

    Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.

  1. Angular dependent transport of auroral electrons in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lummerzheim, D.; Rees, M. H.; Anderson, H. R.

    1989-01-01

    The transport of auroral electrons through the upper atmosphere is analyzed. The transport equation is solved using a discrete-ordinate method, including elastic and inelastic scattering of electrons (resulting in changes of pitch angle) and degradation in energy as the electrons penetrate into the atmosphere. The transport equation is solved numerically for the electron intensity as a function of altitude, pitch angle, and energy. In situ measurements of the pitch angle and energy distribution of precipitating electrons over an auroral arc provide boundary conditions for the calculation. Model calculations were carried out with various different phase functions for elastic and inelastic collisions to attempt changing the angular scattering, but the observed pitch angle distributions remain unexplained. It is suggested that mechanisms other than collisional scattering influence the angular distribution of auroral electrons at or below 300 km altitude in the low-energy domain.

  2. Fiber based generation of azimuthally polarized light

    NASA Astrophysics Data System (ADS)

    Jocher, Christoph; Jauregui, Cesar; Voigtländer, Christian; Stutzki, Fabian; Nolte, Stefan; Limpert, Jens; Tünnermann, Andreas

    2012-02-01

    We report on a novel approach for the generation of radially and azimuthally polarized light employing a fiber mode filter. The mode filter consists of a Fiber Bragg Grating written in a strongly guiding fiber with lifted modal degeneracy. These kinds of fibers guide radially and azimuthally polarized modes with non-degenerated, i.e. distinct, effective refractive indexes. The Fiber Bragg Grating reflects light only if the Bragg condition is fulfilled. In case of strongly guiding fibers the radially and azimuthally polarized modes are guided with different effective refractive indices and, consequently, the Bragg condition is fulfilled at different wavelengths. If the reflection bandwidth of the Fiber Bragg Grating is narrow enough, the radially and azimuthally polarized modes are spectrally separated. Thus, with such a mode filter it is possible to filter the radially or azimuthally polarized mode. This filter is suitable for its integration in a resonator for stable, compact and high polarization purity azimuthally and radially polarized all-fiber oscillators. In a first experiment an azimuthally polarized mode filter consisting of a commercially available step index fiber and a femtosecond written Fiber Bragg Grating was fabricated. The experimental results are presented and discussed.

  3. On perturbative azimuthal asymmetry at RHIC

    SciTech Connect

    Rezaeian, A. H.

    2008-10-13

    We investigate the azimuthal asymmetry of partons and photons produced at the initial stage of nuclear collisions at the RHIC energy originating from quark-nucleus collisions. In our approach, the azimuthal asymmetry results from the correlation between color dipole orientation and impact parameter of the collision. The asymmetry is sensitive to the rapid variation of the nuclear density at the nuclear periphery. We either introduce the color-dipole orientation into the improved Born approximation, or model the dipole partial amplitude which satisfies available DIS data. We conclude that the azimuthal asymmetry coming from these mechanisms can be sizable.

  4. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  5. Measurement of azimuthal asymmetries in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Abbiendi, G.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Coppola, N.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Burgard, C.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hasell, D.; Hebbel, K.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Lindemann, L.; Löhr, B.; Martínez, M.; Milite, M.; Monteiro, T.; Moritz, M.; Notz, D.; Pelucchi, F.; Petrucci, M. C.; Rohde, M.; Saull, P. R. B.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Tassi, E.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Benen, A.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Doyle, A. T.; Lee, S. W.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Zetsche, F.; Goncalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Mallik, U.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Park, I. H.; Son, D.; Barreiro, F.; García, G.; Glasman, C.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Riveline, M.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Dusini, S.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Butterworth, J. M.; Catterall, C. D.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2000-05-01

    The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.

  6. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical

  7. Doping Dependent Thermopower of PbTe from Boltzmann Transport

    SciTech Connect

    Singh, David J

    2010-01-01

    The thermopower of PbTe as a function of temperature and doping level is reported based on Boltzmann transport calculations using the first principles relativistic electronic structure as obtained with the Engel-Vosko generalized gradient approximation. The results are discussed in relation to experimental data. For p-type material there is an enhancement at high-doping levels due to the onset of an increased density of states starting {approx}0.2 eV below the valence band edge. This leads to agreement between the calculated thermopower and recent results on PbTe with heavy Tl doping.

  8. Anterograde Glycoprotein-Dependent Transport of Newly Generated Rabies Virus in Dorsal Root Ganglion Neurons

    PubMed Central

    Bauer, Anja; Nolden, Tobias; Schröter, Josephine; Römer-Oberdörfer, Angela; Gluska, Shani; Perlson, Eran

    2014-01-01

    ABSTRACT Rabies virus (RABV) spread is widely accepted to occur only by retrograde axonal transport. However, examples of anterograde RABV spread in peripheral neurons such as dorsal root ganglion (DRG) neurons indicated a possible bidirectional transport by an uncharacterized mechanism. Here, we analyzed the axonal transport of fluorescence-labeled RABV in DRG neurons by live-cell microscopy. Both entry-related retrograde transport of RABV after infection at axon endings and postreplicative transport of newly formed virus were visualized in compartmentalized DRG neuron cultures. Whereas entry-related transport at 1.5 μm/s occurred only retrogradely, after 2 days of infection, multiple particles were observed in axons moving in both the anterograde and retrograde directions. The dynamics of postreplicative retrograde transport (1.6 μm/s) were similar to those of entry-related retrograde transport. In contrast, anterograde particle transport at 3.4 μm/s was faster, indicating active particle transport. Interestingly, RABV missing the glycoproteins did not move anterogradely within the axon. Thus, anterograde RABV particle transport depended on the RABV glycoprotein. Moreover, colocalization of green fluorescent protein (GFP)-labeled ribonucleoproteins (RNPs) and glycoprotein in distal axonal regions as well as cotransport of labeled RNPs with membrane-anchored mCherry reporter confirmed that either complete enveloped virus particles or vesicle associated RNPs were transported. Our data show that anterograde RABV movement in peripheral DRG neurons occurs by active motor protein-dependent transport. We propose two models for postreplicative long-distance transport in peripheral neurons: either transport of complete virus particles or cotransport of RNPs and G-containing vesicles through axons to release virus at distal sites of infected DRG neurons. IMPORTANCE Rabies virus retrograde axonal transport by dynein motors supports virus spread over long distances and

  9. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

    PubMed

    Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi

    2013-06-01

    Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms. PMID:23585651

  10. A Modified Direct-Reading Azimuth Protractor

    ERIC Educational Resources Information Center

    Larson, William C.; Pugliese, Joseph M.

    1977-01-01

    Describes the construction of a direct-reading azimuth protractor (DRAP) used for mapping fracture and joint-surface orientations in underground mines where magnetic disturbances affect typical geologic pocket transit. (SL)

  11. Azimuthal spin asymmetries in light-cone constituent quark models

    SciTech Connect

    Boffi, S.; Pasquini, B.; Efremov, A. V.; Schweitzer, P.

    2009-05-01

    We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS, and HERMES data.

  12. Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli.

    PubMed

    Richarme, G

    1985-04-01

    We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers. PMID:3920206

  13. Regions of azimuthal instability in gyrotrons

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M. Jr.

    2012-06-15

    This paper is devoted to the analysis of the instability of operating modes in high-power gyrotrons with cylindrically symmetric resonators. This instability manifests itself in destruction of the azimuthally uniform wave envelope rotating in a gyrotron resonator having a transverse size greatly exceeding the wavelength. The appearance of azimuthally nonuniform solutions can be interpreted as simultaneous excitation of modes with different azimuthal indices. This problem is studied self-consistently, i.e., taking into account the temporal evolution of both the azimuthal and axial structures of the wave envelope. The region of gyrotron operation free from this instability is identified. The efficiency achievable in this region can be only 1%-2% lower than the maximum efficiency. It is also possible to address the difference between the theory of mode interaction developed under assumption that all modes have fixed axial structure and the self-consistent theory presented here. As known, for fixed axial mode profiles, single-mode high-efficiency oscillations remain stable no matter how dense is the spectrum of competing modes, while the self-consistent theory predicts stable high-efficiency operation only when the azimuthal index does not exceed a certain critical value. It is shown that the azimuthal instability found in the self-consistent theory is caused by excitation of modes having axial structures different from that of the desired central mode.

  14. Regions of azimuthal instability in gyrotrons

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M.

    2012-06-01

    This paper is devoted to the analysis of the instability of operating modes in high-power gyrotrons with cylindrically symmetric resonators. This instability manifests itself in destruction of the azimuthally uniform wave envelope rotating in a gyrotron resonator having a transverse size greatly exceeding the wavelength. The appearance of azimuthally nonuniform solutions can be interpreted as simultaneous excitation of modes with different azimuthal indices. This problem is studied self-consistently, i.e., taking into account the temporal evolution of both the azimuthal and axial structures of the wave envelope. The region of gyrotron operation free from this instability is identified. The efficiency achievable in this region can be only 1%-2% lower than the maximum efficiency. It is also possible to address the difference between the theory of mode interaction developed under assumption that all modes have fixed axial structure and the self-consistent theory presented here. As known, for fixed axial mode profiles, single-mode high-efficiency oscillations remain stable no matter how dense is the spectrum of competing modes, while the self-consistent theory predicts stable high-efficiency operation only when the azimuthal index does not exceed a certain critical value. It is shown that the azimuthal instability found in the self-consistent theory is caused by excitation of modes having axial structures different from that of the desired central mode.

  15. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous. PMID:26809017

  16. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  17. A cylinder-to-sphere Fourier view factor model for azimuthal asymmetry studies in cylindrical hohlraums

    NASA Astrophysics Data System (ADS)

    Giorla, J.; Poggi, F.; Paillard, D.

    2002-01-01

    This work addresses the analytical calculation of the irradiation coming from a cylindrical surface to a spherical one. This exact solution of the x-ray transport equation allows one to connect the emitted and the received fluxes, expanded as Fourier modes, by coefficients called Fourier view factors. Such a calculation is well suited to a symmetry study in the Laser Megajoule configuration [P.-A. Holstein, M. André, M. Casanova et al., C. R. Acad. Sci. Paris 1, 693 (2000)] where a cylindrical hohlraum and a spherical capsule are irradiated. Indeed, this 60 quad laser system induces an azimuthal asymmetry of the hohlraum lighting depending on the laser focal spot size. Thus, the Fourier view factors allow one to express the modes of the capsule irradiation as functions of the elliptic spot dimensions.

  18. Transverse Spin Azimuthal Asymmetries in SIDIS at COMPASS: Multidimensional Analysis

    NASA Astrophysics Data System (ADS)

    Parsamyan, Bakur

    2016-02-01

    COMPASS is a high-energy physics experiment operating at the SPS at CERN. Wide physics program of the experiment comprises study of hadron structure and spectroscopy with high energy muon and hadrons beams. As for the muon-program, one of the important objectives of the COMPASS experiment is the exploration of the transverse spin structure of the nucleon via spin (in)dependent azimuthal asymmetries in single-hadron production in deep inelastic scattering of polarized leptons off transversely polarized target. For this purpose a series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and transversely polarized 6LiD (in 2002, 2003 and 2004) and NH3 (in 2007 and 2010) targets. The experimental results obtained by COMPASS for unpolarized target azimuthal asymmetries, Sivers and Collins effects and other azimuthal observables play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire twsit-2 set of transverse momentum dependent parton distribution functions and fragmentation functions COMPASS data triggers constant theoretical interest and is being widely used in phenomenological analyses and global data fits. In this review main focus is given to the very recent results obtained by the COMPASS collaboration from first ever multi-dimensional extraction of transverse spin asymmetries.

  19. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design.

    PubMed

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes' bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  20. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-05-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics.

  1. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    PubMed Central

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  2. Deterministic methods for time-dependent stochastic neutron transport

    SciTech Connect

    Baker, Randal S

    2009-01-01

    A numerical method is presented for solving the time-dependent survival probability equation in general (lD/2D/3D) geometries using the multi group SNmethod. Although this equation was first formulated by Bell in the early 1960's, it has only been applied to stationary systems (for other than idealized point models) until recently, and detailed descriptions of numerical solution techniques are lacking in the literature. This paper presents such a description and applies it to a dynamic system representative of a figurative criticality accident scenario.

  3. Time-dependent thermoelectric transport for nanoscale thermal machines

    NASA Astrophysics Data System (ADS)

    Daré, A.-M.; Lombardo, P.

    2016-01-01

    We analyze an electronic nanoscale thermal machine driven by time-dependent environment: besides bias and gate voltage variations, we consider also the less prevailing time modulation of the couplings between leads and dot. We provide energy and heat current expressions in such situations, as well as expressions for the power exchanged between the dot+leads system and its outside. Calculations are made in the Keldysh nonequilibrium Green's function framework. We apply these results to design a cyclic refrigerator, circumventing the ambiguity of defining energy flows between subsystems in the case of strong coupling. For fast lead-dot coupling modulation, we observe transient currents which cannot be ascribed to charge tunneling.

  4. Temperature Dependent Spin Transport in Silicon Controlled by an Electrostatic Gate

    NASA Astrophysics Data System (ADS)

    Li, Jing; Appelbaum, Ian

    2011-03-01

    Long-distance (~ 500 μ m) lateral spin polarized electron transport in undoped silicon under the control of an electrostatic gate is studied from 40K to 120K. The temperature dependence of average spin polarization, transport time, and spin dephasing during coherent precession can be largely attributed to reduction of finite spin lifetime at higher temperatures. Measurements on devices with different transport lengths are shown to modify the effect of electrostatic gating. Support from ONR is acknowledged.

  5. Time-dependent recycling modeling with edge plasma transport codes

    NASA Astrophysics Data System (ADS)

    Pigarov, A.; Krasheninnikov, S.; Rognlien, T.; Taverniers, S.; Hollmann, E.

    2013-10-01

    First,we discuss extensions to Macroblob approach which allow to simulate more accurately dynamics of ELMs, pedestal and edge transport with UEDGE code. Second,we present UEDGE modeling results for H mode discharge with infrequent ELMs and large pedestal losses on DIII-D. In modeled sequence of ELMs this discharge attains a dynamic equilibrium. Temporal evolution of pedestal plasma profiles, spectral line emission, and surface temperature matching experimental data over ELM cycle is discussed. Analysis of dynamic gas balance highlights important role of material surfaces. We quantified the wall outgassing between ELMs as 3X the NBI fueling and the recycling coefficient as 0.8 for wall pumping via macroblob-wall interactions. Third,we also present results from multiphysics version of UEDGE with built-in, reduced, 1-D wall models and analyze the role of various PMI processes. Progress in framework-coupled UEDGE/WALLPSI code is discussed. Finally, implicit coupling schemes are important feature of multiphysics codes and we report on the results of parametric analysis of convergence and performance for Picard and Newton iterations in a system of coupled deterministic-stochastic ODE and proposed modifications enhancing convergence.

  6. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?

    PubMed

    Renton, Michael; Hanan, Jim; Ferguson, Brett J; Beveridge, Christine A

    2012-05-01

    • This paper presents two models of carrier-dependent long-distance auxin transport in stems that represent the process at different scales. • A simple compartment model using a single constant auxin transfer rate produced similar data to those observed in biological experiments. The effects of different underlying biological assumptions were tested in a more detailed model representing cellular and intracellular processes that enabled discussion of different patterns of carrier-dependent auxin transport and signalling. • The output that best fits the biological data is produced by a model where polar auxin transport is not limited by the number of transporters/carriers and hence supports biological data showing that stems have considerable excess capacity to transport auxin. • All results support the conclusion that auxin depletion following apical decapitation in pea (Pisum sativum) occurs too slowly to be the initial cause of bud outgrowth. Consequently, changes in auxin content in the main stem and changes in polar auxin transport/carrier abundance in the main stem are not correlated with axillary bud outgrowth. PMID:22443265

  7. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization.

    PubMed

    Kraus, Martin; Ahmed, Marwan Abdou; Michalowski, Andreas; Voss, Andreas; Weber, Rudolf; Graf, Thomas

    2010-10-11

    A linear to radial and/or azimuthal polarization converter (LRAC) has been inserted into the beam delivery of a micromachining station equipped with a picosecond laser system. Percussion drilling and helical drilling in steel have been performed using radially as well as azimuthally polarized infrared radiation at 1030 nm. The presented machining results are discussed on the basis of numerical simulations of the polarization-dependent beam propagation inside the fabricated capillaries. PMID:20941131

  8. Azimuthal Asymmetries of the Drell-Yan Process in pA Collisions

    NASA Astrophysics Data System (ADS)

    Gao, Jian-Hua

    2016-02-01

    We discuss the azimuthal asymmetries of the Drell-Yan process in nucleon-nucleus collisions at the low transverse momentum of the lepton pair. Within the transverse-momentum-dependent (TMD) factorization formalism, the nuclear effects of these azimuthal asymmetries can be from the gauge link of the TMD quark distribution. We estimate all these nuclear effects within the assumption that all the TMD parton distributions or correlations are in Gaussian forms.

  9. Shape dependent heat transport through green synthesized gold nanofluids

    NASA Astrophysics Data System (ADS)

    John, Jisha; Thomas, Lincy; Kumar, B. Rajesh; Kurian, Achamma; George, Sajan D.

    2015-08-01

    Nanofluids hold promise as a more efficient coolant for thermoelectric devices. Despite the capability of tailoring the thermo physical properties of nanofluids, by tuning the particle parameters such as shape, size and concentration, the toxicity of chemicals used for the preparation of nanoparticles is a serious concern. Green synthesis of nanoparticles is emerging as an alternative to the conventional chemical and physical methods for the preparation of nanoparticles. In this work, the results of the preparation of gold nanoparticles using plant extracts as reducing agents are presented. The green synthesis route employed for the present study provides particles of similar size, but the shape of the particles is found to vary depending upon the source of the natural reducing agents. The thermal diffusivity values of the gold nanofluid measured using laser based dual beam thermal lens technique elucidate the role of shape and concentration of the green synthesized nanoparticles on the effective thermal diffusivity values of the nanofluids.

  10. 14 CFR 171.313 - Azimuth performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171... azimuth equipment of the MLS as follows: (a) Approach azimuth coverage requirements. The approach azimuth... offset 10 −511 m to +511 m (See note 3) 1 m Approach azimuth to MLS datum point distance 13 0 m to 8...

  11. 14 CFR 171.313 - Azimuth performance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171... azimuth equipment of the MLS as follows: (a) Approach azimuth coverage requirements. The approach azimuth... offset 10 −511 m to +511 m (See note 3) 1 m Approach azimuth to MLS datum point distance 13 0 m to 8...

  12. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2014-01-01

    Glucose is transported in crustacean hepatopancreas and intestine by Na(+)-dependent co-transport, while Na(+)-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus) hepatopancreas brush border membrane vesicles (BBMV) were used to characterize, in detail, the cation-dependency of both D-[(3)H]-glucose and D-[(3)H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0-100 mM, both [(3)H]-glucose and [(3)H]-fructose influxes (0.1 mM; 1 min uptakes) by hepatopancreatic BBMV were hyperbolic functions of [Na(+)]. [(3)H]-glucose and [(3)H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15-100 mM were hyperbolic functions of [K(+)]. Both sugars displayed significant (p<0.01) Na(+)/K(+)-dependent and cation-independent uptake processes. Transepithelial 25 µM [(3)H]-glucose and [(3)H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0-50 mM and 5-100 mM, respectively, were hyperbolic functions of luminal [Na(+)] and [K(+)]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01) Na(+)/K(+)-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the "preferred", high affinity, cation for both sugars in the hepatopancreas, and potassium being the "preferred", high affinity, cation for both sugars in the intestine. PMID:24950971

  13. TOPICAL REVIEW: Applications of spin dependent transport materials

    NASA Astrophysics Data System (ADS)

    Daughton, J. M.; Pohm, A. V.; Fayfield, R. T.; Smith, C. H.

    1999-11-01

    Newly developed materials that exhibit large changes in effective resistance with applied fields are being put to practical use. Magnetic multilayers with giant magnetoresistance (GMR) and spin dependent tunnelling (SDT) structures are being used in magnetic field sensors. Spin valves are being sold in read heads for hard drives and galvanic isolators. Both spin valves and SDT structures are being used in non-volatile random access memory development. After a brief introduction to these materials, the development of their uses in sensors, read heads, isolators and non-volatile memory are summarized. GMR magnetic field sensors represent a small, but growing market. SDT sensors have the potential to sense very small fields (to 1 pT). Spin valve read heads have enabled very high aerial packing densities for hard drives, up to 24 Gbits per square inch. GMR isolators can be used to duplicate the function of opto-isolators, but at much higher speeds and packing densities. Application of these materials to non-volatile random access memory could result in speeds and densities of semiconductor memory with the non-volatility of hard disk drives. Future directions in this field indicate a merging of semiconductor and these new magnetic materials.

  14. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-11-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.

  15. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    PubMed Central

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-01-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms. PMID:26608479

  16. Spin-dependent transport in a magnetic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Smorchkova, I. P.; Kikkawa, J. M.; Samarth, N.; Awschalom, D. D.

    1998-07-01

    Magneto-transport and magneto-optical probes are used to interrogate spin-dependent transport in magnetic heterostructures wherein a two dimensional electron gas (2DEG) is exchange-coupled to local moments. At low temperatures, the significant s-d exchange-enhanced spin splitting in these “magnetic” 2DEGs is responsible for the observation of unusual transport properties such as a complete spin polarization of the gas at large Landau level filling factors and a pronounced, non-monotonic background magneto-resistance. Magneto-transport measurements of gated samples performed in a parallel field geometry are used to systematically study the variation of the magneto-resistance with sheet concentration, yielding new insights into the dependence of spin transport on the Fermi energy of the majority spin carriers.

  17. Rossby wave Green's functions in an azimuthal wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Duba, C. T.; Hu, Q.

    2016-05-01

    Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby deformation radius is included in the analysis. The physical characteristics of the Green's functions are delineated and applications are discussed. In the limit as $\\Omega\\to 0$, the rotating wind Green's function reduces to the Rossby wave Green function with no wind.

  18. Azimuthal-spin-wave-mode-driven vortex-core reversals

    SciTech Connect

    Yoo, Myoung-Woo; Kim, Sang-Koog

    2015-01-14

    We studied, by micromagnetic numerical calculations, asymmetric vortex-core reversals driven by the m = −1 and m = +1 azimuthal spin-wave modes' excitations in soft magnetic circular nano-disks. We addressed the similarities and differences between the asymmetric core reversals in terms of the temporal evolutions of the correlated core-motion speed, locally concentrated perpendicular gyrofield, and magnetization dip near the original vortex core. The criterion for the core reversals was found to be the magnetization dip that must reach the out-of-plane magnetization component, m{sub z} = −p, with the initial polarization p, where p = +1 (−1) for the upward (downward) core magnetization. The core-motion speed and the associated perpendicular gyrofield, variable and controllable with static perpendicular field, H{sub z}, applied perpendicularly to the disk plane, must reach their threshold values to meet the ultimate core-reversal criterion. Also, we determined the H{sub z} strength and direction dependence of the core-switching time and threshold exciting field strength required for the core reversals, whose parameters are essential in the application aspect. This work offers deeper insights into the azimuthal spin-wave-driven core-reversal dynamics as well as an efficient means of controlling the azimuthal-modes-driven core reversals.

  19. Low-dimensional azimuthal characteristics of suddenly expanding axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Tinney, C. E.; Glauser, M. N.; Eaton, E. L.; Taylor, J. A.

    2006-11-01

    Two rakes of cross-wire probes were used to capture the two-point velocity statistics in a flow through an axisymmetric sudden expansion. The expansion ratio of the facility is 3, and has a constant geometry. Measurements were acquired at a Reynolds number equal to 54 000, based on centreline velocity and inlet pipe diameter. The two-point velocity correlations were obtained along a plane normal to the flow (r,theta), at eleven downstream step-height positions spanning from the recirculating region, through reattachment, and into the redeveloping region of the flow. Measurements were acquired by means of a flying-hot-wire technique to overcome rectification errors near the outer wall of the pipe where flow recirculations were greatest. A mixed application of proper orthogonal (in radius) and Fourier decomposition (in azimuth) was performed at each streamwise location to provide insight into the dynamics of the most energetic modes in all regions of the flow. This multi-point analysis reveals that the flow evolves from the Fourier-azimuthal mode m {=} 2 (containing the largest amount of turbulent kinetic energy) in the recirculating region, to m {=} 1 in the reattachment and redeveloping regions of the flow. An eigenvector reconstruction of the kernel, using the most energetic modes from the decomposition, displays the spatial dependence of the Fourier-azimuthal modes and the characteristics that govern the turbulent shear layer and recirculating regions of the flow.

  20. Azimuthal Resistivity Investigation of an Unconfined Aquifer at the Hanford Integrated Field Research Challenge Site

    NASA Astrophysics Data System (ADS)

    Greenwood, W. J.; Ward, A. L.; Versteeg, R. J.; Johnson, T. C.; Draper, K.

    2009-12-01

    Developing a robust large-scale groundwater contaminate transport model requires quantifying the effect of heterogeneity and anisotropy on solute transport. Here we investigated the feasibility of using surface azimuthal resistivity methods to characterize near-surface anisotropy and heterogeneity in order to improve the conceptual model for uranium transport through unconsolidated sediment at the Integrated Field Research Challenge Site (IFRC) which borders the Columbia River. A generalized azimuthal resistivity array was constructed with seven telescoping radii and 15° rotations between each electrode. Azimuthal array data were acquired by multiplexing with the MPT-DAS1 system connected to 172 surface electrodes. Array geometries included the square array, arrow array, offset wenner and equatorial dipole-dipole. Effective depths of exploration ranged between 5 and 57 m. Results from the upper 5m of exploration depth exhibit an isotropic resistivity which is consistent with the excavation and homogonous fill depth of the waste ponds at the IFRC. Exploration depths beyond 5 m are influenced by the Hanford and Ringold Formations. These formations exhibit a strong anisotropic resistivity which increases with depth. Assuming that the response is entirely controlled by hydrologic anisotropy, these azimuthal resistivity data suggest a preferential path with a mean azimuth between 150° and 170°. This azimuthal resistivity trend coincides with an incision feature in the Ringold formation measured in a suite of core logs and is consistent with the trajectory of a tracer plume from an injection test conducted in March 2009. Surface azimuthal resistivity methods may also have application in characterizing localized anisotropy and heterogeneity within shallow alluvial deposits at Hanford allowing for the optimal placement of tracer injections and borehole electrodes.

  1. Surface harmonics method equations for solving the time-dependent neutron transport problems and their verification

    SciTech Connect

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.

    2012-07-01

    Finite-difference time-dependent equations of Surface Harmonics method have been obtained for plane geometry. Verification of these equations has been carried out by calculations of tasks from 'Benchmark Problem Book ANL-7416'. The capacity and efficiency of the Surface Harmonics method have been demonstrated by solution of the time-dependent neutron transport equation in diffusion approximation. The results of studies showed that implementation of Surface Harmonics method for full-scale calculations will lead to a significant progress in the efficient solution of the time-dependent neutron transport problems in nuclear reactors. (authors)

  2. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  3. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.

    PubMed

    Glaser, T A; Mukkada, A J

    1992-03-01

    Amastigotes of Leishmania donovani develop and multiply within the acidic phagolysosomes of mammalian macrophages. Isolated amastigotes are acidophilic; they catabolize substrates and synthesize macromolecules optimally at pH 5.5. Substrate transport in amastigotes has not been characterized. Here we show that amastigotes exhibit an uphill transport of proline (active transport) with an acid pH optimum (pH 5.5). It is dependent upon metabolic energy and is driven by proton motive force. Agents which selectively disturb the component forces of proton motive force, such as carbonyl cyanide chlorophenylhydrazone, nigericin and valinomycin, inhibit proline transport. Transport is sensitive to dicyclohexylcarbodiimide and insensitive to ouabain, demonstrating the involvement of a proton ATPase in the maintenance of proton motive force. It is suggested that the plasma membrane pH gradient probably makes the greatest contribution to proton motive force that drives substrate transport in the amastigote stage. PMID:1533014

  4. A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT

    SciTech Connect

    Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Loeffler, Frank; Schnetter, Erik

    2012-08-20

    Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.

  5. Mechanisms underlying azimuth selectivity in the auditory cortex of the pallid bat

    PubMed Central

    Razak, K.A.

    2012-01-01

    This study focused on mechanisms underlying azimuth selectivity in the primary auditory cortex (A1) of pallid bats. The pallid bat listens to prey-generated noise (5–35 kHz) to localize and hunt terrestrial prey. The region of A1 tuned between 5–35 kHz consists of two clusters of neurons distinguished by interaural intensity difference (IID) selectivity: binaurally inhibited (EI) and peaked. The first aim of this study was to use sequential dichotic/free-field stimulation to test the hypothesis that IID is the primary cue underlying azimuth selectivity in neurons tuned in the prey-generated noise frequency band. IID selectivity and ear directionality at the neuron’s characteristic frequency (CF) were used to predict azimuth selectivity functions. The predicted azimuth selectivity was compared with the actual azimuth selectivity from the same neurons. Prediction accuracy was similarly high for EI neurons and peaked neurons with low CF, whereas predictions were increasingly inaccurate with increasing CF among the peaked neurons. The second aim of this study was to compare azimuth selectivity obtained with noise and CF tones to determine the extent to which stimulus bandwidth influences azimuth selectivity in neurons with different binaural properties. The azimuth selectivity functions were similar for the two stimuli in the majority of EI neurons. A greater percentage of peaked neurons showed differences in their azimuth selectivity for noise and tones. This included neurons with multiple peaks when tested with tones and a single peak when tested with noise. Taken together, data from the two aims suggest that azimuth tuning of EI neurons is primarily dictated by IID sensitivity at CF. Peaked neurons, particularly those with high CF, may integrate IID sensitivity across frequency to generate azimuth selectivity for broadband sound. The data are consistent with those found in cat and ferret A1 in that binaurally facilitated neurons depend to a greater extent

  6. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells

    SciTech Connect

    Horio, M.; Gottesman, M.M.; Pastan, I. )

    1988-05-01

    Resistance of human cancer cells to multiple cytotoxic hydrophobic agents (multidrug resistance) is due to overexpression of the MDR1 gene, whose product is the plasma membrane P-glycoprotein. Plasma membrane vesicles partially purified from multidrug-resistant human KB carcinoma cells, but not from drug-sensitive cells, accumulate ({sup 3}H)vinblastine in an ATP-dependent manner. This transport is osmotically sensitive, with an apparent K{sub m} of 38 {mu}M for ATP and of {approx} 2 {mu}M for vinblastine. The nonhydrolyzable analog adenosine 5{prime}-({beta},{gamma}-imido)triphosphate does not substitute for ATP but is a competitive inhibitor of ATP for the transport process. Vanadate, and ATPase inhibitor, is a potent noncompetitive inhibitor of transport. These results indicate that hydrolysis of ATP is probably required for active transport vinblastine. Several other drugs to which multidrug-resistant cell lines are resistant inhibit transport, with relative potencies as follows: vincristine > actinomycin D > daunomycin > colchicine = puromycin. Verapamil and quinidine, which reverse the multidrug-resistance phenotype, are good inhibitors of the transport process. These results confirm that multidrug-resistant cells express an energy-dependent plasma membrane transporter for hydrophobic drugs, and establish a system for the detailed biochemical analysis of this transport process.

  7. Multicomponent, multi-azimuth pre-stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Tao; Mallick, Subhashis

    2015-02-01

    Consideration of azimuthal anisotropy, at least to an orthorhombic symmetry is important in exploring the naturally fractured and unconventional hydrocarbon reservoirs. Full waveform inversion of multicomponent seismic data can, in principle, provide more robust estimates of subsurface elastic parameters and density than the inversion of single component (P wave) seismic data. In addition, azimuthally dependent anisotropy can only be resolved by carefully studying the multicomponent seismic displacement data acquired and processed along different azimuths. Such an analysis needs an inversion algorithm capable of simultaneously optimizing multiple objectives, one for each data component along each azimuth. These multicomponent and multi-azimuthal seismic inversions are non-linear with non-unique solutions; it is therefore appropriate to treat the objectives as a vector and simultaneously optimize each of its components such that the optimal set of solutions could be obtained. The fast non-dominated sorting genetic algorithm (NSGA II) is a robust stochastic global search method capable of handling multiple objectives, but its computational expense increases with increasing number of objectives and the number of model parameters to be inverted for. In addition, an accurate extraction of subsurface azimuthal anisotropy requires multicomponent seismic data acquired at a fine spatial resolution along many source-to-receiver azimuths. Because routine acquisition of such data is prohibitively expensive, they are typically available along two or at most three azimuthal orientations at a spatial resolution where such an inversion could be applied. This paper proposes a novel multi-objective methodology using a parallelized version of NSGA II for waveform inversion of multicomponent seismic displacement data along two azimuths. By scaling the objectives prior to ranking, redefining the crowding distance as functions of the scaled objective and the model spaces, and varying

  8. PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana.

    PubMed

    Suorsa, Marjaana; Rossi, Fabio; Tadini, Luca; Labs, Mathias; Colombo, Monica; Jahns, Peter; Kater, Martin M; Leister, Dario; Finazzi, Giovanni; Aro, Eva-Mari; Barbato, Roberto; Pesaresi, Paolo

    2016-02-01

    Plants need tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I (PSI), which recycles electrons from ferrodoxin to plastoquinone, is the most investigated alternative route. However, the interdependence of LET and CET and the relative importance of CET remain unclear, largely due to the difficulties in precise assessment of the contribution of CET in the presence of LET, which dominates electron flow under physiological conditions. We therefore generated Arabidopsis mutants with a minimal water-splitting activity, and thus a low rate of LET, by combining knockout mutations in PsbO1, PsbP2, PsbQ1, PsbQ2, and PsbR loci. The resulting Δ5 mutant is viable, although mature leaves contain only ∼ 20% of wild-type naturally less abundant PsbO2 protein. Δ5 plants compensate for the reduction in LET by increasing the rate of CET, and inducing a strong non-photochemical quenching (NPQ) response during dark-to-light transitions. To identify the molecular origin of such a high-capacity CET, we constructed three sextuple mutants lacking the qE component of NPQ (Δ5 npq4-1), NDH-mediated CET (Δ5 crr4-3), or PGR5-PGRL1-mediated CET (Δ5 pgr5). Their analysis revealed that PGR5-PGRL1-mediated CET plays a major role in ΔpH formation and induction of NPQ in C3 plants. Moreover, while pgr5 dies at the seedling stage under fluctuating light conditions, Δ5 pgr5 plants are able to survive, which underlines the importance of PGR5 in modulating the intersystem electron transfer. PMID:26687812

  9. Simulation of Temperature-Dependent Charge Transport in Organic Semiconductors with Various Degrees of Disorder.

    PubMed

    Heck, Alexander; Kranz, Julian J; Elstner, Marcus

    2016-07-12

    Different trends in the temperature dependence of the mobility can be observed in organic semiconductors, which constitutes a serious challenge for theoretical approaches. In this work, we apply an atomistic bottom-up simulation for the calculation of temperature-dependent mobilities of a broad selection of materials, ranging from single crystal to amorphous solid. We evaluate how well the method is able to distinguish temperature dependences of different materials and how the findings relate to experimental observations. The applied method is able to cover the full range of temperature dependencies from activated transport in amorphous materials to band-like transport in crystals. In well-characterized materials, we find good agreement with the experiment and a band-like temperature dependence. In less-ordered materials, we find discrepancies from the experiment that indicated that experimentally studied materials possess a higher degree of disorder than do the simulated defect-free morphologies. PMID:27224054

  10. Azimuthally forced flames in an annular combustor

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  11. Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery.

    PubMed

    Bageshwar, Umesh K; Musser, Siegfried M

    2007-10-01

    The twin-arginine translocation (Tat) pathway in Escherichia coli transports fully folded and assembled proteins across the energy-transducing periplasmic membrane. In chloroplasts, Tat transport requires energy input only from the proton motive force. To elucidate the mechanism and energetics of bacterial Tat protein transport, we developed an efficient in vitro transport assay using TatABC-enriched inverted membrane vesicles and the physiological precursor pre-SufI. We report transport efficiencies of 60-80% for nanomolar pre-SufI concentrations. Dissipation of the pH gradient does not reduce pre-SufI transport efficiency. Instead, pre-SufI transport requires at least two electrical potential (Deltapsi)-dependent steps that differ in both the duration and minimum magnitude of the required Deltapsi. The data are consistent with a model in which a substantial Deltapsi of short duration is required for an early transport step, and in which a small Deltapsi of long duration is necessary to drive a later transport step. PMID:17908913

  12. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release. PMID:25805425

  13. High specificity in response of the sodium-dependent multivitamin transporter to derivatives of pantothenic acid.

    PubMed

    Chirapu, Srinivas Reddy; Rotter, Charles J; Miller, Emily L; Varma, Manthena V; Dow, Robert L; Finn, M G

    2013-01-01

    Essential nutrients are attractive targets for the transport of biologically active agents across cell membranes, since many are substrates for active cellular importation pathways. The sodium-dependent multivitamin transporter (SMVT) is among the best characterized of these, and biotin derivatives have been its most popular targets. We have surveyed 45 derivatives of pantothenic acid, another substrate of SMVT, long known as a competitive inhibitor of biotin transport. Variations of the β-alanyl fragment of pantothenate were uniformly rejected by the transporter, including derivatives with very similar steric and acidic characteristics to the natural substrate. The secondary hydroxyl of the 2,2-dimethyl-1,3-propanediol (pantoyl) fragment was the only position at which potential linkers could be attached while retaining activity as an inhibitor of biotin uptake and a substrate for sodium-dependent transport. However, triazole conjugates to several drug-like cargo motifs were not accepted as substrates by human SMVT in cell culture. Two compounds were observed which did not inhibit biotin uptake but were themselves transported in a sodium-dependent fashion, suggesting more complex behavior than expected. These studies represent the most extensive examination to date of pantothenate as an anchor for SMVT-mediated drug delivery, showing that this route requires further investigation before being judged promising. PMID:23578027

  14. A Deterministic-Monte Carlo Hybrid Method for Time-Dependent Neutron Transport Problems

    SciTech Connect

    Justin Pounders; Farzad Rahnema

    2001-10-01

    A new deterministic-Monte Carlo hybrid solution technique is derived for the time-dependent transport equation. This new approach is based on dividing the time domain into a number of coarse intervals and expanding the transport solution in a series of polynomials within each interval. The solutions within each interval can be represented in terms of arbitrary source terms by using precomputed response functions. In the current work, the time-dependent response function computations are performed using the Monte Carlo method, while the global time-step march is performed deterministically. This work extends previous work by coupling the time-dependent expansions to space- and angle-dependent expansions to fully characterize the 1D transport response/solution. More generally, this approach represents and incremental extension of the steady-state coarse-mesh transport method that is based on global-local decompositions of large neutron transport problems. An example of a homogeneous slab is discussed as an example of the new developments.

  15. Temperature dependence of antenna excitation transport in native photosystem I particles. [Electronic energy transport (EET)

    SciTech Connect

    Lyle, P.A.; Struve, W.S. )

    1991-05-16

    The temperature dependence of polarized photobleaching dynamics was investigated through 680-nm pump-probe experiments in the Chl a antenna of native photosystem 1 particles (Chl/P700 {approximately} 200) from spinach. The anisotropic decay time is lengthened by an order of magnitude (from {approximately}7 to {approximately}62 ps) when the temperature is reduced from 290 to 38 K; most of this increase occurs between 65 and 38 K. The occurrence of this transition temperature in the tens of kelvin reflects the participation of protein phonons in antenna EET. The isotopic decay kinetics are considerably less temperature sensitive, indicating that the anisotropic and isotropic decays stem from different energy-transfer processes with contrasting temperature dependence. The 38 K photobleaching spectrum at 5 ps exhibits considerably more weighting in the lower energy Chl a spectral forms than the room-temperature spectrum, suggesting that rapid spectral equilibration occurs in the photosystem 1 antenna. In light of the phonon frequency and electron-phonon coupling parameters determined in independent PSI-200 spectral hole-burning experiments, the quantitative temperature dependence int he anisotropic decay times is consistent with a theory for phonon-assisted EET in which the pertinent phonons are independent modes localized about the donor and acceptor chromophores.

  16. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  17. Diameter-dependent electronic transport properties of Au-catalyst/Ge-nanowire Schottky diodes

    SciTech Connect

    Picraux, S Thomas; Leonard, Francois; Swartzentruber, Brian S; Talin, A Alee

    2008-01-01

    We present electronic transport measurements in individual Au-catalyst/Ge-nanowire interfaces demonstrating the presence of a Schottky barrier. Surprisingly, the small-bias conductance density increases with decreasing diameter. Theoretical calculations suggest that this effect arises because electron-hole recombination in the depletion region is the dominant charge transport mechanism, with a diameter dependence of both the depletion width and the electron-hole recombination time. The recombination time is dominated by surface contributions and depends linearly on the nanowire diameter.

  18. Acoustic Efficiency of Azimuthal Modes in Jet Noise Using Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Bridges, James

    2006-01-01

    The link between azimuthal modes in jet turbulence and in the acoustic sound field has been examined in cold, round jets. Chevron nozzles, however, impart an azimuthal structure on the jet with a shape dependent on the number, length and penetration angle of the chevrons. Two particular chevron nozzles, with 3 and 4 primary chevrons respectively, and a round baseline nozzle are compared at both cold and hot jet conditions to determine how chevrons impact the modal structure of the flow and how that change relates to the sound field. The results show that, although the chevrons have a large impact on the azimuthal shape of the mean axial velocity, the impact of chevrons on the azimuthal structure of the fluctuating axial velocity is small at the cold jet condition and smaller still at the hot jet condition. This is supported by results in the azimuthal structure of the sound field, which also shows little difference in between the two chevron nozzles and the baseline nozzle in the distribution of energy across the azimuthal modes measured.

  19. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  20. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  1. Size-dependent control of colloid transport via solute gradients in dead-end channels

    PubMed Central

    Shin, Sangwoo; Um, Eujin; Sabass, Benedikt; Ault, Jesse T.; Rahimi, Mohammad; Warren, Patrick B.; Stone, Howard A.

    2016-01-01

    Transport of colloids in dead-end channels is involved in widespread applications including drug delivery and underground oil and gas recovery. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, but it is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport in dead-end channels by introducing a solute gradient. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. In addition, we show that size-dependent diffusiophoretic transport of particles can be achieved by considering a finite Debye layer thickness effect, which is commonly ignored. A combination of diffusiophoresis and Brownian motion leads to a strong size-dependent focusing effect such that the larger particles tend to concentrate more and reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific delivery systems where localized targeting of particles with minimal dispersion to the nontarget area is essential. PMID:26715753

  2. 2. DETAIL OF THEODOLITE PYLON NORTH OF AZIMUTH ALIGNMENT SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF THEODOLITE PYLON NORTH OF AZIMUTH ALIGNMENT SHED (BLDG. 775). - Vandenberg Air Force Base, Space Launch Complex 3, Azimuth Alignment Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Time-dependent radiation transport in a one-dimensional medium

    NASA Technical Reports Server (NTRS)

    Nagel, W.; Meszaros, P.

    1985-01-01

    An analytic solution of the time-dependent radiation transport problem in a one-dimensional, stationary and homogeneous medium of finite thickness is presented. The solution is found by the method of images, and is compared with an eigenfunction expansion. Previous conjectures about the structure of such an expansion are clarified. The Green's function of this problem is also expanded in scattering orders.

  4. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    SciTech Connect

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  5. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter.

    PubMed

    Samsudin, Firdaus; Parker, Joanne L; Sansom, Mark S P; Newstead, Simon; Fowler, Philip W

    2016-02-18

    Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the ?-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  6. Spin-dependent thermal and electrical transport in a spin-valve system

    SciTech Connect

    Wang, Zheng-Chuan; Su, Gang; Gao, Song

    2001-06-01

    Within the framework of Bu{close_quotes}ttiker{close_quote}s gauge invariant and charge conservation dc transport theory, the spin-dependent thermal and electrical transport in a ferromagnet-insulator-ferromagnet tunnel junction is investigated at finite bias voltage and finite temperature. It is observed that the relative orientations of magnetizations in the two ferromagnetic (FM) electrodes as well as temperature have remarkable effects on the differential conductance, thermopower, Peltier effect, and thermal conductivity. At low temperature the quantum resonant tunneling is predominant, leading to the deviation of classical transport theory, while the transport of electrons are crucially governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered for both the differential conductance and the thermal conductivity at low temperature. The Wiedemann-Franz law is examined, and the inelastic tunneling spectroscopy is also discussed. Our findings are expected to be measured in the near future.

  7. Accurate Prediction of Ligand Affinities for a Proton-Dependent Oligopeptide Transporter

    PubMed Central

    Samsudin, Firdaus; Parker, Joanne L.; Sansom, Mark S.P.; Newstead, Simon; Fowler, Philip W.

    2016-01-01

    Summary Membrane transporters are critical modulators of drug pharmacokinetics, efficacy, and safety. One example is the proton-dependent oligopeptide transporter PepT1, also known as SLC15A1, which is responsible for the uptake of the β-lactam antibiotics and various peptide-based prodrugs. In this study, we modeled the binding of various peptides to a bacterial homolog, PepTSt, and evaluated a range of computational methods for predicting the free energy of binding. Our results show that a hybrid approach (endpoint methods to classify peptides into good and poor binders and a theoretically exact method for refinement) is able to accurately predict affinities, which we validated using proteoliposome transport assays. Applying the method to a homology model of PepT1 suggests that the approach requires a high-quality structure to be accurate. Our study provides a blueprint for extending these computational methodologies to other pharmaceutically important transporter families. PMID:27028887

  8. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  9. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  10. Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    NASA Astrophysics Data System (ADS)

    Henderson, S. S.; Garzotti, L.; Casson, F. J.; Dickinson, D.; O'Mullane, M.; Patel, A.; Roach, C. M.; Summers, H. P.; Tanabe, H.; Valovič, M.; the MAST Team

    2015-09-01

    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius. Both carbon and nitrogen experience a diffusivity of the order of 10 m2s-1 and a strong inward convective velocity of ˜40 m s-1 near the plasma edge, and a region of outward convective velocity at mid-radius. The measured impurity transport coefficients are consistent with neoclassical Banana-Plateau predictions within ρ ≤slant 0.4 . Quasi-linear gyrokinetic predictions of the carbon and helium particle flux at two flux surfaces, ρ =0.6 and ρ =0.7 , suggest that trapped electron modes are responsible for the anomalous impurity transport observed in the outer regions of the plasma. The model, combining neoclassical transport with quasi-linear turbulence, is shown to provide reasonable estimates of the impurity transport coefficients and the impurity charge dependence.

  11. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    SciTech Connect

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while the second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X /X becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L2/X1L2 → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.

  12. Use of the azimuthal resistivity technique for determination of regional azimuth of transmissivity

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Many bedrock units contain joint sets that commonly act as preferred paths for the movement of water, electrical charge, and possible contaminants associated with production or transit of crude oil or refined products. To facilitate the development of remediation programs, a need exists to reliably determine regional-scale properties of these joint sets: azimuth of transmissivity ellipse, dominant set, and trend(s). The surface azimuthal electrical resistivity survey method used for local in situ studies can be a noninvasive, reliable, efficient, and relatively cost-effective method for regional studies. The azimuthal resistivity survey method combines the use of standard resistivity equipment with a Wenner array rotated about a fixed center point, at selected degree intervals, which yields an apparent resistivity ellipse from which joint-set orientation can be determined. Regional application of the azimuthal survey method was tested at 17 sites in an approximately 500 km2 (193 mi2) area around Milwaukee, Wisconsin, with less than 15m (50 ft) overburden above the dolomite. Results of 26 azimuthal surveys were compared and determined to be consistent with the results of two other methods: direct observation of joint-set orientation and transmissivity ellipses from multiple-well-aquifer tests. The average of joint-set trend determined by azimuthal surveys is within 2.5?? of the average of joint-set trend determined by direct observation of major joint sets at 24 sites. The average of maximum of transmissivity trend determined by azimuthal surveys is within 5.7?? of the average of maximum of transmissivity trend determined for 14 multiple-well-aquifer tests. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  13. Rayleigh wave azimuthally anisotropic phase velocity maps beneath western Canada

    NASA Astrophysics Data System (ADS)

    Bao, Xuewei; Eaton, David W.; Gu, Yu Jeffrey

    2016-03-01

    The lithospheric evolution of western Laurentia spans several billion years of Earth history and provides an exceptional opportunity for investigating continental deformation during Archean and Proterozoic assembly of the craton and subsequent Phanerozoic orogenic processes along its western margin. In this study we present fundamental-mode Rayleigh wave azimuthal anisotropy in the period range 20-150 s for western Laurentia and the southern Canadian Cordillera. The surface wave phase velocity maps offer new constraints on the depth distribution of seismic anisotropy in this region. At short periods (20-25 s), strong anisotropy with an orogen-parallel fast direction is evident in the Cordillera and neighboring foreland belt, suggesting pervasive ductile deformation in the lower crust during Laramide orogenesis. At periods of 70 s and higher, a zone of low-to-null azimuthal anisotropy is evident in the southern part of the Cordillera. This apparent null region is interpreted to reflect complex asthenospheric flow due to the combined effects of the Juan de Fuca slab window, lithospheric delamination, and small-scale edge-driven convection. Depth-variant azimuthal anisotropy is evident beneath the cratonic part of the study region. The dominant direction of fast wave propagation in the southeastern part of the craton changes from N-S at periods of <120 s to NE-SW at 150 s period. This depth dependence is inferred to arise from different origins of the observed anisotropy, with "frozen" anisotropy within cratonic lithosphere underlain by flow-driven anisotropy in the asthenosphere. The frozen N-S trending fabrics in the middle to lower cratonic lithosphere most likely reflect processes of Paleoproterozoic assembly of western Laurentia.

  14. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  15. Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.

    2016-01-01

    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17 % to heat transport, compared to 5 % in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K transport of acoustic phonons with long intrinsic MFP and the temperature dependence of the heat capacity. Our findings, which are in qualitative agreement with the temperature trend of thermal conductivities measured in nanoporous Si-based systems, shed light on the origin of the reduction of thermal conductivity in nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.

  16. Feedback Control Of An Azimuthal Oscillation In The ExB Discharge of Hall Thrusters

    SciTech Connect

    Griswold, Martin E.; Ellison, C. L.; Raitses, Y.; Fisch, N. J.

    2012-04-06

    Feedback control of a low-frequency azimuthal wave known as a "rotating spoke" in the ExB discharge of a cylindrical Hall thruster was demonstrated. The rotating spoke is an m=1 azimuthal variation in density, electron temperature, and potential that rotates at about 10% of the local E x B electron rotation speed. It causes increased electron transport across the magnetic field and is suspected to be an ionization wave. Feedback control of this wave required special consideration because, although it causes a rotating azimuthal variation in the current density to the anode, it does not show up as a signal in the total thruster discharge current. Therefore, an extra source of information was needed to track the oscillation, which was addressed by using a special anode that was split azimuthally into four segments. The current to each segment oscillates as the rotating spoke passes over it, and feedback is accomplished by resistors connected in series with each anode segment which cause the voltage on a segment to decrease in proportion to the current through that segment. The feedback resulted in the disappearance of a coherent azimuthal wave and a decrease in the time-averaged total discharge current by up to 13.2%.

  17. Proton-dependent glutamine uptake by aphid bacteriocyte amino acid transporter ApGLNT1.

    PubMed

    Price, Daniel R G; Wilson, Alex C C; Luetje, Charles W

    2015-10-01

    Aphids house large populations of the gammaproteobacterial symbiont Buchnera aphidicola in specialized bacteriocyte cells. The combined biosynthetic capability of the holobiont (Acyrthosiphon pisum and Buchnera) is sufficient for biosynthesis of all twenty protein coding amino acids, including amino acids that animals alone cannot synthesize; and that are present at low concentrations in A. pisum's plant phloem sap diet. Collaborative holobiont amino acid biosynthesis depends on glutamine import into bacteriocytes, which serves as a nitrogen-rich amino donor for biosynthesis of other amino acids. Recently, we characterized A. pisum glutamine transporter 1 (ApGLNT1), a member of the amino acid/auxin permease family, as the dominant bacteriocyte plasma membrane glutamine transporter. Here we show ApGLNT1 to be structurally and functionally related to mammalian proton-dependent amino acid transporters (PATs 1-4). Using functional expression in Xenopus laevis oocytes, combined with two-electrode voltage clamp electrophysiology we demonstrate that ApGLNT1 is electrogenic and that glutamine induces large inward currents. ApGLNT1 glutamine induced currents are dependent on external glutamine concentration, proton (H+) gradient across the membrane, and membrane potential. Based on these transport properties, ApGLNT1-mediated glutamine uptake into A. pisum bacteriocytes can be regulated by changes in either proton gradients across the plasma membrane or membrane potential. PMID:26028424

  18. System Design and Technology Development for an Azimuth Scanning Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Stek, P. C.; Chattopadhyay, G.; Cofield, R.; Jarnot, R.; Kawamura, J.; Lee, K.; Livesey, N.; Ward, J.

    2007-12-01

    The NRC's Earth Science and Applications from Space decadal survey calls for a mission (GACM) to study global atmospheric composition, "with sufficient vertical resolution to detect the presence, transport, and chemical transformation of atmospheric layers from the surface to the lower stratosphere." Microwave limb sounding is particularly well suited for providing this information for the upper troposphere and above. The Microwave Limb Sounders on Aura and UARS have provided global measurements that have: quantified the evolution of the ozone layer; characterized the water vapor and cloud ice feedback mechanisms affecting climate change; documented the long range transport of pollution through tracers like CO; and improved the accuracy of global circulation models used for weather and climate forecasts. The Scanning Microwave Limb Sounder (SMLS) concept builds on the success of these instruments by adding an azimuth scan and increasing the antenna height to greatly improve horizontal and vertical resolution. The measurement swath is wide enough to provide, depending on orbit inclination, six or more daily measurements over midlatitudes. SMLS will incorporate a novel antenna design that enables rapid horizontal scanning, 4 Kelvin receiver front ends, advanced digital receiver back ends, and several lessons learned from previous missions. We will discuss the instrument design, technology development and readiness, and our approach to on-orbit calibration. We will also discuss plans and goals for a demonstration instrument that takes advantage of technologies developed through ESTO and other NASA and non-NASA programs. cameo.php

  19. Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants.

    PubMed

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conéjéro, Geneviève; Curie, Cathy; Friml, Jìrí; Vert, Grégory

    2011-08-01

    Plants take up iron from the soil using the iron-regulated transporter 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins. PMID:21628566

  20. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulation

    SciTech Connect

    Howard, N. T.; Greenwald, M.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Mikkelsen, D. R.; Candy, J.

    2012-05-15

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  1. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulationa)

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Candy, J.

    2012-05-01

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  2. Sodium Dependent Multivitamin Transporter (SMVT): A Potential Target for Drug Delivery

    PubMed Central

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K.

    2015-01-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge, etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems. PMID:22420308

  3. Azimuthally polarized cathodoluminescence from InP nanowires

    SciTech Connect

    Brenny, B. J. M.; Osorio, C. I.; Polman, A.; Dam, D. van; Gómez Rivas, J.

    2015-11-16

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  4. Protein kinase C-dependent regulation of human hepatic drug transporter expression.

    PubMed

    Mayati, Abdullah; Le Vee, Marc; Moreau, Amélie; Jouan, Elodie; Bucher, Simon; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2015-12-15

    Hepatic drug transporters are now recognized as major actors of hepatobiliary elimination of drugs. Characterization of their regulatory pathways is therefore an important issue. In this context, the present study was designed to analyze the potential regulation of human hepatic transporter expression by protein kinase C (PKC) activation. Treatment by the reference PKC activator phorbol 12-myristate 13-acetate (PMA) for 48h was shown to decrease mRNA expression of various sinusoidal transporters, including OATP1B1, OATP2B1, NTCP, OCT1 and MRP3, but to increase that of OATP1B3, whereas mRNA expression of canalicular transporters was transiently enhanced (MDR1), decreased (BSEP and MRP2) or unchanged (BCRP) in human hepatoma HepaRG cells. The profile of hepatic transporter mRNA expression changes in PMA-treated HepaRG cells was correlated to that found in PMA-exposed primary human hepatocytes and was similarly observed in response to the PKC-activating marketed drug ingenol mebutate. It was associated with concomitant repression of OATP1B1 and OATP2B1 protein expression and reduction of OATP, OCT1, NTCP and MRP2 activity. The use of chemical PKC inhibitors further suggested a contribution of novel PKCs isoforms to PMA-mediated regulations of transporter mRNA expression. PMA was finally shown to cause epithelial-mesenchymal transition (EMT) in HepaRG cells and exposure to various additional EMT inducers, i.e., hepatocyte growth factor, tumor growth factor-β1 or the HNF4α inhibitor BI6015, led to transporter expression alterations highly correlated to those triggered by PMA. Taken together, these data highlight PKC-dependent regulation of human hepatic drug transporter expression, which may be closely linked to EMT triggered by PKC activation. PMID:26462574

  5. The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent

    PubMed Central

    Di Pasquale, Eric; Chahinian, Henri; Sanchez, Patrick; Fantini, Jacques

    2009-01-01

    Background Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide. Methodology/Principal Findings Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide. Conclusions/Significance Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein-transporters, cholesterol could

  6. Grey transport acceleration method for time-dependent radiative transfer problems

    SciTech Connect

    Larsen, E.

    1988-10-01

    A new iterative method for solving hte time-dependent multifrequency radiative transfer equations is described. The method is applicable to semi-implicit time discretizations that generate a linear steady-state multifrequency transport problem with pseudo-scattering within each time step. The standard ''lambda'' iteration method is shown to often converge slowly for such problems, and the new grey transport acceleration (GTA) method, based on accelerating the lambda method by employing a grey, or frequency-independent transport equation, is developed. The GTA method is shown, theoretically by an iterative Fourier analysis, and experimentally by numerical calculations, to converge significantly faster than the lambda method. In addition, the GTA method is conceptually simple to implement for general differencing schemes, on either Eulerian or Lagrangian meshes. copyright 1988 Academic Press, Inc.

  7. Magnon excitation and temperature dependent transport properties in magnetic tunnel junctions with Heusler compound electrodes

    NASA Astrophysics Data System (ADS)

    Drewello, Volker; Ebke, Daniel; Schäfers, Markus; Kugler, Zoë; Reiss, Günter; Thomas, Andy

    2012-04-01

    Magnetic tunnel junctions were prepared with the Heusler compounds Co2FeAl, Co2FeSi, and Co2MnSi as the soft magnetic electrode. The Co2MnSi electrodes had a multilayer design that used either the Co2FeAl or the Co2FeSi compound as a buffer material. Pinned Co-Fe was used as the hard reference electrode. The electronic transport characteristics were analyzed by tunneling spectroscopy. The dependence of sample properties on the buffer material was of interest, especially the gap in the minority density of states of the Heusler electrode. The temperature dependence of the transport properties was also investigated.

  8. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  9. Examination of temperature dependent subgroup formulations in direct whole core transport calculation for power reactors

    SciTech Connect

    Jung, Y. S.; Lee, U. C.; Joo, H. G.

    2012-07-01

    The traditional subgroup method which has been applied for lattice transport calculations has an inherent limitation for non-uniform temperature distributions. As a measure to incorporate temperature dependence into the subgroup formulation, the subgroup level and number density adjustment method have been proposed. In this paper, the temperature dependent subgroup formulations employed for reflecting the non-uniform temperature effects on the resonance spatial self-shielding are examined for the whole core transport calculation with the thermal feedback. For 2D pin-cell problem with non-uniform temperature profiles, the inherent limitation of conventional subgroup method is confirmed. And the improvement in terms of reactivity is observed with the proposed adjustment scheme. For the real PWR core calculation with thermal feedback in the hot-full-power condition, the noticeable correction for the fuel temperature coefficient by about 10% more negative is obtained with the correction schemes. (authors)

  10. Using time-dependent density functional theory in real time for calculating electronic transport

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Philipp; Kümmel, Stephan

    2016-01-01

    We present a scheme for calculating electronic transport within the propagation approach to time-dependent density functional theory. Our scheme is based on solving the time-dependent Kohn-Sham equations on grids in real space and real time for a finite system. We use absorbing and antiabsorbing boundaries for simulating the coupling to a source and a drain. The boundaries are designed to minimize the effects of quantum-mechanical reflections and electrical polarization build-up, which are the major obstacles when calculating transport by applying an external bias to a finite system. We show that the scheme can readily be applied to real molecules by calculating the current through a conjugated molecule as a function of time. By comparing to literature results for the conjugated molecule and to analytic results for a one-dimensional model system we demonstrate the reliability of the concept.

  11. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    SciTech Connect

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinary differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.

  12. Chirality-dependent transport in double-walled carbon nanotube assemblies: the role of inner tubes.

    PubMed

    Fujisawa, Kazunori; Komiyama, Keita; Muramatsu, Hiroyuki; Shimamoto, Daisuke; Tojo, Tomohiro; Kim, Yoong Ahm; Hayashi, Takuya; Endo, Morinobu; Oshida, Kyoichi; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-09-27

    A fundamental understanding of the electrical properties of carbon nanotubes is vital when fabricating high-performance polymeric composites as well as transparent conductive films. Herein, the chirality-dependent transport mechanisms in peapod- and chemical vapor deposition-grown double-walled carbon nanotubes (DWNTs) films are discussed by identifying the chiralities of the inner and the outer tubes using fast Fourier transform image processing, as well as optical studies (e.g., Raman, UV, and photoluminescence spectroscopies). The observed conduction mechanisms are strongly dependent on the total fraction of the metallic inner and outer tubes within the DWNT samples. Furthermore, the contribution of the inner tubes to the electronic transport properties of DWNT films is confirmed by photochemically deactivating the outer tubes in both types of DWNT samples. PMID:21838288

  13. Cell shape-dependent rectification of surface receptor transport in a sinusoidal electric field.

    PubMed Central

    Lee, R C; Gowrishankar, T R; Basch, R M; Patel, P K; Golan, D E

    1993-01-01

    In the presence of an extracellular electric field, transport dynamics of cell surface receptors represent a balance between electromigration and mutual diffusion. Because mutual diffusion is highly dependent on surface geometry, certain asymmetrical cell shapes effectively create an anisotropic resistance to receptor electromigration. If the resistance to receptor transport along a single axis is anisotropic, then an applied sinusoidal electric field will drive a net time-average receptor displacement, effectively rectifying receptor transport. To quantify the importance of this effect, a finite difference mathematical model was formulated and used to describe charged receptor transport in the plane of a plasma membrane. Representative values for receptor electromigration mobility and diffusivity were used. Model responses were examined for low frequency (10(-4)-10 Hz) 10-V/cm fields and compared with experimental measurements of receptor back-diffusion in human fibroblasts. It was found that receptor transport rectification behaved as a low-pass filter; at the tapered ends of cells, sinusoidal electric fields in the 10(-3) Hz frequency range caused a time-averaged accumulation of receptors as great as 2.5 times the initial uniform concentration. The extent of effective rectification of receptor transport was dependent on the rate of geometrical taper. Model studies also demonstrated that receptor crowding could alter transmembrane potential by an order of magnitude more than the transmembrane potential directly induced by the field. These studies suggest that cell shape is important in governing interactions between alternating current (ac) electric fields and cell surface receptors. PMID:8381681

  14. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements

    SciTech Connect

    Meyer, Sibylle Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2014-06-16

    We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10 K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

  15. pH-dependent transport of metals through a reactive porous medium

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Bryant, S. L.

    2013-12-01

    Here we present a study on the effect of pH-dependent adsorption and hydrodynamic dispersion on metal transport through a reactive porous medium with hydrophilic surface. We investigate how the migration of a certain fraction of a metal can be facilitated by its competitive adsorption with protons. We performed laboratory experiments using a chromatographic column filled with silica beads coated with hydrous ferric oxide (HFO) and flooded initially with an acidic solution (pH 3) and then with an alkaline solution (pH > 7) containing either sodium, potassium, lithium, calcium, magnesium, strontium, or barium cations. Concentrations were chosen for which nonclassical transport is predicted. Highly resolved breakthrough curves measured with inline ion chromatography allowed us to observe in all cases the formation of a fast wave/pulse traveling at the interstitial fluid velocity and a retarded front. Classical theory of reactive transport through porous media predicts the formation of only the retarded front and assumes that hydrodynamic dispersion only smooths it without introducing an additional wave. Therefore, the fast wave is a notable exception to this theory. The mechanism responsible for this phenomenon is due to the interplay between hydrodynamic dispersion and pH-dependent adsorption. Hydrodynamic dispersion broadens the metal concentration front at the inlet of the column and creates a mixing zone where the high-pH solution containing the metal mixes with the low-pH solution initially present in the system. The resulting pH of the mixing zone spans a range where both the adsorption and the retardation of the metal are negligible. This leads to the formation of a metal plume, which then separates from the retarded front traveling at the interstitial fluid velocity as an isolated pulse. This fast transport phenomenon operates independently of other modes of rapid transport, such as colloid-facilitated transport and flow in fractures. A one

  16. Aquaporin-4–dependent K+ and water transport modeled in brain extracellular space following neuroexcitation

    PubMed Central

    Jin, Byung-Ju; Zhang, Hua; Binder, Devin K.

    2013-01-01

    Potassium (K+) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K+] accumulation and slowing K+ reuptake. These effects could involve AQP4-dependent: (a) K+ permeability, (b) resting ECS volume, (c) ECS contraction during K+ reuptake, and (d) diffusion-limited water/K+ transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K+ and water uptake into astrocytes after neuronal release of K+ into the ECS. The model computed the kinetics of ECS [K+] and volume, with input parameters including initial ECS volume, astrocyte K+ conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte–ECS interface. The modeling showed that mechanisms b–d, together, can predict experimentally observed impairment in K+ reuptake from the ECS in AQP4 deficiency, as well as altered K+ accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K+/water coupling in the ECS without requiring AQP4-dependent astrocyte K+ permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency. PMID:23277478

  17. Temperature dependent performance of Al/ZnCdS Schottky diode and charge transport analysis

    NASA Astrophysics Data System (ADS)

    Das, Mrinmay; Datta, Joydeep; Dey, Arka; Jana, Rajkumar; Ray, Partha Pratim

    2016-05-01

    Here we report the temperature dependent behaviour of Al/ZnCdS interface. In this regard, ZnCdS nanocomposite was synthesized by hydrothermal technique. Detailed study of schottky parameters including rectification ratio, ideality factor, series resistance and barrier height was performed. We explored the underlying charge transport phenomena through the Metal-semiconductor (MS) interface with the help of space charge limited current(SCLC) theory. A compartive analysis of carrier mobility and diffusion length was done.

  18. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  19. Time-Dependent DIII-D Heat Transport Simulations Using Neural-Network Models

    NASA Astrophysics Data System (ADS)

    Penna, J. M.; Smith, S. P.; Meneghini, O.; Luna, C. J.

    2014-10-01

    The neural network transport model BRAINFUSE has been developed to produce transport fluxes based on local parameters. The BRAIN-FUSE model has been integrated into the transport modeling framework ONETWO in order to develop time dependent solutions and has been validated by artificially varying the input neutral beam power and comparing the output to DIII-D scans. These efforts have led to the development of a time-dependent workflow within the OMFIT integrated modeling framework. The new work flow can evolve the electron and ion temperatures as a function of time dependent sources and equilibria. The effects of different engineering parameters can be explored and optimized in support of DIII-D operations. The efficiency of this workflow enables planning plasma operations of next-day experiments, as will be required for ITER. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FG02-94ER54235 & DE-FC02-04ER54698.

  20. Azimuth orientation of the dragonfly (Sympetrum)

    NASA Technical Reports Server (NTRS)

    Hisada, M.

    1972-01-01

    Evidence is presented of directional orientation by an alighting dragonfly relative to the azimuth of the sun. The effects of wind direction on this orientation are analyzed. It was concluded that wind does not play a major role in orientation but may have some secondary function in helping greater numbers of dragonflies face windward more often than leeward. A search was made to find the principle sensory receptor for orientation. Two possibilities, the large compound eye and the frontal ocelli, were noted; however, no conclusive evidence could be found.

  1. Genome-wide Analysis of AP-3–dependent Protein Transport in Yeast

    PubMed Central

    Anand, Vikram C.; Daboussi, Lydia; Lorenz, Todd C.

    2009-01-01

    The evolutionarily conserved adaptor protein-3 (AP-3) complex mediates cargo-selective transport to lysosomes and lysosome-related organelles. To identify proteins that function in AP-3–mediated transport, we performed a genome-wide screen in Saccharomyces cerevisiae for defects in the vacuolar maturation of alkaline phosphatase (ALP), a cargo of the AP-3 pathway. Forty-nine gene deletion strains were identified that accumulated precursor ALP, many with established defects in vacuolar protein transport. Maturation of a vacuolar membrane protein delivered via a separate, clathrin-dependent pathway, was affected in all strains except those with deletions of YCK3, encoding a vacuolar type I casein kinase; SVP26, encoding an endoplasmic reticulum (ER) export receptor for ALP; and AP-3 subunit genes. Subcellular fractionation and fluorescence microscopy revealed ALP transport defects in yck3Δ cells. Characterization of svp26Δ cells revealed a role for Svp26p in ER export of only a subset of type II membrane proteins. Finally, ALP maturation kinetics in vac8Δ and vac17Δ cells suggests that vacuole inheritance is important for rapid generation of proteolytically active vacuolar compartments in daughter cells. We propose that the cargo-selective nature of the AP-3 pathway in yeast is achieved by AP-3 and Yck3p functioning in concert with machinery shared by other vacuolar transport pathways. PMID:19116312

  2. Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I.

    PubMed

    Castañeda Ocampo, Olga E; Gordiichuk, Pavlo; Catarci, Stefano; Gautier, Daniel A; Herrmann, Andreas; Chiechi, Ryan C

    2015-07-01

    Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different "director SAMs" supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga-In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI. PMID:26057523

  3. Modeling ballistic effects in frequency-dependent transient thermal transport using diffusion equations

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2016-03-01

    Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.

  4. N-Glycosylation is required for Na{sup +}-dependent vitamin C transporter functionality

    SciTech Connect

    Subramanian, Veedamali S. Marchant, Jonathan S.; Reidling, Jack C.; Said, Hamid M.

    2008-09-12

    The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased {sup 14}C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.

  5. Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I

    PubMed Central

    2016-01-01

    Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different “director SAMs” supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga–In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI. PMID:26057523

  6. TMDs and Azimuthal Spin Asymmetries in a Light-Cone Quark Model

    SciTech Connect

    Pasquini, B.; Boffi, S.; Efremov, A. V.; Schweitzer, P.

    2009-08-04

    The main properties of the leading-twist transverse momentum dependent parton distributions in a light-cone constituent quark model of the nucleon are reviewed, with focus on the role of the spin-spin and spin-orbit correlations of quarks. Results for azimuthal single spin asymmetries in semi-inclusive deep inelastic scattering are also discussed.

  7. Microwave measurements of azimuthal asymmetries in accelerating fields of disk-loaded waveguides

    SciTech Connect

    Loew, G.A.; Deruyter, H.; Defa, W.

    1983-03-01

    This paper presents microwave measurements of azimuthal asymmetries in the accelerating fields of the SLAC disk-loaded waveguide. These field asymmetries lead to rf phase-dependent beam steering which can be detrimental to operation of linear accelerators in general and of the SLAC Linear Collider in particular.

  8. Substrate-Dependent Ligand Inhibition of the Human Organic Cation Transporter OCT2

    PubMed Central

    Belzer, Mathew; Morales, Mark; Jagadish, Bhumasamudram; Mash, Eugene A.

    2013-01-01

    Organic cation transporter 2 (OCT2) mediates the initial step in renal secretion of organic cations: uptake from the blood, across the basolateral membrane, and into the renal proximal tubule cells. Because of its potential as a target for unwanted drug-drug interactions (DDIs), considerable attention has been directed toward understanding the basis of OCT2 selectivity. These studies typically assess selectivity based on ligand inhibition profiles for OCT2-mediated transport of a probe substrate. However, little attention has been given to the potential influence of the substrate on the profile of ligand inhibition. Here we compared the IC50 values obtained for a set of structurally distinct inhibitors against OCT2-mediated transport of three structurally distinct substrates: 1-methyl-4-phenylpyridinium (MPP); metformin; and a novel fluorescent substrate, N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium iodide (NBD-MTMA). The median IC50 value for inhibition of MPP transport was 9-fold higher than that for inhibition of metformin transport. Similarly, the median IC50 value for inhibition of MPP transport was 5-fold higher than that for NBD-MTMA transport. However, this was not a systematic difference in inhibitory efficacy; the ratio of IC50 values, MPP versus NBD-MTMA, ranged from 88-fold (ipratropium) to 0.3-fold (metformin). These data show that 1) the choice of OCT2 substrate significantly influences both quantitative and qualitative inhibitory interactions with cationic drugs; and 2) ligand interactions with OCT2 are not restricted to competition for a common ligand binding site, consistent with a binding surface characterized by multiple, possibly overlapping interaction sites. Development of predictive models of DDIs with OCT2 must take into account the substrate dependence of ligand interaction with this protein. PMID:23709117

  9. A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities.

    PubMed

    Wang, Xiahui; Xu, Miao; Ren, Hongwen; Wang, Qionghua

    2013-07-01

    We report a simple method to prepare an array of polarization converters using a twisted-azimuthal nematic liquid crystal (NLC) in cylindrical polymer cavities. When a NLC is filled in a cylindrical polymer cavity, LC in the cavity presents concentrically circular orientations. By treating LC on one side of the cavity with homogeneous alignment, a twisted-azimuthal texture is formed. Such a LC texture can convert a linear polarization light to either radial or azimuthal polarization light depending on the polarization direction of the incident light. The LC surface on the other side of the cavity is convex, so the light after passing through the cavity can be focused as well. The LC texture can be fixed firmly using polymer network. In comparison with previous polarization converters, our polarization converter has the merits of individually miniature size, array of pattern, and lens character. Our polarization converter array has potential applications in tight focusing, imaging, and material processing. PMID:23842407

  10. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion

  11. Radial and Azimuthal Polarizer Using a One-Dimensional Photonic Crystal with a Patterned Liquid Crystal Defect Layer

    NASA Astrophysics Data System (ADS)

    Tagashira, Kenji; Yoshida, Hiroyuki; Kubo, Hitoshi; Fujii, Akihiko; Ozaki, Masanori

    2010-06-01

    We propose a radial and azimuthal polarizer (RAP) using a one-dimensional photonic crystal (1D PhC) with a patterned liquid crystal defect layer. A concentrically aligned liquid crystal defect layer in the 1D PhC causes the defect modes to be polarized azimuthally or radially, depending on the wavelength. Switching between these two polarizations is achieved by controlling the incident light wavelength.

  12. Using an electronic compass to determine telemetry azimuths

    USGS Publications Warehouse

    Cox, R.R., Jr.; Scalf, J.D.; Jamison, B.E.; Lutz, R.S.

    2002-01-01

    Researchers typically collect azimuths from known locations to estimate locations of radiomarked animals. Mobile, vehicle-mounted telemetry receiving systems frequently are used to gather azimuth data. Use of mobile systems typically involves estimating the vehicle's orientation to grid north (vehicle azimuth), recording an azimuth to the transmitter relative to the vehicle azimuth from a fixed rosette around the antenna mast (relative azimuth), and subsequently calculating an azimuth to the transmitter (animal azimuth). We incorporated electronic compasses into standard null-peak antenna systems by mounting the compass sensors atop the antenna masts and evaluated the precision of this configuration. This system increased efficiency by eliminating vehicle orientation and calculations to determine animal azimuths and produced estimates of precision (azimuth SD=2.6 deg., SE=0.16 deg.) similar to systems that required orienting the mobile system to grid north. Using an electronic compass increased efficiency without sacrificing precision and should produce more accurate estimates of locations when marked animals are moving or when vehicle orientation is problematic.

  13. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms.

    PubMed

    Hibino, Yoshitaka; Morise, Masahiro; Ito, Yasushi; Mizutani, Takefumi; Matsuno, Tadakatsu; Ito, Satoru; Hashimoto, Naozumi; Sato, Mitsuo; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2011-10-01

    To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho

  14. Azimuthal field instability in a confined ferrofluid

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo O.; Miranda, José A.

    2015-02-01

    We report the development of interfacial ferrohydrodynamic instabilities when an initially circular bubble of a nonmagnetic inviscid fluid is surrounded by a viscous ferrofluid in the confined geometry of a Hele-Shaw cell. The fluid-fluid interface becomes unstable due to the action of magnetic forces induced by an azimuthal field produced by a straight current-carrying wire that is normal to the cell plates. In this framework, a pattern formation process takes place through the interplay between magnetic and surface tension forces. By employing a perturbative mode-coupling approach we investigate analytically both linear and intermediate nonlinear regimes of the interface evolution. As a result, useful analytical information can be extracted regarding the destabilizing role of the azimuthal field at the linear level, as well as its influence on the interfacial pattern morphology at the onset of nonlinear effects. Finally, a vortex sheet formalism is used to access fully nonlinear stationary solutions for the two-fluid interface shapes.

  15. Azimuthal field instability in a confined ferrofluid.

    PubMed

    Dias, Eduardo O; Miranda, José A

    2015-02-01

    We report the development of interfacial ferrohydrodynamic instabilities when an initially circular bubble of a nonmagnetic inviscid fluid is surrounded by a viscous ferrofluid in the confined geometry of a Hele-Shaw cell. The fluid-fluid interface becomes unstable due to the action of magnetic forces induced by an azimuthal field produced by a straight current-carrying wire that is normal to the cell plates. In this framework, a pattern formation process takes place through the interplay between magnetic and surface tension forces. By employing a perturbative mode-coupling approach we investigate analytically both linear and intermediate nonlinear regimes of the interface evolution. As a result, useful analytical information can be extracted regarding the destabilizing role of the azimuthal field at the linear level, as well as its influence on the interfacial pattern morphology at the onset of nonlinear effects. Finally, a vortex sheet formalism is used to access fully nonlinear stationary solutions for the two-fluid interface shapes. PMID:25768610

  16. Time-dependent 3-D dterministic transport on parallel architectures using Dantsys/MPI

    SciTech Connect

    Baker, R.S.; Alcouffe, R.E.

    1996-12-31

    In addition to the ability to solve the static transport equation, we have also incorporated time dependence into our parallel 3-D S{sub {ital N}} code DANTSYS/MPI. Using a semi-implicit scheme, DANTSYS/MPI is capable of performing time-dependent calculations for both fissioning and pure source driven problems. We have applied this to various types of problems such as nuclear well logging and prompt fission experiments. This paper describes the form of the time- dependent equations implemented, their solution strategies in DANTSYS/MPI including iteration acceleration, and the strategies used for time-step control. Results are presented for a model nuclear well logging calculation.

  17. Fingerprint of topological Andreev bound states in phase-dependent heat transport

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Hankiewicz, Ewelina M.

    2016-08-01

    We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.

  18. Angular dependent study on spin transport in magnetic semiconductor heterostructures with Dresselhaus spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mirzanian, S. M.; Shokri, A. A.; Mikaili Agah, K.; Elahi, S. M.

    2015-09-01

    We investigate theoretically the effects of Dresselhaus spin-orbit coupling (DSOC) on the spin-dependent current and shot noise through II-VI diluted magnetic semiconductor/nonmagnetic semiconductor (DMS/NMS) barrier structures. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction and also applied voltage. We also study the dependence of spin-dependent properties on external magnetic field and relative angle between the magnetizations of two DMS layers in CdTe/CdMnTe heterostructures by including the DSOC effect. The results show that the DSOC has great different influence on transport properties of electrons with spin up and spin down in the considered system and this aspect may be utilized in designing new spintronics devices.

  19. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  20. Azimuthal anisotropy: Transition from hydrodynamic flow to jet suppression

    NASA Astrophysics Data System (ADS)

    Lacey, Roy A.; Taranenko, A.; Wei, R.; Ajitanand, N. N.; Alexander, J. M.; Jia, J.; Pak, R.; Rischke, Dirk H.; Teaney, D.; Dusling, K.

    2010-09-01

    Measured second and fourth azimuthal anisotropy coefficients v2,4(Npart,pT) are scaled with the initial eccentricity ɛ2,4(Npart) of the collision zone and studied as a function of the number of participants Npart and the transverse momenta pT. Scaling violations are observed for pT≲3 GeV/c, consistent with a pT2 dependence of viscous corrections and a linear increase of the relaxation time with pT. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for pT≳3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.

  1. Azimuthal scans in LEIS: Influence of the scattering potential

    NASA Astrophysics Data System (ADS)

    Andrzejewski, R.; Kuzmin, V.; Boerma, D. O.; Primetzhofer, D.; Markin, S. N.; Bauer, P.

    2009-02-01

    Angular scans were performed for a Cu(1 0 0) single crystal and 3 keV He+ ions. The results were compared to simulations using the Monte-Carlo code TRIC [R. Andrzejewski, Ph.D. thesis, Universidad Autonóma de Madrid, 2008; V.A. Khodyrev, R. Andrzejewski, A. Rivera, D.O. Boerma, J.E. Prieto, in press] to obtain information on the ion-atom interaction. Different potentials were used in the simulations, e.g. the Thomas-Fermi-Moliere potential with a modified screening length and a Hartree-Fock potential. It was found that the experimental results can be very well reproduced by use of two potentials that exhibit a significantly different distance dependence, when properly scaled. This leads to the conclusion that care must be taken when deducing a scattering potential from comparison of experimental and simulated azimuthal scans.

  2. Deformed flux tubes produce azimuthal anisotropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Pirner, H. J.; Reygers, K.; Kopeliovich, B. Z.

    2016-03-01

    We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum entropy approach. This necessitates two new phenomenological input parameters δ and λ2 compared with integrated multiplicity distributions. The parameter δ describes the deformation of a flux tube and can be theoretically calculated in a bag model with a bag constant which depends on the density of surrounding flux tubes. The parameter λ2 defines the anisotropy of the particle distribution in momentum space and can be connected to δ via the uncertainty relation. In this framework we compute the anisotropy v2 as a function of centrality, transverse momentum, and rapidity in qualitative agreement with Large Hadron Collider data.

  3. Binaural Sound Localizer for Azimuthal Movement Detection Based on Diffraction

    PubMed Central

    Kim, Keonwook; Choi, Anthony

    2012-01-01

    Sound localization can be realized by utilizing the physics of acoustics in various methods. This paper investigates a novel detection architecture for the azimuthal movement of sound source based on the interaural level difference (ILD) between two receivers. One of the microphones in the system is surrounded by barriers of various heights in order to cast the direction dependent diffraction of the incoming signal. The gradient analysis of the ILD between the structured and unstructured microphone demonstrates the rotation directions as clockwise, counter clockwise, and no rotation of the sound source. Acoustic experiments with different types of sound source over a wide range of target movements show that the average true positive and false positive rates are 67% and 16%, respectively. Spectral analysis demonstrates that the low frequency delivers decreased true and false positive rates and the high frequency presents increases of both rates, overall. PMID:23112617

  4. The molecular mechanism of ion-dependent gating in secondary transporters.

    PubMed

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  5. The ATRA-dependent overexpression of the glutamate transporter EAAC1 requires RARbeta induction.

    PubMed

    Bianchi, Massimiliano G; Gazzola, Gian C; Cagnin, Silvia; Kagechika, Hiroyuki; Bussolati, Ovidio

    2009-09-01

    The mechanisms underlying trafficking and membrane targeting of EAAC1, the rodent counterpart of the human EAAT3 carrier for anionic amino acids, are well characterized. In contrast, much less is known on the regulation of Slc1a1, the gene that encodes for the transporter. We have recently found that all-trans retinoic acid (ATRA) stimulates EAAC1 expression and anionic amino acid transport in C6 rat glioma cells. We report here that the ATRA effect on EAAC1 activity was inhibited by the specific RAR antagonist LE540 and mimicked by Am80, a RAR agonist, but not by the RXR agonist HX630. Moreover, the ATRA-dependent induction of Slc1a1 mRNA required the synthesis of a protein intermediate and was not associated with changes in the messenger half-life. ATRA treatment induced the expression of both Rarb mRNA and RARbeta protein several hours before the induction of Slc1a1, while the mRNA for RFX1, a transcription factor recently involved in Slc1a1 transcription, was unchanged. In addition, Rarb silencing markedly inhibited the ATRA-dependent increase of both Rarb and Slc1a1 mRNAs. We conclude that in C6 glioma cells the induction of Slc1a1 by ATRA requires the synthesis of RARbeta, suggesting that the receptor is involved in the regulation of the transporter gene. PMID:19450544

  6. Fully energy-dependent HZETRN (a galactic cosmic-ray transport code)

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; John, Sarah; Tripathi, Ram K.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.

    1992-01-01

    For extended manned space missions, the radiation shielding design requires efficient and accurate cosmic-ray transport codes that can handle the physics processes in detail. The Langley Research Center galactic cosmic-ray transport code (HZETRN) is currently under development for such design use. The cross sections for the production of secondary nucleons in the existing HZETRN code are energy dependent only for nucleon collisions. The approximation of energy-independent, heavy-ion fragmentation cross section is now removed by implementing a mathematically simplified energy-dependent stepping formalism for heavy ions. The cross section at each computational grid is obtained by linear interpolation from a few tabulated data to minimize computing time. Test runs were made for galactic cosmic-ray transport through a liquid hydrogen shield and a water shield at solar minimum. The results show no appreciable change in total fluxes or computing time compared with energy-independent calculations. Differences in high LET (linear energy transfer) spectra are noted, however, because of the large variation in cross sections at the low-energy region. The high LET components are significantly higher in the new code and have important implications on biological risk estimates for heavy-ion exposure.

  7. Dissecting in vivo steady-state dynamics of karyopherin-dependent nuclear transport

    PubMed Central

    Lolodi, Ogheneochukome; Yamazaki, Hiroya; Otsuka, Shotaro; Kumeta, Masahiro; Yoshimura, Shige H.

    2016-01-01

    Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP. PMID:26538027

  8. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data

    PubMed Central

    Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian

    2016-01-01

    Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959

  9. A Novel Azimuth Super-Resolution Method by Synthesizing Azimuth Bandwidth of Multiple Tracks of Airborne Stripmap SAR Data.

    PubMed

    Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian

    2016-01-01

    Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959

  10. Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast.

    PubMed

    Höhner, Ricarda; Aboukila, Ali; Kunz, Hans-Henning; Venema, Kees

    2016-01-01

    Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced -proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7) and the stroma (pH 8) is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg(2+), K(+), or Cl(-) fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na(+),K(+))/H(+) antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function. PMID:26973667

  11. Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast

    PubMed Central

    Höhner, Ricarda; Aboukila, Ali; Kunz, Hans-Henning; Venema, Kees

    2016-01-01

    Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced -proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7) and the stroma (pH 8) is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+, or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+)/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function. PMID:26973667

  12. Time dependent simulation of cosmic-ray shocks including Alfven transport

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Time evolution of plane, cosmic-ray modified shocks was simulated numerically for the case with parallel magnetic fields. Computations were done in a 'three-fluid' dynamical model incorporating cosmic-ray and Alfven wave energy transport equations. Nonlinear feedback from the cosmic-rays and Alfven waves is included in the equation of motion for the underlying plasma, as is the finite propagation speed and energy dissipation of the Alfven waves. Exploratory results confirm earlier, steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and gas sound speeds are comparable. As noted earlier Alfven transport effects tend to reduce the transfer of energy through a shock from gas to energetic particles. These studies show as well that the time scale for modification of the shock is altered in nonlinear ways. It is clear, however, that the consequences of Alfven transport are strongly model dependent and that both advection of cosmic-rays by the waves and dissipation of wave energy in the plasma will be important to model correctly when quantitative results are needed. Comparison is made between simulations based on a constant diffusion coefficient and more realistic diffusion models allowing the diffusion coefficient to vary in response to changes in Alfven wave intensity. No really substantive differences were found between them.

  13. Controlling spin-dependent localization and directed transport in a bipartite lattice

    NASA Astrophysics Data System (ADS)

    Luo, Yunrong; Lu, Gengbiao; Kong, Chao; Hai, Wenhua

    2016-04-01

    We study coherent control of spin-dependent dynamical localization (DL) and directed transport (DT) of a spin-orbit-coupled single atom held in a driven optical bipartite lattice. Under the high-frequency limit and nearest-neighbor tight-binding approximation, we find a new decoupling mechanism between states with the same (different) spins, which leads to two sets of analytical solutions describing DL and DT with (without) spin flipping. The analytical results are numerically confirmed, and perfect agreements are found. Extending the research to a system of spin-orbit-coupled single atoms, the spin current and quantum information transport with controllable propagation speed and distance are investigated. The results can be experimentally tested in the current setups and may be useful in quantum information processing.

  14. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics

    SciTech Connect

    Zhang, Yu Chen, GuanHua; Yam, ChiYung

    2015-04-28

    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.

  15. Geometrical effects and signal delay in time-dependent transport at the nanoscale

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Valeriu; Manolescu, Andrei; Gudmundsson, Vidar

    2009-07-01

    Nonstationary and steady-state transport through a mesoscopic sample connected to particle reservoirs via time-dependent barriers is investigated by the reduced density operator method. The generalized master equation is solved via the Crank-Nicolson algorithm by taking into account the memory kernel which embodies the non-Markovian effects that are commonly disregarded. The lead-sample coupling takes into account the match between the energy of the incident electrons and the levels of the isolated sample, as well as their overlap at the contacts. Using a tight-binding description of the system, we investigate the effects induced in the transient current by the spectral structure of the sample and by the localization properties of its eigenfunctions. In strong magnetic fields, the transient currents propagate along edge states. The behavior of populations and coherences is discussed, as well as their connection to the tunneling processes that are relevant for transport.

  16. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    SciTech Connect

    Talamo, Alberto

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  17. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana.

    PubMed

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  18. Saturation Dependence of Transport in Porous Media Predicted by Percolation and Effective Medium Theories

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skinner, Thomas E.; Ewing, Robert P.

    2015-02-01

    Accurate prediction of the saturation dependence of different modes of transport in porous media, such as those due to conductivity, air permeability, and diffusion, is of broad interest in engineering and natural resources management. Most current predictions use a "bundle of capillary tubes" concept, which, despite its widespread use, is a severely distorted idealization of natural porous media. In contrast, percolation theory provides a reliable and powerful means to model interconnectivity of disordered networks and porous materials. In this study, we invoke scaling concepts from percolation theory and effective medium theory to predict the saturation dependence of modes of transport — hydraulic and electrical conductivity, air permeability, and gas diffusion — in two disturbed soils. Universal scaling from percolation theory predicts the saturation dependence of air permeability and gas diffusion accurately, even when the percolation threshold for airflow is estimated from the porosity. We also find that the non-universal scaling obtained from the critical path analysis (CPA) of percolation theory can make excellent predictions of hydraulic and electrical conductivity under partially saturated conditions.

  19. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    PubMed Central

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  20. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    SciTech Connect

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-07-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  1. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.

    PubMed

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina

    2016-03-29

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. PMID:27028641

  2. TOPSAR data focusing based on azimuth scaling preprocessing

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Huang, Pingping; Deng, Yunkai

    2011-07-01

    Both Doppler spectral aliasing and azimuth output time folding simultaneously exist in TOPSAR (Terrain Observation by Progressive Scans) raw data. Resampling in both Doppler frequency and azimuth time domain can resolve the azimuth aliasing problem but with the seriously increased computational complexity and memory consumption. According to the special characteristics of TOPSAR raw data support in the slow time/frequency domain (TFD), the presented azimuth scaling preprocessing step is introduced to not only resolve the Doppler spectral aliasing problem but also reduce the increased azimuth samples. Furthermore, the correction of sawtoothed azimuth antenna pattern (AAP) becomes easy to be implemented. The following conventional stripmap processor can be adopted to focus the residual TOPSAR raw data but with the result of azimuth aliased TOPSAR image. The mosaic approach, which has been presented to unfold azimuth aliased ScanSAR image, is exploited to resolve the problem of azimuth output folding in TOPSAR mode. Simulation results and pulse response parameters are given to validate the presented imaging approach.

  3. Oxygen and carbon dioxide transport in time-dependent blood flow past fiber rectangular arrays

    NASA Astrophysics Data System (ADS)

    Zierenberg, Jennifer R.; Fujioka, Hideki; Hirschl, Ronald B.; Bartlett, Robert H.; Grotberg, James B.

    2009-03-01

    The influence of time-dependent flows on oxygen and carbon dioxide transport for blood flow past fiber arrays arranged in in-line and staggered configurations was computationally investigated as a model for an artificial lung. Both a pulsatile flow, which mimics the flow leaving the right heart and passing through a compliance chamber before entering the artificial lung, and a right ventricular flow, which mimics flow leaving the right heart and directly entering the artificial lung, were considered in addition to a steady flow. The pulsatile flow was modeled as a sinusoidal perturbation superimposed on a steady flow while the right ventricular flow was modeled to accurately depict the period of flow acceleration (increasing flow) and deceleration (decreasing flow) during systole followed by zero flow during diastole. It was observed that the pulsatile flow yielded similar gas transport as compared to the steady flow, while the right ventricular flow resulted in smaller gas transport, with the decrease increasing with Re. The pressure drop across the fiber array (a measure of the resistance), work (an indicator of the work required of the right heart), and shear stress (a measure of potential blood cell activation and damage) are lowest for steady flow, followed by pulsatile flow, and then right ventricular flow. The pressure drop, work, shear stress, and Sherwood numbers (a measure of the gas transport efficiency) decrease with increasing porosity and are smaller for AR <1 as compared to AR >1 (AR is the distance between fibers in the flow direction/distance between fibers in direction perpendicular to flow), although for small porosities the Sherwood numbers are of similar magnitude. In general, for any fiber array geometry, high pressure drop, work, and shear stresses correlate with high Sherwood numbers, and low pressure drop, work, and shear stresses correlate with low Sherwood numbers creating a need for a compromise between pressure drop/work/shear stresses

  4. Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport.

    PubMed

    Du, Zhaopeng; Weinbaum, Sheldon; Weinstein, Alan M; Wang, Tong

    2015-04-15

    In the proximal tubule, axial flow (drag on brush-border microvilli) stimulates Na(+) and HCO3 (-) reabsorption by modulating both Na/H exchanger 3 (NHE3) and H-ATPase activity, a process critical to glomerulotubular balance. We have also demonstrated that blocking the angiotensin II receptor decreases baseline transport, but preserves the flow effect; dopamine leaves baseline fluxes intact, but abrogates the flow effect. In the current work, we provide evidence implicating cytosolic calcium in flow-dependent transport. Mouse proximal tubules were microperfused in vitro at perfusion rates of 5 and 20 nl/min, and reabsorption of fluid (Jv) and HCO3 (-) (JHCO3) were measured. We examined the effect of high luminal Ca(2+) (5 mM), 0 mM Ca(2+), the Ca(2+) chelator BAPTA-AM, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the Ca-ATPase inhibitor thapsigargin. In control tubules, increasing perfusion rate from 5 to 20 nl/min increased Jv by 62% and JHCO3 by 104%. With respect to Na(+) reabsorption, high luminal Ca(2+) decreased transport at low flow, but preserved the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect; thapsigargin decreased baseline flow, leaving the flow effect intact. With respect to HCO3 (-) reabsorption, high luminal Ca(2+) decreased transport at low flow and mildly diminished the flow-induced increase; low luminal Ca(2+) had little impact; both BAPTA and 2-APB had no effect on baseline flux, but abrogated the flow effect. These data implicate IP3 receptor-mediated intracellular Ca(2+) signaling as a critical step in transduction of microvillous drag to modulate Na(+) and HCO3 (-) transport. PMID:25651568

  5. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale. PMID:23944468

  6. Defect-concentration dependence of the charge-density-wave transport in tetrathiafulvalene tetracyanoquinodimethane

    SciTech Connect

    Forro, L.; Lacoe, R.; Bouffard, S.; Jerome, D.

    1987-04-15

    The effect of electron-irradiation-induced defects on the non-Ohmic dc conductivity of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) has been studied. The threshold field (E/sub T/) for non-Ohmic transport increases linearly with the defect concentration. This impurity study lends strong support to the explanation of the nonlinear conductivity in TTF-TCNQ by the depinning of the charge-density-wave condensate in strong electric fields. Both the nonlinear current and the Ohmic conductivity present a similar temperature dependence in the Peierls state.

  7. Global Upper Mantle Azimuthal Anisotropy From Probabilistic Tomography

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2014-12-01

    The new model of Yuan and Beghein (2013), hereafter YBaniSV13, is the first global model to constrain 3-D azimuthal anisotropy in the deep upper mantle. It is compatible with previous models in the uppermost 200km of the mantle, but also displays 1% anisotropy above, inside, and below the Mantle Transition Zone (MTZ). Another interesting characteristic of this model is the change in fast seismic direction detected, on average, at ~250km depth and at the MTZ boundaries. These results have important consequences for our understanding of mantle deformation and convection patterns in the mantle. It is therefore important to assess the robustness if these features. We already tested that the model does not strongly depend on the reference 1-D mantle model, on the presence of discontinuities in this reference model, or on the crustal model and Moho depth used to calculate the laterally varying partial derivatives. In this work, we apply a model space approach, the Neighborhood Algorithm (NA) of Sambridge (1999), to determine quantitative model uncertainties and parameter trade-offs. First, the NA generates an ensemble of models with a sampling density that increases toward the best fitting regions of the model space, and then performs a Bayesian appraisal of the models obtained that allows us to determine the likelihood of azimuthal anisotropy in different region of Earth's interior. Such approaches have the advantage of sampling the model null-space, and therefore provide more reliable model uncertainties than traditional inverse techniques. We use YBaniSV13 as initial model, and search the model space around it, allowing for large enough deviations to test the robustness of the anisotropy amplitude. We compare results from a model space search based on the chi-square misfit and from a model space search based on the variance reduction, which is another useful measure of data fit that is independent of data uncertainties. Preliminary results for the chi-square driven

  8. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  9. Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity.

    PubMed

    Nüsing, Rolf M; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C; Wegmann, Markus

    2007-07-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Furthermore, both a Cl(-)-free bath solution and the Ca(2+) antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE(2) receptors EP2, EP3, and EP4 was demonstrated, apically added PGE(2) was ineffective and basolaterally added PGE(2) caused a different kinetics in ion transport compared with 5,6-EET. Moreover, PGE(2) synthesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE(1) in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE(1). 5,6-Epoxy-PGE(1), the precursor of 5,6-dihydroxy-PGE(1), caused a similar ion transport as 5,6-EET. Cytochrome P-450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl(-) transport in renal distal tubular cells independent of PGE(2) but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE(1) by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  10. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  11. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations

    SciTech Connect

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2012-08-15

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.

  12. Temperature dependent transport study of the SiOx/Ge/SiOx system

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Plach, Thomas; Hernandez-Hernandez, Arturo; De Moure-Flores, Francisco; Quiñones-Galván, José G.; Hernández-Hernandez, Luis A.; Melendez-Lira, Miguel

    2013-12-01

    The transport properties of the SiOx/Ge/SiOx system are studied using the van der Pauw technique as function of temperature in the range from 35 K to 150 K for two representative samples grown by Radio Frequency sputtering under different conditions. It is found that variable range hopping conduction explains the temperature dependence of the resistivity. For both samples, the nearest neighbor hopping conduction process explains the temperature dependence of the resistivity in the range between 66 K and 150 K. For the sample with the roughest surface, Efros-Shkovskiis variable range hopping process explains better the results below 66 K, while for the other one, a combination of Motts variable range hopping in two and three dimensions explain better the results in the same temperature range.

  13. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    DOE PAGESBeta

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V.

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less

  14. Charge-dependent transport switching of single molecular ions in a weak polyelectrolyte multilayer.

    PubMed

    Tauzin, Lawrence J; Shuang, Bo; Kisley, Lydia; Mansur, Andrea P; Chen, Jixin; de Leon, Al; Advincula, Rigoberto C; Landes, Christy F

    2014-07-22

    The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10(-9) cm(2)/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers. PMID:24960617

  15. Charge-Dependent Transport Switching of Single Molecular Ions in a Weak Polyelectrolyte Multilayer

    PubMed Central

    2015-01-01

    The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10–9 cm2/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers. PMID:24960617

  16. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures.

    PubMed

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V

    2015-10-14

    Development of new generation electronic devices necessitates understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite-cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching. PMID:26312554

  17. Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures

    SciTech Connect

    Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; Chu, Ying-Hao; Kalinin, Sergei V.

    2015-08-27

    Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.

  18. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems. PMID:26348539

  19. Discriminating top-antitop resonances using azimuthal decay correlations

    NASA Astrophysics Data System (ADS)

    Baumgart, Matthew; Tweedie, Brock

    2011-09-01

    Top-antitop pairs produced in the decay of a new heavy resonance will exhibit spin correlations that contain valuable coupling information. When the tops decay, these correlations imprint themselves on the angular patterns of the final quarks and leptons. While many approaches to the measurement of top spin correlations are known, the most common ones require detailed kinematic reconstructions and are insensitive to some important spin interference effects. In particular, spin-1 resonances with mostly-vector or mostly-axial couplings to top cannot be easily discriminated from one another without appealing to mass-suppressed effects or to more model-dependent interference with continuum Standard Model production. Here, we propose to probe the structure of a resonance's couplings to tops by measuring the azimuthal angles of the tops' decay products about the production axis. These angles exhibit modulations which are typically O(0.1-1), and which by themselves allow for discrimination of spin-0 from higher spins, measurement of the CP-phase for spin-0, and measurement of the vector/axial composition for spins1and 2. For relativistic tops, the azimuthal decay angles can be well-approximated without detailed knowledge of the tops' velocities, and appear to be robust against imperfect energy measurements and neutrino reconstructions. We illustrate this point in the highly challenging dileptonic decay mode, which also exhibits the largest modulations. We comment on the relevance of these observables for testing axigluon-like models that explain the top quark A FB anomaly at the Tevatron, through direct production at the LHC.

  20. Transition to magnetorotational turbulence in Taylor-Couette flow with imposed azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Guseva, A.; Willis, A. P.; Hollerbach, R.; Avila, M.

    2015-09-01

    The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and momentum transport in astrophysical accretion discs, but obtaining observational evidence of its operation is challenging. Recently, laboratory experiments of Taylor-Couette flow with externally imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of the MRI close to the instability onset. While good agreement was found with linear stability analyses, little is known about the transition to turbulence and transport properties of the MRI. We here report on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the laminar Taylor-Couette flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic Hopf bifurcation. Our results are in qualitative agreement with the PROMISE experiment and dramatically extend their realizable parameter range. We find that as the Reynolds number increases defects accumulate and grow into turbulence, yet the momentum transport scales weakly.

  1. Temperature Dependent Transport of Two-Dimensional Electrons in the Integral Quantum Hall Regime.

    NASA Astrophysics Data System (ADS)

    Wei, Hsuang-Ping

    This thesis is concerned with the temperature (T) dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. We have carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In(,x)Ga(,1-x)As/InP heterostructure for 4.2K < T < 50K. By assuming a simple thermal activation picture, we demonstrate a quantitative deduction of the electron density of states. Our results indicate that there exists a significant number of states (1 x 10('10)cm(' -2)meV('-1)) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of (rho)(,xx) between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Moreover, we have performed T dependent trans- port measurements in the transition region between two quantum plateaus, in several different materials. In the In(,x)Ga(,1-x)As/InP sample, when T(, )> 4K, the transport behavior can be attributed to the T dependent distribution function. When T(, )< 4K, our experi- mental T-driven (sigma)(,xx) vs. (sigma)(,xy) flow diagram is consistent with the pre- dicted theoretical renormalization group flow diagram, and suggests the existence of a critical point related to the localization to delocali- zation transition. However, in the GaAs/Al(,x)Ga(,1-x)As samples there is a difference in the T dependent behavior of (sigma)(,xx), between N = 1(UPARR) and 1(DARR) electrons. First, (sigma)(,xx)(1(UPARR)) decreases with decreasing T; whereas (sigma)(,xx)(1(DARR)) increases with decreasing T for 0.3K(, )< T < 4.2K. Second, (sigma)(,xx)('max) (1(DARR)) ('(TURN)) 3(sigma)(,xx)('max) (1(UPARR)) at T('(TURN))0.5K in all of our samples. These results indicate the existence of spin

  2. pH-dependent transport of metal cations in porous media.

    PubMed

    Prigiobbe, Valentina; Bryant, Steven L

    2014-04-01

    We study the effect of pH-dependent adsorption and hydrodynamic dispersion on cation transport through a reactive porous medium with a hydrophilic surface. We investigate how competitive adsorption between a proton and a metal (which in some situations of practical interest may also be a radionuclide) can facilitate the migration of a certain fraction of the latter. We performed laboratory experiments using a chromatographic column filled with silica beads coated with iron oxide and flooded initially with an acidic solution (pH ≈ 3) and then with an alkaline solution (pH > 7) containing either sodium, potassium, lithium, calcium, magnesium, or barium. The composition of each injected solution was chosen to represent one of two possible theoretical predictions, either a retarded shock and a fast pulse, that is, traveling at the interstitial fluid velocity, or only a retarded shock. Highly resolved breakthrough curves measured with inline ion chromatography allowed us to observe in all cases agreement with theoretical predictions, including numerous observations of a fast pulse. The fast pulse is the result of the interaction between pH-dependent adsorption and hydrodynamic dispersion and has previously been observed in systems with strontium. Here, we show the fast pulse arises also in the case of other cations allowing a generalization of the physical mechanism underlying this phenomenon and consideration of it as a new fast transport behavior. A one-dimensional reactive transport model for an incompressible fluid was developed combining surface complexation with mass conservation equations for a solute and the acidity (difference between the total proton and hydroxide concentration). In all cases, the model agrees with the measurements capturing the underlying physics of the overall transport behavior. Our results suggest that the interplay between pH-dependent adsorption and hydrodynamic dispersion can give rise to the rapid migration of metals through reactive

  3. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    NASA Astrophysics Data System (ADS)

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-07-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

  4. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  5. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    PubMed

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied. PMID:27475355

  6. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.

    PubMed

    Zhou, Benhu; Chen, Xiongwen; Zhou, Benliang; Ding, Kai-He; Zhou, Guanghui

    2011-04-01

    We theoretically investigate the spin-dependent transport for the system of an armchair-edge graphene nanoribbon (AGNR) between two ferromagnetic (FM) leads with arbitrary polarization directions at low temperatures, where a magnetic insulator is deposited on the AGNR to induce an exchange splitting between spin-up and -down carriers. By using the standard nonequilibrium Green's function (NGF) technique, it is demonstrated that the spin-resolved transport property for the system depends sensitively on both the width of AGNR and the polarization strength of FM leads. The tunneling magnetoresistance (TMR) around zero bias voltage possesses a pronounced plateau structure for a system with semiconducting 7-AGNR or metallic 8-AGNR in the absence of exchange splitting, but this plateau structure for the 8-AGNR system is remarkably broader than that for the 7-AGNR one. Interestingly, an increase of the exchange splitting Δ suppresses the amplitude of the structure for the 7-AGNR system. However, the TMR is much enhanced for the 8-AGNR system under a bias amplitude comparable to the splitting strength. Further, the current-induced spin-transfer torque (STT) for the 7-AGNR system is systematically larger than that for the 8-AGNR one. The findings here suggest the design of GNR-based spintronic devices by using a metallic AGNR, but it is more favorable to fabricate a current-controlled magnetic memory element by using a semiconducting AGNR. PMID:21415476

  7. Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly

    PubMed Central

    Saeed, Sadia; Tremp, Annie Z.; Dessens, Johannes T.

    2015-01-01

    Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite’s development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control. PMID:25900212

  8. Yeast Mn2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting.

    PubMed Central

    Eguez, Lorena; Chung, Young-Sook; Kuchibhatla, Ajay; Paidhungat, Madan; Garrett, Stephen

    2004-01-01

    Conditional cdc1(Ts) mutants of S. cerevisiae arrest with a phenotype similar to that exhibited by Mn(2+)-depleted cells. Sequence similarity between Cdc1p and a class of Mn(2+)-dependent phosphoesterases, as well as the observation that conditional cdc1(Ts) growth can be ameliorated by Mn(2+) supplement, suggests that Cdc1p activity is sensitive to intracellular Mn(2+) levels. This article identifies several previously uncharacterized cdc1(Ts) suppressors as class E vps (vacuolar protein sorting) mutants and shows that these, as well as other vps mutants, accumulate high levels of intracellular Mn(2+). Yeast VPS genes play a role in delivery of membrane transporters to the vacuole for degradation, and we show that the vps mutants accumulate elevated levels of the high-affinity Mn(2+) transporter Smf1p. cdc1(Ts) conditional growth is also alleviated by mutations, including doa4 and ubc4, that compromise protein ubiquitination, and these ubiquitination defects are associated with Smf1p accumulation. Epistasis studies show that these suppressors require functional Smf1p to alleviate the cdc1(Ts) growth defect, whereas Smf1p is dispensable for cdc1(Ts) suppression by a mutation (cos16/per1) that does not influence intracellular Mn(2+) levels. Because Smf1p is ubiquitinated in vivo, we propose that Smf1p is targeted to the vacuole for degradation by ubiquitination-dependent protein sorting. PMID:15166140

  9. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  10. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    PubMed Central

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  11. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

    PubMed

    Wong, P K Johnny; Zhang, Wen; Wu, Jing; Will, Iain G; Xu, Yongbing; Xia, Ke; Holmes, Stuart N; Farrer, Ian; Beere, Harvey E; Ritchie, Dave A

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  12. Transport of Solutes in Hyporheic Zones with Temperature-Dependent Reversible Sorption

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Cardenas, M. B.; Zheng, L.

    2014-12-01

    One of the most important processes impacting the mobility of heavy metals in rivers and their hyporheic zones is reversible sorption to sediment. Reversible sorption has been shown to be a temperature dependent process, however the impact of this variability on heavy metal fate and transport, as well as environmental metal concentrations, has not received much attention. In this study we used zinc as an example heavy metal. Previous studies of the impact of temperature on the sorption of zinc on a goethite substrate show a change in partitioning coefficient and thus retardation factor of 10 to over 60 percent with a temperature change from 10 to 25*C, depending on concentration of dissolved zinc in the water. This relationship was extrapolated to estimate the change in reversible sorption of zinc on silicate sand. This change was then utilized within a finite-element model coupling hyporheic fluid flow in porous media with heat transfer and solute transport with reversible sorption to explore the ways in which variations in surface water temperature over varying timescales can drive changes in both zinc sorption and dissolved zinc fluxes at the bedform scale. These linked processes are of fundamental importance when considering the number of different ways in which surface water temperatures can be varied through both human and non-human activities.

  13. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs. PMID:27002386

  14. PET imaging of the serotonin transporter and 5HT1A receptor in alcohol dependence

    PubMed Central

    Martinez, Diana; Slifstein, Mark; Gil, Roberto; Hwang, Dah-Ren; Huang, Yiyun; Perez, Audrey; Frankle, W. Gordon; Laruelle, Marc; Krystal, John; Abi-Dargham, Anissa

    2009-01-01

    Background Rodent models as well as studies in humans have suggested alterations in serotonin (5HT) innervation and transmission in early onset genetically determined or type II alcoholism. This study examines two indices of serotonergic transmission, 5HT transporter levels and 5-HT1A availability, in vivo, in type II alcoholism. This is the first report of combined tracers for pre and post-synaptic serotonergic transmission in the same alcoholic subjects and the first study of 5HT1A receptors in alcoholism. Method Fourteen alcohol dependent subjects were scanned (11 with both tracers, 1 with [11C]DASB only and two with [11C]WAY100635 only). Twelve healthy controls (HC) subjects were scanned with [11C]DASB and another 13 were scanned with [11C]WAY100635. Binding Potential (BPp, mL/cm3) and the specific to nonspecific partition coefficient (BPND, unitless) were derived for both tracers using 2 tissue compartment model and compared to HC across different brain regions. Relationships to severity of alcoholism were assessed. Results No significant differences were observed in regional BPp or BPND between patients and controls in any of the regions examined. No significant relationships were observed between regional 5HT transporter availability, 5-HT1A availability, and disease severity with the exception of a significant negative correlation between SERT and years of dependence in amygdala and insula. Conclusion This study did not find alterations in measures of 5-HT1A or 5HT transporter levels in patients with type II alcoholism. PMID:18962444

  15. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2

    SciTech Connect

    Aleksunes, Lauren M. Slitt, Angela L. Maher, Jonathan M. Augustine, Lisa M. Goedken, Michael J. Chan, Jefferson Y. Cherrington, Nathan J. Klaassen, Curtis D. Manautou, Jose E.

    2008-01-01

    The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals.

  16. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    PubMed

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply. PMID:25164101

  17. 14 CFR 171.313 - Azimuth performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rotation from the runway centerline to the respective zero-degree guidance plane. Note 4: Data Word A3 is... end; (2) Be adjusted so that the zero degree azimuth plane will be a vertical plane which contains the... in the plane of scan. On boresight, the azimuth antenna mainlobe pattern must conform to Figure...

  18. 14 CFR 171.313 - Azimuth performance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rotation from the runway centerline to the respective zero-degree guidance plane. Note 4: Data Word A3 is... end; (2) Be adjusted so that the zero degree azimuth plane will be a vertical plane which contains the... in the plane of scan. On boresight, the azimuth antenna mainlobe pattern must conform to Figure...

  19. 14 CFR 171.313 - Azimuth performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... rotation from the runway centerline to the respective zero-degree guidance plane. Note 4: Data Word A3 is... end; (2) Be adjusted so that the zero degree azimuth plane will be a vertical plane which contains the... in the plane of scan. On boresight, the azimuth antenna mainlobe pattern must conform to Figure...

  20. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-27

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

  1. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    SciTech Connect

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-28

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

  2. Continuous energy, multi-dimensional discrete ordinates transport calculations for problem dependent resonance treatment

    NASA Astrophysics Data System (ADS)

    Zhong, Zhaopeng

    In the past twenty 20 years considerable progress has been made in developing new methods for solving the multi-dimensional transport problem. However the effort devoted to the resonance self-shielding calculation has lagged, and much less progress has been made in enhancing resonance-shielding techniques for generating problem-dependent multi-group cross sections (XS) for the multi-dimensional transport calculations. In several applications, the error introduced by self-shielding methods exceeds that due to uncertainties in the basic nuclear data, and often they can be the limiting factor on the accuracy of the final results. This work is to improve the accuracy of the resonance self-shielding calculation by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. A new method has been developed, it can calculate the continuous-energy neutron fluxes for the whole two-dimensional domain, which can be utilized as weighting function to process the self-shielded multi-group cross sections for reactor analysis and criticality calculations, and during this process, the two-dimensional heterogeneous effect in the resonance self-shielding calculation can be fully included. A new code, GEMINEWTRN (Group and Energy-Pointwise Methodology Implemented in NEWT for Resonance Neutronics) has been developed in the developing version of SCALE [1], it combines the energy pointwise (PW) capability of the CENTRM [2] with the two-dimensional discrete ordinates transport capability of lattice physics code NEWT [14]. Considering the large number of energy points in the resonance region (typically more than 30,000), the computational burden and memory requirement for GEMINEWTRN is tremendously large, some efforts have been performed to improve the computational efficiency, parallel computation has been implemented into GEMINEWTRN, which can save the computation and memory requirement a lot; some energy points reducing

  3. Reduced striatal dopamine transporter density associated with working memory deficits in opioid-dependent male subjects: a SPECT study.

    PubMed

    Liang, Chih-Sung; Ho, Pei-Shen; Yen, Che-Hung; Yeh, Yi-Wei; Kuo, Shin-Chang; Huang, Chang-Chih; Chen, Chun-Yen; Shih, Mei-Chen; Ma, Kuo-Hsing; Huang, San-Yuan

    2016-01-01

    Research on the effects of repeated opioid use on striatal dopamine transporters has yielded inconsistent results, possibly confounded by a history of methamphetamine or methadone exposure in opioid-dependent individuals. Previous studies have shown that striatal dopamine transporter density is positively correlated with the cognitive performance of healthy volunteers. This study aimed to investigate changes in striatal dopamine transporter density and their functional significance in opioid-dependent individuals. Single-photon emission computed tomography with [(99m) Tc]TRODAT-1 as a ligand was used to measure striatal dopamine transporter levels in 20 opioid-dependent individuals and 20 age- and sex-matched healthy controls. Opioid-dependent individuals had no history of methamphetamine or methadone use. The Wisconsin Card Sorting Test (WCST) was performed to assess neurocognitive function. We found that compared with healthy controls, opioid-dependent individuals showed a significant reduction in striatal dopamine transporter density. They also showed poorer performance on the WCST in terms of the trials administered, total errors, perseverative responses, perseverative errors, and non-perseverative errors. Striatal dopamine transporter levels negatively correlated with non-perseverative errors not only in opioid-dependent individuals but also in healthy controls. These findings suggest that in human, repeated opioid exposure reduces striatal dopamine transporter density, which can be associated with non-perseverative errors. Non-perseverative errors may be one of the more sensitive parameters in WCST to identify working memory deficits associated with striatal dopamine transporter reduction. Moreover, we suggest that whether opioid-associated neurotoxicity is reversible depends on the brain region. PMID:25439653

  4. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  5. Minimum audible movement angle as a function of the azimuth and elevation of the source.

    PubMed

    Strybel, T Z; Manligas, C L; Perrott, D R

    1992-06-01

    In the future auditory directional cues may enhance situational awareness in cockpits with head-coupled displays. This benefit would depend, however, on the pilot's ability to detect the direction of moving sounds at different locations in space. The present investigation examined this ability. Auditory motion acuity was measured by the minimum audible movement angle (MAMA): the minimum angle of travel required for detection of the direction of sound movement. Five experienced listeners were instructed to indicate the direction of travel of a sound source (broadband noise at 50 dBA) that moved at a velocity of 20 deg/s. Nine azimuth positions were tested at 0 deg elevation. Five elevations were then tested at 0 deg azimuth. Finally two azimuth positions were tested at an elevation of 80 deg. The position of the source did not significantly affect the MAMA for azimuth locations between +40 and -40 deg and elevations below 80 deg. Within this area the MAMA ranged between 1 and 2 deg. Outside this area the MAMA increased to 3 to 10 deg. PMID:1634240

  6. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    NASA Astrophysics Data System (ADS)

    Escobar, D.; Ahedo, E.

    2015-10-01

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  7. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    SciTech Connect

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-10-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4{sup '}-cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 {mu}m are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface {pi}-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network.

  8. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  9. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    NASA Astrophysics Data System (ADS)

    Hoffman, Adam J.; Lee, John C.

    2016-02-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  10. Structural phase-dependent hole localization and transport in bismuth vanadate

    NASA Astrophysics Data System (ADS)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-05-01

    We present theoretical evidence for the phase dependence of hole localization and transport in bismuth vanadate (BiVO4). Our hybrid density-functional theory calculations predict that, in the tetragonal phase [tetragonal scheelite BiVO4 (ts-BiVO4)], an excess hole tends to localize around a BiO8 polyhedron with strong lattice distortion, whereas, in the monoclinic phase [monoclinic scheelite BiVO4 (ms-BiVO4)], it spreads over many lattice sites. The phase-dependent behavior is likely related to the higher structural stability of ms-BiVO4 than ts-BiVO4, which may suppress hole-induced lattice distortions. Our study also demonstrates that the relatively weakly localized hole in ms-BiVO4 undergoes faster diffusion compared to the case of ts-BiVO4, irrespective of the fact that the degrees of localization and mobility vary depending on the choice of exchange-correlation functional. The mobility difference may provide an explanation for the enhanced photocatalytic activity of ms-BiVO4 over ts-BiVO4 for water oxidation, considering that the increased mobility would lead to an increase in the hole current to the catalyst surface.

  11. Field dependent thermoelectric properties of organic semiconductors—A tool to determine the nature of charge transport in materials exhibiting thermally activated transport

    NASA Astrophysics Data System (ADS)

    Mendels, Dan; Tessler, Nir

    2015-03-01

    By implementing Monte Carlo simulations and employing the concept of effective temperature, we explore the effects of an applied field bias on the charge carrier statistics and Peltier coefficient in hopping systems subject to the parameter range applicable to disordered organic semiconductors. Distinct differences are found between the observed field dependences as obtained from systems in which energetic disorder is spatially correlated and those in which it is not. Considerable differences are also found between the charge carrier statistics and the Peltier coefficient's field dependence in systems in which charge is transported by bare charge carriers and systems in which it is propagated by polarons. Peltier coefficient field dependence investigations are, hence, proposed as a new tool for studying charge transport and thermoelectricity in disordered organic semiconductors and systems which exhibit thermally activated transport in general.

  12. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  13. Spin-dependent electron transport in protein-like single-helical molecules

    PubMed Central

    Guo, Ai-Min; Sun, Qing-Feng

    2014-01-01

    We report on a theoretical study of spin-dependent electron transport through single-helical molecules connected by two nonmagnetic electrodes, and explain the experiment of significant spin-selective phenomenon observed in α-helical protein and the contradictory results between the protein and single-stranded DNA. Our results reveal that the α-helical protein is an efficient spin filter and the spin polarization is robust against the disorder. These results are in excellent agreement with recent experiments [Mishra D, et al. (2013) Proc Natl Acad Sci USA 110(37):14872–14876; Göhler B, et al. (2011) Science 331(6019):894–897] and may facilitate engineering of chiral-based spintronic devices. PMID:25071198

  14. Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit){sub 2}

    SciTech Connect

    Su, Zhongbo; Wei, Xinyuan; Yang, Zhongqin; An, Yipeng

    2014-05-28

    We investigate spin-dependent thermoelectronic transport properties of a single molecule magnet Mn(dmit){sub 2} sandwiched between two Au electrodes using first-principles density functional theory combined with nonequilibrium Green's function method. By applying a temperature difference between the two Au electrodes, spin-up and spin-down currents flowing in opposite directions can be induced due to asymmetric distribution of the spin-up and spin-down transmission spectra around the Fermi level. A pure spin current and 100% spin polarization are achieved by tuning back-gate voltage to the system. The spin caloritronics of the molecule with a perpendicular conformation is also explored, where the spin-down current is blocked strongly. These results suggest that Mn(dmit){sub 2} is a promising material for spin caloritronic applications.

  15. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.

    2016-04-01

    The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.

  16. The spin-dependent transport of Co-encapsulated Si nanotubes contacted with Cu electrodes

    SciTech Connect

    Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang

    2014-02-10

    Unlike carbon nanotubes, silicon ones are hard to form. However, they could be stabilized by metal-encapsulation. Using first-principles calculations, we investigate the spin-dependent electronic transport of Co-encapsulated Si nanotubes, which are contacted with Cu electrodes. For the finite tubes, as the tube-length increases, the transmission changes from spin-unpolarized to spin-polarized. Further analysis shows that, not only the screening of electrodes on Co's magnetism but also the spin-asymmetric Co-Co interactions are the physical mechanisms. As Cu and Si are the fundamental elements in semiconductor industry, our results may throw light on the development of silicon-based spintronic devices.

  17. Micellar lipid composition profoundly affects LXR-dependent cholesterol transport across CaCo2 cells.

    PubMed

    Petruzzelli, Michele; Groen, Albert K; van Erpecum, Karel J; Vrins, Carlos; van der Velde, Astrid E; Portincasa, Piero; Palasciano, Giuseppe; van Berge Henegouwen, Gerard P; Lo Sasso, Giuseppe; Morgano, Annalisa; Moschetta, Antonio

    2009-04-17

    Intraluminal phospholipids affect micellar solubilization and absorption of cholesterol. We here study cholesterol transport from taurocholate-phospholipid-cholesterol micelles to CaCo2 cells, and associated effects on ABC-A1 mediated cholesterol efflux. Micellar incorporation of egg-yolk-phosphatidylcholine markedly increased apical retention of the sterol with decreased expression of ABC-A1, an effect that is prevented by synthetic liver X receptor (LXR) or retinoid X receptor (RXR) agonists. On the other hand, incorporation of lyso-phosphatidylcholine (LysoPC) increased ABC-A1-HDL-dependent basolateral cholesterol efflux, an effect that is abated when LXR is silenced. Thus, the modulation of cholesterol metabolism via intraluminal phospholipids is related to the activity of the oxysterol nuclear receptor LXR. PMID:19303409

  18. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Bhatt, N. K.; Jani, A. R.

    2011-12-01

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni10Cr90 and Co20Cr80 alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  19. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Shin, Hyunji; Park, Ji-Ho; Park, Jaehoon; Choi, Jong Sun

    2015-11-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes.

  20. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides[OPEN

    PubMed Central

    Eschen-Lippold, Lennart; Gorzolka, Karin; Matern, Andreas; Marillonnet, Sylvestre; Böttcher, Christoph; Rosahl, Sabine

    2016-01-01

    The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface. PMID:26744218

  1. Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis.

    PubMed

    Li, Qiyun; Gao, Xiaoshu; Sun, Yu; Zhang, Qingqi; Song, Rentao; Xu, Zhengkai

    2006-02-01

    A sodium-dependent phosphate transporter gene, DvSPT1, was isolated from a cDNA library using a probe derived from a subtracted cDNA library of Dunaliella viridis. Sequencing analyses revealed a cDNA sequence of 2649 bp long and encoded an open-reading frame consisting of 672 amino acids. The deduced amino acid sequence of DvSPT1 exhibited 31.2% identity to that of TcPHO from Tetraselmis chui. Hydrophobicity and secondary structure prediction revealed 11 conserved transmembrane domains similar to those found in PHO89 from Saccharomyces cerevisiae and PHO4 from Neurospora crassa. Northern blot analysis indicated that the DvSPT1 expression was induced upon NaCl hyperosmotic stress or phosphate depletion. Functional characterization in yeast Na+ export pump mutant G19 suggested that DvSPT1 encoded a Na+ transporter protein. The gene sequence of GDvSPT1 (7922 bp) was isolated from a genomic library of D. viridis. Southern blot analysis indicated that there exist at least two homologous genes in D. viridis. PMID:16359638

  2. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE PAGESBeta

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore » function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  3. A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics

    NASA Astrophysics Data System (ADS)

    Just, O.; Obergaulinger, M.; Janka, H.-T.

    2015-11-01

    We present the new code ALCAR developed to model multidimensional, multienergy-group neutrino transport in the context of supernovae and neutron-star mergers. The algorithm solves the evolution equations of the zeroth- and first-order angular moments of the specific intensity, supplemented by an algebraic relation for the second-moment tensor to close the system. The scheme takes into account frame-dependent effects of the order O(v/c) as well as the most important types of neutrino interactions. The transport scheme is significantly more efficient than a multidimensional solver of the Boltzmann equation, while it is more accurate and consistent than the flux-limited diffusion method. The finite-volume discretization of the essentially hyperbolic system of moment equations employs methods well-known from hydrodynamics. For the time integration of the potentially stiff moment equations we employ a scheme in which only the local source terms are treated implicitly, while the advection terms are kept explicit, thereby allowing for an efficient computational parallelization of the algorithm. We investigate various problem set-ups in one and two dimensions to verify the implementation and to test the quality of the algebraic closure scheme. In our most detailed test, we compare a fully dynamic, one-dimensional core-collapse simulation with two published calculations performed with well-known Boltzmann-type neutrino-hydrodynamics codes and we find very satisfactory agreement.

  4. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    SciTech Connect

    Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.; Jani, A. R.; Suthar, P. H.; Gajjar, P. N.

    2011-12-12

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  5. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  6. Understanding pseudorapidity dependence of elliptic flow in heavy-ion collisions using a transport model

    NASA Astrophysics Data System (ADS)

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-04-01

    A systematic study of the pseudorapidity dependence of elliptic flow parameter using transport models (e.g., a multiphase transport model, AMPT, and ultrarelativistic quantum molecular dynamics, UrQMD) has been presented. We have observed that while at mid-pseudorapidity the elliptic flow measured using the event-plane method differs significantly from that measured by actual reaction plane method, both the event-plane and reaction-plane methods give the same elliptic flow for far forward and backward pseudorapidity. This indicates that the magnitude of measured v2 around midrapidity strongly depends on the analysis method. Therefore, one should use the same procedure (as used in data analysis) in model calculations while comparing model results and experimental data. We find the shape of v2(η ) measured by the PHOBOS experiment is not reproduced by using actual v2 (i.e., measured with respect to the reaction plane) from AMPT and UrQMD models. The shape and magnitude of measured v2(η ) can be explained by the AMPT model with string-melting mode only if one uses the same procedure as used in data analysis. Magnitude of elliptic flow can be reproduced for all pseudorapidity range by taking the parton-parton interaction cross section to be 3 mb at √{sN N}=62.4 and 200 GeV. This implies that the partonic interactions are necessary to reproduce data at √{sN N}=62.4 and 200 GeV and the strength of partonic interactions at far forward and backward rapidity is as strong as at midrapidity. Both UrQMD and AMPT with default mode fail to explain the data.

  7. Azimuthal anisotropy in U+U collisions at STAR

    DOE PAGESBeta

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degreemore » Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less

  8. Azimuthal anisotropy in U+U collisions at STAR

    SciTech Connect

    Wang, Hui; Sorensen, Paul

    2014-10-06

    The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v2 (v2{2} and v2{4}) from U+U collisions at √sNN = 193 GeV and Au+Au collisions at √sNN = 200 GeV for inclusive charged hadrons will be presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)

  9. Equations of the surface harmonics method for solving time-dependent neutron transport problems and their verification

    NASA Astrophysics Data System (ADS)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.

    2013-12-01

    Time-dependent equations of the surface harmonics method (SHM) are obtained for planar one-dimensional geometry. The equations are verified by calculations of test problems from Benchmark Problem Book ANL-7416, and the capabilities and efficiency of applying the SHM for solving the time-dependent neutron transport equation in the diffusion approximation are demonstrated. The results of the work show that the implementation of the SHG for full-scale computations will make possible substantial progress in the efficient solution of time-dependent problems of neutron transport in nuclear reactors.

  10. Lagrangian and Eulerian analysis of transport and mixing in the three dimensional, time dependent Hill's spherical vortex

    NASA Astrophysics Data System (ADS)

    McIlhany, Kevin L.; Guth, Stephen; Wiggins, Stephen

    2015-06-01

    In this paper, we extend the notion of Eulerian indicators (EIs), previously developed for two dimensional time dependent flows, to three dimensional time dependent flows, where the time dependence can be arbitrary. These are applied to a study of transport and mixing in the Hill's spherical vortex subject to a linear strain rate field. We consider the axisymmetric case and the fully three dimensional case with different types of time dependence. We develop a Lagrangian characterization of transport and mixing appropriate for open three dimensional flows and we show that the EIs provide a detailed description of the flow structure that can be correlated with the Lagrangian transport and mixing results. The EIs yield results consistent with the dynamics of the Hill's vortex flow characteristics, correlation with transverse shear, and anti-correlation with transversality.

  11. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina.

    PubMed

    Henning, Yoshiyuki; Szafranski, Karol

    2016-01-01

    The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in

  12. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina

    PubMed Central

    Henning, Yoshiyuki; Szafranski, Karol

    2016-01-01

    The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in

  13. Synthetic aperture radar images with composite azimuth resolution

    DOEpatents

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  14. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries.

    PubMed

    Ly, Thuc Hue; Perello, David J; Zhao, Jiong; Deng, Qingming; Kim, Hyun; Han, Gang Hee; Chae, Sang Hoon; Jeong, Hye Yun; Lee, Young Hee

    2016-01-01

    Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5-7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ∼ 16 cm(2) V(-1) s(-1) around misorientation angle ≈ 20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental tunnelling barrier heights, which are ≈ 0.5 eV at low angles and ≈ 0.15 eV at high angles (≥ 20°). PMID:26813605

  15. Pseudorapidity dependence of short-range correlations from a multi-phase transport model

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Wang; Gang, Chen; Guo-Liang, Ma; Yuan-Fang, Wu

    2016-03-01

    Using a multi-phase transport model (AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at . It is observed that for Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for AuAu collisions, the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme. Supported by GBL31512, Major State Basic Research Devolopment Program of China (2014CB845402), NSFC (11475149, 11175232, 11375251, 11421505, 11221504)

  16. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries

    NASA Astrophysics Data System (ADS)

    Ly, Thuc Hue; Perello, David J.; Zhao, Jiong; Deng, Qingming; Kim, Hyun; Han, Gang Hee; Chae, Sang Hoon; Jeong, Hye Yun; Lee, Young Hee

    2016-01-01

    Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5-7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ~16 cm2 V-1 s-1 around misorientation angle~20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental tunnelling barrier heights, which are ~0.5 eV at low angles and ~0.15 eV at high angles (>=20°).

  17. Effect of temperature-dependent electrical conductivity on transport processes in magnetosolidmechanics

    NASA Technical Reports Server (NTRS)

    Craig, G. T.; Arnas, O. A.

    1975-01-01

    The effect of temperature-dependent electrical conductivity on transport processes for a solid block is analyzed on the basis of a one-dimensional steady-state model under specified thermal boundary conditions. Assumptions are that the solid has an infinitely segmented electrode configuration, the magnetic field (By) may be resolved into a constant applied field and an induced field, the gradient of the electrochemical potential is equal to the electrostatic potential, a constant potential difference is applied externally across each pair of opposite electrodes, and all material properties except electrical conductivity are constant. Conductivity is expressed in normalized form in terms of a baseline conductivity and a constant for the material. The application of the assumptions of the model to the general phenomenological relations yields the governing equations. Solution of these equations gives the distribution of temperature, electric current density, and magnetic field strength along the length of the solid. It is shown that significant differences exist between the case for constant electrical conductivity and the case where electrical conductivity is temperature dependent.

  18. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus

    PubMed Central

    Wall, Mark J; Dale, Nicholas

    2013-01-01

    The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca2+ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73−/− and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources. PMID:23713028

  19. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries

    PubMed Central

    Ly, Thuc Hue; Perello, David J.; Zhao, Jiong; Deng, Qingming; Kim, Hyun; Han, Gang Hee; Chae, Sang Hoon; Jeong, Hye Yun; Lee, Young Hee

    2016-01-01

    Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5–7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ∼16 cm2 V−1 s−1 around misorientation angle≈20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental tunnelling barrier heights, which are ≈0.5 eV at low angles and ≈0.15 eV at high angles (≥20°). PMID:26813605

  20. Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions.

    PubMed

    Sun, Peng; Yuan, C-P; Yuan, Feng

    2014-12-01

    We derive all order soft gluon resummation in dijet azimuthal angular correlation in hadronic collisions at the next-to-leading logarithmic level. The relevant coefficients for the Sudakov resummation factor, the soft and hard factors, are calculated. The theory predictions agree well with the experimental data from D0 Collaboration at the Tevatron. This provides a benchmark calculation for the transverse momentum dependent QCD resummation for jet productions in hadron collisions. PMID:25526118

  1. Magnetic Resonance Microscopy of Scale Dependent Transport Phenomena and Bioactivity in Porous Media

    NASA Astrophysics Data System (ADS)

    Seymour, J. D.; Codd, S. L.; Romanenko, K. V.; Hornemann, J. A.; Brosten, T. R.

    2008-05-01

    Magnetic resonance microscopy (MRM) provides the ability to obtain data on the pore scale via imaging and the sample scale by bulk measurement, allowing for connection between microscale dynamics and macroscale transport phenomena. This has led to MRM techniques becoming a preeminent method for characterization of dynamics in porous media. A significant question in modeling transport in porous media is definition of the porous media structure as homogeneous (ordered) or heterogeneous (disordered)[1]. One means of defining the 'complexity' of a porous media is based on the dynamics of the system[2]. The ability of MRM to measure the time dependent statistics of the dynamics [3,4,5] provides quantification of the pre-asymptotic dynamics. The transition from preasymptotic to Gaussian transport consistent with models of homogeneous porous media is clearly visualized. Biological activity in porous media, such as microbial growth, typically manifests itself as biofilms or colonies of microbes that adhere to surfaces and are surrounded by a hydrogel of extracellular polymeric substance (EPS). The biofilm growth introduces complexity into the system structure in generation of physical pore blocking, trapping within the EPS gel, elastic interfaces due to the EPS and generation of channels in which faster flow occur. The hierarchy of length and time scales and multiple physical processes which are introduced by the biofilm growth impacts the porous media transport as reflected in the change in dynamics [6]. The transition can be modeled using statistical mechanical approaches based on continuous time random walk (CTRW) processes that generate fractional differential equations[7]. The bioactivity alters the structure of the porous media from homogeneous to heterogeneous resulting in the transition from a Gaussian to a non Gaussian subdiffusive dispersion process. References 1. M. Quintard and S. Whitaker, Transport in ordered and disordered porous media: Volume averaged

  2. Azimuthal diffusion of the large-scale circulation of turbulent Rayleight-Bénard convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; van Gils, Dennis P. M.; Bodenschatz, Eberhard; Ahlers, Guenter

    2015-11-01

    We present measurements of the azimuthal orientation θ0 (t) of the large-scale circulation (LSC) of turbulent Rayleight-Bénard convection. The sample was a cylinder with height and diameter equal to 1.12 m. We used compressed SF6 gas at pressures up to 19 bars as the fluid. The measurements covered the Rayleigh-number range 1012 <= Ra <=1014 at a Prandtl number Pr ~= 0 . 80 . We found that the preferred orientation of the LSC upflow was aligned to the West, consistent with Earth's Coriolis force. The LSC azimuthal dynamics was diffusive, driven by the small-scale turbulent fluctuations. For Ra <=1013 the Reynolds number Reθ˙ based on the azimuthal diffusivity had a Ra dependence similar to that seen for 109 <= Ra <=1011 and Pr = 4 . 38 . The Pr dependence Reθ˙ ~Prα with α ~= - 1 . 2 was the same as that found for the Reynolds number based on the root-mean-square fluctuation velocity in the interior bulk flow. For Ra = Ra1* ~= 2 ×1013 Reθ˙ showed the ultimate-state transition and for Ra >= Ra2* ~= 8 ×1013 it had a Ra dependence with an exponent of 0 . 40 +/- 0 . 02 . Supported by the Max Planck Society, the Volkswagenstiftung, the DFD Sonderforschungsbereich SFB963, and NSF Grant DMR11-58514.

  3. Feedback control of an azimuthal oscillation in the E Multiplication-Sign B discharge of Hall thrusters

    SciTech Connect

    Griswold, M. E.; Ellison, C. L.; Raitses, Y.; Fisch, N. J.

    2012-05-15

    Feedback control of a low-frequency azimuthal wave known as a 'rotating spoke' in the E Multiplication-Sign B discharge of a cylindrical Hall thruster was demonstrated. The rotating spoke is an m = 1 azimuthal variation in density, electron temperature, and potential that rotates at about 10% of the local E Multiplication-Sign B electron rotation speed. It causes increased electron transport across the magnetic field and is suspected to be an ionization wave. Feedback control of this wave required special consideration because, although it causes a rotating azimuthal variation in the current density to the anode, it does not show up as a signal in the total thruster discharge current. Therefore, an extra source of information was needed to track the oscillation, which was addressed by using a special anode that was split azimuthally into four segments. The current to each segment oscillates as the rotating spoke passes over it, and feedback is accomplished by resistors connected in series with each anode segment which causes the voltage on a segment to decrease in proportion to the current through that segment. The feedback resulted in the disappearance of a coherent azimuthal wave and a decrease in the time-averaged total discharge current by up to 13.2%.

  4. Spin-dependent transport mechanisms in CoFe/MgO/n+-Si junctions investigated by frequency response of signals

    NASA Astrophysics Data System (ADS)

    Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Saito, Yoshiaki

    2016-07-01

    We investigated spin-dependent transport properties in CoFe/MgO/n+-Si junctions by measuring Hanle signals and their dependence on the measurement frequency. The CoFe/MgO/n+-Si junctions exhibited two types of Hanle curves with different half-widths. Hanle signals with a broad half-width were observed mainly in the low-bias region, and these signals exhibited apparent frequency dependence and disappeared in the high-frequency region though Hanle signals with narrow half-widths were almost independent of the measurement frequency used in this study. This frequency dependence is explained by the mechanism of two-step tunneling. These results show that investigating the frequency response signals gives clear information on spin-dependent transport mechanisms.

  5. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT.

    PubMed

    Annaba, Fadi; Sarwar, Zaheer; Gill, Ravinder K; Ghosh, Amit; Saksena, Seema; Borthakur, Alip; Hecht, Gail A; Dudeja, Pradeep K; Alrefai, Waddah A

    2012-05-15

    Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis. PMID:22403793

  6. Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux.

    PubMed

    Li, Shimin; Kim, Edward; Bonanno, Joseph A

    2016-07-01

    Maintenance of corneal hydration is dependent on the active transport properties of the corneal endothelium. We tested the hypothesis that lactic acid efflux, facilitated by buffering, is a component of the endothelial fluid pump. Rabbit corneas were perfused with bicarbonate-rich (BR) or bicarbonate-free (BF) Ringer of varying buffering power, while corneal thickness was measured. Perfusate was collected and analyzed for lactate efflux. In BF with no added HEPES, the maximal corneal swelling rate was 30.0 ± 4.1 μm/h compared with 5.2 ± 0.9 μm/h in BR. Corneal swelling decreased directly with [HEPES], such that with 60 mM HEPES corneas swelled at 7.5 ± 1.6 μm/h. Perfusate [lactate] increased directly with [HEPES]. Similarly, reducing the [HCO3 (-)] increased corneal swelling and decreased lactate efflux. Corneal swelling was inversely related to Ringer buffering power (β), whereas lactate efflux was directly related to β. Ouabain (100 μM) produced maximal swelling and reduction in lactate efflux, whereas carbonic anhydrase inhibition and an monocarboxylic acid transporter 1 inhibitor produced intermediate swelling and decreases in lactate efflux. Conversely, 10 μM adenosine reduced the swelling rate to 4.2 ± 0.8 μm/h and increased lactate efflux by 25%. We found a strong inverse relation between corneal swelling and lactate efflux (r = 0.98, P < 0.0001). Introducing lactate in the Ringer transiently increased corneal thickness, reaching a steady state (0 ± 0.6 μm/h) within 90 min. We conclude that corneal endothelial function does not have an absolute requirement for bicarbonate; rather it requires a perfusing solution with high buffering power. This facilitates lactic acid efflux, which is directly linked to water efflux, indicating that lactate flux is a component of the corneal endothelial pump. PMID:27225657

  7. Twist-3 Single-Spin Asymmetry for SIDIS and its Azimuthal Structure

    SciTech Connect

    Koike, Yuji; Tanaka, Kazuhiro

    2009-08-04

    We derive the complete twist-3 single-spin-dependent cross section for semi-inclusive DIS, ep{sup {up_arrow}}{yields}e{pi}X, associated with the complete set of the twist-3 quark-gluon correlation functions in the transversely polarized nucleon, extending our previous study. The cross section consists of five independent structure functions with different azimuthal dependences, consistently with the transverse-momentum-dependent (TMD) factorization approach in the low q{sup T} region. Correspondence with the inclusive DIS limit and comparison with the TMD approach are briefly discussed.

  8. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  9. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGESBeta

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  10. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    SciTech Connect

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  11. Azimuthal HBT and Transverse Momentum Fluctuations from CERES.

    SciTech Connect

    Miskowiec,D.; Rehak, P.; et al.

    2007-07-09

    CERES is a dilepton experiment at the CERN SPS, known for its observation of enhanced production of low mass efe- pairs in collisions between heavy nuclei [1]. The upgrade of CERES in 1997-1998 by a radial Time Projection Chamber (TPC) [2] allowed to improve the momentum resolution and the particle identification capability while retaining the cylindrical symmetry. The upgraded experiment is shown in Fig. 1. The upgrade also extended the sensitivity of CERES to hadrons and made possible results like those described below. The measurement of central Pb+Au collisions at the maximum SPS energy of 158 GeV per nucleon in the fall of 2000 was the first run of the fully upgraded CERES and at the same time the last run of this experiment. About 30 million Pb+Au collision events at 158 GeV per nucleon were collected, most of them with centrality within the top 7% of the geometrical cross section {sigma}{sub G} = 6.94 b. Small samples of the 20% and the minimum bias collisions, as well as a short run at 80 AGeV, were recorded in addition. The dilepton mass spectra from this experiment were published in [3]. In this talk I present two particular results of hadron analysis, the azimuthal dependence of two-pion correlations and a differential p{sub t} fluctuation study.

  12. Ultra-small-angle neutron scattering with azimuthal asymmetry

    PubMed Central

    Gu, X.; Mildner, D. F. R.

    2016-01-01

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry. PMID:27275140

  13. Azimuthal anisotropy: Transition from hydrodynamic flow to jet suppression

    SciTech Connect

    Lacey, R.; PHENIX Collaboration, et al.

    2010-11-09

    Measured second and fourth azimuthal anisotropy coefficients v{sub 2,4}(N{sub part},p{sub T}) are scaled with the initial eccentricity {var_epsilon}{sub 2,4}(N{sub part}) of the collision zone and studied as a function of the number of participants N{sub part} and the transverse momenta p{sub T}. Scaling violations are observed for p{sub T} {le} 3 GeV/c, consistent with a p{sub T}{sup 2} dependence of viscous corrections and a linear increase of the relaxation time with p{sub T}. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for p{sub T} {ge} 3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.

  14. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.

    PubMed

    Podgorska, M; Kocbuch, K; Grden, M; Szutowicz, A; Pawelczyk, T

    2006-05-01

    Adenosine is an important physiological regulator of the cardiovascular system. The goal of our study was to assess the expression level of nucleoside transporters (NT) in diabetic rat cardiomyocytes and to examine the activities of adenosine metabolizing enzymes. Isolated rat cardiomyocytes displayed the presence of detectable amounts of mRNA for ENT1, ENT2, CNT1, and CNT2. Overall adenosine (10 microM) transport in cardiomyocytes isolated from normal rat was 36 pmol/mg/min. The expression level of equilibrative transporters (ENT1, ENT2) decreased and of concentrative transporters (CNT1, CNT2) increased in myocytes isolated from diabetic rat. Consequently, overall adenosine transport decreased by 30%, whereas Na(+)-dependent adenosine uptake increased 2-fold, and equilibrative transport decreased by 60%. The activity ratio of AMP deaminase/5'-nucleotidase in cytosol of normal cardiomyocytes was 11 and increased to 15 in diabetic cells. The activity of ecto-5'-nucleotidase increased 2-fold in diabetic cells resulting in a rise of the activity ratio of ecto-5'-nucleotidase/adenosine deaminase from 28 to 56.These results indicate that in rat cardiomyocytes diabetes alters activities of adenosine metabolizing enzymes in such a way that conversion of AMP to IMP is favored in the cytosolic compartment, whereas the capability to produce adenosine extracellularly is increased. This is accompanied by an increased unidirectional Na(+)-dependent uptake of adenosine and significantly reduced bidirectional adenosine transport. PMID:16369729

  15. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations

    PubMed Central

    Perroni, Carmine Antonio; Ramaglia, Vincenzo Marigliano; Cataudella, Vittorio

    2016-01-01

    Summary Background: Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. Effects of the electron–vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the presence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well-established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturbations are present. Then, a number of relevant applications of the method are reviewed for systems composed by a quantum dot (or molecule) described by a single electronic level coupled to a vibrational mode. Results: Before introducing time-dependent perturbations, the range of validity of the adiabatic approach is discussed showing that a very good agreement with the results of an exact quantum calculation is obtained in the limit of low level occupation. Then, we show that the interplay between the low frequency vibrational modes and the electronic degrees of freedom affects the thermoelectric properties within the linear response regime finding out that the phonon thermal conductance provides an important contribution to the figure of merit at room temperature. Our work has been stimulated by recent experimental results on carbon nanotube electromechanical devices working in the semiclassical regime (resonator frequencies in the megahertz range compared to an electronic hopping frequency of the order of tens of gigahertz) with extremely high quality factors. The nonlinear vibrational regime induced by the external antenna in such systems has been discussed within the non-perturbative adiabatic approach reproducing quantitatively the characteristic asymmetric shape of the current–frequency curves. Within the same set-up, we have

  16. Spin-dependent transport of spin-orbit coupled holes in GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Hamilton, Alex

    2012-02-01

    In undergraduate physics, we are often taught that holes in the valence band are just positively charged heavy electrons. But valence band holes are spin-3/2 particles, and this gives them very different properties to spin-1/2 electrons, particularly when confined to low dimensions. These differences show up as highly anisotropic spin properties, which can be directly probed with conventional transport measurements. We have fabricated high quality hole quantum wires that show clean and stable quantized conductance plateaus [1]. In contrast to 1D electron quantum systems, the spin-splitting in these hole wires is highly anisotropic [2], and depends only on the orientation of the in-plane magnetic field relative to the quantum wire [3]. However the orientation and k-dependence of the spin-splitting cannot be reconciled with existing theories, suggesting that more theoretical work is needed before we understand the physics of spin-3/2 holes, even on ``simple'' (100) surfaces. We have also studied spin-3/2 holes in quantum dots, which show characteristic signatures of Kondo physics. A clear zero-bias peak is observed in the differential conductance, which splits with an applied in-plane magnetic field. The splitting is twice as large as the splitting for the lowest one-dimensional subband, consistent with Kondo physics. Unlike electrons this splitting is highly anisotropic with magnetic field, due to the strong spin-orbit coupling [4]. [4pt] [1] O. Klochan et al., Appl. Phys. Lett. 89, 092105 (2006).[0pt] [2] R. Danneau et al., Phys. Rev. Lett. 97, 026403 (2006).[0pt] [3] J C H Chen et al, New Journal of Physics 12, 033043 (2010).[0pt] [4] O. Klochan et al, Phys. Rev. Lett. 107, 076805 (2011).

  17. Understanding the dependence of transport parameters on carrier concentration within a Gaussian density of states in molecular organic semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kumar, P.; Rani, V.; Ray, N.; Ghosh, S.

    2016-06-01

    We study charge transport in molecular organic semiconductors using two terminal and three terminal field effect transistor devices. Using phthalocyanines as examples, we achieve unification of carrier mobility between the different configurations in a Gaussian density of states. We find that the current density–voltage characteristics for two terminal devices can be understood by introducing a concentration dependence of the carrier mobility, as described by Oelerich et al (2012 Phys. Rev. Lett. 108 226403, 2010 Appl. Phys. Lett. 97 143302). Studying the evolution of the activation energy with the carrier density, we find results consistent with a percolation picture and a density dependent transport energy.

  18. Understanding the dependence of transport parameters on carrier concentration within a Gaussian density of states in molecular organic semiconductors.

    PubMed

    Sharma, A; Kumar, P; Rani, V; Ray, N; Ghosh, S

    2016-06-15

    We study charge transport in molecular organic semiconductors using two terminal and three terminal field effect transistor devices. Using phthalocyanines as examples, we achieve unification of carrier mobility between the different configurations in a Gaussian density of states. We find that the current density-voltage characteristics for two terminal devices can be understood by introducing a concentration dependence of the carrier mobility, as described by Oelerich et al (2012 Phys. Rev. Lett. 108 226403, 2010 Appl. Phys. Lett. 97 143302). Studying the evolution of the activation energy with the carrier density, we find results consistent with a percolation picture and a density dependent transport energy. PMID:27160656

  19. ΔpH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet Leaves

    PubMed Central

    Li, Zhen-Chang; Bush, Daniel R.

    1990-01-01

    Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline

  20. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    PubMed

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342

  1. Temperature and force dependence of nanoscale electron transport via the Cu protein azurin.

    PubMed

    Li, Wenjie; Sepunaru, Lior; Amdursky, Nadav; Cohen, Sidney R; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2012-12-21

    Solid-state electron transport (ETp) via a monolayer of immobilized azurin (Az) was examined by conducting probe atomic force microscopy (CP-AFM), as a function of both temperature (248-373K) and applied tip force (6-15 nN). At low forces, ETp via holo-Az (with Cu(2+)) is temperature-independent, but thermally activated via the Cu-depleted form of Az, apo-Az. While this observation agrees with those of macroscopic-scale measurements, we find that for holo-Az the mechanism of ETp at high temperatures changes upon an increase in the force applied by the tip to the proteins; namely, above 310 K and forces >6 nN ETp becomes thermally activated. This is in contrast to apo-Az, where increasing applied force causes only small monotonic increases in currents due to decreased electrode separation. The distinct ETp temperature dependence of holo- and apo-Az is assigned to a difference in structural response to pressure between the two protein forms. An important implication of these CP-AFM results (of measurements over a significant temperature range) is that for reliable ETp measurements on flexible macromolecules, such as proteins, the pressure applied during the measurements should be controlled or at least monitored. PMID:23136937

  2. Composition-dependent structural and transport properties of amorphous transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Buchholz, D. Bruce; Chang, Robert P. H.; Medvedeva, Julia E.

    2015-05-01

    Structural properties of amorphous In-based oxides, In -X -O with X =Zn , Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In -X -O . At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XO x polyhedra in amorphous In -X -O , composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In -X -O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties.

  3. Arabidopsis root growth dependence on glutathione is linked to auxin transport.

    PubMed

    Koprivova, Anna; Mugford, Sam T; Kopriva, Stanislav

    2010-10-01

    Glutathione depletion, e.g. by the inhibitor of its synthesis, buthionine sulphoximine (BSO), is well known to specifically reduce primary root growth. To obtain an insight into the mechanism of this inhibition, we explored the effects of BSO on Arabidopsis root growth in more detail. BSO inhibits root growth and reduces glutathione (GSH) concentration in a concentration-dependent manner leading to a linear correlation of root growth and GSH content. Microarray analysis revealed that the effect of BSO on gene expression is similar to the effects of misregulation of auxin homeostasis. In addition, auxin-resistant mutants axr1 and axr3 are less sensitive to BSO than the wild-type plants. Indeed, exposure of Arabidopsis to BSO leads to disappearance of the auxin maximum in root tips and the expression of QC cell marker. BSO treatment results in loss of the auxin carriers, PIN1, PIN2 and PIN7, from the root tips of primary roots, but not adventitious roots. Since BSO did not abolish transcription of PIN1, and since the effect of BSO was complemented by dithiothreitol, we conclude that as yet an uncharacterised post-transcriptional redox mechanism regulates the expression of PIN proteins, and thus auxin transport, in the root tips. PMID:20669021

  4. Open Quantum Transport and Non-Hermitian Real-Time Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin; Zhao, Yanxiang; Chen, Hanning

    Sub-nanometer electronic devices are notoriously difficult to simulate, with the most widely adopted transport schemes predicting currents that diverge from experiment by several orders of magnitude. This deviation arises from numerous factors, including the inability of these methods to accommodate dynamic processes such as charge reorganization. A promising alternative entails the direct propagation of an electronic structure calculation, as exemplified by real-time time-dependent density functional theory (RT-TDDFT). Unfortunately this framework is inherently that of a closed system, and modifications must be made to handle incoming and outgoing particle fluxes. To this end, we establish a formal correspondence between the quantum master equation for an open, many-particle system and its description in terms of RT-TDDFT and non-Hermitian boundary potentials. By dynamically constraining the particle density within the boundary regions corresponding to the device leads, a simulation may be selectively converged to the non-equilibrium steady state associated with a given electrostatic bias. Our numerical tests demonstrate that this algorithm is both highly stable and readily integrated into existing electronic structure frameworks

  5. Dissecting the Molecular Mechanism of Nucleotide-Dependent Activation of the KtrAB K+ Transporter

    PubMed Central

    Szollosi, Andras; Vieira-Pires, Ricardo S.; Teixeira-Duarte, Celso M.; Rocha, Rita; Morais-Cabral, João H.

    2016-01-01

    KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown. It has been shown that ATP stimulates the activity of KtrAB while ADP does not. Here, we present X-ray structural information on the KtrAB complex with bound ADP. A comparison with the KtrAB-ATP structure reveals conformational changes in the ring and in the membrane protein. In combination with a biochemical and functional analysis, we uncover how ligand-dependent changes in the KtrA ring are propagated to the KtrB membrane protein and conclude that, despite their structural similarity, the activation mechanism of KtrAB is markedly different from the activation mechanism of K+ channels. PMID:26771197

  6. Numerical Study of Spin-Dependent Transport Through a Magnetic Quantum Wire with Lattice Vacancy

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Ghoranneviss, M.

    2016-03-01

    The impact of lattice vacancy on the spin dependent transport properties of a magnetic-quantum wire (MQW) has been investigated. A simple tight binding Hamiltonian to describe the model is used, where the quantum wire is attached to two semi-infinite one-dimensional non-magnetic electrodes. Based on the Landauer-Buttiker formalism all the calculations are performed numerically which describe two-terminal conductance. The results suggest that in presence of vacancy the transmission reduces and vacancy creates quasilocalized states around zero energy (E f = 0). In order to investigate spin-filtering effect of (MQW), the degree of polarization in the presence and absences of vacancy has been studied. Also it is found that the effect of vacancy decreases when the size of MQW increases. The results show that a magnetic quantum wire can be used as a spin filter. The application of the predicted results may be useful in designing molecular spin-polarized transistors in the future.

  7. MGS MAG/ER Data Analysis Using a Time and Magnetic Field Dependent Electron Transport Model

    NASA Technical Reports Server (NTRS)

    Liemohn, Michael W.; Mitchell, David L.; Nagy, A. F.

    2004-01-01

    The goal of that project was to examine certain details about the dayside electron environment at Mars as seen by the Mars Global Surveyor (MGS) magnetometer/electron reflectometer (MAG/ER) instrument. Specifically, we stated that we would use the Khazanov and Liemohn (K&L) kinetic electron transport model to analyze features in the observations. This code includes a non-uniform magnetic field and time-dependence in the result (different from most other models of this type). It was originally developed for electron motion along field lines in the Earth's magnetosphere (between conjugate ionospheres), and is thus quite appropriate for application to the Mars magnetic field scenario. Numerous code developments were implemented and the Mars version of the K&L model is fully operational. Initial results from this code have focused on the examination of MGS MAG/ER observations in the crustal field region when it is on the dayside. After several presentations at scientific meetings, this study culminated in a JGR publication last year.

  8. Spin-dependent transport in a Rashba ring connected to noncollinear ferromagnetic leads

    NASA Astrophysics Data System (ADS)

    Chi, Feng; Bai, Xufang; Huang, Ling; Zhao, Jia

    2010-10-01

    We analyze spin-dependent transport through a quantum ring coupled to two ferromagnetic leads, whose magnetic moments lie in a common plane and form an arbitrary angle with respect to each other. The Rashba spin-orbit (RSO) interaction existed in the ring arms is taken into consideration. We calculate the linear conductance in terms of the Green's functions method based on the equation of motion technique. It is found that due to the quantum interference effect arising from the RSO-induced spin precession phase factor, the conductance is greatly suppressed when the Fermi energy is aligned to the on-site energies of the ring, where the spin polarization and the tunnel magnetoresistance (TMR) have their maximums. The conductance, spin polarization, and the TMR are monotonously tuned by the relative angle of the leads' magnetization directions, which shows the typical spin-valve effect. We pay special attention on the situation when one magnetic lead is polarized along z axis while the other one is pointing at x direction. The peak value of the TMR is suppressed now and can become either positive or negative when the on-site energies of the two ring arms are different from each other. This device is realizable with current technology and may practical applications in spintronics.

  9. Fast strontium transport induced by hydrodynamic dispersion and pH-dependent sorption

    NASA Astrophysics Data System (ADS)

    Prigiobbe, Valentina; Hesse, Marc A.; Bryant, Steven L.

    2012-09-01

    As a fluid carries solutes through a porous material, species that sorb onto the surface of the material travel more slowly than the fluid. Stronger adsorption results in slower solute migration, or increased solute retardation. The adsorption of strontium (Sr2+) onto iron-oxides is strongly pH-dependent and becomes significant at high pH. Radioactive Sr2+ isotopes are, therefore, commonly stored in alkaline solutions to maximize their retardation. Field observations and numerical simulations of the leakage of such solutions into low-pH soils, however, show that even Sr2+ stored in alkaline solutions can migrate without retardation. Migration occurs because hydrodynamic dispersion allows mixing of Sr2+ with the low-pH fluid forming an acidic Sr2+-rich plume which can travel without retardation. Here we report the first experimental observations confirming this dispersion-induced fast Sr2+ transport. We report column-flood experiments where a high-pH solution containing Sr2+ was injected into a low-pH porous medium of iron-oxide-coated beads. We observe both a strongly retarded Sr2+ front and an isolated fast pulse of Sr2+ traveling at the average fluid velocity. This dispersion-induced fast pulse of strontium must be taken into account when considering the safety of radionuclide storage in alkaline solutions.

  10. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szableski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-09-01

    Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos⁡ϕh, cos⁡2ϕh and sin⁡ϕh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cos⁡ϕh and cos⁡2ϕh modulations show strong kinematic dependencies both for positive and negative hadrons.

  11. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Shantanu; Yuan, Xiaohui; Debayle, Eric; Tilmann, Frederik; Priestley, Keith; Li, Xueqing

    2015-06-01

    Azimuthal anisotropy derived from multimode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian Plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multilayer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited back azimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.

  12. Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjian; Zhang, Zhaojun; Zhang, Dong H.

    2016-03-01

    Understanding the role of reactant ro-vibrational degrees of freedom (DOFs) in reaction dynamics of polyatomic molecular dissociation on metal surfaces is of great importance to explore the complex chemical reaction mechanism. Here, we present an expensive quantum dynamics study of the dissociative chemisorption of CH4 on a rigid Ni(111) surface by developing an accurate nine-dimensional quantum dynamical model including the DOF of azimuth. Based on a highly accurate fifteen-dimensional potential energy surface built from first principles, our simulations elucidate that the dissociation probability of CH4 has the strong dependence on azimuth and surface impact site. Some improvements are suggested to obtain the accurate dissociation probability from quantum dynamics simulations.

  13. Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site.

    PubMed

    Shen, Xiangjian; Zhang, Zhaojun; Zhang, Dong H

    2016-03-14

    Understanding the role of reactant ro-vibrational degrees of freedom (DOFs) in reaction dynamics of polyatomic molecular dissociation on metal surfaces is of great importance to explore the complex chemical reaction mechanism. Here, we present an expensive quantum dynamics study of the dissociative chemisorption of CH4 on a rigid Ni(111) surface by developing an accurate nine-dimensional quantum dynamical model including the DOF of azimuth. Based on a highly accurate fifteen-dimensional potential energy surface built from first principles, our simulations elucidate that the dissociation probability of CH4 has the strong dependence on azimuth and surface impact site. Some improvements are suggested to obtain the accurate dissociation probability from quantum dynamics simulations. PMID:26979673

  14. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes.

    PubMed

    Baumann, Sebastian; Pohlmann, Thomas; Jungbluth, Marc; Brachmann, Andreas; Feldbrügge, Michael

    2012-06-01

    Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus-end-directed Kin3, a kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split dynein Dyn1-Dyn2 functions in retrograde movement of mRNPs. Plus-end-directed conventional kinesin Kin1 is indirectly involved by transporting minus-end-directed dynein back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs colocalise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin-homology domain abolishes Rrm4-dependent movement without preventing colocalisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as mode of mRNP transport. PMID:22357951

  15. Three Agt1 transporters from brewer's yeasts exhibit different temperature dependencies for maltose transport over the range of brewery temperatures (0–20 °C).

    PubMed

    Vidgren, Virve; Viljanen, Kaarina; Mattinen, Laura; Rautio, Jari; Londesborough, John

    2014-06-01

    Zero-trans rates of maltose transport by brewer's yeasts exert strong control over fermentation rates and are strongly temperature-dependent over the temperature range (20–0 °C) of brewery fermentations. Three α-glucoside transporters, ScAgt1(A60) (a Saccharomyces cerevisiae version of Agt1 from an ale strain), ScAgt1-A548V (a variant of ScAgt1(A60) with a single amino acid change in a transmembrane domain), and SbAgt1 (a Saccharomyces (eu)bayanus version from a lager strain), were compared. When expressed in the same laboratory yeast, grown at 24 °C and assayed at 0, 10, and 20 °C, SbAgt1 had the lowest absolute maltose uptake activity at 20 °C but smallest temperature dependence, ScAgt1-A548V had the highest activity but greatest temperature dependence, and ScAgt1(A60) had intermediate properties. ScAgt1(A60) exhibited higher absolute rates and smaller temperature dependencies when expressed in laboratory rather than brewer's strains. Absolute rates closely reflected the amounts of GFP-tagged ScAgt1(A60) transporter in each host's plasma membrane. Growth at 15 °C instead of 24 °C decreased the absolute activities of strains expressing ScAgt1(A60) by two- to threefold. Evidently, the kinetic characteristics of at least ScAgt1(A60) depended on the nature of the host plasma membrane. However, no consistent correlation was observed between transport activities and fatty acid or ergosterol compositions. PMID:25035870

  16. The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype.

    PubMed

    Robinson, M B

    1998-12-01

    The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as 'excitotoxicity'. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described. PMID:10098717

  17. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells

    PubMed Central

    Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. PMID:24715955

  18. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform[OPEN

    PubMed Central

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Shadiac, Nadim; Sutton, Tim; Tyerman, Stephen D.; McPhee, Gordon; Voelcker, Nicolas H.; Lee, Jung-Goo

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na+ ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na+-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na+ ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  19. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform.

    PubMed

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Singh, Abhishek; Shadiac, Nadim; Hayes, Julie; Sutton, Tim; Gilliham, Matthew; Tyerman, Stephen D; McPhee, Gordon; Voelcker, Nicolas H; Mertens, Haydyn D T; Kirby, Nigel M; Lee, Jung-Goo; Yingling, Yaroslava G; Hrmova, Maria

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na(+) ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na(+)-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na(+) ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  20. The Role of Sodium-Dependent Glucose Transporter 1 and Glucose Transporter 2 in the Absorption of Cyanidin-3-O-β-Glucoside in Caco-2 Cells

    PubMed Central

    Zou, Tang-Bin; Feng, Dan; Song, Gang; Li, Hua-Wen; Tang, Huan-Wen; Ling, Wen-Hua

    2014-01-01

    Anthocyanins have multiple biological activities of benefit to human health. While a few studies have been conducted to evaluate the bioavailability of anthocyanins, the mechanisms of their absorption mechanism remain ill-defined. In the present study, we investigated the absorption mechanism of cyanidin-3-O-β-glucoside (Cy-3-G) in human intestinal epithelial (Caco-2) cells. Cy-3-G transport was assessed by measuring the absorptive and efflux direction. Inhibition studies were conducted using the pharmacological agents, phloridzin, an inhibitor of sodium-dependent glucose transporter 1 (SGLT1), or phloretin, an inhibitor of glucose transporter 2 (GLUT2). The results showed that phloridzin and phloretin significantly inhibited the absorption of Cy-3-G. In addition, Caco-2 cells transfected with small interfering RNA (siRNA) specific for SGLT1 or GLUT2 showed significantly decreased Cy-3-G absorption. These siRNA transfected cells also showed a significantly decreased rate of transport of Cy-3-G compared with the control group. These findings suggest that Cy-3-G absorption is dependent on the activities of SGLT1 and GLUT2 in the small intestine and that SGLT1 and GLUT2 could be a limiting step for the bioavailability of Cy-3-G. PMID:25314643

  1. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-o-β-glucoside in Caco-2 cells.

    PubMed

    Zou, Tang-Bin; Feng, Dan; Song, Gang; Li, Hua-Wen; Tang, Huan-Wen; Ling, Wen-Hua

    2014-10-01

    Anthocyanins have multiple biological activities of benefit to human health. While a few studies have been conducted to evaluate the bioavailability of anthocyanins, the mechanisms of their absorption mechanism remain ill-defined. In the present study, we investigated the absorption mechanism of cyanidin-3-O-β-glucoside (Cy-3-G) in human intestinal epithelial (Caco-2) cells. Cy-3-G transport was assessed by measuring the absorptive and efflux direction. Inhibition studies were conducted using the pharmacological agents, phloridzin, an inhibitor of sodium-dependent glucose transporter 1 (SGLT1), or phloretin, an inhibitor of glucose transporter 2 (GLUT2). The results showed that phloridzin and phloretin significantly inhibited the absorption of Cy-3-G. In addition, Caco-2 cells transfected with small interfering RNA (siRNA) specific for SGLT1 or GLUT2 showed significantly decreased Cy-3-G absorption. These siRNA transfected cells also showed a significantly decreased rate of transport of Cy-3-G compared with the control group. These findings suggest that Cy-3-G absorption is dependent on the activities of SGLT1 and GLUT2 in the small intestine and that SGLT1 and GLUT2 could be a limiting step for the bioavailability of Cy-3-G. PMID:25314643

  2. Carrier transport simulation of anomalous temperature dependence in nematic liquid crystals.

    PubMed

    Goto, Masanao; Takezoe, Hideo; Ishikawa, Ken

    2007-10-01

    We investigated the carrier transport phenomena in model liquid crystalline systems, which were constructed on the basis of the Gay-Berne potential and Monte Carlo calculation. The carrier transport was analyzed under the condition that the molecular arrangement in the system was fixed and thermally activated carriers were transported by hopping in the system. The carrier transport simulation was performed by Monte Carlo method using Miller-Abrahams hopping ratio. By these calculations, we reproduced the experimental results of the electronic conduction in nematic liquid crystals. PMID:17994925

  3. Carrier transport simulation of anomalous temperature dependence in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Goto, Masanao; Takezoe, Hideo; Ishikawa, Ken

    2007-10-01

    We investigated the carrier transport phenomena in model liquid crystalline systems, which were constructed on the basis of the Gay-Berne potential and Monte Carlo calculation. The carrier transport was analyzed under the condition that the molecular arrangement in the system was fixed and thermally activated carriers were transported by hopping in the system. The carrier transport simulation was performed by Monte Carlo method using Miller-Abrahams hopping ratio. By these calculations, we reproduced the experimental results of the electronic conduction in nematic liquid crystals.

  4. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  5. Sec24D-Dependent Transport of Extracellular Matrix Proteins Is Required for Zebrafish Skeletal Morphogenesis

    PubMed Central

    Sarmah, Swapnalee; Barrallo-Gimeno, Alejandro; Melville, David B.; Topczewski, Jacek; Solnica-Krezel, Lilianna; Knapik, Ela W.

    2010-01-01

    Protein transport from endoplasmic reticulum (ER) to Golgi is primarily conducted by coated vesicular carriers such as COPII. Here, we describe zebrafish bulldog mutations that disrupt the function of the cargo adaptor Sec24D, an integral component of the COPII complex. We show that Sec24D is essential for secretion of cartilage matrix proteins, whereas the preceding development of craniofacial primordia and pre-chondrogenic condensations does not depend on this isoform. Bulldog chondrocytes fail to secrete type II collagen and matrilin to extracellular matrix (ECM), but membrane bound receptor β1-Integrin and Cadherins appear to leave ER in Sec24D-independent fashion. Consequently, Sec24D-deficient cells accumulate proteins in the distended ER, although a subset of ER compartments and Golgi complexes as visualized by electron microscopy and NBD C6-ceramide staining appear functional. Consistent with the backlog of proteins in the ER, chondrocytes activate the ER stress response machinery and significantly upregulate BiP transcription. Failure of ECM secretion hinders chondroblast intercalations thus resulting in small and malformed cartilages and severe craniofacial dysmorphology. This defect is specific to Sec24D mutants since knockdown of Sec24C, a close paralog of Sec24D, does not result in craniofacial cartilage dysmorphology. However, craniofacial development in double Sec24C/Sec24D-deficient animals is arrested earlier than in bulldog/sec24d, suggesting that Sec24C can compensate for loss of Sec24D at initial stages of chondrogenesis, but Sec24D is indispensable for chondrocyte maturation. Our study presents the first developmental perspective on Sec24D function and establishes Sec24D as a strong candidate for cartilage maintenance diseases and craniofacial birth defects. PMID:20442775

  6. Theory of valley-dependent transport in graphene-based lateral quantum structures

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Wu; Chou, Mei-Yin; Chen, Yiing-Rei; Wu, Yu-Shu

    2016-08-01

    Modulation of electronic states in two-dimensional materials can be achieved by using in-plane variations of the band gap or the average potential in lateral quantum structures. In the atomic configurations with hexagonal symmetry, this approach makes it possible to tailor the valleytronic properties for potential device applications. In this work, we present a multiband theory to calculate the valley-dependent electron transport in graphene-based lateral quantum structures. As an example, we consider the structures with a single interface that exhibits an energy gap or potential discontinuity. The theoretical formalism proceeds within the tight-binding description, by first deriving the local bulk complex band structures in the regions of a constant gap or potential and, next, joining the local wave functions across the interface via a cell-averaged current operator to ensure the current continuity. The theory is applied to the study of electron reflection off and transmission through an interface. Both reflection and transmission are found to exhibit valley-contrast behavior that can be used to generate valley-polarized electron sources. The results vary with the type of interfaces, as well as between monolayer and bilayer graphene-based structures. In the monolayer case, the valley contrast originates from the band warping and only becomes sizable for incident carriers of high energy, whereas in AB-stacked bilayer graphene, the vertical interlayer coupling emerges as an additional important cause for valley contrast, and the favorable carrier energy is also found to be drastically lower. Our numerical results clearly demonstrate the propitious valleytronic properties of bilayer graphene structures.

  7. Volume-dependent regulation of ion transport and membrane phosphorylation in human and rat erythrocytes.

    PubMed

    Orlov, S N; Pokudin, N I; Kotelevtsev, Y V; Gulak, P V

    1989-02-01

    Osmotic swelling of human and rat erythrocytes does not induce regulatory volume decrease. Regulatory volume increase was observed in shrunken erythrocytes of rats only. This reaction was blocked by the inhibitors of Na+/H+ exchange. Cytoplasmic acidification in erythrocytes of both species increases the amiloride-inhibited component of 22Na influx by five- to eight-fold. Both the osmotic and isosmotic shrinkage of rat erythrocytes results in the 10- to 30-fold increase of amiloride-inhibited 22Na influx and a two-fold increase of furosemide-inhibited 86Rb influx. We failed to indicate any significant changes of these ion transport systems in shrunken human erythrocytes. The shrinking of quin 2-loaded human and rat erythrocytes results in the two- to threefold increase of the rate of 45Ca influx, which is completely blocked by amiloride. The dependence of volume-induced 22Na influx in rat erythrocytes and 45Ca influx in human erythrocytes on amiloride concentration does not differ. The rate of 45Ca influx in resealed ghosts was reduced by one order of magnitude when intravesicular potassium and sodium were replaced by choline. It is assumed that the erythrocyte shrinkage increases the rate of a nonselective Cao2+/(Nai+, Ki+) exchange. Erythrocyte shrinking does not induce significant phosphorylation of membrane protein but increases the 32P incorporation in diphosphoinositides. The effect of shrinkage on the 32P labeling of phosphoinositides is diminished after addition of amiloride. It is assumed that volume-induced phosphoinositide response plays an essential role in the mechanism of the activation of transmembrane ion movements. PMID:2541247

  8. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  9. Ionic mechanisms of Ca(2+)-dependent electrolyte transport across equine sweat gland epithelium.

    PubMed Central

    Ko, W H; Chan, H C; Chew, S B; Wong, P Y

    1996-01-01

    1. The ionic mechanism involved in Ca(2+)-stimulated electrolyte transport in cultured equine sweat gland epithelial cells was studied using the short-circuit current (ISC) technique. 2. Microscopy revealed that the cultured cells grown on Millipore filters formed polarized monolayers with tight junctions. Monolayers exhibited a mean transepithelial resistance of 333.9 +/- 40.4 omega cm2. 3. Ca(2+)-mobilizing agents, A23187 (1 microM) or thapsigargin (0.01-1 microM), stimulated ISC while forskolin exerted little effect on the ISC. 4. Replacement of external Cl- by gluconate significantly reduced the ISC by 63% when stimulated by 0.1 microM thapsigargin. Residual ISC could be abolished (> 99%) by elimination of HCO3- from the bathing solution. 5. Basolateral addition of bumetanide (0.1 mM), ouabain (0.01 mM) and acetazolamide (45 microM) and apical addition of methyl isobutyl amiloride (MIA, 1-100 microM) all had inhibitory effects on the thapsigargin-stimulated ISC to various extents. 6. Substantial current inhibition could be obtained using 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and diphenylamine-2-carboxylate (DPC) in a concentration-dependent manner. 7. The K+ channel blocker barium (5 mM) was effective on both sides of the epithelium with a much larger effect on the basolateral side. 8. The inhibitory effects of acetazolamide, amiloride, MIA, DIDS and DPC on the thapsigargin-stimulated ISC were also observed when a Cl(-)-free solution was used. 9. The results provide evidence for Ca(2+)-stimulated HCO3- as well as Cl- secretion by equine sweat gland epithelium. Images Figure 1 PMID:8799908

  10. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland. PMID:19702690

  11. Surface harmonics method for two-dimensional time-dependent neutron transport problems of square-lattice nuclear reactors

    SciTech Connect

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.

    2013-07-01

    Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)

  12. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport

  13. Mapping the Azimuth in the Brain through Many Channels or Just Two Populations?

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2003-03-01

    At the moment two neuronal algorithms as used by the auditory system are known(Physics Today, October 2002, pp. 13-14.) to map a sound source's azimuth in the brain by means of interaural time differences (ITDs). The Jeffress procedure (1948), which until recently was thought to be universal, assumes that a peak response occurs at those neurons where the neuronal delay offsets the acoustic delay between the two ears. These neurons then encode the position, a multi-channel coding since for a different direction other neurons take over. In small animals such as the gerbil the interaural distance is too small to resolve the azimuth through a neuronal peak response. Recently it was found(Physics Today, October 2002, pp. 13-14.) that a stimulus ITD is encoded instead by the amount of population activity depending monotonically on the azimuth angle. We present a theory (C. Leibold & J.L. van Hemmen, manuscript in preparation.) comprising both extremes and all that is in between, and explain how the corresponding, temporally amazingly precise (μs) neuronal interplay of excitation and inhibition arises during ontogeny.

  14. Canonical Azimuthal Rotations and Flanking Residues Constrain the Orientation of Transmembrane Helices

    PubMed Central

    Sánchez-Muñoz, Orlando L.; Strandberg, Erik; Esteban-Martín, E.; Grage, Stephan L.; Ulrich, Anne S.; Salgado, Jesús

    2013-01-01

    In biological membranes the alignment of embedded proteins provides crucial structural information. The transmembrane (TM) parts have well-defined secondary structures, in most cases α-helices and their orientation is given by a tilt angle and an azimuthal rotation angle around the main axis. The tilt angle is readily visualized and has been found to be functionally relevant. However, there exist no general concepts on the corresponding azimuthal rotation. Here, we show that TM helices prefer discrete rotation angles. They arise from a combination of intrinsic properties of the helix geometry plus the influence of the position and type of flanking residues at both ends of the hydrophobic core. The helical geometry gives rise to canonical azimuthal angles for which the side chains of residues from the two ends of the TM helix tend to have maximum or minimum immersion within the membrane. This affects the preferential position of residues that fall near hydrophobic/polar interfaces of the membrane, depending on their hydrophobicity and capacity to form specific anchoring interactions. On this basis, we can explain the orientation and dynamics of TM helices and make accurate predictions, which correspond well to the experimental values of several model peptides (including dimers), and TM segments of polytopic membrane proteins. PMID:23561527

  15. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate import into seeds directly determines seed size and must have been increased through domestication. However, evidence for domestication of sugar translocation and the identity of seed filling transporters remained elusive. Maize ZmSWEET4c, as opposed to its sucrose-transporting homologs...

  16. Cooling a nanomechanical resonator using spin-dependent transport and noise interference in Andreev reflections

    NASA Astrophysics Data System (ADS)

    Stadler, Pascal; Belzig, Wolfgang; Rastelli, Gianluca

    Nanoelectromechanical systems promise to manipulate mechanical motion in the quantum regime using electron transport. For such a goal, a necessary condition is the ability of cooling the resonator into or near to its quantum ground state. A still open challenge in this field is the achievement of active cooling using purely electron transport in, for instance, suspended carbon nanotube quantum dots. We consider the quantum transport in a carbon nanotube quantum dot suspended between two electric nanocontacts. Due to the interaction between electrons and flexural mechanical modes, the electron transport results in inelastic vibration-assisted tunneling processes. These give rise to a mechanical damping and to a steady nonequilibrium phonon occupation of the resonator. We discuss these effects for two different coherent transport regimes: (i) spin-polarized current between two ferromagnets and (ii) subgap Andreev current between a superconductor and normal metal.

  17. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    SciTech Connect

    Ellis, Lucy C.J.; Hawksworth, Gabrielle M.; Weaver, Richard J.

    2013-06-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD{sub 7.0}) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC{sub 50} values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein.

  18. Azimuthal velocity shear within an Earthward fast flow - further evidence for magnetotail untwisting?

    NASA Astrophysics Data System (ADS)

    Pitkänen, T.; Hamrin, M.; Norqvist, P.; Karlsson, T.; Nilsson, H.; Kullen, A.; Imber, S. M.; Milan, S. E.

    2015-03-01

    It is well known that nonzero interplanetary magnetic field By conditions lead to a twisted magnetotail configuration. The plasma sheet is rotated around its axis and tail magnetic field lines are twisted, which causes an azimuthal displacement of their ionospheric footprints. According to the untwisting hypothesis, the untwisting of twisted field lines is suggested to influence the azimuthal direction of convective fast flows in the nightside geospace. However, there is a lack of in situ magnetospheric observations, which show actual signatures of the possible untwisting process. In this paper, we report detailed Cluster observations of an azimuthal flow shear across the neutral sheet associated with an Earthward fast flow on 5 September 2001. The observations show a flow shear velocity pattern with a V⊥y sign change, near the neutral sheet (Bx~0) within a fast flow during the neutral sheet flapping motion over the spacecraft. Firstly, this implies that convective fast flows may not generally be unidirectional across the neutral sheet, but may have a more complex structure. Secondly, in this event tail By and the flow shear are as expected by the untwisting hypothesis. The analysis of the flow shear reveals a linear dependence between Bx and V⊥y close to the neutral sheet and suggests that Cluster crossed the neutral sheet in the dawnward part of the fast flow channel. The magnetospheric observations are supported by the semi-empirical T96 and TF04 models. Furthermore, the ionospheric SuperDARN convection maps support the satellite observations proposing that the azimuthal component of the magnetospheric flows is enforced by a magnetic field untwisting. In summary, the observations give strong supportive evidence to the tail untwisting hypothesis. However, the T96 ionospheric mapping demonstrates the limitations of the model in mapping from a twisted tail.

  19. Mapping Phase Velocities and Azimuthal Anisotropy of Rayleigh Waves in Iceland

    NASA Astrophysics Data System (ADS)

    Li, A.; Detrick, R. S.

    2002-05-01

    Using Rayleigh wave data recorded at both the HOTSPOT and the ICEMELT experiments in Iceland, we have applied the two-plane wave inversion technique and obtained phase velocities and azimuthal anisotropy from period 20 s to 100 s. The most striking feature is that the slow anomalies are generally confined beneath the Icelandic rift zones but not correlate with the plume center on the surface. Azimuthal anisotropy appears to be frequency dependent and also shows strong lateral variations especially between the western Iceland, the rift zones, and the eastern Iceland, as suggested by shear-wave splitting measurements. It is well known that tradeoffs exist between isotropic and anisotropic heterogeneity. We conducted resolution tests to estimate how robust the observed features of phase velocities and anisotropy are. Synthetic phase and amplitude data of Rayleigh waves were calculated from a typical phase velocity model that has low velocities beneath the Icelandic rift zones. Azimuthal anisotropy that uniformly distributes in the area or varies laterally by tectonic province was also included in the input models. The pattern of isotropic phase velocities with fast anomalies in the western and eastern Iceland and the slow in the rift zones is well recovered in both isotropic and anisotropic inversions. The azimuthal anisotropy larger than 1% in the input models can be largely retrieved. However, the amount of anisotropy when varying by tectonic province is not negligible in anisotropic solutions even for isotropic input models. Therefore, we suggest inverting synthetic data from the observed isotropic phase velocity models in order to detect whether the observed anisotropy reflects the real structure or the tradeoff with isotropic heterogeneity.

  20. Contact metal-dependent electrical transport in carbon nanotubes and fabrication of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Perello, David

    In this thesis, we fabricate and characterize carbon nanotube (CNT) and graphene-based field effect transistor devices. The CNT-based work centers around the physics of metal contacts to CNT, particularly relating the work function of contact metals to carrier transport across the junction. The graphene work is motivated by the desire to utilize the high carrier mobility of graphene in field effect transistors. CNT have excellent electrical properties including high carrier mobility, large field effect switching capabilities, and a long mean free path. Absent, however is an experimentally-backed model explaining contact-metal work function, device layout, and environment effects. To fill this void, we introduce a surface-inversion channel (SIC) model based on low temperature and electrical measurements of a distinct single-walled semiconducting CNT contacted by Hf, Cr, Ti and Pd electrodes. Anomalous barrier heights and metal-contact dependent band-to-band tunneling phenomena are utilized to show that dependent upon contact work function and gate field, transport occurs either directly between the metal and CNT channel or indirectly via injection of carriers from the metal-covered CNT region to the CNT channel. The model is consistent with previously contradictory experimental results, and the methodology is simple enough to apply in other contact-dominant systems. In agreement with the initial contact theory above, we further develop a model explain Isd-Vsd tendencies in CNT FETs. Using experimental and analytical analysis, we demonstrate a relationship between the contact metal work function and electrical transport properties saturation current (Isat) and differential conductance ssd=6Isd 6Vsd in ambient exposed CNT. A single chemical vapor deposition (CVD)-grown 6 millimeter long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Ti, Au electrodes, respectively. The observed exponentially

  1. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.

    PubMed

    Cai, Yongbing; Li, Lulu; Zhang, Hua

    2015-11-01

    Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. PMID:26291756

  2. Azimuthal Directivity of Fan Tones Containing Multiple Modes

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Sutliff, Daniel L.; Nallasamy, M.

    1997-01-01

    The directivity of fan tone noise is generally measured and plotted in the sideline or flyover plane and it is assumed that this curve is the same for all azimuthal angles. When two or more circumferential (m-order) modes of the same tone are present in the fan duct, an interference pattern develops in the azimuthal direction both in the duct and in the farfield. In this investigation two m-order modes of similar power were generated in a large low speed fan. Farfield measurements and a finite element propagation code both show substantial variations in the azimuthal direction. Induct mode measurement were made and used as input to the code. Although these tests may represent a worst case scenario, the validity of the current practice of assuming axisymmetry should be questioned.

  3. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  4. Backscatter by azimuthally oriented ice crystals of cirrus clouds.

    PubMed

    Konoshonkin, Alexander; Wang, Zhenzhu; Borovoi, Anatoli; Kustova, Natalia; Liu, Dong; Xie, Chenbo

    2016-09-01

    The backscattering Mueller matrix has been calculated for the first time for the hexagonal ice columns and plates with both zenith and azimuth preferential orientations. The possibility of a vertically pointing polarization lidar measuring the full Mueller matrix for retrieving the orientation distributions of the crystals is considered. It is shown that the element m44 or, equivalently, the circular depolarization ratio distinguishes between the low and high zenith tilts of the crystals. Then, at their low or high zenith tilts, either the element m22 or m34, respectively, should be measured to retrieve the azimuth tilts. PMID:27607728

  5. Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters1[W][OA

    PubMed Central

    Gomez, Camila; Terrier, Nancy; Torregrosa, Laurent; Vialet, Sandrine; Fournier-Level, Alexandre; Verriès, Clotilde; Souquet, Jean-Marc; Mazauric, Jean-Paul; Klein, Markus; Cheynier, Véronique; Ageorges, Agnès

    2009-01-01

    In grapevine (Vitis vinifera), anthocyanins are responsible for most of the red, blue, and purple pigmentation found in the skin of berries. In cells, anthocyanins are synthesized in the cytoplasm and accumulated into the vacuole. However, little is known about the transport of these compounds through the tonoplast. Recently, the sequencing of the grapevine genome allowed us to identify genes encoding proteins with high sequence similarity to the Multidrug And Toxic Extrusion (MATE) family. Among them, we selected two genes as anthocyanin transporter candidates and named them anthoMATE1 (AM1) and AM3. The expression of both genes was mainly fruit specific and concomitant with the accumulation of anthocyanin pigment. Subcellular localization assays in grapevine hairy roots stably transformed with AM1∷ or AM3∷green fluorescent protein fusion protein revealed that AM1 and AM3 are primarily localized to the tonoplast. Yeast vesicles expressing anthoMATEs transported acylated anthocyanins in the presence of MgATP. Inhibitor studies demonstrated that AM1 and AM3 proteins act in vitro as vacuolar H+-dependent acylated anthocyanin transporters. By contrast, under our experimental conditions, anthoMATEs could not transport malvidin 3-O-glucoside or cyanidin 3-O-glucoside, suggesting that the acyl conjugation was essential for the uptake. Taken together, these results provide evidence that in vitro the two grapevine AM1 and AM3 proteins mediate specifically acylated anthocyanin transport. PMID:19297587

  6. Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography.

    PubMed

    Wu, Tzu-Heng; Lu, Hui-Hsin; Lin, Chii-Wann

    2012-10-16

    This study examines the lithographic capacity of tips in dip-pen nanolithography (DPN). The dependence of the transport rate (R) decay on the area of lithography (A(lith)), the dependence of A(lith) on the lithographic time (t), and the effect of piranha cleaning on the lithographic capacity are considered herein. The dependencies in the line-drawing lithography process are studied using 16-mercaptohexadecanoic acid (MHA) ink. On the basis of the linear decay dependence discovered in the R-A(lith) dependence, piranha treatment can increase the lithographic capacity by up to 35.5-fold, an improvement that may originate from a change in the tip's surface chemistry. Moreover, a theoretical model is derived to describe the A(lith)-t dependence accurately and to predict the tips' lifetime. Furthermore, an experiment involving DPN-based nanostructure fabrication demonstrates the importance of monitoring the tips' transport rate and lifetime. In addition to shedding light on the physical and chemical principles behind DPN, this study provides a comprehensive model for a quantitative analysis of the tips' behavior. PMID:23020585

  7. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    PubMed Central

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  8. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering.

    PubMed

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  9. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules.

    PubMed

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become 'amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the 'amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. PMID:27240641

  10. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-05-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect.

  11. *Iron accumulation in bronchial epithelial cells is dependent on concurrent sodium transport

    EPA Science Inventory

    Airway epithelial cells prevent damaging effects of extracellular iron by taking up the metal and sequestering it within intracellular ferritin. Epithelial iron transport is associated with transcellular movement of other cations including changes in the expression or activity of...

  12. The Concentration Dependence of Active Potassium Transport in the Human Red Blood Cell*

    PubMed Central

    Sachs, John R.; Welt, Louis G.

    1967-01-01

    The relation between the active potassium influx in the human red blood cell and the extracellular potassium concentration does not appear to be consistent with the Michaelis-Menten model, but is adequately described by a model in which two potassium ions are required simultaneously at some site or sites in the transport mechanism before transport occurs. The same type of relation appears to exist between that portion of the sodium outflux that requires the presence of extracellular potassium and the extracellular potassium concentration. Rubidium, cesium, and lithium, which are apparently transported by the same system that transports potassium, stimulate the potassium influx when both potassium and the second ion are present at low concentrations, as is predicted by the two-site model. PMID:6018751

  13. Trypanosoma cruzi Proline Transport Presents a Cell Density-dependent Regulation.

    PubMed

    Sayé, Melisa; Miranda, Mariana R; Reigada, Chantal; Pereira, Claudio A

    2016-07-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is mainly obtained from extracellular medium by transport proteins, in this work we studied the regulation of the T. cruzi proline transporter TcAAAP069. Proline uptake and intracellular concentration presented oscillations during epimastigote growth phases, increasing during the early exponential phase (322 pmol/min) and decreasing to undetectable levels during the late exponential phase. Transporter expression rate correlated with proline uptake, and its subcellular localization alternated from both, the plasma membrane and close to the flagellar pocket, when the transport is higher, to only the flagellar pocket region, when the transport decreased until proline uptake and TcAAAP069 protein became undetectable at the end of the growth curve. Interestingly, when parasites were treated with conditioned medium or were concentrated to artificially increase the culture density, the proline transport was completely abolished resembling the effects observed in late exponential phase. These data highlight for the first time the existence of a density-associated regulation of relevant physiological processes such as proline metabolism. PMID:26750517

  14. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity.

    PubMed

    Aibara, Izumi; Miwa, Kyoko

    2014-12-01

    How do sessile plants cope with irregularities in soil nutrient availability? The uptake of essential minerals from the soil influences plant growth and development. However, most environments do not provide sufficient nutrients; rather nutrient distribution in the soil can be uneven and change temporally according to environmental factors. To maintain mineral nutrient homeostasis in their tissues, plants have evolved sophisticated systems for coping with spatial and temporal variability in soil nutrient concentrations. Among these are mechanisms for modulating root system architecture in response to nutrient availability. This review discusses recent advances in knowledge of the two important strategies for optimizing nutrient uptake and translocation in plants: root architecture modification and transporter expression control in response to nutrient availability. Recent studies have determined (i) nutrient-specific root patterns; (ii) their physiological consequences; and (iii) the molecular mechanisms underlying these modulation systems that operate to facilitate efficient nutrient acquisition. Another mechanism employed by plants in nutrient-heterogeneous soils involves modification of nutrient transport activities in a nutrient concentration-dependent manner. In recent years, considerable progress has been made in characterizing the diverse functions of transporters for specific nutrients; it is now clear that the expression and activities of nutrient transporters are finely regulated in multiple steps at both the transcriptional and post-transcriptional levels for adaptation to a wide range of nutrient conditions. PMID:25378690

  15. Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons

    SciTech Connect

    Ma, Guo -Liang; Bzdak, Adam

    2014-11-04

    In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.

  16. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    PubMed

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent. PMID:20630988

  17. The dynamics of the MBP-MalFGK(2) interaction: a prototype for binding protein dependent ABC-transporter systems.

    PubMed

    Shilton, Brian H

    2008-09-01

    This review is focused on the interaction between maltose binding protein (MBP) and the maltose transporter complex, MalFGK(2), which is a member of the ATP Binding Cassette (ABC) superfamily. The interaction between MBP and MalFGK(2) has a critical role in maltose transport, but a coherent description of the interaction is complicated because both MBP and MalFGK(2) can adopt multiple conformations. Drawing on genetic, structural, and biochemical data, the different conformations of MBP and MalFGK(2) are described and incorporated into a model for their interaction. The most important feature of this model is that ligand-bound MBP initiates the process of ATP-dependent maltose transport by stabilizing a high-energy conformation of MalFGK(2). In this model of the MBP-MalFGK(2) interaction, stabilization of a high-energy conformation of MalFGK(2) allows ATP to drive conformational changes in the system - in particular the opening of bound MBP - that leads to formation of a transition state for ATP hydrolysis. Such a role for ligand-bound MBP explains how MBP-independent MalFGK(2) mutants work, and represents a general mechanism for binding-protein dependent ABC import systems. In ABC export systems, which do not use a binding protein, the substrate itself is expected to play a role similar to ligand-bound MBP in the maltose transport system. The mechanistic model for the maltose transporter suggests that ABC-type import systems evolved to make use of a peripheral binding protein so that the transport process is essentially irreversible. PMID:17950243

  18. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    SciTech Connect

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Ma, D. H.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  19. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ma, D. H.; Ding, Z.; Wu, Y. Z.

    2015-07-01

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO3(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  20. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-01

    We present an exact analytical approach for arbitrary field-dependent critical state of high-Tc superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the Ia-Ba plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  1. Field-dependent critical state of high-Tc superconducting strip simultaneously exposed to transport current and perpendicular magnetic field

    SciTech Connect

    Xue, Cun; He, An; Yong, Huadong; Zhou, Youhe

    2013-12-15

    We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agree with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.

  2. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake.

    PubMed

    Huber, K; Hempel, R; Rodehutscord, M

    2006-11-01

    The objective of this study was to explore the homeostatic response of jejunal and renal epithelia regarding the inorganic phosphate (P(i)) transport capacities to variations in dietary total phosphorus (tP) supply in hens. Adaptive processes were determined by quantitative measures of intake and excretion, P(i) transport studies across brush border membranes, and semiquantitative detection of sodium-dependent phosphate transporters (NaPi II) based on mRNA expression in the jejunum and kidney. Twelve hens (4/group) were adapted to 3 tP feeding levels in a pair-fed manner (60 g/d): low P diet with 0.073% tP, medium P diet with 0.204% tP, and high P diet with 0.343% tP. Excretion was measured during the last 5 d of a 16-d feeding period. After slaughtering, jejunal mucosa and renal cortex were removed. Tissues were used for (32)P uptake studies in brush-border membrane vesicles by rapid filtration technique and NaPi II mRNA expression studies by northern analyses. Plasma P(i) concentrations were additionally measured. The NaPi II transporter mRNA could specifically be detected in chicken jejunum and kidney. Functional parameters of Na(+)-dependent P(i) transport indicated that these transporters were involved in chicken P(i) transport across the apical membranes of jejunal and renal epithelia. Increased tP intake resulted in an increased overall tP excretion. Correlating individual data from all animals by linear regression highlighted that the adaptive decrease of renal P(i) transport capacity and NaPi IIa mRNA expression was associated with an increase in plasma P(i) levels and resulted in a higher tP excretion. Jejunal P(i) transport capacity and NaPi IIb mRNA expression did not react to variations in dietary tP supply. In conclusion, the homeostatic response was mainly based on the adaptive capacity of the kidney in hens. PMID:17032833

  3. Protonation-dependent conformational dynamics of the multidrug transporter EmrE

    PubMed Central

    Dastvan, Reza; Mishra, Smriti; Meiler, Jens; Mchaourab, Hassane S.

    2016-01-01

    The small multidrug transporter from Escherichia coli, EmrE, couples the energetically uphill extrusion of hydrophobic cations out of the cell to the transport of two protons down their electrochemical gradient. Although principal mechanistic elements of proton/substrate antiport have been described, the structural record is limited to the conformation of the substrate-bound state, which has been shown to undergo isoenergetic alternating access. A central but missing link in the structure/mechanism relationship is a description of the proton-bound state, which is an obligatory intermediate in the transport cycle. Here we report a systematic spin labeling and double electron electron resonance (DEER) study that uncovers the conformational changes of EmrE subsequent to protonation of critical acidic residues in the context of a global description of ligand-induced structural rearrangements. We find that protonation of E14 leads to extensive rotation and tilt of transmembrane helices 1–3 in conjunction with repacking of loops, conformational changes that alter the coordination of the bound substrate and modulate its access to the binding site from the lipid bilayer. The transport model that emerges from our data posits a proton-bound, but occluded, resting state. Substrate binding from the inner leaflet of the bilayer releases the protons and triggers alternating access between inward- and outward-facing conformations of the substrate-loaded transporter, thus enabling antiport without dissipation of the proton gradient. PMID:26787875

  4. Anomalous diameter dependence of thermal transport in ultra-narrow Si nanowires

    SciTech Connect

    Karamitaheri, Hossein; Neophytou, Neophytos; Kosina, Hans

    2014-01-14

    We present atomistic valence force field calculations of thermal transport in Si nanowires of diameters from 12 nm down to 1 nm. We show that as the diameter is reduced, the phonon density-of-states and transmission function acquire a finite value at low frequency, in contrast to approaching zero as in the bulk material. It turns out that this effect results in what Ziman described as the “problem of long longitudinal waves” [J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1962)], which states that the thermal conductivity of a material increases as its length is increased due to the vanishing scattering for long-wavelength phonons. We show that this thermal transport improvement also appears in nanowires as their diameter is decreased below D = 5 nm (not only as the length increases), originating from the increase in the density of the long wavevector modes. The observation is present under ballistic transport conditions, and further enhanced with the introduction of phonon-phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is reduced, phonon transport is dominated more and more by lower energy phonons with longer mean-free paths. We show that ∼80% of the heat is carried by phonons with energies less than 5 meV, most with mean-free paths of several hundreds of nanometers.

  5. Fluoride-dependent interruption of the transport cycle of a CLC Cl−/H+ antiporter

    PubMed Central

    Lim, Hyun-Ho; Stockbridge, Randy B.; Miller, Christopher

    2013-01-01

    Cl−/H+ antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl−, Br−, I−,NO3−, and SCN−, but appear to be very selective against F−. The recent discovery of a new CLC clade of F−/H+ antiporters, which are highly selective for F− over Cl−, led us to investigate the mechanism of Cl−-over-F− selectivity by a CLC Cl−/H+ antiporter, CLC-ec1. By subjecting purified CLC-ec1 to anion transport measurements, electrophysiological recording, equilibrium ligand-binding studies, and x-ray crystallography, we show that F− binds in the Cl− transport pathway with affinity similar to Cl−, but stalls the transport cycle. Examination of various mutant antiporters implies a “lock-down” mechanism of F− inhibition, in which F−, by virtue of its unique H-bonding chemistry, greatly retards a proton-linked conformational change essential for the transport cycle of CLC-ec1. PMID:24036509

  6. Regulation of nitrate transport in citrus rootstocks depending on nitrogen availability.

    PubMed

    Cerezo, Miguel; Camañes, Gemma; Flors, Víctor; Primo-Millo, Eduardo; García-Agustín, Pilar

    2007-09-01

    Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO(3) (-). The V(max) for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks.Additionally, we studied the regulation of root NO(3) (-) uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO(3) (-) and down-regulated by the N status and by NO(3) (-) itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status.The use of various metabolic uncouplers or inhibitors indicated that NO(3) (-) net uptake mediated by iHATS and LATS was an active transport system in both rootstocks. PMID:19516998

  7. Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter.

    PubMed

    Lim, Hyun-Ho; Stockbridge, Randy B; Miller, Christopher

    2013-11-01

    Cl(-)/H(+) antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl(-), Br(-), I(-), NO3(-) and SCN(-), but they seem to be very selective against F(-). The recent discovery of a new CLC clade of F(-)/H(+) antiporters, which are highly selective for F(-) over Cl(-), led us to investigate the mechanism of Cl(-)-over-F(-) selectivity by a CLC Cl(-)/H(+) antiporter, CLC-ec1. By subjecting purified CLC-ec1 to anion transport measurements, electrophysiological recording, equilibrium ligand-binding studies and X-ray crystallography, we show that F(-) binds in the Cl(-) transport pathway with affinity similar to Cl(-) but stalls the transport cycle. Examination of various mutant antiporters implies a 'lock-down' mechanism of F(-) inhibition, in which F(-), by virtue of its unique hydrogen-bonding chemistry, greatly retards a proton-linked conformational change essential for the transport cycle of CLC-ec1. PMID:24036509

  8. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  9. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Quigley, Andrew; Carpenter, Elisabeth P; Hruz, Paul W

    2016-08-12

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  10. Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains

    PubMed Central

    Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    ABSTRACT The nuclear transport of paxillin appears to be crucial for paxillin function but the mechanism of transport remains unclear. Here, we show that the nuclear transport of paxillin is regulated by focal adhesion turnover and the presence of FAT domains. Focal adhesion turnover was controlled using triangular or circular fibronectin islands. Circular islands caused higher focal adhesion turnover and increased the nuclear transport of paxillin relative to triangular islands. Mutating several residues of paxillin had no effect on its nuclear transport, suggesting that the process is controlled by multiple domains. Knocking out FAK (also known as PTK2) and vinculin caused an increase in nuclear paxillin. This could be reversed by rescue with wild-type FAK but not by FAK with a mutated FAT domain, which inhibits paxillin binding. Expressing just the FAT domain of FAK not only brought down nuclear levels of paxillin but also caused a large immobile fraction of paxillin to be present at focal adhesions, as demonstrated by fluorescence recovery after photobleaching (FRAP) studies. Taken together, focal adhesion turnover and FAT domains regulate the nuclear localization of paxillin, suggesting a possible role for transcriptional control, through paxillin, by focal adhesions. PMID:27068537

  11. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  12. Azimuthal correlations and alignment of particles in gamma families

    SciTech Connect

    Yuldashbaev, T. S. Chudakov, V. M.; Nuritdinov, Kh.

    2008-11-15

    Azimuthal angular correlations and the alignment of photons are studied in gamma families recorded by the Pamir Collaboration in a carbon x-ray emulsion chamber. The present interpretation of these experimental data is based on a model of semihard parton scattering in nucleon-nucleus collisions and on arguments favoring the production of exotic beam strings and heavy leading resonances undergoing quasicoplanar decays.

  13. Azimuthally acoustic logging tool to evaluate cementing quality

    NASA Astrophysics Data System (ADS)

    Lu, Junqiang; Ju, Xiaodong; Qiao, Wenxiao; Men, Baiyong; Wang, Ruijia; Wu, Jinping

    2014-08-01

    An azimuthally sensitive acoustic bond tool (AABT) uses a phased arc array transmitter that can provide directionally focused radiation. The acoustic sonde consists of a phased arc array transmitter and two monopole receivers, the spaces from the transmitter being 0.91 m and 1.52 m, respectively. The transmitter includes eight transducer sub-units. By controlling the high-voltage firing signal phase for each transmitter, the radiation energy of the phased arc array transducer can be focused in a single direction. Compared with conventional monopole and dipole transmitters, the new transmitter provides cement quality evaluation with azimuthal sensitivity, which is not possible with conventional cement bond log/variable density log tools. Laboratory measurements indicate that the directivity curves for the phased arc array and those computed theoretically are consistent and show good agreement. We acquire measurements from a laboratory cistern and from the field to validate the reliability and applicability of the AABT. Results indicate that the AABT accurately evaluates the azimuthal cement quality of case-cement interfaces by imaging the amplitude of the first-arrival wave. This tool visualizes the size, position and orientation of channeling and holes. In the case of good case-cement bonding, the AABT also evaluates the azimuthal cementing quality of the cement formation interface by imaging the amplitude of formation waves.

  14. Azimuthal decorrelation of forward jets in deep inelastic scattering

    SciTech Connect

    Sabio Vera, Agustin; Schwennsen, Florian

    2008-01-01

    We study the azimuthal angle decorrelation of forward jets in deep inelastic scattering. We make predictions for this observable at HERA describing the high energy limit of the relevant scattering amplitudes with quasi-multi-Regge kinematics together with a collinearly-improved evolution kernel for multiparton emissions.

  15. Automobile dependence in cities: An international comparison of urban transport and land use patterns with implications for sustainability

    SciTech Connect

    Kenworthy, J.R.; Laube, F.B.

    1996-07-01

    Cities around the world are subject to increasing levels of environmental impact from dependence on the automobile. In the highly auto-dependent cities of the US and Australia, this is manifested in problems such as urban sprawl and its destruction of prime farming land and natural landscapes, photochemical smog that can be primarily attributed to auto emissions. On top of the more local impacts of the automobile, the global dimension should not be forgotten. Perhaps the two most pressing issues in this regard are the oil problem and the greenhouse problem. A comparison of global cities over the period 1980 to 1990 reveals large differences in automobile dependence with implications for the future sustainability of cities in different countries. This study explores some of the underlying land use, transport, and economic reasons for these different transport patterns. It briefly reviews what the sustainability agenda means for transport and land use patterns in cities and suggests a suite of targets or goals for sustainability by which cities might measure their current directions and plans.

  16. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-03-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.

  17. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  18. Measurement of azimuthal asymmetries of the unpolarized cross section at HERMES

    SciTech Connect

    Giordano, Francesca; Lamb, Rebecca

    2009-08-04

    A multi-dimensional (x, y, z, P{sub hperpendicular}) extraction of cos {phi}{sub h} and cos 2{phi}{sub h} azimuthal asymmetries of unpolarized Semi-Inclusive Deep Inelastic Scattering at HERMES is discussed. The use of data taken with hydrogen and deuterium targets and the separation of positive and negative hadrons allow to access flavor-dependent information about quark intrinsic transverse momenta and spin-orbit correlations. This flavor sensitivity allows for a discrimination between theoretical models in the HERMES kinematic regime.

  19. Measurement of hadron azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pavel, N.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Sandacz, A.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    A study of the distribution of the azimuthal angle ϕ of charged hadrons in deep inelastic μ- p scattering is presented. The dependence of the moments of this distribution on the Feynman x variable and the momentum transverse to the virtual photon indicates that non-zero moments arise mainly from the effects of the intrinsic K T of the struck quark with < K {/T 2}>>≳(0.44 GeV)2, and to a lesser extent from QCD processes. No significant variation with Q 2 or W 2 is observed.

  20. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.

    PubMed Central

    Russell, J B; Strobel, H J; Driessen, A J; Konings, W N

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake. PMID:3136141

  1. Time-Dependent Neutral Particle Transport Benchmarks in Two and Three Dimensions

    SciTech Connect

    Barry D. Ganapol

    2007-10-12

    The main objective of NEER grant was to generate highly accurate 2D and 3D time-dependent neutral particle intensity maps from 3D pulsed wire sources through integration of the analytical representation of a time-dependent point source.

  2. AtCCX3 is an Arabidopsis endomembrane H(+)-dependent K(+) transporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis ("Arabidopsis thaliana") cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant "CCXs" have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants...

  3. A KINETIC MODEL FOR CELL DENSITY DEPENDENT BACTERIAL TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    A kinetic transport model with the ability to account for variations in cell density of the aqueous and solid phases was developed for bacteria in porous media. Sorption kinetics in the advective-dispersive-sorptive equation was described by assuming that adsorption was proportio...

  4. Coupled Factors Influencing Concentration Dependent Colloid Transport and Retention in Saturated Porous Media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coupled influence of input suspension concentration (Ci), ionic strength (IS) and hydrodynamics on the transport and retention of 1.1 'm carboxyl modified latex colloids in saturated quartz sand (150 'm) was investigated. Results from batch experiments and interaction energy calculations indica...

  5. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  6. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.

    2016-03-01

    We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.

  7. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for

  8. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection.

    PubMed Central

    Verheul, A; Rombouts, F M; Beumer, R R; Abee, T

    1995-01-01

    Listeria monocytogenes is a gram-positive, psychotrophic, food-borne pathogen which is able to grow in osmotically stressful environments. Carnitine (beta-hydroxy-L-tau-N-trimethyl aminobutyrate) can contribute significantly to growth of L. monocytogenes at high osmolarity (R. R. Beumer, M. C. te Giffel, L. J. Cox, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 60:1359-1363, 1994). Transport of L-[N-methyl-14C]carnitine in L. monocytogenes was shown to be energy dependent. Analysis of cell extracts revealed that L-carnitine was not further metabolized, which supplies evidence for its role as an osmoprotectant in L. monocytogenes. Uptake of L-carnitine proceeds in the absence of a proton motive force and is strongly inhibited in the presence of the phosphate analogs vanadate and arsenate. The L-carnitine permease is therefore most likely driven by ATP. Kinetic analysis of L-carnitine transport in glucose-energized cells revealed the presence of a high-affinity uptake system with a Km of 10 microM and a maximum rate of transport (Vmax) of 48 nmol min-1 mg of protein-1. L-[14C]carnitine transport in L. monocytogenes is significantly inhibited by a 10-fold excess of unlabelled L-carnitine, acetylcarnitine, and tau-butyrobetaine, whereas L-proline and betaine display, even at a 100-fold excess, only a weak inhibitory effect. In conclusion, an ATP-dependent L-carnitine transport system in L. monocytogenes is described, and its possible roles in cold adaptation and intracellular growth in mammalian cells are discussed. PMID:7768820

  9. Quantum transport of injected electrons in an asymmetric FM/I 1/SC/I 2/FM junction: Directional dependence

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Tang, I.-Ming; Hoonsawat, Rassmidara

    2008-07-01

    We have studied the directional dependence of the spin dependent coherent quantum transport in an asymmetric nano layer FM/I1/SC/I2/FM junction. We have used the Bogoliubov-de Gennes equations to describe the quasiparticles in the different layers in the junction. The two ferromagnetic layers are taken to be the same material, while the SC is taken to be a s-wave superconductor, I1 and I2 are taken to be thin insulating layers made with different materials. Both the effects of parallel (P) and anti parallel (AP) alignments of the magnetizations in the different FM layers are studied. We find that the probabilities for the Andreev and normal reflections and for the transmission of the particles into the ferromagnetic layers are dependent on the spins. We also find that the transports of the particles injected from the left side into the FM/I1/SC/I2/FM and into the FM/I2/SC/I1/FM junctions are different. When the I1 and I2 are removed (resulting in the formation of a trilayer FM/SC/FM junction) and the thickness of the SC layer is made small, the probability for the Andreev reflection is seen to depend on the spins of the particles in contradiction to the results obtained by Bozovic and Radovic [M. Bozovic, Z. Radovic, Phys. Rev. B 66 (2002) 134524].

  10. Na/sup +/-H/sup +/ exchange and Na/sup +/-dependent transport systems in streptozotocin diabetic rat kidneys

    SciTech Connect

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na/sup +/-H/sup +/ exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of /sup 22/Na/sup +/, and stimulated /sup 22/Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H/sup +/ gradient-dependent Na/sup +/ uptake and Na/sup +/ gradient-dependent H/sup +/ flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na/sup +/ gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin.

  11. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington's disease mice.

    PubMed

    McClory, Hollis; Williams, Dana; Sapp, Ellen; Gatune, Leah W; Wang, Ping; DiFiglia, Marian; Li, Xueyi

    2014-01-01

    Huntington's disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD(140Q/140Q) neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD(140Q/140Q) mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD(140Q/140Q) mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD(140Q/140Q) mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD. PMID:25526803

  12. AtCCX3 Is an Arabidopsis Endomembrane H+-Dependent K+ Transporter1[W][OA

    PubMed Central

    Morris, Jay; Tian, Hui; Park, Sunghun; Sreevidya, Coimbatore S.; Ward, John M.; Hirschi, Kendal D.

    2008-01-01

    The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na+, K+, and Mn2+ transport. We also report high-capacity uptake of 86Rb+ in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of 86Rb+ uptake in AtCCX3 cells by excess Na+, K+, and Mn2+. Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl2. Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na+ accumulation and increased 86Rb+ transport. Uptake of 86Rb+ increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H+-dependent K+ transporter with apparent Na+ and Mn2+ transport properties distinct from those of previously characterized plant transporters. PMID:18775974

  13. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Astrophysics Data System (ADS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-03-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  14. Model predictions of latitude-dependent ozone depletion due to supersonic transport operations

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  15. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  16. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  17. A Novel Member of the Trehalose Transporter Family Functions as an H+-Dependent Trehalose Transporter in the Reabsorption of Trehalose in Malpighian Tubules

    PubMed Central

    Kikuta, Shingo; Hagiwara-Komoda, Yuka; Noda, Hiroaki; Kikawada, Takahiro

    2012-01-01

    In insects, Malpighian tubules are functionally analogous to mammalian kidneys in that they not only are essential to excrete waste molecules into the lumen but also are responsible for the reabsorption of indispensable molecules, such as sugars, from the lumen to the principal cells. Among sugars, the disaccharide trehalose is highly important to insects because it is the main hemolymph sugar to serve as a source of energy and carbon. The trehalose transporter TRET1 participates in the transfer of newly synthesized trehalose from the fat body across the cellular membrane into the hemolymph. Although transport proteins must play a pivotal role in the reabsorption of trehalose in Malpighian tubules, the molecular context underlying this process remains obscure. Previously, we identified a Tret1 homolog (Nlst8) that is expressed principally in the Malpighian tubules of the brown planthopper (BPH). Here, we used the Xenopus oocyte expression system to show that NlST8 exerts trehalose transport activity that is elevated under low pH conditions. These functional assays indicate that Nlst8 encodes a proton-dependent trehalose transporter (H-TRET1). To examine the involvement of Nlst8 in trehalose reabsorption, we analyzed the sugar composition of honeydew by using BPH with RNAi gene silencing. Trehalose was detected in the honeydew as waste excreted from Nlst8-dsRNA-injected BPH under hyperglycemic conditions. However, trehalose was not expelled from GFP-dsRNA-injected BPH even under hyperglycemic conditions. We conclude that NlST8 could participate in trehalose reabsorption driven by a H+ gradient from the lumen to the principal cells of the Malpighian tubules. PMID:22934042

  18. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    PubMed

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-02-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  19. Two-path transport measurements with bias dependence on a triple quantum dot

    SciTech Connect

    Kotzian, M.; Rogge, M. C.; Haug, R. J.

    2013-12-04

    We present transport measurements on a lateral triple quantum dot with a star-like geometry and one lead attached to each dot. The system is studied in a regime close to established quadruple points, where all three dots are in resonance. The specific sample structure allows us to apply two different bias voltages to the two source leads and thus to study the influence between the paths with serial double dots.

  20. Two-path transport measurements with bias dependence on a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Kotzian, M.; Rogge, M. C.; Haug, R. J.

    2013-12-01

    We present transport measurements on a lateral triple quantum dot with a star-like geometry and one lead attached to each dot. [1] The system is studied in a regime close to established quadruple points, where all three dots are in resonance. The specific sample structure allows us to apply two different bias voltages to the two source leads and thus to study the influence between the paths with serial double dots.

  1. Cell-cycle-dependent regulation of CNT1, a concentrative nucleoside transporter involved in the uptake of cell-cycle-dependent nucleoside-derived anticancer drugs.

    PubMed

    Valdés, Raquel; Casado, F Javier; Pastor-Anglada, Marçal

    2002-08-23

    Most nucleoside-derived anticancer drugs are taken up by the high-affinity Na-dependent nucleoside transporter CNT1. Since such drugs are to some extent cell-cycle-dependent in their cytotoxic action, we examined the relationship between CNT1 expression and cell-cycle progression in the rat hepatoma cell line FAO. Cell cultures were synchronized either at late G1 or early S stages by combining mimosin treatment with either previous synchronization or not by serum starvation. Cell-cycle progression was then assessed by measuring [methyl-3H]thymidine incorporation into DNA and monitoring cyclin E and A protein levels. In these conditions, CNT1 protein amounts increase at the G1-S transition. When cells were synchronized using hydroxyurea (HU), which directly interacts with nucleotide metabolism by inhibiting ribonucleotide reductase, CNT1 protein amounts increased in synchronized cells and remained high during cell-cycle progression. These data indicate that CNT1 adapts to cell-cycle progression and responds to nucleos(t)ide metabolism status, a feature that might contribute to the cytotoxic action of cell-cycle-dependent anticancer drugs. PMID:12176019

  2. Substrate-dependent dynamics of the multidrug efflux transporter AcrB of Escherichia coli.

    PubMed

    Yamamoto, Kentaro; Tamai, Rei; Yamazaki, Megumi; Inaba, Takehiko; Sowa, Yoshiyuki; Kawagishi, Ikuro

    2016-01-01

    The resistance-nodulation-cell division (RND)-type xenobiotic efflux system plays a major role in the multidrug resistance of gram-negative bacteria. The only constitutively expressed RND system of Escherichia coli consists of the inner membrane transporter AcrB, the membrane fusion protein AcrA, and the outer membrane channel TolC. The latter two components are shared with another RND-type transporter AcrD, whose expression is induced by environmental stimuli. Here, we demonstrate how RND-type ternary complexes, which span two membranes and the cell wall, form in vivo. Total internal reflection fluorescence (TIRF) microscopy revealed that most fluorescent foci formed by AcrB fused to green fluorescent protein (GFP) were stationary in the presence of TolC but showed lateral displacements when tolC was deleted. The fraction of stationary AcrB-GFP foci decreased with increasing levels of AcrD. We propose that the AcrB-containing complex becomes unstable upon the induction of AcrD, which presumably replaces AcrB, a process we call "transporter exchange." This instability is suppressed by AcrB-specific substrates, suggesting that the ternary complex is stabilised when it is in action. These results suggest that the assembly of the RND-type efflux system is dynamically regulated in response to external stimuli, shedding new light on the adaptive antibiotic resistance of bacteria. PMID:26916090

  3. Substrate-dependent dynamics of the multidrug efflux transporter AcrB of Escherichia coli

    PubMed Central

    Yamamoto, Kentaro; Tamai, Rei; Yamazaki, Megumi; Inaba, Takehiko; Sowa, Yoshiyuki; Kawagishi, Ikuro

    2016-01-01

    The resistance-nodulation-cell division (RND)-type xenobiotic efflux system plays a major role in the multidrug resistance of gram-negative bacteria. The only constitutively expressed RND system of Escherichia coli consists of the inner membrane transporter AcrB, the membrane fusion protein AcrA, and the outer membrane channel TolC. The latter two components are shared with another RND-type transporter AcrD, whose expression is induced by environmental stimuli. Here, we demonstrate how RND-type ternary complexes, which span two membranes and the cell wall, form in vivo. Total internal reflection fluorescence (TIRF) microscopy revealed that most fluorescent foci formed by AcrB fused to green fluorescent protein (GFP) were stationary in the presence of TolC but showed lateral displacements when tolC was deleted. The fraction of stationary AcrB-GFP foci decreased with increasing levels of AcrD. We propose that the AcrB-containing complex becomes unstable upon the induction of AcrD, which presumably replaces AcrB, a process we call “transporter exchange.” This instability is suppressed by AcrB-specific substrates, suggesting that the ternary complex is stabilised when it is in action. These results suggest that the assembly of the RND-type efflux system is dynamically regulated in response to external stimuli, shedding new light on the adaptive antibiotic resistance of bacteria. PMID:26916090

  4. Dependence of the electronic transport on the microstructure in annealed Bi thin films

    NASA Astrophysics Data System (ADS)

    Bui, Thanh; Raskin, Jean-Pierre; Malet, Loic; Godet, Stephane; Rodrigues Martins, Frederico; Faniel, Sebastien; Gonze, Xavier; Cabosart, Damien; Hackens, Benoit

    2013-03-01

    Bi thin films, with a thickness ranging from 10 to 100 nm, are deposited by electron-beam evaporation on a thermally oxidized Si(100) substrate. The deposition parameters are optimized in order to maximize the grain size of the polycrystalline films. The evolution of the crystal orientation is examined as a function of the deposition and annealing parameters, by electron back scattering diffraction. Low temperature (21 mK - 150 K) magnetoresistance measurements (up to 15 T) on polycrystalline films reveal weak anti-localization, superimposed by the classical magnetoresistance. The analysis of the weak anti-localization allows us to extract quantum transport parameters, such as the phase coherence and the spin orbit coupling time. From the evolution of the broad magnetoresistance background, we infer the evolution of electronic transport parameters: the mobility, the charge carrier concentration and the mean free path. Magneto-transport and ab initio calculations are combined in order to investigate on the controversial existence of the semimetal-semiconductor transition.

  5. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition.

    PubMed

    Kurlanda-Witek, H; Ngwenya, B T; Butler, I B

    2014-07-01

    Zinc oxide (ZnO) nanoparticles are one of the most frequently used nanoparticles in industry and hence are likely to be introduced to the groundwater environment. The mobility of these nanoparticles in different aquifer materials has not been assessed. While some studies have been published on the transport of ZnO nanoparticles in individual porous media, these studies do not generally account for varying porous medium composition both within and between aquifers. As a first step towards understanding the impact of this variability, this paper compares the transport of bare ZnO nanoparticles (bZnO-NPs) and capped ZnO nanoparticles, coated with tri-aminopropyltriethoxysilane (cZnO-NPs), in saturated columns packed with glass beads, fine grained sand and fine grained calcite, at near-neutral pH and groundwater salinity levels. With the exception of cZnO-NPs in sand columns, ZnO nanoparticles are highly immobile in all three types of studied porous media, with most retention taking place near the column inlet. Results are in general agreement with DLVO theory, and the deviation in experiments with cZnO-NPs flowing through columns packed with sand is linked to variability in zeta potential of the capped nanoparticles and sand grains. Therefore, differences in surface charge of nanoparticles and porous media are demonstrated to be key drivers in nanoparticle transport. PMID:24796515

  6. Temperature dependence of the transport of single-file water molecules through a hydrophobic channel.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-05-01

    Although great effort has been made on the transport properties of water molecules through nanometer channels, our understanding on the effect of some basic parameters are still rather poor. In this article, we use molecular dynamics simulations to study the temperature effect on the transport of single-file water molecules through a hydrophobic channel. Of particular interest is that the water flow and average translocation time both exhibit exponential relations with the temperature. Based on the continuous-time random-walk model and Arrhenius equation, we explore some new physical insights on these exponential behaviors. With the increase of temperature, the water dipoles flip more frequently, since the estimated flipping barrier is less than 2 kB T. Specifically, the flipping frequency also shows an exponential relation with the temperature. Furthermore, the water-water interaction and water occupancy demonstrate linear relations with the temperature, and the water density profiles along the channel axis can be slightly affected by the temperature. These results not only enhance our knowledge about the temperature effect on the single-file water transport, but also have potential implications for the design of controllable nanofluidic machines. © 2016 Wiley Periodicals, Inc. PMID:26777386

  7. Experimental Determination of The Space and Flow Rate Dependency of The Subsoil Transport Parameters

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Vanclooster, M.

    Within this presentation, the influence of the flow rate and scale on the transport of a non-reactive saline tracer in a large undisturbed sandy subsoil monolith is stud- ied. The monolithique sample was extracted in a quarry at 10 m depth from the sur- face and equipped in the laboratory with tensiometers, temperature probes and time- domain-reflectometry probes. Eight solute breakthrough experiments were conducted at different flow rates allowing to elucidate the solute transport parameters in terms of a variable flow rate. The latter was controlled by means of a high precision irri- gation system in a range between 1 and 100 cm/d. Solute resident concentrations of a saline tracer was continuously monitored through 10 TDR probes of 0.4 m length, inserted in 3 vertical transects. Time series were used to estimate apparent dispersiv- ities and velocities at different locations by inversion of the analytical solution of the convection-dispersion equation for solute resident concentrations. The evolution of the apparent dispersivity with depth is studied in order to characterize the transport pro- cesses. Horizontal heterogeneity of the effective parameters is related to a mesoscale effective dispersivity factor. Furthermore, influence of the flow rate on the estimated dispersivity is also investigated.

  8. Temperature-dependent thermal transport in holey silicon nanostructures investigated by impulsive stimulated thermal scattering

    NASA Astrophysics Data System (ADS)

    Duncan, Ryan; Vega-Flick, Alejandro; Maznev, Alexei; Lu, Zhengmao; Zeng, Lingping; Zhou, Jiawei; Peraud, Jean-Philippe; Wang, Evelyn; Chen, Gang; Nelson, Keith

    Nanostructuring of semiconductor materials provides a promising means for the decoupling of their electronic and thermal conductivities, making such systems of great interest to the fields of thermoelectrics and microelectronics. Prior investigations indicated that Brillouin zone-folding and phononic band-gap formation may play a role in the diminished thermal conductivity observed in such structures, although it is unclear to what degree such effects manifest themselves over different temperature ranges. We investigate thermal transport properties as a function of temperature for a series of nanoporous silicon membranes using impulsive stimulated thermal scattering (ISTS)--a non-contact optical technique for measuring in-plane thermal transport. Measurements were carried out at temperatures ranging from 350 to 84 K on samples with pore diameters of 130 nm and pitch sizes ranging from 150 to 500 nm. Monte Carlo simulations for phonon transport were performed for comparison to experimental observations. We will discuss the experimental and computational results, and attempt to determine whether the experimental data are consistent with the diffuse boundary scattering model in which phononic crystal effects are absent.

  9. Redundancy in Periplasmic Binding Protein-Dependent Transport Systems for Trehalose, Sucrose, and Maltose in Sinorhizobium meliloti

    PubMed Central

    Jensen, John Beck; Peters, N. Kent; Bhuvaneswari, T. V.

    2002-01-01

    We have identified a cluster of six genes involved in trehalose transport and utilization (thu) in Sinorhizobium meliloti. Four of these genes, thuE, -F, -G, and -K, were found to encode components of a binding protein-dependent trehalose/maltose/sucrose ABC transporter. Their deduced gene products comprise a trehalose/maltose-binding protein (ThuE), two integral membrane proteins (ThuF and ThuG), and an ATP-binding protein (ThuK). In addition, a putative regulatory protein (ThuR) was found divergently transcribed from the thuEFGK operon. When the thuE locus was inactivated by gene replacement, the resulting S. meliloti strain was impaired in its ability to grow on trehalose, and a significant retardation in growth was seen on maltose as well. The wild type and the thuE mutant were indistinguishable for growth on glucose and sucrose. This suggested a possible overlap in function of the thuEFGK operon with the aglEFGAK operon, which was identified as a binding protein-dependent ATP-binding transport system for sucrose, maltose, and trehalose. The Kms for trehalose transport were 8 ± 1 nM and 55 ± 5 nM in the uninduced and induced cultures, respectively. Transport and growth experiments using mutants impaired in either or both of these transport systems show that these systems form the major transport systems for trehalose, maltose, and sucrose. By using a thuE′-lacZ fusion, we show that thuE is induced only by trehalose and not by cellobiose, glucose, maltopentaose, maltose, mannitol, or sucrose, suggesting that the thuEFGK system is primarily targeted toward trehalose. The aglEFGAK operon, on the other hand, is induced primarily by sucrose and to a lesser extent by trehalose. Tests for root colonization, nodulation, and nitrogen fixation suggest that uptake of disaccharides can be critical for colonization of alfalfa roots but is not important for nodulation and nitrogen fixation per se. PMID:12003938

  10. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis

    PubMed Central

    Jia, Honglei; Hu, Yanfeng; Fan, Tingting; Li, Jisheng

    2015-01-01

    Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis. PMID:25652660

  11. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions.

    PubMed

    Yamada, Kohji; Kanai, Motoki; Osakabe, Yuriko; Ohiraki, Haruka; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-16

    Plant roots are able to absorb sugars from the rhizosphere but also release sugars and other metabolites that are critical for growth and environmental signaling. Reabsorption of released sugar molecules could help reduce the loss of photosynthetically fixed carbon through the roots. Although biochemical analyses have revealed monosaccharide uptake mechanisms in roots, the transporters that are involved in this process have not yet been fully characterized. In the present study we demonstrate that Arabidopsis STP1 and STP13 play important roles in roots during the absorption of monosaccharides from the rhizosphere. Among 14 STP transporter genes, we found that STP1 had the highest transcript level and that STP1 was a major contributor for monosaccharide uptake under normal conditions. In contrast, STP13 was found to be induced by abiotic stress, with low expression under normal conditions. We analyzed the role of STP13 in roots under high salinity conditions where membranes of the epidermal cells were damaged, and we detected an increase in the amount of STP13-dependent glucose uptake. Furthermore, the amount of glucose efflux from stp13 mutants was higher than that from wild type plants under high salinity conditions. These results indicate that STP13 can reabsorb the monosaccharides that are released by damaged cells under high salinity conditions. Overall, our data indicate that sugar uptake capacity in Arabidopsis roots changes in response to environmental stresses and that this activity is dependent on the expression pattern of sugar transporters. PMID:22041897

  12. Constraining Upper Mantle Azimuthal Anisotropy With Free Oscillation Data (Invited)

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Resovsky, J. S.; van der Hilst, R. D.

    2009-12-01

    We investigate the potential of Earth's free oscillations coupled modes as a tool to constrain large-scale seismic anisotropy in the transition zone and in the bulk of the lower mantle. While the presence of seismic anisotropy is widely documented in the uppermost and the lowermost mantle, its observation at intermediate depths remains a formidable challenge. We show that several coupled modes of oscillations are sensitive to radial and azimuthal anisotropy throughout the mantle. In particular, modes of the type 0Sl-0T(l+1) have high sensitivity to shear-wave radial anisotropy and to six elastic parameters describing azimuthal anisotropy in the 200 km-1000 km depth range. The use of such data enables us thus to extend the sensitivity of traditionally used fundamental mode surface waves to depths corresponding to the transition zone and the top of the lower mantle. In addition, these modes have the potential to provide new and unique constraints on several elastic parameters to which surface waves are not sensitive. We attempted to fit degree two splitting measurements of 0Sl-0T(l+1) coupled modes using previously published isotropic and transversely isotropic mantle models, but we could not explain the entire signal. We then explored the model space with a forward modeling approach and determined that, after correction for the effect of the crust and mantle radial anisotropy, the remaining signal can be explained by the presence of azimuthal anisotropy in the upper mantle. When we allow the azimuthal anisotropy to go below 400 km depth, the data fit is slightly better and the model space search leads to better-resolved model than when we force the anisotropy to lie in the top 400 km of the mantle. Its depth extent and distribution are, however, still not well constrained by the data due to parameter tradeoffs and a limited coupled mode data set. It is thus clear that mode coupling measurements have the potential to constrain upper-mantle azimuthal anisotropy

  13. Distribution and Functions of TonB-Dependent Transporters in Marine Bacteria and Environments: Implications for Dissolved Organic Matter Utilization

    PubMed Central

    Tang, Kai; Jiao, Nianzhi; Liu, Keshao; Zhang, Yao; Li, Shuhui

    2012-01-01

    Background Bacteria play critical roles in marine nutrient cycles by incorporating and redistributing dissolved organic matter (DOM) and inorganic nutrients in the ocean. TonB-dependent transporter (TBDT) proteins allow Gram-negative bacteria to take up scarce resources from nutrient-limiting environments as well as siderophores, heme, vitamin B12, and recently identified carbohydrates. Thus, the characterization of TBDT distribution and functions is essential to better understand the contribution TBDT to DOM assimilation and its consequences on nutrient cycling in the environment. Methodology/Principal Findings This study presents the distribution of encoded known and putative TBDT proteins in the genomes of microorganisms and from the Global Ocean Survey data. Using a Lek clustering algorithm and substrate specificities, the TBDT sequences were mainly classified into the following three groups: (1) DOM transporters; (2) Siderophores/Vitamins transporters; and (3) Heme/Hemophores/Iron(heme)-binding protein transporters. Diverse TBDTs were found in the genomes of oligotroph Citromicrobium bathyomarinum JL354 and Citromicrobium sp JLT1363 and were highly expressed in the stationary phase of bacterial growth. The results show that the Gammaproteobacteria and the Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria accounted for the majority of the TBDT gene pool in marine surface waters. Conclusions/Significance The results of this study confirm the ecological importance of TBDTs in DOM assimilation for bacteria in marine environments owing to a wide range of substrate utilization potential in the ubiquitous Gammaproteobacteria and CFB group bacteria. PMID:22829928

  14. Dimensionality-dependent charge transport in close-packed nanoparticle arrays: from 2D to 3D

    PubMed Central

    Wang, Ying; Duan, Chao; Peng, Lianmao; Liao, Jianhui

    2014-01-01

    Charge transport properties in close-packed nanoparticle arrays with thickness crossing over from two dimensions to three dimensions have been studied. The dimensionality transition of nanoparticle arrays was realized by continually printing spatially well-defined nanoparticle monolayers on top of the device in situ. The evolution of charge transport properties depending on the dimensionality has been investigated in both the Efros-Shaklovskii variable-range-hopping (ES-VRH) (low temperature) regime and the sequential hopping (SH) (medium temperature) regime. We find that the energy barriers to transport decrease when the thickness of nanoparticle arrays increases from monolayer to multilayers, but start to level off at the thickness of 4–5 monolayers. The energy barriers are characterized by the coefficient βD at ES-VRH regime and the activation energy Ea at SH regime. Moreover, a turning point for the temperature coefficient of conductance was observed in multilayer nanoparticle arrays at high temperature, which is attributed to the increasing mobility with decreasing temperature of hopping transport in three dimensions. PMID:25523836

  15. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis.

    PubMed

    Li, Xu; Yang, Huan; Zhang, Donglai; Li, Xue; Yu, Huimin; Shen, Zhongyao

    2015-01-01

    A novel surfactin producer, Bacillus subtilis THY-7, was isolated from soil. Using liposomes and transmembrane transport inhibitors, the surfactin efflux in THY-7 was determined to be mainly dependent on proton motive force (PMF), not ATP hydrolysis. YcxA, KrsE and YerP, three putative lipopeptide transporters with PMF as energy source, were then highlighted in this work. A mutant YcxA named as YcxAmt, with 2 transmembrane helices deletion due to a code-shift mutation of the encoding gene, was identified in THY-7. This truncated YcxAmt was confirmed unable to transfer surfactin; on the contrary, overexpression of the natural full-lengthYcxA enhanced the secretion of surfactin by 89 %. KrsE, a putative kurstakin transporter, was found also capable of transporting surfactin. Overexpression of KrsE increased the production of surfactin by 52 %. In the culture of YerP-overexpressing strain at 24 h, surfactin titer reached 1.58 g L(-1), which was 145 % higher than that of the control. Th