Science.gov

Sample records for azobenzene nanoparticle-embedded polyacrylic

  1. Azobenzene

    Integrated Risk Information System (IRIS)

    Azobenzene ; CASRN 103 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  2. Palladium Nanoparticles Embedded in a Layer-by-Layer Nanoreactor Built with Poly(Acrylic Acid) Using "Electro-Click Chemistry".

    PubMed

    Villalba, Matias; Bossi, Mariano; Pozo, Maria Del; Calvo, Ernesto J

    2016-07-12

    Palladium nanoparticles (Pd NPs) were formed by electrochemical reduction of Pd(NH3)4(3+) ions entrapped by ion exchange in poly(acrylic acid) (PAA) multilayer films grown by the Sharpless "click reaction." The alkyne (PAAalk) and azide (PAAaz) groups were covalently bound to the PAA, and the catalyzed buildup of the multilayer film was performed by electrochemical reduction of Cu(2+) to Cu(+). The size of the Pd NPs formed in Au/(PAAalk)3(PAAaz)2 multilayer films by the click reaction, that is, 50 nm, is larger than that of similar Pd NPs formed in electrostatically bound Au/(PAA)3(PAH)2 nanoreactors, that is, 6-9 nm, under similar conditions. A combination of electrochemical methods and electrochemical quartz crystal microbalance, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), ellipsometry, and scanning electron microscopy has been used to follow these processes. Cyclic voltammetry of the resulting Pd NPs in a 0.1 M H2SO4 solution at 0.1 V·s(-1) shows the PdO reduction peak at the same potential as that on the clean Pd surface unlike the NPs formed in electrostatically self-assembled Au/(PAA)3(PAH)2 nanoreactors with a 0.2 V shift in the cathodic direction most probably because of the strong adsorption of amino groups on the Pd NP surfaces. PMID:27308840

  3. Nanoparticle embedded enzymes for improved lateral flow sensors.

    PubMed

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples. PMID:23730687

  4. The azobenzene derivatives

    NASA Astrophysics Data System (ADS)

    Ionita, Ionica; Radulescu, Cristiana; Poinescu, Aurora Anca; Anghelina, Florina Violeta; Bunghez, Raluca; Ion, Rodica-Mariana

    2015-02-01

    Azobenzene derivatives constitute a group of dyes which have photochromic properties and have been investigated as promising systems for diverse applications in the unconventional optic area, their properties can be moulded with help of light.

  5. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst.

    PubMed

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X S

    2013-11-21

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in D-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. PMID:24072134

  6. Co3O4 nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage.

    PubMed

    Sun, Jin; Li, Daohao; Xia, Yanzhi; Zhu, Xiaoyi; Zong, Lu; Ji, Quan; Jia, Yi Alec; Yang, Dongjiang

    2015-11-21

    Co3O4 nanoparticle embedded carbonaceous fibres were prepared from Co(2+) coordinated regenerated cellulose fibres, which showed high reversible capacity and excellent cycling stability as anode materials for Li-ion batteries. PMID:26399496

  7. Microwave absorber based on silver nanoparticle-embedded polymer thin film.

    PubMed

    Ramesh, G V; Sudheendran, K; Raju, K C James; Sreedhar, B; Radhakrishnan, T P

    2009-01-01

    Silver nanoparticle-embedded poly(vinyl alcohol) films are fabricated through a simple in situ process. The nanocomposite films are a few hundred nanometers thick with silver concentrations below 10% and the nanoparticles 5-10 nm in diameter. These films are shown to exhibit appreciable microwave absorption in the 8-12 GHz range; the return and insertion losses are found to be sensitive to the nanoparticle content. PMID:19441305

  8. Bimetallic ruthenium-copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Zhang, Li Li; Zhang, Jiatao; Liu, Tao; Zhao, X. S.

    2013-10-01

    Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal.Bimetallic ruthenium-copper nanoparticles embedded in the pore walls of mesoporous carbon were prepared via a template route and evaluated in terms of catalytic properties in d-glucose hydrogenation. The existence of bimetallic entities was supported by Ru L3-edge and Cu K-edge X-ray absorption results. The hydrogen spillover effect of the bimetallic catalyst on the hydrogenation reaction was evidenced by the results of both hydrogen and carbon monoxide chemisorptions. The bimetallic catalyst displayed a higher catalytic activity than the single-metal catalysts prepared using the same approach, namely ruthenium or copper nanoparticles embedded in the pore walls of mesoporous carbon. This improvement was due to the changes in the geometric and electronic structures of the bimetallic catalyst because of the presence of the second metal. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03813k

  9. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2014-08-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  10. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2015-06-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  11. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    NASA Astrophysics Data System (ADS)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2012-12-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  12. Surface Wave Velocity of Crosslinked Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Kinouchi, Wataru; ShinobuKoda, ShinobuKoda; Nomura, Hiroyasu

    1999-05-01

    Surface wave velocities of crosslinked polyacrylate hydrogelswere measured as a function of water content with differentcompositions of sodium polyacrylate (NaPA) and polyacrylic acid (PAA).The water content and composition dependencies of the surface wavevelocity were discussed.

  13. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hu, Gang; He, Bin

    2012-01-01

    We present an experimental study on magnetoacoustic imaging of superparamagnetic iron oxide (SPIO) nanoparticles embedded in biological tissues. In experiments, a large-current-carrying coil is used to deliver microsecond pulsed magnetic stimulation to samples. The ultrasound signals induced by magnetic forces on SPIO nanoparticles are measured by a rotating transducer. The distribution of nanoparticles is reconstructed by a back-projection imaging algorithm. The results demonstrated the feasibility to obtain cross-sectional image of magnetic nanoparticle targets with faithful dimensional and positional information, which suggests a promising tool for tomographic reconstruction of magnetic nanoparticle-labeled diseased tissues (e.g., cancerous tumor) in molecular or clinic imaging.

  14. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections.

    PubMed

    Geilich, Benjamin M; van de Ven, Anne L; Singleton, Gloria L; Sepúlveda, Liuda J; Sridhar, Srinivas; Webster, Thomas J

    2015-02-28

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications. PMID:25628231

  15. Tunneling Anisotropic Magnetoresistance in Fe Nanoparticles Embedded in MgO Matrix

    NASA Astrophysics Data System (ADS)

    Pham, T. V.; Miwa, S.; Suzuki, Y.

    2016-05-01

    The tunnel magnetoresistance (TMR) effect is related to the relative orientation of the magnetizations of the two ferromagnetic electrodes in magnetic tunnel junctions (MTJs). The tunnel anisotropic magnetoresistance (TAMR) effect is related to the orientation of the magnetization with respect to the current direction or the crystallographic axes. Beyond the TMR, the TAMR is not only present in MTJs in which both electrodes are ferromagnetic but may also appear in tunnel structures with a single magnetic electrode. We investigated the magnetotransport properties in an Au/MgO/Fe nanoparticles/MgO/Cu tunnel junction. We found that both the TMR and TAMR can appear in tunnel junctions with Fe nanoparticles embedded in an MgO matrix. The TMR is attributed to spin-dependent tunneling between Fe nanoparticles, so the device resistance depends on the magnetization directions of adjacent Fe nanoparticles. The TAMR is attributed to the interfacial spin-orbit interaction, so the device resistance depends on each magnetization direction of an Fe nanoparticle. This is the first observation of the TAMR in Fe nanoparticles embedded in an MgO matrix.

  16. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    NASA Astrophysics Data System (ADS)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  17. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  18. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  19. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    PubMed

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. PMID:26584861

  20. The calculations of electromagnetic fields around nanoparticles embedded in biological media

    NASA Astrophysics Data System (ADS)

    Prytkova, Vera D.; Tuchin, Valery V.

    2010-08-01

    The goal of our project is to use computational methods, such as discrete dipole approximation (DDA) to study nanoparticles in biomedical photonics problems. Nanoparticle absorption and scattering are strongly affected by their shape, size, composition and dielectric environment. We focus on light scattering from nanoparticles embedded in biological or biocompatible media, such as water, glycerin and hemoglobin at erythrocyte hemoglobin concentration at concentration characteristic to intrinsic erythrocyte concentration. This method lets us consider complex refractive index of the nanoparticle and the surrounding medium as a function on the wavelength of light. We are interested in strong absorption and scattering around 800 nm that makes such nanoparticles potentially useful in biomedical applications, such as detection and curing cancer. Considering nanoparticles in living cells containing nanoparticles lets us understand light scattering from normal and pathological structures within biological tissue.

  1. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Saravanan, Gengan; Mohan, Subramanian

    2016-11-01

    Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. 13C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp2 carbon and does not contain any oxygenated carbon and the carbonyl carbons.

  2. Gold nanoparticles embedded in organic/inorganic hybrid matrix: electrical and electrochemical behavior (withdrawal notice)

    NASA Astrophysics Data System (ADS)

    Moreira, Sandra D. F. C.; Silva, J. P. B.; Silva, Carlos J. R.; Capan, I.; Gomes, M. J. M.; Costa, Manuel F. M.

    2013-05-01

    Gold nanoparticles (AuNPs) with different diameters, from 3 to 32 nm, were immobilized in amine-alcohol-silicate matrix by mixing a preformed nanoparticle colloid with the precursors of amine-alcohol-silicate (AAs) prior to the solgel transition. These nanocomposites show high optical quality and optical features dictated by the size of the nanoparticle dopants but also present a high degree of flexibility which can largely enhance the range of practical applications. The current-voltage, impedance and capacitance-voltage characteristics of these materials have been measured. The electrochemical and impedimetric results reveal that AuNPs with different sizes give different signals, thus providing useful information that allows the employment of AuNPs in electrochemical biosensors. Capacitance- voltage measurements showed that these composites embedded AuNPs exhibited a large hysteresis window of 2.4V which indicates the possibility of charge storage in the Au nanoparticles embedded AAs hybrids.

  3. Preparation and nonlinear characterization of zinc selenide nanoparticles embedded in polymer matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Tripathi, S. K.

    2012-09-01

    Nanocomposites of ZnSe nanoparticles embedded in polyvinyl alcohol (PVA) matrix have been prepared by in-situ synthesis. ZnSe/PVA nanocomposites are characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and UV/Vis spectra. The nanocomposite structure is confirmed by the blue-shift of the absorption edge. The nonlinear refractive index and two-photon absorption (TPA) coefficient are measured by the Z-scan technique using low power CW He-Ne laser light. The results show that the ZnSe nanocomposite films show large optical nonlinearity and the magnitude of the third-order nonlinear susceptibility χ(3) is calculated to be 2.62×13-11 m2/V2.

  4. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  5. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  6. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS Reg. No. 9003-04-7) may be... aqueous sodium hydroxide solution. As determined by a method entitled “Determination of Weight Average...

  7. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  8. Nature of chromogens of protonated azobenzene

    NASA Astrophysics Data System (ADS)

    Mikheev, Yu. A.; Guseva, L. N.; Ershov, Yu. A.

    2015-02-01

    Changes in the absorption spectra of azobenzene in UV-Vis light are studied with respect to its protonation in sulfuric acid solutions and interaction with gaseous HCl in cellulose triacetate films. In both processes, the emergence of an intense orange color is shown to represent the electronic structure of forming monocations where the positive charge of NH+ groups shifts electrons from the o- and p-positions of Nphfragment phenyls. It was found that the charge distribution and color was the same as observed for the cations of the benzyl and phenylaminyl types. The mechanism of azobenzene monocation photocyclization in sulfuric acid is presented, and the origin of the red color of azobenzene dications formed in oleum is explained.

  9. Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2

    NASA Astrophysics Data System (ADS)

    Johannessen, B.; Kluth, P.; Llewellyn, D. J.; Foran, G. J.; Cookson, D. J.; Ridgway, M. C.

    2007-11-01

    Elemental Cu nanoparticles embedded in SiO2 were irradiated with 5MeVSn3+ . The nanoparticle structure was studied as a function of Sn3+ fluence by extended x-ray absorption fine structure spectroscopy, small-angle x-ray scattering, and transmission electron microscopy. Prior to irradiation, Cu nanoparticles exhibited the face-centered-cubic structure. Upon irradiation at intermediate fluences ( 1×1013 to 1×1014ions/cm2 ), the first nearest neighbor Cu-Cu coordination number decreased, while the Debye-Waller factor, bondlength, and third cumulant of the bondlength distribution increased. In particular, at a fluence of 1×1014ions/cm2 we argue for the presence of an amorphous Cu phase, for which we deduce the structural parameters. Low temperature annealing (insufficient for nanoparticle growth) of the amorphous Cu returned the nanoparticles to the initial preirradiation structure. At significantly higher irradiation fluences ( 1×1015 to 1×1016ions/cm2 ), the nanoparticles were dissolved in the matrix with a Cu coordination similar to that of Cu2O .

  10. Melting and Solidification Behaviour of Bi-Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix.

    PubMed

    Khan, Patan Yousaf; Biswas, Krishanu

    2015-01-01

    The present investigation reports the result of the investigation on the phase transformation of biphasic Bi-Pb alloy nanoparticles embedded in the aluminum matrix. The samples are prepared by rapid solidification route involving melt spinning of Al-6 wt% (Bi55.9Pb44.1) alloy on a rotating copper wheel in an argon-filled evacuated chamber. The detailed transmission electron microscope (TEM) investigation shows presence of near cuboctahedral shaped biphasic nano-inclusions consisting of the (Bi) solid solution and β, the intermediate phase. β constitutes bulk of the nanoparticle with (Bi) forming the cap. Both the phases bear distinct orientation relationship with the matrix. The compositional analysis indicates substantial increase in solid solubilities of Pb in the (Bi) and Bi in the β-phases as compared to the as-cast sample. Differential scanning calorimetric (DSC) studies indicate substantial superheating (16.4 K) of the embedded nanoparticles with appearance of sharp melting peak. The solidification is observed to be diffused, taking place over a large temperature range (344.5 K to 332 K). The in situ heating stage experiments carried out in TEM indicate formation of core shell morphology during heating with β forming the shell around (Bi). The melting starts from Al/β/(Bi) triple point and then the liquid spreads along matrix-particle interface. The solidification occurs in eutectic manner. PMID:26328350

  11. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi N.; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  12. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  13. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, L. S.; Srinivasan, M. P.; Chandra Mohan, P.; Baisnab, D. K.; Mythili, R.; Janawadkar, M. P.

    2015-01-01

    The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100) and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD), Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS). Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  14. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    PubMed

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation. PMID:25014763

  15. Health and environmental effects profile for azobenzene

    SciTech Connect

    Not Available

    1985-03-01

    The Health and Environmental Effects Profile for azobenzene was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human health, aquatic life, and environmental effects of hazardous-waste constituents. Quantitative estimates are presented, provided sufficient data are available. Azobenzene has been evaluated as a carcinogen. The human carcinogen potency factor (ql*) for azobenzene is .108 (mg/kg/day)-1 for oral exposure. The Reportable Quantity (RQ) value of 1, 10, 100, 1000, or 5000 pounds is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified by CERCLA based on chronic toxicity. The RQ value for azobenzene is 100.

  16. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    SciTech Connect

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  17. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.

    PubMed

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; El-Khoury, P Z; Kayani, Asghar; Hess, W P; Thevuthasan, S

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. PMID:23403363

  18. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  19. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  20. Deflocculation of clay suspensions using sodium polyacrylates

    NASA Technical Reports Server (NTRS)

    Jedlicka, P.

    1984-01-01

    Rheological properties of elutriated kaolin suspensions deflocculated by Na polyacrylate (DAC 3 and DAC 4) were studied and compared to those deflocculated by the conventional Na2CO3 water and glass and imported Dispex N40. The deflocculating effect of Na polyacrylate was comparable to that of Dispex N40. The optimum amounts of Na polyacrylate were determined for suspensions based on 5-type kaolin. The Na polyacrylate can be successfully used for decreasing the water content of ceramic slips for casting and spray drying.

  1. Phase decomposition of AuFe alloy nanoparticles embedded in silica matrix under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pannu, Compesh; Bala, Manju; Singh, U. B.; Srivastava, S. K.; Kabiraj, D.; Avasthi, D. K.

    2016-07-01

    AuFe alloy nanoparticles embedded in silica matrix are synthesized using atom beam sputtering technique and subsequently irradiated with 100 MeV Au ions at various fluences ranging from 1 × 1013 to 6 × 1013 ions/cm2. The X-ray diffraction, absorption spectroscopy, X-ray photo electron spectroscopy and transmission electron microscopy results show that swift heavy ion irradiation leads to decomposition of AuFe alloy nanoparticles from surface region and subsequent reprecipitation of Au and Fe nanoparticles occur. The process of phase decomposition and reprecipitation of individual element nanoparticles is explained on the basis of inelastic thermal spike model.

  2. Cooperative Switching in Nanofibers of Azobenzene Oligomers.

    PubMed

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-01-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing. PMID:27161608

  3. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  4. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    NASA Astrophysics Data System (ADS)

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-05-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

  5. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  6. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    PubMed Central

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-01-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing. PMID:27161608

  7. Binding of calcium and carbonate to polyacrylates.

    PubMed

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  8. Electrical Bistabilities and Memory Mechanisms of Organic Bistable Devices Fabricated Utilizing CdSe/ZnS Nanoparticles Embedded in Polystyrene and Poly(4-vinylphenol) Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Son, Dong Ick; Yoo, Chan Ho; Jung, Jae Hun; Kim, Tae Whan

    2010-01-01

    The electrical bistabilities of core/shell CdSe/ZnS nanoparticles embedded in polystyrene (PS) and poly(4-vinylphenol) (PVP) hybrid polymer composites were investigated. Transmission electron microscopy images showed that CdSe/ZnS nanoparticles were formed inside the hybrid polymer matrix. Current-voltage (I-V) measurement at 300 K of Al/(PS + PVP)/(CdSe/ZnS nanoparticles)/(PS + PVP)/indium-tin oxide/glass devices showed electrical bistability behavior. The memory mechanisms of the organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in hybrid polymer composites are described on the basis of the I-V results.

  9. Direct electrochemical oxidation of polyacrylates.

    PubMed

    Bellagamba, Riccardo; Comninellis, Christos; Vatistas, Nicolaos

    2002-10-01

    A promising elimination treatment of non-biodegradable organic pollutants is the direct electro-oxidation. In this work has been proposed the electrochemical elimination of polyacrylates by using boron-doped diamond (BDD) as anodic material. The complete elimination of organic contaminants has been obtained and this is the first case of successful electrochemical treatment of polymeric and bio-refractory species. The tests of the electrochemical oxidation have been conducted at constant current conditions and a complete elimination of organic species has been reached. The decrease of the COD value with time follows the behaviour of an ideal anode as in the case of low molecular organic compounds. PMID:12489259

  10. Photoswitchable azobenzene-appended iridium(iii) complexes.

    PubMed

    Pérez-Miqueo, J; Altube, A; García-Lecina, E; Tron, A; McClenaghan, N D; Freixa, Z

    2016-09-21

    Iridium(iii) cyclometalated complexes have been used as models to study the effect that extended conjugation and substitution pattern has on the photochromic behavior of azobenzene-appended 2-phenylpyridyl (ppy) ligands. For this purpose four azobenzene-containing ppy ligands were synthesized. With these ligands, nine iridium(iii) complexes containing up to three appended azobenzenes were synthesized. Analysis of their photochromic behaviour by means of UV-vis and (1)H-NMR spectroscopy permitted us to conclude that the light-induced trans-to-cis isomerization of the azobenzene was strongly inhibited upon coordination to the Ir(iii) cation when the electronic conjugation was extended along the whole ligand. The use of an aliphatic spacer unit (either -CH2- or -OCH2-) between the azobenzene and the ppy fragment of the ligand sufficed to disrupt the electronic communication, and obtain photochromic organometallic complexes. PMID:27460186

  11. Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates.

    PubMed

    Gu, Renpeng; Lamas, Joseph; Rastogi, Shiva K; Li, Xiaopeng; Brittain, William; Zauscher, Stefan

    2015-11-01

    We demonstrate the reversible micellar aggregation of a DNA-azobenzene conjugate in aqueous conditions, in which the photoisomerization of the initially apolar trans-azobenzene moiety to the polar cis isomer causes disassembly of the aggregates. The molecular basis for this phenomena is a change in the hydrophobic/hydrophilic balance of the conjugate as the more polar cis azobenzene isomer is formed upon exposure to 365 nm irradiation. The conjugates were prepared by copper-free Click chemistry between an azide-modified, 53-base ssDNA and a cyclooctyne derivative of azobenzene. The photocontrolled aggregation of the conjugate was studied by dynamic light scattering and atomic force microscopy. The reversible micellar aggregation for a DNA-azobenzene conjugate has not been previously reported and holds promise for photocontrolled drug delivery applications. PMID:26247877

  12. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    PubMed

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  13. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  14. Nanocomposite thin films of gold nanoparticles embedded in yttria-stabilized zirconia for plasmonic-based harsh environment gas detection

    NASA Astrophysics Data System (ADS)

    Rogers, Phillip H.

    Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards. The localized surface plasmon resonance (LSPR) of noble metal nanoparticles embedded in dielectric matrices is an optical response that can be extremely sensitive to many environmental parameters. Nanocomposites of Au nanoparticles embedded in yttria-stabilized zirconia (Au-YSZ) are an ideal case study for these plasmonic materials. Using a metal oxide matrix with oxygen ion vacancies, such as YSZ, allows one to finely tune the local environmental charge of the embedded metal nanoparticles upon varying the oxygen and hydrogen content of the gas exposure mixture. After gas exposure data is collected in the form of optical absorption spectra, the LSPR spectra due to the Au nanoparticles embedded in the YSZ matrix undergo automated Lorentzian and Drude model fitting for calculating fundamental charge exchange and plasmonic dampening effects versus gas exposure concentration. These titration experiments have been performed for Au-YSZ nanocomposites exposed to O2, H2, NO 2, and CO in N2 backgrounds at 500°C and equilibrium data has been acquired for both the average charge per Au nanoparticle and the scattering frequency of the plasmons over a variety of exposure conditions. One paramount result made possible by this plasmonic based gas detection by Au-YSZ nanocomposite thin films was a repeatable 5 ppm lower detection limit towards NO2 in air at 500°C. In comparing the charge exchange observed using both the fitted exposure data and an electrochemical model

  15. Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement.

    PubMed

    Shim, Jae-Phil; Choi, Sang-Bae; Kong, Duk-Jo; Seo, Dong-Ju; Kim, Hyung-Jun; Lee, Dong-Seon

    2016-07-11

    Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The external quantum efficiency enhancement at a target wavelength region is demonstrated by matching the plasmon resonance of Ag nanoparticles, resulting in a Jsc improvement of 9.1%. Furthermore, the Ag-nanoparticle-embedded InGaN solar cell is effectively fabricated considering the carrier extraction that more than 70% of F.F. and 2.2 V of high Voc are simultaneously attained. PMID:27410903

  16. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  17. Base effects on fabrication of silver nanoparticles embedded silica nanocomposite for surface-enhanced Raman scattering (SERS).

    PubMed

    Kang, Homan; Kang, Taegyu; Kim, Seongyong; Kim, Jong-Ho; Jun, Bong-Hyun; Chae, Jinjoo; Park, Juyoung; Jeong, Dae-Hong; Lee, Yoon-Sik

    2011-01-01

    In this paper, we studied on the effect of organic bases in the case of ethylene glycol based fabrication of silver nanoparticles embedded silica nanocomposite (Ag SNC) without heating. Considering their chemical structures, butylamine (BA), ethanolamine (EA), triethanolamine (TEA), tributylamine (TBA), octylamine (OA) and Jeffamine 500 (JA) were used as an organic base. In addition, the effect of the concentrations of AgNO3 and organic bases on the formation of Ag SNC was also examined. In conformity with the characteristics of Ag SNC, SERS signal intensity of benzenethiol on Ag SNC was measured. As a result, the SERS signal intensity of Ag SNCs was strongly dependent on the reaction conditions. Furthermore, when reacted under the best reaction condition with concentrations of AgNO3 and OA, 3 mM and 5 mM, respectively, a large-scale production of Ag SNC was possible under the mild conditions. PMID:21446501

  18. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  19. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  20. Photoswitching of azobenzene multilayers on a layered semiconductor

    NASA Astrophysics Data System (ADS)

    Iwicki, J.; Ludwig, E.; Kalläne, M.; Buck, J.; Köhler, F.; Herges, R.; Kipp, L.; Rossnagel, K.

    2010-08-01

    In situ photoelectron spectroscopy is used to study the adsorption and photoisomerization of azobenzene multilayers on the layered semiconductor HfS2 at liquid nitrogen temperatures. The measured valence band spectra indicate weak molecule-substrate coupling and provide evidence for reversible switching of azobenzene multilayers by light with different wavelengths. The photoswitching manifests itself in spectral shifts due to changes in the electrical surface conductance and in modifications of the electronic structure consistent with the results of outer valence Green's function calculations. The photoemission results appear to establish azobenzene as an optoelectrical molecular switch.

  1. Photochemical properties of multi-azobenzene compounds.

    PubMed

    Bahrenburg, Julia; Sievers, Claudia M; Schönborn, Jan Boyke; Hartke, Bernd; Renth, Falk; Temps, Friedrich; Näther, Christian; Sönnichsen, Frank D

    2013-03-01

    A systematic study is reported of the photochemical properties of the multi-azobenzene compounds bis[4-(phenylazo)phenyl]amine (BPAPA) and tris[4-(phenylazo)phenyl]amine (TPAPA) compared to the parent molecule 4-aminoazobenzene (AAB). The bis- and tris-azobenzenes were synthesised by a variant of the Ullmann reaction and exist in their stable all-E forms at room temperature. Striking changes in the spectral positions and intensities of their first ππ* absorption bands compared to AAB reveal strong electronic coupling between the AB units. The nature of the excited states was explored by quantum chemical calculations at the approximate coupled-cluster (CC2) level. Upon UV/VIS irradiation, the molecules isomerise to the Z-isomer (AAB), ZE- and ZZ-isomers (BPAPA), and ZEE-, ZZE- and ZZZ-isomers (TPAPA), respectively. The photoswitching behaviours were investigated by UV/VIS and NMR spectroscopies. All individual isomers were detected by one-dimensional (1D) (1)H NMR spectroscopy (BPAPA) and two-dimensional (2D) HSQC NMR spectroscopy (TPAPA). A kinetic analysis provided the isomer-specific thermal lifetimes. The variance of the thermal lifetimes demonstrates a dependence of the Z-E isomerisation on the chromophore size and number of AB units. PMID:23224342

  2. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  3. Azobenzene Photoisomerization-Induced Destabilization of B-DNA

    PubMed Central

    Biswas, Mithun; Burghardt, Irene

    2014-01-01

    Molecular photoswitches provide a promising way for selective regulation of nanoscaled biological systems. It has been shown that conformational changes of azobenzene, one of the widely used photoswitches, can be used to reversibly control DNA duplex formation. Here, we investigate the conformational response of DNA upon azobenzene binding and isomerization, using a threoninol linker that has been experimentally investigated recently. To this end, nonequilibrium molecular dynamics simulations are carried out using a switching potential describing the photoinduced isomerization. Attachment of azobenzene leads to a distortion of the DNA helical conformation that is similar for the trans and cis forms. However, the trans form is stabilized by favorable stacking interactions whereas the cis form is found to remain flipped out of the basepair-stacked position. Multiple azobenzene attachment augments the distortion in DNA helical conformation. The distorted DNA retains nativelike pairing of bases at ambient temperatures, but shows weaker basepairing compared to native DNA at an elevated temperature. PMID:25140428

  4. Azobenzene-based Polymers for Solar Thermal Batteries

    NASA Astrophysics Data System (ADS)

    Venkataraman, Dhandapani

    Azobenzene exists as two isomers, a higher energy cis-isomer and a lower energy trans-isomer. The isomers interconvert under light or heat. Recently, there is a renewed interest in capturing the difference in the energies of the isomers and using azobenzene-based molecules as active layers for solar thermal batteries. My research group has been exploring azobenzene-based polymers as candidates for solar thermal batteries. In this talk, I will show that the azo-benzene moieties can be converted to the cis-form using light and converted back to the trans form using mechanical force. I will provide some of our recent results that indicate that high energy densities can be achieved in these polymers.

  5. Photoinduced Bending of Self-Assembled Azobenzene-Siloxane Hybrid.

    PubMed

    Guo, Sufang; Matsukawa, Kimihiro; Miyata, Takashi; Okubo, Tatsuya; Kuroda, Kazuyuki; Shimojima, Atsushi

    2015-12-16

    A novel azobenzene-siloxane hybrid material displaying photoinduced macroscopic motions has been prepared by one-step organosilane self-assembly. Two types of alkoxysilane precursors with either pendant or bridging azobenzene groups were synthesized via thiol-ene click reactions. Hybrid films with well-ordered lamellar structures were obtained by hydrolysis and polycondensation of these precursors. The film with solely pendant azobenzene groups showed reversible and rapid d-spacing variation upon UV-vis irradiation, which was induced by the trans-cis isomerization of azobenzene moieties. The flexible, free-standing film obtained by co-condensation of two types of precursors showed reversible bending-unbending motions upon UV-vis irradiation. The partial cross-linking between the siloxane layers by bridging azobenzene groups was crucial for photoinduced distortion of the film. This film possesses high elastic modulus, good thermal stability, and shows large amplitude of photoinduced bending-unbending over a wide temperature range. This is the first report on photoinduced macroscopic motions of azobenzene-containing siloxane-based materials. These materials possess great potential for applications in smart devices and energy conversion systems. PMID:26575345

  6. Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas.

    PubMed

    Joshi, Gayatri K; Blodgett, Karl N; Muhoberac, Barry B; Johnson, Merrell A; Smith, Kimberly A; Sardar, Rajesh

    2014-02-12

    This Letter describes an unprecedentedly large and photoreversible localized surface plasmon resonance (LSPR) wavelength shift caused by photoisomerization of azobenzenes attached to gold nanoprisms that act as nanoantennas. The blue light-induced cis to trans azobenzene conformational change occurs in the solid state and controls the optical properties of the nanoprisms shifting their LSPR peak up to 21 nm toward longer wavelengths. This shift is consistent with the increase in thickness of the local dielectric environment (0.6 nm) surrounding the nanoprism and perhaps a contribution from plasmonic energy transfer between the nanoprism and azobenzenes. The effects of the azobenzene conformational change and its photoreversibility were also probed through surface-enhanced Raman spectroscopy (SERS) showing that the electronic interaction between the nanoprisms and bound azobenzenes in their cis conformation significantly enhances the intensity of the Raman bands of the azobenzenes. The SERS data suggests that the isomerization is controlled by first-order kinetics with a rate constant of 1.0 × 10(-4) s(-1). Our demonstration of light-induced photoreversibility of this type of molecular machine is the first-step toward removing present limitations on detection of molecular motion in solid-state devices using LSPR spectroscopy with nanoprisms. Modulating the LSPR peak position and controlling energy transfer across the nanostructure-organic molecule interface are very important for the fabrication of plasmonic-based nanoscale devices. PMID:24393014

  7. Photoisomerization of azobenzenes isolated in cryogenic matrices.

    PubMed

    Duarte, Luís; Khriachtchev, Leonid; Fausto, Rui; Reva, Igor

    2016-06-22

    2,2'-Dihydroxyazobenzene (DAB), 2,2'-azotoluene (AT) and azobenzene (AB) were isolated in argon and xenon matrices and their molecular structures and photochemical transformations were characterized by infrared spectroscopy and theoretical calculations. All these compounds can adopt the E and Z isomeric forms around the central CNNC moiety, which can be enriched by several conformational and tautomeric modifications for DAB and AT. A number of DAB and AT isomeric forms were identified for the first time. For DAB, the E azo-enol isomer with two intramolecular six-membered quasi-rings formed via OHN hydrogen bonds was found after deposition. Irradiation with UV light generated a different E azo-enol form with two intramolecular H-bonded five-membered quasi-rings. Phototransformation was shown to be reversible and the forms could be interconverted by irradiation at different wavelengths. The isomerization between these two forms constitutes a direct experimental observation of an E → E isomerization in azobenzene-type molecules. Further irradiation generated a form(s) bearing both OH and NH groups. For AT, two E isomers with the CH3 groups forming five-membered and five/six-membered quasi-rings with the azo group were observed in the as-deposited matrices. Irradiation of AT with UV light generated a Z form that can be converted back to the E form at different irradiation wavelengths. E-AB was deposited in a xenon matrix and both E → Z and Z → E phototransformations were observed (contrary to what was previously reported in an argon matrix where only the Z → E conversion occurred). AB photoisomerization becomes more pronounced at elevated temperatures, thus indicating that the matrix effects responsible for hindering the AB photoisomerization are essentially due to steric restrictions. The different photoisomerization channels observed for these compounds are discussed in terms of a small-amplitude pedal motion. PMID:27279432

  8. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  9. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis.

    PubMed

    Dou, Shuo; Li, Xingyue; Tao, Li; Huo, Jia; Wang, Shuangyin

    2016-08-11

    We successfully obtained a novel bi-functional electrocatalyst towards the ORR and OER: Co nanoparticle-embedded N-doped carbon nanotube (CNT)/porous carbon (PC) by pyrolyzing metal organic framework (MOF) encapsulated Co3O4. The as-obtained hybrid exhibited highly efficient electrocatalytic activity for the ORR and OER. Furthermore, the assembled Zn-air batteries also revealed promising performance and long-term stability. PMID:27411845

  10. Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li-O2 batteries.

    PubMed

    Kim, Yun-Jung; Lee, Hongkyung; Lee, Dong Jin; Park, Jung-Ki; Kim, Hee-Tak

    2015-08-10

    The problem of high charge polarization is one of the most significant challenges in current nonaqueous Li-O2 batteries. The development of an electrode for the oxygen evolution reaction (OER) at reduced overpotential is thus essential. Here, we suggest a binder-free electrode based on Co nanoparticles embedded in carbon nanofibers (Co-CNFs), which simultaneously reduces the charge and discharge polarization and extends cycling stability. Co-CNF gives rise to a lower discharge polarization because of an enhanced oxygen reduction reaction activity compared to Co-free CNF. Although the embedment of Co does not enhance the OER activity, it significantly reduces charge overvoltage by forming easily decomposable amorphous Li2 O2 . A mechanism for the formation of amorphous Li2 O2 is suggested in terms of charge localization induced by the Co NPs. The findings suggest a new electrode design strategy of combining inexpensive metals and carbon materials for modulating the phase of the discharge product. PMID:26178625

  11. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Yan, Tao-tao; Yu, Xin-xin; Bai, Zhi-man; Wu, Ming-zai

    2016-04-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  12. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study.

    PubMed

    Dai, Peng; Yan, Tao-Tao; Yu, Xin-Xin; Bai, Zhi-Man; Wu, Ming-Zai

    2016-12-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites. PMID:27119154

  13. PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite.

    PubMed

    Liu, Dong; Guo, Qiaohui; Zhang, Xueping; Hou, Haoqing; You, Tianyan

    2015-07-15

    PdCo alloy nanoparticle-embedded carbon nanofiber (PdCo/CNF) prepared by electrospinning and thermal treatment was employed as a high-performance platform for the determination of hydrogen peroxide and nitrite. The as-obtained PdCo/CNF were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behaviors of the resultant biosensor. The proposed PdCo/CNF-based biosensor showed excellent analytical performances toward hydrogen peroxide (detection limit: 0.1 μM; linear range: 0.2 μM-23.5 mM) and nitrite (detection limit: 0.2 μM; linear range: 0.4-30 μM and 30-400 μM). The superior analytical properties could be attributed to the synergic effect and firmly embedment of well-dispersed PdCo alloy nanoparticles. These attractive electrochemical properties make this robust electrode material promising for the development of effective electrochemical sensors. PMID:25818356

  14. MOF-Derived Hollow Co9 S8 Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Li-Ion Storage.

    PubMed

    Liu, Jun; Wu, Chao; Xiao, Dongdong; Kopold, Peter; Gu, Lin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2016-05-01

    Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved. PMID:26938777

  15. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    SciTech Connect

    Sarker, Debalaya; Patra, Rajkumar; Srivastava, P.; Ghosh, S.; Kumar, H.; Kabiraj, D.; Avasthi, D. K.; Vayalil, Sarathlal K.; Roth, S. V.

    2014-05-07

    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au{sup +7} ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm{sup 2} at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic devices.

  16. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF2-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Narayanan, Manoj Kumar; Shashikala, H. D.

    2016-05-01

    Silver nanoparticle embedded 30BaO-20CaF2-50P2O5-4Ag2O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that spherical nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.

  17. Transport properties of β-Ga{sub 2}O{sub 3} nanoparticles embedded in Nb thin films

    SciTech Connect

    Vaidhyanathan, L.S. Baisnab, D.K.; Janawadkar, M.P.; Srinivasan, M.P.; Chandra Mohan, P.; Mythili, R.

    2015-01-15

    The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga{sub 2}O{sub 3} nanoparticles embedded within them, are presented. Nanoparticles of β-Ga{sub 2}O{sub 3} embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100) and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD), Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS). Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga{sub 2}O{sub 3}.

  18. Simulation of Photo-isomerization of Functionalized Azobenzene Derivatives

    NASA Astrophysics Data System (ADS)

    Tavazohi, Pedram; Herberger, Zachary; Lewis, James

    Photo-isomerization is the process of changing the isomer (cis , trans) of a molecule using light. In azobenzene this process can be utilized in a Metal Organic Framework (MOF) for adsorption of CO2. MOFs are created by two major components, metal ions, and organic molecules which are called linkers. The metal ions and linkers can be coordinated in a way that they form a porous material. In the cis isomer of azobenzene, the MOF's pore is available to be filled by CO2, but in the trans isomer the pore is filled with a benzene ring. The change from cis to trans will evacuate the pore if CO2 is present. The important considerations in using azobenzene photo-isomerization as a photo-switch in MOFs are, the quantum yield of the process, and the wavelength of the light which triggers photo-isomerization. By substitution of the functional groups of azobenzene and using the fewest switches surface-hopping algorithm in FIREBALL to simulate the photo-isomerization process we can tune the properties of the molecule as we desire and predict the best substitution sites for azobenzene functional groups. We studied the effects of functionalizing the molecule with OH, CH3, NH2, NO2 and COOH on isomerization quantum yield.

  19. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  20. Azobenzene compound-based photomechanical actuator devices

    NASA Astrophysics Data System (ADS)

    Ye, Xianjun; Kuzyk, Mark G.

    2012-10-01

    It has been shown that the chromophore disperse red 1 azobenzene (DR1) when doped into poly(methyl methacrylate) (PMMA) optical fiber can be used to make an optical cantilever in which an asymmetrically propagating beam at 633nm causes the fiber to bend. The fast response process is purported to be due to elongation of the material as molecules change between cis and trans isomers. In our work, UV light of 350nm will be used to investigate trans to cis somerization, which should induce contraction. Short fiber segments in a three-contactpoint geometry will be used to control the position and tilt of silver- or aluminum-coated coverslips that together with microscope glass slides as the substrate make optically-actuated beam-controlling mounts and Fabry-Perot interferometers. A Michelson interferometer is used to measure the length change of the fiber actuator. Azodye doped liquid crystal (LC) elastomers have been demonstrated to have a photomechanical effect that is at least ten times bigger than thermoplastic-based polymer fiber. However, the optical quality of thermoplastics are much better, enabling the cascading of devices in series. We will report on visible and UV laser-actuation of LC elastomer and polymer device structures using a quadrant photodetector to record the beam deflection caused by the shape change of the material, which will allow for dynamical measurements of the mechanisms. All measurements will be calibrated against a piezoelectric crystal actuator. Photomechanical devices provide an inexpensive but versatile, small-form factor, vibration free and high precision solution to optomechanics, sensing, positioning and other space applications.

  1. Azobenzene-Bridged Porphyrin Nanorings: Syntheses, Structures, and Photophysical Properties.

    PubMed

    Huang, Weiming; Lee, Seung-Kyu; Sung, Young Mo; Peng, Fulei; Yin, Bangshao; Ma, Ming; Chen, Bo; Liu, Shubin; Kirk, Steven Robert; Kim, Dongho; Song, Jianxin

    2015-10-19

    Azobenzene-bridged β-to-β and meso-to-meso porphyrin nanorings were successfully synthesized by a palladium-catalyzed Suzuki-Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di- and tetramers are in the all-trans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the all-trans configurations: the pure all-trans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump-power-dependent decay results revealed excitation energy transfer for azobenzene-bridged zinc-porphyrin nanorings. The distances between porphyrin units of these azobenzene-bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso-to-meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)-porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di- and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences. PMID:26338286

  2. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    NASA Astrophysics Data System (ADS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  3. Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea.

    PubMed

    Dai, Zhongran; Cui, Yaqin; Chen, Changjuan; Wu, Jincai

    2016-07-01

    The reactivity of a catalytic polymerization system using photoresponsive azobenzene-based thiourea/PMDETA as a catalyst could be switched between slow and fast states by alternating exposure to UV and ambient light, because the active site of azobenzene thiourea is blocked via intramolecular hydrogen bonding when the azobenzene thiourea transfers from the E isomer to the Z isomer under UV irradiation. PMID:27345287

  4. Predicting photoisomerization profile of the highly polymerized nematic azobenzene liquid crystal network: First principle calculation

    NASA Astrophysics Data System (ADS)

    Yun, J.; Li, C.; Chung, H.; Choi, J.; Cho, M.

    2015-05-01

    The cis profile of azobenzene is a key factor in predicting the photodeformation of the nematic azobenzene liquid crystal network (LCN). An ab initio based method for predicting the photoisomerization profile of azobenzene is developed by coupling the stimulated Raman adiabatic passage (STIRAP) method with non-linear Beers law, and compared with experimental data. Using this combined method, we calculate the photoisomerization profile of azobenzene with various light input conditions. We identify the cis profile of the nematic LCN structure evolves into a step-like decaying shape when the direction of polarized light is parallel to the nematic direction.

  5. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  6. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  7. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  8. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... weight of aqueous sodium chloride solution at 20 °C for 24 hours. The low molecular weight extractives... applied mass). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified...

  9. Industrial solution contaminated by polyacrylates: their elimination by electrochemical combustion.

    PubMed

    Masci, M; Chiti, L; De Lorenzo, A; Mantione, D; De Battisti, A; Vatistas, N

    2001-01-01

    The electrochemical combustion of polyacrylates was studied through both direct and indirect oxidation. The obtained results indicate the non elimination of the polyacrylates with the direct oxidation, while the indirect oxidation with NaCl completely eliminates these organic compounds. In the last case the effects of different initial concentrations of NaCl, anode materials and current densities was studied. PMID:11381543

  10. Azobenzene Modified Polymer Electrolyte Membrane for Ion Gating

    NASA Astrophysics Data System (ADS)

    Piedrahita, Camilo; Mballa, Mireille; He, Ruixuan; Kyu, Thein

    By virtue of ion concentration gradient across cell membranes, neuron cells are highly polarized driving electrical potential difference (e.g., Gibbs law). To regulate and control ion movement, living cells have specific channels with gates that are permeable to cations, enabling or excluding them via charge polarity and size. This mechanism for generating and transmitting signals from one neuron to another controls body movement via brain function. By virtue of trans-cis isomerization, azobenzene derivative (AZO) has been heavily sought for ion-gating in biological cells as a means of signal generation and transmission through nervous systems. In this work, PEM consisted of PEGDA/SCN/LiTFSI was modified with AZO derivatives for gating of lithium ions. At low concentrations of azobenzene of 3 wt Supported by NSF-DMR 1502543.

  11. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    NASA Astrophysics Data System (ADS)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  12. Switching of an Azobenzene-Tripod Molecule on Ag(111).

    PubMed

    Scheil, Katharina; Gopakumar, Thiruvancheril G; Bahrenburg, Julia; Temps, Friedrich; Maurer, Reinhard Johann; Reuter, Karsten; Berndt, Richard

    2016-06-01

    The trans-cis isomerization makes azobenzene (AB) a robust molecular switch. Once adsorbed to a metal, however, the switching is inefficient or absent due to rapid excited-state quenching or loss of the trans-cis bistability. We find that tris-[4-(phenylazo)-phenyl]-amine is a rather efficient switch on Ag(111). Using scanning tunneling and atomic force microscopy at submolecular resolution along with density functional theory calculations, we show that the switching process is no trans-cis isomerization but rather a reorientation of the N-N bond of an AB unit. It proceeds through a twisting motion of the azo-bridge that leads to a lateral shift of a phenyl ring. Thus, the role of the Ag substrate is ambivalent. While it suppresses the original bistability of the azobenzene units, it creates a new one by inducing a barrier for the rotation of the N-N bond. PMID:27193044

  13. Mesogenic linear azobenzene polymer-stabilized nematic liquid crystals

    SciTech Connect

    Bagramyan, Arutyun; Thibault-Maheu, Olivier; Galstian, Tigran; Bessette, Andre; Zhao, Yue

    2011-03-15

    We describe the detailed study of a polymer stabilized liquid crystal compound, which was created by using a reactive (monofunctional) azobenzene mesogenic guest and a nematic liquid crystal host. The resonant interaction of light with the azobenzene segment of the guest and the mesogenic nature of the latter enable the optical alignment of host molecules and the permanent fixing of that orientation by means of UV polymerization of the guest. We use dynamic spectral, polarimetric, and scattering techniques to study the orientational ordering and interaction of the guest-host system. We show that the uniform UV polymerization of this compound results in a low scattering material system with dielectric and elastic properties that are relatively close to those of the host, while still providing the capacity for optical configuration of its morphology.

  14. Charge Transport in Azobenzene-Based Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Garcia-Lekue, Aran; Kim, Youngsang; Sysoiev, Dmytro; Frederiksen, Thomas; Groth, Ulrich; Scheer, Elke

    2013-03-01

    The azobenzene class of molecules has become an archetype of molecular photoswitch research, due to their simple structure and the significant difference of the electronic system between their cis and trans isomers. However, a detailed understanding of the charge transport for the two isomers, when embedded in a junction with electrodes is still lacking. In order to clarify this issue, we investigate charge transport properties through single Azobenzene-ThioMethyl (AzoTM) molecules in a mechanically controlled break junction (MCBJ) system at 4.2 K. Single-molecule conductance, I-V characteristics, and IETS spectra of molecular junctions are measured and compared with first-principles transport calculations. Our studies elucidate the origin of a slightly higher conductance of junctions with cis isomer and demonstrate that IETS spectra of cis and trans forms show distinct vibrational fingerprints that can be used for identifying the isomer.

  15. Ordering of azobenzenes by two-photon isomerization

    SciTech Connect

    Ishitobi, Hidekazu; Sekkat, Zouheir; Kawata, Satoshi

    2006-10-28

    We report on light induced orientation by two-photon isomerization of azobenzenes in films of polymer. The dynamics of isomerization and orientation by one-photon absorption and two-photon absorption (TPA) are similar, and TPA creates a degree of molecular orientation which is comparable to that achieved by single-photon isomerization, in agreement with the theoretical predictions of two-photon isomeric orientation.

  16. Ordering of azobenzenes by two-photon isomerization.

    PubMed

    Ishitobi, Hidekazu; Sekkat, Zouheir; Kawata, Satoshi

    2006-10-28

    We report on light induced orientation by two-photon isomerization of azobenzenes in films of polymer. The dynamics of isomerization and orientation by one-photon absorption and two-photon absorption (TPA) are similar, and TPA creates a degree of molecular orientation which is comparable to that achieved by single-photon isomerization, in agreement with the theoretical predictions of two-photon isomeric orientation. PMID:17092131

  17. Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers.

    PubMed

    Pavlenko, E S; Sander, M; Mitzscherling, S; Pudell, J; Zamponi, F; Rössle, M; Bojahr, A; Bargheer, M

    2016-07-21

    We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε∼ 5 × 10(-4) is calibrated by ultrafast X-ray diffraction. PMID:27341685

  18. Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. S.; Sander, M.; Mitzscherling, S.; Pudell, J.; Zamponi, F.; Rössle, M.; Bojahr, A.; Bargheer, M.

    2016-07-01

    We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ~ 5 × 10-4 is calibrated by ultrafast X-ray diffraction.

  19. Dicyclopalladated complexes of asymmetrically substituted azobenzenes: synthesis, kinetics and mechanisms.

    PubMed

    Juribašić, Marina; Budimir, Ana; Kazazić, Snježana; Curić, Manda

    2013-11-01

    Two series of new dicyclopalladated complexes {(DMF)PdCl(μ-R(1)C6H3N═NC6H3R(2))PdCl(DMF)} of 4,4'-functionalized azobenzenes with substituents of varying electron-donating or electron-withdrawing strength (R(1) = H, NMe2; R(2) = H, Cl, Br, I, OMe, PhNH, CO2H, SO3Na, or NO2) have been synthesized and fully characterized. (1)H NMR spectroscopy along with the ESI mass spectrometry unambiguously identified the new complexes in the solution, and their solid-state structures were determined by X-ray crystallography. The presence of easily exchangeable solvent ligands was confirmed by (1)H NMR spectroscopy, X-ray experiments, and ESI mass spectrometry. The complexes were additionally characterized by UV-vis and fluorescence spectroscopies. The effect of different 4,4'-substituents on the formation rate of mono- and dicyclopalladated azobenzenes was studied by UV-vis spectroscopy. The experimental results are complemented by the quantum-chemical (DFT) calculations in order to rationalize the kinetic results as well as substituent effects on the reaction rates. It was found that the mono- and dicyclopalladation reactions of azobenzenes proceed in two consecutive processes, adduct formation and palladation steps. The rate-determining step in both palladations is the breaking of the ortho C-H bond, which has been confirmed as an electrophilic substitution process by Hammett correlations and DFT calculations. PMID:24116960

  20. Room temperature observation of size dependent single electron tunneling in a sub-2 nm size tunable Pt nanoparticle embedded metal-oxide-semiconductor structure.

    PubMed

    Yun, Minseong; Ramalingam, Balavinayagam; Gangopadhyay, Shubhra

    2011-11-18

    In this paper we report size dependent single electron tunneling behavior at room temperature in a metal-oxide-semiconductor structure with uniformly sized Pt nanoparticles embedded in an Al(2)O(3) dielectric. The sub-2 nm size Pt nanoparticles sandwiched between the Al(2)O(3) layers are deposited by a unique tilted target sputter deposition technique which produces metal nanoparticles as small as 0.5 nm with narrow size distributions at room temperature. The charging behavior of these nanoparticles shows clear single electron tunneling peaks due to the Coulomb blockade effect. Moreover, the average single electron addition energy and height of the single electron tunneling current strongly depend on the size of the Pt nanoparticle. These controllable single electron tunneling behaviors suggest a new route for fabrication of single electron devices. PMID:22024690

  1. Plasmonic modification of electron-longitudinal-optical phonon coupling in Ag-nanoparticle embedded InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Llopis, Antonio; Pereira, Sérgio M. S.; Watson, Ian M.; Neogi, Arup

    2014-09-01

    Surface plasmon enhanced GaN and InGaN quantum wells (QWs) show promise for use as room-temperature light emitters. The effectiveness of the plasmon enhancement, however, is limited by the strong electron/hole and longitudinal optical phonon coupling found in the III-V nitrides. The electron-phonon coupling within semiconductor QWs has been modified using silver nanoparticles embedded within the QWs. Direct evidence is provided for this change via confocal Raman spectroscopy of the samples. This evidence is augmented by Angle-dependent photoluminescence experiments which show the alteration of the electron-phonon coupling strength through measurement of the emitted phonon replicas. Together these demonstrate a direct modification of carrier-phonon interactions within the system, opening up the possibility of controlling the coupling strength to produce high-efficiency room-temperature light emitters.

  2. Polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials and their chromatographic applications.

    PubMed

    Qiu, Hongdeng; Jiang, Shengxiang; Takafuji, Makoto; Ihara, Hirotaka

    2013-03-25

    New polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials were designed based on the preparation of a new polymerizable azobenzene anionic monomer and either its cation-exchange with alkylimidazolium after grafting or the formation of an ionic liquid monomer pair before grafting onto silica. PMID:23417018

  3. A tristable [2]rotaxane that is doubly gated by foldamer and azobenzene kinetic barriers.

    PubMed

    Wang, Wei-Kun; Xu, Zi-Yue; Zhang, Yun-Chang; Wang, Hui; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-06-14

    A hydrogen bonded foldamer unit and an azobenzene unit have been incorporated into the linear component of a tristable [2]rotaxane to give rise to a doubly gated switching system tuned by the folding-defolding of the foldamer unit and the photo-initiated trans-cis isomerization of the azobenzene unit. PMID:27203526

  4. Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.

    PubMed

    Willenbockel, Martin; Maurer, Reinhard J; Bronner, Christopher; Schulze, Michael; Stadtmüller, Benjamin; Soubatch, Serguei; Tegeder, Petra; Reuter, Karsten; Stefan Tautz, F

    2015-10-25

    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems. PMID:26340405

  5. Tuning the Photoinduced Motion of Glassy Azobenzene Polymers and Networks

    NASA Astrophysics Data System (ADS)

    Vaia, R. A.

    2013-03-01

    Continual innovation at the forefront of soft-matter, in areas such as liquid crystal networks, nano-composites and bio-molecules, is providing exciting opportunities to create smart materials systems that exhibit a controlled, reproducible and reversible modulation of physical properties. These material systems evoke the adaptivity of natural organisms, and inspire radical aerospace notions. A key example is photo-responsive polymers, which convert a light stimulus input into a mechanical output (work). Photoinduced conformational changes, such as within azobenzene, dictate molecular-level distortions that summate into a macroscopic strain, which often manifests as a shape change or motion. The transduction of the molecular-level response to a macroscale effect is regulated by mesoscopic features, such as chain packing, free volume, and local molecular order - factors which depend on chemical composition as well as the process history of the material. For example, physical aging increases the density of the glass, reduces local free volume, and thus decreases the minima in local conformation space which strongly influences the azobenzene photochemistry (trans-cis-trans isomerization). The subsequent change in the energy landscape of the system reduces the fraction of azobenzene able to undergo reconfiguration as well as increases the probability that those photoinduced conformations will relax back to the initial local environment. The result is a tuning of the magnitude of macroscopic strain and the ability to shift from shape fixing to shape recovery, respectively. Work done in collaboration with H. Koerner, K.M. Lee, M. Smith, D. Wang, L-S. Tan. and T. White, Air Force Research Laboratory.

  6. Picosecond dynamics in water-soluble azobenzene-peptides

    NASA Astrophysics Data System (ADS)

    Satzger, H.; Root, C.; Renner, C.; Behrendt, R.; Moroder, L.; Wachtveitl, J.; Zinth, W.

    2004-09-01

    Ultrafast absorption changes are recorded for water-soluble cyclic azobenzene peptides containing the photoswitch (4-aminomethyl)-phenyl-azobenzoic acid (AMPB) and a bioactive peptide motif. They can be separated into the fast reactions in the AMPB chromophore and the slower response of the peptide moiety. While the fastest reactions display similar time constants as observed for AMPB peptides dissolved in DMSO the slower reaction dynamics assigned to vibrational cooling and motions of the peptide moiety are faster in water by a factor of up to two. The changes in the reaction times are explained by solvent heat capacity and viscosity.

  7. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  8. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores.

    PubMed

    Kang, En-Hua; Bu, Tianjia; Jin, Pengcheng; Sun, Junqi; Yang, Yanqiang; Shen, Jiacong

    2007-07-01

    Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials. PMID:17555337

  9. Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester.

    PubMed

    Ramanujam, P S

    2003-12-01

    I demonstrate high-resolution polarization holographic recording with evanescent waves in a thin film of an azobenzene polyester deposited directly on the hypotenuse of a highly refractive prism. A spatial frequency greater than 7000 lines/mm and diffraction efficiency greater than 1% have been achieved. It was found that diffraction efficiency increases in the dark after the writing beams have been switched off. The biphotonic effect found in other azobenzene polymers, which converts cis states of the azobenzene to trans states followed by an ordering process that is due to aggregation, is proposed as the reason for this increase in diffraction efficiency. PMID:14680187

  10. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization.

    PubMed

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix

    2015-10-16

    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination. PMID:26414427

  11. Rapid transport of polyacrylates in dextran matrix

    SciTech Connect

    Maeda, H.; Nakamura, K.; Sasaki, S.

    1993-12-31

    The authors have observed the rapid transport of polyacrylate(PA) in the matrix of dextran. (1) In the salt-free media, the transport of PA depended on the kind of its couterions. The rates were in the following order: tetramethylammonium > Li+ > tetrabutylammonium > Na+ > NH{sub 4}+ > Cs+. (2) The transport rate of PAA in buffer solutions of about 30mM ionic strength increased with the degree of ionization {alpha} but remained constant in the range of {alpha} greater than about 0.4. The effect of the counterion condensation on the transport rate was thus clearly demonstrated. (3) The transport rate of NaPA was nearly identical in the presence of 0.1 M NaCl and no added salt. It decreased to less than half in 0.2 M NaCl and in 0.5 M NaCl no rapid transport was observed any more and ordinary diffusion behavior was observed instead.

  12. A ferrocene-azobenzene derivative showing unprecedented phase transition and better solubility upon UV irradiation.

    PubMed

    Zhang, Rui; Ji, Ya-Jian; Yang, Lan; Zhang, Yi; Kuang, Gui-Chao

    2016-04-21

    The ferrocene-aspartic acid-azobenzene derivative 1 showing an unprecedented photoinduced crystal-liquid phase transition at an elevated temperature and better solubility in organic solvents has been successfully reported. PMID:27025392

  13. Optical Modulation of the Diffraction Efficiency in an Indoline Azobenzene/Amorphous Polycarbonate Film.

    PubMed

    Williams, G V M; Do, My T T; Middleton, A; Raymond, S G; Bhuiyan, M D H; Kay, A J

    2016-12-01

    We have made a diffraction grating in an indoline azobenzene/amorphous polycarbonate film by two-beam interference at 532 nm that periodically photodegrades the indoline azobenzene dye. Subsequent illumination of the film with 532-nm light into the trans-isomer band leads to trans-cis isomerization in the indoline azobenzene dye and results in a decrease in the trans-isomer band absorption coefficient. This causes the diffraction efficiency to decrease when probed at 655 nm. The diffraction efficiency returns to its original value when the 532-nm light is blocked by thermal relaxation from the indoline azobenzene cis-isomer to the trans-isomer. Thus, we have been able to optically modulate the diffraction efficiency in a thin film diffraction grating. PMID:27416904

  14. Optical Modulation of the Diffraction Efficiency in an Indoline Azobenzene/Amorphous Polycarbonate Film

    NASA Astrophysics Data System (ADS)

    Williams, G. V. M.; Do, My T. T.; Middleton, A.; Raymond, S. G.; Bhuiyan, M. D. H.; Kay, A. J.

    2016-07-01

    We have made a diffraction grating in an indoline azobenzene/amorphous polycarbonate film by two-beam interference at 532 nm that periodically photodegrades the indoline azobenzene dye. Subsequent illumination of the film with 532-nm light into the trans-isomer band leads to trans- cis isomerization in the indoline azobenzene dye and results in a decrease in the trans-isomer band absorption coefficient. This causes the diffraction efficiency to decrease when probed at 655 nm. The diffraction efficiency returns to its original value when the 532-nm light is blocked by thermal relaxation from the indoline azobenzene cis-isomer to the trans-isomer. Thus, we have been able to optically modulate the diffraction efficiency in a thin film diffraction grating.

  15. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    PubMed

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. PMID:27612736

  16. Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water.

    PubMed

    He, Jinsong; Siah, Tiong-Shie; Paul Chen, J

    2014-06-01

    Consumption of water that has excessive fluoride can cause adverse health impacts on human beings. A Zr-based nanoparticle-embedded PSF blend hollow fiber membrane was successfully prepared and optimized for removal of fluoride from the aqueous solution. Both static and dynamic adsorption of fluoride on the membrane was investigated. It was showed that the membrane could effectively remove fluoride within a wide pH ranging from 3 to 10. At neutral pH, the adsorption equilibrium was reached within 24 h. The maximum adsorption capacity of the optimized membrane was 60.65 mg/g, much higher than many commercial adsorbents. The presence of NO3(-), SiO3(2-) or HA has insignificant effects on the fluoride removal. However, the removal was retarded as the concentration of HCO3(-) or PO4(3-) was increased. Furthermore, the membrane could remove fluoride efficiently through the continuous filtration, even in presence of natural organic matters. The spent membrane could be regenerated and then reused for the removal of fluoride with great efficiency. The adsorption history could be well described by an intraparticle diffusion model. The XPS analysis showed that the adsorption of fluoride was mainly associated with the ion-exchange between SO4(2-) and F(-) ions. Finally, the toxicity analysis revealed that the treated water was safe for human consumption. PMID:24657326

  17. Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor.

    PubMed

    Hashim, P K; Thomas, Reji; Tamaoki, Nobuyuki

    2011-06-20

    New phototriggered molecular machines based on cyclic azobenzene were synthesized in which a 2,5-dimethoxy, 2,5-dimethyl, 2,5-difluorine or unsubstituted-1,4-dioxybenzene rotating unit and a photoisomerizable 3,3'-dioxyazobenzene moiety are bridged together by fixed bismethylene spacers. Depending upon substitution on the benzene moiety and on the E/Z conformation of the azobenzene unit, these molecules suffer various degrees of restriction on the free rotation of the benzene rotor. The rotation of the substituted benzene rotor within the cyclic azobenzene cavity imparts planar chirality to the molecules. Cyclic azobenzene 1, with methoxy groups at both the 2- and 5-positions of the benzene rotor, was so conformationally restricted that free rotation of the rotor was prevented in both the E and Z isomers and the respective planar chiral enantiomers were resolved. In contrast, compound 2, with 2,5-dimethylbenzene as the rotor, demonstrated the property of a light-controlled molecular brake, whereby rotation of the 2,5-dimethylbenzene moiety is completely stopped in the E isomer (brake ON, rotation OFF), while the rotation is allowed in the Z isomer (brake OFF, rotation ON). The cyclic azobenzene 3, with fluorine substitution on the benzene rotor, was in the brake OFF state regardless of E/Z photoisomerization of the azobenzene moiety. More interestingly, for the first time, we demonstrated the induction of molecular chirality in a simple monocyclic azobenzene by circular-polarized light. The key characteristics of cyclic azobenzene 2, that is, stability of the chiral structure in the E isomer, fast racemization in the Z isomer, and the circular dichroism of enantiomers of both E and Z isomers, resulted in a simple reversible enantio-differentiating photoisomerization directly between the E enantiomers. Upon exposure to r- or l-circularly polarized light at 488 nm, partial enrichment of the (S)- or (R)-enantiomers of 2 was observed. PMID:21567494

  18. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    PubMed Central

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-01-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex. PMID:27339811

  19. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    PubMed

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks. PMID:27430357

  20. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    PubMed

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-01-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex. PMID:27339811

  1. Antimicrobial azobenzene compounds and their potential use in biomaterials

    NASA Astrophysics Data System (ADS)

    Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.

    2016-04-01

    We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.

  2. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    NASA Astrophysics Data System (ADS)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  3. Azobenzene-based supramolecular polymers for processing MWCNTs

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M.; Yoosaf, K.; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2012-12-01

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy

  4. Glycosylated polyacrylate nanoparticles by emulsion polymerization.

    PubMed

    Abeylath, Sampath C; Turos, Edward

    2007-08-01

    A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranose, 1-O-acryloyl-2,3:5,6-di-O-isopropylidene-alpha-D-mannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-beta-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-1-methoxy-beta-D-ribofuranose and 4-N-acetyl-5'-O-acryloyl-2',3'-O-isopropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of ~80nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-1-methoxy-beta-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconanoparticles with potential applications in targeted drug delivery and materials development. PMID:18677404

  5. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method. PMID:23383955

  6. [Polyacrylates of noble metals as potential antitumor drugs].

    PubMed

    Ostrovskaia, L A; Voronkov, M G; Korman, D B; Bliukhterova, N V; Fomina, M M; Rykova, V A; Abzaeva, K A; Zhilitskaia, L V

    2014-01-01

    The antitumor activity of polyacrylates of the noble metals containing argentum (argacryl), aurum (auracryl) and platinum (platacryl) has been studied using experimental murine solid tumor models (Lewis lung carcinoma and Acatol adenocarcinoma). It has been found that polyacrylates of the noble metals are capable of inhibiting tumor development by 50-90% compared to control. Auracryl that inhibites the growth of Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90%, respectively, compared to control is the most efficient among the tested compounds and can be recommended for the further profound preclinical studies. PMID:25707247

  7. A cationic azobenzene-surfactant-modified graphene hybrid: unique photoresponse and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Bao, Lin; Ou, Encai; Peng, Chang; Wang, Weimao; Xu, Weijian

    2015-11-01

    Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous solution. Besides, the self-assembly can be reversibly controlled by ultraviolet light (365 nm) and blue light (455 nm) irradiation. This process is driven by the photoinduced polarity change of the cationic azobenzene surfactant and is responsible for the graphene hybrids' electrochemical performance. It is the first example of the reversible self-assembly of graphene driven by light irradiation.Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous

  8. Photodissociation UV-Vis Spectra of Cold Protonated Azobenzene and 4-(Dimethylamino)azobenzene and Their Benzenediazonium Cation Fragment.

    PubMed

    Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Marceca, Ernesto

    2016-06-01

    Gas phase photodissociation electronic spectra of protonated azobenzene (ABH(+)) and 4-(dimethylamino)azobenzene (dmaABH(+)) were measured in a cryogenically cooled ion trap at temperatures of a few tens of Kelvin. Experimental results were complemented with electronic structure calculations in the ground state at the MP2/cc-pVDZ level of theory, and in the low lying excited states using the RI-CC2 method. Calculated energies revealed that only the trans isomers of the azonium molecular ions (protonation site on the azo group) will likely exist in the trap at the temperatures achieved in the experiment. The first transition of trans-ABH(+) is π* ← π, and the absorption band in the spectrum appears strongly red-shifted from that of the neutral molecule. The calculations showed that upon excitation the quasi-planar ground state (S0) transforms into a chairlike excited state (S1) by twisting the CNNC dihedral angle about 96°. A 41 cm(-1) active vibrational progression found in the ABH(+) spectrum may be associated with the twisting of the azo bond. Conversely, the electronic spectrum of dmaABH(+) exhibits a steep and unstructured S1 ← S0 absorption corresponding to a less distorted S1 state. The next two quasi-degenerate bands in the ABH(+) spectrum evidence sharper onsets and a charge transfer character. Using a second fragmentation laser and an additional He cooling pulse in the trap, it was possible to measure the UV spectrum of cold benzenediazonium fragments. PMID:27216229

  9. A one-pot synthetic approach to prepare palladium nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres for hydrogen peroxide sensing

    SciTech Connect

    Kong Lirong; Lu Xiaofeng; Bian Xiujie; Zhang Wanjin; Wang Ce

    2010-10-15

    A simple one-step method to fabricate hierarchically porous TiO{sub 2}/Pd composite hollow spheres without any template was developed by using solvothermal treatment. Pd nanoparticles (2-5 nm) were well dispersed in the mesopores of the TiO{sub 2} hollow spheres via in-situ reduction. In our experiment, polyvinylpyrrolidone played an important role in the synthetic process as the reducing agent and the connective material between TiO{sub 2} and Pd nanoparticles. HF species generated from solvothermal reaction leaded to the formation of TiO{sub 2} hollow spheres and Ostwald ripening was another main factor that affected the size and structure of the hollow spheres. The as-prepared TiO{sub 2}/Pd composite hollow spheres exhibited high electrocatalytic activity towards the reduction of H{sub 2}O{sub 2}. The sensitivity was about 226.72 {mu}A mM{sup -1} cm{sup -2} with a detection limit of 3.81 {mu}M at a signal-to-noise ratio of 3. These results made the hierarchically porous TiO{sub 2}/Pd composite a promising platform for fabricating new nonenzymic biosensors. - Graphical Abstract: A new one-step solvothermal method was developed to prepare Pd nanoparticles embedded hierarchically porous TiO{sub 2} hollow spheres. Due to its unique nanostructure, the prepared TiO{sub 2}/Pd modified GC electrode exhibit a high sensitivity (226.72 {mu}A mM{sup -1} cm{sup -2}), a relatively low reduction potential (-0.2 V), a fast response time (<3 s) and a relatively low detection limit of 3.81 {mu}M (S/N=3) towards H{sub 2}O{sub 2}.

  10. Spontaneous gradual accumulation of hexagonally-aligned nano-silica on gold nanoparticles embedded in stabilized zirconia: a pathway from catalytic to NH3-sensing performance

    NASA Astrophysics Data System (ADS)

    Plashnitsa, Vladimir V.; Elumalai, Perumal; Fujio, Yuki; Kawaguchi, Toshikazu; Miura, Norio

    2011-05-01

    The present study highlights the influence of nano-impurities on the catalytic/sensing performance of nano-structured Au sensing-electrodes (SEs) housed in a quartz reactor and operated at high temperature over a long period of time. The planar sensor, made from a nano-structured Au-SE on a polished-polycrystalline (pp) yttria-stabilized zirconia (YSZ) substrate exhibited initially negligible electromotive force (emf) response to each of the examined gases (CO, CH4, C3H8, C3H6, NOx and NH3; 400 ppm each) at 700 °C in the presence of 5 vol.% oxygen and 5 vol.% water vapor. Such a poor emf response was attributed to the excellent gas-phase oxidation/reduction ability of Au nanoparticles embedded in the YSZ substrate at high temperature. The response of the planar sensor made up of nano-structured Au-SE was monitored for about 75 days at 700 °C. As a result of this long-term monitoring, we detected the appearance of highly sensitive and selective NH3 gas-sensing properties after 45-75 days of sensor operation. Detailed observation of the morphology and composition of the as-fabricated nano-structured Au-SE after 75 days operation at 700 °C revealed the gradual accumulation of hexagonally-aligned SiO2 nano-impurities on the surface of the Au nanoparticles. The NH3 sensing mechanism of the YSZ-based sensor using the spontaneously-formed composite (nano-Au + nano-SiO2)-SE is therefore proposed to be based on a strong acid-base interaction between gaseous NH3 and SiO2 nano-impurities, followed by spillover of adsorbed NH3 towards the nano-Au/pp-YSZ interface.

  11. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  12. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...). The solvent used shall be at least 60 milliliters aqueous sodium chloride solution per gram of... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg....

  13. Induction of E/Z isomerization in a pendant metal-bound azobenzene: a synthetic, spectroscopic and theoretical study.

    PubMed

    Hasheminasab, A; Wang, L; Dawadi, M B; Bass, J; Herrick, R S; Rack, J J; Ziegler, C J

    2015-09-21

    Re(CO)3 conjugates 1 and 2 that incorporate azobenzenes can be readily generated via one-pot reactions using Schiff base reaction forming conditions. Excitation of the MLCT bands in 1 and 2 results in isomerization of the azobenzene moiety, and this process has been investigated via time-resolved photophysics and TDDFT calculations. PMID:26252161

  14. Fluorescence from an azobenzene-containing diblock copolymer micelle in solution.

    PubMed

    Bo, Qi; Zhao, Yue

    2007-05-01

    We report the observation of unusual fluorescence emission from an azobenzene-containing polymer micellar solution. An amphiphilic diblock copolymer composed of the hydrophilic quaternized poly(4-vinyl pyridine) (QP4VP) and a hydrophobic liquid crystalline polymethacrylate bearing azobenzene side groups (PAzoMA) is nonfluorescent in molecularly dissolved state in N,N-dimethyl formamide (DMF) but becomes fluorescent as a result of the micellization upon addition of water, which confines azobenzene groups into the core region of micellar aggregates. Experimental results suggest that the micellization-enhanced fluorescence was caused by a slowdown, due to the confinement effect, in the rate of the trans-to-cis photoisomerization that is the main nonradiative relaxation process for excited azobenzene groups in the trans form. Furthermore, it was found that the fluorescence intensity of aqueous micellar solution is sensitive to changes in pH (reversible fluorescence variation) and to illumination (irreversible fluorescence variation). The results indicate that a subtle change in the state of polymer micellar association may alter the confining state of azobenzene groups responsible for the fluorescence emission. PMID:17407334

  15. A cationic azobenzene-surfactant-modified graphene hybrid: unique photoresponse and electrochemical behavior.

    PubMed

    Chen, Shu; Bao, Lin; Ou, Encai; Peng, Chang; Wang, Weimao; Xu, Weijian

    2015-12-14

    Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous solution. Besides, the self-assembly can be reversibly controlled by ultraviolet light (365 nm) and blue light (455 nm) irradiation. This process is driven by the photoinduced polarity change of the cationic azobenzene surfactant and is responsible for the graphene hybrids' electrochemical performance. It is the first example of the reversible self-assembly of graphene driven by light irradiation. PMID:26553111

  16. The photoisomerization of a peptidic derivative of azobenzene: A nonadiabatic dynamics simulation of a supramolecular system

    NASA Astrophysics Data System (ADS)

    Ciminelli, Cosimo; Granucci, Giovanni; Persico, Maurizio

    2008-06-01

    The aim of this work is to investigate the mechanism of photoisomerization of an azobenzenic chromophore in a supramolecular environment, where the primary photochemical act produces important changes in the whole system. We have chosen a derivative of azobenzene, with two cyclopeptides attached in the para positions, linked by hydrogen bonds when the chromophore is in the cis geometry. We have run computational simulations of the cis → trans photoisomerization of such derivative of azobenzene, by means of a surface hopping method. The potential energy surfaces and nonadiabatic couplings are computed "on the fly" with a hybrid QM/MM strategy, in which the quantum mechanical subsystem is treated semiempirically. The simulations show that the photoisomerization is fast (about 200 fs) and occurs with high quantum yields, as in free azobenzene. However, the two cyclopeptides are not promptly separated, and the breaking of the hydrogen bonds requires longer times (at least several picoseconds), with the intervention of the solvent molecules (water). As a consequence, the resulting trans-azobenzene is severely distorted, and we show how its approach to the equilibrium geometry could be monitored by time-resolved absorption spectroscopy.

  17. Red-Shifting Azobenzene Photoswitches for in Vivo Use.

    PubMed

    Dong, Mingxin; Babalhavaeji, Amirhossein; Samanta, Subhas; Beharry, Andrew A; Woolley, G Andrew

    2015-10-20

    Recently, there has been a great deal of interest in using the photoisomerization of azobenzene compounds to control specific biological targets in vivo. These azo compounds can be used as research tools or, in principle, could act as optically controlled drugs. Such "photopharmaceuticals" offer the prospect of targeted drug action and an unprecedented degree of temporal control. A key feature of azo compounds designed to photoswitch in vivo is the wavelength of light required to cause the photoisomerization. To pass through tissue such as the human hand, wavelengths in the red, far-red, or ideally near infrared region are required. This Account describes our attempts to produce such azo compounds. Introducing electron-donating or push/pull substituents at the para positions delocalizes the azobenzene chromophore and leads to long wavelength absorption but usually also lowers the thermal barrier to interconversion of the isomers. Fast thermal relaxation means it is difficult to produce a large steady state fraction of the cis isomer. Thus, specifically activating or inhibiting a biological process with the cis isomer would require an impractically bright light source. We have found that introducing substituents at all four ortho positions leads to azo compounds with a number of unusual properties that are useful for in vivo photoswitching. When the para substituents are amide groups, these tetra-ortho substituted azo compounds show unusually slow thermal relaxation rates and enhanced separation of n-π* transitions of cis and trans isomers compared to analogues without ortho substituents. When para positions are substituted with amino groups, ortho methoxy groups greatly stabilize the azonium form of the compounds, in which the azo group is protonated. Azonium ions absorb strongly in the red region of the spectrum and can reach into the near-IR. These azonium ions can exhibit robust cis-trans isomerization in aqueous solutions at neutral pH. By varying the nature

  18. Optically switchable multi-stopband of non-quarter-wavelength dielectric multilayer using azobenzene polymer liquid crystal

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Kadowaki, Kazunori; Hagio, Takashi; Yagi, Ryohei; Kuwahara, Yutaka; Kurihara, Seiji

    2015-09-01

    Non-quarter-wave stacked dielectric multilayers including azobenzene polymer liquid crystal layers are investigated in this study. The azobenzene polymer liquid crystal has a photoinduced reversible refractive index based on photoisomerization. By using the reversible refractive-index change, the reflectance of a stopband can be controlled. In this system, the azobenzene molecules change their conformation when they are irradiated with ultraviolet (UV) or visible light. In general, stacking many layers of different thicknesses can produce broadband or multicolor reflections for a dielectric multilayer. However, in a multilayer having thick azobenzene layers, UV or visible light used for controlling photoisomerization hardly reaches the bottom part of the multilayer because the light is mainly absorbed at its top surface. To solve this problem, the dependence on the thickness ratio of the multilayer is investigated and a non-quarter-wave stacked multilayer having RGB reflections is experimentally demonstrated using thin azobenzene layers.

  19. Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jiao, Hongxing; He, Erkang; Yang, Shaoan; Chen, Yongmei; Zhao, Mingshu; Song, Xiaoping

    2016-09-01

    SnO2@C nanocomposites are easily synthesized in a large scale by the hydrolysis of Sn4+ ions in a polyacrylic acid (PAA) hydrogel system, followed by the decomposition of Sn(OH)4 and carbonization of PAA by heat treatment in one-system. The SnO2@C nanocomposites contain uniform ultrafine SnO2 nanoparticles (≈4.3 nm) homogenously embedded in a three-dimensional carbon matrix. This unique structure efficiently suppresses the particle pulverization and aggregation of SnO2, thus maintaining the electrode integrity during long-term lithiation/delithiation process. The discharge capacity of SnO2@C nanocomposites is maintained at ∼597.3 mAh g-1 after 220 cycles. This scalable approach has great potential in the applications of high-capacity anodes in Li-ion batteries.

  20. Nonadiabatic ab initio molecular dynamics of photoisomerization in bridged azobenzene

    SciTech Connect

    Gao Aihua; Li Bin; Zhang Peiyu; Han Keli

    2012-11-28

    The photoisomerization mechanisms of bridged azobenzene are investigated by means of surface hopping dynamics simulations based on the Zhu-Nakamura theory. In the geometry optimizations and potential energy surface calculations, four minimum-energy conical intersections between the ground state and the lowest excited state are found to play important roles in the trans-cis and cis-trans isomerization processes. The trans-cis photoisomerization proceeds through two minimum-energy conical intersections. Ultrafast pedal motion of the N atoms and twisting of phenyl rings around their N-C bonds allows the molecule to move to a minimum-energy conical intersection, after which surface hopping from S{sub 1} to S{sub 0} occurs. In the S{sub 0} state, further rotation occurs around the N=N bond and two N-C bonds until the azo moiety and phenyl rings complete their isomerization. Finally, the cis form is achieved by subsequent adjustment of the ethylene bridge. In the cis-trans photodynamics, there is one rotational pathway, in the middle of which two CIs are responsible for the surface hopping to the S{sub 0} state. After the nonadiabatic transition, the molecule reaches the trans form through a barrierless pathway and the two phenyl rings and the additional bridge complete their reorientation almost at the same time.

  1. Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres.

    PubMed

    Lee, Sumi; Oh, Seungwhan; Lee, Joosub; Malpani, Yashwardhan; Jung, Young-Sik; Kang, Baotao; Lee, Jin Yong; Ozasa, Kazunari; Isoshima, Takashi; Lee, Sang Yun; Hara, Masahiko; Hashizume, Daisuke; Kim, Jong-Man

    2013-05-14

    Novel, stimulus-responsive supramolecular structures in the form of fibers, gels, and spheres, derived from an azobenzene-containing benzenetricarboxamide derivative, are described. Self-assembly of tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxamide (Azo-1) in aqueous organic solvent systems results in solvent dependent generation of microfibers (aq DMSO), gels (aq DMF), and hollow spheres (aq THF). The results of a single crystal X-ray diffraction analysis of Azo-1 (crystallized from a mixture of DMSO and H2O) reveal that it possesses supramolecular columnar packing along the b axis. Data obtained from FTIR analysis and density functional theory (DFT) calculation suggest that multiple hydrogen bonding modes exist in the Azo-1 fibers. UV irradiation of the microfibers, formed in aq DMSO, causes complete melting while regeneration of new fibers occurs upon visible light irradiation. In addition to this photoinduced and reversible phase transition, the Azo-1 supramolecules display a reversible, fiber-to-sphere morphological transition upon exposure to pure DMSO or aq THF. The role played by amide hydrogen bonds in the morphological changes occurring in Azo-1 is demonstrated by the behavior of the analogous, ester-containing tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxylate (Azo-2) and by the hydrogen abstraction in the presence of fluoride anions. PMID:23597134

  2. Mechanical Motion of Chiral Azobenzene Crystals with Twisting upon Photoirradiation.

    PubMed

    Taniguchi, Takuya; Fujisawa, Juri; Shiro, Motoo; Koshima, Hideko; Asahi, Toru

    2016-06-01

    The photomechanical motion of chiral crystals of trans-azobenzene derivatives with an (S)- and (R)-phenylethylamide group was investigated and compared with a racemic crystal. Changes in the UV/Vis absorption spectra of the powdered crystals before and after UV irradiation were measured by using an optical waveguide spectrometer, showing that the lifetime of the cis-to-trans thermal back-isomerization of the chiral crystals was faster than that of the racemic crystals. Upon UV irradiation, a long plate-like chiral microcrystal bent away from the light source with a twisting motion. A square-like chiral microcrystal curled toward the light with some twisting. Reversible bending of a rod-like chiral microcrystal was repeatable over twenty-five cycles. In contrast, bending of a plate-like racemic microcrystal was small. A possible mechanism for the bending and twisting motion was discussed based on the optimized cis conformer determined by using calculations, showing that the bending motion with twisting is caused by elongation along the b axis and shrinkage along the a axis. PMID:27097760

  3. Contactless, photoinitiated snap-through in azobenzene-functionalized polymers

    PubMed Central

    Shankar, M. Ravi; Smith, Matthew L.; Tondiglia, Vincent P.; Lee, Kyung Min; McConney, Michael E.; Wang, David H.; Tan, Loon-Seng; White, Timothy J.

    2013-01-01

    Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photoinitiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report orders-of-magnitude enhancement in actuation rates (approaching 102 mm/s) and powers (as much as 1 kW/m3). The contactless, ultra-fast actuation is observed at irradiation intensities <<100 mW/cm2. Due to the bistability and symmetry of the snap-through, reversible and bidirectional actuation is demonstrated. A model is developed to elucidate the underlying mechanics of the snap-through, specifically focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements. PMID:24190994

  4. Photomechanical response of azobenzene/organophilic mica complexes

    SciTech Connect

    Fujita, T.; Iyi, N.; Klapyta, Z.; Fujii, K.; Kaneko, Y.; Kitamura, K

    2003-12-10

    To clarify whether photomechanical response is limited to the special combination of azobenzene (AzBz)/organophilic tetrasilicic mica (TSM) complexes, another swelling synthetic fluoro-mica, lithium taeniolite, was used as a starting host for AzBz/organophilic mica complexes. Basal spacings of organophilic taeniolites (o-TNs) prepared by the intercalation of trimethylalkylammonium (TMAA) into the TN increased linearly as alkyl chain length in TMAA increased from 2.44 to 2.86 nm. This indicates paraffin-type arrangement of TMAA in the TN gallery. Intercalation of AzBz to o-TN was performed via the gas phase at 100 deg. C. Photoresponses of AzBz/o-TN complexes were examined by XRD measurement under alternate UV and visible light irradiation. A decrease in basal spacing was observed under UV irradiation, and an increase was under visible light irradiation. Basal spacing change was 0.09-0.18 nm, which corresponds to 3-5% of the AzBz/o-TN basal spacing. These results indicate that reversible photomechanical response is a general phenomenon for AzBz/organophilic mica complexes.

  5. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    DOE PAGESBeta

    Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; Jiang, Yingbing; Brinker, C. Jeffrey

    2011-01-01

    Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less

  6. A Unified Material Description for Light Induced Deformation in Azobenzene Polymers

    PubMed Central

    Bin, Jonghoon; Oates, William S.

    2015-01-01

    Complex light-matter interactions in azobenzene polymers have limited our understanding of how photoisomerization induces deformation as a function of the underlying polymer network and form of the light excitation. A unified modeling framework is formulated to advance the understanding of surface deformation and bulk deformation of polymer films that are controlled by linear or circularly polarized light or vortex beams. It is shown that dipole forces strongly respond to polarized light in contrast to higher order quadrupole forces that are often used to describe surface relief grating deformation through a field gradient constitutive law. The modeling results and comparisons with a broad range of photomechanical data in the literature suggest that the molecular structure of the azobenzene monomers dramatically influences the photostrictive behavior. The results provide important insight for designing azobenzene monomers within a polymer network to achieve enhanced photo-responsive deformation. PMID:26437598

  7. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    PubMed

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light. PMID:26650435

  8. Local Density Fluctuations Predict Photoisomerization Quantum Yield of Azobenzene-Modified DNA.

    PubMed

    Kingsland, Addie; Samai, Soumyadyuti; Yan, Yunqi; Ginger, David S; Maibaum, Lutz

    2016-08-01

    Azobenzene incorporated into DNA has a photoisomerization quantum yield that depends on the DNA sequence near the azobenzene attachment site. We use Molecular Dynamics computer simulations to elucidate which physical properties of the modified DNA determine the quantum yield. We show for a wide range of DNA sequences that the photoisomerization quantum yield is strongly correlated with the variance of the number of atoms in close proximity to the outer phenyl ring of the azobenzene group. We infer that quantum yield is controlled by the availability of fluctuations that enable the conformational change. We demonstrate that these simulations can be used as a qualitative predictive tool by calculating the quantum yield for several novel DNA sequences, and confirming these predictions using UV-vis spectroscopy. Our results will be useful for the development of a wide range of applications of photoresponsive DNA nanotechnology. PMID:27428569

  9. Charge-transfer dynamics in azobenzene alkanethiolate self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Gahl, Cornelius; Schmidt, Roland; Brete, Daniel; Paarmann, Stephanie; Weinelt, Martin

    2016-01-01

    We have studied the charge-transfer dynamics in azobenzene-functionalized alkanethiolate self-assembled monolayers. We compare the core-hole-clock technique, i.e., resonant vs. non-resonant contributions in the azobenzene autoionization of the Cls-π* core exciton, with the lifetime of a molecular resonance determined by two-photon photoemission spectroscopy using femtosecond laser pulses. Both techniques yield comparable charge-transfer times of 80 ± 20 fs for a linker consisting of three CH2 groups and one oxygen unit. Thus the quenching of the excitation is about one order of magnitude faster than the time required for the trans to cis isomerization of the azobenzene photoswitch in solution.

  10. A Unified Material Description for Light Induced Deformation in Azobenzene Polymers

    NASA Astrophysics Data System (ADS)

    Bin, Jonghoon; Oates, William S.

    2015-10-01

    Complex light-matter interactions in azobenzene polymers have limited our understanding of how photoisomerization induces deformation as a function of the underlying polymer network and form of the light excitation. A unified modeling framework is formulated to advance the understanding of surface deformation and bulk deformation of polymer films that are controlled by linear or circularly polarized light or vortex beams. It is shown that dipole forces strongly respond to polarized light in contrast to higher order quadrupole forces that are often used to describe surface relief grating deformation through a field gradient constitutive law. The modeling results and comparisons with a broad range of photomechanical data in the literature suggest that the molecular structure of the azobenzene monomers dramatically influences the photostrictive behavior. The results provide important insight for designing azobenzene monomers within a polymer network to achieve enhanced photo-responsive deformation.

  11. Time-dependent density functional study on the photoisomerization mechanism of azobenzene

    NASA Astrophysics Data System (ADS)

    Oyama, Norihisa; Tateyama, Yoshitaka; Miyamoto, Yoshiyuki; Ohno, Takahisa

    2004-03-01

    Photochemical reactions in organic molecules have attracted considerable attention in semiconductor physics and also in bioscience. Azobenzene is a simple molecule which shows the reversible photoisomerization at high quantum yields, and can be used as a light-driven molecular switch and so on. However, the photoisomerization process of azobenzene is still an open question because of its femtosecond ultra-fast reaction. In this talk, we present time-dependent density functional calculations for the azobenzene molecule, and discuss the mechanism of photoisomerization induced by S1 and S2 excitations. This research is partially supported by ACT-JST, and also by FSIS and Special Coordination Funds of MEXT of Japanese Government. The calculations were carried out partly using the Numerical Materials Simulator in National Institute for Materials Science, and partly using the NEC-SX5 at Cybermedia Center of Osaka University.

  12. Theoretical study of intramolecular interactions on H-shape azobenzenes' first-order hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Chu, Feng; Zhu, Jing; Lu, Changgui; Cui, Yiping; Zhang, Chaozhi; Lu, Guoyuan

    2008-01-01

    First-order hyperpolarizabilities of H-shape azobenzenes in gas and in THF have been theoretically studied by Hartree-Fock method and basis set sto-3g with Onsager model, including 4,5-bis((E)-(4-nitrophenyl)diazenyl)anthracene-1,8-diol, 4,5-bis((E)-(4-(trifluoromethyl)phenyl)diazenyl)anthracene-1,8-diol, 4,5-bis((E)-(3-chloro-4-fluorophenyl)diazenyl) anthracene-1,8-diol and 4,5-bis((E)-(4-chlorophenyl)diazenyl)anthracene-1,8-diol. Compared with corresponding azobenzene monomers, H-shape azobenzenes had much larger first-order hyperpolarizabilities. There were four factors which could obviously influence their first-order hyperpolarizabilities. Firstly, H-shape azobenzenes possessed dihedral angles of approximate ten degrees caused by coulomb repulsions with weakening dipole's changes between ground states and excited states. Meanwhile, dihedral angle induced energy gap between HOMO and LUMO to increase. Secondly, dipole-dipole interaction was considered as perturbation which caused strong energy splitting of each molecular orbital with the lessening of energy gap. Thirdly, hyper-conjugated effect existed in H-shape azobenzene and it induced energy gap to decline. Fourthly, solvent effects could obviously enhance their first-order hyperpolarizabilities by comparing results in gas with results in THF. These factors competed and affected each other. The latter three factors lastly overcame coulomb repulsion, which explained that H-shape azobenzenes' first-order hyperpolarizabilities were much larger than corresponding monomers'.

  13. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors.

    PubMed

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z→E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host π-system, resulting in increased repulsion between the lone electron pairs in the N=N bond. PMID:25369943

  14. Colorimetric response of azobenzene-terminated polydiacetylene vesicles under thermal and photic stimuli

    NASA Astrophysics Data System (ADS)

    You, Xian; Chen, Xin; Zou, Gang; Su, Wei; Zhang, Qijin; He, Pingsheng

    2009-11-01

    We study the colorimetric reversibility of pure polymerized p-nitro azobenzene moiety-substituted diacetylene (PNADA) and PNADA/polymerized 10,12-pentacosadiynoic acid (PDA) complex vesicles under thermal and photic stimuli. Because of the strong intermolecular interaction among azobenzene mesogens within the vesicles, PNADA vesicles show enhanced stability and completely reversible thermochromic response. Polydiacetylene based complex vesicles with partial reversible chromatic properties under both thermal and photonic stimuli were reported for the first time, which provided a novel model system for the understanding of the chromatic transition mechanism of polydiacetylene materials.

  15. Azobenzene-functionalized cage silsesquioxanes as inorganic-organic hybrid, photoresponsive, nanoscale, building blocks.

    PubMed

    Liu, Yun; Yang, Wenyan; Liu, Hongzhi

    2015-03-16

    Mono- and octa-azobenzene-functionalized cage silsesquioxanes were easily synthesized by the reaction of 4-bromoazobenzene with monovinyl-substituted octasilsesquioxane and cubic octavinylsilsesquioxane through the Heck coupling reaction. Excited-state energies obtained from time-dependent density functional theory (TDDFT) and the CAM-B3LYP functional correlate very well with experimental trans-cis photoisomerization results from UV/Vis spectroscopy. These azobenzene-functionalized cages exhibit good thermal stability and are fluorescent with maximum emission at approximately 400 nm, making them potential materials for blue-light emission. PMID:25663005

  16. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  17. Triphenyl group containing molecular glasses of azobenzene for photonic applications

    NASA Astrophysics Data System (ADS)

    Zarins, Elmars; Tokmakovs, Andrejs; Kokars, Valdis; Ozols, Andris; Augustovs, Peteris; Rutkis, Martins

    2016-03-01

    D-π-A type organic molecules have attracted considerable attention of scientists due to their potential applications in nonlinear optics and holographic data storage as light, flexible and low-cost photonic materials. To provide a better understanding on the relation between the compound chemical structure and their physical properties necessary for the mentioned purposes, eight glassy triphenyl group containing derivatives of azobenzene with incorporated 5,5-dimethylcyclohex-2-enylidene or 4H-pyran-4-ylidene structural fragments and dicyanomethylene, indene-1,3-dione and pyrimidine-2,4,6(1H,3H,5H)-trione acceptor groups have been synthesized and investigated. Thermal stability of synthesized glasses is no lower than 250 °C and glass transition in higher than 70 °C which both further increases (up to 120 °C) by additional number of attached triphenyl-moieties and incorporated structural fragments. Almost all of the synthesized azodyes form good optical quality transparent amorphous films from volatile organic solvents with their light absorption in thin solid films in the range of 400-660 nm. Azocompounds with sterically small cyclohex-2-ene-1-ylidene fragment in their molecules proved to be most efficient materials for holographic data storage and nonlinear optics with diffraction efficiency up to 20.40%, self diffraction efficiency up to 12.94% and NLO coefficient d33 up to 125.7 pm/V. Azodyes with no additionally incorporated structural fragments and indene-1,3-dione electron acceptor group were least efficient materials for these purposes, however may show potential as photoactive components in organic solar cells due to their remarkable light absorption properties in the solid state.

  18. Pinning effect for photoisomerization of a dicationic azobenzene derivative by anionic sites of the clay surface.

    PubMed

    Umemoto, Tetsuro; Ohtani, Yuta; Tsukamoto, Takamasa; Shimada, Tetsuya; Takagi, Shinsuke

    2014-01-11

    The photoisomerization behaviour of a dicationic azobenzene derivative on the inorganic surface was examined. The isomerization reaction was controlled by the charged array of the inorganic surface due to the "pinning effect" because of the electrostatic interaction between anionic charged sites on the inorganic surface and cationic charged sites in dye molecules. PMID:24226932

  19. Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

    SciTech Connect

    Yadavalli, Nataraja Sekhar; Santer, Svetlana; Saphiannikova, Marina

    2014-08-04

    In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the trans-cis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings.

  20. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Kim, Huisu; Min Kim, Soo; Kim, Namil; Jeong, Kwang-Un

    2015-07-14

    By considering intramolecular conformations and intermolecular interactions, an azobenzene-based photochromic liquid crystalline amphiphile is synthesized for demonstrating a remote-controllable light shutter by the photo-induced isothermal phase transition between the highly ordered crystal phase and the isotropic liquid phase. PMID:26067781

  1. Photoswitched Cell Adhesion on Azobenzene-Containing Self-Assembled Films.

    PubMed

    Bian, Qing; Wang, Wenshuo; Han, Guoxiang; Chen, Yupeng; Wang, Shutao; Wang, Guojie

    2016-08-18

    Stimuli-responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH- and temperature-responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer-by-layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly. PMID:27146320

  2. Photocontrolled reversible morphology conversion of protein nanowires mediated by an azobenzene-cored dendrimer.

    PubMed

    Sun, Hongcheng; Zhao, Linlu; Wang, Tingting; An, Guo; Fu, Shuang; Li, Xiumei; Deng, Xiaoli; Liu, Junqiu

    2016-05-21

    A novel strategy to construct photocontrolled protein nanowires with reversible morphology was reported through photoisomerizable azobenzene-cored dendrimer evoked protein self-assembly. Furthermore, the curvature of the protein nanowires could be switched by alternatively irradiating with visible light and ultraviolet light. PMID:27062988

  3. Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside.

    PubMed

    Goldau, Thomas; Murayama, Keiji; Brieke, Clara; Steinwand, Sabrina; Mondal, Padmabati; Biswas, Mithun; Burghardt, Irene; Wachtveitl, Josef; Asanuma, Hiroyuki; Heckel, Alexander

    2015-02-01

    Photoregulation of RNA remains a challenging task as the introduction of a photoswitch entails changes in the shape and the stability of the duplex that strongly depend on the chosen linker strategy. Herein, the influence of a novel nucleosidic linker moiety on the photoregulation efficiency of azobenzene is investigated. To this purpose, two azobenzene C-nucleosides were stereoselectively synthesized, characterized, and incorporated into RNA oligonucleotides. Spectroscopic characterization revealed a reversible and fast switching process, even at 20 °C, and a high thermal stability of the respective cis isomers. The photoregulation efficiency of RNA duplexes upon trans-to-cis isomerization was investigated by using melting point studies and compared with the known D-threoninol-based azobenzene system, revealing a photoswitching amplitude of the new residues exceeding 90 % even at room temperature. Structural changes in the duplexes upon photoisomerization were investigated by using MM/MD calculations. The excellent photoswitching performance at room temperature and the high thermal stability make these new azobenzene residues promising candidates for in-vivo and nanoarchitecture photoregulation applications of RNA. PMID:25537843

  4. Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses

    NASA Astrophysics Data System (ADS)

    Audorff, Hubert; Kreger, Klaus; Walker, Roland; Haarer, Dietrich; Kador, Lothar; Schmidt, Hans-Werner

    This review covers synthesis, materials development, and photophysics of azobenzene-containing block copolymers as potential media for reversible volume holographic data storage. For high-density holographic data storage, volume gratings must be inscribed in millimeter-thick samples to achieve efficient angle multiplexing. It is demonstrated that block copolymers with azobenzene side-groups in the minority block develop no detrimental surface relief structures and exhibit superior performance regarding volume gratings, compared to homopolymers and statistical copolymers. Several material concepts for optimizing the refractive index modulation and the stability of volume gratings are presented. Stabilities of more than 2 years were achieved. Most important is the development of polymer blends comprising the azobenzene-containing block copolymer and an optically transparent homopolymer. This enables the preparation of millimeter-thick samples with the required optical density of ˜ 0. 7 at the writing wavelength by conventional injection molding techniques. The inscription of up to 200 holograms at the same lateral position was demonstrated. In addition, more than 1,000 write/erase cycles can be performed. This is the first time that the inscription and erasure of the long-term stable angle-multiplexed volume gratings in a rewritable polymeric medium have been achieved by purely optical means. A second important application for azobenzene-containing materials is the controlled preparation of surface relief structures. It is demonstrated that azobenzene-containing molecular glasses are an ideal class for efficient formation of surface relief gratings (SRGs) with amplitude heights of more than 600 nm. Clear relationships can be established between the chemical structure of the molecules and the behavior of SRG formation. All results are in agreement with the gradient force model by Kumar et al. The surface patterns are stable enough to be transferred to a polymer

  5. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.

    PubMed

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-06-13

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self-assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry. PMID:27165777

  6. Synthesis and Non-Resonant Nonlinear Optical Properties of Push-Pull Side-Chain Azobenzene Polymers

    NASA Astrophysics Data System (ADS)

    Fedus, K.; Smokal, V.; Krupka, O.; Boudebs, G.

    In this work, we report preliminary results obtained for methacrylic polymers incorporating azobenzene side-group as nonlinear optical (NLO) active molecule. The trans-cis isomerization properties are discussed. The third-order non-resonant nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are measured using the Z-scan technique at 1064 nm in the picosecond regime. The influence of different electron-acceptor groups in azobenzene moieties on the nonlinear properties is investigated.

  7. Photoinduced bending behavior of cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone.

    PubMed

    Lv, Jiu-an; Wang, Weiru; Xu, Jixiang; Ikeda, Tomiki; Yu, Yanlei

    2014-07-01

    Cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation. PMID:24771514

  8. Sensitized Two-NIR-Photon Z→E Isomerization of a Visible-Light-Addressable Bistable Azobenzene Derivative.

    PubMed

    Moreno, Javier; Gerecke, Mario; Grubert, Lutz; Kovalenko, Sergey A; Hecht, Stefan

    2016-01-22

    Two-NIR-photon-triggered Z→E isomerization of an azobenzene was accomplished by covalently linking a two-photon-harvesting triarylamine antenna to a thermally stable ortho-fluorinated azobenzene derivative. The obtained photoswitch is fully addressable with visible and NIR light by using one-photon and two-photon excitation, respectively, with the latter offering enhanced penetration depth and improved spatial resolution. PMID:26679769

  9. Microencapsulation of human fibroblasts in a water-insoluble polyacrylate.

    PubMed

    Boag, A H; Sefton, M V

    1987-12-01

    Viable human diploid fibroblasts have been micro-encapsulated in EUDRAGIT RL, a commercially available water-insoluble polyacrylate, by an interfacial precipitation technique. Cells in medium and polymer solution (in diethyl phthalate) were coextruded and formed into droplets by a coaxial air stream. The droplets fell into a corn-oil/mineral-oil mixture to extract the solvent to precipitate the polymer around the cells. Capsules were ca. 500 mum in diameter depending on the air flowrate with a ca. 10-mum thick wall. When collagen (1 mg/mL) was added to the cell suspension prior to encapsulation and base-washed corn oil was used, cell growth occurred with one doubling achieved after five to six days as the collagen gel contracted inside the capsule. In the absence of collagen, cells spread on the inner wall of the capsule but did not grow, presumably because the surface charge on the capsule was inadequate. In similar fashion fibroblasts spread but did not grow on films of EUDRAGIT RL but did grow on blends of EUDRAGIT RL and EUDRAGIT E containing 10-30% of the latter more highly aminated polyacrylate. Although not suitable for anchorage-dependent cell growth by itself, EUDRAGIT RL has been suitable as a model polymer to demonstrate the feasibility of using water insoluble polyacrylates and organic solvents and nonsolvents for the micro-encapsulation of fibroblasts. Such microcapsules are of potential interest as a mode of large scale tissue culture for the production of novel therapeutic agents. PMID:18581534

  10. Characterization of linear and branched polyacrylates by tandem mass spectrometry.

    PubMed

    Chaicharoen, Kittisak; Polce, Michael J; Singh, Anirudha; Pugh, Coleen; Wesdemiotis, Chrys

    2008-10-01

    The unimolecular degradation of alkali-metal cationized polyacrylates with the repeat unit CH(2)CH(COOR) and a variety of ester pendants has been examined by tandem mass spectrometry. The fragmentation patterns resulting from collisionally activated dissociation depend sensitively on the size of the ester alkyl substituent (R). With small alkyl groups, as in poly(methyl acrylate), lithiated or sodiated oligomers (M) decompose via free-radical chemistry, initiated by random homolytic C-C bond cleavages along the polymer chain. The radical ions formed this way dissociate further by backbiting rearrangements and beta scissions to yield a distribution of terminal fragments with one of the original end groups and internal fragments with 2-3 repeat units. If the ester alkyl group bears three or more carbon atoms, cleavages within the ester moieties become the predominant decomposition channel. This distinct reactivity is observed if R = t-butyl, n-butyl, or the mesogenic group (CH(2))(11)-O-C(6)H(4)-C(6)H(4)-CN. The [M+alkali metal](+) ions of the latter polyacrylates dissociate largely by charge-remote 1,5-H rearrangements that convert COOR to COOH groups by expulsion of 1-alkenes. The acid groups may displace an alcohol unit from a neighboring ester pendant to form a cyclic anhydride, unless hindered by steric effects. Using atom transfer radical polymerization, hyperbranched polyacrylates were prepared carrying ester groups both within and between the branches. Unique alkenes and alcohols are cleaved from ester groups at the branching points, enabling determination of the branching architecture. PMID:18373231

  11. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  12. Precipitation of biomimetic fluorhydroxyapatite/polyacrylic acid nanostructures

    NASA Astrophysics Data System (ADS)

    Roche, Kevin J.; Stanton, Kenneth T.

    2015-01-01

    Ordered structures of fluorhydroxyapatite (FHA) nanoparticles that resemble the nanostructure of natural human enamel have been prepared. Wet precipitation in the presence of polyacrylic acid (PAA) was used, and the particle morphology was altered by varying several reaction conditions. High molecular weight PAA increased particle length from around 54 nm to several hundred nanometres, while maintaining particle width at 15 nm. PAA concentration and the order of mixing the reactants also influenced crystal morphology. Optimum conditions produced dense, aligned bundles of highly elongated nanorods, which are very similar to the hierarchical nanostructure of human tooth enamel.

  13. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  14. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Saita, Takao

    1980-12-01

    It is shown using a capillary viscometer that the viscosity of a dilute aqueous solution of sodium-polyacrylate at 20°C decreases gradually for each flow time measurement and also decreases with the time of rest. Assuming that the polymer degradation is caused by shearing stress and oxidation, their effects are discussed with the data obtained using a closed-type capillary viscometer derived for this investigation. It is proved from the results that rupture of the Na-PAA molecule is caused by mechanochemical degradation, and also photo-degradation under the usual illumination and sunlight in a laboratory.

  15. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Junwu; Chen, Chen; Xi, Jiangbo; Xu, Yangyang; Xiao, Fei; Wang, Shuai; Yang, Shihe

    2015-04-01

    The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of the Co nanoparticles and the N content in the BNCNTs. When oxidized at 300 °C, the as-formed Co@Co3O4/BNCNTs-300 composite catalyst with an N/C molar ratio of ~1.6% achieves the maximum ORR catalytic activity. The composite catalyst also exhibits a higher ORR catalytic activity than the Co3O4/carbon nanotube (CNT) catalyst. The tolerance for methanol molecules and the cycle stability performance of the composite catalyst are even superior to those of the highly efficient Pt/C catalyst. Such an excellent ORR catalytic activity can be ascribed to (1) the core-shell Co@Co3O4 nanoparticles embedded in BNCNTs, (2) the N-doping in BNCNTs, and (3) the synergetic effect of (1) and (2) on Co3O4 firmly attached to both Co nanoparticles and BNCNTs, resulting in accelerated electron transport and enhanced charge delocalization.The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of

  16. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction.

    PubMed

    Xiao, Junwu; Chen, Chen; Xi, Jiangbo; Xu, Yangyang; Xiao, Fei; Wang, Shuai; Yang, Shihe

    2015-04-28

    The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of the Co nanoparticles and the N content in the BNCNTs. When oxidized at 300 °C, the as-formed Co@Co3O4/BNCNTs-300 composite catalyst with an N/C molar ratio of ∼ 1.6% achieves the maximum ORR catalytic activity. The composite catalyst also exhibits a higher ORR catalytic activity than the Co3O4/carbon nanotube (CNT) catalyst. The tolerance for methanol molecules and the cycle stability performance of the composite catalyst are even superior to those of the highly efficient Pt/C catalyst. Such an excellent ORR catalytic activity can be ascribed to (1) the core-shell Co@Co3O4 nanoparticles embedded in BNCNTs, (2) the N-doping in BNCNTs, and (3) the synergetic effect of (1) and (2) on Co3O4 firmly attached to both Co nanoparticles and BNCNTs, resulting in accelerated electron transport and enhanced charge delocalization. PMID:25465620

  17. Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives.

    PubMed

    Kim, Byeonggwan; Park, Teahoon; Kim, Jeonghun; Kim, Eunkyoung

    2013-11-01

    A new nanocomposite for conductive transparent adhesives (CTAs) was synthesized by emulsion polymerization of acrylate monomers dispersed with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Polymer particles of waterborne CTAs were uniform, and the average size of the particles was 330 nm. The conductive transparent adhesive nanocomposites (CTANs) were casted onto various substrates including slide glass, indium tin oxide (ITO) glass, and PET film. Upon thermal processing at 80 degrees C, highly transparent adhesive films were obtained with surface uniformity. The stress of the CTANs was affected by the contents of PEDOT:PSS, and a 7.5 wt% CTAN film had the highest maximum stress of 0.33 MPa. Importantly, polyacrylic nanoparticles were well dispersed with conductive filler PEDOT:PSS in water because of their high dispersity in water. Therefore, the polyacrylic/PEDOT nanocomposite had a low percolation threshold of approximately 8% due to the enhanced connection between conductive channels. The CTANs with an optimum content (10 wt%) of PEDOT:PSS had high electromagnetic interference shielding effectiveness (36 dB) and transparency (75%) for application to electronics including displays and solar cells. PMID:24245305

  18. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    PubMed Central

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  19. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    PubMed

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  20. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  1. Incorporation of cyclic azobenzene into oligodeoxynucleotides for the photo-regulation of DNA hybridization.

    PubMed

    Eljabu, Fatma; Dhruval, Joshi; Yan, Hongbin

    2015-12-01

    Cyclic azobenzene carboxylic acid was synthesized using a shortened route. After reaction with D-threolinol, the resulting cyclic azobenzene-D-threolinol (cAB-Thr) building block was transformed into the corresponding DMTr-protected phosphoramidite, and incorporated into oligodeoxynucleotides at various positions and frequencies by solid phase synthesis. The melting temperatures of these modified oligonucleotides were determined by UV spectrometry. Photo-regulation of cAB-Thr-modified oligonucleotides with their complementary sequence was evaluated by Fluorescence Resonance Energy Transfer experiments using a fluorescein-Black Hole Quencher pair. Results suggest that while cis-cAB destabilizes DNA duplexes, trans-cAB can be accommodated in double stranded DNA. PMID:26592170

  2. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.

    PubMed

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-08-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future. PMID:27493996

  3. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers

    NASA Astrophysics Data System (ADS)

    Baroncini, Massimo; D'Agostino, Simone; Bergamini, Giacomo; Ceroni, Paola; Comotti, Angiolina; Sozzani, Piero; Bassanetti, Irene; Grepioni, Fabrizia; Hernandez, Taylor M.; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-08-01

    The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E→Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z→E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications.

  4. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates.

    PubMed

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer

    2014-09-01

    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. PMID:25044973

  5. Interactions of Lysozyme and Azobenzene Derivatives in the Solution and on a Surface

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Shing, Katherine

    2015-03-01

    The reversible isomerization of the azobenzene and its derivatives can control protein structure in an aqueous environment with the alternation of visible and UV lights for very promising applications in drug delivery. However, an atomistic description of Azo-molecules and protein amino acid residues is still lacking. In this study we performed atomistic molecular dynamics simulation to study the interactions between a lysozyme molecule and the Azobenzene derivative (in the bulk solution and grafted on the Silica surfaces). Protein structural arrangements (i.e., the shape and secondary structures) and its mobility, as a function of tran/cis ratio in the bulk solution and on the self-assembling monolayer surface's density and morphology, are systematically investigated.

  6. Elucidation of Isomerization Pathways of a Single Azobenzene Derivative Using an STM.

    PubMed

    Kazuma, Emiko; Han, Mina; Jung, Jaehoon; Oh, Junepyo; Seki, Takahiro; Kim, Yousoo

    2015-11-01

    The predominant pathway for the isomerization between cis- and trans-azobenzenes-either (i) inversion by the bending of an NNC bond or (ii) rotation by the torsion of two phenyl rings-continues to be a controversial topic. To elucidate each isomerization pathway, a strategically designed and synthesized azobenzene derivative was investigated on a Ag(111) surface. This was achieved by exciting the molecule with tunneling electrons from the tip of a scanning tunneling microscope (STM). Structural analyses of the molecularly resolved STM images reveal that both inversion and rotation pathways are available for isomerization on a metal surface and strongly depend on the initial adsorption structures of the molecule. On the basis of the potential energy diagrams for the isomerization, it is concluded that isomerization pathways on a metal surface are not simply related to the excited states. PMID:26722964

  7. A Mononuclear Uranium(IV) Single-Molecule Magnet with an Azobenzene Radical Ligand.

    PubMed

    Antunes, Maria A; Coutinho, Joana T; Santos, Isabel C; Marçalo, Joaquim; Almeida, Manuel; Baldoví, José J; Pereira, Laura C J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-12-01

    A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2 NPh)3 -tacn}U(IV) (η(2) -N2 Ph2 (.) )] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U(III) {(SiMe2 NPh)3 -tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and (1) H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U(IV) compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian. PMID:26536849

  8. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system

    NASA Astrophysics Data System (ADS)

    Mao, Weidong; Sun, Qunhui; Baig, Sarfaraz; Lu, Hui; Wang, Michael R.

    2015-11-01

    We present for the first time stable red light two-dimensional image holographic recording in azobenzene-containing polymer-liquid crystal material following a pre-illumination process. The red light hologram recording is based on cis-to-trans transition of the azobenzene and surrounding LC reorientation. The diffraction efficiency of about 2% has been achieved and clear holograms of a commercial 2D USAF resolution target have been recorded. Using the same readout wavelength as the recording wavelength, color distortion that exists in most hologram researches with azo-containing materials is naturally eliminated. Long-time stabilities such as one-day continuous non-destructive readout and up to 10 weeks hologram storage have been demonstrated. The holographic recording material remains erasable and rewritable.

  9. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release

    PubMed Central

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-01-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future. PMID:27493996

  10. Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches

    PubMed Central

    2015-01-01

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution. PMID:24857186

  11. Self-assembly of azobenzene bilayer membranes in binary ionic liquid-water nanostructured media.

    PubMed

    Kang, Tejwant Singh; Ishiba, Keita; Morikawa, Masa-aki; Kimizuka, Nobuo

    2014-03-11

    Anionic azobenzene-containing amphiphile 1 (sodium 4-[4-(N-methyl-N-dodecylamino)phenylazo]benzenesulfonate) forms ordered bilayer membranes in binary ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, [C2mim][C2OSO3])-water mixtures. The binary [C2mim][C2OSO3]-water mixture is macroscopically homogeneous at any mixing ratio; however, it possesses fluctuating nanodomains of [C2mim][C2OSO3] molecules as observed by dynamic light scattering (DLS). These nanodomains show reversible heat-induced mixing behavior with water. Although the amphiphile 1 is substantially insoluble in pure water, it is dispersible in the [C2mim][C2OSO3]-water mixtures. The concentration of [C2mim][C2OSO3] and temperature exert significant influences on the self-assembling characteristics of 1 in the binary media, as shown by DLS, transmission electron microscopy (TEM), UV-vis spectroscopy, and zeta-potential measurements. Bilayer membranes with rod- or dotlike nanostructures were formed at a lower content of [C2mim][C2OSO3] (2-30 v/v %), in which azobenzene chromophores adopt parallel molecular orientation regardless of temperature. In contrast, when the content of [C2mim][C2OSO3] is increased above 60 v/v %, azobenzene bilayers showed thermally reversible gel-to-liquid crystalline phase transition. The self-assembly of azobenzene amphiphiles is tunable depending on the volume fraction of [C2mim][C2OSO3] and temperature, which are associated with the solvation by nanoclusters in the binary [C2mim][C2OSO3]-water media. These observations clearly indicate that mixtures of water-soluble ionic liquids and water provide unique and valiant environments for ordered molecular self-assembly. PMID:24528277

  12. Theory of light-induced deformation of azobenzene elastomers: Influence of network structure

    NASA Astrophysics Data System (ADS)

    Toshchevikov, V. P.; Saphiannikova, M.; Heinrich, G.

    2012-07-01

    Azobenzene elastomers have been extensively explored in the last decade as photo-deformable smart materials which are able to transform light energy into mechanical stress. Presently, there is a great need for theoretical approaches to accurately predict the quantitative response of these materials based on their microscopic structure. Recently, we proposed a theory of light-induced deformation of azobenzene elastomers using a simple regular cubic network model [V. Toshchevikov, M. Saphiannikova, and G. Heinrich, J. Phys. Chem. B 116, 913 (2012), 10.1021/jp206323h]. In the present study, we extend the previous theory using more realistic network models which take into account the random orientation of end-to-end vectors of network strands as well as the molecular weight distribution of the strands. Interaction of the chromophores with the linearly polarized light is described by an effective orientation potential which orients the chromophores perpendicular to the polarization direction. We show that both monodisperse and polydisperse azobenzene elastomers can demonstrate either a uniaxial expansion or contraction along the polarization direction. The sign of deformation (expansion/contraction) depends on the orientation distribution of chromophores with respect to the main chains which is defined by the chemical structure and by the lengths of spacers. The degree of cross-linking and the polydispersity of network strands do not affect the sign of deformation but influence the magnitude of light-induced deformation. We demonstrate that photo-mechanical properties of mono- and poly-disperse azobenzene elastomers with random spatial distribution of network strands can be described in a very good approximation by a regular cubic network model with an appropriately chosen length of the strands.

  13. Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides.

    PubMed

    Choo, Joanna A L; Thong, Sock Yue; Yap, Jiawei; van Esch, Wim J E; Raida, Manfred; Meijers, Rob; Lescar, Julien; Verhelst, Steven H L; Grotenbreg, Gijsbert M

    2014-12-01

    Bioorthogonal cleavable linkers are attractive building blocks for compounds that can be manipulated to study biological and cellular processes. Sodium dithionite sensitive azobenzene-containing (Abc) peptides were applied for the temporary stabilization of recombinant MHC complexes, which can then be employed to generate libraries of MHC tetramers after exchange with a novel epitope. This technology represents an important tool for high-throughput studies of disease-specific T cell responses. PMID:25348595

  14. Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane.

    PubMed

    Benedini, Luciano A; Sequeira, M Alejandra; Fanani, Maria Laura; Maggio, Bruno; Dodero, Verónica I

    2016-05-01

    We report the synthesis and characterization of a simple nonionic azoamphiphile, C12OazoE3OH, which behaves as an optically controlled molecule alone and in a biomembrane environment. First, Langmuir monolayer and Brewster angle microscopy (BAM) experiments showed that pure C12OazoE3OH enriched in the (E) isomer was able to form solidlike mesophase even at low surface pressure associated with supramolecular organization of the azobenzene derivative at the interface. On the other hand, pure C12OazoE3OH enriched in the (Z) isomer formed a less solidlike monolayer due to the bent geometry around the azobenzene moiety. Second, C12OazoE3OH is well-mixed in a biological membrane model, Lipoid s75 (up to 20%mol), and photoisomerization among the lipids proceeded smoothly depending on light conditions. It is proposed that the cross-sectional area of the hydroxyl triethylenglycol head of C12OazoE3OH inhibits azobenzenes H-aggregation in the model membrane; thus, the tails conformation change due to photoisomerization is transferred efficiently to the lipid membrane. We showed that the lipid membrane effectively senses the azobenzene geometrical change photomodulating some properties, like compressibility modulus, transition temperature, and morphology. In addition, photomodulation proceeds with a color change from yellow to orange, providing the possibility to externally monitor the system. Finally, Gibbs monolayers showed that C12OazoE3OH is able to penetrate the highly packing biomembrane model; thus, C12OazoE3OH might be used as photoswitchable molecular probe in real systems. PMID:27070294

  15. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  16. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites.

    PubMed

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; De Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C; Beljonne, David; Samorì, Paolo

    2016-01-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors. PMID:27052205

  17. Photon-Manipulated Drug Release from Mesoporous Nanocontainer Controlled by Azobenzene-Modified Nucleic Acid

    PubMed Central

    Yuan, Quan; Zhang, Yunfei; Chen, Tao; Lu, Danqing; Zhao, Zilong; Zhang, Xiaobing; Li, Zhenxing; Yan, Chun-Hua; Tan, Weihong

    2012-01-01

    Herein a photon manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of meso-porous silica nanoparticles. The photo-isomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but release them when light wavelength turns to UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light wavelength sensitive. Switching of the light from visible to UV range uncapped the pores causes the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photo-controlled drug release system could find potential applications in cancer therapy. PMID:22670595

  18. Holographic studies of azobenzene-containing low-molecular-weight organic glasses

    NASA Astrophysics Data System (ADS)

    Audorff, Hubert; Walker, Roland; Kador, Lothar; Schmidt, Hans-Werner

    2009-02-01

    The formation of phase and surface relief gratings in low-molecular-weight organic glasses containing azobenzene moieties has been studied with holographic methods. Advantages of this class of materials are the simple synthesis, the perfectly amorphous phase, and the possibility of blending them with polymers. Surface relief gratings are formed very efficiently in molecular glasses, and this process can be explained by the gradient force model. Heights up to 610 nm were measured; the temporal evolution of the diffraction efficiency could be reproduced in computer simulations. For technical applications, the surface relief gratings can easily be duplicated by replica molding. Since surface gratings are detrimental to holographic data storage at high densities, it is also possible to suppress their formation by using proper polarizations of the writing beams. Reorientation of the azobenzene groups in the bulk of the glasses and angular multiplexing was demonstrated and the thermal stability of the corresponding phase gratings was studied. Different combinations of molecular cores and substituents at the azobenzene moieties were investigated to find the best systems which yield a high sensitivity and fast grating build-up.

  19. Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films

    SciTech Connect

    Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.

    2012-07-01

    Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

  20. Surface hopping dynamics of direct trans --> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries

    NASA Astrophysics Data System (ADS)

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-01

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ*-excited states which are non-adiabatically coupled among themselves and to a nπ*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed.

  1. Tuning the optical emission of MoS{sub 2} nanosheets using proximal photoswitchable azobenzene molecules

    SciTech Connect

    Li, Juan; Wierzbowski, Jakob; Ceylan, Özlem; Klein, Julian; Anh, Tuan Le; Meggendorfer, Felix; Finley, Jonathan J.; Margapoti, Emanuela; Nisic, Filippo; Dragonetti, Claudia; Palma, Carlos-Andres; Barth, Johannes V.

    2014-12-15

    We report photoluminescence measurements performed on monolayer- and two-layer-MoS{sub 2} placed on two types of mixed self-assembled monolayers (mSAMs) of photoswitchable azobenzene molecules. The two mSAMs differ via the electronegative character of the azobenzene derivatives. Thin layers of a transition metal dichalcogenide—MoS{sub 2}—were mechanically exfoliated on mSAM to allow for direct interaction between the molecules and the MoS{sub 2} layers. When the MoS{sub 2} nanosheet is in contact with the electropositive azobenzene molecules in trans configuration, an emission side band at lower energies and at low excitation powers suggest n-type doping. The photoisomerization of the molecules from trans to cis configuration lowers the doping, quenching the side band and enhancing the overall PL efficiency by a factor of ∼3. Opposite results were observed with the chlorinated, more electronegative molecules, exhibiting a reversed trend in the PL efficiency between trans and cis, but with an overall larger intensity. The type of doping induced by the two types of mSAMs was determined by Kelvin probe force microscopy technique.

  2. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites

    NASA Astrophysics Data System (ADS)

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; de Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-04-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors.

  3. Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.

    PubMed

    Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo

    2016-03-01

    Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements. PMID:26890532

  4. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites

    PubMed Central

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; De Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-01-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans–cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene–azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors. PMID:27052205

  5. A comparative study of photoinduced deformation in azobenzene containing polymer films.

    PubMed

    Yadavalli, Nataraja Sekhar; Loebner, Sarah; Papke, Thomas; Sava, Elena; Hurduc, Nicolae; Santer, Svetlana

    2016-03-01

    In this paper two groups supporting different views on the mechanism of light induced polymer deformation argue about the respective underlying theoretical conceptions, in order to bring this interesting debate to the attention of the scientific community. The group of Prof. Nicolae Hurduc supports the model claiming that the cyclic isomerization of azobenzenes may cause an athermal transition of the glassy azobenzene containing polymer into a fluid state, the so-called photo-fluidization concept. This concept is quite convenient for an intuitive understanding of the deformation process as an anisotropic flow of the polymer material. The group of Prof. Svetlana Santer supports the re-orientational model where the mass-transport of the polymer material accomplished during polymer deformation is stated to be generated by the light-induced re-orientation of the azobenzene side chains and as a consequence of the polymer backbone that in turn results in local mechanical stress, which is enough to irreversibly deform an azobenzene containing material even in the glassy state. For the debate we chose three polymers differing in the glass transition temperature, 32 °C, 87 °C and 95 °C, representing extreme cases of flexible and rigid materials. Polymer film deformation occurring during irradiation with different interference patterns is recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. We also demonstrated the unique behaviour of azobenzene containing polymeric films to switch the topography in situ and reversibly by changing the irradiation conditions. We discuss the results of reversible deformation of three polymers induced by irradiation with intensity (IIP) and polarization (PIP) interference patterns, and the light of homogeneous intensity in terms of two approaches: the re-orientational and the photo-fluidization concepts. Both agree

  6. Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via N═N Bond Cleavage for the Regioselective Synthesis of Quinolines.

    PubMed

    Yi, Xiangli; Xi, Chanjuan

    2015-12-01

    A copper-promoted tandem reaction of a variety of azobenzenes and allyl bromides via N═N bond cleavage to regioselectively construct quinoline derivatives has been developed. The azobenzenes act as not only construction units but also an oxidant for quinoline formation. PMID:26580318

  7. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics.

    PubMed

    Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh

    2016-01-01

    The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. PMID:26478316

  8. The cis-state of an azobenzene photoswitch is stabilized through specific interactions with a protein surface.

    PubMed

    Korbus, Michael; Backé, Sarah; Meyer-Almes, Franz-Josef

    2015-03-01

    The photocontrol of protein function like enzyme activity has been the subject of many investigations to enable reversible and spatiotemporally defined cascading biochemical reactions without the need for separation in miniaturized and parallelized assay setups for academic and industrial applications. A photoswitchable amidohydrolase variant from Bordetella/Alcaligenes with the longest reported half-life (approximately 30 h) for the cis-state of the attached azobenzene group was chosen as a model system to dissect the underlying mechanism and molecular interactions that caused the enormous deceleration of the thermal cis-to-trans relaxation of the azobenzene photoswitch. A systematic site-directed mutagenesis study on the basis of molecular dynamics simulation data was employed to investigate enzyme and thermal cis-to-trans relaxation kinetics in dependence on selected amino acid substitution, which revealed a prominent histidine and a hydrophobic cluster as molecular determinants for the stabilization of the cis-isomer of the attached azobenzene moiety on the protein surface. The nature of the involved interactions consists of polar, hydrophobic, and possibly aromatic Π-Π contributions. The elucidated principles behind the stabilization of the cis-state of azobenzene derivatives on a protein surface can be exploited to design improved biologically inspired photoswitches. Moreover, the findings open the door to highly long-lived cis-states of azobenzene groups yielding improved bistable photoswitches that can be controlled by single light-pulses rather than continuous irradiation with UV light that causes potential photodamage to the employed biomolecules. PMID:25664524

  9. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  10. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    NASA Astrophysics Data System (ADS)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  11. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  12. Reversible work function changes induced by photoisomerization of asymmetric azobenzene dithiol self-assembled monolayers on gold

    SciTech Connect

    Ah Qune, Lloyd F. N.; Wee, Andrew T. S.; Akiyama, H.; Nagahiro, T.; Tamada, K.

    2008-08-25

    We measured reversible changes in the work function ({delta}{phi}{sub Au}) of gold substrates modified by asymmetric azobenzene dithiol self-assembled monolayers (SAMs) following photoisomerization and thermal recovery of the azo unit. The azobenzene derivative SAMs were photoisomerized to cis form by UV irradiation. {delta}{phi}{sub Au} was monitored in real time during thermal recovery to trans form by ultraviolet photoelectron spectroscopy using a synchrotron light source. Changing the substituted functional group in the p{sup '} position of the azobenzene from electron donating to electron withdrawing resulted in opposite responses of {delta}{phi}{sub Au} against photoisomerization. Hence, a direct correlation between {delta}{phi}{sub Au} and changes in molecular dipole moments was obtained.

  13. Mass spectrometric identification of an azobenzene derivative produced by smectite-catalyzed conversion of 3-amino-4-hydroxyphenylarsonic acid

    USGS Publications Warehouse

    Wershaw, R. L.; Rutherford, D.W.; Rostad, C.E.; Garbarino, J.R.; Ferrer, I.; Kennedy, K.R.; Momplaisir, G.-M.; Grange, A.

    2003-01-01

    The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound. Published by Elsevier Science B.V.

  14. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  15. Mn(x)O(y)/NC and Co(x)O(y)/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes.

    PubMed

    Masa, Justus; Xia, Wei; Sinev, Ilya; Zhao, Anqi; Sun, Zhenyu; Grützke, Stefanie; Weide, Philipp; Muhler, Martin; Schuhmann, Wolfgang

    2014-08-01

    Reversible interconversion of water into H2 and O2, and the recombination of H2 and O2 to H2O thereby harnessing the energy of the reaction provides a completely green cycle for sustainable energy conversion and storage. The realization of this goal is however hampered by the lack of efficient catalysts for water splitting and oxygen reduction. We report exceptionally active bifunctional catalysts for oxygen electrodes comprising Mn3O4 and Co3O4 nanoparticles embedded in nitrogen-doped carbon, obtained by selective pyrolysis and subsequent mild calcination of manganese and cobalt N4 macrocyclic complexes. Intimate interaction was observed between the metals and nitrogen suggesting residual M-N(x) coordination in the catalysts. The catalysts afford remarkably lower reversible overpotentials in KOH (0.1 M) than those for RuO2, IrO2, Pt, NiO, Mn3O4, and Co3O4, thus placing them among the best non-precious-metal catalysts for reversible oxygen electrodes reported to date. PMID:24975388

  16. Vibrational spectra study of phosphorus dendrimer containing azobenzene, ammonium and carbamate groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2013-06-01

    The FTIR and FT Raman spectra of the first generation dendrimers, possessing carbamate (G1) or ammonium (G2) terminal groups were studied. The structural optimization and normal mode analysis were performed for dendrimers on the basis of the density functional theory (DFT). These calculations of G2 gave the frequencies of vibrations, infrared intensities and Raman scattering activities for the E- and Z-forms of azobenzene unit. The energy difference between the E- and Z-forms of G2 is 27.36 kcal/mol. The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendrimers molecules have a concave lens structure with planar -O-C6H4-CHdbnd N-N(CH3)Pdbnd S, and -O-C6H4-Ndbnd N-C6H4-CHdbnd N-NH-Cdbnd O-CH2-N fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendrimers G1 and G2 were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1605 cm-1 in the IR spectra show marked changes of the optical density in dependence of substituents in the aromatic ring. The differences in the IR and Raman spectra of G2 for the E- and Z-forms of azobenzene units were cleared up. During structural isomerization of azobenzene units, redistribution of band intensities appears to a much higher extent than frequency shifts.

  17. Adsorption of carboxymethylester-azobenzene on copper and gold single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Piantek, M.; Miguel, J.; Bernien, M.; Navío, C.; Krüger, A.; Priewisch, B.; Rück-Braun, K.; Kuch, W.

    2008-11-01

    The adsorption of 3,3'-di(methoxycarbonyl)azobenzene (CMA) on Au(111) and on Cu(001) substrates was studied by X-ray absorption spectroscopy measurements at the C, N, and O K edges. We find the molecules physisorbed in a planar conformation flat on the Au(111) surface. At higher coverages, a molecular crystal is formed wherein the molecules have the same flat geometry. On Cu(001), additional chemical bonds are formed between the molecules and the surface via the nitrogen atoms. Here the methyl benzoate moieties are tilted out of the surface plane.

  18. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  19. Reversible change of birefringence sign by optical and thermal processes in an azobenzene polymethacrylate

    SciTech Connect

    Rodriguez, F.J.; Sanchez, C.; Villacampa, B.; Alcala, R.; Cases, R.; Millaruelo, M.; Oriol, L.

    2005-01-10

    Birefringence ({delta}n) induced in an azobenzene polymethacrylate by combination of biphotonic and thermotropic processes has subsequently been changed in sign by room temperature illumination with linearly polarized blue light. The sign of {delta}n can be reversed again, by simply heating up the film to 100 deg. C. This change of {delta}n between positive and negative values can be repeated several times. Besides, by appropriate choice of film thickness and blue light irradiation conditions the same absolute value for positive and negative {delta}n values can be obtained.

  20. A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    NASA Astrophysics Data System (ADS)

    Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong

    2014-12-01

    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π-π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials.

  1. A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    PubMed Central

    Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong

    2014-01-01

    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π–π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials. PMID:25465671

  2. Photoresponsive Toroidal Nanostructure Formed by Self-Assembly of Azobenzene-Functionalized Tris(phenylisoxazolyl)benzene.

    PubMed

    Adachi, Hiroaki; Hirai, Yuko; Ikeda, Toshiaki; Maeda, Makoto; Hori, Ryo; Kutsumizu, Shoichi; Haino, Takeharu

    2016-03-01

    The self-assembly of tris(phenylisoxazolyl)benzene 1b with photochemically addressable azobenzene moieties produced toroidal nanostructures, the formation and dissociation of which were reversibly regulated upon photoirradiation. 1b displayed a mesogenic behavior. In the solution, the stacked assemblies along with their C3 axes were formed. In the mesophase, two molecules of 1b most likely adopted the antiparallel arrangement to stabilize the columnar organization. This assembling behavior most likely triggered the development of the supramolecular toroidal nanostructures. PMID:26910789

  3. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    SciTech Connect

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-08-08

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials.

  4. Optical control of structural morphology in azobenzene containing polymeric liquid crystals.

    PubMed

    Camorani, Paolo; Fontana, Marco P

    2006-01-01

    We present a study of photoinduced transitions occurring in a low T(G) liquid crystalline polymer containing the azobenzene group in the side chain. The structural phase of this material can be optically switched between the glassy, nematic and isotropic states. We show the equivalence of light and temperature in causing these effects, promoting this material as a tool in the investigation of structural relaxation at transitions in confined geometry and fast temperature variation as in the case of the optically induced quenching that we report. The results allow us to propose also alternative writing methods for the application of these materials to high density optical memories. PMID:16486165

  5. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    PubMed Central

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-01-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light. PMID:26434681

  6. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    PubMed

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates. PMID:22256962

  7. trans-cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability.

    PubMed

    Sakamoto, Ryota; Kume, Shoko; Sugimoto, Manabu; Nishihara, Hiroshi

    2009-01-01

    Azobenzene derivatives modified with dithiolato-bipyridine platinum(II) complexes were synthesized, revealing their highly extended photoresponses to the long wavelength region as well as unique photocontrollable tristability. The absorptions of trans-1 and trans-2 with one azobenzene group on the dithiolene and bipyridine ligands, respectively, cover the range from 300 to 700 nm. These absorptions are ascribed, by means of time-dependent (TD)DFT calculations, to transitions from dithiolene(pi) to bipyridine(pi*), namely, interligand charge transfer (CT), pi-pi*, and n-pi* transitions of the azobenzene unit, and pi-pi* transitions of the bipyridine ligand. In addition, only trans-1 shows distinctive electronic bands, assignable to transitions from the dithiolene(pi) to azobenzene(pi*), defined as intraligand CT. Complex 1 shows photoisomerization behavior opposite to that of azobenzene: trans-to-cis and cis-to-trans conversions proceed with 405 and 312 nm irradiation, which correspond to excitation with the intraligand CT, and pi-pi* bands of the azobenzene and bipyridine units, respectively. In contrast, complex 2 shows photoisomerization similar to that of azobenzene: trans-to-cis and cis-to-trans transformations occur with 365 and 405 nm irradiation, respectively. Irradiation at 578 nm, corresponding to excitation of the interligand CT transitions, results in cis-to-trans conversion of both 1 and 2, which is the longest wavelength ever reported to effect the photoisomerization of the azobenzene group. The absorption and photochromism of 4, which has azobenzene groups on both the dithiolato and bipyridine ligands, have characteristics quite similar to those of 1 and 2, which furnishes 4 with photocontrollable tristability in a single molecule using light at 365, 405, and 578 nm. We also clarified that 1 and 2 have high photoisomerization efficiencies, and good thermal stability of the cis forms. Complexes 3 and 5 have almost the identical photoresponse to those

  8. Iron oxohydroxide-polyacrylic acid magnetic composite materials

    NASA Astrophysics Data System (ADS)

    Mata-Zamora, M. E.; Arriola, H.; Nava, N.; Saniger, J. M.

    1996-08-01

    Powdered nanometer-sized precipitates of Fe(II)Fe(III) 2O x(OH) y were obtained by reacting solutions of ferrous-ferric salts with a Fe(III)/Fe(II) ratio < 2, with an excess of ammonium hydroxide. These precipitates were then mixed at room temperature with a solution of polyacrylic acid (PAA) in order to obtain a composite material. The XRD analysis showed that the iron oxohydroxide precipitates, with an average size around 10 nm, were crystalline and had a spinel structure resembling to either magnetite or maghemite. The Mössbauer spectra of the iron oxohydroxide particles presented a major magnetic phase with the double Zeeman splitting characteristic of magnetite and a minor paramagnetic phase probably originated by the nanometer size of the particles. Its structure was found to correspond to a disordered spinel, as result of the analysis of the intrinsic magnetic field and its splitting parameters. The composite material PAA-Fe(II)Fe(III) 2O x(OH) y presented a diffractogram close to the original oxohydroxide, but its Mössbauer spectrum showed a major paramagnetic phase. This change was explained as a consequence of the chemical coordination of the nanometer sized iron oxohydroxides particles with the PAA carboxylate groups.

  9. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc. PMID:23496768

  10. Vesicles prepared with the complex salts dioctadecyldimethylammonium polyacrylates.

    PubMed

    Alves, Fernanda Rosa; Loh, Watson

    2012-02-15

    The effect of a polymeric counterion on the thermotropic behavior of sonicated vesicles formed by complex salts in aqueous solution and with decanol (C(10)OH) and tetradecanol (C(14)OH) was investigated. The complex salts were prepared with dioctadecyldimethylammonium bromide (DODAB) and polyacrylic acids (PAA, containing 30 or 6000 repeating units), being referred to as DODAPA(30) and DODAPA(6000). Vesicles containing polymeric counterions presented higher contents of multilamellar vesicles that were dependent on the complex salt concentration and on the counterion chain length. For comparison, studies were performed with DODAAc, with the counterion acetate, resulting in the formation of mostly unilamellar vesicles, as expected due greater dissociation, leading to greater electrical repulsion between bilayers. Mixtures of these complex salts and DODAX (where X=acetate or bromide) were also investigated with respect to their vesicles thermotropic behavior and size. This study opens the possibility of applying the methodology of direct complex salt preparation (as opposed to mixing the surfactant and polymeric components) to produce vesicles with controlled composition and properties. PMID:22172692

  11. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.

    PubMed

    Dong, Rong; Krishnan, Sitaraman; Baird, Barbara A; Lindau, Manfred; Ober, Christopher K

    2007-10-01

    Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regions were back-filled with an initiator for surface-initiated atom transfer radical polymerization (ATRP). ATRP of sodium acrylate was readily achieved at room temperature in an aqueous medium. Protonation of the polymer resulted in patterned poly(acrylic acid) (PAA) brushes. A variety of biomolecules containing amino groups could be covalently tethered to the dense carboxyl groups of the brush, under relatively mild conditions. The PEG regions surrounding the PAA brush greatly reduced nonspecific adsorption. Avidin was covalently attached to PAA brushes, and biotin-tagged proteins could be immobilized through avidin-biotin interaction. Such an immobilization method, which is based on specific interactions, is expected to better retain protein functionality than direct covalent binding. Using biotin-tagged bovine serum albumin (BSA) as a model, a simple strategy was developed for immobilization of small biological molecules using BSA as linkages, while BSA can simultaneously block nonspecific interactions. PMID:17880179

  12. Collapse of sodium polyacrylate chains in calcium salt solutions

    NASA Astrophysics Data System (ADS)

    Schweins, R.; Huber, K.

    The sodium salt of polyacrylic acid (NaPA) precipitates in the presence of Ca^{2+}-ions. This phase behaviour can be represented by a phase diagram where the critical NaPA concentration is plotted versus the critical Ca^{2+} concentration resulting in a straight line as a phase boundary. The location of this phase boundary is influenced by the presence of an inert monovalent salt like NaCl. The present contribution focuses on the coil dimensions of NaPA chains in dilute aqueous solution corresponding to the one phase region of such a phase diagram. A variety of parameters with which the size and shape of the polyelectrolyte chains can be modulated are revealed. Approaching the phase boundary by decreasing the NaPA concentration at a constant Ca^{2+} content leads to a collapse of the NaPA chains. Combined static and dynamic light scattering suggests a compact spherical shape as the final state of this transition, both in 0.1 M NaCl and in 0.01 M NaCl. In the lower NaCl concentration, indication is presented for the existence of a cigar or pearl necklace like intermediate. Most strikingly, the collapsed chains can be reexpanded by increasing the concentration of inert NaCl at constant content of NaPA and Ca^{2+}. Clearly, excessive Na+-ions displace the Ca^{2+}-ions from the NaPA chains.

  13. Gating the photochromism of an azobenzene by strong host-guest interactions in a divalent pseudo[2]rotaxane.

    PubMed

    Lohse, Mirko; Nowosinski, Karol; Traulsen, Nora L; Achazi, Andreas J; von Krbek, Larissa K S; Paulus, Beate; Schalley, Christoph A; Hecht, Stefan

    2015-06-18

    The ability of an E-configured azobenzene guest to undergo photoisomerisation is controlled by the presence of a complementary host. Addition of base/acid allowed for a weakening/strengthening of the interactions in the divalent pseudo[2]rotaxane complex and hence could switch on/off photochromic activity. PMID:25929291

  14. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    EPA Science Inventory

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  15. Temperature- and Photocontrolled Unfolding/Folding of a Triple-Helical Azobenzene-Stapled Collagen Peptide Monitored by Infrared Spectroscopy.

    PubMed

    Lorenz, Lisa; Kusebauch, Ulrike; Moroder, Luis; Wachtveitl, Josef

    2016-05-01

    The triple-helical structure of a model collagen peptide possessing azobenzene-derived clamps integrated in all three strands as side-chain-to-side-chain crosslinks is analyzed by IR spectroscopy in comparative thermal excursion experiments with the triple helix of a typical reference collagen peptide consisting of only glycine-proline-hydroxyproline repeats. By exploiting the known stabilizing effects of aqueous alcoholic solvents on the unique collagen fold, deuterated ethylene glycol/water (1:1) is used as a solvent to investigate the effect of the light-switchable trans/cis-azobenzene clamp on the stability of the triple helix in terms of H/D exchange rates and thermal unfolding. Results of this comparative analysis clearly reveal only a minor destabilization of the triple helix by the hydrophobic azobenzene moieties compared to the reference collagen peptide as reflected by a lower midpoint of the thermal unfolding and higher rates of H/D exchange. However, it also reveals that the driving force exerted by the trans-to-cis photoisomerization of the azobenzene moieties is insufficient for unfolding of the compact triple-helical collagen fold. Only temperature-dependent untightening of this fold with heating results in a reversible photomodulated unfolding and refolding of the azo-collagen peptide into the original triple helix. PMID:26918674

  16. A novel single-side azobenzene-grafted Anderson-type polyoxometalate for recognition-induced chiral migration.

    PubMed

    Zhang, Bin; Yue, Liang; Wang, Yang; Yang, Yang; Wu, Lixin

    2014-09-25

    A three-component supramolecular hybrid system based on host-guest recognition and electrostatic interaction has been developed for a consecutive chiral transfer from an alpha-cyclodextrin to cationic dyes via the bridge of a new azobenzene-grafted Anderson-type polyoxometalate cluster. PMID:25089807

  17. Supramolecular architecture in Langmuir and Langmuir-Blodgett films incorporating a chiral azobenzene.

    PubMed

    Haro, Marta; del Barrio, Jesús; Villares, Ana; Oriol, Luis; Cea, Pilar; López, M Carmen

    2008-09-16

    This article describes the synthesis and fabrication of Langmuir and Langmuir-Blodgett (LB) films incorporating a chiral azobenzene derivative, namely, ( S)-4- sec-butyloxy-4'-[5''-(methyloxycarbonyl)pentyl-1''-oxy]azobenzene, abbreviated as AZO-C4(S). Appropriate conditions for the fabrication of monolayers of AZO-C4(S) at the air-water interface have been established, and the resulting Langmuir films have been characterized by a combination of surface pressure and surface potential versus area per molecule isotherms, Brewster angle microscopy, and UV-vis reflection spectroscopy. The results indicate the formation of an ordered trilayer at the air-water interface with UV-vis reflection spectroscopy showing a new supramolecular architecture for multilayered films as well as the formation of J aggregates. Films were transferred onto solid substrates, with AFM revealing well-ordered multilayered films without 3D defects. Infrared and UV-vis absorption spectroscopy indicate that the supramolecular architecture may be favored by the formation of H bonds between acid groups in neighboring layers and pi-pi intermolecular interactions. Circular dichroism spectra reveal chiro-optical activity in multilayered LB films. PMID:18686982

  18. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers.

    PubMed

    Baroncini, Massimo; d'Agostino, Simone; Bergamini, Giacomo; Ceroni, Paola; Comotti, Angiolina; Sozzani, Piero; Bassanetti, Irene; Grepioni, Fabrizia; Hernandez, Taylor M; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-08-01

    The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E→Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z→E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications. PMID:26201739

  19. Electronic and transport properties of azobenzene monolayer junctions as molecular switches

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Cheng, Hai-Ping

    2012-07-01

    We investigate from first principles the change in transport properties of a two-dimensional azobenzene monolayer sandwiched between two Au electrodes that undergoes molecular switching. We focus on transport differences between a chemisorbed and physisorbed top monolayer-electrode contact. The conductance of the monolayer junction with a chemisorbed top contact is higher in the trans configuration, in agreement with the previous theoretical predictions of one-dimensional single-molecule junctions. However, with a physisorbed top contact, the ON state, with larger conductance, is associated with the cis configuration due to a reduced effective tunneling pathway, which successfully explains recent experimental measurements on azobenzene monolayer junctions. A simple model is developed to explain electron transmission across subsystems in the molecular junction. We also discuss the effects of monolayer packing density, molecule tilt angle, and contact geometry on the calculated transmission functions. In particular, we find that a tip-like contact with chemisorption significantly affects the electric current through the cis monolayer, leading to highly asymmetric current-voltage characteristics as well as large negative differential resistance behavior.

  20. Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Sousani, Abbas; Moghadam, Peyman Najafi; Hasanzadeh, Reza; Motiei, Hamideh; Bagheri, Massoumeh

    2016-01-01

    In this work poly glycidylmethacrylate grafted 4-hydroxy-4‧-methoxy-azobenzene (Azo-PGMA) was synthesized. For this propose firstly 4-hydroxy-4‧-methoxy-azobenzene (AZO) was prepared, then poly glycidylmethacrylate was prepared by free radical polymerization of glycidylmethacrylate in the presence of benzoyl peroxide as initiator under inert atmosphere in dry THF. Finally the homopolymer was functionalized by AZO moieties. The characterization of the synthesized copolymer was carried out by 1H NMR, FT-IR, thermal gravimetric analyze (TGA), differential scanning calorimetry (DSC) and optical polarizing microscope (POM) analysis. The UV-vis studies were carried out on Azo-PGMA copolymer and the results showed that the synthesized Azo-PGMA copolymer has ultra-fast response to UV light and has slow relaxation time. Also the third-order nonlinear optical properties of the Azo-PGMA copolymer and AZO were studied by using Z-scan technique. Nonlinear refraction and absorption coefficients of the above mentioned materials were measured by the closed and open aperture Z-scan method using a continuous wave Nd-YAG laser at 532 nm. The positive nonlinear absorption in Azo-PGMA and AZO was investigated at the wavelength of λ = 532 nm, respectively and the measured values of nonlinear refraction in both of the samples were from the order of 10-8 cm2/W.

  1. Graphene Calisthenics: Straintronics of Graphene with Light-Reactive Azobenzene Polymer

    NASA Astrophysics Data System (ADS)

    Meaker, Kacey; Cao, Peigen; Huo, Mandy; Crommie, Michael

    2014-03-01

    Although a promising target for next-generation electronics, graphene's lack of a band gap is a severe hindrance. There are many ways of opening a gap, and one controllable way is through application of specific non-uniform strains which can produce extremely large pseudomagnetic fields. This effect was predicted and verified experimentally, but so far there have been few methods developed that reliably control the size, location, separation and amount of strain in graphene. We have used a layer of light-reactive azobenzene polymer beneath the graphene to produce strained monolayer graphene with light exposure. Using Raman spectroscopy, we have measured a shift of up to 20 cm-1 in the 2D peak when the graphene and polymer sample was exposed to 532 nm laser illumination indicating that the graphene is undergoing a strain from deformation of the azobenzene layer below. AFM topographic measurements and COMSOL simulations were used to verify this assertion. Use of polymeric materials to reliably strain graphene in non-uniform ways could result in controllable production of large pseudomagnetic fields in graphene and more control over graphene's low-energy charge carriers.

  2. Photomodulation of fluoride ion binding through anion-π interactions using a photoswitchable azobenzene system

    NASA Astrophysics Data System (ADS)

    Rananaware, Anushri; Samanta, Mousumi; Bhosale, Rajesh S.; Kobaisi, Mohammad Al; Roy, Biswajit; Bheemireddy, Varun; Bhosale, Sidhanath V.; Bandyopadhyay, Subhajit; Bhosale, Sheshanath V.

    2016-03-01

    The discovery of photoswitchable azobenzene-systems that undergo trans-to-cis photoisomerisation was a milestone in supramolecular chemistry. Such photoswitches have possible applications in data storage, stimuli responsive delivery systems, and molecular machines due to fast and selective switching. However, the light induced cis isomer of azobenzene is rather unstable and reverts thermally and photochemically to the thermodynamically stable trans configuration. We report, for the first time, controlled photoswitching of an azo-naphthalenediimide (azo-NDI) which can be achieved upon binding of fluoride ions through anion-π interaction. This NDI-F–NDI “sandwich” stabilises the cis configuration through the generation of an NDI•‑ radical anion, and a dianionic, NDI2‑ species that becomes unusually stable in the cis form. The sandwiched cis form reverts to the trans form only upon decomplexation of F‑. A model pollutant was successfully degraded using the photogenerated NDI-F–NDI sandwich. This opens a wide range of applications in molecular and supramolecular nanotechnology.

  3. Photomodulation of fluoride ion binding through anion-π interactions using a photoswitchable azobenzene system.

    PubMed

    Rananaware, Anushri; Samanta, Mousumi; Bhosale, Rajesh S; Al Kobaisi, Mohammad; Roy, Biswajit; Bheemireddy, Varun; Bhosale, Sidhanath V; Bandyopadhyay, Subhajit; Bhosale, Sheshanath V

    2016-01-01

    The discovery of photoswitchable azobenzene-systems that undergo trans-to-cis photoisomerisation was a milestone in supramolecular chemistry. Such photoswitches have possible applications in data storage, stimuli responsive delivery systems, and molecular machines due to fast and selective switching. However, the light induced cis isomer of azobenzene is rather unstable and reverts thermally and photochemically to the thermodynamically stable trans configuration. We report, for the first time, controlled photoswitching of an azo-naphthalenediimide (azo-NDI) which can be achieved upon binding of fluoride ions through anion-π interaction. This NDI-F-NDI "sandwich" stabilises the cis configuration through the generation of an NDI(•-) radical anion, and a dianionic, NDI(2-) species that becomes unusually stable in the cis form. The sandwiched cis form reverts to the trans form only upon decomplexation of F(-). A model pollutant was successfully degraded using the photogenerated NDI-F-NDI sandwich. This opens a wide range of applications in molecular and supramolecular nanotechnology. PMID:26953168

  4. Photomodulation of fluoride ion binding through anion-π interactions using a photoswitchable azobenzene system

    PubMed Central

    Rananaware, Anushri; Samanta, Mousumi; Bhosale, Rajesh S.; Kobaisi, Mohammad Al; Roy, Biswajit; Bheemireddy, Varun; Bhosale, Sidhanath V.; Bandyopadhyay, Subhajit; Bhosale, Sheshanath V.

    2016-01-01

    The discovery of photoswitchable azobenzene-systems that undergo trans-to-cis photoisomerisation was a milestone in supramolecular chemistry. Such photoswitches have possible applications in data storage, stimuli responsive delivery systems, and molecular machines due to fast and selective switching. However, the light induced cis isomer of azobenzene is rather unstable and reverts thermally and photochemically to the thermodynamically stable trans configuration. We report, for the first time, controlled photoswitching of an azo-naphthalenediimide (azo-NDI) which can be achieved upon binding of fluoride ions through anion-π interaction. This NDI-F–NDI “sandwich” stabilises the cis configuration through the generation of an NDI•− radical anion, and a dianionic, NDI2− species that becomes unusually stable in the cis form. The sandwiched cis form reverts to the trans form only upon decomplexation of F−. A model pollutant was successfully degraded using the photogenerated NDI-F–NDI sandwich. This opens a wide range of applications in molecular and supramolecular nanotechnology. PMID:26953168

  5. A Visible-Light-Triggered Conformational Diastereomer Photoswitch in a Bridged Azobenzene.

    PubMed

    Deo, Claire; Bogliotti, Nicolas; Métivier, Rémi; Retailleau, Pascal; Xie, Juan

    2016-06-27

    Ketal-substituted bridged azobenzenes have been synthesized; these display a symmetrical boat conformation with the ketal in pseudo-equatorial positions. These bridged Z-azobenzenes (Z1 ) readily photoisomerize to the E-isomer as well as another Z-conformer (Z2 ) with ketal function on the pseudo-axial position upon irradiation at 406 nm. The two diastereomeric conformers display distinct physicochemical characteristics. Spectroscopic and NMR investigations supported that interconversion of two conformers occurs via the E-isomer, with good photochemical quantum yield (ΦZ1→E =0.45±0.03, ΦE→Z1 =0.33±0.05, ΦE→Z2 =0.37±0.06 and ΦZ2→E =0.36±0.04). The system shows high photostability and no thermal equilibrium between the two stable Z1 and Z2 conformers. PMID:27145736

  6. Nonadiabatic hybrid quantum and molecular mechanic simulations of azobenzene photoswitching in bulk liquid environment.

    PubMed

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2010-01-21

    A nonadiabatic hybrid quantum and molecular mechanical (na-QM/MM) molecular dynamics scheme has been implemented recently combining the nonadiabatic Car-Parrinello molecular dynamics method by Doltsinis and Marx [Phys. Rev. Lett. 2002, 88, 166402] with the QM/MM coupling approach by Laio et al. [J. Chem. Phys. 2002, 116, 6941]. Here an extensive validation of the underlying, density functional theory based, electronic structure methods by comparison to CASPT2 ab initio data is presented for the case of azobenzene. The "on the fly" na-QM/MM method is then applied to study Z-->E and E-->Z photoisomerization of azobenzene in a bulk liquid environment. The isomerization mechanism is found to be a pedal motion of the central CN horizontal lineNC group in both cases. While the Z-->E reaction is barely affected by the environment, E-->Z photoisomerization is slowed down considerably in the liquid compared to the gas phase. This effect is due to the fact that reorientation of the phenyl rings is significantly hindered in the liquid by steric nearest neighbor interactions. Nonradiative decay is found to be substantially faster for Z-AB (subpicosecond regime) than for E-AB (picosecond regime). The main molecular motions responsible for nonadiabatic coupling have been identified as the oscillations in the NN and CN bond lengths, the CNN bond angles, and the CNNC dihedral angle. PMID:19928885

  7. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  8. The effect of TiO2/aluminosilicate nanocomposite additives on the mechanical and thermal properties of polyacrylic coatings

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali

    2015-12-01

    The commercial grade polyacrylic latex was modified in order to prepare a mechanical and thermal improved coating. TiO2/Ag-exchanged-aluminosilicate nanocomposites with montmorillonite, zeolite-A and clinoptilolite aluminosilicates were prepared and used as additive in the matrix of polyacrylic latex to achieve a coating with proper mechanical and thermal properties. X-ray diffraction patterns and FESEM were used to characterize the composition, structure, and morphology of the nanocomposite additives. Polyacrylic coatings modified by TiO2/Ag-exchanged-aluminosilicate nanocomposite additives showed higher adhesion strength and hardness compared to unmodified commercial grade polyacrylic coatings. Differential Scanning Calorimetry (DSC) analysis showed lower glass transition temperature for modified polyacrylic coatings than that of unmodified polyacrylic coatings. The tensile tests were also carried out for unmodified and modified polyacrylic coatings. According to the results, the modified polyacrylic based coating with TiO2/Ag-exchanged-clinoptilolite nanocomposite additive was the best coating considering most of useful properties.

  9. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng, Fangcai; He, Mengni; Yang, Yang; Chen, Qianwang

    2015-02-01

    Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we report the preparation of ultrasmall Fe2O3 nanoparticles embedded in nitrogen-doped hollow carbon sphere shells (Fe2O3@N-C) by the direct pyrolysis of Fe-based zeolitic imidazolate frameworks (Fe-ZIF) at 620 °C in air. As an anode material for LIBs, the capacity retained was 1573 mA h g-1 after 50 cycles at a current density of 0.1 C (1 C = 1000 mA g-1). Even undergoing the high-rate capability test twice, it can still deliver a remarkably reversible and stable capacity of 1142 mA h g-1 after 100 cycles at a current density of 1 C. The excellent electrochemical performance is attributed to the unique structure of ultrasmall Fe2O3 nanoparticles uniformly distributed in the shell of nitrogen-doped carbon spheres, which simultaneously solve the major problems of pulverization, facilitate rapid electrochemical kinetics, and effectively avoid the aggregation of Fe2O3 nanoparticles during de/lithiation. The novel method developed in this work for the synthesis of functional hybrid materials can be extended to the preparation of various MOFs-derived functional nanocomposites owing to the versatility of links and metal centers in MOFs.Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we report the preparation of ultrasmall Fe2O3 nanoparticles

  10. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.

    PubMed

    Zheng, Fangcai; He, Mengni; Yang, Yang; Chen, Qianwang

    2015-02-28

    Iron oxides are extensively investigated as anode materials for lithium-ion batteries (LIBs) because of their large specific capacities. However, they undergo huge volume changes during cycling that result in anode pulverization and loss of electrical connectivity. As a result, the capacity retention of the iron oxide anodes is poor and should be improved for commercial applications. Herein, we report the preparation of ultrasmall Fe2O3 nanoparticles embedded in nitrogen-doped hollow carbon sphere shells (Fe2O3@N-C) by the direct pyrolysis of Fe-based zeolitic imidazolate frameworks (Fe-ZIF) at 620 °C in air. As an anode material for LIBs, the capacity retained was 1573 mA h g(-1) after 50 cycles at a current density of 0.1 C (1 C = 1000 mA g(-1)). Even undergoing the high-rate capability test twice, it can still deliver a remarkably reversible and stable capacity of 1142 mA h g(-1) after 100 cycles at a current density of 1 C. The excellent electrochemical performance is attributed to the unique structure of ultrasmall Fe2O3 nanoparticles uniformly distributed in the shell of nitrogen-doped carbon spheres, which simultaneously solve the major problems of pulverization, facilitate rapid electrochemical kinetics, and effectively avoid the aggregation of Fe2O3 nanoparticles during de/lithiation. The novel method developed in this work for the synthesis of functional hybrid materials can be extended to the preparation of various MOFs-derived functional nanocomposites owing to the versatility of links and metal centers in MOFs. PMID:25631451

  11. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    PubMed Central

    Niu, Ying-Mei; Zhu, Xiao-Li; Chang, Bing; Tong, Zhao-Hui; Cao, Wen; Qiao, Pei-Huan; Zhang, Lin-Yuan; Zhao, Jing; Song, Yu-Guo

    2016-01-01

    We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P < 0.05) at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P < 0.05) 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P < 0.05) 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity. PMID:26981538

  12. Stabilization of magnetorheological suspensions by polyacrylic acid polymers.

    PubMed

    Viota, J L; de Vicente, J; Durán, J D G; Delgado, A V

    2005-04-15

    This work is devoted to the synthesis and stabilization of magnetorheological suspensions constituted by monodisperse micrometer-sized magnetite spheres in aqueous media. The electrical double-layer characteristics of the solid/liquid interface were studied in the absence and presence of adsorbed layers of high molecular weight polyacrylic acids (PAA; Carbopol). Since the Carbopol-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information of the surface potential and the charge density of the polymer layer. The effect of the pH of the solution on the double-layer characteristics is related to the different conformations of the adsorbed molecules provoked by the dissociation of the acrylic groups present in polymer molecules. The stability of the suspensions was experimentally studied for different pH and polymer concentrations, and in the absence or presence of a weak magnetic field applied. The stability of the suspensions was explained using the classical DLVO theory of colloidal stability extended to account for hydration, steric, and magnetic interactions between particles. Diagrams of potential energy vs interparticle distance show the predominant effect of steric, hydrophilic/hydrophobic, and magnetic interactions on the whole stability of the system. The best conditions to obtain stable suspensions were found when strong steric and hydrophilic repulsions hinder the coagulation between polymer-covered particles, simultaneously avoiding sedimentation by the thickening effect of the polymer solution. When a not too high molecular weight PAA was employed in a low concentration, the task of a long-time antisettling effect compatible with the desired magnetic response of the fluid was achieved. PMID:15780292

  13. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    PubMed

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications. PMID:23562049

  14. The influence of temperature on the swelling of polyacrylic and polymethacrylic cationites

    NASA Astrophysics Data System (ADS)

    Karpyuk, E. A.; Korotkikh, O. I.; Gavlina, O. T.; Ivanov, V. A.

    2011-03-01

    Temperature was shown to substantially influence the swelling of KB-2e3 polyacrylic and KB-4P2 polymethacrylic ionites cross-linked by triethylene glycol dimethacrylate (TEGDM) and divinylbenzene (DVB). Maximum swelling changes as the temperature increased were observed for the Ca form of the KB-4P2 ionite. Swelling and contraction of polymethacrylic cationite grains as the temperature decreased and increased occurred at equal fairly high rates, whereas the sorption of water by the polyacrylic cationite in the calcium form cross-linked by TEGDM occurred much more slowly than desorption.

  15. Azo···phenyl stacking: a persistent self-assembly motif guides the assembly of fluorinated cis-azobenzenes into photo-mechanical needle crystals.

    PubMed

    Bushuyev, Oleksandr S; Tomberg, Anna; Vinden, Joanna R; Moitessier, Nicolas; Barrett, Christopher J; Friščić, Tomislav

    2016-02-01

    We describe a novel, persistent motif of molecular assembly in photo-mechanical crystals and cocrystals of fluorinated cis-azobenzenes. The azo···phenyl stacking, preserved upon either chemical substitution or halogen-bonded cocrystallization, guides the assembly of fluorinated cis-azobenzenes into columnar stacks and drives the formation of crystals with needle-like morphologies optimal for photo-mechanical motion. PMID:26691226

  16. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid-liquid patterning.

    PubMed

    Norikane, Yasuo; Uchida, Emi; Tanaka, Satoko; Fujiwara, Kyoko; Koyama, Emiko; Azumi, Reiko; Akiyama, Haruhisa; Kihara, Hideyuki; Yoshida, Masaru

    2014-10-01

    The direct and reversible transformation of matter between the solid and liquid phases by light at constant temperature is of great interest because of its potential applications in various manufacturing settings. We report a simple molecular design strategy for the phase transitions: azobenzenes having para-dialkoxy groups with a methyl group at the meta-position. The photolithography processes were demonstrated using the azobenzene as a photoresist in a single process combining development and etching of a copper substrate. PMID:25216186

  17. Evaluation of photoinduced change in refractive index of a polymer film doped with an azobenzene liquid crystal by means of a prism-coupling method

    SciTech Connect

    Kurihara, Hideo; Shishido, Atsushi; Ikeda, Tomiki

    2005-10-15

    The photoinduced change in refractive index of poly(methyl methacrylate) films doped with an azobenzene liquid crystal was measured by the prism-coupling method. Upon irradiation of the film with a high-pressure mercury lamp at 366 nm, the coupling angles shifted and then recovered to the initial position by turning off the light. The change in refractive index was found to be 2x10{sup -3}, which is attributed to the reversible photoisomerization of the azobenzene moieties.

  18. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    DOE PAGESBeta

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m =more » 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV-light (320–366 nm) all

  19. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    SciTech Connect

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m = 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV

  20. Synthesis, characterization of azobenzene and cinnamate ester based calamitic liquid crystalline compounds and their photoresponsive properties

    NASA Astrophysics Data System (ADS)

    Selvarasu, Chinnaiyan; Kannan, Palaninathan

    2015-07-01

    A series of azobenzene-containing mesogens end-capped with cinnamoyl esters were synthesized and investigated its mesogenic and photochemical properties. Terminal substituents of the molecules were changed with various substituents like CN, Cl, H, CH3, and OCH3. Liquid crystalline properties of the synthesized compounds were studied and confirmed using differential scanning calorimetry, polarising optical microscopy. Compounds (4a-4e) exhibited a thermotropic mesomorph behaviour viz., nematic and smectic phases that depends on the terminal substituents. The thermal transition temperatures and the mesophase types are depend on the terminal substituents which are ascribed with the increasing cohesive forces between molecules as the conjugation length increases. These photochromic compounds exhibited strong UV-vis absorption maxima between 330 and 340 nm. Upon irradiation with selective UV light produces the trans-cis isomerization producing new maxima at 450 nm due to cis configuration.

  1. The photoisomerization mechanism of azobenzene: a semiclassical simulation of nonadiabatic dynamics.

    PubMed

    Ciminelli, Cosimo; Granucci, Giovanni; Persico, Maurizio

    2004-05-01

    We have simulated the photoisomerization dynamics of azobenzene, taking into account internal conversion and geometrical relaxation processes, by means of a semiclassical surface hopping approach. Both n-->pi* and pi-->pi* excitations and both cis-->trans and trans-->cis conversions have been considered. We show that in all cases the torsion around the N==N double bond is the preferred mechanism. The quantum yields measured are correctly reproduced and the observed differences are explained as a result of the competition between the inertia of the torsional motion and the premature deactivation of the excited state. Recent time-resolved spectroscopic experiments are interpreted in the light of the simulated dynamics. PMID:15112222

  2. Poly(esterimide) bearing azobenzene units as photoaligning layer for liquid crystals

    NASA Astrophysics Data System (ADS)

    Węgłowski, Rafał; Piecek, Wiktor; Kozanecka-Szmigiel, Anna; Konieczkowska, Jolanta; Schab-Balcerzak, Ewa

    2015-11-01

    The custom synthesized azobenzene side-chain poly(esterimide) was used as an aligning material for nematic liquid crystal molecules. The anisotropy of the poly(esterimide) layer was generated by a linearly polarized UV light, as a consequence of multiple trans-cis-trans isomerization cycles. The photoalignment effect was studied by assembling a twisted nematic cell with a proper liquid crystal mixture and geometry to fulfill Mauguin's limit. The polarizing microscope pictures of the fabricated cells confirmed the twisted arrangement of liquid crystal molecules. The results of electro-optic measurements indicated a stronger anchoring of the liquid crystal molecules by photoaligned poly(esterimide) than that obtained in the case of a rubbed polyimide.

  3. Synthesis of photoresponsive cholesterol-based azobenzene organogels: dependence on different spacer lengths.

    PubMed

    Ren, Yuchun; Wang, Bin; Zhang, Xiuqing

    2015-01-01

    A series of azobenzene-cholesterol organogel compounds (M 0 -M 12 ) with different spacers were designed and synthesized. The molecular structures were confirmed by (1)H NMR and (13)C NMR spectroscopy. The rapid and reversible photoresponsive properties of the compounds were investigated by UV-vis spectroscopy. Their thermal phase behaviors were studied by DSC. The length of the spacer plays a crucial role in the gelation. Compound M 6 is the only one that can gelate in ethanol, isopropanol and 1-butanol and the reversible gel-sol transitions are also investigated. To obtain visual insight into the microstructure of the gels, the typical structures of the xerogels were studied by SEM. Morphologies of the aggregates change from flower-like, network and rod with different sizes. By using IR and XRD characterization, it is found that intermolecular H-bonding, the solvents and van der Waals interaction are the main contributions to the specific superstructure. PMID:26199664

  4. High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester

    SciTech Connect

    Sanchez, C.; Alcala, R.; Hvilsted, S.; Ramanujam, P. S.

    2001-06-18

    High diffraction efficiencies have been achieved with polarization gratings recorded in thin films of an azobenzene side-chain liquid crystalline polyester by means of biphotonic processes. Efficiency values up to 30% have been reached after an induction period of 300 s and subsequent evolution with the sample in darkness. These values are at least two orders of magnitude higher than those previously reported for biphotonic recording. The gratings can be erased with unpolarized blue light and partial recovery of the diffraction efficiency has been observed after the erasure process when the sample is kept in darkness. Red light illumination of the erased film increases the recovered efficiency value and the recovery rate. {copyright} 2001 American Institute of Physics.

  5. Photomechanical response of disperse red 1 azobenzene dye-doped PMMA polymer fiber

    NASA Astrophysics Data System (ADS)

    Ye, Xianjun; Kuzyk, Mark G.

    2014-02-01

    Disperse red 1 azobenzene (DR1) doped poly(methyl methacrylate) (PMMA) optical fiber has been shown to have a fast photomechanical response upon 633 nm laser irradiation originating in photo-isomerization of the dopants between the cis and trans forms. In this work, laser light of 355 nm wavelength is used to investigate the trans to cis isomerization process, which should result in length contraction. A three-point-contact optically actuated beam-controlling mount is made of dye doped polymer fiber segments and metal-coated microscope coverslips to measure the photomechanical response. The length change of the fiber is determined from a quadrant photodetector reading upon beam deflection. The fiber is observed to elongate upon UV irradiation. We find that for DR1 dye in PMMA polymer, the dominant mechanism of the photomechanical effect is photo-thermally stimulated isomerization rather than direct photoisomerization.

  6. Efficient configuration transition in a new azobenzene-LC polymer for red light holographic recording

    NASA Astrophysics Data System (ADS)

    Mao, Weidong; Sun, Qunhui; Baig, Sarfaraz; Lu, Hui; Wang, Michael R.

    2012-02-01

    We demonstrate cis-to-trans transition based red light holographic recording in an azobenzene-liquid crystal (LC) polymer material following efficient crucial transition of trans-to-cis, which is prepared by selected wavelength light pre-illumination. The presence and orientation of soft liquid crystal impregnating the polymer backbone allows the cis intermediate states to hold for the stable red hologram recording and non-destructive readout. Using a 50 nm bandwidth light source at the center wavelength of 575 nm, we have efficient pre-illumination on the material. The diffraction efficiency of up to 2% can be achieved by a HeNe laser at 632.8 nm wavelength, and two-dimensional holograms of USAF resolution target are successfully recorded.

  7. Molecular dynamics in azobenzene liquid crystal polymer films studied by transient grating technique

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Fujii, Tomomi; Kuwahara, Shota; Takado, Kiyohide; Ikeda, Tomiki

    2014-10-01

    We studied the effect of the ratio between the monomer and cross-linker molecules in the azobenene included liquid crystal polymer films by using the heterodyne transient grating (HD-TG) technique, which is one of the time-resolved measurement techniques. Depending on the ratio, the magnitude of the refractive index change, its anisotropy, and the lifetime of the cis isomer of azobenzene, generated by a UV pulse irradiation. By increasing the cross-linker ratio, the refractive index change and its anisotropy was reduced, indicating less ability for the motion, while slower lifetime was observed by increasing the monomer ratio, indicating that the film is difficult to return the original shape by a visiblelight irradiation. The obtained dynamics was consistent with the functionality of the films.

  8. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels

    PubMed Central

    Rosales, Adrianne M.; Mabry, Kelly M.; Nehls, Eric Michael; Anseth, Kristi S.

    2015-01-01

    The elastic modulus of the extracellular matrix is a dynamic property that changes during various biological processes, such as disease progression or wound healing. Most cell culture platforms, however, have traditionally exhibited static properties, making it necessary to replate cells to study the effects of different elastic moduli on cell phenotype. Recently, much progress has been made in the development of substrates with mechanisms for either increasing or decreasing stiffness in situ, but there are fewer examples of substrates that can both stiffen and soften, which may be important for simulating the effects of repeated ECM injury and resolution. In the work presented here, poly(ethylene glycol)-based hydrogels reversibly stiffen and soften with multiple light stimuli via photoisomerization of an azobenzene-containing crosslinker. Upon irradiation with cytocompatible doses of 365 nm light (10 mW/cm2, 5 min), isomerization to the azobenzene cis configuration leads to a softening of the hydrogel up to 100-200 Pa (shear storage modulus, G’). This change in gel properties is maintained over a timescale of several hours due to the long half-life of the cis isomer. The initial modulus of the gel can be recovered upon irradiation with similar doses of visible light. With applications in mechanobiology in mind, cytocompatibility with a mechanoresponsive primary cell type is demonstrated. Porcine aortic valvular interstitial cells were encapsulated in the developed hydrogels and shown to exhibit high levels of survival, as well as a spread morphology. The developed hydrogels enable a route to the noninvasive control of substrate modulus independent of changes in the chemical composition or network connectivity, allowing for investigations of the effect of dynamic matrix stiffness on adhered cell behavior. PMID:25629423

  9. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic). 721.10702 Section 721.10702 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  10. Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions.

    PubMed

    Labanda, Jordi; Llorens, Joan

    2005-09-01

    Aqueous Laponite dispersions containing a sodium polyacrylate were analyzed, at fixed ionic strength and pH, by rheometric and electroacoustic (for zeta-potential determinations) techniques at 7 days after their preparation. The rheological behavior of these dispersions was determined by oscillatory and flow experiments. Addition of sodium polyacrylate modifies the interactions between Laponite particles and therefore the physical state of the dispersion. The phase diagram of Laponite dispersion as a function of sodium polyacrylate concentration shows different sol-gel transitions for a specific Laponite concentration as a function of the polyacrylate concentration. Under equilibrium flow conditions the Laponite dispersions fit the pseudoplastic Oswald-de Waele power law model. At the same time, these dispersions show thixotropy, which was analyzed using a second-order kinetic equation. The kinetic processes were characterized by breakdown and build-up parameters, which were found to depend on shear rate. This kinetic equation was modified by a power law exponent of viscosity with shear rate that takes into account the viscosity variations when the shear rates are suddenly changed, in order to fit the hysteresis loops. PMID:16009220

  11. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate.

    PubMed

    Hutton, D A; Pearson, J P; Allen, A; Foster, S N

    1990-03-01

    1. Mucolytic (mucus solubilizing) activity in human faeces has been characterized with both purified human and pig colonic mucin and shown to be mediated by proteolysis. 2. Mucolytic activity was demonstrated by: (i) a drop in mucin viscosity; (ii) a substantial reduction in mucin size, from polymer to degraded subunit, as assessed by Sepharose CL-2B gel filtration; (iii) formation of new N-terminal peptides. 3. Mucolytic activity was also followed in faecal extracts by its proteolytic activity using standard succinyl albumin substrate. Proteolysis extended over the pH range 4.5-11.0. Proteolysis was inhibited at pH 7.5 by soybean trypsin inhibitor and phenylmethanesulphonyl fluoride, suggesting the presence of serine proteinases. 4. The polyacrylate carbomer (934P) inhibited both mucolysis of pig colonic mucin and proteolysis of succinyl albumin. 5. Interaction between the polyacrylate (carbomer 934P) and purified human and pig colonic mucin was demonstrated by a marked synergistic increase in solution viscosity (360% above control). 6. The results demonstrate the presence of a mucolytic activity in the human colonic lumen that has the potential to degrade the mucus barrier, and that polyacrylates inhibit this mucolysis and interact to strengthen the colonic mucus barrier. Polyacrylates may therefore have therapeutic potential in inflammatory bowel disease where luminal proteolytic activity can be raised. PMID:2156646

  12. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    PubMed

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities. PMID:26986442

  13. UV gelation of single-component polyacrylates bearing dinitrobenzoate side groups.

    PubMed

    Xie, Tongqing; Yang, Li; Sun, Xingxing; Jiang, Jun; Zhang, Xuepeng; Luo, Yi; Zhang, Guoqing

    2016-07-19

    Polyacrylates bearing dinitrobenzoate side groups undergo sol-gel-sol transformations in DMF or THF solutions regulated by alternating UV light and dark conditions. The formation and recombination of radical ionic species via photoinduced electron transfer may be responsible. PMID:27373563

  14. Effect of light on the polarization of a banana-shaped achiral compound doped with a photoactive azobenzene material

    SciTech Connect

    Nair, Geetha G.; Prasad, S. Krishna; Hiremath, Uma S.; Yelamaggad, C. V.

    2001-07-01

    We report photoinduced effects on a liquid crystal comprising of bent-core molecules, doped with a photoactive azobenzene compound and exhibiting the recently discovered {open_quotes}banana{close_quotes} B{sub 2} mesophase. The photoisomerization of the azobenzene molecules, brought about by the UV radiation, hardly changes the B{sub 2}-isotropic transition temperatures, but has a significant influence on the spontaneous polarization (Ps) as well as the switching time in the B{sub 2} phase. The efficiency of this opto-polarization effect has been observed to be strongly dependent on the temperature at which the irradiation is carried out. A possible mechanism responsible for the observed phenomenon has been suggested. {copyright} 2001 American Institute of Physics.

  15. Spectroscopic enhancement in nanoparticles embedded glasses

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Ghoshal, S. K.

    2014-09-01

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  16. Spectroscopic enhancement in nanoparticles embedded glasses

    SciTech Connect

    Sahar, M. R. Ghoshal, S. K.

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  17. The effect of photoisomerization on the enzymatic hydrolysis of polymeric micelles bearing photo-responsive azobenzene groups at their cores.

    PubMed

    Harnoy, Assaf J; Slor, Gadi; Tirosh, Einat; Amir, Roey J

    2016-06-28

    The design of stable polymeric micelles that can respond to specific stimuli is crucial for the development of smart micellar nanocarriers that can release their active cargo selectively at the target site, thus diminishing the therapeutic limitations due to non-selective damage to healthy tissues. Here we report the design and synthesis of photo- and enzyme-responsive amphiphilic PEG-dendron hybrids bearing one, two or four enzymatically cleavable azobenzene end-groups. These dual-responsive hybrids can respond to light through the reversible isomerization of the azobenzene end-groups from the non-polar trans isomer to the highly polar cis isomer and vice versa, upon UV and visible irradiation, respectively. The high structural precision of these hybrids, which emerges from the dendritic architecture, enabled a detailed study of the photoisomerization of the azobenzene end-groups with high molecular resolution. Remarkably, although the transition from trans-to-cis led to a significant increase in the polarity of the micellar cores, the micelles remained stable. Our kinetic studies show that although the trans isomer is a better substrate for the activating enzyme, the UV induced formation of the cis azobenzene end-groups led to significant acceleration of the enzymatic hydrolysis of the end-groups. These results provide strong indication that the enzyme cannot reach the core of the micelles and instead the end-groups have to leave the hydrophobic core in order to be exposed on the micelle's surface or even leave the micelle in order to allow their cleavage by the activating enzymes. PMID:27093537

  18. Photoreversible assembly-disassembly of a polymeric structure by using an azobenzene photoswitch and Al3+ ions.

    PubMed

    Hatai, Joydev; Bandyopadhyay, Subhajit

    2014-08-01

    A nonmacrocyclic azobenzene-based photochromic receptor in its E isomer forms an extended polymeric assembly with Al(3+) ions. Exposure of the E form to UV light at λ = 366 nm causes a disassembly of the polymeric structure due to the change in the molecular geometry of the ligand. The linear polymeric structure was regenerated on exposure to visible light. PMID:25044420

  19. Surface hopping dynamics of direct trans → cis photoswitching of an azobenzene derivative in constrained adsorbate geometries.

    PubMed

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-21

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ∗ excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ∗-excited states which are non-adiabatically coupled among themselves and to a nπ∗-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed. PMID:23267492

  20. Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals.

    PubMed

    Kim, Yuna; Tamaoki, Nobuyuki

    2016-02-01

    In this study, we synthesized asymmetric dimeric chiral molecules as photon-mode chiral switches for reversible tuning of self-assembled helical superstructures. The chiral switches bearing two mesogen units-cholesterol and azobenzene moieties connected through flexible alkylenedioxy bridges-were doped into nematic liquid crystals, resulting in a chiral nematic (cholesteric) phase. Under irradiation with UV light, photoisomerization of the azobenzene units led to unprecedented switching of the cholesteric pitch and helical twisting power (HTP, β), with a higher HTP found in the cis-rich state (bent-form) than in the trans-state (rod-form). We attribute this behavior to the elongated cybotactic smectic clusters disrupting the helical orientation of the molecules in the cholesteric liquid crystals; their reversible decay and reassembly was evidenced upon sequential irradiation with UV and visible light, respectively. In addition to the photoisomerization of the azobenzene units, the odd/even parity of the alkylenedioxy linkers of the dimeric dopants also had a dramatic effect on the transitions of the cybotactic smectic domains. On the basis of the large rotational reorganization of the cholesteric helix and HTP switching (Δβ/βini of up to 50%), we could control the macroscopic rotational motion of microsized glass rods upon irradiating the surface of a cholesteric liquid crystal film featuring a polygonal fingerprint texture using UV and visible light. PMID:26815738

  1. Azobenzene photoswitching as a tool for controlling block copolymer self-assembly in dip-coated thin films

    NASA Astrophysics Data System (ADS)

    Vapaavuori, Jaana; Grosrenaud, Josué; Borozenko, Kateryna; Pellerin, Christian; Bazuin, Geraldine; Department of Chemistry, University of Montreal Team

    Understanding how to control the characteristics of microphase-separated block copolymer thin films is of crucial importance for developing nanotechnological applications, such as producing nanoscale lithography templates for the electronics industry. The supramolecular complexation of small molecules selectively to one of the blocks in suitable block copolymers enables modulating the block volume fractions and thereby controlling the type of surface morphology obtained in thin films. In this contribution, we show that the morphology of dip-coated polystyrene-b-poly(4-vinylpyridine) polymer films containing a hydrogen-bonding azobenzene guest can be further controlled using light as an external in situ stimulus during the dip-coating procedure. A change from spherical to cylindrical morphology was demonstrated when the geometry of the azobenzene units was switched by illumination at 365 nm. Film thickness measurements revealed that the thickness of the films can also be tailored by light, since films prepared under irradiation are significantly thicker than non-irradiated ones. The photochemical requirements to guide the choice of azobenzene molecule and the nature of the solvent used will be discussed in view of an optimal material combination for easily directable systems.

  2. Femtosecond pump-probe photoionization-photofragmentation spectroscopy: photoionization-induced twisting and coherent vibrational motion of azobenzene cation.

    PubMed

    Ho, Jr-Wei; Chen, Wei-Kan; Cheng, Po-Yuan

    2009-10-01

    We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale. PMID:19814554

  3. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor.

    PubMed

    Kienzler, Michael A; Reiner, Andreas; Trautman, Eric; Yoo, Stan; Trauner, Dirk; Isacoff, Ehud Y

    2013-11-27

    The use of azobenzene photoswitches has become a dependable method for rapid and exact modulation of biological processes and material science systems. The requirement of ultraviolet light for azobenzene isomerization is not ideal for biological systems due to poor tissue penetration and potentially damaging effects. While modified azobenzene cores with a red-shifted cis-to-trans isomerization have been previously described, they have not yet been incorporated into a powerful method to control protein function: the photoswitchable tethered ligand (PTL) approach. We report the synthesis and characterization of a red-shifted PTL, L-MAG0460, for the light-gated ionotropic glutamate receptor LiGluR. In cultured mammalian cells, the LiGluR+L-MAG0460 system is activated rapidly by illumination with 400-520 nm light to generate a large ionic current. The current rapidly turns off in the dark as the PTL relaxes thermally back to the trans configuration. The visible light excitation and single-wavelength behavior considerably simplify use and should improve utilization in tissue. PMID:24171511

  4. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    PubMed

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. PMID:27561514

  5. Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Magaldi, Flavio Musa; Feitosa, Eloi; Pessoa, Adalberto

    2008-01-18

    The partition of hemoglobin, lysozyme and glucose-6-phosphate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na(2)SO(4), pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. PMID:18078945

  6. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  7. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy

    PubMed Central

    Tan, Eric M. M.; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol−1. This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy. PMID:25562840

  8. Photopatterned surface relief gratings in azobenzene-amorphous polycarbonate thin films

    NASA Astrophysics Data System (ADS)

    Vollmann, Morten; Getek, Peter; Olear, Kellie; Combs, Cody; Campos, Benjamin; Witkowski, Edmund; Cain, Erin; McGee, David

    Photoinduced orientation of azobenzene chromophores in polymeric host materials has been broadly explored for optical processing applications. Illumination of the chromophore with polarized light rotates the trans isomer perpendicular to the polarization, resulting in spatially modulated birefringence. The photoinduced anisotropy may also drive mass transport, with surface relief patterns being observed in a wide variety of systems. Here we report photoinduced birefringence in a guest-host system of Disperse Red 1- amorphous polycarbonate (DR1-APC). Birefringence was induced with a 490 nm laser and probed at 633 nm, with typical values of Δn = 0.01 in 2 micron thick films. Illumination of DR1-APC with intensity and/or polarization gratings also resulted in sinusoidal surface relief patterns with periodicity 1- 3 micron as controlled by the interbeam crossing angle of the 490 nm writing beams; the surface modulation was +/- 20 nm as measured by atomic force microscopy. Photopatterned DR1-APC is advantageous for applications given the ease of thin-film fabrication and the high glass transition temperature of APC, resulting in robust optically-induced surface gratings. We acknowledge support from NSF-DMR Award No. 1138416.

  9. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics

    PubMed Central

    Carroll, Elizabeth C.; Berlin, Shai; Levitz, Joshua; Kienzler, Michael A.; Yuan, Zhe; Madsen, Dorte; Larsen, Delmar S.; Isacoff, Ehud Y.

    2015-01-01

    Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. “MAG” PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, l-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, d-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca2+-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca2+ imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits. PMID:25653339

  10. Synthesis of organic-inorganic hybrid azobenzene materials for the preparation of nanofibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Bućko, Aleksandra; Zielińska, Sonia; Ortyl, Ewelina; Larkowska, Maria; Barille, Regis

    2014-12-01

    The new photochromic hybrid materials containing different mole fractions of highly photoactive 4-[(E)-[4-[ethyl(2-hydroxyethyl)amino]phenyl]azo]-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (SMERe) were prepared by a low temperature sol-gel process. The guest-host systems with triethoxyphenylsilane matrix were obtained. These materials were used to form thin transparent films by a spin-coating technique. Then the ability of thin hybrid films to reversible trans-cis photoisomerization under illumination was investigated using ellipsometry and UV-Vis spectroscopy. The reversible changes of refractive index of the films under illumination were in the range of 0.005-0.056. The maximum absorption of these materials was located at 462-486 nm. Moreover, the organic-inorganic azobenzene materials were used to form nanofibers by electrospinning using various parameters of the process. The microstructure of electrospun fibers depended on sols properties (e.g. concentration and viscosity of the sols) and process conditions (e.g. the applied voltage, temperature or type of the collector) at ambient conditions. The morphology of obtained nanofibers was analyzed by an optical microscopy and scanning electron microscopy. In most instances, the beadless fibers were obtained. The wettability of the surface of electrospun fibers deposited on glass substrates was investigated.

  11. Thermal and Electronic Fluctuations of Flexible Adsorbed Molecules: Azobenzene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Liu, Wei; Poltavsky, Igor; Stecher, Thomas; Oberhofer, Harald; Reuter, Karsten; Tkatchenko, Alexandre

    2016-04-01

    We investigate the thermal and electronic collective fluctuations that contribute to the finite-temperature adsorption properties of flexible adsorbates on surfaces on the example of the molecular switch azobenzene C12 H10 N2 on the Ag(111) surface. Using first-principles molecular dynamics simulations, we obtain the free energy of adsorption that accurately accounts for entropic contributions, whereas the inclusion of many-body dispersion interactions accounts for the electronic correlations that govern the adsorbate binding. We find the adsorbate properties to be strongly entropy driven, as can be judged by a kinetic molecular desorption prefactor of 1024 s-1 that largely exceeds previously reported estimates. We relate this effect to sizable fluctuations across structural and electronic observables. A comparison of our calculations to temperature-programed desorption measurements demonstrates that finite-temperature effects play a dominant role for flexible molecules in contact with polarizable surfaces, and that recently developed first-principles methods offer an optimal tool to reveal novel collective behavior in such complex systems.

  12. Thermal and Electronic Fluctuations of Flexible Adsorbed Molecules: Azobenzene on Ag(111).

    PubMed

    Maurer, Reinhard J; Liu, Wei; Poltavsky, Igor; Stecher, Thomas; Oberhofer, Harald; Reuter, Karsten; Tkatchenko, Alexandre

    2016-04-01

    We investigate the thermal and electronic collective fluctuations that contribute to the finite-temperature adsorption properties of flexible adsorbates on surfaces on the example of the molecular switch azobenzene C_{12}H_{10}N_{2} on the Ag(111) surface. Using first-principles molecular dynamics simulations, we obtain the free energy of adsorption that accurately accounts for entropic contributions, whereas the inclusion of many-body dispersion interactions accounts for the electronic correlations that govern the adsorbate binding. We find the adsorbate properties to be strongly entropy driven, as can be judged by a kinetic molecular desorption prefactor of 10^{24}  s^{-1} that largely exceeds previously reported estimates. We relate this effect to sizable fluctuations across structural and electronic observables. A comparison of our calculations to temperature-programed desorption measurements demonstrates that finite-temperature effects play a dominant role for flexible molecules in contact with polarizable surfaces, and that recently developed first-principles methods offer an optimal tool to reveal novel collective behavior in such complex systems. PMID:27104719

  13. Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Park, Minwook; Choi, Yu-Jin; Kang, Shin-Woong; Jeong, Kwang-Un

    2015-04-21

    A photochromic chiral molecule with azobenzene mesogens and a (R)-configuration naphthyl moiety (abbreviated as NCA2M) was specifically designed and synthesized for the demonstration of chameleon-like color changes responding to multitudinous external stimuli, such as temperature, light and electric field. The basic phase transition behaviors of NCA2M were first studied by the combination of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Based on the structure-sensitive X-ray diffraction results obtained at different temperatures, it was comprehended that the NCA2M molecule exhibited the tilted version of highly ordered smectic crystal phase with 5.45 nm layer thickness. Chiral nematic (N*) liquid crystals (LC) with helical superstructures were formed by doping the NCA2M photochromic chiral molecule in an achiral nematic (N) LC medium. By controlling the helical pitch length of N*-LC with respect to temperature, light and electric field, the wavelength of selectively reflected light from the N* photonic crystal was finely tuned. The light-induced color change of N*-LC film was the most efficient method for covering the whole visible region from blue to green and to red, which allowed us to fabricate remote-controllable photo-responsive devices. PMID:25742914

  14. Solvation effects with a photoresponsive two-component 12-hydroxystearic acid-azobenzene additive organogel.

    PubMed

    Delbecq, Frederic; Kaneko, Nobuhiro; Endo, Hiroshi; Kawai, Takeshi

    2012-10-15

    A "light-triggerable" azobenzene amine derivative (additive 1) was synthesized and then introduced into organogels of 12-hydroxystearic acid (HSA) in the molar ratio of 1:3. The organogels (HSA/1) consisting of additive 1 and HSA were analyzed by (1)H nuclear magnetic resonance (NMR), Fourier transform-infrared (FT-IR), and X-ray diffraction (XRD). The homogeneity of the gel networks was observed using field emission scanning electron microscopy (FE-SEM). Additive 1 formed a complex with HSA in HSA organogels due to salification between the terminal amine group of additive 1 and the carboxylic acid group of HSA. Additive 1 in the gels of HSA/1 showed the potential for photo-isomerization, and we achieved a reversible control of HSA/1 sol-gel transition in toluene by the alternating irradiation with UV and visible light. Interestingly, the opposite phenomenon was observed in CHCl(3) system, namely, the orange solution of HSA/1 in CHCl(3) was turned to a red-transparent gel by exposure to UV light. PMID:22819394

  15. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    PubMed

    Frolova, Sheyda R; Gaiko, Olga; Tsvelaya, Valeriya A; Pimenov, Oleg Y; Agladze, Konstantin I

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  16. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy.

    PubMed

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol(-1). This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy. PMID:25562840

  17. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  18. Azobenzene-based photomechanical monolayers as light-addressable nano-engineered structures.

    NASA Astrophysics Data System (ADS)

    Dahdah, J. M.; Furtak, T. E.; Walba, D. M.; Fang, G.; Yi, Y.; Maclennan, J. E.; Clark, N. A.

    2007-03-01

    Azobenzene-based photomechanical monolayers have received a great deal of attention for their potential as platforms for light-addressable nano-engineered structures in bioscience, photonics, and display technologies. We have developed an aminoazobenzene material (d-MR), derived from methyl red, which forms high-quality, covalently anchored monolayers on glass. These monolayers demonstrate unusually high sensitivity to polarized light, which controls the molecular orientation distribution through optical anisotropy of the trans-cis isomerization. In an effort to understand and optimize this phenomenon we are studying the influence of the two-dimensional molecular field on the dynamics of the light-driven reorganization. We have correlated the behavior of d-MR monolayers, as determined by spectral studies of dichroism and differential reflection ellipsometry, to dilute solutions of d-MR in a variety of solvents, as characterized by absorption cross sections, quantum yields, and characteristic time constants. The resulting information has helped to clarify the details of how these molecules respond to light leading to design strategies for even higher performing monolayers.

  19. The sonochemical degradation of azobenzene and related azo dyes: Rate enhancements via Fenton's reactions

    SciTech Connect

    Joseph, J.M.; Destaillats, H.; Hung, H.M.; Hoffmann, M.R.

    2000-01-20

    The sonochemical degradation of aqueous solutions of azobenzene and related azo dyes (methyl orange, o-methyl red, and p-methyl red) was performed at 500 kHz and 50 W, under air, O{sub 2}, or Ar saturation at 288 K. Reaction products and intermediates were identified by HPLC-ES-MS. Total organic carbon (TOC) was also determined as a function of reaction time. The authors propose a reaction mechanism based on the observed species and the extent and rate of TOC depletion. The effects of the dye structures and of the background gas on the sonochemical bleaching rates were also investigated. The reaction rates for o-methyl red were approximately 30--40% faster than those for the other compounds. Saturating with Ar instead of air or O{sub 2} increased the pseudo first-order rate constants for the degradation by 10%. The acceleration of the sonochemical bleaching and the mineralization process upon addition of Fe(II) was also investigated in Ar-saturated methyl orange solutions. A 3-fold increase in the reaction rate was observed at optimal Fe(II) concentrations. This kinetic effect is quantitatively accounted for by a simple kinetic model based on the reaction of Fe(II) with sonochemically produced H{sub 2}O{sub 2} (Fenton's reaction). This latter effect illustrates a simple way of achieving a substantial improvement in the efficiency of sonochemical degradation reactions.

  20. Structure and vibrational spectra of conjugated acids of trans- and cis-azobenzene

    NASA Astrophysics Data System (ADS)

    Stepanić, V.; Baranović, G.; Smrečki, V.

    2001-07-01

    The equilibrium geometry and vibrational infrared (IR) and Raman spectra of conjugated acid of trans-azobenzene with the σ(NH) bond, tABH +, were calculated by the DFT model B3LYP/6-31+G(d,p). In selecting the functional the comparison of not only the vibrational frequencies but also IR and Raman intensities with the experiment was taken into account. The agreement between the experimental Raman spectra of tAB in acidic solutions and the simulated B3LYP/6-31+G(d,p) spectrum of tABH + can be taken as reliable evidence for formation of the classical azonium monocation and enables us to assign all observed bands. The calculations were extended to the cis isomer, cAB. In both isomers protonation leads to the NN bond elongation and considerable red-shift of the NN stretching mode. It disturbs highly not only normal modes including nitrogen atoms, but also the pure ring modes. According to the calculations the protonated trans and cis species should be easily distinguished by vibrational spectroscopy. It is noteworthy that the B3LYP/6-31+G(d,p) model does not succeed in reproducing Raman intensities of characteristic phenyl ring vibrations. The changes upon the proton binding have been rationalized by considering electron density redistribution using the natural population analysis (NPA) and the natural bond orbital (NBO) energetic analysis.

  1. Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics.

    PubMed

    Carroll, Elizabeth C; Berlin, Shai; Levitz, Joshua; Kienzler, Michael A; Yuan, Zhe; Madsen, Dorte; Larsen, Delmar S; Isacoff, Ehud Y

    2015-02-17

    Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits. PMID:25653339

  2. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    PubMed

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics. PMID:26514915

  3. Flotation of oxidized coal with a latex emulsion of sodium polyacrylate used as a promoter

    SciTech Connect

    Finch, R.E.

    1980-09-16

    A method and treating agent for increasing the yield of oxidized coal or coal from surface or strip mines where said coal particles are concentrated by froth flotation. The method consists of utilizing as a promoter or frothing aid about 05-1.5 lbs of sodium polyacrylate latex per ton of dry coal (0.017-0.5 lb of dry sodium polyacrylate per ton of dry coal), having an average molecular weight of about 100,000 to 1,000,000 and more, with a preferred range of 1,000,000 or more. The preferred promoter or frothing aid for oxidized coal is a water-in-oil latex of sodium polyacrylate and preferably used with an alcohol-type frother. The latex may be utilized neat and self inverts with the assistance of an oil-in-water surfactant hydrophilic (Or activator) and the water in the system upon application to form an oil-in-water emulsion, or it may be used as a two-part system with an activator (Aqueous) to promote inversion. The latex emulsion has demonstrated superiority as a flotation promoter for oxidized coal over the dry polymer and exhibits synergism over the dry polymer and over the components of the latex emulsion including a paraffin solvent, a hydrophobic emulsifier such as sorbitan monooleate, a solvent such as espersol 3-e (Charter; an aromatic blend) and stabilizers such as polyisobutylene and aluminum tristearate.

  4. Calorimetric and X-ray studies of clathrate hydrates of tetraisoamylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Soldatov, Dmitriy V; Suwinska, Kinga; Skiba, Sergey S; Stenin, Yuri G; Villevald, Galina V; Karpova, Tamara D; Yunoshev, Alexander S

    2009-04-30

    The structure of clathrate hydrates with tetraisoamylammonium polyacrylate salt incorporated as guest has been studied in this work. Also, quantitative studies on the stability changes of the clathrate hydrates with different degrees of cross-linking of the guest polymer (varied from 0 to 3%) have been conducted. A single crystal X-ray diffraction study of a crystal of the hydrate with linear (uncross-linked) tetraisoamylammonium polyacrylate as guest reveals a hexagonal structure (space group P6m2, a = 12.15 A, c =12.58 A at 100 K) with 39 host framework water molecules per one guest monomeric unit. Powder X-ray diffraction analyses confirm the identity of the above crystal structure of the hydrate with linear guest polymer and the crystal structure of the hydrates with cross-linked guest (hexagonal, a = 12.25 A, c =12.72 A at 276 K). In order to quantitatively determine the stability differences of the hydrates with the included guests having various degrees of cross-linking of the anionic chain, a series of differential scanning calorimetry measurements of the fusion enthalpy of the hydrate samples has been carried out. On the basis of the results obtained, a structural model describing the decrease in the stability of the clathrate hydrates with tetraisoamylammonium polyacrylate guest as a function of the degree of cross-linking of the guest polymer has been suggested. PMID:19344169

  5. The capture and stabilization of curcumin using hydrophobically modified polyacrylate aggregates and hydrogels.

    PubMed

    Harada, Takaaki; Pham, Duc-Truc; Lincoln, Stephen F; Kee, Tak W

    2014-08-01

    Hydrophobically modified polyacrylates are shown to suppress the degradation of the medicinal pigment curcumin under physiological conditions. In aqueous solution, the 3% octadecyl randomly substituted polyacrylate, PAAC18, forms micelle-like aggregates at a concentration of <1 wt % and a hydrogel at >1 wt %. Under both conditions, PAAC18 shows a remarkable ability to suppress the degradation of curcumin at pH 7.4 and 37 °C such that its degradation half-life is increased by 1600-2000-fold. The suppression of degradation is attributed to hydrophobic interactions between curcumin and the octadecyl substituents of PAAC18 within the micelle-like aggregates and the hydrogel, as indicated by 2D NOESY (1)H NMR spectroscopy. UV-visible absorption titration results are consistent with the interaction of curcumin with five octadecyl substituents on average, which appears to substantially exclude water and greatly decrease the curcumin degradation rate. Dynamic light scattering and zeta potential measurements show the average hydrodynamic diameters of the PAAC18 aggregates to be 0.86-1.15 μm with a negative surface charge. In contrast to the octadecyl substitution, the 3% dodecyl randomly substituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation of curcumin, consistent with the dodecyl substituents being insufficiently long to capture curcumin in a adequately hydrophobic environment. These observations indicate the potential for PAAC18 to act as a model drug delivery system. PMID:25029529

  6. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Zhang, Song; Ni, Yuwei; Huang, Jie

    2008-07-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field.

  7. Effect of Water Concentration on the Molecular Structure of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    2015-03-01

    Recent studies have suggested pervaporation to be a promising alternative method for separation of aqueous solution of alcohol compared to distillation based separation processes. The ability to tune the hydrophobic/hydrophilic character makes polyacrylate gels attractive candidate materials for separating water-alcohol mixture by pervaporation. Experimentally, it is observed that the amount of water absorbed in the gel i.e. the degree of swelling of the gel shows a large variation with polymer chemistry. Relatively few studies exist highlighting the effects of water concentration on the membrane separation efficiency which in turn is directly related to the internal molecular structure of the water rich membranes. In this regard, an all-atom molecular dynamics (MD) simulation is employed to study water structure in polyacrylate gels. As a first step, polyacrylate copolymer systems with varying degree of hydrophobicity are prepared using the simulated annealing polymerization technique. Atomistic structures of gels containing different amounts of water are also prepared. Effect of water content on the acrylate-water system microstructure is determined by characterizing the packing of water molecules as well as the hydrogen bonding in these systems. In addition, the change in dynamics of water molecules due to the interactions with polymer is captured by monitoring the auto-correlation function of their dipole vector.

  8. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms. PMID:24865937

  9. Different shapes of spherical vaterite by photo-induced cis?trans isomerization of an azobenzene-containing polymer in a mixture of dimethyl sulfoxide and water

    NASA Astrophysics Data System (ADS)

    Keum, Dong-Ki; Na, Hai-Sub; Naka, Kensuke; Chujo, Yoshiki

    2004-10-01

    We studied the crystallization of CaCO3 by the photoisomerization of azobenzene groups in poly[1-[4-[3-carboxy-4-hydroxyphenylazobenzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in a mixture of dimethyl sulfoxide and water at 30 °C. The products were characterized by scanning electron microscopy (SEM), FT-IR, and powder X-ray diffraction (XRD) analysis. We observed that the different shapes of spherical vaterite particles were produced by the changes of configuration and polarity of the azobenzene groups in the polymer which resulted from photo-induced isomerization. The results indicate that the nucleation of primary particles of CaCO3 was inhibited by in situ photo-induced cis-trans isomerization of PAZO. Therefore, we suggest that the shapes of the spherical vaterite can be effectively modified by photoisomerization of the azobenzene groups in the polymer at the initial stage of CaCO3 crystallization.

  10. Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers.

    PubMed

    Neukirch, Amanda J; Park, Jinhee; Zobac, Vladmir; Wang, Hong; Jelinek, Pavel; Prezhdo, Oleg V; Zhou, Hong-Cai; Lewis, James P

    2015-04-10

    Recently, we used a local orbital density functional theory code called FIREBALL, to study the photoisomerization process in azobenzene derivatives for solar energy materials. Azobenzene functional groups undergo photoisomerization upon light irradiation or application of heat. Zhou et al (2012 J. Am. Chem. Soc. 134 99-102) showed that these azobenzenes can then be introduced into metal-organic frameworks via an organic linker in order to create a reversible switch for CO2 adsorption. In this manuscript, we examined how the addition of organic linkers (isophthalic acid) changes the relaxation times, isomerization mechanism, and quantum yield for both the cis↔trans pathways. We then tuned these properties by substituting functional groups, finding an increase in quantum yield as well as improved optical properties. PMID:25767112

  11. Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups

    NASA Astrophysics Data System (ADS)

    Kurihara, Seiji; Hatae, Yohko; Yoshioka, Teppei; Moritsugu, Masaki; Ogata, Tomonari; Nonaka, Takamasa

    2006-03-01

    Cholesteric liquid crystal (Ch LC) was prepared by mixing a nematic LC, a sugar derivative having plural azobenzene substituents, and a laser dye. Laser emission from the dye-doped Ch LC was observed at the longer edge of the selective reflection band of the Ch LC. Reversible change in the helical pitch of the Ch LC was caused by the trans-cis photoisomerization of the sugar derivative having plural azobenzene substituents. According to the change in the helical pitch of the Ch LC, the lasing properties were simultaneously affected by the UV and visible light irradiation; laser emission wavelength, intensity, singlemode-multimode.

  12. Kinetics and models of hydrogenation of phenylhydroxylamine and azobenzene on nickel catalysts in aqueous 2-propanol solutions

    NASA Astrophysics Data System (ADS)

    Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.

    2014-08-01

    The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.

  13. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  14. Base-Catalyzed Hydrophosphination of Azobenzenes with Diarylphosphine Oxides: A Precise Construction of N-N-P Unit.

    PubMed

    Hong, Gang; Zhu, Xiaoyan; Hu, Chen; Aruma, Alfred Njasotapher; Wu, Shengying; Wang, Limin

    2016-08-01

    Addition of diarylphosphine oxides to the N═N double bond of azobenzenes leads to the formation of the P-substituted hydrazines in up to 98% yield for 24 examples, and the formation of diphenylphosphinic amides was observed in three substrates. This strategy features tolerance of a wide range of functional groups, simple operation, and mild reaction conditions. Specially, this method can be also applied to the gram-scale synthesis of the product. A polar reaction mechanism is also proposed based on control experiments. PMID:27387595

  15. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    PubMed

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-01

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed. PMID:25559330

  16. Polyacrylate-water partitioning of biocidal compounds: enhancing the understanding of biocide partitioning between render and water.

    PubMed

    Bollmann, Ulla E; Ou, Yi; Mayer, Philipp; Trapp, Stefan; Bester, Kai

    2015-01-01

    In recent years, the application of polymer-based renders and paints for façade coatings of buildings has risen enormously due to the increased mounting of thermal insulation systems. These materials are commonly equipped with biocides - algaecides, fungicides, and bactericides - to protect the materials from biological deterioration. However, the biocides need to be present in the water phase in order to be active and, hence, they are flushed of the material by rain water. In order to increase the knowledge about the partitioning of biocides from render into the water phase, partition constants between the polymer - in this case polyacrylate - and water were studied using glass fibre filters coated with polyacrylate. The polyacrylate-water partition constants (logKAcW) of ten biocides used in construction material varied between 1.66 (isoproturon) and 3.57 (dichloro-N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating the leaching of biocides from render based on polymer-water partitioning is a useful and practical tool. PMID:25303663

  17. Ultrafast vectorial and scalar dynamics of ionic clusters: Azobenzene solvated by oxygen

    NASA Astrophysics Data System (ADS)

    Paik, D. Hern; Baskin, J. Spencer; Kim, Nam Joon; Zewail, Ahmed H.

    2006-10-01

    The ultrafast dynamics of clusters of trans-azobenzene anion (A-) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A- was determined by monitoring in real time the transient of the A- rise, following an 800nm excitation of A- (O2)n, where n =1-4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n >1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A- and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (<100fs) then decay. The transient species are assigned as charge-transfer complexes: A •O2- for A-O2 and A •O4-•(O2)n-2 for A-(O2)n, where n =2-4. Subsequent to an ultrafast electron recombination, A- rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A--(O2)n nuclear coordinate and a slower component (1.6-36ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2-3ps, with a change in the sign of the transient anisotropy between A-O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters.

  18. Preparation and thermo-optic switch properties based on chiral azobenzene-containing polyurethane

    NASA Astrophysics Data System (ADS)

    Ye, Feiyan; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Zhuang, Lin

    2013-07-01

    A chiral azo chromophore compound 4-(4'-nitro-phenyl-diazenyl)-phenyl-1,2-propanediol ether (NPDPPE) was prepared with p-nitroaniline, phenol and R(-)-3-chloro-1,2-propanediol by the diazo-coupling reaction. Then, the chromophore molecule NPDPPE was polymerized with isophorone diisocyanate (IPDI) to obtain novel chiral azobenzene-containing polyurethane (CACPU). The chemical structures of chromophore molecule and CACPU were characterized by the FT-IR and UV-visible spectroscopy. The physical properties (thermal conductivity, thermal diffusion coefficient, and specific heat capacity) and mechanical properties (tensile strength, elongation at break and hardness) of CACPU thin films were measured. The refractive index and thermo-optic (TO) coefficient (dn/dT) of CACPU thin film was investigated for TE (transversal electric) polarizations by using an attenuated total reflection (ATR) configuration at the wavelengths of 532, 650 and 850 nm. The transmission loss of film was measured using the charge coupled device (CCD) digital imaging devices. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of switches were simulated. The results showed that the power consumption of the Y-branch thermo-optic switch was only 3.28 mW. The rising and falling times of Y-branch and MZI switches were 12.0 ms and 2.0 ms, respectively. The conclusion has potential significance to improve and develop new Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.

  19. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    PubMed

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. PMID:26255160

  20. Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers.

    PubMed

    Sobolewska, Anna; Miniewicz, Andrzej

    2007-02-22

    The laser-assisted holographic grating recording process in films of azobenzene functionalized polymers is usually studied by observation of the efficiency of light scattering on a developing in time diffraction grating. Various possible mechanisms contributing to grating formation as well as the bulk or surface origin (bulk refractive index and/or relief grating) of light scattering make the analysis of kinetics of grating recording, from the light scattering data only, difficult and ambiguous. To fully explain experimentally observed various and complex (frequently nonexponential) kinetics of the first-order light diffraction intensity, we considered a simple single-exponential growth of the two phase gratings in the same polymer film. In modeling we assumed that the bulk refractive index grating Deltan(t) and the surface relief grating Deltad(t) differ considerably in their growth rates and we allowed for a nonstationary phase shift Deltaphi(t) between them which was experimentally observed during the recording process. The origin of the nonstationary phase shift is a result of a slow shift of interference pattern due to delicate symmetry breaking in illumination conditions (e.g., difference in beam intensities and deviation of exact symmetrical beam incidence angles on the sample). Changing only such parameters as stationary amplitudes of refractive index and relief gratings for a span of phase shifts (0-pi) between them, we obtained a series of kinetic responses which we discuss and interpret. The various examples of temporal evolution of diffraction efficiency for the same grating formation kinetics, modeled in our work, supply evidence that great care must be taken to properly interpret the experimental results. PMID:17263574

  1. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.

    PubMed

    Doran, Todd M; Anderson, Elizabeth A; Latchney, Sarah E; Opanashuk, Lisa A; Nilsson, Bradley L

    2012-03-21

    Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimer's disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self-assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study the role turn nucleation plays on Aβ self-assembly. [3-(3-Aminomethyl)phenylazo]phenylacetic acid (AMPP) was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42 conformer forms fibrillar constructs that are similar in almost all characteristics, including cytotoxicity, to wild-type Aβ42. Conversely, the cis-AMPP Aβ42 congeners formed nonfibrillar, amorphous aggregates that exhibited no cytotoxicity. Additionally, cis-trans photoisomerization resulted in rapid formation of native-like amyloid fibrils and trans-cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photocontrol over Aβ turn conformation provides significant insight into Aβ self-assembly. Specifically, Aβ mutants that adopt stable β-turns form aggregate structures that are unable to enter folding pathways leading to cross-β fibrils and cytotoxic prefibrillar intermediates. PMID:22860190

  2. Access to 3-Acyl-(2H)-indazoles via Rh(III)-Catalyzed C-H Addition and Cyclization of Azobenzenes with α-Keto Aldehydes.

    PubMed

    Jeong, Taejoo; Han, Sang Hoon; Han, Sangil; Sharma, Satyasheel; Park, Jihye; Lee, Jong Suk; Kwak, Jong Hwan; Jung, Young Hoon; Kim, In Su

    2016-01-15

    The rhodium(III)-catalyzed direct C-H functionalization of azobenzenes with ethyl glyoxalate and aryl glyoxals is described. This protocol provides the facile and efficient formation of various C3-acylated-(2H)-indazoles in moderate to high yields. PMID:26741169

  3. An azobenzene-containing metal-organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds.

    PubMed

    Hoang, Linh T M; Ngo, Long H; Nguyen, Ha L; Nguyen, Hanh T H; Nguyen, Chung K; Nguyen, Binh T; Ton, Quang T; Nguyen, Hong K D; Cordova, Kyle E; Truong, Thanh

    2015-12-14

    An azobenzene-containing zirconium metal-organic framework was demonstrated to be an effective heterogeneous catalyst for the direct amidation of benzoic acids in tetrahydrofuran at 70 °C. This finding was applied to the synthesis of several important, representative bioactive compounds. PMID:26455380

  4. Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2012-10-24

    Composite films of pentacene and a series of azobenzene derivatives are prepared and used as the active channel material in top-contact, bottom-gate field-effect transistors. The transistors exhibit high field-effect mobility as well as large I-V hysteresis as a function of the gate bias history. The azobenzene moieties, incorporated either in the form of self-assembled monolayer or discrete multilayer clusters at the dielectric surface, result in electric bistability of the pentacene-based transistor either by photoexcitation or gate biasing. The direction of threshold voltage shifts, size of hysteresis, response time, and retention characteristics all strongly depend on the substituent on the benzene ring. The results show that introducing a monolayer of azobenzene moieties results in formation of charge carrier traps responsible for slower switching between the bistable states and longer retention time. With clusters of azobenzene moieties as the trap sites, the switching is faster but the retention is shorter. Detailed film structure analyses and correlation with the transistor/memory properties of these devices are provided. PMID:22974132

  5. In Search of an Efficient Photoswitch for Functional RNA: Design Principles from a Microscopic Analysis of Azobenzene-linker-RNA Dynamics with Different Linkers.

    PubMed

    Mondal, Padmabati; Biswas, Mithun; Goldau, Thomas; Heckel, Alexander; Burghardt, Irene

    2015-08-27

    The design of optimal photoswitches to regulate nucleic acid functionality is a considerable challenge. Azobenzene switches that are covalently bound to the nucleic acid backbone are a paradigm example that has been studied using different types of linker species connecting the chromophore to the backbone. To support experimental efforts to construct optimal azobenzene-linker-RNA combinations, we introduce here a systematic approach for theoretical analysis, which provides criteria for the local embedding of the chromophore via a chosen linker. Using a local reference frame adapted to the chromophore, quantitative measures are provided for (i) the propensity of stacking in competition with a drift toward the minor or major groove, (ii) the tendency to disrupt the native hydrogen bond network, (iii) the structural flexibility of the chromophore-linker combination, and (iv) the correlations with the presence of a base in the opposite strand. Large differences in structural stability between the trans and cis forms of the azobenzene chromophore, according to these criteria, indicate good functionality and lead to significant differences in melting temperatures. In particular, a recently synthesized deoxyribose linker proves optimal within the set of azobenzene-linker-RNA combinations considered. PMID:26125118

  6. cis-to-trans isomerization of azobenzene investigated by using thin films of metal-organic frameworks.

    PubMed

    Yu, Xiaojuan; Wang, Zhengbang; Buchholz, Maria; Füllgrabe, Nena; Grosjean, Sylvain; Bebensee, Fabian; Bräse, Stefan; Wöll, Christof; Heinke, Lars

    2015-09-21

    The activation barrier for cis-to-trans isomerization is a key parameter for governing the properties of photoswitchable molecules. This quantity can be computed by using theoretical methods, but experimental determination is not straightforward. Photoswitchable molecules typically do not change their conformation in the pure crystalline state. When the molecules are in solution, the switching is affected by the viscosity and polarity of the solvent and when embedded in polymers, the conformational change is affected by the polymer matrix. Here, we describe a novel approach where the photoswitchable group is integrated in a highly crystalline, porous molecular framework. Sufficiently large pore sizes in such metal-organic frameworks, MOFs, allow unhindered switching and the strictly periodic structure of the lattice eliminates virtually all contributions from inhomogeneities. Using IR spectroscopy to probe the conformational state of azobenzene, the energy barrier separating the cis and the trans state could be determined by an Arrhenius analysis of the data accumulated in a temperature regime between 314 K and 385 K. The result, 1.09 ± 0.09 eV, is in very good agreement with the activation energy reported for the thermal cis-to-trans isomerization of free azobenzene as computed by DFT calculations. PMID:26255748

  7. A sulfonic-azobenzene-grafted silica amphiphilic material: a versatile stationary phase for mixed-mode chromatography.

    PubMed

    Qiu, Hongdeng; Zhang, Mingliang; Gu, Tongnian; Takafuji, Makoto; Ihara, Hirotaka

    2013-12-23

    A novel sulfonic-azobenzene-functionalized amphiphilic silica material was synthesized through the preparation of a new sulfonic azobenzene monomer and its grafting on mercaptopropyl-modified silica by a surface-initiated radical chain-transfer reaction. The synthesis was confirmed by infrared spectra, elemental analysis, and thermogravimetric analysis. This new material was successfully applied as a new kind of mixed-mode stationary phase in liquid chromatography. This allows an exceptionally flexible adjustment of retention and selectivity by tuning the experimental conditions. The distinct separation mechanisms were outlined by selected examples of chromatographic separations in the different modes. In reversed-phase liquid chromatography, this new stationary phase presented specific chromatographic performance when evaluated using a Tanaka test mixture. Seven dinitro aromatic isomers, four steroids, and seven flavonoids were separated successfully in simple reversed-phase mode. This stationary phase can also be used in hydrophilic interaction chromatography because of the existing polar functional groups; for this, nucleosides and their bases were used as a test mixture. Interestingly, the same nucleosides and bases can also be separated in per aqueous liquid chromatography using the same stationary phase. Three ginsenosides including Rg1, Re, and Rb1 were successfully separated in hydrophilic mode. There is the potential for more applications to benefit from this useful column. PMID:24353082

  8. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-07-01

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  9. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: Molecular dynamics study

    SciTech Connect

    Ilnytskyi, Jaroslav M.; Neher, Dieter; Saphiannikova, Marina

    2011-07-28

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.

  10. Holographic investigations of azobenzene-containing low-molecular-weight compounds in pure materials and binary blends with polystyrene.

    PubMed

    Audorff, Hubert; Walker, Roland; Kador, Lothar; Schmidt, Hans-Werner

    2011-11-01

    This paper reports on the synthesis and the thermal and optical properties of photochromic low-molecular-weight compounds, especially with respect to the formation of holographic volume gratings in the pure materials and in binary blends with polystyrene. Its aim is to provide a basic understanding of the holographic response with regard to the molecular structure, and thus to show a way to obtain suitable rewritable materials with high sensitivity for holographic data storage. The photoactive low-molecular-weight compounds consist of a central core with three or four azobenzene-based arms attached through esterification. Four different cores were investigated that influence the glass transition temperature and the glass-forming properties. Additional structural variations were introduced by the polar terminal substituent at the azobenzene chromophore to fine-tune the optical properties and the holographic response. Films of the neat compounds were investigated in holographic experiments, especially with regard to the material sensitivity. In binary blends of the low-molecular-weight compounds with polystyrene, the influence of a polymer matrix on the behavior in holographic experiments was studied. The most promising material combination was also investigated at elevated temperatures, at which the holographic recording sensitivity is even higher. PMID:21956207

  11. Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture: molecular dynamics study.

    PubMed

    Ilnytskyi, Jaroslav M; Neher, Dieter; Saphiannikova, Marina

    2011-07-28

    Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases. PMID:21806155

  12. Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation.

    PubMed

    Tabacchi, Gloria; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Fois, Ettore

    2016-06-17

    Pseudorotaxanes formed by a dibenzo[24]crown-8 ring (R) and a dialkylammonium axle bearing either two E- or two Z-azobenzene units (EE-A or ZZ-A) revealed useful for the construction of light-powered molecular machines and motors, as they provide the opportunity of photocontrolling self-assembly/disassembly processes. The potential energies profiles for the dethreading of these complexes have been investigated by adopting a combination of first-principles molecular dynamics, metadynamics and quantum-chemical geometry optimization approaches. While the dethreading of the EE-A axle is associated with a monotonic energy increase, for that of the ZZ-A axle a transition state and an intermediate structure, in which the components are still threaded together, are found. The rate determining step for the dethreading of the ZZ axle has a higher energy barrier than that of the EE axle, in agreement with the experimental kinetic data. Moreover, the results suggest that the elliptic shape of the ring cavity is important for discriminating between the E and Z terminal azobenzene during dethreading. PMID:26918775

  13. Photoswitching the mechanical properties in Langmuir layers of semifluorinated alkyl-azobenzenes at the air-water interface.

    PubMed

    Theodoratou, Antigoni; Jonas, Ulrich; Loppinet, Benoit; Geue, Thomas; Stangenberg, René; Li, Dan; Berger, Rüdiger; Vlassopoulos, Dimitris

    2015-11-21

    Semifluorinated alkyl-azobenzene derivatives (SFAB) can form stable Langmuir layers at the air-water interface. These systems combine the amphiphobic character of semifluorinated alkyl units as structure-directing motifs with photochromic behavior based on the well-known reversible cis-trans isomerization upon irradiation with UV and visible light. Herein, we report our investigations of the structural and dynamic tunability of these SFAB layers at the air-water interface in response to an external light stimulus. The monolayer structures and properties of [4-(heptadecafluorooctyl)phenyl](4-octylphenyl)diazene (F8-azo-H8) and bis(4-octylphenyl)diazene (H8-azo-H8) were studied by neutron reflectivity, surface pressure-area isotherms with compression-expansion cycles, and interfacial rheology. We find that UV irradiation reversibly influences the packing behavior of the azobenzene molecules and interpret this as a transition from organized layer structures with the main axis of the molecule vertically oriented in the trans form to random packing of the cis isomer. Interestingly, this trans-cis isomerization leads to an increase in surface pressure, which is accompanied by a decrease in viscoelastic moduli. These results suggest ways of tailoring the properties of responsive fluid interfaces. PMID:26451399

  14. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application

    NASA Astrophysics Data System (ADS)

    Song, Shisen; Sun, Yaojie; Lin, Yandan; You, Bo

    2013-05-01

    In this paper, we present a facile coating technique to fabricate the light diffusing film with hemispherical surface convex micro-structure. The coating was prepared by different ratio of light-diffusing particles (LDP)/polyacrylates composites via in situ radical polymerization, with the H2SO4 and vinyl triethoxysilane (A-151) pretreatment made the LDP better dispersed and incorporated with polyacrylate polymer chains. When the mass ratio (LDP/polyacrylate) was 0.5, the film obtained the highest light-diffusing effect and more than 90% transmittance due to the formation of hemispherical surface convex micro-structure. The light diffusing films have excellent anti-glare property if applied to LED light system.

  15. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  16. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    PubMed

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  17. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    PubMed

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (<10 μm particle diameter). Three industry associations representing Europe, the United States, and Asia have adopted the German scientific guideline value of 0.05 mg/m³ (8-hr TWA) as a voluntary guideline. A new test method based on alcohol derivatization of the acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min. PMID:21416441

  18. Pervaporation separation of ethanol-water mixtures using polyacrylic acid composite membranes

    DOEpatents

    Neidlinger, H.H.

    1985-05-07

    Synthetic, organic, polymeric membranes were prepared from polyacrylic acid salts for use with pervaporation apparatus in the separation of ehthanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanata solution, after which the prepared membrane was heat-cured. The resulting membrane structure showed selectivity in permeating water over a wide range of feed concentrations. 4 tabs.

  19. Star-Shaped Polyacrylates: Highly Functionalized Architectures via CuAAC Click Conjugation.

    PubMed

    Lammens, Mieke; Fournier, David; Fijten, Martin W M; Hoogenboom, Richard; Prez, Filip Du

    2009-12-01

    Well-defined functional star-shaped polymer structures with up to 29 arms have been successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and click chemistry. First, azide end-functionalized poly(isobornyl acrylate) (PiBA) star-shaped polymers were prepared by successive ATRP and bromine substitution. Subsequently, alkyne end-functionalized molecules and polymers were introduced onto the star-shaped PiBA bearing pendant azide moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The possibilities and limits for the CuAAC on such highly branched polyacrylates are described. PMID:21638494

  20. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. PMID:23008096

  1. Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik

    2002-11-01

    The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.

  2. Adsorption of sodium polyacrylate in high solids loading calcium carbonate slurries.

    PubMed

    Taylor, Joshua J; Sigmund, Wolfgang M

    2010-01-15

    The adsorption of sodium polyacrylate (NaPAA) in slurries with up to 75 wt.% calcium carbonate was investigated with the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and adsorption of probe molecules. Analysis of the IR spectra demonstrated that the carboxylate groups of NaPAA adsorbed onto ground calcium carbonate (GCC) in three different modes. These modes were shown to be dependent on the solids loading and age of the slurry. Further investigation lead to the determination of the chelating ability of NaPAA at high solids loading. PMID:19875128

  3. The influence of the counterion on the relaxation of polyacrylate deuterons

    NASA Astrophysics Data System (ADS)

    Van Rijn, C. J. M.; Maat, A. J.; De Bleijser, J.; Leyte, J. C.

    1987-03-01

    Relaxation rates of 2H methylene polyacrylate solutions have been determined for five different types of monovalent counter-ions: tetramethylammonium (TMA) and four alkali ions, Li, Na, K and Cs. TMA influences the polymer 2H relaxation rates in a way that differs qualitatively from the effect of the alkali counterions. In the presence of TMA the transverse rates of the polymer nuclei are increased relative to their values in the presence of alkali ions. For the longitudinal rates another effect is observed, the rates are larger for Li and Na and essentially the same for K, Cs and TMA.

  4. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  5. Cryptate 13C and 23Na nuclear magnetic relaxation as a probe of counterion dynamics in aqueous polyacrylate solutions

    NASA Astrophysics Data System (ADS)

    Van Der Maarel, J. R. C.; Van Duijn, D.; De Bleijser, J.; Leyte, J. C.

    1987-03-01

    In a series of fully alkali neutralized polyacrylate solutions the counterions are included by a macrobicyclic ligand (cryptand) to form a well-defined coordination shell. Vapor pressure experiments show the polyacrylate-cryptate system to behave osmotically as an ordinary polyelectrolyte solution. Cryptate 13C and 23Na relaxation show that the influence of polyions on the counter-ion reorientational mobility is moderate. The main 23Na relaxation mechanism is found to be the fluctuating electric field gradient caused by the surrounding ligand.

  6. Interactions between mica surfaces in sodium polyacrylate solutions containing calcium ions

    SciTech Connect

    Berg, J.M.; Claesson, P.M. . Dept of Physical Chemistry); Neuman, R.D. . Dept. of Chemical Engineering)

    1993-11-01

    Polyacrylic acid (PAA) and its salts find use in a number of different applications, such as in fluids for secondary oil recovery, as dispersing agents for mineral suspensions in, for example, ceramic and paper coating applications, and as flocculants for waste-water treatment. The forces acting between negatively charged muscovite mica surfaces immersed in solutions containing sodium polyacrylate (NaPAA) have been studied. No evidence for PAA adsorption in the absence of calcium ions in the solution was found. However, at a CaCl[sub 2] concentration of about 3 [times] 10[sup [minus]3] M a layer of PAA adsorbed on each surface. At large separations, the forces between the PAA-coated surfaces were dominated by repulsive double-layer forces. At separations below 50--80 [angstrom], depending on the solution conditions, an attractive force in excess of the van der Waals attraction was observed. The adhesion force between the layers was 7-8 mN / m at pH 6 and increased somewhat with increasing pH to about 9 mN/m at pH 10. The authors argue that both the long-range attraction and the adhesion force primarily are due to COO[sup [minus

  7. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  8. Quantitative parameters for the sequestering capacity of polyacrylates towards alkaline earth metal ions.

    PubMed

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2003-10-17

    The complex formation constants of polyacrylic (PAA) ligands (1.4polyacrylate-alkaline earth metal complexes is discussed in the light of sequestering effects in natural waters. PMID:18969177

  9. Adsorption of atomic hydrogen at a nanostructured electrode of polyacrylate-capped Pt nanoparticles in polyelectrolyte.

    PubMed

    Markarian, Marie Zabel; El Harakeh, Maysaa; Halaoui, Lara I

    2005-06-16

    Atomic hydrogen electrosorption is reported at crystallite sites of polyacrylate-capped Pt nanoparticles (d = 2.5 +/- 0.6 nm), by assembling nanostructured electrodes of polyacrylate-Pt nanocrystallites layer-by-layer in a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). Cyclic voltammetry in 1 M H2SO4 revealed a strongly adsorbed hydrogen state and a weakly adsorbed hydrogen state assigned to adsorption at (100) and (110) sites of the modified nanocrystallites, respectively. Resolving hydrogen adsorption states signifies that surface capping by the carboxylate groups is not irreversibly blocking hydrogen adsorption sites at the modified Pt nanoparticle surface. Adsorption peak currents increased with increasing the number of layers up to 16 bilayers, indicating the feasibility of nanoparticle charging via interparticle charge hopping and the accessibility of adsorption states within the thickness of the nanoparticle/polyelectrolyte multilayers. Despite similarity in hydrogen adsorption in the cyclic voltammorgrams in 1 M H2SO4, negative shifts in adsorption potentials were measured at the nanocrystallite Pt-polyelectrolyte multilayers relative to a polycrystalline bulk Pt surface. This potential shift is attributed to a kinetic limitation in the reductive hydrogen adsorption as a result of the Pt nanoparticle surface modification and the polyelectrolyte environment. PMID:16852426

  10. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    PubMed

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. PMID:21704525

  11. Clay-polymer nanocomposite material from the delamination of kaolinite in the presence of sodium polyacrylate.

    PubMed

    Letaief, Sadok; Detellier, Christian

    2009-09-15

    A chemical route for the delamination of kaolinite in a polymeric matrix is reported in this work. The strategy that was used is based on mixing polyelectrolytes of opposite charges, an organic polyanion, polyacrylate, with an inorganic polycation resulting from the modification of the internal surfaces of kaolinite. The delamination was carried out by the reaction of sodium polyacrylate (PANa) with kaolinite whose internal aluminol surfaces were previously grafted with triethanolamine and subsequently quaternized with iodomethane (TOIM-K) to form an extended lamellar inorganic polycation. X-ray diffraction as well as scanning electron microscopy (SEM) confirmed the complete delamination of the kaolinite particles. 13C CP/MAS NMR showed the removal of the ammonium groups resulting from hydrolysis of the internal surfaces once exposed, and 29Si CP/MAS NMR spectra were in agreement with the retention of the 1:1 aluminosilicate kaolinite layers structures. From the thermogravimetry (TG) data, the respective percentages in mass of PA and kaolinite in the delaminated nanocomposite could be estimated to be 61% and 39%, respectively, in the conditions of the particular experiment. The procedure was repeated several times to show the reproducibility of the delamination. The interlayer functionalization of kaolinite was crucial for the success of the delamination procedure. SEM pictures show that some individual kaolinite platelets fold and form curved structures. PMID:19518083

  12. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. PMID:25475759

  13. A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization.

    PubMed

    Li, Qianbiao; Wang, Taisheng; Dai, Jingwen; Ma, Chao; Jin, Bangkun; Bai, Ruke

    2014-03-28

    A facile one pot strategy for the preparation of linear and hyperbranched polyacrylates has been successfully developed by the combination of in situ esterification of acrylic acid with halogenated compounds promoted by 1,1,3,3-tetramethylguanidine (TMG) and RAFT polymerization. PMID:24534953

  14. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant.

    PubMed

    Gong, Yutong; Xie, Lei; Li, Haoran; Wang, Yong

    2014-10-28

    Monodisperse, uniform colloidal carbonaceous spheres were fabricated by the hydrothermal treatment of glucose with the help of a tiny amount of sodium polyacrylate (PAANa). This synthetic strategy is effective at high glucose concentration and for scale-up experiments. The sphere size can be easily tuned by the reaction time, temperature and glucose concentration. PMID:25199065

  15. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers

    PubMed Central

    Zhu, Xiaoli; Cao, Wen; Chang, Bing; Zhang, Linyuan; Qiao, Peihuan; Li, Xue; Si, Lifang; Niu, Yingmei; Song, Yuguo

    2016-01-01

    Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group) had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected. Effusion occurred on day 3 and day 5 post-administration of nanocomposites in the 6.25 and 12.5 mg/kg groups, it gradually rose to a maximum on days 7–10 and then slowly decreased and disappeared on day 14. With an increase in polyacrylate/nanosilica concentrations, pleural effusion increased, as shown by ultrasonographic qualitative observations. Pulmonary fibrosis and granuloma were also observed in the high-dose polyacrylate/nanosilica group. Our study shows that polyacrylate/nanosilica results in specific toxicity presenting as pleural and pericardial effusion, as well as pulmonary fibrosis and granuloma, which are almost identical to results in reported patients. These results indicate the urgent need and importance of nanosafety and awareness of toxicity of polyacrylate

  16. Engineering Light-Mediated Bistable Azobenzene Switches Bearing Urea d-Aminoglucose Units for Chiral Discrimination of Carboxylates.

    PubMed

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2016-05-01

    The symmetrical molecular receptors 1a and 1b consisting of a photochemically addressable azobenzene tether functionalized with urea hydrogen-bonding groups and d-carbohydrates as chiral selectors were developed to achieve control over the chiral recognition of α-amino acid-derived carboxylates. The photo- and thermally interconvertible planar E-1 and concaved Z-1 were found to exhibit different affinities, selectivities, and binding modes toward these biologically important anions in a highly polar medium (DMSO + 0.5% H2O). Binding affinity for the same enantiomerically pure guest was up to 3 times higher for E-1 than for Z-1 (cf. parameter β). In addition, the rate of thermal Z → E isomerization was found to depend on the chiral binding ability of Z-1, i.e., more strongly bound carboxylate enantiomer as well as higher enantiomer concentration caused faster relaxation to E-1. PMID:27057921

  17. Simulation of the photodynamics of azobenzene on its first excited state: comparison of full multiple spawning and surface hopping treatments.

    PubMed

    Toniolo, A; Ciminelli, C; Persico, M; Martínez, T J

    2005-12-15

    We have studied the cis-->trans and trans-->cis photoisomerization of azobenzene after n-->pi* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined "on the fly" from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields. PMID:16392921

  18. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    NASA Astrophysics Data System (ADS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martínez, T. J.

    2005-12-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n →π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined "on the fly" from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields.

  19. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    SciTech Connect

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-12-15

    We have studied the cis{yields}trans and trans{yields}cis photoisomerization of azobenzene after n{yields}{pi}* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields.

  20. Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution.

    PubMed

    Bi, Yanhui; Wei, Hongtu; Hu, Qiongzheng; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2015-04-01

    The UV-light-stimulated self-assembly behavior of a surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium bromide (C16mimBr), with an azobenzene derivative, sodium azobenzene 4-carboxylate (AzoCOONa), was investigated in aqueous solution. The properties and structures of the aggregates, formed at a concentration ratio equal to 2:1 ([C16mimBr]:[AzoCOONa]), were comprehensively characterized by rheometer and cryogenic transmission electron microscopy. Initially, viscoelastic wormlike micelles with a viscosity of 0.65 Pa·s were constructed in the C16mimBr/AzoCOONa system. Upon irradiation by UV light (365 nm), particularly fascinating is that the wormlike micelles become much longer and more entangled, exhibiting a high viscosity of 6.9 Pa·s. This can be attributed to photoisomerization of the AzoCOONa molecule from trans to cis form. It is the first time that, with exposure to UV or visible light, the aggregate type of the photoresponsive system has remained unchanged, with only a change of internal property parameters. The cation-π interaction prevailing over the hydrophobic interaction and electrostatic interaction between C16mimBr and AzoCOONa molecules is supposed to be responsible for this peculiar phase behavior. The wormlike micelles constructed with the SAIL and photosensitive additive exhibit controllable viscoelastic behavior in the photoresponsive process. In addition, the average contour length of wormlike micelles was found to slightly decrease with the increase of temperature. We expect this system will receive particular attention due to its unique properties and potential applications in drug delivery, biochemistry, and materials science, etc. PMID:25763685

  1. Nonlinear refraction in an epoxy-based polymer with 4-aminoazobenzene caused by the orientation of azobenzene molecules upon pulsed laser excitation

    SciTech Connect

    Borsch, A A; Brodyn, M S; Volkov, V I; Lyakhovetskii, V R; Kutsenko, A S

    2003-05-31

    Nonlinear refraction caused by the orientation of molecules of a nonlinear-optical chromophore induced by pulsed 532-nm laser radiation in a polymer based on bisphenol-A diglycydyl ether with 4-aminoazobenzene molecules covalently bonded with the polymer chain is studied. The induced anisotropy of the refractive index caused by the orientation of azobenzene molecules is studied using the polarisation and pump-probe techniques in real time. The induced anisotropy appears in the polymer during 50 - 70 {mu}s and relaxes, as a rule, for 5 - 10 s. It is found that nonlinear refraction in the range from microseconds to tens of seconds in this polymer and, hence, the writing of dynamic holographic gratings by nanosecond laser pulses are mainly caused by the orientation of azobenzene molecules by polarised radiation. (nonlinear optical phenomena)

  2. Catalytic transfer hydrogenation of azobenzene by low-valent nickel complexes: a route to 1,2-disubstituted benzimidazoles and 2,4,5-trisubstituted imidazolines.

    PubMed

    Zurita, Daniel A; Flores-Alamo, Marcos; García, Juventino J

    2016-06-21

    The one-pot synthesis of 1,2-disubstituted benzimidazoles by the transfer hydrogenation of azobenzene, using benzylamine as a hydrogen donor, sequential rearrangement of hydrazobenzene to semidine and further condensation with N-benzylideneamine is reported, catalyzed by 2 mol% of [Ni(COD)2] : dippe. The N2 substitution on benzimidazole can be controlled by the selection of different azobenzenes and C2 substitution will only depend on the chosen benzylamine. The current methodology avoids the addition of external oxidants, which are needed in the classical benzimidazole synthesis. In addition, the byproduct, N-benzylideneamine, obtained from dehydrogenation of benzylamine produced 2,4,5-trisubstituted imidazolines by cyclization and C-H functionalization, and this route was optimized with the use of 2 mol% of [Ni(COD)2] : 2PPh3. PMID:27254530

  3. STM study of azobenzene self-assembly on Ag/Ge(1 1 1)-( √{3}×√{3})R30°

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.; Chou, L.-W.; Lee, Y.-R.; Su, C.; Lin, J.-C.

    2009-10-01

    The adsorption and self-organization of trans-azobenzene (TAB) on Ag/Ge(1 1 1)-( √{3}×√{3})R30° (Ag/Ge(1 1 1)- √{3}) were studied by low temperature scanning tunneling microscopy (LT-STM) in ultrahigh vacuum (UHV). High-resolution STM images allow the observation of individual TAB molecules and the commensurate TAB chain domains formed via the hydrogen bond enhanced intermolecular interaction and molecule-substrate interaction on Ag/Ge(1 1 1)- √{3}. From in situ observation of the substrate lattice, the TAB monolayers were found to form a (2 × 1) structure. Some coexisting cis-azobenzene (CAB) molecules were observed on the domain boundary of TAB overlayer. The structural model and the molecule registry corresponding to STM images for the monolayer of TAB on Ag/Ge(1 1 1)- √{3} are proposed and discussed.

  4. Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study.

    PubMed

    Crivillers, N; Liscio, A; Di Stasio, F; Van Dyck, C; Osella, S; Cornil, D; Mian, S; Lazzerini, G M; Fenwick, O; Orgiu, E; Reinders, F; Braun, S; Fahlman, M; Mayor, M; Cornil, J; Palermo, V; Cacialli, F; Samorì, P

    2011-08-28

    Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Φ(Au)) when chemisorbed on its surface. In particular we show that the Φ(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Φ(trans)-Φ(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation. PMID:21695318

  5. Methods for Purifying and Detoxifying Sodium Dodecyl Sulfate-Stabilized Polyacrylate Nanoparticles

    PubMed Central

    Garay-Jimenez, Julio C.; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-01-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). For this intended application, it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain, rather than to any extraneous components. To investigate this, we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  6. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    PubMed

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM. PMID:27216683

  7. Polyacrylate bound TiSb2 electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gómez-Cámer, Juan Luis; Novák, Petr

    2015-01-01

    Crystalline TiSb2 electrodes prepared using two different binders, PVDF and lithium polyacrylate (LiPAA), were examined as negative electrodes in Li-ion batteries. The cycle life of the electrodes is strongly influenced by the choice of the binder, reaching ca. 120 cycles with LiPAA vs. ca. 90 cycles achieved with the common binder PVDF. Moreover, rate capability is improved using LiPAA binder. The reduction in TiSb2 particle size is shown to influence the average practical specific charge at high charge/discharge rates. The reasons for this improvement are discussed and the optimized electrode was demonstrated in full Li-ion cells.

  8. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". PMID:27444970

  9. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength. PMID:26394179

  10. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  11. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid.

    PubMed

    Minami, Hideto; Kimura, Akira; Kinoshita, Keigo; Okubo, Masayoshi

    2010-05-01

    Poly(acrylic acid) (PAA) particles were successfully prepared by dispersion polymerization of acrylic acid in ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoro-methanesulfonyl)amide ([DEME][TFSA]) at 70 degrees C with low hydrolysis grade (35.4%) poly(vinyl alcohol) as stabilizer. Interestingly, the PAA particles were easily extracted as particle state with water. Thus, the PAA particles had a cross-linked structure during the polymerization without cross-linker. Moreover, it was also noted that the cross-linking density of the PAA particles could be controlled by thermal treatment at various temperatures in [DEME][TFSA] utilizing the advantages of nonvolatility and high thermal stability of the ionic liquid. PMID:20043688

  12. Water dispersible polytetrafluoroethylene microparticles prepared by grafting of poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Yang, Changqiao; Xu, Lu; Zeng, Hongyan; Tang, Zhongfeng; Zhong, Lei; Wu, Guozhong

    2014-10-01

    Due to the hydrophobic nature and high gravimetric density, it is very difficult to obtain water dispersible polytetrafluoroethylene (PTFE) powder. In this work, hydrophilic PTFE microparticles were successfully prepared by grafting of poly(acrylic acid) onto PTFE micropowder via a pre-irradiation method. The as-obtained hydrophilic PTFE microparticles were analyzed by FT-IR, 1H NMR, CA, SEM and TGA. After neutralization by sodium hydroxide, the water contact angle decreased from 145.69° for pristine PTFE to 63.38° for PTFE-g-NaAA. The obtained micropowder can be easily dispersed in water to form a dispersion with very high stability. Furthermore, the presence of grafted PAA shows no obvious influence on degradation temperature of PTFE backbones.

  13. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate. PMID:20361751

  14. Methods for purifying and detoxifying sodium dodecyl sulfate-stabilized polyacrylate nanoparticles.

    PubMed

    Garay-Jimenez, Julio C; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-06-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus. For this intended application it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain and not to any extraneous components. To investigate this we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  15. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    PubMed

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%. PMID:24701379

  16. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    PubMed Central

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented. PMID:22399920

  17. Polyethylenimine-polyacrylic acid nanocomposites: Type of bonding does influence the gene transfer efficacy and cytotoxicity.

    PubMed

    Tripathi, Sushil K; Ahmadi, Zeba; Gupta, Kailash C; Kumar, Pradeep

    2016-04-01

    The main aim of the current study is to compare the physicochemical properties, cytotoxicity and gene-transfer ability of electrostatically and covalently linked nanocomposites of polyethylenimine (PEI) and polyacrylic acid (PAA) on mammalian cells. Two series of nanocomposites, ionic PEI-PAA (iPP) and covalent PEI-PAA (cPP), were synthesized by varying the amounts of polyacrylic acid (PAA). Physicochemical characterization revealed that iPP nanopcomposites were of bigger sized than cPP nanocomposites with zeta potential almost comparable. Nucleic acid binding assay displayed that iPP and cPP nanocomposites, having sufficient cationic charge, efficiently interacted with plasmid DNA and completely retarded its electrophoretic mobility on agarose gel. In vitro MTT assay showed slightly higher cell viability of cPP/pDNA complexes over their ionic counterparts. Both the series of nanocomposite/pDNA complexes exhibited considerably higher transfection efficacy compared to pDNA complexes of native bPEI and the standard transfection reagent, Lipofectamine, with cPP/pDNA complexes performed much better than iPP/pDNA complexes. Flow cytometry further confirmed these findings where cPP-4/pDNA complex showed transfection in ∼85% HEK293 cells, while iPP-2/pDNA complex transfected ∼67% HEK293 cells. Lipofectamine/pDNA and bPEI/pDNA complexes could transfect just ∼35% and ∼26% HEK293 cells. All these results demonstrate the superiority of covalently linked nanocomposites (cPP) which could be used as efficient carriers for nucleic acids in future gene delivery applications. PMID:26745638

  18. Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid

    SciTech Connect

    He, Linghao; Xue, Rui; Song, Rui

    2009-05-15

    In this investigation, chitosan membranes with different surface average degrees of deacetylation (DA) are prepared and then are employed as the support matrix to culture calcium carbonate (CaCO{sub 3}). In the presence of high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained on the surface of all chitosan films mainly consisted of vaterite, which suggests the presence of bulk PAA plays an overwhelming part in stabilizing the vaterite. As a comparison, the influences of active groups indicate that only in case of low concentration PAA the thin CaCO{sub 3} films grown on chitosan with 8% DA mainly consisted of vaterite owing to the strong nucleation ability of -NH{sub 2} group, whereas, for those grown on chitosan with 80% DA the CaCO{sub 3} films mainly consisted of aragonite. A more complex scenario revealed that in the case of intermediate concentration of PAA the formed polymorphs behave as mixtures of vaterite and aragonite. - Graphical abstract: Chitosan membranes with different degrees of deacetylation (DA) are employed as support to culture calcium carbonate (CaCO{sub 3}). In high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained consisted of vaterite. However, the CaCO{sub 3} film grown on chitosan with 8% DA mainly consisted of vaterite as opposed to aragonite for chitosan with 8% DA. The schematic presentation of the formation of calcium carbonate on chitosan films with different degrees of acetylation in the presence of PAA with low-, mid- and high concentrations.

  19. Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows.

    PubMed

    Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai

    2013-10-01

    Gold nanoparticles (Au-NPs) with surfaces covered with a self-assembled monolayer of azobenzene derivatives were prepared at the interface of dielectric insulator SiO2 and pentacene thin film. Transistors constructed with these composite channel materials exhibited electric bistability upon different gate biases, with the monolayer serving as a barrier layer, a work function modulator, as well as additional charge trapping sites at the Au-NPs/semiconductor interface at the same time. In comparison with simple alkanethiol monolayer-covered Au-NPs, the CH3-substituted azobenzene-functionalized Au-NPs result in a transistor memory device with about 70% more charges trapped, much faster response time as well as higher retention time. Besides, depending on the substituent on the azobenzene moieties (CH3, H, or CF3) and the tethering alkyl chain length, the speed at which the carriers are trapped (affecting switching response) and the stability of the carriers that are trapped (affecting memory retention) can be modulated to improve the device performance. The structural characterization and electronic characteristics of these devices will be detailed. PMID:24025199

  20. Influence of He/O 2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    NASA Astrophysics Data System (ADS)

    Li, Xuming; Lin, Jun; Qiu, Yiping

    2012-01-01

    The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  1. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber. PMID:26643765

  2. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    PubMed

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation. PMID:23732867

  3. Synthesis and Characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion

    NASA Astrophysics Data System (ADS)

    Zhou, Jianhua; Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong

    2015-03-01

    Nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol-gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO2 presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film-air interface.

  4. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers.

    PubMed

    Chen, Yi; Droge, Steven T J; Hermens, Joop L M

    2012-08-24

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis. PMID:22818738

  5. Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Jada, A.; Ait Akbour, R.; Jacquemet, C.; Suau, J. M.; Guerret, O.

    2007-08-01

    Aqueous solutions of sodium polyacrylates (NaPA) series having molecular weights ( Mw) ranging from 2540 to 9890 g mol -1 are used as precipitation media to control the size and shape of calcium carbonate (CaCO 3) particles. The retarding effect of polyacrylates on CaCO 3 nucleation is evidenced by the increase of the induction time, τ, of the precipitated CaCO 3, from τ=55 s in the absence of additives, to τ values in the range 100-2500 s in the presence of NaPA samples. The data also show the coexistence of two polymorphs, calcite and vaterite, for CaCO 3 particles as prepared in the presence of NaPA samples. The vaterite fraction, fv, varies in all instances with the polymer concentration, Cpoly (g. L -1), and reaches its maximum value, fv,max at optimal ratio, R (mol. g -1), of Ca ion to polymer (NaPA), R=[Ca]/([NaPA]=Cpoly). No simple general trend is found to explain the influence of the molecular weight ( Mw) of NaPA on the induction time, τ, and on the vaterite fraction, fv, since these two parameters are found to vary with Cpoly and Mw. However, under certain experimental conditions, an optimum polymer molecular weight ( Mw=5530 g mol -1) of the NaPA series, gives the highest values of fv,max and τ. Such optimum indicates the influence of Mw of NaPA on CaCO 3 nucleation and growth, and it is related to the surface density and the rate of adsorption of the polymer onto the growing crystal. The CaCO 3 particle size is reduced from about 20 μm, as obtained in the control experiment, to sizes varying in the range 2-8 μm in the presence NaPA samples. Polymers having low Mw values ( Mw<5000 g mol -1) are found to be more efficient in reducing the CaCO 3 particle size.

  6. Photochromic Composite for Random Lasing Based on Porous Polypropylene Infiltrated with Azobenzene-Containing Liquid Crystalline Mixture.

    PubMed

    Lisinetskii, Victor; Ryabchun, Alexander; Bobrovsky, Alexey; Schrader, Sigurd

    2015-12-01

    We report on a new low-cost and easily fabricated type of liquid crystalline polymer composites demonstrating low threshold random lasing, which can be used as a cheap and simple mirror-less laser source. The composite is based on mass-producible commercially available porous polypropylene (Celgard 2500) infiltrated with low-molar-mass liquid crystal material doped with Rhodamine 800 laser dye. Excitation with red nanosecond laser (630 nm) induces random lasing with the emission peak in NIR spectral range (804 nm) with noticeable degree of linear polarization. The possibility to control the lasing threshold and polarization of the output light with UV radiation through photoswitching of liquid crystal phase from nematic to isotropic is demonstrated. The photocontrollable phase switching is achieved by reversible E/Z isomerization of the azobenzene dopant introduced to the nematic host matrix. It is revealed that the isotropic state of liquid crystal provides more efficient random lasing with lower threshold due to significant scattering of the ordinary wave. PMID:26565667

  7. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    PubMed

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory. PMID:25468435

  8. Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: Role of the metallic substrate

    SciTech Connect

    Hagen, Sebastian; Kate, Peter; Leyssner, Felix; Nandi, Dhananjay; Wolf, Martin; Tegeder, Petra

    2008-10-28

    Two-photon photoemission spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely different compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change in the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find that photoexcitation above a threshold h{nu}{approx_equal}2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a thresholdlike behavior below h{nu}{approx_equal}2.2 eV and above h{nu}{approx_equal}4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.

  9. Resonance Raman study of the solvent dynamics for ultrafast charge transfer transition in 4-nitro-4'-dimethylamino-azobenzene

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Umapathy, Siva

    2003-03-01

    Contribution of solvent reorganization energy is known to be significant for ultrafast charge transfer processes, when the solvent relaxation times are slower than the rate of charge transfer. In this paper, we show that from resonance Raman intensities of a charge transfer transition in combination with Heller's time-dependent wave packet approach and Brownian oscillator model, one can have a reasonable estimate for the different types of solvent (inertial as well as diffusive) and vibrational reorganization energies. Resonance Raman spectra have been recorded for 4-nitro-4'-dimethylamino-azobenzene (DA) that undergoes photoinduced charge transfer transition, in acetonitrile and benzonitrile. In the two solvents, the total solvent reorganization energy is partitioned into its inertial and diffusive components from the available information on their relaxation time scales. Thus, partitioning of the solvent reorganization energy reveals the importance of the extent of contribution of the two components to the charge transfer rates. The short time dynamics of DA in the two solvents is then examined from a priori knowledge of the ground state normal modes in order to convert the wave packet motion in dimensionless displacements to internal coordinates. The dynamics in DA infers that within 20 fs after photoexcitation from the ground to the charge transfer state, the excited state evolution occurs along N-O, N=N, C-N, and C-C stretching vibrations.

  10. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage

    PubMed Central

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-01-01

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg−1 compared with RGO-ortho-AZO (149.6 kJ kg−1) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds. PMID:24247355

  11. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage

    NASA Astrophysics Data System (ADS)

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-11-01

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg-1 compared with RGO-ortho-AZO (149.6 kJ kg-1) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds.

  12. Photochemical manipulation of microparticles on azobenzene-doped liquid-crystal films with homogeneous or homeotropic alignment structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    In this study, we investigated self-organized structures and photoinduced motions of microparticles on azobenzenedoped liquid crystal (LC) films with homogeneous or homeotropic alignment structures. In the case of homogeneous alignment, the microparticles formed linear chains oriented along the direction of the bulk LC alignment at air-LC interface in the initial state. Upon irradiation with ultra-violet (UV) light, the linear chains gathered into the irradiated area and formed closely-packed aggregates. The assembled chains diffused outside the irradiated area to reform the chains upon irradiation with visible light. In contrast, on the homeotropically aligned LC films, pseudo-hexagonal lattice structures of microparticles with long interparticle distances have been organized in the initial state. The particles exhibited photoinduced motions in directions opposite to those observed on the homogeneously aligned LC films. Upon irradiation with UV light, lattice structures were expanded by a particle motion away from the photoirradiated area. Irradiation with visible light then induced contraction of lattice structures based on a particle motion toward the irradiated area. The photoinduced particle motions depending on LC alignments would be explained by macroscopic convective flow or deformation of LC surface induced by cis-trans photoisomerization of azobenzene dopant.

  13. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  14. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage.

    PubMed

    Feng, Yiyu; Liu, Hongpo; Luo, Wen; Liu, Enzuo; Zhao, Naiqin; Yoshino, Katsumi; Feng, Wei

    2013-01-01

    Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg(-1) compared with RGO-ortho-AZO (149.6 kJ kg(-1)) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds. PMID:24247355

  15. DFT study of linear and nonlinear optical properties of donor-acceptor substituted stilbenes, azobenzenes and benzilideneanilines.

    PubMed

    Krawczyk, Przemysław

    2010-04-01

    A theoretical analysis of the linear and nonlinear optical properties of six push-pull pi-conjugated molecules with stilbene, azobenzene and benzilideneaniline as a backbone is presented. The photophysical properties of the investigated systems were determined by using response functions combined with density functional theory (DFT). Several different exchange-correlation potentials were applied in order to determine parameters describing the one- and two-photon spectra of the studied molecules. In particular, the recently proposed Coulomb-attenuated model (CAM-B3LYP) was used to describe charge-transfer (CT) excited states. In order to compare theoretical predictions with available experimental data, calculations with inclusion of solvent effects were performed. The BLYP and the CAM-B3LYP functionals were found to yield values of two-photon absorption (TPA) probabilities closer to experimental values than the B3LYP functional or the HF wavefunction. Moreover, molecular static hyperpolarisabilities were determined using both DFT and second-order Møller-Plesset perturbation (MP2) theory. Likewise, the CAM-B3LYP functional was found to outperform other applied exchange-correlation potentials in determining first hyperpolarisability (beta). Moreover, it was confirmed on a purely theoretical basis that the presence of a -C=C- bridge between the phenyl rings leads to a much larger nonlinear optical response in comparison with a -N=N- bridge. PMID:19957196

  16. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    NASA Astrophysics Data System (ADS)

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  17. Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group

    PubMed Central

    Tirosh, Einat; Benassi, Enrico; Pipolo, Silvio; Mayor, Marcel; Valášek, Michal; Frydman, Veronica

    2011-01-01

    Summary The potential for manipulation and control inherent in molecule-based motors holds great scientific and technological promise. Molecules containing the azobenzene group have been heavily studied in this context. While the effects of the cis–trans isomerization of the azo group in such molecules have been examined macroscopically by a number of techniques, modulations of the elastic modulus upon isomerization in self-assembled films were not yet measured directly. Here, we examine the mechanical response upon optical switching of bis[(1,1'-biphenyl)-4-yl]diazene organized in a self-assembled film on Au islands, using atomic force microscopy. Analysis of higher harmonics by means of a torsional harmonic cantilever allowed real-time extraction of mechanical data. Quantitative analysis of elastic modulus maps obtained simultaneously with topographic images show that the modulus of the cis-form is approximately twice that of the trans-isomer. Quantum mechanical and molecular dynamics studies show good agreement with this experimental result, and indicate that the stiffer response in the cis-form comprises contributions both from the individual molecular bonds and from intermolecular interactions in the film. These results demonstrate the power and insights gained from cutting-edge AFM technologies, and advanced computational methods. PMID:22259768

  18. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  19. Rheological and filtration behavior of aqueous alumina casting slips dispersed with polyacrylate and polymethacrylate deflocculants

    NASA Astrophysics Data System (ADS)

    Shemo, David M.

    Dynamic stress-controlled rheometry methods and filtration analysis were used to characterize aluminum oxide suspensions relative to several process variables. These included dispersant molecular weight, dispersant concentration, solids concentration, alumina PSD, and aging time. It is believed that through rheological analysis, a better understanding of a slip's structure and dewatering behavior can be achieved. Based upon time- and stress-sweep data, structural models were developed for the build-up (gelation) and break-down (yielding) processes in alumina suspensions. Aqueous alumina suspensions dispersed with acrylate-based polyelectrolytes of average molecular weights of 2400, 3500, and 15000 were evaluated over an aging period of up to ten days. The aging-induced variations in their rheological, filtration, and electrochemical characteristics were quantified. These effects were related to changes in the structures of the suspensions over time. It was found that the aging effect was most pronounced for slips dispersed with higher molecular weight polyacrylate or polymethacrylate deflocculants. A mechanism was proposed to account for the aging behavior and the effect of dispersant molecular weight. Alumina slips were prepared with bimodal particle size compositions by combining two sub-micron alumina powders. Variation in rheological behavior with the composition was evaluated for slips at moderate and high solids concentration, and at fully dispersed and under dispersed states. The corresponding changes in the filtration behavior and cast density were measured. A structural model was constructed for the observed variations with alumina composition.

  20. Graphene sheets stacked polyacrylate latex composites for ultra-efficient electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Song; Ni, Yuwei

    2016-07-01

    Graphene sheets (GS) are at the forefront of electromagnetic interference (EMI) shielding/attenuation materials science research because of their excellent electrical properties (Wen B et al 2014 Adv. Mater. 26 3484, Zhang Y et al 2015 Adv. Mater. 27 2049). GS/polyacrylate (PA) composites were prepared using a solvent-free latex technology, which favored the build-up of a segregated GS architecture stacked in the polymer matrix. GS were obtained from graphite flakes (GF) via a mechanical delamination approach in water. The microstructure, electrical, dielectric and electromagnetic shielding properties of the GS/PA composites were correlated in this manuscript. A remarkably low percolation threshold of ∼0.11 mass per cent for room-temperature electrical conductivity was obtained in the GS/PA composites owing to the stacked architecture of GS with high aspect ratios. This unique nanostructured GS architecture not only enhanced the electrical conductivity of composites, but also dramatically increased complex permittivity by inducing strong Maxwell–Wagner–Sillars (MWS) polarization at the highly conductive GS/non-conductive PA interfaces. The EMI shielding effectiveness (SE) of these composites was enhanced with increasing GS content, and the composite with 6 wt% GS loading exhibited a high EMI SE of ∼66 dB over a frequency of 8.2–12.4 GHz, resulting from the pronounced conduction loss, dielectric relaxation, and multi-scattering.

  1. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  2. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.

    PubMed

    Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor; Hertzberg, Benjamin; Burtovyy, Ruslan; Huebner, Christopher F; Fuller, Thomas F; Luzinov, Igor; Yushin, Gleb

    2010-11-01

    Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occurring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the stability of Si-based anodes. Most studies of Si anodes have involved the use of carboxymethylcellulose (CMC) and poly(vinylidene fluoride) (PVDF) binders. Herein, we show for the first time that pure poly(acrylic acid) (PAA), possessing certain mechanical properties comparable to those of CMC but containing a higher concentration of carboxylic functional groups, may offer superior performance as a binder for Si anodes. We further show the positive impact of carbon coating on the stability of the anode. The carbon-coated Si nanopowder anodes, tested between 0.01 and 1 V vs Li/Li+ and containing as little as 15 wt % of PAA, showed excellent stability during the first hundred cycles. The results obtained open new avenues to explore a novel series of binders from the polyvinyl acids (PVA) family. PMID:21053920

  3. Electrosensitive polyacrylic acid/fibrin hydrogel facilitates cell seeding and alignment.

    PubMed

    Rahimi, Nastaran; Molin, Daniel G; Cleij, Thomas J; van Zandvoort, Marc A; Post, Mark J

    2012-05-14

    Three-dimensional cell culture and conditioning is an effective means to guide cell distribution and patterning for tissue engineered constructs such as vascular grafts. Polyacrylic acid is known as an electroresponsive polymer, capable of transforming environmental stimuli like electrical energy to mechanical forces. In this study, we developed an electrosensitive and biocompatible hydrogel-based smart device composed of acrylic acid and fibrin as a tissue engineered construct to mechanically stimulate cells. Structural properties of the hydrogel were assessed by FTIR-ATR, scanning electron microscopy, prosimetry, and swelling measurement. Distribution and alignment of porcine smooth muscle cells (pSMCs) seeded on the surface of lyophilized hydrogels were evaluated and quantified by two-photon laser scanning microscopy. Smooth muscle cell tissue constructs exposed to 2 h of pulsatile electrical stimulation showed significantly enhanced cell penetration and alignment due to dynamic changes produced by alternative swelling and deswelling, in comparison with static samples. On the basis of the results, this hydrogel under electrical stimulation works as a mechanical pump, which can direct SMC alignment and facilitate infiltration and distribution of cells throughout the structure. PMID:22515272

  4. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  5. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  6. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  7. Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils.

    PubMed

    Couto, Diana; Freitas, Marisa; Vilas-Boas, Vânia; Dias, Irene; Porto, Graça; Lopez-Quintela, M Arturo; Rivas, José; Freitas, Paulo; Carvalho, Félix; Fernandes, Eduarda

    2014-02-10

    Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety of these nanoparticles is still not completely established, particularly to host defense systems that are usually recruited for their clearance from the body. In this paper, given the importance of neutrophils in the immune response of the organism to nanoparticles, the effect of polyacrylic acid (PAA)-coated and non-coated ION on human neutrophils was evaluated in vitro, namely their capacity to activate the oxidative burst and to modify their lifespan. The obtained results showed that the studied PAA-coated and non-coated ION triggered neutrophils' oxidative burst in a NADPH oxidase dependent manner, and that PAA-coated ION increased - while non-coated ION prevented - apoptotic signaling and apoptosis. These effects may have important clinical implications in biomedical applications of ION. PMID:24291037

  8. Element-Doped Polyacrylic Acid Thin Films as SIMS Standards for Organic Materials

    NASA Astrophysics Data System (ADS)

    Davisson, M.; Phinney, D. L.; Weber, P. K.

    2009-12-01

    To constrain relative sensitive factors for SIMS elemental analysis of organic materials, calibration standards are being developed by coordinating ppm quantities of Group I, Group II, and transition metals with polyacrylic acid resin and depositing them as thin films. Each element is prepared as an aqueous acetate, oxalate, or nitrate solution to avoid unwanted elements that compromise thin film uniformity or produce interfering masses. These are subsequently mixed proportionally with reagent grade resins (Mw ~2000 and ~50,000), and dried passively on an Al bullet or spin-coated for thin layering (~100nm). Initial results using an O- primary beam on a Cameca NanoSIMS demonstrate excellent lateral homogeneity for Na, K, Fe, Co, and Cd at nanometer scale and consistent ratios to 12C (stdev <10%) over multiple 10um raster areas, whereas Mg, Ca, Sr, and Cu show variable ratios to 12C over sputter depth (stdev >10%). Depth profiling over the entire film thickness using a Cameca 3f show high reproducibility of element trends at 250um raster areas. Additional measurements will incorporate multi-element suites of biologically-relevant species (e.g. Na, K, Ca, P) to facilitate quantitative analysis of sensitivity factors with compositional changes.

  9. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    PubMed

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-01-01

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential. PMID:23731716

  10. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  11. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    PubMed

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm). PMID:26343202

  12. Analysis of Complexation Equilibria of Polyacrylic Acid by a Donnan-Based Concept

    PubMed

    Miyajima; Mori; Ishiguro

    1997-03-01

    Complexation equilibria of uni- and divalent metal ions (Ag+, Ca2+, Cu2+, and Pb2+) with polyacrylic acid (PAA) have been studied at various degrees of dissociation (alpha) of PAA under different sodium salt concentration levels at 25°C. Both pH and pM(MZ+ = Ag+, Ca2+, Cu2+, and Pb2+) of equilibrium mixture solutions of MZ+/PAA/Na+ (excess) have been determined concurrently by a potentiometric titration method. The electrostatic effect inherent in the polyion-metal ion binding equilibria has been evaluated by a Donnan-based concept and is corrected for by the use of a nonideality term of acid dissociation equilibria of the polyacid as a probe. For Ag+-PAA and Ca2+-PAA bindings, only monodentate ligand complexes, (MA)(Z-1), have proven to be formed, whereas for Cu2+ and Pb2+ ion bindings, formation of both monodentate and bidentate ligand complexes have been observed. For both Cu2+-PAA and Pb2+-PAA systems, bidentate carboxylate complex formation is predominant at alpha > ca. 0.3, whereas at alpha < ca. 0.3, formation of monodentate carboxylate complexes becomes appreciable as alpha decreases. Stability constants of these complexes together with the intra-molecular complexation equilibrium constants expressed by the ratio of the concentrations of bidentate complexes to monodentate complexes have successfully been evaluated and are compared with each other in order to discuss the multidentate complexation properties of the polycarboxylic acid. PMID:9245334

  13. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  14. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  15. Surface hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants

    NASA Astrophysics Data System (ADS)

    Gîfu, Ioana Cătălina; Maxim, Monica Elisabeta; Iovescu, Alina; Simion, Elena Livia; Aricov, Ludmila; Anastasescu, Mihai; Munteanu, Cornel; Anghel, Dan-Florin

    2016-05-01

    The present study demonstrates the hydrophobic effect of poly(electrolyte) multilayer films when they are alkyl-grafted and complexed or not with surfactants. For this purpose, sodium hydrophobically modified poly(acrylates) (PACnNa, n = 10, 18) or their anionic complexes with alkyltrimethylammonium bromides (CxTAB, x = 10, 12, 14, 18), and the cationic poly(diallyldimethyldiammonium chloride) (PDDAMAC) are assembled by layer-by-layer deposition on a glass substrate. Contact angle (CA) measurements reveal that films constructed with PACnNa-CxTAB/PDADMAC are superior water repellants than those of PACnNa/PDADMAC. For example, the highest CA is obtained for the PAC18Na-C18TAB/PDADMAC. Moreover, it has been observed that the CA increases with the alkyl chain length of PACnNa and of surfactant. The film roughness and thickness have the same trend as wettability. Thinner and less coarse films are obtained by NaCl addition, as witnessed by SEM and AFM.

  16. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  17. A theory-based approach to thermal field-flow fractionation of polyacrylates.

    PubMed

    Runyon, J Ray; Williams, S Kim Ratanathanawongs

    2011-09-28

    A theory-based approach is presented for the development of thermal field-flow fractionation (ThFFF) of polyacrylates. The use of ThFFF for polymer analysis has been limited by an incomplete understanding of the thermal diffusion which plays an important role in retention and separation. Hence, a tedious trial-and-error approach to method development has been the normal practice when analyzing new materials. In this work, thermal diffusion theories based on temperature dependent osmotic pressure gradient and polymer-solvent interaction parameters were used to estimate thermal diffusion coefficients (D(T)) and retention times (t(r)) for different polymer-solvent pairs. These calculations identified methyl ethyl ketone as a solvent that would cause significant retention of poly(n-butyl acrylate) (PBA) and poly(methyl acrylate) (PMA). Experiments confirmed retention of these two polymers that have not been previously analyzed by ThFFF. Theoretical and experimental D(T)s and t(r)s for PBA, PMA, and polystyrene in different solvents agreed to within 20% and demonstrate the feasibility of this theory-based approach. PMID:21872869

  18. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.

    PubMed

    Zhou, W X; Chan-Park, Mary B

    2005-05-01

    Large area molding of long and deep microchannels separated by high aspect ratio microwalls is important for high sensitivity and high throughput microfluidic devices. Ultraviolet (UV) casting is a feasible, economical and convenient method of replication of such microstructures in plastics. It is shown that a wide variety of polyacrylates with diverse properties such as those made from epoxy (EP), polyurethane (UR), polyester (ES), poly (ethylene glycol) (EG) and poly(propylene glycol) (PG) can be used for the high aspect ratio (7-9) UV casting of such linear microstructures over a 100 mm diameter, enlarging the range of applications of the replicated microstructures. Some challenges arise. With the EG formulation, wavy microstructures were observed; this can be overcome by stress relaxation. With non-polar PG formulation, poor adhesion between the polyester substrate and resin can lead to delamination of the casting from the substrate during demolding; this can be overcome by pre-coating a partially cured same resin on the polyester substrate. An optimum UV irradiation time was important for cure at the deepest end of the microstructure without excessive crosslinking leading to much increased demolding forces. The viscosity and wetting capability of the formulations were found to affect replication fidelity. PMID:15856087

  19. Interaction of polyacrylates with porcine pepsin and the gastric mucus barrier: a mechanism for mucosal protection.

    PubMed

    Foster, S N; Pearson, J P; Hutton, D A; Allen, A; Dettmar, P W

    1994-12-01

    1. The mechanism of interaction of the polyacrylates, carbopols with the mucus barrier in vivo has been investigated in vitro. 2. Carbopol caused a dramatic increase in the viscosity of porcine gastric mucin solutions that was up to 19-fold greater than that of the sum of the individual polymers. 3. The mucin-carbopol interaction was stable after an initial 30 min period for up to 36 h at 25 degrees C or 37 degrees C. It was reduced by increasing the temperature from 20 degrees C to 45 degrees C, was unaffected by pH and ionic strength, but was enhanced by Ca2+. 4. The magnitude of the interaction between mucin and carbopol depended on the polymeric structure of the mucin and the molecular size and level of cross-linking of the carbopol. 5. The interactions were reversible and increased with increasing carbopol and mucin concentration. The dramatic increase in viscosity can be explained in terms of space filling by the mucin molecules leading to predominantly carbopol-carbopol interactions. 6. Carbopol 934P inhibits pepsin hydrolysis and therefore has potential as a mucosal protective agent in vivo. PMID:7874865

  20. Preparation and characterization of aqueous polyurethane oil/polyacrylate latex interpenetrating polymer network

    NASA Astrophysics Data System (ADS)

    Zhou, M. M.; Ma, L. L.; Du, J.; Cao, F.; Xiao, J. J.

    2015-07-01

    A series of aqueous polyurethane oil (network I)/polyacrylate (network II) latex interpenetrating polymer networks (LIPNs) were synthesized via the technology of latex interpenetrating polymer network combined seed emulsion polymerization process. Fourier transform infrared (FTIR) spectroscopy, laser particle size distributing analyzer and universal tension machine were utilized to characterize the bulk structures and mechanical properties of LIPNs. For used as damping material, the damping performance of LIPNs were analyzed by dynamic mechanical analysis (DMA). It was found that the damping temperature region of LIPN was wider than those of aqueous polyurethane oil, the temperature region with greater tanδ changed with the TPGDA content and hard-/soft-segment mass weight ratio (mMMA/mBA) and the glass transition temperature (Tg) of the network I and network II in LIPN occurred within shift each other, even overlap with increasing mMMA/mBA value. The results show that LIPNs synthesized through the combined process have greater tanδ and wider damping temperature region, which is suitable for the use of damping coatings.

  1. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. PMID:24530948

  2. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy.

    PubMed

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-04-01

    Molecular interactions in hydroxyapatite (HAP) polymer composites have been studied using photoacoustic spectroscopy. HAP is mineralized by wet precipitation under two conditions: first is in the absence of polyacrylic acid (PAAc) (ex-situ HAP) and second in the presence of PAAc (in-situ HAP). Porous and solid composites of ex-situ and in-situ HAP with polycaprolactone (PCL) have also been made to evaluate their applicability as bone scaffolds. Photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy studies indicate that both in-situ and ex-situ HAP have HPO4 (2-) in their structure, which leads to Ca2+ deficiency. During crystallization of in-situ HAP, PAAc dissociates to form carboxylate ions, which binds to calcium ions and act as suitable site for nucleation for HAP crystallization. PA-FTIR spectra of porous and solid composites indicate that porous composites adsorb more water, which is hydrogen bonded with carbonyl of PCL. Mechanical tests on solid samples indicate that ex-situ HAP/PCL composites have higher elastic modulus than in-situ HAP/PCL composites. However, in case of porous composites, in-situ HAP/PCL composites are found to have higher elastic modulus. In-situ HAP is chemically and structurally different from ex-situ HAP. This modified HAP causes variation in microstructure of porous composite and hence alteration of its load transfer mechanisms and hence mechanical properties. PMID:16355408

  3. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles.

    PubMed

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours' exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours' exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP-cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  4. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels.

    PubMed

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2015-03-25

    Graphene oxide (GO) aerogels, high porosity (>99%) low density (∼3-10 mg cm(-3)) porous materials with GO pore walls, are particularly attractive due to their lightweight, high surface area, and potential use in environmental remediation, superhydrophobic and superoleophilic materials, energy storage, etc. However, pure GO aerogels are generally weak and delicate which complicates their handling and potentially limits their commercial implementation. The focus of this work was to synthesize highly elastic, mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their high porosity or low density. To overcome this challenge, a small amount of readily available and thermally cross-linkable poly(acrylic acid) (PAA) was intermixed with GO to enhance the mechanical integrity of the aerogel without disrupting other desirable characteristic properties. This method is a simple straightforward procedure that does not include multistep or complicated chemical reactions, and it produces aerogels with mass densities of about 4-6 mg cm(-3) and >99.6% porosity that can reversibly support up to 10,000 times their weight with full recovery of their original volume. Finally, pressure sensing capabilities were demonstrated and their oil absorption capacities were measured to be around 120 g oil per g aerogel(-1) which highlights their potential use in practical applications. PMID:25714662

  5. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis

    PubMed Central

    2013-01-01

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential. PMID:23731716

  6. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid.

    PubMed

    Lin, Chia-Lung; Lee, Chia-Fen; Chiu, Wen-Yen

    2005-11-15

    Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected. PMID:16009367

  7. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  8. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling

    SciTech Connect

    Hibbs, Michael R.; Hernandez-Sanchez, Bernadette A.; Daniels, Justin; Stafslien, Shane J.

    2015-09-07

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. As a result, this significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).

  9. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling

    DOE PAGESBeta

    Hibbs, Michael R.; Hernandez-Sanchez, Bernadette A.; Daniels, Justin; Stafslien, Shane J.

    2015-09-07

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified frommore » microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. As a result, this significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).« less

  10. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    PubMed

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  11. Effect of salt and surfactant concentration on the structure of polyacrylate gel/surfactant complexes.

    PubMed

    Nilsson, Peter; Unga, Johan; Hansson, Per

    2007-09-20

    Small-angle X-ray scattering was used to elucidate the structure of crosslinked polyacrylate gel/dodecyltrimethylammonium bromide complexes equilibrated in solutions of varying concentrations of surfactant and sodium bromide (NaBr). Samples were swollen with no ordering (micelle free), or they were collapsed with either several distinct peaks (cubic Pm3n) or one broad correlation peak (disordered micellar). The main factor determining the structure of the collapsed complexes was found to be the NaBr concentration, with the cubic structure existing up to approximately 150 mM NaBr and above which only the disordered micellar structure was found. Increasing the salt concentration decreases the polyion mediated attractive forces holding the micelles together causing swelling of the gel. At sufficiently high salt concentration the micelle-micelle distance in the gel becomes too large for the cubic structure to be retained, and it melts into a disordered micellar structure. As most samples were above the critical micelle concentration, the bulk of the surfactant was in the form of micelles in the solution and the surfactant concentration thereby had only a minor influence on the structure. However, in the region around 150 mM NaBr, increasing the surfactant concentration, at constant NaBr concentration, was found to change the structure from disordered micellar to ordered cubic and back to disordered again. PMID:17715959

  12. Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants.

    PubMed

    Nilsson, Peter; Hansson, Per

    2008-09-15

    The deswelling kinetics of macroscopic polyacrylate (PA) gels in solutions of dodecyltrimethylammonium bromide (C(12)TAB) and cetyltrimethylammonium bromide (C(16)TAB), with and without added sodium bromide, as well as hyaluronate (HA) gels in solutions of cetylpyridinium chloride (CPC) are investigated. Additional data are also provided by small-angle X-ray scattering and microgel experiments. The purpose is to study the deswelling behavior of (1) regularly deswelling gels, for which the deswelling is successfully described using a core/shell model earlier employed for microgels, and (2) irregularly deswelling gels, where the gel turns into a balloon-like structure with a dense outer layer surrounding a liquid-filled core. For regularly deswelling gels, the deswelling of PA/C(12)TAB is found to be controlled by diffusion through both stagnant layer and collapsed surface phase, while for PA/C(16)TAB it is found to be controlled mainly by the latter. The difference in deswelling rate between the two is found to correspond to the difference in surfactant diffusion coefficient in the surface phase. Factors found to promote irregular deswelling, described as balloon formation, are rapid surfactant binding, high bromide and surfactant concentration, longer surfactant chain length, and macroscopic gel size. Scattering data indicating a cubic structure for HA/CPC complexes are reported. PMID:18565536

  13. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  14. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  15. Photoinduced Directional Motions of Microparticles at Air-Liquid-Crystal Interfaces of Azobenzene-Doped Liquid-Crystal Films with Homeotropic or Homogeneous Alignment Structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    We investigated the effects of liquid-crystal (LC) alignments on photoinduced motions of microparticles at air-LC interfaces of azobenzene-doped LC films. In homeotropically aligned LC films, the lattice spacings of pseudo-hexagonal structures of microparticles site-selectively exhibited reversible expansion or contraction on alternating irradiation with ultraviolet and visible light. The particle motions were probably driven by photochemical deformation of LC surfaces. In homogeneously aligned films, alternating irradiation induced macroscopic convective flows followed by rapid gathering or dispersion of linear chains of microparticles. Particle motions were significantly influenced by LC alignments as well as the light wavelength.

  16. AgNO3 as nitrogen source for rhodium(iii)-catalyzed synthesis of 2-aryl-2H-benzotriazoles from azobenzenes.

    PubMed

    Li, Jixing; Zhou, Hui; Zhang, Jinlong; Yang, Huameng; Jiang, Gaoxi

    2016-07-21

    A new approach has been established for Rh(iii)-catalyzed direct aza oxidative cyclization of non-prefunctionalized azobenzenes to provide 2-aryl-2H-benzotriazoles in good yields, in which AgNO3 instead of conventional azide reagents for the first time functions as the nitrogen source for the nitrogenation reaction. Preliminary mechanistic studies suggest that the Rh(iii)-catalyst could account for the nitration reaction, and subsequently cationic silver species might both play a vital role in the fission of the nitrogen-oxygen bonds in nitro groups and promote aza oxidative cyclization. PMID:27398802

  17. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    NASA Astrophysics Data System (ADS)

    Grasselli, M.; Betz, N.

    2005-07-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  18. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  19. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots.

    PubMed

    Celebi, Serdar; Erdamar, A Koray; Sennaroglu, Alphan; Kurt, Adnan; Acar, Havva Yagci

    2007-11-01

    Cadmium sulfide (CdS) nanoparticles (NPs) capped with poly(acrylic acid) (PAA) were prepared in aqueous solutions from Cd(NO3)2 and Na2S. Influence of the COOH/Cd ratio (0.8-12.5), reaction pH (5.5 and 7.5), and PAA molecular weight (2100 and 5100 g/mol) on the particle size, colloidal stability, and photoluminescence were investigated. A Cd/S ratio of <1 causes ineffective passivization of the surface with the carboxylate and therefore results in a red shift of the absorption band and a significant drop in photoluminescence. Therefore, the Cd/S ratio was fixed at 1.1 for all experiments studying the mentioned variables. PAA coating provided excellent colloidal stability at a COOH/Cd ratio above 1. Absorption edges of PAA-coated CdS NPs are in the range of 460-508 nm. The size of the NPs increases slightly with increasing PAA molecular weight and COOH/Cd ratio at pH 7.5. It is demonstrated that there is a critical COOH/Cd ratio (1.5-2) that maximizes the photoluminescence intensity and quantum yield (QY, 17%). Above this critical ratio, which corresponds to smaller crystal sizes (3.7-4.1 nm) for each reaction set, the quantum yield decreases and the crystal size increases. Moreover, CdS NPs prepared at pH 7.5 have significantly higher QY and absorb at lower wavelengths in comparison with those prepared at pH 5.5. Luminescence quenching has not been observed over 8 months. PMID:17929960

  20. Poly(acrylic acid)-grafted fluoropolymer films for highly sensitive fluorescent bioassays.

    PubMed

    Jung, Chan-Hee; Hwang, In-Tae; Kuk, In-Seol; Choi, Jae-Hak; Oh, Byung-Keun; Lee, Young-Moo

    2013-03-01

    In this study, a facile and effective method for the surface functionalization of inert fluoropolymer substrates using surface grafting was demonstrated for the preparation of a new platform for fluorescence-based bioassays. The surface of perfluorinated poly(ethylene-co-propylene) (FEP) films was functionalized using a 150 keV ion implantation, followed by the graft polymerization of acrylic acid, to generate a high density of carboxylic acid groups on the implanted surface. The resulting functionalized surface was investigated in terms of the surface density of carboxylic acid, wettability, chemical structure, surface morphology, and surface chemical composition. These results revealed that poly(acrylic acid) (PAA) was successfully grafted onto the implanted FEP surface and its relative amount depended on the fluence. To demonstrate the usefulness of this method for the fabrication of bioassays, the PAA-grafted FEP films were utilized for the immobilization of probe DNA for anthrax toxin, followed by hybridization with Cy3-labeled target DNA. Liver cancer-specific α-feto-protein (AFP) antigen was also immobilized on the PAA-grafted FEP films. Texas Red-labeled secondary antibody was reacted with AFP-specific primary antibody prebound to the AFP antigen using an immunoassay method. The results revealed that the fluorescence intensity clearly depended on the concentration of the target DNA hybridized to the probe DNA and the AFP antigen immobilized on the FEP films. The lowest detectable concentrations of the target DNA and the AFP antigen were 10 fg/mL and 10 pg/mL, respectively, with the FEP films prepared at a fluence of 3 × 10(14) ions/cm(2). PMID:23452270

  1. Ionic strength assay via polyacrylate-ferriferrous oxide magnetic photonic crystals.

    PubMed

    Li, Yan-Ran; Sun, Ye; Wang, He-Fang

    2015-05-21

    Convenient reading out and/or determination of ionic strength (IS) is of great significance for both scientific research and real life applications. We presented here a novel method for the rapid and sensitive IS assay based on the electrolyte-induced sensitive wavelength blueshifts of the reflection spectra of polyacrylate capped Fe3O4 magnetic photonic crystals (PA-Fe3O4-MPCs). For HCl, MgSO4 and the common electrolytes corresponding to the salinity of seawater (including NaCl, KCl, MgCl2, CaCl2, Na2SO4 and their mixtures), the PA-Fe3O4-MPCs displayed wavelength blueshifts identical to the total IS of the aqueous solutions, regardless of the kind of above-mentioned electrolytes in the solutions. Besides, the PA-Fe3O4-MPCs exhibited relatively high sensitivity (an average of 294 nm L mmol(-1) in the range of 0.05-0.30 mmol L(-1), and an even higher value of 386 nm L mmol(-1) at 0.05-0.15 mmol L(-1)) and fast response (within 8 s) to the IS of aqueous solutions. The relative standard deviation (RSD) for IS (NaCl, 0.1 mmol L(-1)) was 4.4% (n = 5). The developed method was applied to determine the salinity of seawater samples, and the determined results were validated by the traditional standard chlorinity titration and electric conductimetry method. The recoveries were in the range of 92-104%. The proposed PA-Fe3O4-MPCs based reflectometry method would have great potential for IS and salinity assays. PMID:25827462

  2. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.

    PubMed

    Hou, Jie; Szaflarski, Diane M; Simon, John D

    2013-04-25

    Qualitative and quantitative insights into the capacity and association constant for the binding of chymotrypsin to polyacrylate-coated gold nanoparticles is determined using fluorescence quenching, optical absorption and circular dichroism spectroscopy, isothermal calorimetry, and gel electrophoresis. The collective data reveal a binding capacity and constant for this particular system of ~7 and ~2 × 10(6) M(-1), respectively. These values vary among the individual techniques, and not all techniques are able to provide quantitative information. The present study demonstrates that accurately quantifying the association between nanoparticles and biological materials requires using multiple approaches to ensure consistency among the binding parameters determined. PMID:23305403

  3. Effect of trans-cis photoisomerization on phase equilibria and phase transition of liquid-crystalline azobenzene chromophore and its blends with reactive mesogenic diacrylate.

    PubMed

    Kim, Namil; Li, Quan; Kyu, Thein

    2011-03-01

    Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and phase-field theory. The calculation revealed various coexistence regions such as nematic + liquid (N₁ + L₂), crystal + liquid (Cr₁ + L₂), crystal + nematic (Cr₁ + N₂), and crystal + crystal (Cr₁ + Cr₂) over a broad range of compositions including the single-phase nematic (N₁, N₂) of the corresponding constituents. The calculated liquidus lines were in good accord with the depressed mesophase-isotropic transition points. The present paper demonstrates the effect of trans-cis photoisomerization on the mesophase transitions of neat LCAC and the phase diagram of LCAC-RM257 as well as on the ripple formation (i.e., periodic undulation) on the azobenzene crystals. PMID:21517513

  4. Azobenzene switch with a long-lived cis-state to photocontrol the enzyme activity of a histone deacetylase-like amidohydrolase.

    PubMed

    Korbus, Michael; Balasubramanian, Ganesh; Müller-Plathe, Florian; Kolmar, Harald; Meyer-Almes, Franz-Josef

    2014-04-01

    The control of enzymes by use of an external stimulus such as light enables the temporal and spatial regulation of defined chemical reactions in a highly precise manner. In this work we investigated and characterized the reversible photocontrol of a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes strain FB188, which holds great potential to control deacetylation reactions of a broad spectrum of substrates in biotechnological and biomedical applications. Several HDAH variants with a single surface accessible cysteine close to the active site were developed and covalently modified by a monofunctional azobenzene-based photoswitch [4-phenylazomaleinanil (4-PAM)]. The enzymatic activity of three HDAH variants (M30C, S20C and M150C) were shown to be controlled by light. The thermal cis-to-trans relaxation of azobenzene conjugated to HDAH was up to 50-fold retarded compared to unbound 4-PAM allowing light pulse switching rather than continuing irradiation to maintain the thermodynamically less stable cis-state of covalently attached 4-PAM. PMID:24262648

  5. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    PubMed

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study. PMID:14750877

  6. Maxillary reconstruction using a multi-element free fibula flap based on a three-dimensional polyacrylic resin model.

    PubMed

    Jędrzejewski, Piotr; Maciejewski, Adam; Szymczyk, Cezary; Wierzgoń, Janusz

    2012-01-01

    Preoperative preparation of working models of the skull and free bone flaps using the digital print technology and photocured polyacrylic resins may be of a great benefit to the patient, for whom a virtual resection and reconstruction procedure may be planned in detail and performed. The purpose of mid-facial reconstruction using 3D models is to plan a functional mid-facial reconstruction procedure in order to restore supportive function of intraorbital structures and to make placement of dental implants and further prosthetic rehabilitation possible.Maxillary and mid-facial reconstruction using a free fibula flap based on a three-dimensional working model was performed in a patient diagnosed with a squamous cell carcinoma of the left maxillary sinus penetrating to the orbit, the ethmoid complex, and the pterygopalatine fossa. The use of three-dimensional polyacrylic models allowed for detailed preoperative planning and a virtual resection and reconstruction procedure with a highly satisfying functional and cosmetic effect.A procedure based on methods discussed here may be significantly shorter and more precise. PMID:22472495

  7. Solar cell enhancement using metallic nanoparticles embedded in titanium dioxide

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Allen, Kenneth W.; Fiddy, Michael A.

    2015-02-01

    In this work we model the effects of depositing gold nanospheres of varying radii and spatial separations onto a 500nm film of silicon in an effort to couple more light into silicon through the localized surface plasmon resonance (LSPR) of the nanoparticles. To further enhance the field at the interface, we study the effect of embedding the spheres within the dielectrics air, NBK7, and titanium dioxide (TiO2). The modeling is done through finite element analysis via COMSOL over the radiation spectrum (0.4μm 1.5μm) of the sun. A positive size dependency of the light coupled into silicon and the radii of the spheres is found and analyzed. Use of dielectrics greater than air, NBK7 and TiO2, results in greater field enhancement at the silicon interface.

  8. Iron nanoparticles embedded in carbon films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali

    2016-06-01

    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  9. Organic memory device with polyaniline nanoparticles embedded as charging elements

    NASA Astrophysics Data System (ADS)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  10. Gold nanoparticles embedded silicon channel biosensor for improved sensitivity

    NASA Astrophysics Data System (ADS)

    Chang, H. Y.; Arshad, M. K. Md.; M. Nuzaihan M., N.; Fathil, M. F. M.; Hashim, U.

    2016-07-01

    This project discusses the fabrication steps of a biosensor device on silicon-on-insulator (SOI) wafer. Conventional photolithography technique is used to fabricate the device. The gold nanoparticles (GNPs) are then used to enhance the sensitivity of the device. By incorporating the GNPs, it is expected to get higher current compared with the device without GNPs due to better conductivity of gold and higher volume-to-ratio. Hence, with the addition of GNPs, it may boost up the signal and enhance the sensitivity of the device.

  11. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOEpatents

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  12. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  13. Synthesis and characterization of magnetic nanoparticles embedded in polyacrylonitrile nanofibers

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel; Ion, Rodica-Mariana; Cocina, George-Costel

    2010-11-01

    Nanomedicine is defined as the monitoring, repair, construction, and control of human biological systems at the molecular level using engineered nanodevices and nanostructures. Polyacrylonitrile (PAN) solution containing the iron oxide precursor iron (III) was electrospun and thermally treated to produce electrically conducting, magnetic carbon nanofiber mats with hierarchical pore structures. This paper discusses the synthesis of magnetite (Fe3O4) nanoparticles with mean crystallite size of 10 nm with polyacrylonitrile (PAN) as the protecting agent, creating nanofiber. The morphology and material properties of the resulting multifunctional nanofiber including the surface area were examined using various characterization techniques. Optical microscopy images show that uniform fibers were produced with a fiber diameter of ~600 nm, and this uniform fiber morphology is maintained after graphitization with a fiber diameter of ~330 nm. X-ray diffraction (XRD) studies reveal the size of Fe3O4 crystals. A combination of XRD and electron microscopy experiments reveals the formation of pores with graphitic nanoparticles in the walls as well as the formation of magnetite nanoparticles distributed throughout the fibers.

  14. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil

    NASA Astrophysics Data System (ADS)

    Kumar, Ashavani; Vemula, Praveen Kumar; Ajayan, Pulickel M.; John, George

    2008-03-01

    Developing bactericidal coatings using simple green chemical methods could be a promising route to potential environmentally friendly applications. Here, we describe an environmentally friendly chemistry approach to synthesize metal-nanoparticle (MNP)-embedded paint, in a single step, from common household paint. The naturally occurring oxidative drying process in oils, involving free-radical exchange, was used as the fundamental mechanism for reducing metal salts and dispersing MNPs in the oil media, without the use of any external reducing or stabilizing agents. These well-dispersed MNP-in-oil dispersions can be used directly, akin to commercially available paints, on nearly all kinds of surface such as wood, glass, steel and different polymers. The surfaces coated with silver-nanoparticle paint showed excellent antimicrobial properties by killing both Gram-positive human pathogens (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The process we have developed here is quite general and can be applied in the synthesis of a variety of MNP-in-oil systems.

  15. Fabrication and characterization of stable superhydrophobic fluorinated-polyacrylate/silica hybrid coating

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2014-04-01

    The core-shell fluorinated-polyacrylate (PFA) emulsion was synthesized through emulsion polymerization method and the superhydrophobic PFA/SiO2 hybrid coating was successfully fabricated on the slide glass by spraying the mixture of PFA emulsion and hydrophobic SiO2 particles using ethanol as cosolvent. The PFA emulsion was characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), water contact angle (WCA), transmission electron microscopy (TEM), and the effects of SiO2 content on the wetting behavior and surface morphology of PFA/SiO2 hybrid coating were investigated. To evaluate the stability of the hybrid coating, the acid and base resistance, weatherability and thermal stability were also studied. Results showed that the obtained PFA latex exhibited a core-shell structure with a particle size of 134.1 nm and a narrow polydispersity of 0.03. With the increase of dodecafluoroheptyl methacrylate (DFMA) content in the latex shell from 0 wt% to 31.8 wt%, the WCA of the PFA film enlarged from 85° to 104°, indicating that the introduction of fluorinated monomer was effective in reducing the surface energy. By adding different amount of SiO2 particles, the surface morphology and wetting behavior of the PFA/SiO2 hybrid coatings could be controlled. When the mass ratio of SiO2 to PFA emulsion was 0.2, the surface roughness (Rq) increased to 173.6 nm and the wetting behavior of the surface became superhydrophobic with a WCA of 153°, resulted from the corporation of low surface energy and the binary nano/microstructure on the surface. The as-prepared PFA/SiO2 hybrid coating showed good acid and base corrosion resistance, and it could keep superhydrophobicity after being heated at 250 °C for 2 h or exposed to ambient atmosphere for more than 3 months. Additionally, the superhydrophobic PFA/SiO2 hybrid coating could be applied to various substrates through spraying. This was a green and eco-friendly method in fabricating stable

  16. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  17. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: a quantitative anomalous small-angle x-ray scattering study.

    PubMed

    Goerigk, G; Huber, K; Schweins, R

    2007-10-21

    The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+][NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v between 0.94x10(17) and 2.01x10(17) cm(-3) corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r=[Sr2+][NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r=0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border. PMID:17949215

  18. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: A quantitative anomalous small-angle x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Goerigk, G.; Huber, K.; Schweins, R.

    2007-10-01

    The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+]/[NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v¯ between 0.94×1017 and 2.01×1017cm-3 corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r =[Sr2+]/[NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r =0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border.

  19. Prevention of thermally induced aggregation of IgG antibodies by noncovalent interaction with poly(acrylate) derivatives.

    PubMed

    Martin, Nicolas; Ma, Dewang; Herbet, Amaury; Boquet, Didier; Winnik, Françoise M; Tribet, Christophe

    2014-08-11

    Prevention of thermal aggregation of antibodies in aqueous solutions was achieved by noncovalent association with hydrophobically modified poly(acrylate) copolymers. Using a polyclonal immunoglobin G (IgG) as a model system for antibodies, we have studied the mechanisms by which this multidomain protein interacts with polyanions when incubated at physiological pH and at temperatures below and above the protein unfolding/denaturation temperature, in salt-free solutions and in 0.1 M NaCl solutions. The polyanions selected were sodium poly(acrylates), random copolymers of sodium acrylate and N-n-octadecylacrylamide (3 mol %), and a random copolymer of sodium acrylate, N-n-octylacrylamide (25 mol %), and N-isopropylacrylamide (40 mol %). They were derived from two poly(acrylic acid) parent chains of Mw 5000 and 150000 g·mol(-1). The IgG/polyanion interactions were monitored by static and dynamic light scattering, fluorescence correlation spectroscopy, capillary zone electrophoresis, and high sensitivity differential scanning calorimetry. In salt-free solutions, the hydrophilic PAA chains form complexes with IgG upon thermal unfolding of the protein (1:1 w/w IgG/PAA), but they do not interact with native IgG. The complexes exhibit a remarkable protective effect against IgG aggregation and maintain low aggregation numbers (average degree of oligomerization <12 at a temperature up to 85 °C). These interactions are screened in 0.1 M NaCl and, consequently, PAAs lose their protective effect. Amphiphilic PAA derivatives (1:1 w/w IgG/polymer) are able to prevent thermal aggregation (preserving IgG monomers) or retard aggregation of IgG (formation of oligomers and slow growth), revealing the importance of both hydrophobic interactions and modulation of the Coulomb interactions with or without NaCl present. This study leads the way toward the design of new formulations of therapeutic proteins using noncovalent 1:1 polymer/protein association that are transient and require a

  20. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter.

    PubMed

    Matsumori, Masaki; Takahashi, Ayami; Tomioka, Yasushi; Hikima, Takaaki; Takata, Masaki; Kajitani, Takashi; Fukushima, Takanori

    2015-06-01

    Single-layer thin alignment films of dye molecules are of growing importance, particularly for state-of-the-art LCD technology. Here we show that a sequential process involving the photoalignment and humidification of a chromonic liquid crystalline azobenzene (brilliant yellow; BY) dispersed in a triacetyl cellulose (TAC) matrix gives a thin alignment film with an exceptionally high order parameter (0.81). Spectroscopic and X-ray diffraction analyses of a BY/TAC composite film in each alignment process revealed that brief humidification triggers restructuring of the BY assembly from 1D nematic-like order to anisotropic 2D columnar order, resulting in the dramatic increase in the order parameter. PMID:25984633

  1. Development of Polar Order in the Liquid Crystal Phases of a 4-Cyanoresorcinol-Based Bent-Core Mesogen with Fluorinated Azobenzene Wings.

    PubMed

    Alaasar, Mohamed; Prehm, Marko; Tamba, Maria-Gabriela; Sebastián, Nerea; Eremin, Alexey; Tschierske, Carsten

    2016-01-18

    A bent-core mesogen consisting of a 4-cyanoresorcinol unit as the central core and laterally fluorinated azobenzene wings forms four different smectic LC phase structures in the sequence SmA-SmCs -SmCs PAR -M, all involving polar SmCs PS domains with growing coherence length of tilt and polar order on decreasing temperature. The SmA phase is a cluster-type de Vries phase with randomized tilt and polar direction; in the paraelectric SmCs phase the tilt becomes uniform, although polar order is still short-range. Increasing polar correlation leads to a new tilted and randomized polar smectic phase with antipolar correlation between the domains (SmCs PAR ) which then transforms into a viscous polar mesophase M. As another interesting feature, spontaneous symmetry breaking by formation of a conglomerate of chiral domains is observed in the non-polar paraelectric SmCs phase. PMID:26581648

  2. Photo-responsive properties of azobenzene small molecules in sol-gel hybrid TiO2/ormosil organic-inorganic matrices

    NASA Astrophysics Data System (ADS)

    Que, Wenxiu; Hu, X.; Xia, X. L.; Zhao, L.

    2007-01-01

    Azodye-doped TiO2/ormosil hybrid materials for photonic applications were prepared by a low temperature sol-gel process from an organic-inorganic hybrid system. Acid-catalyzed solutions of γ-glycidoxypropyltrimethoxysilane and methyltrimethoxysilane mixed with tetrapropyl orthotitanate were used as hybrid matrix precursors. The trans-cis-trans photoisomerization of azobenzene small molecules in sol-gel hybrid organic-inorganic matrices was induced by a photoirradiation with UV light and subsequent visible light. It was found that the hybrid film doped with azodyes and heated at a lower temperature was much better for applications in optical storage or optical switch. The planar waveguide properties of the hybrid films were also investigated by using a prism coupling technique. These results indicates that it is possible for the as prepared hybrid films to allow directly integrating on the same chip the optical storage or optical switch devices with the pump source.

  3. Photoinduced Changes of Surface Topography in Amorphous, Liquid-Crystalline, and Crystalline Films of Bent-Core Azobenzene-Containing Substance.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej

    2016-06-01

    Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing. PMID:27176778

  4. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  5. Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries.

    PubMed

    Bie, Yitian; Yang, Jun; Liu, Xiaolin; Wang, Jiulin; Nuli, Yanna; Lu, Wei

    2016-02-10

    A robust silicon electrode for lithium-ion battery has been developed via prepolymerizing dopamine on silicon particle surface and then chemical binding with poly(acrylic acid) (PAA). In this favorable electrode, silicon nanoparticles are covered by a thin layer of polydopamine (PD) through firm hydrogen bonds between phenolic hydroxyl and hydroxyl, while the elastic polymer layer reacts with PAA binder to form three-dimensional cross-linked binding system. The Si@PD/PAA electrode exhibits more stable cycle performance than conventional electrodes. In the case of thick electrode, a capacity of 3.69 mA h cm(-2) and fairly good rechargeability for 80 cycles can be achieved. PMID:26808456

  6. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  7. In vitro permeation studies of phenolics from horse chestnut seed gels prepared with different polyacrylic acid polymer derivatives.

    PubMed

    Zelbienė, Eglė; Draksiene, Gailute; Savickas, Arunas; Kopustinskiene, Dalia; Masteikova, Ruta; Bernatoniene, Jurga

    2015-06-01

    The aim of this study was to investigate the effects of polyacrylic acid polymers (Ultrez 10, Ultrez 20, Carbopol 980, and Carbopol 940) on the viscosity and the in vitro permeation of phenolic compounds from the gel prepared from natural horse chestnut seed extract. Experiments were performed in the presence and in the absence of peppermint oil (Mentha piperita). Our results showed that peppermint oil decreased the viscosity of the gels and permeation of phenolic compounds from all gel samples. Results show that the highest content of phenolic compounds (1.758 μg cm(-2)) permeated in vitro from gel based on Carbopol Ultrez 20 without peppermint oil added (p<0.05 vs. other tested polymers). PMID:26011934

  8. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  9. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  10. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion.

    PubMed

    Guggi, Davide; Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2004-04-15

    This study examined the influence of the pH on the mucoadhesive and cohesive properties of polyarcylic acid (PAA) and thiolated PAA. The pH of PAA (molecular mass: 450 kDa) and of a corresponding PAA-cysteine conjugate was adjusted to 3, 4, 5, 6, 7 and 8. The amount of immobilised thiol groups and disulfide bonds was determined via Ellman's reagent. Tablets were compressed out of each pH-batch of both thiolated and unmodified PAA and the swelling behaviour, the disintegration time and the mucoadhesiveness were evaluated. The amount of thiol/disulfide groups per gram thiolated PAA of pH 3 and pH 8 was determined to be 332 +/- 94 micromol and 162 +/- 46 micromol, respectively. The thiolated PAA tablets displayed a minimum four-fold higher water uptake compared to unmodified PAA tablets. A faster and higher water uptake of both polymer types was observed above pH 5. Thiolated polymer tablets showed a 3-20-fold more prolonged disintegration time than unmodified PAA tablets. The cohesiveness of PAA-cysteine conjugate increased at higher pH, whereas the unmodified PAA behaved inversely. A 3-7-fold stronger mucoadhesiveness was observed for the PAA-cysteine conjugate tablets compared to unmodified PAA tablets. For both thiolated and unmodified polymer the mucoadhesiveness was 2-4-fold enhanced below pH 5. The difference in mucoadhesion between the two polymer types was most pronounced at these lower pH values. In this study substantial information regarding the pH-dependence of mucoadhesion and cohesion of unmodified polyacrylates and of thiolated polyacrylates is provided, representing helpful basic information for an ameliorated deployment of these polymers. PMID:15072786

  11. Determination of superabsorbent polyacrylate dust in workplace atmospheres after derivatization with ethanol and using HPLC with pulsed electrochemical detection.

    PubMed

    Wink, O; Schack, F

    2000-10-01

    Superabsorbent polyacrylates (SAPs) have been used in the hygiene industry for many years. A derivatization and analytical method was developed for routine analysis of trace levels of SAP dust in workplace atmospheres. In comparison with existing methods, which are based on the sodium content or the ion exchange properties of the polymer, this method is more specific. It has the advantage of not being influenced by any sodium containing contaminants. Air samples are collected on Teflon filters using air monitoring sampling cassettes. The filters are subsequently placed in quartz vials and a reaction mixture containing hydrochloric acid in ethanol is added. The hydrochloric acid-ethanol solution, when heated, converts the carboxylic acid groups on the backbone of the insoluble polyacrylate into ethyl esters. After reaction, the excess of ethanol and hydrochloric acid is completely removed under vacuum. The sample is then treated with aqueous sodium hydroxide at 80 degrees C to release the bound ethanol. The solution is analyzed by HPLC on an anion exclusion stationary phase using dilute perchloric acid as mobile phase. Ethanol is identified and quantified with a pulsed electrochemical detector. Several environmental samples in addition to laboratory spiked samples were successfully analyzed with this technique. Recoveries averaged > 85% for spiked blank filters at levels from 5 to 50 micrograms per filter with relative standard deviations up to 7%. The instrument's limit of detection (LOD) for ethanol was 0.1 mg l-1. The LOD for derivatization and analysis corresponds to 3 micrograms of SAP per filter (assuming an esterification factor of 0.30 microgram of ethanol per microgram of SAP). PMID:11070542

  12. Mesoporous polyacrylic acid supported silver nanoparticles as an efficient catalyst for reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source.

    PubMed

    Mandi, Usha; Roy, Anupam Singha; Kundu, Sudipta K; Roy, Susmita; Bhaumik, Asim; Islam, Sk Manirul

    2016-06-15

    Silver nanoparticle immobilized mesoporous cross-linked polyacrylic acid (Ag-MCP-1) has been synthesized via aqueous-phase polymerization of acrylic acid followed by the surface immobilization with silver nanoparticles. The nanocomposite material has been characterized by different spectroscopic techniques. Powder X-ray diffraction patterns revealed the formation of silver nanoparticles, while transmission electron microscope image showed that Ag nanoparticles are formed and uniformly dispersed in the mesoporous polyacrylic acid. The Ag-MCP-1 nanocomposite can be used as an efficient heterogeneous catalyst in the reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source. This nanocomposite can be reused more than five times without any significant decrease in its catalytic activity. PMID:27038284

  13. [Clinical cases about the therapeutic use of debriding dressing hidrodetersive polyacrylate fibers with TLC and foam dressings TLC-NOSF polyurethane in chronic wounds].

    PubMed

    Blasco García, Carmen; Segovia Gómez, Teresa; Bermejo Martínez, Mariano; Cuesta Cuesta, Juan José; Alventosa Cortés, Ana María

    2012-10-01

    The treatment of chronic wounds requires the use of highly specific products for different phases of the healing process. This article raises a number of clinical cases with chronic wounds of vascular origin and pressure ulcers. Such cases required a initial debridement because of the large content of fibrin covering the wound bed at this stage was used dressing hidrodetersive polyacrylate fibers with TLC. Once the debridement is continued treatment with a polyurethane foam dressing with TLC-NOSF. PMID:23157065

  14. Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates.

    PubMed

    Kriwet, B; Walter, E; Kissel, T

    1998-12-01

    Bioadhesive latices of water-swollen poly(acrylic acid) nano-and microparticles were synthesized using an inverse (W/O) emulsion polymerization method. They are stabilized by a co-emulsifier system consisting of SpanTM 80 and TweenTM 80 dispersed in aliphatic hydrocarbons. The initial polymerization medium contains emulsion droplets and inverse micelles which solubilize a part of the monomer solution. The polymerization is initiated by free radicals, and particle dispersions with a narrow size distribution are obtained. The particle size is dependent on the type of radical initiator used. With water-soluble initiators, for example ammonium persulfate, microparticles were obtained in the size range of 1 to 10 micrometer indicating that these microparticles originate from the emulsion droplets since the droplet sizes of the W/O emulsion show similar distribution. When lipophilic radical initiators, such as azobis-isobutyronitrile, are used, almost exclusively nanoparticles are generated with diameters in the range of 80 to 150 nm, due to the limited solubility of oligomeric poly(acrylic acid) chains in the lipophilic continuous phase. These poly(acrylic acid) micro- and nanoparticles yielded excellent bioadhesive properties in an in-vitro assay and may, therefore, be suitable for the encapsulation of peptides and other hydrophilic drugs. PMID:9801438

  15. Characterization and antimicrobial property of poly(acrylic acid) nanogel containing silver particle prepared by electron beam.

    PubMed

    Choi, Jong-Bae; Park, Jong-Seok; Khil, Myung-Seob; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Nho, Young-Chang

    2013-01-01

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect. PMID:23708101

  16. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  17. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    PubMed

    Xie, Tian; Taylor, Lynne S

    2016-03-01

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition. PMID:26791934

  18. Generation of avirulent Leishmania parasites and induction of nitric oxide production in macrophages by using polyacrylic acid.

    PubMed

    Elcicek, Serhat; Bagirova, Malahat; Allahverdiyev, Adil M

    2013-03-01

    Polyacrylic acid (PAA) is one of the anionic synthetic polyelectrolytes and is used in various immunological and pharmaceutical applications. PAA has been used as adjuvant in veterinary vaccines, in particular. However, to our knowledge, there are no studies that document immunostimulant properties of PAA in Leishmania infection. The main aim of this study was to investigate the interaction of Leishmania parasites with PAA: the possible effects on the infectivity of Leishmania promastigotes; and, induction of nitric oxide (NO) production in macrophages in vitro. The cytotoxicity of PAA on both macrophages and Leishmania infantum promastigotes were determined by MTT assay. NO production in the macrophage culture supernatant was measured by the Griess method. A significant, dose-dependent and time-dependent decrease in the infection index was observed after PAA exposure. The value of this decrease was found to be between 93% and 100% for all concentration and time points. PAA (molecular weight (MW) 30, 100 kDa at 1mg/1h)-exposed parasites stimulate NO production significantly at 48 h post-infection (PI), when compared to the control. This study demonstrates that Leishmania parasites lost their virulence upon interaction with PAA, and this interaction induced NO production in infected macrophages. These results may have important implications in the development of anti-leishmanial vaccines and amelioration of immune response. PMID:23238031

  19. Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure

    NASA Astrophysics Data System (ADS)

    Xu, Wei; An, Qiufeng; Hao, Lifen; Zhang, Dan; Zhang, Min

    2013-03-01

    Novel self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with core-shell structure were synthesized by semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolamide (NMA) in the presence of a polymerizable emulsifier-ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Effects of the DNS-86 and DFMA amounts on stability and properties of the FMBN emulsions were studied. Besides, the latices and their film were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. FT-IR spectra and 1H NMR spectrum showed that DFMA successfully participated in soap-free emulsion polymerization and monomers formed the fluorinated acrylate copolymer. The resulted latex particles had the core-shell structure. The films formed from the FMBN latices thus had two Tg. Their thermal stability and Tg of the shell phase increased gradually with augment of DFMA amount in polymer. XPS, AFM and hydrophobicity analyses indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. This enrichment of fluorine at the film-air interface was more evident after the annealing process. Water contact angles of the FMBN film before and after the annealing process could attain 115.5° and 117.5°, individually.

  20. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    PubMed Central

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  1. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    PubMed

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  2. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  3. Capture of Tumor Cells on Anti-EpCAM-Functionalized Poly(acrylic acid)-Coated Surfaces.

    PubMed

    Andree, Kiki C; Barradas, Ana M C; Nguyen, Ai T; Mentink, Anouk; Stojanovic, Ivan; Baggerman, Jacob; van Dalum, Joost; van Rijn, Cees J M; Terstappen, Leon W M M

    2016-06-15

    The presence of tumor cells in blood is predictive of short survival in several cancers and their isolation and characterization can guide toward the use of more effective treatments. These circulating tumor cells (CTC) are, however, extremely rare and require a technology that is sufficiently sensitive and specific to identify CTC against a background of billions of blood cells. Immuno-capture of cells expressing the epithelial cell adhesion molecule (EpCAM) are frequently used to enrich CTC from blood. The choice of bio conjugation strategy and antibody clone is crucial for adequate cell capture but is poorly understood. In this study, we determined the binding affinity constants and epitope binding of the EpCAM antibodies VU1D-9, HO-3, EpAb3-5, and MJ-37 by surface plasmon resonance imaging (SPRi). Glass surfaces were coated using a poly(acrylic acid) based coating and functionalized with anti-EpCAM antibodies. Binding of cells from the breast carcinoma cell line (SKBR-3) to the functionalized surfaces were compared. Although EpAb3-5 displayed the highest binding affinity HO-3 captured the highest amount of cells. Hence we report differences in the performance of the different antibodies and more importantly that the choice of antibody to capture CTC should be based on multiple assays. PMID:27187784

  4. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.

    PubMed

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E M; Kluger, Petra J; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap(®) technology by the authors. PMID:27104576

  5. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    PubMed

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-13

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes. PMID:26979270

  6. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  7. Organic-inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid

    NASA Astrophysics Data System (ADS)

    Cui, Xuejun; Zhong, Shuangling; Wang, Hongyan

    A series of silicon-containing polyacrylate nanoparticles (SiPANPs) were successfully synthesized by simple emulsifier-free emulsion polymerization technique. The resulting latex particles were characterized by Fourier transform infrared (FTIR) spectrometry, dynamic light scattering (DLS) analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SiPANP membranes and SiPANP/phosphotungstic acid (SiPANP/PWA) hybrid membranes were also prepared and characterized to evaluate their potential as proton exchange membranes in proton exchange membrane fuel cell (PEMFC). Compared with the pure SiPANP membrane, the hybrid membranes displayed lower thermal stability. However, the degradation temperatures were still above 190 °C, satisfying the requirement of thermal stability for PEMFC operation. In addition, the hybrid membranes showed lower water uptake but higher proton conductivity than the SiPANP precursor. The proton conductivity of the hybrid membranes was in the range of 10 -3 to 10 -2 S cm -1 and increased gradually with PWA content and temperature. The excellent hydrolytic stability was also observed in the hybrid membranes because of the existence of crosslinked silica network. The good thermal stability, reasonable water uptake, excellent hydrolytic stability, suitable proton conductivity and cost effectiveness make these hybrids quite attractive as proton exchange membranes for PEMFC applications.

  8. Mesoporous Iron Oxide Nanoparticles Prepared by Polyacrylic Acid Etching and Their Application in Gene Delivery to Mesenchymal Stem Cells

    PubMed Central

    CAO, BINRUI; QIU, PENGHE; MAO, CHUANBIN

    2013-01-01

    Novel monodisperse mesoporous iron oxide nanoparticles (m-IONPs) were synthesized by a postsynthesis etching approach and characterized by electron microscopy. In this approach, solid iron oxide nanoparticles (s-IONPs) were first prepared following a solvothermal method, and then etched anisotropically by polyacrylic acid to form the mesoporous nanostructures. MTT cytotoxicity assay demonstrated that the m-IONPs have good biocompatibility with mesenchymal stem cells (MSCs). Owing to their mesoporous structure and good biocompatibility, these monodisperse m-IONPs were used as a nonviral vector for the delivery of a gene of vascular endothelial growth factor (VEGF) tagged with a green fluorescence protein (GFP) into the hard-to-transfect stem cells. Successful gene delivery and transfection were verified by detecting the GFP fluorescence from MSCs using fluorescence microscopy. Our results illustrated that the m-IONPs synthesized in this work can serve as a potential nonviral carrier in gene therapy where stem cells should be first transfected and then implanted into disease sites for disease treatment. PMID:23913581

  9. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  10. Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins

    NASA Astrophysics Data System (ADS)

    Jachuła, Justyna; Hubicki, Zbigniew

    2013-09-01

    The sorption of Cr(VI) and As(V) from the aqueous solutions with the polyacrylate anion exchangers of the strong base functional groups Amberlite IRA 458 and Amberlite IRA 958 was studied. The studies were carried out by the static-batch method. The concentration of Cr(VI) and As(V) ions in the aqueous solution was determined by the UV-VIS spectrophotometer. The influence of several parameters was studied with respect to sorption equilibrium. The phase contact time and the concentration affect the sorption process. The equilibrium state was established already after 15 min of phase contact time. Maximum uptake of Cr(VI) and As(V) occurred at pH 5 and 10, respectively. The determined kinetic parameters imply that the sorption process proceeds according to the equation type of pseudo second-order. Sorption equilibrium data were correlated with the Langmuir and Freundlich isotherms. Removal of As(V) ions on macroporous Amberlite IRA 900 decreased about 12 % in presence of other anions (Cl-, NO3 -, SO4 2-) in the solution. The sorption was temperature dependent.

  11. Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement.

    PubMed

    De Giglio, E; Cometa, S; Cioffi, N; Torsi, L; Sabbatini, L

    2007-12-01

    A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating was investigated by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was employed to evaluate the effect of annealing treatment on the morphology of the coatings in terms of their uniformity and porosity. Inductively coupled plasma mass spectrometry was used to measure ion concentrations in ion release tests performed on Ti-6Al-4V sheets modified with PAA coatings (annealed and unannealed). Results indicate that the annealing process produces coatings that possess considerable anti-corrosion performance. Moreover, the availability and the reactivity of the surface carboxylic groups were exploited in order to graft biological molecules onto the PAA-modified titanium implants. The feasibility of the grafting reaction was tested using a single aminoacid residue. A fluorinated aminoacid was selected, and the grafting reaction was monitored both by XPS, using fluorine as a marker element, and via quartz crystal microbalance (QCM) measurements. The success of the grafting reaction opens the door to the synthesis of a wide variety of PAA-based coatings that are functionalized with selected bioactive molecules and promote positive reactions with the biological system interfacing the implant while considerably reducing ion release into surrounding tissues. PMID:17516054

  12. The calcite/water interface II. Effect of added lattice ions on the charge properties and adsorption of sodium polyacrylate.

    PubMed

    Eriksson, Rasmus; Merta, Juha; Rosenholm, Jarl B

    2008-10-15

    The origin of the surface potential of calcium carbonate in aqueous dispersions and the dissolution of calcite in systems containing excess Ca(2+) and CO(3)(2-) have been the subjects of this study. In addition, stabilization of calcite particles with an anionic polyelectrolyte (sodium polyacrylate (NaPA)) and the effect on surface potential and dissolution of calcite have been studied. Preferential dissolution of either Ca(2+) or CO(3)(2-) from the surface, which is governed by the partial pressure of CO(2) in solution and the pH of the solution, mainly determines the surface potential. Both lattice ions (Ca(2+) and CO(3)(2-)) adsorb onto the surface and thus alter the surface potential. NaPA adsorbs strongly onto the calcite surface regardless of background electrolyte concentration, and reverses the surface potential to negative values. Chelation of the surface due to NaPA can be partly prevented by adding Ca(2+) to the dispersion. PMID:18675424

  13. The distribution of Sr2+ counterions around polyacrylate chains analyzed by anomalous small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Goerigk, G.; Schweins, R.; Huber, K.; Ballauff, M.

    2004-05-01

    The distribution of Sr counterions around negatively charged sodium polyacrylate chains (NaPA) in aqueous solution was studied by anomalous small-angle X-ray scattering. Different ratios of the concentrations of SrCl2/[NaPA] reveal dramatic changes in the scattering curves. At the lower ratio the scattering curves indicate a coil-like behavior, while at the higher ratio the scattering curves are contracted to smaller q-values, caused by the collapse of the NaPA coil. The form factor of the scattering contribution of the counterions was separated and analyzed. For the scattering curves of the collapsed chains, this analysis agrees with the model of a pearl necklace, consisting of collapsed sphere-like subdomains which are connected by stretched chain segments. An averaged radius of the pearls of 19 nm and a distance between neighbouring pearls close to 60 nm could be established for the collapsed state of the NaPA chains.

  14. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca(2+) and Na(+). Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na(+) on the mobility of water molecules was practically undetectable. By contrast, addition of Ca(2+) strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  15. Photo-aligned blend films of azobenzene-containing polyimides with and without side-chains for inducing inclined alignment of liquid crystal molecules

    NASA Astrophysics Data System (ADS)

    Usami, Kiyoaki; Sakamoto, Kenji

    2011-08-01

    We have succeeded in controlling the pretilt angle of liquid crystal (LC) molecules over the whole range of 0 to 90° by using photo-aligned blend films of two azobenzene-containing polyimides (Azo-PIs) with and without side-chains. The Azo-PIs were synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-(4'-propylbi(cyclohexan)-4-yl)phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into the polyimide. Defect-free uniform LC alignment was obtained in the pretilt angle (θp) ranges of θp ≤ 11° and θp ≥ 78°. Previously, we reported that the pretilt angle can be controlled using pure photo-aligned films of Azo-PIs with different molar fractions of PBCP-DABA. For the pure photo-aligned films, the defect-free pretilt angle ranges were θp < 5° and θp ≥ 85°. These results suggest that the azimuthal anchoring strength of the blend Azo-PI film is stronger than that of the pure films of Azo-PIs with side-chains, at least for the pretilt angle range from 5 to 11°. We found that the defect-free pretilt angle range can be extended by using the blend Azo-PI films instead of the pure Azo-PI films.

  16. Supramolecular Phase-Selective Gelation by Peptides Bearing Side-Chain Azobenzenes: Effect of Ultrasound and Potential for Dye Removal and Oil Spill Remediation

    PubMed Central

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz Díaz, David

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  17. Supramolecular phase-selective gelation by peptides bearing side-chain azobenzenes: effect of ultrasound and potential for dye removal and oil spill remediation.

    PubMed

    Bachl, Jürgen; Oehm, Stefan; Mayr, Judith; Cativiela, Carlos; Marrero-Tellado, José Juan; Díaz, David Díaz

    2015-01-01

    Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels. In the case of miscible oil/water mixtures, the entire mixture was gelled, resulting in the formation of quasi-hydrogels. Importantly, PSG could be triggered at room temperature by ultrasound treatment of the mixture or by adding ultrasound-aided concentrated solution of the peptide in an oil-phase to a mixture of the same oil and water. Moreover, the PSG was not affected by the presence of salts or impurities existing in water from natural sources. The process could be scaled-up, and the oil phases (e.g., aromatic solvents, gasoline, diesel fuel) recovered almost quantitatively after a simple distillation process, which also allowed the recovery and reuse of the gelator. Finally, these peptidic gelators could be used to quantitatively remove toxic dyes from aqueous solutions. PMID:26006247

  18. Light-induced switching of the wettability of novel asymmetrical poly(vinyl alcohol)-co-ethylene membranes blended with azobenzene polymers.

    PubMed

    Tylkowski, Bartosz; Peris, Sergio; Giamberini, Marta; Garcia-Valls, Ricard; Reina, José A; Ronda, Joan C

    2010-09-21

    Novel composite asymmetrical membranes based on poly(vinyl alcohol)-co-ethylene (EVAL) as the host material and new polyethers that contain azobenzene moieties in the side chain were prepared by dry-cast phase inversion after dissolving the azo polymers in tetrahydrofuran and EVAL in dimethylsulfoxide and subsequently mixing the resulting solutions. By taking advantage of the proper temperature variation in the oven used for solvent evaporation, asymmetrical membranes that exhibited a dense, crystalline layer on the bottom and a porous, mainly amorphous layer on the top were obtained. Remarkable changes in the surface morphology and the contact angle with water were observed on the top surfaces of the composite membranes. This was ascribed not only to the enhanced concentration of azo polymer on the top surface but mostly to a conformational change in EVAL induced by the photoisomerization of the guest azo groups, as shown by HRMAS (1)H NMR. The morphological and structural changes in EVAL could be reversed on exposing the membrane to visible light for 24 h. PMID:20799708

  19. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  20. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene